Sample records for network pore size

  1. Impact of pore size variability and network coupling on electrokinetic transport in porous media (United States)

    Alizadeh, Shima; Bazant, Martin Z.; Mani, Ali


    We have developed and validated an efficient and robust computational model to study the coupled fluid and ion transport through electrokinetic porous media, which are exposed to external gradients of pressure, electric potential, and concentration. In our approach a porous media is modeled as a network of many pores through which the transport is described by the coupled Poisson-Nernst-Planck-Stokes equations. When the pore sizes are random, the interactions between various modes of transport may provoke complexities such as concentration polarization shocks and internal flow circulations. These phenomena impact mixing and transport in various systems including deionization and filtration systems, supercapacitors, and lab-on-a-chip devices. In this work, we present simulations of massive networks of pores and we demonstrate the impact of pore size variation, and pore-pore coupling on the overall electrokinetic transport in porous media.

  2. Percolating macropore networks in tilled topsoil: effects of sample size, minimum pore thickness and soil type (United States)

    Jarvis, Nicholas; Larsbo, Mats; Koestel, John; Keck, Hannes


    The long-range connectivity of macropore networks may exert a strong control on near-saturated and saturated hydraulic conductivity and the occurrence of preferential flow through soil. It has been suggested that percolation concepts may provide a suitable theoretical framework to characterize and quantify macropore connectivity, although this idea has not yet been thoroughly investigated. We tested the applicability of percolation concepts to describe macropore networks quantified by X-ray scanning at a resolution of 0.24 mm in eighteen cylinders (20 cm diameter and height) sampled from the ploughed layer of four soils of contrasting texture in east-central Sweden. The analyses were performed for sample sizes ("regions of interest", ROI) varying between 3 and 12 cm in cube side-length and for minimum pore thicknesses ranging between image resolution and 1 mm. Finite sample size effects were clearly found for ROI's of cube side-length smaller than ca. 6 cm. For larger sample sizes, the results showed the relevance of percolation concepts to soil macropore networks, with a close relationship found between imaged porosity and the fraction of the pore space which percolated (i.e. was connected from top to bottom of the ROI). The percolating fraction increased rapidly as a function of porosity above a small percolation threshold (1-4%). This reflects the ordered nature of the pore networks. The percolation relationships were similar for all four soils. Although pores larger than 1 mm appeared to be somewhat better connected, only small effects of minimum pore thickness were noted across the range of tested pore sizes. The utility of percolation concepts to describe the connectivity of more anisotropic macropore networks (e.g. in subsoil horizons) should also be tested, although with current X-ray scanning equipment it may prove difficult in many cases to analyze sufficiently large samples that would avoid finite size effects.

  3. Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks (United States)

    Rezaee, M. R.; Jafari, A.; Kazemzadeh, E.


    Accurate estimation of permeability from other data has been a challenge for many years. The aim of this study was to establish relationships between permeability, porosity and pore throat size, and apply these relationships in a predictive sense. Regression analysis was utilized to achieve a set of relationships between permeability, porosity and pore throat size for 144 carbonate samples. These relationships can be used to estimate permeability from porosity and pore throat radii. Also in this study, a fully-connected multi-layer perceptron network was used to predict permeability from porosity and pore throat radii. An artificial neural network, a biologically inspired computing method which has an ability to learn, self-adjust, and be trained, provides a powerful tool in solving complex problems. These characteristics have enabled artificial neural networks to be more successful in predicting permeability when compared to regression analysis. This study also indicates that pore throat radii corresponding to a mercury saturation of 50% (r50) is the best permeability predictor for carbonates with complex pore networks.

  4. Pore network extraction for fractured porous media (United States)

    Jiang, Z.; van Dijke, M. I. J.; Geiger, S.; Ma, J.; Couples, G. D.; Li, X.


    Although flow through fractured rocks involves many different length-scales, it is crucial for the prediction of continuum-scale single- and multi-phase flow functions to understand, at the pore-scale, the interaction between the rock matrix and fractures. Here we present a pore-network extraction method in which the pore diameters and fracture apertures are of similar size. The method involves a shrinking algorithm to extract a hybrid skeleton of medial axes and surfaces, and it includes a workflow to convert the medial surfaces of fractures into dense networks of virtual medial axes, allowing generation of an integrated pore-network for the entire pore space. Appropriate single- and two-phase flow properties are assigned to network elements representing the fractures. We validate the method via comparisons between pore network flow simulations and an analytical solution, direct flow simulations and experimental observations. The network calculations are several orders of magnitude faster than the direct simulations.

  5. Particle diffusion in complex nanoscale pore networks

    DEFF Research Database (Denmark)

    Müter, Dirk; Sørensen, Henning Osholm; Bock, H.


    We studied the diffusion of particles in the highly irregular pore networks of chalk, a very fine-grained rock, by combining three-dimensional X-ray imaging and dissipative particle dynamics (DPD) simulations. X-ray imaging data were collected at 25 nm voxel dimension for two chalk samples...... with very different porosities (4% and 26%). The three-dimensional pore systems derived from the tomograms were imported into DPD simulations and filled with spherical particles of variable diameter and with an optional attractive interaction to the pore surfaces. We found that diffusion significantly...... decreased to as much as 60% when particle size increased from 1% to 35% of the average pore diameter. When particles were attracted to the pore surfaces, even very small particles, diffusion was drastically inhibited, by as much as a factor of 100. Thus, the size of particles and their interaction...

  6. Control of pore size in epoxy systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patricia Sue; Lenhart, Joseph Ludlow (North Dakota State University, Fargo, ND); Lee, Elizabeth (North Dakota State University, Fargo, ND); Kallam, Alekhya (North Dakota State University, Fargo, ND); Majumdar, Partha (North Dakota State University, Fargo, ND); Dirk, Shawn M.; Gubbins, Nathan; Chisholm, Bret J. (North Dakota State University, Fargo, ND); Celina, Mathias C.; Bahr, James (North Dakota State University, Fargo, ND); Klein, Robert J.


    Both conventional and combinatorial approaches were used to study the pore formation process in epoxy based polymer systems. Sandia National Laboratories conducted the initial work and collaborated with North Dakota State University (NDSU) using a combinatorial research approach to produce a library of novel monomers and crosslinkers capable of forming porous polymers. The library was screened to determine the physical factors that control porosity, such as porogen loading, polymer-porogen interactions, and polymer crosslink density. We have identified the physical and chemical factors that control the average porosity, pore size, and pore size distribution within epoxy based systems.

  7. Experimental study on imbibition displacement mechanisms of two-phase fluid using micromodel: Fracture network, distribution of pore size, and matrix construction (United States)

    Jafari, Iman; Masihi, Mohsen; Nasiri Zarandi, Masoud


    In this study, the effect of different parameters on the fluid transport in a fractured micromodel has been investigated. All experiments in this study have been conducted in a glass micromodel. Since the state of wetting is important in the micromodel, the wetting experiments have been conducted to determine the state of wetting in the micromodel. The used micromodel was wet by water and non-wet regarding normal decane. The fracture network, distribution of pore size, matrix construction, and injection rate are the most important parameters affecting the process. Therefore, the influence of these parameters was studied using five different patterns (A to E). The obtained results from pattern A showed that increasing water injection the flow rate results in both higher rate of imbibition and higher ultimate recovery. Pattern B, which was characterized with higher porosity and permeability, was employed to study the effect of matrix pore size distribution on the imbibition process. Compared to pattern A, a higher normal decane production was observed in this pattern. Patterns C and D were designed to understand the impact of lateral fractures on the displacement process. Higher ultimate recoveries were obtained in these patterns. A system of matrix-fracture was designed (pattern E) to evaluate water injection performance in a multi-block system. Injection of water with the flow rate of 0.01 cc/min could produce 15% of the oil available in the system. While in the test with the flow rate of 0.1 cc/min, a normal decane recovery of 0.28 was achieved.

  8. Effects of pore-size and shape distributions on diffusion pore imaging by nuclear magnetic resonance. (United States)

    Kuder, Tristan Anselm; Laun, Frederik Bernd


    In medical imaging and porous media research, NMR diffusion measurements are extensively used to investigate the structure of diffusion restrictions such as cell membranes. Recently, several methods have been proposed to unambiguously determine the shape of arbitrary closed pores or cells filled with an NMR-visible medium by diffusion experiments. The first approach uses a combination of a long and a short diffusion-weighting gradient pulse, while the other techniques employ short gradient pulses only. While the eventual aim of these methods is to determine pore-size and shape distributions, the focus has been so far on identical pores. Thus, the aim of this work is to investigate the ability of these different methods to resolve pore-size and orientation distributions. Simulations were performed comparing the various pore imaging techniques employing different distributions of pore size and orientation and varying timing parameters. The long-narrow gradient profile is most advantageous to investigate pore distributions, because average pore images can be directly obtained. The short-gradient methods suppress larger pores or induce a considerable blurring. Moreover, pore-shape-specific artifacts occur; for example, the central part of a distribution of cylinders may be largely underestimated. Depending on the actual pore distribution, short-gradient methods may nonetheless yield good approximations of the average pore shape. Furthermore, the application of short-gradient methods can be advantageous to differentiate whether pore-size distributions or intensity distributions, e.g., due to surface relaxation, are predominant.

  9. Pore networks in continental and marine mudstones: Characteristics and controls on sealing behavior (United States)

    Heath, J.E.; Dewers, T.A.; McPherson, B.J.O.L.; Petrusak, R.; Chidsey, T.C.; Rinehart, A.J.; Mozley, P.S.


    Mudstone pore networks are strong modifiers of sedimentary basin fluid dynamics and have a critical role in the distribution of hydrocarbons and containment of injected fluids. Using core samples from continental and marine mudstones, we investigate properties of pore types and networks from a variety of geologic environments, together with estimates of capillary beam- scanning electron microscopy, suggest seven dominant mudstone pore types distinguished by geometry and connectivity. A dominant planar pore type occurs in all investigated mudstones and generally has high coordination numbers (i.e., number of neighboring connected pores). Connected networks of pores of this type contribute to high mercury capillary pressures due to small pore throats at the junctions of connected pores and likely control most matrix transport in these mudstones. Other pore types are related to authigenic (e.g., replacement or pore-lining precipitation) clay minerals and pyrite nodules; pores in clay packets adjacent to larger, more competent clastic grains; pores in organic phases; and stylolitic and microfracture-related pores. Pores within regions of authigenic clay minerals often form small isolated networks (<3 ??m). Pores in stringers of organic phases occur as tubular pores or slit- and/or sheet-like pores. These form short, connected lengths in 3D reconstructions, but appear to form networks no larger than a few microns in size. Sealing efficiency of the studied mudstones increases with greater distal depositional environments and greater maximum depth of burial. ?? 2011 Geological Society of America.

  10. Soil Pore Network Visualisation and Quantification using ImageJ

    DEFF Research Database (Denmark)

    Garbout, Amin; Pajor, Radoslaw; Otten, Wilfred

    Computed Tomography data. We used ImageJ to analyze images of pore geometries in soils generated by X-ray micro Computed Tomography. Soil samples were scanned at 30 μm resolution, and we produced replicated samples with different pore geometries by packing different sized soil aggregates at pre...... in the input image. Several parameters (number of networks, junctions, branches…) were used to describe the networks in the sample, and we discuss how these can be used to describe soil structure. Keywords Soil,networks,pore,X-ray micro Computed Tomography,Skeletonize3D...... strategies to preserve this limited resource. Many of those processes occur at micro scales. For long our ability to study soils non-destructively at microscopic scales has been limited, but recent developments in the use of X-ray Computed Tomography has offered great opportunities to quantify the 3-D...

  11. Pore-size-distribution of cationic polyacrylamide hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, M.; Prausnitz, J.M.


    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  12. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, M.; Prausnitz, J.M.


    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  13. Coarse and fine root plants affect pore size distributions differently. (United States)

    Bodner, G; Leitner, D; Kaul, H-P

    Small scale root-pore interactions require validation of their impact on effective hydraulic processes at the field scale. Our objective was to develop an interpretative framework linking root effects on macroscopic pore parameters with knowledge at the rhizosphere scale. A field experiment with twelve species from different families was conducted. Parameters of Kosugi's pore size distribution (PSD) model were determined inversely from tension infiltrometer data. Measured root traits were related to pore variables by regression analysis. A pore evolution model was used to analyze if observed pore dynamics followed a diffusion like process. Roots essentially conditioned soil properties at the field scale. Rooting densities higher than 0.5 % of pore space stabilized soil structure against pore loss. Coarse root systems increased macroporosity by 30 %. Species with dense fine root systems induced heterogenization of the pore space and higher micropore volume. We suggested particle re-orientation and aggregate coalescence as main underlying processes. The diffusion type pore evolution model could only partially capture the observed PSD dynamics. Root systems differing in axes morphology induced distinctive pore dynamics. Scaling between these effective hydraulic impacts and processes at the root-pore interface is essential for plant based management of soil structure.

  14. Pore network extraction from pore space images of various porous media systems (United States)

    Yi, Zhixing; Lin, Mian; Jiang, Wenbin; Zhang, Zhaobin; Li, Haishan; Gao, Jian


    Pore network extraction, which is defined as the transformation from irregular pore space to a simplified network in the form of pores connected by throats, is significant to microstructure analysis and network modeling. A physically realistic pore network is not only a representation of the pore space in the sense of topology and morphology, but also a good tool for predicting transport properties accurately. We present a method to extract pore network by employing the centrally located medial axis to guide the construction of maximal-balls-like skeleton where the pores and throats are defined and parameterized. To validate our method, various rock samples including sand pack, sandstones, and carbonates were used to extract pore networks. The pore structures were compared quantitatively with the structures extracted by medial axis method or maximal ball method. The predicted absolute permeability and formation factor were verified against the theoretical solutions obtained by lattice Boltzmann method and finite volume method, respectively. The two-phase flow was simulated through the networks extracted from homogeneous sandstones, and the generated relative permeability curves were compared with the data obtained from experimental method and other numerical models. The results show that the accuracy of our network is higher than that of other networks for predicting transport properties, so the presented method is more reliable for extracting physically realistic pore network.

  15. Reactive transport in porous media: Pore-network model approach compared to pore-scale model (United States)

    Varloteaux, Clément; Vu, Minh Tan; Békri, Samir; Adler, Pierre M.


    Accurate determination of three macroscopic parameters governing reactive transport in porous media, namely, the apparent solute velocity, the dispersion, and the apparent reaction rate, is of key importance for predicting solute migration through reservoir aquifers. Two methods are proposed to calculate these parameters as functions of the Péclet and the Péclet-Dahmköhler numbers. In the first method called the pore-scale model (PSM), the porous medium is discretized by the level set method; the Stokes and convection-diffusion equations with reaction at the wall are solved by a finite-difference scheme. In the second method, called the pore-network model (PNM), the void space of the porous medium is represented by an idealized geometry of pore bodies joined by pore throats; the flow field is computed by solving Kirchhoff's laws and transport calculations are performed in the asymptotic regime where the solute concentration undergoes an exponential evolution with time. Two synthetic geometries of porous media are addressed by using both numerical codes. The first geometry is constructed in order to validate the hypotheses implemented in PNM. PSM is also used for a better understanding of the various reaction patterns observed in the asymptotic regime. Despite the PNM approximations, a very good agreement between the models is obtained, which shows that PNM is an accurate description of reactive transport. PNM, which can address much larger pore volumes than PSM, is used to evaluate the influence of the concentration distribution on macroscopic properties of a large irregular network reconstructed from microtomography images. The role of the dimensionless numbers and of the location and size of the largest pore bodies is highlighted.

  16. Preparation of silica with controlled pore sizes for enzyme immobilization

    Directory of Open Access Journals (Sweden)

    Trevisan H.C.


    Full Text Available A simple method for the preparation of silica with controlled pore size, for use as a support for the immobilization of enzymes, is described in this article. Using sodium silicate and hydrochloric acid, a microporous silica was obtained that was then submitted to a hydrothermal treatment, resulting in macroporous silica suitable for enzyme immobilization. Suitability of the macroporous silica as a support depends on the method chosen for its preparation, which will determine pore volume and the effect of hydrothermal treatment on pore size. The pore volume of the support was 0.8-0.9 cc/g and the average pore size, controlled by the hydrothermal treatment, was in the range of 16 to 75 nm. The enzyme amyloglucosidase was used for the immobilization studies.

  17. Novel Techniques to Characterize Pore Size of Porous Materials

    KAUST Repository

    Alabdulghani, Ali J.


    Porous materials are implemented in several industrial applications such as water desalination, gas separation and pharmaceutical care which they are mainly governed by the pore size and the PSD. Analyzing shale reservoirs are not excluded from these applications and numerous advantages can be gained by evaluating the PSD of a given shale reservoir. Because of the limitations of the conventional characterization techniques, novel methods for characterizing the PSD have to be proposed in order to obtain better characterization results for the porous materials, in general, and shale rocks in particular. Thus, permporosimetry and evapoporometry (EP) technologies were introduced, designed and utilized for evaluating the two key parameters, pore size and pore size distribution. The pore size and PSD profiles of different shale samples from Norway and Argentina were analyzed using these technologies and then confirmed by mercury intrusion porosimeter (MIP). Norway samples showed an average pore diameter of 12.94 nm and 19.22 nm with an average diameter of 13.77 nm and 23.23 nm for Argentina samples using permporosimetry and EP respectively. Both techniques are therefore indicative of the heterogeneity of the shales. The results from permporosimetry are in good agreement with those obtained from MIP technique, but EP for most part over-estimates the average pore size. The divergence of EP results compared to permporosimetry results is referred to the fact that the latter technique measures only the active pores which is not the case with the former technique. Overall, both techniques are complementary to each other which the results from both techniques seem reasonable and reliable and provide two simple techniques to estimate the pore size and pore size distributions for shale rocks.

  18. Microfiltration of distillery stillage: Influence of membrane pore size

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.


    Full Text Available Stillage is one of the most polluted waste products of the food industry. Beside large volume, the stillage contains high amount of suspended solids, high values of chemical oxygen demand and biological oxygen demand, so it should not be discharged in the nature before previous purification. In this work, three ceramic membranes for microfiltration with different pore sizes were tested for stillage purification in order to find the most suitable membrane for the filtration process. Ceramic membranes with a nominal pore size of 200 nm, 450 nm and 800 nm were used for filtration. The influence of pore size on permeate flux and removal efficiency was investigated. A membrane with the pore size of 200 nm showed the best filtration performance so it was chosen for the microfiltration process.

  19. Pore size matters for potassium channel conductance (United States)

    Moldenhauer, Hans; Pincuntureo, Matías


    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  20. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix. (United States)

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan


    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.

  1. Multifractal Characterization of Pore Size Distributions of Peat Soil

    Directory of Open Access Journals (Sweden)

    Joko Sampurno


    Full Text Available This paper discusses a multifractal analysis of the microscopic structure of peat soil. The aim of this study was to apply the multifractal technique to analyze the properties of five slices of peat soil (L1-L5. Binary images (220 x 220 pixels, with a conversion value of 9.41 μm/pixel were made from the thin slices and then analyzed. This analysis was conducted to obtain the relationship between physical parameters and complexity parameters. The results showed that the spectrum of f(α can describe well the pore size distribution and average size of pores correlated with the value of D(0. A high value of the average pore size is followed by a low D value and vice versa.

  2. Role of scaffold mean pore size in meniscus regeneration. (United States)

    Zhang, Zheng-Zheng; Jiang, Dong; Ding, Jian-Xun; Wang, Shao-Jie; Zhang, Lei; Zhang, Ji-Ying; Qi, Yan-Song; Chen, Xue-Si; Yu, Jia-Kuo


    Recently, meniscus tissue engineering offers a promising management for meniscus regeneration. Although rarely reported, the microarchitectures of scaffolds can deeply influence the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation in meniscus tissue engineering. Herein, a series of three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds with three distinct mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The scaffold with the mean pore size of 215μm significantly improved both the proliferation and extracellular matrix (ECM) production/deposition of mesenchymal stem cells compared to all other groups in vitro. Moreover, scaffolds with mean pore size of 215μm exhibited the greatest tensile and compressive moduli in all the acellular and cellular studies. In addition, the relatively better results of fibrocartilaginous tissue formation and chondroprotection were observed in the 215μm scaffold group after substituting the rabbit medial meniscectomy for 12weeks. Overall, the mean pore size of 3D-printed PCL scaffold could affect cell behavior, ECM production, biomechanics, and repair effect significantly. The PCL scaffold with mean pore size of 215μm presented superior results both in vitro and in vivo, which could be an alternative for meniscus tissue engineering. Meniscus tissue engineering provides a promising strategy for meniscus regeneration. In this regard, the microarchitectures (e.g., mean pore size) of scaffolds remarkably impact the behaviors of cells and subsequent tissue formation, which has been rarely reported. Herein, three three-dimensional poly(ε-caprolactone) scaffolds with different mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The results suggested that the mean pore size significantly affected the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation. This study furthers

  3. Size effects of pore density and solute size on water osmosis through nanoporous membrane. (United States)

    Zhao, Kuiwen; Wu, Huiying


    Understanding the behavior of osmotic transport across nanoporous membranes at molecular level is critical to their design and applications, and it is also beneficial to the comprehension of the mechanism of biological transmembrane transport processes. Pore density is an important parameter for nanoporous membranes. To better understand the influence of pore density on osmotic transport, we have performed systematic molecular dynamics simulations on water osmosis across nanoporous membranes with different pore densities (i.e., number of pores per unit area of membrane). The simulation results reveal that significant size effects occur when the pore density is so high that the center-to-center distance between neighboring nanopores is comparable to the solute size. The size effects are independent of the pore diameter and solute concentration. A simple quantitative correlation between pore density, solute size, and osmotic flux has been established. The results are excellently consistent with the theoretical predictions. It is also shown that solute hydration plays an important role in real osmotic processes. Solute hydration strengthens the size effects of pore density on osmotic processes due to the enlarged effective solute size induced by hydration. The influence of pore density, solute size, and solute hydration on water osmosis through nanoporous membranes can be introduced to eliminate the deviations of real osmotic processes from ideal behavior.

  4. Improvement of endothelial progenitor outgrowth cell (EPOC)-mediated vascularization in gelatin-based hydrogels through pore size manipulation. (United States)

    Fu, Jiayin; Wiraja, Christian; Muhammad, Hamizan B; Xu, Chenjie; Wang, Dong-An


    In addition to chemical compositions, physical properties of scaffolds, such as pore size, can also influence vascularization within the scaffolds. A larger pore has been shown to improve host vascular tissue invasion into scaffolds. However, the influence of pore sizes on vascularization by endothelial cells directly encapsulated in hydrogels remains unknown. In this study, micro-cavitary hydrogels with different pore sizes were created in gelatin-methacrylate hydrogels with dissolvable gelatin microspheres (MS) varying in sizes. The effect of pore sizes on vascular network formation by endothelial progenitor outgrowth cells (EPOCs) encapsulated in hydrogels was then investigated both in vitro and in vivo. When cultured in vitro, vascular networks were formed around pore structures in micro-cavitary hydrogels. The middle pore size supported best differentiation of EPOCs and thus best hydrogel vascularization in vitro. When implantation in vivo, functional connections between encapsulated EPOCs and host vasculature micro-cavitary hydrogels were established. Vascularization in vivo was promoted best in hydrogels with the large pore size due to the increased vascular tissue invasion. These results highlight the difference between in vitro and in vivo culture conditions and indicate that pore sizes shall be designed for in vitro and in vivo hydrogel vascularization respectively. Pore sizes for hydrogel vascularization in vitro shall be middle ones and pore sizes for hydrogel vascularization in vivo shall be large ones. This study reveals that the optimal pore size for hydrogel vascularization in vitro and in vivo is different. The middle pore size supported best differentiation of EPOCs and thus best hydrogel vascularization in vitro, while vascularization in vivo was promoted best in hydrogels with the large pore size due to the increased vascular tissue invasion. These results highlight the difference between in vitro and in vivo culture conditions and indicate that

  5. Pore-size distributions of N-isopropylacrylamide (NIPA) hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Walther, D.H.; Blanch, H.W.; Prausnitz, J.M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley Lab., CA (United States)


    Pore-size distributions have been measured for N-isopropylacrylamide (NIPA) hydrogels at 25 and 32{degrees}C with swelling capacities 11.3 and 6.0 g swollen gel per g dry gel. The mixed-solute-exclusion method (introduced by Kuga) was used to obtain the experimental solute-exclusion curve which represents the amount of imbibed liquid inside the gel inaccessible for a solute of radius r. The pore-size distributions were obtained by using Casassa`s Brownian-motion model and numerically solving the Fredholm integral equation. The pore-size distributions of temperature-sensitive NIPA hydrogels are strongly dependent on temperature which determines swelling capacity. With increasing swelling capacity (from 6.0 to 11.3), the pore-size distribution shifts to higher mode values (27.3 to 50.6 {angstrom}) and to higher variance (1.07{center_dot}10{sup 3} to 3.58{center_dot}10{sup 3} {angstrom}{sup 2}).

  6. Domain decomposition approach to extract pore-network models from large 3D porous media images (United States)

    Timofey, Sizonenko; Marina, Karsanina; Irina, Bayuk; Kirill, Gerke


    Pore-network are very useful and effective method to model porous media structure and properties such as permeability and multi-phase flow. Several methods for pore-network extraction were proposed to date, including median axis, maximal inscribed ball, watershed techniques and their modifications. Input data for pore-network extraction algorithms usually represent 3D binary image. Modern X-ray tomography devices can easily provide scans with dimensions of 4k x 4k x 10k voxels. For such large images extraction algorithms may hit the problem of memory (RAM) consumption or will too time consuming. To overcome such problems or create parallelizable algorithm here we propose to divide the whole volume into sub-volumes with smaller size and extract pore- network sequentially/in parallel manner separately. However, the problem of correct pore-network extraction at the sub-volume connection areas is challenging. In this contribution we address this issue in detail. We propose a method to merge such sub-volumes. Our method explores the slices of porous medium under study at the sub-volumes intersections. Each slice has its own geometric features and associated with a number of pores or throats. Characteristics of pore that associated with slice such as diameter, distance its center to the sub-domain boundary are also taken into account. Based on the pore element properties and also properties of aforementioned slices the algorithm makes decision about how pores from opposite sides of sub-volumes should be connected. There are 3 cases of merging: 1) building a throat between pores, 2) absorption of one pore by the other, 3) breaking connection (no pore or throat are built). We have tested our approach on several different binary 3D images, including soil, sandstones, and carbonates. We also compared this new approach against a conventional one where the extraction is performed using the whole domain without its decomposition into sub-domains. We show that our approach

  7. The hydraulic conductivity of sediments: A pore size perspective

    KAUST Repository

    Ren, X.W.


    This article presents an analysis of previously published hydraulic conductivity data for a wide range of sediments. All soils exhibit a prevalent power trend between the hydraulic conductivity and void ratio. Data trends span 12 orders of magnitude in hydraulic conductivity and collapse onto a single narrow trend when the hydraulic conductivity data are plotted versus the mean pore size, estimated using void ratio and specific surface area measurements. The sensitivity of hydraulic conductivity to changes in the void ratio is higher than the theoretical value due to two concurrent phenomena: 1) percolating large pores are responsible for most of the flow, and 2) the larger pores close first during compaction. The prediction of hydraulic conductivity based on macroscale index parameters in this and similar previous studies has reached an asymptote in the range of kmeas/5≤kpredict≤5kmeas. The remaining uncertainty underscores the important role of underlying sediment characteristics such as pore size distribution, shape, and connectivity that are not measured with index properties. Furthermore, the anisotropy in hydraulic conductivity cannot be recovered from scalar parameters such as index properties. Overall, results highlight the robustness of the physics inspired data scrutiny based Hagen–Poiseuille and Kozeny-Carman analyses.

  8. Effect of the Pore Size Distribution on the Displacement Efficiency of Multiphase Flow in Porous Media

    Directory of Open Access Journals (Sweden)

    Yang Yongfei


    Full Text Available Due to the complexity of porous media, it is difficult to use traditional experimental methods to study the quantitative impact of the pore size distribution on multiphase flow. In this paper, the impact of two pore distribution function types for three-phase flow was quantitatively investigated based on a three-dimensional pore-scale network model. The results show that in the process of wetting phase displacing the non-wetting phase without wetting films or spreading layers, the displacement efficiency was enhanced with the increase of the two function distribution’s parameters, which are the power law exponent in the power law distribution and the average pore radius or standard deviation in the truncated normal distribution, and vice versa. Additionally, the formation of wetting film is better for the process of displacement.

  9. Development of a pore network simulation model to study nonaqueous phase liquid dissolution (United States)

    Dillard, Leslie A.; Blunt, Martin J.


    A pore network simulation model was developed to investigate the fundamental physics of nonequilibrium nonaqueous phase liquid (NAPL) dissolution. The network model is a lattice of cubic chambers and rectangular tubes that represent pore bodies and pore throats, respectively. Experimental data obtained by Powers [1992] were used to develop and validate the model. To ensure the network model was representative of a real porous medium, the pore size distribution of the network was calibrated by matching simulated and experimental drainage and imbibition capillary pressure-saturation curves. The predicted network residual styrene blob-size distribution was nearly identical to the observed distribution. The network model reproduced the observed hydraulic conductivity and produced relative permeability curves that were representative of a poorly consolidated sand. Aqueous-phase transport was represented by applying the equation for solute flux to the network tubes and solving for solute concentrations in the network chambers. Complete mixing was found to be an appropriate approximation for calculation of chamber concentrations. Mass transfer from NAPL blobs was represented using a corner diffusion model. Predicted results of solute concentration versus Peclet number and of modified Sherwood number versus Peclet number for the network model compare favorably with experimental data for the case in which NAPL blob dissolution was negligible. Predicted results of normalized effluent concentration versus pore volume for the network were similar to the experimental data for the case in which NAPL blob dissolution occurred with time.

  10. A new way to parameterize hydraulic conductances of pore elements: A step towards creating pore-networks without pore shape simplifications (United States)

    Miao, Xiuxiu; Gerke, Kirill M.; Sizonenko, Timofey O.


    Pore-network models were found useful in describing important flow and transport mechanisms and in predicting flow properties of different porous media relevant to numerous fundamental and industrial applications. Pore-networks provide very fast computational framework and permit simulations on large volumes of pores. This is possible due to significant pore space simplifications and linear/exponential relationships between effective properties and geometrical characteristics of the pore elements. To make such relationships work, pore-network elements are usually simplified by circular, triangular, square and other basic shapes. However, such assumptions result in inaccurate prediction of transport properties. In this paper, we propose that pore-networks can be constructed without pore shape simplifications. To test this hypothesize we extracted 3292 2D pore element cross-sections from 3D X-ray microtomography images of sandstone and carbonate rock samples. Based on the circularity, convexity and elongation of each pore element we trained neural networks to predict the dimensionless hydraulic conductance. The optimal neural network provides 90% of predictions lying within the 20% error bounds compared against direct numerical simulation results. Our novel approach opens a new way to parameterize pore-networks and we outlined future improvements to create a new class of pore-network models without pore shape simplifications.

  11. Understanding fluid transport through the multiscale pore network of a natural shale

    Directory of Open Access Journals (Sweden)

    Davy Catherine A.


    Full Text Available The pore structure of a natural shale is obtained by three imaging means. Micro-tomography results are extended to provide the spatial arrangement of the minerals and pores present at a voxel size of 700 nm (the macroscopic scale. FIB/SEM provides a 3D representation of the porous clay matrix on the so-called mesoscopic scale (10-20 nm; a connected pore network, devoid of cracks, is obtained for two samples out of five, while the pore network is connected through cracks for two other samples out of five. Transmission Electron Microscopy (TEM is used to visualize the pore space with a typical pixel size of less than 1 nm and a porosity ranging from 0.12 to 0.25. On this scale, in the absence of 3D images, the pore structure is reconstructed by using a classical technique, which is based on truncated Gaussian fields. Permeability calculations are performed with the Lattice Boltzmann Method on the nanoscale, on the mesoscale, and on the combination of the two. Upscaling is finally done (by a finite volume approach on the bigger macroscopic scale. Calculations show that, in the absence of cracks, the contribution of the nanoscale pore structure on the overall permeability is similar to that of the mesoscale. Complementarily, the macroscopic permeability is measured on a centimetric sample with a neutral fluid (ethanol. The upscaled permeability on the macroscopic scale is in good agreement with the experimental results.

  12. In situ determination of pore sizes of high density polyester woven fabrics under biaxial loading (United States)

    Türkay Kocaman, Recep; Malik, Samander Ali; Aibibu, Dilbar; Cherif, Chokri


    In this study an in situ pore size measurement method was developed to determine the pore size changes of high density polyester woven fabrics under biaxial loading. This unique method allows the non-destructive testing of the pore sizes under biaxial loading. Changes in the pore size distributions of samples were in situ determined with the newly developed method. The results show that the developed measurement method is very promising to define the pore size changes of barrier textiles in situ under loading.

  13. Study on Compatibility of Polymer Hydrodynamic Size and Pore Throat Size for Honggang Reservoir

    Directory of Open Access Journals (Sweden)

    Dan-Dan Yin


    Full Text Available Long core flow experiment was conducted to study problems like excessive injection pressure and effective lag of oil wells during the polymer flooding in Honggang reservoir in Jilin oilfield. According to the changes in viscosity and hydrodynamic dimensions before and after polymer solution was injected into porous media, the compatibility of polymer hydrodynamic dimension and the pore throat size was studied in this experiment. On the basis of the median of radius R of pore throats in rocks with different permeability, dynamic light scattering method (DLS was adopted to measure the hydrodynamic size Rh of polymer solution with different molecular weights. The results state that three kinds of 1500 mg/L concentration polymer solution with 2000 × 104, 1500 × 104, and 1000 × 104 molecular weight matched well with the pore throat in rocks with permeability of 300 mD, 180 mD, and 75 mD in sequence. In this case, the ratios of core pore throat radius median to the size of polymer molecular clew R/Rh are 6.16, 5.74, and 6.04. For Honggang oil reservoir in Jilin, when that ratio ranges from 5.5 to 6.0, the compatibility of polymer and the pore structure will be relatively better.

  14. Hydrophobic polymers modification of mesoporous silica with large pore size for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shenmin, E-mail: [Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites (China); Zhang Di; Yang Na [Fudan University, Ministry of Education, Key Lab of Molecular Engineering of Polymers (China)


    Mesostructure cellular foam (MCF) materials were modified with hydrophobic polyisoprene (PI) through free radical polymerization in the pores network, and the resulting materials (MCF-PI) were investigated as matrices for drug storage. The successful synthesis of PI inside MCF was characterized by Fourier transform infrared (FT-IR), hydrogen nuclear magnetic resonance ({sup 1}H NMR), X-ray diffraction patterns (XRD) and nitrogen adsorption/desorption measurements. It was interesting to find the resultant system held a relatively large pore size (19.5 nm) and pore volume (1.02 cm{sup 3} g{sup -1}), which would benefit for drug storage. Ibuprofen (IBU) and vancomycin were selected as model drugs and loaded onto unmodified MCF and modified MCF (MCF-PI). The adsorption capacities of these model drugs on MCF-PI were observed increase as compared to that of on pure MCF, due to the trap effects induced by polyisoprene chains inside the pores. The delivery system of MCF-PI was found to be more favorable for the adsorption of IBU (31 wt%, IBU/silica), possibly attributing to the hydrophobic interaction between IBU and PI formed on the internal surface of MCF matrix. The release of drug through the porous network was investigated by measuring uptake and release of IBU.

  15. Enantioselective adsorption in homochiral metal-organic frameworks: the pore size influence. (United States)

    Gu, Zhi-Gang; Grosjean, Sylvain; Bräse, Stefan; Wöll, Christof; Heinke, Lars


    Uptake experiments in thin films of isoreticular chiral MOFs of type Cu2(Dcam)2(L) with identical stereogenic centers but different pore dimensions show that the enantioselectivity is significantly influenced by the pore size. The highest selectivity was found for medium pore sizes, roughly corresponding to the extension of the chiral guest molecule, limonene.

  16. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    Directory of Open Access Journals (Sweden)

    E. M. A. Perrier


    Full Text Available Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009. Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  17. Virus-sized colloid transport in a single pore: model development and sensitivity analysis. (United States)

    Seetha, N; Mohan Kumar, M S; Majid Hassanizadeh, S; Raoof, Amir


    A mathematical model is developed to simulate the transport and deposition of virus-sized colloids in a cylindrical pore throat considering various processes such as advection, diffusion, colloid-collector surface interactions and hydrodynamic wall effects. The pore space is divided into three different regions, namely, bulk, diffusion and potential regions, based on the dominant processes acting in each of these regions. In the bulk region, colloid transport is governed by advection and diffusion whereas in the diffusion region, colloid mobility due to diffusion is retarded by hydrodynamic wall effects. Colloid-collector interaction forces dominate the transport in the potential region where colloid deposition occurs. The governing equations are non-dimensionalized and solved numerically. A sensitivity analysis indicates that the virus-sized colloid transport and deposition is significantly affected by various pore-scale parameters such as the surface potentials on colloid and collector, ionic strength of the solution, flow velocity, pore size and colloid size. The adsorbed concentration and hence, the favorability of the surface for adsorption increases with: (i) decreasing magnitude and ratio of surface potentials on colloid and collector, (ii) increasing ionic strength and (iii) increasing pore radius. The adsorbed concentration increases with increasing Pe, reaching a maximum value at Pe=0.1 and then decreases thereafter. Also, the colloid size significantly affects particle deposition with the adsorbed concentration increasing with increasing particle radius, reaching a maximum value at a particle radius of 100nm and then decreasing with increasing radius. System hydrodynamics is found to have a greater effect on larger particles than on smaller ones. The secondary minimum contribution to particle deposition has been found to increase as the favorability of the surface for adsorption decreases. The sensitivity of the model to a given parameter will be high if

  18. Pore Network Modeling: Alternative Methods to Account for Trapping and Spatial Correlation

    KAUST Repository

    De La Garza Martinez, Pablo


    Pore network models have served as a predictive tool for soil and rock properties with a broad range of applications, particularly in oil recovery, geothermal energy from underground reservoirs, and pollutant transport in soils and aquifers [39]. They rely on the representation of the void space within porous materials as a network of interconnected pores with idealised geometries. Typically, a two-phase flow simulation of a drainage (or imbibition) process is employed, and by averaging the physical properties at the pore scale, macroscopic parameters such as capillary pressure and relative permeability can be estimated. One of the most demanding tasks in these models is to include the possibility of fluids to remain trapped inside the pore space. In this work I proposed a trapping rule which uses the information of neighboring pores instead of a search algorithm. This approximation reduces the simulation time significantly and does not perturb the accuracy of results. Additionally, I included spatial correlation to generate the pore sizes using a matrix decomposition method. Results show higher relative permeabilities and smaller values for irreducible saturation, which emphasizes the effects of ignoring the intrinsic correlation seen in pore sizes from actual porous media. Finally, I implemented the algorithm from Raoof et al. (2010) [38] to generate the topology of a Fontainebleau sandstone by solving an optimization problem using the steepest descent algorithm with a stochastic approximation for the gradient. A drainage simulation is performed on this representative network and relative permeability is compared with published results. The limitations of this algorithm are discussed and other methods are suggested to create a more faithful representation of the pore space.

  19. Pore morphologies of root induced biopores from single pore to network scale investigated by XRCT (United States)

    Peth, Stephan; Wittig, Marlen C.; Uteau Puschmann, Daniel; Pagenkemper, Sebastian; Haas, Christoph; Holthusen, Dörthe; Horn, Rainer


    Biopores are assumed to be an important factor for nutrient acquisition by providing biologically highly active soil-root interfaces to re-colonizing roots and controlling oxygen and water flows at the pedon scale and within the rhizosphere through the formation of branching channel networks which potentially enhance microbial turnover processes. Characteristic differences in pore morphologies are to be expected depending on the genesis of biopores which, for example, can be earthworm-induced or root-induced or subsequently modified by one of the two. Our understanding of biophysical interactions between plants and soil can be significantly improved by quantifying 3D biopore architectures across scales ranging from single biopores to pedon scale pore networks and linking pore morphologies to microscale measurements of transport processes (e.g. oxygen diffusion). While a few studies in the past have investigated biopore networks on a larger scale yet little is known on the micro-morphology of root-induces biopores and their associated rhizosphere. Also little data is available on lateral transport of oxygen through the rhizosphere which will strongly influence microbial turnover processes and consequently control the release and uptake of nutrients. This paper highlights results gathered within a research unit on nutrient acquisition from the subsoil. Here we focus on X-ray microtomography (XRCT) studies ranging from large soil columns (70 cm length and 20 cm diameter) to individual biopores and its surrounding rhizosphere. Samples were collected from sites with different preceding crops (fescue, chicory, alfalfa) and various cropping durations (1-3 years). We will present an approach for quantitative image analysis combined with micro-sensor measurements of oxygen diffusion and spatial gradients of O2 partial pressures to relate pore structure with transport functions. Implications of various biopore architectures for the accessibility of nutrient resources in

  20. Computational modeling of electrokinetic transport in random networks of micro-pores and nano-pores (United States)

    Alizadeh, Shima; Mani, Ali


    A reduced order model has been developed to study the nonlinear electrokinetic behaviors emerging in the transport of ionic species through micro-scale and nano-scale porous media. In this approach a porous structure is modeled as a network of long and thin pores. By assuming transport equilibrium in the thin dimensions for each pore, a 1D transport equation is developed in the longitudinal direction covering a wide range of conditions including extreme limits of thick and thin electric double layers. This 1D model includes transport via diffusion, electromigration and wide range of advection mechanisms including pressure driven flow, electroosmosis, and diffusion osmosis. The area-averaged equations governing the axial transport from different pores are coupled at the pore intersections using the proper conservation laws. Moreover, an asymptotic treatment has been included in order to remove singularities in the limit of small concentration. The proposed method provides an efficient framework for insightful simulations of porous electrokinetic systems with applications in water desalination and energy storage. PhD student in Mechanical Engineering, Stanford University. She received her Master's degree in Mechanical Engineering from Stanford at 2013. Her research interests include CFD, high performance computing, and optimization.

  1. Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels. (United States)

    Perrin, Christian L; Tardy, Philippe M J; Sorbie, Ken S; Crawshaw, John C


    The in situ rheology of polymeric solutions has been studied experimentally in etched silicon micromodels which are idealizations of porous media. The rectangular channels in these etched networks have dimensions typical of pore sizes in sandstone rocks. Pressure drop/flow rate relations have been measured for water and non-Newtonian hydrolyzed-polyacrylamide (HPAM) solutions in both individual straight rectangular capillaries and in networks of such capillaries. Results from these experiments have been analyzed using pore-scale network modeling incorporating the non-Newtonian fluid mechanics of a Carreau fluid. Quantitative agreement is seen between the experiments and the network calculations in the Newtonian and shear-thinning flow regions demonstrating that the 'shift factor,'alpha, can be calculated a priori. Shear-thickening behavior was observed at higher flow rates in the micromodel experiments as a result of elastic effects becoming important and this remains to be incorporated in the network model.

  2. Evaluation of Optimal Pore Size of (3-Aminopropyltriethoxysilane Grafted MCM-41 for Improved CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Zhilin Liu


    Full Text Available An array of new MCM-41 with substantially larger average pore diameters was synthesized through adding 1,3,5-trimethylbenzene (TMB as the swelling agent to explore the effect of pore size on final adsorbent properties. The pore expanded MCM-41 was also grafted with (3-Aminopropyltriethoxysilane (APTES to determine the optimal pore size for CO2 adsorption. The pore-expanded mesoporous MCM-41s showed relatively less structural regularity but significant increments of pore diameter (4.64 to 7.50 nm; the fraction of mesopore volume also illustrated an increase. The adsorption heat values were correlated with the order of the adsorption capacities for pore expanded MCM-41s. After amine functionalization, the adsorption capacities and heat values showed a significant increase. APTES-grafted pore-expanded MCM-41s depicted a high potential for CO2 capture regardless of the major drawback of the high energy required for regeneration.

  3. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage (United States)

    Eddaoudi, Mohamed; Kim, Jaheon; Rosi, Nathaniel; Vodak, David; Wachter, Joseph; O'Keeffe, Michael; Yaghi, Omar M.


    A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups -Br, -NH2, -OC3H7, -OC5H11, -C2H4, and -C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature.

  4. Direct measurement of the critical pore size in a model membrane

    CERN Document Server

    Ilton, Mark; Dalnoki-Veress, Kari


    We study pore nucleation in a model membrane system, a freestanding polymer film. Nucleated pores smaller than a critical size close, while pores larger than the critical size grow. Holes of varying size were purposefully prepared in liquid polymer films, and their evolution in time was monitored using optical and atomic force microscopy to extract a critical radius. The critical radius scales linearly with film thickness for a homopolymer film. The results agree with a simple model which takes into account the energy cost due to surface area at the edge of the pore. The energy cost at the edge of the pore is experimentally varied by using a lamellar-forming diblock copolymer membrane. The underlying molecular architecture causes increased frustration at the pore edge resulting in an enhanced cost of pore formation.

  5. New and conventional pore size tests in virus-removing membranes

    NARCIS (Netherlands)

    Duek, A.; Arkhangelsky, E.; Krush, R.; Brenner, A.; Gitis, V.


    Microorganisms are retained by ultrafiltration (UF) membranes mainly due to size exclusion. The sizes of viruses and membrane pores are close to each other and retention of viruses can be guaranteed only if the precise pore diameter is known. Unfortunately and rather surprisingly, there is no direct

  6. Effect of pore size on gas resistance of nanofiber membrane by the bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Shen Jing


    Full Text Available This paper explores the influence of pore size on gas resistance by comparing micron non-woven and nanofiber membrane. The result shows that membrane with a higher filtration and lower gas resistance can be received by controlling the pore size of nanofiber membrane.

  7. Local Pore Size Correlations Determine Flow Distributions in Porous Media. (United States)

    Alim, Karen; Parsa, Shima; Weitz, David A; Brenner, Michael P


    The relationship between the microstructure of a porous medium and the observed flow distribution is still a puzzle. We resolve it with an analytical model, where the local correlations between adjacent pores, which determine the distribution of flows propagated from one pore downstream, predict the flow distribution. Numerical simulations of a two-dimensional porous medium verify the model and clearly show the transition of flow distributions from δ-function-like via Gaussians to exponential with increasing disorder. Comparison to experimental data further verifies our numerical approach.

  8. Structure and rheological behavior of highly charged colloidal particles in a cylindrical pore I. Effect of pore size. (United States)

    Valdez, Miguel A; Gámez-Corrales, Rogelio


    In this work we performed nonequilibrium Brownian dynamics (NEBD) computer simulations of highly charged colloidal particles in diluted suspension under a parabolic flow in cylindrical pores. The influence of charged and neutral cylindrical pores on the structure and rheology of suspensions is analyzed. A shear-induced disorder-order-disorder-like transition was monitored for low shear rates and small pore diameters. We calculate the concentration profiles, axial distribution functions, and axial-angular pair correlation functions to determine the structural properties at steady state for a constant shear flow for different pore sizes and flow strengths. Similar behavior has been observed in a planar narrow channel in the case of charged interacting colloidal particles (M.A. Valdez, O. Manero, J. Colloid Interface Sci. 190 (1997) 81). The mobility of the particles in the radial direction decreases rapidly with the flow and becomes practically frozen. The flow exhibits non-Newtonian shear thinning behavior due to interparticle interactions and particle-wall interaction; the apparent viscosity is lower as the pore diameter decreases, giving rise to an apparent slip in the colloidal suspension. The calculated slip velocity was higher than that obtained in a rectangular slit under shear flow.

  9. Self-assembled isoporous block copolymer membranes with tuned pore sizes

    KAUST Repository

    Yu, Haizhou


    The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Pore size distribution, strength, and microstructure of portland cement paste containing metal hydroxide waste

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Z.A.; Mahmud, H.; Shaaban, M.G.


    Stabilization/solidification of hazardous wastes is used to convert hazardous metal hydroxide waste sludge into a solid mass with better handling properties. This study investigated the pore size development of ordinary portland cement pastes containing metal hydroxide waste sludge and rice husk ash using mercury intrusion porosimetry. The effects of acre and the addition of rice husk ash on pore size development and strength were studied. It was found that the pore structures of mixes changed significantly with curing acre. The pore size shifted from 1,204 to 324 {angstrom} for 3-day old cement paste, and from 956 to 263 {angstrom} for a 7-day old sample. A reduction in pore size distribution for different curing ages was also observed in the other mixtures. From this limited study, no conclusion could be made as to any correlation between strength development and porosity. 10 refs., 6 figs., 3 tabs.

  11. Influence of stress-path on pore size distribution in granular materials (United States)

    Das, Arghya; Kumar, Abhinav


    Pore size distribution is an important feature of granular materials in the context of filtration and erosion in soil hydraulic structures. Present study focuses on the evolution characteristics of pore size distribution for numerically simulated granular assemblies while subjected to various compression boundary constrain, namely, conventional drained triaxial compression, one-dimensional or oedometric compression and isotropic compression. We consider the effects initial packing of the granular assembly, loose or dense state. A simplified algorithm based on Delaunay tessellation is used for the estimation of pore size distribution for the deforming granular assemblies at various stress states. The analyses show that, the evolution of pore size is predominantly governed by the current porosity of the granular assembly while the stress path or loading process has minimal influence. Further it has also been observed that pore volume distribution reaches towards a critical distribution at the critical porosity during shear enhanced loading process irrespective of the deformation mechanism either compaction or dilation.

  12. Magnetic relaxation - coal swelling, extraction, pore size. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Doetschman, D.C.


    The aim of the contract was to employ electron and nuclear magnetic relaxation techniques to investigate solvent swelling of coals, solvent extraction of coals and molecular interaction with solvent coal pores. Many of these investigations have appeared in four major publications and a conference proceedings. Another manuscript has been submitted for publication. The set of Argonne Premium Coals was chosen as extensively characterized and representative samples for this project.

  13. Pore-size distribution and compressibility of coarse sandy subsoil with added biochar

    DEFF Research Database (Denmark)

    Petersen, C. T.; Hansen, E.; Larsen, H. H.


    the effects of two fine-grained gasification biochars made of straw (LTST) and other materials (LTSN) and of one fast pyrolysis straw biochar (FPST) on pore-size distribution and soil compressibility when added to coarse sandy subsoil. Water retention and therefore pore-size distribution were affected...... systematically. All biochars converted drainable pore space with pore diameters in the range 60–300 µm into water-retaining pores of size 0.2–60 µm, which was taken as an estimate of available water capacity (AWC). Effects were linear over the whole range of biochar (0–4% by mass). The effect of LTST and LTSN...

  14. Virus-sized colloid transport in a single pore: Model development and sensitivity analysis

    NARCIS (Netherlands)

    Seetha, N.; Mohan Kumar, M.S.; Hassanizadeh, S.M.; Raoof, A.


    A mathematical model is developed to simulate the transport and deposition of virus-sized colloids in a cylindrical pore throat considering various processes such as advection, diffusion, colloid–collector surface interactions and hydrodynamic wall effects. The pore space is divided into three

  15. Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig; Valente, Andre X. C. N.; Stone, Howard A.


    to obtain an analytical formula for the pressure drop across the microfilter versus the flow rate that accounts for the non-uniform distribution of pore sizes, the hydrodynamic interactions between the pores given their layout pattern, and wall slip. Further, we discuss inertial effects and their order...

  16. Modulation of Asymmetric Flux in Heterotypic Gap Junctions by Pore Shape, Particle Size and Charge. (United States)

    Mondal, Abhijit; Sachse, Frank B; Moreno, Alonso P


    Gap junction channels play a vital role in intercellular communication by connecting cytoplasm of adjoined cells through arrays of channel-pores formed at the common membrane junction. Their structure and properties vary depending on the connexin isoform(s) involved in forming the full gap junction channel. Lack of information on the molecular structure of gap junction channels has limited the development of computational tools for single channel studies. Currently, we rely on cumbersome experimental techniques that have limited capabilities. We have earlier reported a simplified Brownian dynamics gap junction pore model and demonstrated that variations in pore shape at the single channel level can explain some of the differences in permeability of heterotypic channels observed in in vitro experiments. Based on this computational model, we designed simulations to study the influence of pore shape, particle size and charge in homotypic and heterotypic pores. We simulated dye diffusion under whole cell voltage clamping. Our simulation studies with pore shape variations revealed a pore shape with maximal flux asymmetry in a heterotypic pore. We identified pore shape profiles that match the in silico flux asymmetry results to the in vitro results of homotypic and heterotypic gap junction formed out of Cx43 and Cx45. Our simulation results indicate that the channel's pore-shape established flux asymmetry and that flux asymmetry is primarily regulated by the sizes of the conical and/or cylindrical mouths at each end of the pore. Within the set range of particle size and charge, flux asymmetry was found to be independent of particle size and directly proportional to charge magnitude. While particle charge was vital to creating flux asymmetry, charge magnitude only scaled the observed flux asymmetry. Our studies identified the key factors that help predict asymmetry. Finally, we suggest the role of such flux asymmetry in creating concentration imbalances of messenger

  17. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene

    KAUST Repository

    Cui, X.


    The trade-off between physical adsorption capacity and selectivity of porous materials is a major barrier for efficient gas separation and purification through physisorption. We report control over pore chemistry and size in metal coordination networks with hexafluorosilicate and organic linkers for the purpose of preferential binding and orderly assembly of acetylene molecules through cooperative host-guest and/or guest-guest interactions. The specific binding sites for acetylene are validated by modeling and neutron powder diffraction studies. The energies associated with these binding interactions afford high adsorption capacity (2.1 millimoles per gram at 0.025 bar) and selectivity (39.7 to 44.8) for acetylene at ambient conditions. Their efficiency for the separation of acetylene/ethylene mixtures is demonstrated by experimental breakthrough curves (0.73 millimoles per gram from a 1/99 mixture).

  18. The Effect of Membrane Material and Surface Pore Size on the Fouling Properties of Submerged Membranes

    Directory of Open Access Journals (Sweden)

    Sungil Jeon


    Full Text Available We aimed to investigate the relationship between membrane material and the development of membrane fouling in a membrane bioreactor (MBR using membranes with different pore sizes and hydrophilicities. Batch filtration tests were performed using submerged single hollow fiber membrane ultrafiltration (UF modules with different polymeric membrane materials including cellulose acetate (CA, polyethersulfone (PES, and polyvinylidene fluoride (PVDF with activated sludge taken from a municipal wastewater treatment plant. The three UF hollow fiber membranes were prepared by a non-solvent-induced phase separation method and had similar water permeabilities and pore sizes. The results revealed that transmembrane pressure (TMP increased more sharply for the hydrophobic PVDF membrane than for the hydrophilic CA membrane in batch filtration tests, even when membranes with similar permeabilities and pore sizes were used. PVDF hollow fiber membranes with smaller pores had greater fouling propensity than those with larger pores. In contrast, CA hollow fiber membranes showed good mitigation of membrane fouling regardless of pore size. The results obtained in this study suggest that the surface hydrophilicity and pore size of UF membranes clearly affect the fouling properties in MBR operation when using activated sludge.

  19. Voronoi-Based DEM Simulation Approach for Sandstone Considering Grain Structure and Pore Size (United States)

    Li, Jun; Konietzky, Heinz; Frühwirt, Thomas


    This paper presents a new procedure to create numerical models considering grain shape and size as well as pore size in an explicit and stochastic equivalent manner. Four shape factors are introduced to reproduce shape and size of grains and pores. Thin sections are used to analyze grain shape and pore size of rock specimen. First, a particle-based numerical model is set up by best fitted clumps from a shape library according to thin sections. Finally, an equivalent Voronoi-based discrete element model is set up based on the superimposed particle model. Uniaxial compression and tensile tests are simulated for validation. Both tests indicate that grain boundaries and pores provide preferred paths of weakness for crack propagation, but they also reveal significant differences in terms of intra- and inter-granular fracturing.


    Directory of Open Access Journals (Sweden)

    Jing Hu


    Full Text Available This paper explores image analysis techniques that provide insight into the nature of pore structure as observed in backscattered electron images of polished sections. On the basis of mathematical morphology, the pore size distribution is characterised and the critical pore size is determined for cement paste at different hydration time. The influence of image resolution is investigated. The permeability of cement paste can be predicted according to General Effective Media (GEM theory. Comparison between permeability estimation and experiment results reveals good agreement.

  1. New general pore size distribution model by classical thermodynamics application: Activated carbon (United States)

    Lordgooei, M.; Rood, M.J.; Rostam-Abadi, M.


    A model is developed using classical thermodynamics to characterize pore size distributions (PSDs) of materials containing micropores and mesopores. The thermal equation of equilibrium adsorption (TEEA) is used to provide thermodynamic properties and relate the relative pore filling pressure of vapors to the characteristic pore energies of the adsorbent/adsorbate system for micropore sizes. Pore characteristic energies are calculated by averaging of interaction energies between adsorbate molecules and adsorbent pore walls as well as considering adsorbate-adsorbate interactions. A modified Kelvin equation is used to characterize mesopore sizes by considering variation of the adsorbate surface tension and by excluding the adsorbed film layer for the pore size. The modified-Kelvin equation provides similar pore filling pressures as predicted by density functional theory. Combination of these models provides a complete PSD of the adsorbent for the micropores and mesopores. The resulting PSD is compared with the PSDs from Jaroniec and Choma and Horvath and Kawazoe models as well as a first-order approximation model using Polanyi theory. The major importance of this model is its basis on classical thermodynamic properties, less simplifying assumptions in its derivation compared to other methods, and ease of use.

  2. Estimation of pore size distribution using concentric double pulsed-field gradient NMR. (United States)

    Benjamini, Dan; Nevo, Uri


    Estimation of pore size distribution of well calibrated phantoms using NMR is demonstrated here for the first time. Porous materials are a central constituent in fields as diverse as biology, geology, and oil drilling. Noninvasive characterization of monodisperse porous samples using conventional pulsed-field gradient (PFG) NMR is a well-established method. However, estimation of pore size distribution of heterogeneous polydisperse systems, which comprise most of the materials found in nature, remains extremely challenging. Concentric double pulsed-field gradient (CDPFG) is a 2-D technique where both q (the amplitude of the diffusion gradient) and φ (the relative angle between the gradient pairs) are varied. A recent prediction indicates this method should produce a more accurate and robust estimation of pore size distribution than its conventional 1-D versions. Five well defined size distribution phantoms, consisting of 1-5 different pore sizes in the range of 5-25 μm were used. The estimated pore size distributions were all in good agreement with the known theoretical size distributions, and were obtained without any a priori assumption on the size distribution model. These findings support that in addition to its theoretical benefits, the CDPFG method is experimentally reliable. Furthermore, by adding the angle parameter, sensitivity to small compartment sizes is increased without the use of strong gradients, thus making CDPFG safe for biological applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Effect of pore size on performance of monolithic tube chromatography of large biomolecules. (United States)

    Podgornik, Ales; Hamachi, Masataka; Isakari, Yu; Yoshimoto, Noriko; Yamamoto, Shuichi


    Effect of pore size on the performance of ion-exchange monolith tube chromatography of large biomolecules was investigated. Radial flow 1 mL polymer based monolith tubes of different pore sizes (1.5, 2, and 6 μm) were tested with model samples such as 20 mer poly T-DNA, basic proteins, and acidic proteins (molecular weight 14 000-670 000). Pressure drop, pH transient, the number of binding site, dynamic binding capacity, and peak width were examined. Pressure drop-flow rate curves and dynamic binding capacity values were well correlated with the nominal pore size. While duration of the pH transient curves depends on the pore size, it was found that pH duration normalized on estimated surface area was constant, indicating that the ligand density is the same. This was also confirmed by the constant number of binding site values being independent of pore size. The peak width values were similar to those for axial flow monolith chromatography. These results showed that it is easy to scale up axial flow monolith chromatography to radial flow monolith tube chromatography by choosing the right pore size in terms of the pressure drop and capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pore size determination using normalized J-function for different hydraulic flow units

    Directory of Open Access Journals (Sweden)

    Ali Abedini


    Full Text Available Pore size determination of hydrocarbon reservoirs is one of the main challenging areas in reservoir studies. Precise estimation of this parameter leads to enhance the reservoir simulation, process evaluation, and further forecasting of reservoir behavior. Hence, it is of great importance to estimate the pore size of reservoir rocks with an appropriate accuracy. In the present study, a modified J-function was developed and applied to determine the pore radius in one of the hydrocarbon reservoir rocks located in the Middle East. The capillary pressure data vs. water saturation (Pc–Sw as well as routine reservoir core analysis include porosity (φ and permeability (k were used to develop the J-function. First, the normalized porosity (φz, the rock quality index (RQI, and the flow zone indicator (FZI concepts were used to categorize all data into discrete hydraulic flow units (HFU containing unique pore geometry and bedding characteristics. Thereafter, the modified J-function was used to normalize all capillary pressure curves corresponding to each of predetermined HFU. The results showed that the reservoir rock was classified into five separate rock types with the definite HFU and reservoir pore geometry. Eventually, the pore radius for each of these HFUs was determined using a developed equation obtained by normalized J-function corresponding to each HFU. The proposed equation is a function of reservoir rock characteristics including φz, FZI, lithology index (J*, and pore size distribution index (ɛ. This methodology used, the reservoir under study was classified into five discrete HFU with unique equations for permeability, normalized J-function and pore size. The proposed technique is able to apply on any reservoir to determine the pore size of the reservoir rock, specially the one with high range of heterogeneity in the reservoir rock properties.

  5. A Microfluidic Pore Network Approach to Investigate Water Transport in Fuel Cell Porous Transport Layers


    Bazylak, A.; Berejnov, V.; Markicevic, B.; Sinton, D.; Djilali, N.


    Pore network modelling has traditionally been used to study displacement processes in idealized porous media related to geological flows, with applications ranging from groundwater hydrology to enhanced oil recovery. Very recently, pore network modelling has been applied to model the gas diffusion layer (GDL) of a polymer electrolyte membrane (PEM) fuel cell. Discrete pore network models have the potential to elucidate transport phenomena in the GDL with high computational efficiency, in cont...

  6. MD simulation analysis of resin filling into nano-sized pore formed on metal surface (United States)

    Mori, Hodaka; Matubayasi, Nobuyuki


    All-atom MD simulation was conducted for the filling of epoxy resin into a nano-sized pore formed on aluminum surface. The resin species examined were polyphenol mixed with polyglycidylether of o-cresol formaldehyde novolac and their oligomers formed through ring-opening reactions. The degree of oligomerization was varied from 0.5 to 2.5 nm in terms of the radius of gyration, and the radius of the cylindrical pore was fixed at 2.5 nm. It was observed that a small resin penetrates into the pore along the wall, while larger resins move rather uniformly in the pore. The maximum density in the pore achieved with pushing was then seen to be larger when the resin is smaller. It was found that when the radius of gyration of resin is larger than half the pore radius, the resin density in the pore does not reach half the bulk density of the resin. This implies that the resin-resin interaction inhibits the filling of the nano-sized pore.

  7. Effect of pore size and shape on the thermal conductivity of metal-organic frameworks. (United States)

    Babaei, Hasan; McGaughey, Alan J H; Wilmer, Christopher E


    We investigate the effect of pore size and shape on the thermal conductivity of a series of idealized metal-organic frameworks (MOFs) containing adsorbed gas using molecular simulations. With no gas present, the thermal conductivity decreases with increasing pore size. In the presence of adsorbed gas, MOFs with smaller pores experience reduced thermal conductivity due to phonon scattering introduced by gas-crystal interactions. In contrast, for larger pores (>1.7 nm), the adsorbed gas does not significantly affect thermal conductivity. This difference is due to the decreased probability of gas-crystal collisions in larger pore structures. In contrast to MOFs with simple cubic pores, the thermal conductivity in structures with triangular and hexagonal pore channels exhibits significant anisotropy. For different pore geometries at the same atomic density, hexagonal channel MOFs have both the highest and lowest thermal conductivities, along and across the channel direction, respectively. In the triangular and hexagonal channeled structures, the presence of gas molecules has different effects on thermal conductivity along different crystallographic directions.

  8. Relation Between Pore Size and the Compressibility of a Confined Fluid (United States)

    Gor, Gennady Y.; Siderius, Daniel W.; Rasmussen, Christopher J.; Krekelberg, William P.; Shen, Vincent K.; Bernstein, Noam


    When a fluid is confined to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid, so measuring such properties of the confined fluid can provide information about the pore sizes. Here we report a simple relation between the pore size and isothermal compressibility of argon confined in these pores. Compressibility is calculated from the fluctuations of the number of particles in the grand canonical ensemble using two different simulation techniques: conventional grand-canonical Monte Carlo and grand-canonical ensemble transition-matrix Monte Carlo. Our results provide a theoretical framework for extracting the information on the pore sizes of fluid-saturated samples by measuring the compressibility from ultrasonic experiments. PMID:26590541

  9. Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages. (United States)

    Slater, Anna G; Reiss, Paul S; Pulido, Angeles; Little, Marc A; Holden, Daniel L; Chen, Linjiang; Chong, Samantha Y; Alston, Ben M; Clowes, Rob; Haranczyk, Maciej; Briggs, Michael E; Hasell, Tom; Day, Graeme M; Cooper, Andrew I


    The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal-organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groups into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure-energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy-structure-function maps.

  10. Pore-network model of evaporation-induced salt precipitation in porous media: The effect of correlations and heterogeneity (United States)

    Dashtian, Hassan; Shokri, Nima; Sahimi, Muhammad


    Salt transport and precipitation in porous media constitute a set of complex and fascinating phenomena that are of considerable interest to several important problems, ranging from storage of CO2 in geological formations, to soil fertility, and protection of pavements and roads, as well as historical monuments. The phenomena occur at the pore scale and are greatly influenced by the heterogeneity of the pore space morphology. We present a pore-network (PN) model to study the phenomena. Vapor diffusion, capillary effect at the brine-vapor interface, flow of brine, and transport of salt and its precipitation in the pores that plug the pores partially or completely are all accounted for. The drying process is modeled by the invasion percolation, while transport of salt in brine is accounted for by the convective-diffusion equation. We demonstrate that the drying patterns, the clustering and connectivity of the pore throats in which salt precipitation occurs, the saturation distribution, and the drying rate are all strongly dependent upon the pore-size distribution, the correlations among the pore sizes, and the anisotropy of the pore space caused by stratification that most natural porous media contain. In particular, if the strata are more or less parallel to the direction of injection of the gas that dries out the pore space (air, for example) and/or causes salt precipitation (CO2, for example), the drying rate increases significantly. Moreover, salt tends to precipitate in clusters of neighboring pores that are parallel to the open surface of the porous medium.

  11. Evolution of Anode Porosity under Air Oxidation: The Unveiling of the Active Pore Size

    Directory of Open Access Journals (Sweden)

    Francois Chevarin


    Full Text Available The carbon anode, used in aluminum electrolysis (Hall–Héroult process, is over-consumed by air oxidation and carboxy-reaction (with CO2. Several anode features may affect this over-consumption, such as impurity content, graphitization level and anode porosity features (e.g., porosity volume fraction or pore size distribution. The two first parameters are basically related to the quality of raw materials and coke calcination conditions. Anode porosity is, however, greatly affected by anode manufacturing conditions, and is possible to be modified, to some extent, by adjusting the anode recipe and the processing parameters. This work aims to investigate the effect of anode porosity on its air reactivity. Baked anode samples were prepared in laboratory scale and then crushed into powder form (−4760 + 4000 µm. The recipe for anode preparation was similar to a typical industrial recipe, except that in the lab scale no butt particles were used in the recipe. Anode particles were then gasified at six different conversion levels (0, 5, 15, 25, 35 and 50 wt % under air at 525 °C. The porosity was characterized in several pore size ranges, measured by nitrogen adsorption and mercury intrusion (0.0014–0.020, 0.002–0.025, 0.025–0.100, 0.1–40.0 and superior at 40 µm. The volume variation of each pore range, as a function of carbon conversion, was assessed and used to determine the size of the most active pores for air oxidation. The most active pore size was found to be the pores inferior at 40 µm before 15 wt % of gasification and pores superior at 40 µm between 15 and 50 wt % of carbon conversion. Limitation of pore size range could be used as an additional guideline, along with other targets such as high homogeneity and density, to set the optimum anode manufacturing parameters.

  12. Pore size distribution effect on rarefied gas transport in porous media (United States)

    Hori, Takuma; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya


    Gas transport phenomena in porous media are known to strongly influence the performance of devices such as gas separation membranes and fuel cells. Knudsen diffusion is a dominant flow regime in these devices since they have nanoscale pores. Many experiments have shown that these porous media have complex structures and pore size distributions; thus, the diffusion coefficient in these media cannot be easily assessed. Previous studies have reported that the characteristic pore diameter of porous media can be defined in light of the pore size distribution; however, tortuosity factor, which is necessary for the evaluation of diffusion coefficient, is still unknown without gas transport measurements or simulations. Thus, the relation between pore size distributions and tortuosity factors is required to obtain the gas transport properties. We perform numerical simulations to prove the relation between them. Porous media are numerically constructed while satisfying given pore size distributions. Then, the mean-square displacement simulation is performed to obtain the tortuosity factors of the constructed porous media.. This paper is based on results obtained from a project commissioned by the New Energy and Industrial Development Organization (NEDO).

  13. Probing the SecYEG translocation pore size with preproteins conjugated with sizable rigid spherical molecules (United States)

    Bonardi, Francesco; Halza, Erik; Walko, Martin; Du Plessis, François; Nouwen, Nico; Feringa, Ben L.; Driessen, Arnold J. M.


    Protein translocation in Escherichia coli is mediated by the translocase that in its minimal form consists of the protein-conducting channel SecYEG, and the motor protein, SecA. SecYEG forms a narrow pore in the membrane that allows passage of unfolded proteins only. Molecular dynamics simulations suggest that the maximal width of the central pore of SecYEG is limited to . To access the functional size of the SecYEG pore, the precursor of outer membrane protein A was modified with rigid spherical tetraarylmethane derivatives of different diameters at a unique cysteine residue. SecYEG allowed the unrestricted passage of the precursor of outer membrane protein A conjugates carrying tetraarylmethanes with diameters up to , whereas a sized molecule blocked the translocation pore. Translocation of the protein-organic molecule hybrids was strictly proton motive force-dependent and occurred at a single pore. With an average diameter of an unfolded polypeptide chain of , the pore accommodates structures of at least , which is vastly larger than the predicted maximal width of a single pore by molecular dynamics simulations. PMID:21518907

  14. Different size biomolecules anchoring on porous silicon surface: fluorescence and reflectivity pores infiltration comparative studies

    Energy Technology Data Exchange (ETDEWEB)

    Giovannozzi, Andrea M.; Rossi, Andrea M. [National Institute for Metrological Research, Thermodynamic Division, Strada delle Cacce 91, 10135 Torino (Italy); Renacco, Chiara; Farano, Alessandro [Ribes Ricecrhe Srl, Via Lavoratori Vittime del Col du Mont 24, 11100 Aosta (Italy); Derosas, Manuela [Biodiversity Srl, Via Corfu 71, 25124 Brescia (Italy); Enrico, Emanuele [National Institute for Metrological Research, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy)


    The performance of porous silicon optical based biosensors strongly depends on material nanomorphology, on biomolecules distribution inside the pores and on the ability to link sensing species to the pore walls. In this paper we studied the immobilization of biomolecules with different size, such as antibody anti aflatoxin (anti Aflatox Ab, {proportional_to}150 KDa), malate dehydrogenase (MDH, {proportional_to}36KDa) and metallothionein (MT, {proportional_to}6KDa) at different concentrations on mesoporous silicon samples ({proportional_to}15 nm pores diameter). Fluorescence measurements using FITC- labeled biomolecules and refractive index analysis based on reflectivity spectra have been employed together to detect the amount of proteins bound to the surface and to evaluate their diffusion inside the pores. Here we suggest that these two techniques should be used together to have a better understanding of what happens at the porous silicon surface. In fact, when pores dimensions are not perfectly tuned to the protein size a higher fluorescence signal doesn't often correspond to a higher biomolecules distribution inside the pores. When a too much higher concentration of biomolecule is anchored on the surface, steric crowd effects and repulsive interactions probably take over and hinder pores infiltration, inducing a small or absent shift in the fringe pattern even if a higher fluorescence signal is registered. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Water Retention, Gas Transport, and Pore Network Complexity during Short-Term Regeneration of Soil Structure

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Schjønning, Per


    , and smectite) amended with organic material (7.5 Mg ha−1). The newly formed structure was compared with that of sieved, repacked (SR) and natural intact samples described in previous studies. Assessment and comparison of structural complexity and organization was done using water retention (pore size......: smectite structural complexity, quantified by soil gas diffusivity, air permeability, and derived pore network indices, was greater for incubated than SR samples. For illitic soils, incubated samples had lower water content and higher air......Soil structure maintains prime importance in determining the ability of soils to carry out essential ecosystem functions and services. This study quantified the newly formed structure of 22-mo field-incubated physically disturbed (2-mm sieved) samples of varying clay mineralogy (illite, kaolinite...

  16. Pore Network Modeling of Multiphase Transport in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers (United States)

    Fazeli, Mohammadreza

    In this thesis, pore network modeling was used to study how the microstructure of the polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) influences multiphase transport within the composite layer. An equivalent pore network of a GDL was used to study the effects of GDL/catalyst layer condensation points and contact quality on the spatial distribution of liquid water in the GDL. Next, pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures, and favorable GDL compression values for preferred liquid water distributions were found for two commercially available GDL materials. Finally, a technique was developed for calculating the oxygen diffusivity in carbon paper substrates with a microporous layer (MPL) coating through pore network modeling. A hybrid network was incorporated into the pore network model, and effective diffusivity predictions of MPL coated GDL materials were obtained.

  17. Tumor Microvasculature: Endothelial Leakiness and Endothelial Pore Size Distribution in a Breast Cancer Model

    Directory of Open Access Journals (Sweden)

    E.E. Uzgiris


    Full Text Available Tumor endothelial leakiness is quantified in a rat mammary adenocarcinoma model using dynamic contrast enhancement MRI and contrast agents of widely varying sizes. The contrast agents were constructed to be of globular configuration and have their uptake rate into tumor interstitium be driven by the same diffusion process and limited only by the availability of endothelial pores of passable size. It was observed that the endothelial pore distribution has a steep power law dependence on size, r−β, with an exponent of −4.1. The model of large pore dominance in tumor leakiness as reported in some earlier investigation with fluorescent probes and optical chamber methods is rejected for this tumor model and a number of other tumor types including chemically induced tumors. This steep power law dependence on size is also consistent with observations on human breast cancer.

  18. Comparison of Pore-Network and Lattice Boltzmann Models for Pore-Scale Modeling of Geological Storage of CO2 in Natural Reservoir Rocks (United States)

    Kohanpur, A. H.; Chen, Y.; Valocchi, A. J.; Tudek, J.; Crandall, D.


    CO2-brine flow in deep natural rocks is the focus of attention in geological storage of CO2. Understanding rock/flow properties at pore-scale is a vital component in field-scale modeling and prediction of fate of injected CO2. There are many challenges in working at the pore scale, such as size and selection of representative elementary volume (REV), particularly for material with complex geometry and heterogeneity, and the high computational costs. These issues factor into trade-offs that need to be made in choosing and applying pore-scale models. On one hand, pore-network modeling (PNM) simplifies the geometry and flow equations but can provide characteristic curves on fairly large samples. On the other hand, the lattice Boltzmann method (LBM) solves Navier-Stokes equations on the real geometry but is limited to small samples due to its high computational costs. Thus, both methods have some advantages but also face some challenges, which warrants a more detailed comparison and evaluation. In this study, we used industrial and micro-CT scans of actual reservoir rock samples to characterize pore structure at different resolutions. We ran LBM models directly on the characterized geometry and PNM on the equivalent 3D extracted network to determine single/two-phase flow properties during drainage and imbibition processes. Specifically, connectivity, absolute permeability, relative permeability curve, capillary pressure curve, and interface location are compared between models. We also did simulations on several subsamples from different locations including different domain sizes and orientations to encompass analysis of heterogeneity and isotropy. This work is primarily supported as part of the Center for Geologic Storage of CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and partially supported by the International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) based at Kyushu University, Japan.

  19. Pore-network modeling of solute transport and biofilm growth in porous media

    NARCIS (Netherlands)

    Qin, Chao Zhong; Hassanizadeh, S. Majid


    In this work, a pore-network (PN) model for solute transport and biofilm growth in porous media was developed. Compared to previous studies of biofilm growth, it has two new features. First, the constructed pore network gives a better representation of a porous medium. Second, instead of using a

  20. Investigation of the effect of pore size on gas uptake in two metal-organic frameworks. (United States)

    Wang, Rongming; Meng, Qingguo; Zhang, Liangliang; Wang, Haifeng; Dai, Fangna; Guo, Wenyue; Zhao, Lianming; Sun, Daofeng


    Two porous metal–organic frameworks (1 and 2) with a fsc topology based on mixed ligands have been assembled and characterized. The different pillared ligands (pyrazine for 1 and 4,4′-bipyridine for 2) significantly influence the pore size of the frameworks. Gas uptake measurements reveal that complex 1 possesses higher H2, CO2, and CH4 uptake capacities than 2, although the surface area of 1 is lower than that of complex 2. These results further experimentally prove that the pore size plays an important role in gas uptake in porous MOFs, and the slit pore with a size of ~6 Å exhibits stronger interactions with gas molecules.

  1. Quantification of soil pore network complexity with X-ray computed tomography and gas transport measurements

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Arthur, Emmanuel; Tuller, M.


    different soils subjected to 22 mo of field regeneration were quantified with X-ray computed tomography (CT) and compared with functional pore characteristics estimated from measurements of air permeability and gas diffusivity. Furthermore, predictive models for air permeability and gas diffusivity were......Flow and transport of gases through soils are largely controlled by pore structural attributes. The quantification of pore network characteristics is therefore essential for accurate prediction of air permeability and gas diffusivity. In this study, the pore network characteristics of seven...... developed based on CT-derived structural parameters and compared with previously proposed predictive models. Strong correlations between functional and pore geometry parameters were observed. The consideration of CT-derived air-filled porosity, pore network tortuosity and connectivity, and minimum...

  2. Determination of Matrix Pore Size Distribution in Fractured Clayey Till and Assessment of Matrix Migration of Dechlorinationg Bacteria

    DEFF Research Database (Denmark)

    Cong, Lu; Broholm, Mette Martina; Fabricius, Ida Lykke


    The pore structure and pore size distribution (PSD) in the clayey till matrix from three Danish field sites were investigated by image analysis to assess the matrix migration of dechlorinating bacteria in clayey till. Clayey till samples had a wide range of pore sizes, with diameters of 0.1–100 μm......, and two typical peaks of pore sizes were observed in all clayey till samples. A large area fraction of the individual pores centered around 2 μm in diameter, and another fraction centered around 20 μm. In general, the typical macropore sizes (1 μm analysis...... account for approximately 30–60% of the total porosity (20–26%), which is within the range of those reported for clayey soils and other clayey deposits in the literature. The pore size, PSD, and interconnectivity of pores in clayey till matrix may play an important role in evaluation of the migration...

  3. Pore Size Distribution in Chicken Eggs as Determined by Mercury Porosimetry

    Directory of Open Access Journals (Sweden)

    La Scala Jr N


    Full Text Available In this study we investigated the application of mercury porosimetry technique into the determination of porosity features in 28 week old hen eggshells. Our results have shown that the majority of the pores have sizes between 1 to 10 mu m in the eggshells studied. By applying mercury porosimetry technique we were able to describe the porosity features better, by determining a pore size distribution in the eggshells. Here, we introduce mercury porosimetry technique as a new routine technique applied into the study of eggshells.

  4. Augmented Topological Descriptors of Pore Networks for Material Science. (United States)

    Ushizima, D; Morozov, D; Weber, G H; Bianchi, A G C; Sethian, J A; Bethel, E W


    One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured CO2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process is both efficient and safe. We describe tools that provide measurements of media porosity, and permeability estimates, including visualization of pore structures. Existing standard algorithms make limited use of geometric information in calculating permeability of complex microstructures. This quantity is important for the analysis of biomineralization, a subsurface process that can affect physical properties of porous media. This paper introduces geometric and topological descriptors that enhance the estimation of material permeability. Our analysis framework includes the processing of experimental data, segmentation, and feature extraction and making novel use of multiscale topological analysis to quantify maximum flow through porous networks. We illustrate our results using synchrotron-based X-ray computed microtomography of glass beads during biomineralization. We also benchmark the proposed algorithms using simulated data sets modeling jammed packed bead beds of a monodispersive material.

  5. Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport


    Xiong, Qingrong; Baychev, Todor; Jivkov, Andrey


    Pore network models have been applied widely for simulating a variety of different physical and chemical processes, including phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport and thermodynamically consistent oil layers. The realism of such modelling, i.e. the credibility of their predictions, depends to a large extent on the quality of the correspondence between the pore space of a given medium and the pore network constructed as its representation. The main expe...

  6. Self-supporting nanopore membranes with controlled pore size and shape. (United States)

    Lu, Zhe-Xue; Namboodiri, Arya; Collinson, Maryanne M


    Self-supporting membranes containing either isolated or organized arrays of nanosized pores have been prepared using a nonlithographic approach by coupling sol-gel processing, thin film preparation, and templating. Specifically, polystyrene latex spheres were doped into a hybrid sol prepared from tetraethoxysilane and dimethyldiethoxysilane and the resultant sol spin cast on a sacrificial support. Upon removal of the template and the sacrificial support, the self-supporting nanopore membranes were transferred to glass for characterization by atomic force microscopy and scanning electron microscopy. Through variations in the thickness of the membranes and the size of the polystyrene latex spheres, the geometry (cylinder-like to asymmetric-like) and the dimensions of the nanopores were altered. Pores with diameters that range from 35 to 2100 nm, aspect ratios (defined as the top pore diameter divided by the bottom pore diameter) from 1-4, and depths (effective film thickness) from 50 to 1500 nms have been prepared using templates that range in diameter from 100 to 3100 nm. The method described employs "wet-chemistry", is highly versatile, and is easily amenable to modification by utilizing templates of different sizes and geometries to create stable membranes with different pore geometries and sizes that can be used as platforms for nanofiltration and/or chemical sensors.

  7. Rapid manufacturing of polyethylene parts with controlled pore size gradients using selective laser sintering

    Directory of Open Access Journals (Sweden)

    Gean Vitor Salmoria


    Full Text Available In this study HDPE specimens were fabricated by selective laser sintering using different particle sizes to obtain controlled variations in the porosity. Electron microscopy, density measurements and mechanical analyses were conducted for the characterization of the specimens. Parts with controlled pore gradients were also manufactured and characterized. The specimens with larger particle sizes had a high sintering degree and a significant level of close pores, as shown by microscopy and density analyses. However, the mechanical properties of specimens prepared with large particles had low values due to the limited density of union points, i.e., low neck number/area. HDPE parts with pore gradients were prepared by selective laser sintering demonstrating that this technique can be used to easily control the structure and the properties of the parts manufactured. This technology may have applications in areas such as drug delivery devices and scaffolds for tissue engineering.

  8. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport (United States)

    Xiong, Qingrong; Baychev, Todor G.; Jivkov, Andrey P.


    Pore network models have been applied widely for simulating a variety of different physical and chemical processes, including phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport and thermodynamically consistent oil layers. The realism of such modelling, i.e. the credibility of their predictions, depends to a large extent on the quality of the correspondence between the pore space of a given medium and the pore network constructed as its representation. The main experimental techniques for pore space characterisation, including direct imaging, mercury intrusion porosimetry and gas adsorption, are firstly summarised. A review of the main pore network construction techniques is then presented. Particular focus is given on how such constructions are adapted to the data from experimentally characterised pore systems. Current applications of pore network models are considered, with special emphasis on the effects of adsorption, dissolution and precipitation, as well as biomass growth, on transport coefficients. Pore network models are found to be a valuable tool for understanding and predicting meso-scale phenomena, linking single pore processes, where other techniques are more accurate, and the homogenised continuum porous media, used by engineering community.

  9. Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR). (United States)

    Jin, Le; Ng, How Yong; Ong, Say Leong


    The membrane bioreactor (MBR), a combination of activated sludge process and the membrane separation system, has been widely used in wastewater treatment. However, 90% of MBR reported were employing polymeric membranes. The usage of ceramic membranes in MBR is quite rare. Four submerged ceramic membrane bioreactors (SCMBRs) with different membrane pore size were used in this study to treat sewage. The results showed that the desirable carbonaceous removal of 95% and ammonia nitrogen removal of 98% were obtained for all the SCMBRs. It was also showed that the ceramic membranes were able to reject some portions of the protein and carbohydrate, whereby the carbohydrate rejection rate was much higher than that of protein. Membrane pore size did not significantly affect the COD and TOC removal efficiencies, the composition of EPS and SMP or the membrane rejection rate, although slight differences were observed. The SCMBR with the biggest membrane pore size fouled fastest, and membrane pore size was a main contributor for the different fouling potential observed.

  10. A solvent-shrinkage method for producing polymeric microsieves with sub-micron size pores

    NARCIS (Netherlands)

    Vriezekolk, Erik; Kemperman, Antonius J.B.; Girones nogue, Miriam; de Vos, Wiebe Matthijs; Nijmeijer, Dorothea C.


    This paper presents a thorough investigation of a simple method to decrease the dimensions of polymeric microsieves. Pore sizes of microsieves are usually in the micrometer scale, but need to be reduced to below 1 µm to make the microsieves attractive for aqueous filtration applications. In this

  11. Characterization of hollow fiber hemo-dialysis membranes: pore size distribution and performance

    NARCIS (Netherlands)

    Broek, A.P.; Broek, Arnold P.; Teunis, Herman A.; Teunis, Hermannus A.; Bargeman, D.; Bargeman, Derk; Sprengers, Erik D.; Smolders, C.A.; Smolders, C.A.


    The effect of two commonly used sterilization methods for artificial kidneys on the morphology and performance of hollow fiber Hemophan® hemodialysis membranes was studied. A relatively new membrane characterization method, thermoporometry, was used to determine the pore size distributions and


    Directory of Open Access Journals (Sweden)

    Mostafa Milani


    Full Text Available Doped nano alumina powders were successfully deposited as a thick film by electrophoretic deposition (EPD. A mixture of ethanol, cation salts of alumina dopants and iodine was used for dispersion system. Mg- Y- La- and Ce- salts add to ethanol and deposited with alumina powders on to substrate. The effects of suspension power loading, deposition time, electrode distance and applied potential simultaneously on density, pore size distribution and cell current density of alumina nanoparticles were examined. The weight of deposition increased with time and voltage increased and electrode distance decreased. In all applied voltages in higher suspension concentration, weight of deposition are sufficiently high but the density of the film are clearly better in low and high voltages than medium voltage. In constant suspension concentration with increasing in applied voltage, deposition rate increased and current decreased faster than medium voltage, which limits the homogeneous deposition forming and decreased density. Low applied voltages provided better pore size distribution and narrow and steep slope in middle of pore size distribution plot. High density samples with best pore size distribution achieved in lower rate deposition and assisted to better densification at sintering step in doped alumina plates.

  13. Investigation of pore size and energy distributions by statistical physics formalism applied to agriculture products (United States)

    Aouaini, Fatma; Knani, Salah; Yahia, Manel Ben; Bahloul, Neila; Ben Lamine, Abdelmottaleb; Kechaou, Nabil


    In this paper, we present a new investigation that allows determining the pore size distribution (PSD) in a porous medium. This PSD is achieved by using the desorption isotherms of four varieties of olive leaves. This is by the means of statistical physics formalism and Kelvin's law. The results are compared with those obtained with scanning electron microscopy. The effect of temperature on the distribution function of pores has been studied. The influence of each parameter on the PSD is interpreted. A similar function of adsorption energy distribution, AED, is deduced from the PSD.

  14. Effect of morphology on water sorption in cellular solid foods. Part I: Pore scale network model

    NARCIS (Netherlands)

    Esveld, D.C.; Sman, van der R.G.M.; Dalen, van G.; Duynhoven, van J.P.M.; Meinders, M.B.J.


    A pore scale network model is developed to predict the dynamics of moisture diffusion into complex cellular solid foods like bread, crackers, and cereals. The morphological characteristics of the sample, including the characteristics of each cellular void and the open pore connections between them

  15. Joint inversion of NMR and SIP data to estimate pore size distribution of geomaterials (United States)

    Niu, Qifei; Zhang, Chi


    There are growing interests in using geophysical tools to characterize the microstructure of geomaterials because of the non-invasive nature and the applicability in field. In these applications, multiple types of geophysical data sets are usually processed separately, which may be inadequate to constrain the key feature of target variables. Therefore, simultaneous processing of multiple data sets could potentially improve the resolution. In this study, we propose a method to estimate pore size distribution by joint inversion of nuclear magnetic resonance (NMR) T2 relaxation and spectral induced polarization (SIP) spectra. The petrophysical relation between NMR T2 relaxation time and SIP relaxation time is incorporated in a nonlinear least squares problem formulation, which is solved using Gauss-Newton method. The joint inversion scheme is applied to a synthetic sample and a Berea sandstone sample. The jointly estimated pore size distributions are very close to the true model and results from other experimental method. Even when the knowledge of the petrophysical models of the sample is incomplete, the joint inversion can still capture the main features of the pore size distribution of the samples, including the general shape and relative peak positions of the distribution curves. It is also found from the numerical example that the surface relaxivity of the sample could be extracted with the joint inversion of NMR and SIP data if the diffusion coefficient of the ions in the electrical double layer is known. Comparing to individual inversions, the joint inversion could improve the resolution of the estimated pore size distribution because of the addition of extra data sets. The proposed approach might constitute a first step towards a comprehensive joint inversion that can extract the full pore geometry information of a geomaterial from NMR and SIP data.

  16. A pore-size classification for peat bogs derived from unsaturated hydraulic properties (United States)

    Weber, Tobias Karl David; Iden, Sascha Christian; Durner, Wolfgang


    In ombrotrophic peatlands, the moisture content of the acrotelm (vadoze zone) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Thus, variably saturated flow processes determine whether peatlands act as sinks or sources of atmospheric carbon, and modelling these processes is crucial to assess effects of changed environmental conditions on the future development of these ecosystems. We show that the Richards equation can be used to accurately describe the moisture dynamics under evaporative conditions in variably saturated peat soil, encompassing the transition from the topmost living moss layer to the decomposed peat as part of the vadose zone. Soil hydraulic properties (SHP) were identified by inverse simulation of evaporation experiments on samples from the entire acrotelm. To obtain consistent descriptions of the observations, the traditional van Genuchten-Mualem model was extended to account for non-capillary water storage and flow. We found that the SHP of the uppermost moss layer reflect a pore-size distribution (PSD) that combines three distinct pore systems of the Sphagnum moss. For deeper samples, acrotelm pedogenesis changes the shape of the SHP due to the collapse of inter-plant pores and an infill with smaller particles. This leads to gradually more homogeneous and bi-modal PSDs with increasing depth, which in turn can serve as a proxy for increasing state of pedogenesis in peatlands. From this, we derive a nomenclature and size classification for the pore spaces of Sphagnum mosses and define inter-, intra-, and inner-plant pore spaces, with effective pore diameters of > 300, 300-30, and 30-10 µm, respectively.

  17. A pore-size classification for peat bogs derived from unsaturated hydraulic properties

    Directory of Open Access Journals (Sweden)

    T. K. D. Weber


    Full Text Available In ombrotrophic peatlands, the moisture content of the acrotelm (vadoze zone controls oxygen diffusion rates, redox state, and the turnover of organic matter. Thus, variably saturated flow processes determine whether peatlands act as sinks or sources of atmospheric carbon, and modelling these processes is crucial to assess effects of changed environmental conditions on the future development of these ecosystems. We show that the Richards equation can be used to accurately describe the moisture dynamics under evaporative conditions in variably saturated peat soil, encompassing the transition from the topmost living moss layer to the decomposed peat as part of the vadose zone. Soil hydraulic properties (SHP were identified by inverse simulation of evaporation experiments on samples from the entire acrotelm. To obtain consistent descriptions of the observations, the traditional van Genuchten–Mualem model was extended to account for non-capillary water storage and flow. We found that the SHP of the uppermost moss layer reflect a pore-size distribution (PSD that combines three distinct pore systems of the Sphagnum moss. For deeper samples, acrotelm pedogenesis changes the shape of the SHP due to the collapse of inter-plant pores and an infill with smaller particles. This leads to gradually more homogeneous and bi-modal PSDs with increasing depth, which in turn can serve as a proxy for increasing state of pedogenesis in peatlands. From this, we derive a nomenclature and size classification for the pore spaces of Sphagnum mosses and define inter-, intra-, and inner-plant pore spaces, with effective pore diameters of >  300, 300–30, and 30–10 µm, respectively.

  18. A modified sol-gel technique for pore size control in porous aluminum oxide nanowire templates. (United States)

    Kelly, Daniel N; Wakabayashi, Ryo H; Stacy, Angelica M


    A modified sol-gel technique was developed to continuously vary the pore diameters in porous alumina templates for the purpose of growing nanowires. To coat the pore walls, the porous alumina film is initially soaked in a methanol/water solution to fill the pores with the desired concentration of water. The porous alumina film is then exposed to a solution of 3-aminopropyltriethoxysilane (APTES) in toluene, creating a surface layer of APTES. The concentration of water in the pores correlates with the thickness of the APTES polymer coating that is obtained. This approach exerts greater control over the extent of silane polymerization than traditional sol-gel reactions by limiting the amount of water present for reaction. Factors such as the APTES concentration, exposure time, and organic cosolvent choice did not influence the coating thickness. However, the density and thickness of the APTES coating can be manipulated by varying the pH of the methanol/water solution as well as post-treatment annealing. Further modification of the pore size was achieved by subsequent reaction of the APTES coating with poly(methyl methacrylate) (PMMA). The PMMA couples to amine groups on the APTES polymer surface by an aminolysis reaction. Bismuth telluride nanowires were electrodeposited in the polymer-coated porous alumina templates using previously established methods. Nanowire diameters were smaller when the nanowires were prepared in modified templates as anticipated.

  19. Isoreticular Expansion of Metal-Organic Frameworks with Multiple Functionalities and Controlled Pore Sizes (United States)

    Deng, Hexiang

    Metal-Organic Frameworks (MOFs) are made by linking organic and inorganic molecular building blocks into extended structures through strong bonds. With a judicious choice of inorganic joints and various functional groups available in organic links, a large number of MOFs have been synthesized in the past decade. Along with the fast expansion of the family of MOFs, important applications emerge including hydrogen storage and carbon dioxide capture, both of which address the most pressing societal demand for clean and sustainable energy resources. Although numerous MOFs are now known and they have found widespread applications, the introduction of more than one kind of building block into their crystal structures remains challenging. One of the main objectives of this study is to demonstrate the successful incorporating of multiple functional groups into MOFs. Here, a new strategy has been developed to achieve the synthesis of a series of eighteen multivariate MOFs (MTV-MOFs) containing up to eight distinct functional groups, while their parent topologies were fully preserved. The backbone of these MTV-MOFs was found to be ordered, while the orientation, number, relative position and ratio of the functionalities along the backbone could be controlled by virtue of the unchanged length of the link and its unaltered connectivity. This strategy allows us to endow the pores of these MOFs with a new level of complexity which far exceeds any held by that of the original mono-functional MOFs---an aspect that makes it possible to fine-tune the pore environment of a porous crystal with favorable implications. Indeed, one member of these MTV-MOFs has already shown an 87% improvement of the hydrogen uptake while another member demonstrated a 400% increase in CO2 selectivity comparing to their mono-functional counterparts. Another goal of this study has been to maximize MOF porosity and pore size. There were three major obstacles against expanding the pore size of porous crystals

  20. Role of pore size and morphology in musculo-skeletal tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Roman A., E-mail: [Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Mestres, Gemma [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden)


    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. - Highlights: • Osteoconduction and osteoinduction of a biomaterial relies on its pattern of micro/macroporosity. • Size, morphology, distribution and interconnection of the pores influence both mechanical and biological properties. • Macroporosity (pores > 50 μm) determines cell colonization and therefore growth of vascular and bone tissue. • Micropores (< 50 μm) are crucial for proteins adsorption, which in turn can determine cell fate.

  1. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK? (United States)

    Torstrick, F Brennan; Evans, Nathan T; Stevens, Hazel Y; Gall, Ken; Guldberg, Robert E


    Despite its widespread use in orthopaedic implants such as soft tissue fasteners and spinal intervertebral implants, polyetheretherketone (PEEK) often suffers from poor osseointegration. Introducing porosity can overcome this limitation by encouraging bone ingrowth; however, the corresponding decrease in implant strength can potentially reduce the implant's ability to bear physiologic loads. We have previously shown, using a single pore size, that limiting porosity to the surface of PEEK implants preserves strength while supporting in vivo osseointegration. However, additional work is needed to investigate the effect of pore size on both the mechanical properties and cellular response to PEEK. (1) Can surface porous PEEK (PEEK-SP) microstructure be reliably controlled? (2) What is the effect of pore size on the mechanical properties of PEEK-SP? (3) Do surface porosity and pore size influence the cellular response to PEEK? PEEK-SP was created by extruding PEEK through NaCl crystals of three controlled ranges: 200 to 312, 312 to 425, and 425 to 508 µm. Micro-CT was used to characterize the microstructure of PEEK-SP. Tensile, fatigue, and interfacial shear tests were performed to compare the mechanical properties of PEEK-SP with injection-molded PEEK (PEEK-IM). The cellular response to PEEK-SP, assessed by proliferation, alkaline phosphatase activity, vascular endothelial growth factor production, and calcium content of osteoblast, mesenchymal stem cell, and preosteoblast (MC3T3-E1) cultures, was compared with that of machined smooth PEEK and Ti6Al4V. Micro-CT analysis showed that PEEK-SP layers possessed pores that were 284 ± 35 µm, 341 ± 49 µm, and 416 ± 54 µm for each pore size group. Porosity and pore layer depth ranged from 61% to 69% and 303 to 391 µm, respectively. Mechanical testing revealed tensile strengths > 67 MPa and interfacial shear strengths > 20 MPa for all three pore size groups. All PEEK-SP groups exhibited > 50% decrease

  2. Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching

    Directory of Open Access Journals (Sweden)

    Muhammad Usama Siddiqui


    Full Text Available We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.

  3. Fabricating microparticles/nanofibers composite and nanofiber scaffold with controllable pore size by rotating multichannel electrospinning. (United States)

    Huang, Yi-You; Wang, De-Yao; Chang, Lee-Lee; Yang, Ying-Chi


    Polymeric nanofibers fabricated via electrospinning are regarded as promising scaffolds for biomimicking a native extracellular matrix. However, electrospun scaffolds have poor porosity, resulting in cells being unable to infiltrate into the scaffolds but grow only on its surface. In this study, we modified regular electrospinning into rotating multichannel electrospinning (RM-ELSP) to produce microparticles and nanofibers simultaneously. Gelatin nanofibers (0.1-1 microm) and polycaprolactone (PCL) microparticles (0.5-10 microm) were formed and well-mixed. Adjusting the concentration of PCL and/or gelatin, we can fabricate various microparticles/nanofibers composites with different sizes of PCL particles and different diameters of gelatin nanofibers depending on their concentrations (2-10%) during electrospinning. Using PCL particles as a pore generator, we obtained gelatin nanofiber scaffolds with controllable pore size and porosity. Cells adhere and grow into the scaffold easily during in vitro cell culture.


    Directory of Open Access Journals (Sweden)

    Z. Bensetiti


    Full Text Available A model is proposed for the average effective diffusivity for an arbitrary pore size distribution. It is shown that the average diffusivity must also depend on the distribution of the catalyst sites. The reaction diffusivity is compared with the average diffusivities defined by Wakao and Smith (1962 and Johnson and Stewart (1965. For the methanol dehydration and n-butene isomerization, the reaction diffusivity gives a better estimation of the effectiveness factor than the other models

  5. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy. (United States)

    Karlsson, Johan; Atefyekta, Saba; Andersson, Martin


    The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D) and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding-diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments.

  6. Quantification of pore size distribution using diffusion NMR: experimental design and physical insights. (United States)

    Katz, Yaniv; Nevo, Uri


    Pulsed field gradient (PFG) diffusion NMR experiments are sensitive to restricted diffusion within porous media and can thus reveal essential microstructural information about the confining geometry. Optimal design methods of inverse problems are designed to select preferred experimental settings to improve parameter estimation quality. However, in pore size distribution (PSD) estimation using NMR methods as in other ill-posed problems, optimal design strategies and criteria are scarce. We formulate here a new optimization framework for ill-posed problems. This framework is suitable for optimizing PFG experiments for probing geometries that are solvable by the Multiple Correlation Function approach. The framework is based on a heuristic methodology designed to select experimental sets which balance between lowering the inherent ill-posedness and increasing the NMR signal intensity. This method also selects favorable discrete pore sizes used for PSD estimation. Numerical simulations performed demonstrate that using this framework greatly improves the sensitivity of PFG experimental sets to the pores' sizes. The optimization also sheds light on significant features of the preferred experimental sets. Increasing the gradient strength and varying multiple experimental parameters is found to be preferable for reducing the ill-posedness. We further evaluate the amount of pore size information that can be obtained by wisely selecting the duration of the diffusion and mixing times. Finally, we discuss the ramification of using single PFG or double PFG sequences for PSD estimation. In conclusion, the above optimization method can serve as a useful tool for experimenters interested in quantifying PSDs of different specimens. Moreover, the applicability of the suggested optimization framework extends far beyond the field of PSD estimation in diffusion NMR, and reaches design of sampling schemes of other ill-posed problems.

  7. Numerical simulation of pore size dependent anhydrite precipitation in geothermal reservoirs (United States)

    Mürmann, Mario; Kühn, Michael; Pape, Hansgeorg; Clauser, Christoph


    Porosity and permeability of reservoirs are key parameters for an economical use of hot water from geothermal installations and can be significantly reduced by precipitation of minerals, such as anhydrite. The borehole Allermöhe 1 near Hamburg (Germany) represents a failed attempt of geothermal heat mining due to anhydrite precipitation (Baermann et al. 2000). For a risk assessment of future boreholes it is essential to understand how and when anhydrite cementation occurred under reservoir conditions. From core samples of the Allermöhe borehole it was determined that anhydrite precipitation took place in regions of relatively high porosity while regions of low porosity remained uncemented (Wagner et al. 2005). These findings correspond to the fact that e.g. halite precipitation in porous media is found only in relatively large pores (Putnis and Mauthe 2001). This study and others underline that pore size controls crystallization and that it is therefore necessary to establish a relation between pore size and nucleation. The work presented here is based on investigations of Emmanuel and Berkowitz (2007) who present such a relation by applying a thermodynamic approach. However this approach cannot explain the heterogeneous precipitation observed in the Allermöhe core samples. We chose an advanced approach by considering electric system properties resulting in another relation between pore size and crystallization. It is well known that a high fluid supersaturation can be maintained in porous rocks (Putnis and Mauthe 2001). This clearly indicates that a supersaturation threshold exists exceeding thermodynamic equilibrium considerably. In order to quantify spatially heterogeneous anhydrite cementation a theoretical approach was chosen which considered the electric interaction between surface charges of the matrix and calcium and sulphate ions in the fluid. This approach was implemented into the numerical code SHEMAT (Clauser 2003) and used to simulate anhydrite

  8. Determining the dynamic range of MCPs based on pore size and strip current (United States)

    Hunt, C.; Adrian, M. L.; Herrero, F.; James, P.; Jones, H. H.; Rodriguez, M.; Roman, P.; Shappirio, M.


    Micro-Channel Plates (MCPs) are used as detectors for almost all detectors measuring particles (both ions, electrons and neutrals) below 30 keV. Recent advances in the manufacturing technology of the MCPs have increased the number of options one has when selecting plates for an instrument. But it is not clear how many of these options affect the performance of the MCPs. In particular the dynamic range is not a clear cut calculation to make from the strip current. There is also some evidence that pore size and coating play a role. We measured the dynamic range and pulse height distribution of MCPs detector chevron stacks with a wide variety of strip currents from the low “normal” range in the EDR range. We also looked at the effects of varying the pore size from 25 microns to 10 microns, partial plating of the MCP surface and coating one surface on each MCP with gold rather than the standard zinc chromium. We will show how the dynamic range and pulse height distributions vary vs. strip current, pore size, and surface plating configurations.

  9. Particle Size and Pore Structure Characterization of Silver Nanoparticles Prepared by Confined Arc Plasma

    Directory of Open Access Journals (Sweden)

    Mingru Zhou


    Full Text Available In the protecting inert gas, silver nanoparticles were successfully prepared by confined arc plasma method. The particle size, microstructure, and morphology of the particles by this process were characterized via X-ray powder diffraction (XRD, transmission electron microscopy (TEM and the corresponding selected area electron diffraction (SAED. The N2 absorption-desorption isotherms of the samples were measured by using the static volumetric absorption analyzer, the pore structure of the sample was calculated by Barrett-Joyner-Halenda (BJH academic model, and the specific surface area was calculated from Brunauer-Emmett-Teller (BET adsorption equation. The experiment results indicate that the crystal structure of the samples is face-centered cubic (FCC structure the same as the bulk materials, the particle size distribution ranging from 5 to 65 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results. The specific surface area is 23.81 m2/g, pore volumes are 0.09 cm3/g, and average pore diameter is 18.7 nm.

  10. Computationally Inexpensive Incorporation of Solute Transport Physics into Pore-Network Models (United States)

    Mehmani, Y.; Oostrom, M.


    Several modeling approaches have been developed in the literature for simulating solute transport at the pore scale. This includes "direct modeling" where the fundamental equations are solved directly on the actual pore-scale geometry (obtained from digital images). These methods, even though very accurate, come at a high computational cost. A pore-network representation of the pore-scale geometry is a first step in reducing the computational cost. However, the geometric simplification is typically accompanied by a secondary simplification of the physics of the problem (contributing to their inaccuracy). This is seen in the widely-used "mixed-cell method" which has simplifications in two key components: 1) intra-pore mixing, and 2) inter-pore rate expressions. Nevertheless, the method is popular because it is computationally inexpensive, allowing for examining larger and more representative computational domains. In this work, we explore two novel methods for circumventing the aforementioned limitations of the mixed-cell method (intra-pore mixing and inter-pore rate expressions); all while making an effort to keep the computational cost low. We show that while intra-pore mixing can be accurately taken into account, correcting for the inter-pore rate expressions has fundamental implications on the applicability of Eulerian pore-network models and the interpretation of the results obtained therefrom. Despite recent important progress in the development of accurate and robust direct modeling tools, there is a need in the literature for simple, accurate, and inexpensive models both from a scientific as well as a practical point of view.

  11. Study on Relation between Hydrodynamic Feature Size of HPAM and Pore Size of Reservoir Rock in Daqing Oilfield

    Directory of Open Access Journals (Sweden)

    Qing Fang


    Full Text Available The flow mechanism of the injected fluid was studied by the constant pressure core displacement experiments in the paper. It is assumed under condition of the constant pressure gradient in deep formation based on the characteristic of pressure gradient distribution between the injection and production wells and the mobility of different polymer systems in deep reservoir. Moreover, the flow rate of steady stream was quantitatively analyzed and the critical flow pressure gradient of different injection parameters polymer solutions in different permeability cores was measured. The result showed that polymer hydrodynamic feature size increases with the increasing molecular weight. If the concentration of polymer solutions overlaps beyond critical concentration, then molecular chains entanglement will be occur and cause the augment of its hydrodynamic feature size. The polymer hydrodynamic feature size decreased as the salinity of the dilution water increased. When the median radius of the core pore and throat was 5–10 times of the polymer system hydrodynamic feature size, the polymer solution had a better compatibility with the microscopic pore structure of the reservoir. The estimation of polymer solutions mobility in the porous media can be used to guide the polymer displacement plan and select the optimum injection parameters.

  12. Assessing the Increase in Specific Surface Area for Electrospun Fibrous Network due to Pore Induction. (United States)

    Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin


    The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.

  13. Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors

    Directory of Open Access Journals (Sweden)

    Griffiths Gary L


    Full Text Available Abstract Background The existence of large pores in the blood-tumor barrier (BTB of malignant solid tumor microvasculature makes the blood-tumor barrier more permeable to macromolecules than the endothelial barrier of most normal tissue microvasculature. The BTB of malignant solid tumors growing outside the brain, in peripheral tissues, is more permeable than that of similar tumors growing inside the brain. This has been previously attributed to the larger anatomic sizes of the pores within the BTB of peripheral tumors. Since in the physiological state in vivo a fibrous glycocalyx layer coats the pores of the BTB, it is possible that the effective physiologic pore size in the BTB of brain tumors and peripheral tumors is similar. If this were the case, then the higher permeability of the BTB of peripheral tumor would be attributable to the presence of a greater number of pores in the BTB of peripheral tumors. In this study, we probed in vivo the upper limit of pore size in the BTB of rodent malignant gliomas grown inside the brain, the orthotopic site, as well as outside the brain in temporalis skeletal muscle, the ectopic site. Methods Generation 5 (G5 through generation 8 (G8 polyamidoamine dendrimers were labeled with gadolinium (Gd-diethyltriaminepentaacetic acid, an anionic MRI contrast agent. The respective Gd-dendrimer generations were visualized in vitro by scanning transmission electron microscopy. Following intravenous infusion of the respective Gd-dendrimer generations (Gd-G5, N = 6; Gd-G6, N = 6; Gd-G7, N = 5; Gd-G8, N = 5 the blood and tumor tissue pharmacokinetics of the Gd-dendrimer generations were visualized in vivo over 600 to 700 minutes by dynamic contrast-enhanced MRI. One additional animal was imaged in each Gd-dendrimer generation group for 175 minutes under continuous anesthesia for the creation of voxel-by-voxel Gd concentration maps. Results The estimated diameters of Gd-G7 dendrimers were 11 ± 1 nm and those of Gd-G8

  14. Models for Unsaturated Hydraulic Conductivity Based on Truncated Lognormal Pore-size Distributions

    CERN Document Server

    Malama, Bwalya


    We develop a closed-form three-parameter model for unsaturated hydraulic conductivity associated with a three-parameter lognormal model of moisture retention, which is based on lognormal grainsize distribution. The derivation of the model is made possible by a slight modification to the theory of Mualem. We extend the three-parameter lognormal distribution to a four-parameter model that also truncates the pore size distribution at a minimum pore radius. We then develop the corresponding four-parameter model for moisture retention and the associated closed-form expression for unsaturated hydraulic conductivity. The four-parameter model is fitted to experimental data, similar to the models of Kosugi and van Genuchten. The proposed four-parameter model retains the physical basis of Kosugi's model, while improving fit to observed data especially when simultaneously fitting pressure-saturation and pressure-conductivity data.

  15. Turning the pore size of nanoporous membranes using layer-by-layer cross-linking polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Min Seon; Park, Ji Woong [School of Materials Science and Engineering and Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)


    Covalent organic networks consisting of molecular nodes and links are promising for preparation of nanostructured materials that are key to the technologies for molecular separation, storage, and catalysis. The network of covalent bonds provides high-dimensional stability, which is essential for maintaining the functionality of the nanostructure under various chemical and thermal environments. However, most of network materials are synthesized as insoluble precipitates or gels formed directly from polymerization of network-forming monomers, being severely limited in chemical functionalization or post-processing needed for their applications. The synthesis method for network materials with facile size or shape controllability is crucial for their exploitation for various potential applications.

  16. A kinetic Monte Carlo approach to study fluid transport in pore networks (United States)

    Apostolopoulou, M.; Day, R.; Hull, R.; Stamatakis, M.; Striolo, A.


    The mechanism of fluid migration in porous networks continues to attract great interest. Darcy's law (phenomenological continuum theory), which is often used to describe macroscopically fluid flow through a porous material, is thought to fail in nano-channels. Transport through heterogeneous and anisotropic systems, characterized by a broad distribution of pores, occurs via a contribution of different transport mechanisms, all of which need to be accounted for. The situation is likely more complicated when immiscible fluid mixtures are present. To generalize the study of fluid transport through a porous network, we developed a stochastic kinetic Monte Carlo (KMC) model. In our lattice model, the pore network is represented as a set of connected finite volumes (voxels), and transport is simulated as a random walk of molecules, which "hop" from voxel to voxel. We simulated fluid transport along an effectively 1D pore and we compared the results to those expected by solving analytically the diffusion equation. The KMC model was then implemented to quantify the transport of methane through hydrated micropores, in which case atomistic molecular dynamic simulation results were reproduced. The model was then used to study flow through pore networks, where it was able to quantify the effect of the pore length and the effect of the network's connectivity. The results are consistent with experiments but also provide additional physical insights. Extension of the model will be useful to better understand fluid transport in shale rocks.

  17. Adaptive Dynamics of Regulatory Networks: Size Matters

    Directory of Open Access Journals (Sweden)

    Martinetz Thomas


    Full Text Available To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.

  18. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing

    NARCIS (Netherlands)

    Boekema, B.K.H.L.; Vlig, M.; Damink, L.O.; Middelkoop, E.; Eummelen, L.; Buhren, A.V.; Ulrich, M.M.W.


    Collagen-elastin (CE) scaffolds are frequently used for dermal replacement in the treatment of full-thickness skin defects such as burn wounds. But little is known about the optimal pore size and level of cross-linking. Different formulations of dermal substitutes with unidirectional pores were

  19. Biotemplating pores with size and shape diversity for Li-oxygen Battery Cathodes (United States)

    Oh, Dahyun; Ozgit-Akgun, Çagla; Akca, Esin; Thompson, Leslie E.; Tadesse, Loza F.; Kim, Ho-Cheol; Demirci, Gökhan; Miller, Robert D.; Maune, Hareem


    Synthetic porogens provide an easy way to create porous structures, but their usage is limited due to synthetic difficulties, process complexities and prohibitive costs. Here we investigate the use of bacteria, sustainable and naturally abundant materials, as a pore template. The bacteria require no chemical synthesis, come in variable sizes and shapes, degrade easier and are approximately a million times cheaper than conventional porogens. We fabricate free standing porous multiwalled carbon nanotube (MWCNT) films using cultured, harmless bacteria as porogens, and demonstrate substantial Li-oxygen battery performance improvement by porosity control. Pore volume as well as shape in the cathodes were easily tuned to improve oxygen evolution efficiency by 30% and double the full discharge capacity in repeated cycles compared to the compact MWCNT electrode films. The interconnected pores produced by the templates greatly improve the accessibility of reactants allowing the achievement of 4,942 W/kg (8,649 Wh/kg) at 2 A/ge (1.7 mA/cm2).

  20. Multiscale pore networks and their effect on deformation and transport property alteration associated with hydraulic fracturing (United States)

    Daigle, Hugh; Hayman, Nicholas; Jiang, Han; Tian, Xiao; Jiang, Chunbi


    Multiple lines of evidence indicate that, during a hydraulic fracture stimulation, the permeability of the unfractured matrix far from the main, induced tensile fracture increases by one to two orders of magnitude. This permeability enhancement is associated with pervasive shear failure in a large region surrounding the main induced fracture. We have performed low-pressure gas sorption, mercury intrusion, and nuclear magnetic resonance measurements along with high-resolution scanning electron microscope imaging on several preserved and unpreserved shale samples from North American basins before and after inducing failure in confined compressive strength tests. We have observed that the pore structure in intact samples exhibits multiscale behavior, with sub-micron-scale pores in organic matter connected in isolated, micron-scale clusters which themselves are connected to each other through a network of microcracks. The organic-hosted pore networks are poorly connected due to a significant number of dead-end pores within the organic matter. Following shear failure, we often observe an increase in pore volume in the sub-micron range, which appears to be related to the formation of microcracks that propagate along grain boundaries and other planes of mechanical strength contrast. This is consistent with other experimental and field evidence. In some cases these microcracks cross or terminate in organic matter, intersecting the organic-hosted pores. The induced microcrack networks typically have low connectivity and do not appreciably increase the connectivity of the overall pore network. However, in other cases the shear deformation results in an overall pore volume decrease; samples which exhibit this behavior tend to have more clay minerals. Our interpretation of these phenomena is as follows. As organic matter is converted to hydrocarbons, organic-hosted pores develop, and the hydrocarbons contained in these pores are overpressured. The disconnected nature of these

  1. First Synthesis of Continuous Mesoporous Copper Films with Uniformly Sized Pores by Electrochemical Soft Templating. (United States)

    Li, Cuiling; Jiang, Bo; Wang, Zhongli; Li, Yunqi; Hossain, Md Shahriar A; Kim, Jung Ho; Takei, Toshiaki; Henzie, Joel; Dag, Ömer; Bando, Yoshio; Yamauchi, Yusuke


    Although mesoporous metals have been synthesized by electrochemical methods, the possible compositions have been limited to noble metals (e.g., palladium, platinum, gold) and their alloys. Herein we describe the first fabrication of continuously mesoporous Cu films using polymeric micelles as soft templates to control the growth of Cu under sophisticated electrochemical conditions. Uniformly sized mesopores are evenly distributed over the entire film, and the pore walls are composed of highly crystalized Cu. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Linking Particle and Pore-Size Distribution Parameters to Soil Gas Transport Properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Schjønning, Per


    , respectively) and the Campbell water retention parameter b were used to characterize particle and pore size distributions, respectively. Campbell b yielded a wide interval (4.6–26.2) and was highly correlated with α, β, and volumetric clay content. Both Dp/Do and ka followed simple power-law functions (PLFs......) of air-filled porosity (εa). The PLF tortuosity–connectivity factors (X*) for Dp/Do and ka were both highly correlated with all basic soil characteristics, in the order of volumetric clay content = Campbell b > gravimetric clay content > α > β. The PLF water blockage factors (H) for Dp/Do and ka were...

  3. Pore size distribution and methane equilibrium conditions at Walker Ridge Block 313, northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Bihani, Abhishek [University of Texas at Austin; Daigle, Hugh [University of Texas at Austin; Cook, Ann [Ohio State University; Glosser, Deborah [Ohio State University; Shushtarian, Arash [University of Texas at Austin


    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  4. Pore Size Distribution and Methane Equilibrium Conditions at Walker Ridge Block 313, Northern Gulf of Mexico (United States)

    Bihani, A. D.; Daigle, H.; Cook, A.; Glosser, D.; Shushtarian, A.


    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  5. Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Bossa, Nathan, E-mail: [Aix-Marseille Université (AMU), CNRS, IRD, CEREGE UM34, BP 80, 13545 Aix-en-Provence, Cedex 4 (France); INERIS, Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte (France); iCEINT, CNRS, Duke Univ. International Consortium for the Environmental Implications of Nanotechnology, Aix-en-Provence (France); Chaurand, Perrine [Aix-Marseille Université (AMU), CNRS, IRD, CEREGE UM34, BP 80, 13545 Aix-en-Provence, Cedex 4 (France); iCEINT, CNRS, Duke Univ. International Consortium for the Environmental Implications of Nanotechnology, Aix-en-Provence (France); Vicente, Jérôme [Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13013 Marseille (France); Borschneck, Daniel; Levard, Clément [Aix-Marseille Université (AMU), CNRS, IRD, CEREGE UM34, BP 80, 13545 Aix-en-Provence, Cedex 4 (France); iCEINT, CNRS, Duke Univ. International Consortium for the Environmental Implications of Nanotechnology, Aix-en-Provence (France); Aguerre-Chariol, Olivier [INERIS, Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte (France); Rose, Jérôme [Aix-Marseille Université (AMU), CNRS, IRD, CEREGE UM34, BP 80, 13545 Aix-en-Provence, Cedex 4 (France); iCEINT, CNRS, Duke Univ. International Consortium for the Environmental Implications of Nanotechnology, Aix-en-Provence (France)


    Pore structure of leached cement pastes (w/c = 0.5) was studied for the first time from micro-scale down to the nano-scale by combining micro- and nano-X-ray computed tomography (micro- and nano-CT). This allowed assessing the 3D heterogeneity of the pore network along the cement profile (from the core to the altered layer) of almost the entire range of cement pore size, i.e. from capillary to gel pores. We successfully quantified an increase of porosity in the altered layer at both resolutions. Porosity is increasing from 1.8 to 6.1% and from 18 to 58% at the micro-(voxel = 1.81 μm) and nano-scale (voxel = 63.5 nm) respectively. The combination of both CT allowed to circumvent weaknesses inherent of both investigation scales. In addition the connectivity and the channel size of the pore network were also evaluated to obtain a complete 3D pore network characterization at both scales.

  6. Modelling the influence of pore size on the response of materials to infrared lasers An application to human enamel (United States)

    Vila Verde, A.; Ramos, Marta M. D.


    We present an analytical model for a ceramic material (hydroxyapatite, HA) containing nanometre-scale water pores, and use it to estimate the pressure at the pore as a function of temperature at the end of a single 0.35 μs laser pulse by Er:YAG (2.94 μm) and CO 2 (10.6 μm) lasers. Our results suggest that the pressure at the pore is directly related to pore temperature, and that very high pressures can be generated simply by the thermal expansion of liquid water. Since the temperature reached in the pores at the end of the laser pulse is a strong function of pore size for Er:YAG lasers, but is independent of pore size for CO 2 lasers, our present results provide a possible explanation for the fact that human dental enamel threshold ablation fluences vary more for Er:YAG lasers than for CO 2 lasers. This suggests that experimentalists should analyse their results accounting for factors, like age or type of tooth, that may change the pore size distribution in their samples.

  7. Modelling the influence of pore size on the response of materials to infrared lasers - An application to human enamel

    Energy Technology Data Exchange (ETDEWEB)

    Vila Verde, A. [Department of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Ramos, Marta M.D. [Department of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)]. E-mail:


    We present an analytical model for a ceramic material (hydroxyapatite, HA) containing nanometre-scale water pores, and use it to estimate the pressure at the pore as a function of temperature at the end of a single 0.35 {mu}s laser pulse by Er:YAG (2.94 {mu}m) and CO{sub 2} (10.6 {mu}m) lasers. Our results suggest that the pressure at the pore is directly related to pore temperature, and that very high pressures can be generated simply by the thermal expansion of liquid water. Since the temperature reached in the pores at the end of the laser pulse is a strong function of pore size for Er:YAG lasers, but is independent of pore size for CO{sub 2} lasers, our present results provide a possible explanation for the fact that human dental enamel threshold ablation fluences vary more for Er:YAG lasers than for CO{sub 2} lasers. This suggests that experimentalists should analyse their results accounting for factors, like age or type of tooth, that may change the pore size distribution in their samples.

  8. Surface Observation and Pore Size Analyses of Polypropylene/Low-Melting Point Polyester Filter Materials: Influences of Heat Treatment

    Directory of Open Access Journals (Sweden)

    Lin Jia-Horng


    Full Text Available This study proposes making filter materials with polypropylene (PP and low-melting point (LPET fibers. The influences of temperatures and times of heat treatment on the morphology of thermal bonding points and average pore size of the PP/LPET filter materials. The test results indicate that the morphology of thermal bonding points is highly correlated with the average pore size. When the temperature of heat treatment is increased, the fibers are joined first with the thermal bonding points, and then with the large thermal bonding areas, thereby decreasing the average pore size of the PP/LPET filter materials. A heat treatment of 110 °C for 60 seconds can decrease the pore size from 39.6 μm to 12.0 μm.

  9. Effect of varying pore size of AAO films on refractive index and birefringence measured by prism coupling technique. (United States)

    Gong, Su-Hyun; Stolz, Arnaud; Myeong, Gi-Hwan; Dogheche, Elhadj; Gokarna, Anisha; Ryu, Sang-Wan; Decoster, Didier; Cho, Yong-Hoon


    Anodic aluminum oxide (AAO) films with different pore sizes were prepared to modulate the effective refractive index and birefringence. To investigate the relationship between the refractive index and the pore size of the AAO film, optical constants were obtained using a prism coupler with various lasers. With experimental results, the dispersion curve of alumina itself without pores was extracted using a theoretical anisotropic model. We demonstrated that AAO films could offer a wide range of refractive index and birefringence values for optical device applications. Furthermore, index profiles as a function of the thickness of the AAO films were obtained by inverse Wentzel-Kramer-Brillouin approximation to examine the optical homogeneity.

  10. Pore size distribution of bioresorbable films using a 3-D diffusion NMR method. (United States)

    Benjamini, Dan; Elsner, Jonathan J; Zilberman, Meital; Nevo, Uri


    Pore size distribution (PSD) within porous biomaterials is an important microstructural feature for assessing their biocompatibility, longevity and drug release kinetics. Scanning electron microscopy (SEM) is the most common method used to obtain the PSD of soft biomaterials. The method is highly invasive and user dependent, since it requires fracturing of the sample and then considers only the small portion that the user had acquired in the image. In the current study we present a novel nuclear magnetic resonance (NMR) method as an alternative method for estimation of PSD in soft porous materials. This noninvasive 3-D diffusion NMR method considers the entire volume of the specimen and eliminates the user's need to choose a specific field of view. Moreover, NMR does not involve exposure to ionizing radiation and can potentially have preclinical and clinical uses. The method was applied on four porous 50/50 poly(dl-lactic-co-glycolic acid) bioresorbable films with different porosities, which were created using the freeze-drying of inverted emulsions technique. We show that the proposed NMR method is able to address the main limitations associated with SEM-based PSD estimations by being non-destructive, depicting the full volume of the specimens and not being dependent on the magnification factor. Upon comparison, both methods yielded a similar PSD in the smaller pore size range (1-25μm), while the NMR-based method provided additional information on the larger pores (25-50μm). Copyright © 2014 Acta Materialia Inc. All rights reserved.

  11. Examining the effect of pore size distribution and shape on flow through unsaturated peat using computed tomography

    Directory of Open Access Journals (Sweden)

    F. Rezanezhad


    Full Text Available The hydraulic conductivity of unsaturated peat soil is controlled by the air-filled porosity, pore size and geometric distribution as well as other physical properties of peat materials. This study investigates how the size and shape of pores affects the flow of water through peat soils. In this study we used X-ray Computed Tomography (CT, at 45 μm resolution under 5 specific soil-water pressure head levels to provide 3-D, high-resolution images that were used to detect the inner pore structure of peat samples under a changing water regime. Pore structure and configuration were found to be irregular, which affected the rate of water transmission through peat soils. The 3-D analysis suggested that pore distribution is dominated by a single large pore-space. At low pressure head, this single large air-filled pore imparted a more effective flowpath compared to smaller pores. Smaller pores were disconnected and the flowpath was more tortuous than in the single large air-filled pore, and their contribution to flow was negligible when the single large pore was active. We quantify the pore structure of peat soil that affects the hydraulic conductivity in the unsaturated condition, and demonstrate the validity of our estimation of peat unsaturated hydraulic conductivity by making a comparison with a standard permeameter-based method. Estimates of unsaturated hydraulic conductivities were made for the purpose of testing the sensitivity of pore shape and geometry parameters on the hydraulic properties of peats and how to evaluate the structure of the peat and its affects on parameterization. We also studied the ability to quantify these factors for different soil moisture contents in order to define how the factors controlling the shape coefficient vary with changes in soil water pressure head. The relation between measured and estimated unsaturated hydraulic conductivity at various heads shows that rapid initial drainage, that changes the air

  12. Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits

    Directory of Open Access Journals (Sweden)

    Baille Wiebke


    Full Text Available In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand grain. Wetting induced collapse of the pseudo-grains is presumed to be one of the possible mechanisms triggering liquefaction. In the present study, the effect of larger voids on the wetting induced deformation behaviour of sandy soils is experimentally investigated by laboratory box tests. The deformation field in the sample during wetting was measured using Digital Image Correlation (DIC technique. The results show that the observed deformations are affected by the pore size distribution, thus the amount of voids between the pseudo-grains (macro-void ratio and the voids inside the pseudo-grains (matrix void ratio. The global void ratio of a sandy soil is not sufficient as single state parameter, but the pore size distribution has to be taken into account, experimentally as well as in modelling.

  13. Microfiltration of red berry juice with thread filters: Effects of temperature, flow and filter pore size

    DEFF Research Database (Denmark)

    Bagger-Jørgensen, Rico; Casani, Sandra Dobon; Meyer, Anne Boye Strunge


    A series of experiments was conducted to demonstrate the applicability of a new Filtomat(R) thread filtration principle for microfiltration of semiprocessed blackcurrant juice and cherry juice. The effect of juice temperature (3-20C), flow (20-80 L/h), and filter pore size (3-10 mum) on the trans......A series of experiments was conducted to demonstrate the applicability of a new Filtomat(R) thread filtration principle for microfiltration of semiprocessed blackcurrant juice and cherry juice. The effect of juice temperature (3-20C), flow (20-80 L/h), and filter pore size (3-10 mum......) on the transmembrane pressure, juice turbidity, protein, sugar, and total phenols levels was evaluated in a lab scale microfiltration unit employing statistically designed factorial experiments. Thread microfiltration reduced significantly the turbidity of both juices. For blackcurrant juice, in all experiments......, the turbidity was immediately reduced to the level required for finished juice without compromising either the protein, the sugar or the phenols content. High flow rates increased the turbidity in blackcurrant juice, but did not affect cherry juice quality. Filtomat(R) thread microfiltration therefore appears...

  14. Nanoporous Films with Sub-10 nm in Pore Size from Acid-Cleavable Block Copolymers. (United States)

    Li, Yayuan; Xu, Yawei; Cao, Shubo; Zhao, Yongbin; Qu, Ting; Iyoda, Tomokazu; Chen, Aihua


    Nanoporous thin films with pore size of sub-10 nm are fabricated using an acid-cleavable block copolymer (BCP), a benzoic imine junction between poly(ethylene oxide) (PEO) and poly(methacrylate) (PMAAz) bearing an azobenzene side chain (denoted as PEO-bei-PMAAz) as the precursor. After a thermal annealing, the block copolymers are self-assembled to form highly ordered PEO cylinders within a PMAAz matrix normal to the film, even in the case of low BCP molecular weight due to the existing of the liquid crystalline (LC) azobenzene rigid segment. Thus, PMAAz thin films with pore size of ≈7 nm and density of ≈10(12) cm(-2) are obtained after removal of the PEO minor phase by breaking the benzoic imine junction under mild acidic conditions. This work enriches the nanoporous polymer films from BCP precursors and introduces the LC property as a functionality which can further enhance the mechanical properties of the films and broaden their applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Reconstruction of chalk pore networks from 2D backscatter electron micrographs using a simulated annealing technique

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, M.S.; Torsaeter, O. [Department of Petroleum Engineering and Applied Geophysics, Norwegian University of Science and Technology, Trondheim (Norway)


    We report the stochastic reconstruction of chalk pore networks from limited morphological information that may be readily extracted from 2D backscatter electron (BSE) images of the pore space. The reconstruction technique employs a simulated annealing (SA) algorithm, which can be constrained by an arbitrary number of morphological descriptors. Backscatter electron images of a high-porosity North Sea chalk sample are analyzed and the morphological descriptors of the pore space are determined. The morphological descriptors considered are the void-phase two-point probability function and lineal path function computed with or without the application of periodic boundary conditions (PBC). 2D and 3D samples have been reconstructed with different combinations of the descriptors and the reconstructed pore networks have been analyzed quantitatively to evaluate the quality of reconstructions. The results demonstrate that simulated annealing technique may be used to reconstruct chalk pore networks with reasonable accuracy using the void-phase two-point probability function and/or void-phase lineal path function. Void-phase two-point probability function produces slightly better reconstruction than the void-phase lineal path function. Imposing void-phase lineal path function results in slight improvement over what is achieved by using the void-phase two-point probability function as the only constraint. Application of periodic boundary conditions appears to be not critically important when reasonably large samples are reconstructed.

  16. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes

    DEFF Research Database (Denmark)

    Bjerre, Lea; Bünger, Cody; Baatrup, Anette


    of this study was to obtain a clinically relevant substitute size using a direct perfusion culture system. Human bone marrowderived mesenchymal stem cells were seeded on coralline hydroxyapatite scaffolds with 200 μm or 500 μm pores, and resulting constructs were cultured in a perfusion bioreactor or in static...... μm ones. Adhesion and proliferation of the cells was seen on both scaffold sizes, but the vitality and morphology of cells changed unfavorably during perfusion culture. In contrast to previous studies using spinner flask that show increased cellularity and osteogenic properties of cells when cultured...... dynamically, the perfusion culture in our study did not enhance the osteogenic properties of cell/scaffold constructs. The statically cultured constructs showed increasing cell numbers and abundant osteogenic differentiation probably because of weak initial cell adhesion due to the surface morphology...

  17. Incorporation of the Pore Size Variation to Modeling of the Elastic Behavior of Metallic Open-Cell Foams

    Directory of Open Access Journals (Sweden)

    Ćwieka K.


    Full Text Available In the present paper we present the approach for modeling of the elastic behavior of open-cell metallic foams concerning non-uniform pore size distribution. This approach combines design of foam structures and numerical simulations of compression tests using finite element method (FEM. In the design stage, Laguerre-Voronoi tessellations (LVT were performed on several sets of packed spheres with defined variation of radii, bringing about a set of foam structures with porosity ranging from 74 to 98% and different pore size variation quantified by the coefficient of pore volume variation, CV(V, from 0.5 to 2.1. Each structure was numerically subjected to uni-axial compression test along three directions within the elastic region. Basing on the numerical response, the effective Young’s modulus, Eeff, was calculated for each structure. It is shown that the Eeff is not only dependent on the porosity but also on the pore size variation.

  18. Effect of Graphene and Fullerene Nanofillers on Controlling the Pore Size and Physicochemical Properties of Chitosan Nanocomposite Mesoporous Membranes

    Directory of Open Access Journals (Sweden)

    Irene S. Fahim


    Full Text Available Chitosan (CS nanocomposite mesoporous membranes were fabricated by mixing CS with graphene (G and fullerene (F nanofillers, and the diffusion properties through CS membranes were studied. In addition, in order to enhance the binding between the internal CS chains, physical cross-linking of CS by sodium tripolyphosphate (TPP was carried out. F and G with different weight percentages (0.1, 0.5, and 1 wt.% were added on physically cross-linked chitosan (CLCS and non-cross-linked chitosan (NCLCS membranes by wet mixing. Permeability and diffusion time of CLCS and NCLCS membranes at different temperatures were investigated. The results revealed that the pore size of all fabricated CS membranes is in the mesoporous range (i.e., 2–50 nm. Moreover, the addition of G and F nanofillers to CLCS and NCLCS solutions aided in controlling the CS membranes’ pore size and was found to enhance the barrier effect of the CS membranes either by blocking the internal pores or decreasing the pore size. These results illustrate the significant possibility of controlling the pore size of CS membranes by cross-linking and more importantly the careful selection of nanofillers and their percentage within the CS membranes. Controlling the pore size of CS membranes is a fundamental factor in packaging applications and membrane technology.

  19. Minimum requirements for predictive pore-network modeling of solute transport in micromodels (United States)

    Mehmani, Yashar; Tchelepi, Hamdi A.


    Pore-scale models are now an integral part of analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Pore network models (PNM) are particularly attractive due to their computational efficiency. However, quantitative predictions with PNM have not always been successful. We focus on single-phase transport of a passive tracer under advection-dominated regimes and compare PNM with high-fidelity direct numerical simulations (DNS) for a range of micromodel heterogeneities. We identify the minimum requirements for predictive PNM of transport. They are: (a) flow-based network extraction, i.e., discretizing the pore space based on the underlying velocity field, (b) a Lagrangian (particle tracking) simulation framework, and (c) accurate transfer of particles from one pore throat to the next. We develop novel network extraction and particle tracking PNM methods that meet these requirements. Moreover, we show that certain established PNM practices in the literature can result in first-order errors in modeling advection-dominated transport. They include: all Eulerian PNMs, networks extracted based on geometric metrics only, and flux-based nodal transfer probabilities. Preliminary results for a 3D sphere pack are also presented. The simulation inputs for this work are made public to serve as a benchmark for the research community.

  20. A proposed 2D framework for estimation of pore size distribution by double pulsed field gradient NMR. (United States)

    Benjamini, Dan; Katz, Yaniv; Nevo, Uri


    Reconstructing a pore size distribution of porous materials is valuable for applications in materials sciences, oil well logging, biology, and medicine. The major drawback of NMR based methods is an intrinsic limitation in the reconstruction which arises from the ill-conditioned nature of the pore size distribution problem. Consequently, while estimation of the average pore size was already demonstrated experimentally, reliable evaluation of pore size distribution remains a challenging task. In this paper we address this problem by analyzing the mathematical characteristics that create the difficulty and by proposing an NMR methodology and a numerical analysis. We demonstrate analytically that an accurate reconstruction of pore size distribution is problematic with the current known strategies for conducting a single or a double pulsed field gradient (s-PFG, d-PFG) experiment. We then present a method for choosing the experimental parameters that would significantly improve the estimation of the size distribution. We show that experimental variation of both q (the amplitude of the diffusion gradient) and ϕ (the relative angle between the gradient pairs) is significantly favorable over single and double-PFG applied with variation of only one parameter. Finally, we suggest a unified methodology (termed Concentric d-PFG) that defines a multidimensional approach where each data point in the experiment is characterized by ϕ and q. The addition of the angle parameter makes the experiment sensitive to small compartment sizes without the need to use strong gradients, thus making it feasible for in-vivo biological applications.

  1. Connectivity and percolation of pore networks in a cultivated silt loam soil quantified by X-ray tomography (United States)

    Jarvis, Nicholas; Koestel, John; Larsbo, Mats


    The connectivity of macropore networks is thought to exert an important control on transport processes in soil. However, little progress has been made towards quantifying these effects for natural soils in the field, partly because of the experimental difficulties but also because the concept of connectivity lacks a unique mathematical definition. To investigate this question, X-ray tomography was used to measure pore volume, size distribution and connectivity at an image resolution of 65 microns for 64 samples taken in two consecutive years in the harrowed and ploughed layers of a silt loam soil a few weeks after spring cultivation. Three different connectivity metrics were evaluated and compared: one local metric, the Euler number, and two global measures, the connection probability and the probability of percolation (the fraction of the porosity which is continuous across the sample). The connection probability was found to be a good measure of the long-range connectivity (i.e. continuity) of the pore networks. In contrast, the Euler number was not a sensitive measure of global connectivity, although all samples with negative Euler numbers did percolate. We also found that the way connection is defined in the image analysis (either by 6 or 26 nearest neighbours) did not influence the calculations of percolating porosity. The results also demonstrate that harrowing has a clear homogenizing effect on the distribution of the pore space. However, a comparison with random field simulations and the evidence of small percolation thresholds shows that the macropore system developed in the recently harrowed soil was far from completely random or disordered. In some samples, more than one pore cluster percolated, while in others the percolating cluster was not the largest one. Nevertheless, the macropore networks in this cultivated silt loam soil displayed some key features predicted by percolation theory: a strong relationship was found between the percolating fraction

  2. Demineralized dentin 3D porosity and pore size distribution using mercury porosimetry. (United States)

    Vennat, Elsa; Bogicevic, Christine; Fleureau, Jean-Marie; Degrange, Michel


    The objectives of this study were to assess demineralized dentin porosity and quantify the different porous features distribution within the material using mercury intrusion porosimetry (MIP) technique. We compared hexamethyldisilazane (HMDS) drying and lyophilization (LYO) (freeze-drying) in sample preparation. Fifty-six dentin discs were assigned into three groups. The control (CTR) group discs were superficially acid-etched (15s 37% H(3)PO(4)) to remove the smear layer and then freeze-dried whereas LYO and HMDS groups samples were first totally demineralized using EDTA 0.5M and then freeze-dried and HMDS-dried respectively. MIP was used to determine open porosity and pore size distribution of each pair of samples. Field emission scanning electron microscopy (FESEM) was used to illustrate the results. The results showed two types of pores corresponding either to tubules and micro-branches or to inter-fibrillar spaces created by demineralization. Global porosity varied from 59% (HMDS-dried samples) to 70% (freeze-dried samples). Lyophilization drying technique seems to lead to less shrinkage than HMDS drying. FESEM revealed that collagen fibers of demineralized lyophilized samples are less melted together than in the HMDS-dried samples. Demineralized dentin porosity is a key parameter in dentin bonding that will influence the hybrid layer quality. Its characterization could be helpful to improve the monomers infiltration.

  3. A family of zeolites with controlled pore size prepared using a top-down method. (United States)

    Roth, Wieslaw J; Nachtigall, Petr; Morris, Russell E; Wheatley, Paul S; Seymour, Valerie R; Ashbrook, Sharon E; Chlubná, Pavla; Grajciar, Lukáš; Položij, Miroslav; Zukal, Arnošt; Shvets, Oleksiy; Cejka, Jiří


    The properties of zeolites, and thus their suitability for different applications, are intimately connected with their structures. Synthesizing specific architectures is therefore important, but has remained challenging. Here we report a top-down strategy that involves the disassembly of a parent zeolite, UTL, and its reassembly into two zeolites with targeted topologies, IPC-2 and IPC-4. The three zeolites are closely related as they adopt the same layered structure, and they differ only in how the layers are connected. Choosing different linkers gives rise to different pore sizes, enabling the synthesis of materials with predetermined pore architectures. The structures of the resulting zeolites were characterized by interpreting the X-ray powder-diffraction patterns through models using computational methods; IPC-2 exhibits orthogonal 12- and ten-ring channels, and IPC-4 is a more complex zeolite that comprises orthogonal ten- and eight-ring channels. We describe how this method enables the preparation of functional materials and discuss its potential for targeting other new zeolites.

  4. Adjustable virtual pore-size filter for automated sample preparation using acoustic radiation force

    Energy Technology Data Exchange (ETDEWEB)

    Jung, B; Fisher, K; Ness, K; Rose, K; Mariella, R


    We present a rapid and robust size-based separation method for high throughput microfluidic devices using acoustic radiation force. We developed a finite element modeling tool to predict the two-dimensional acoustic radiation force field perpendicular to the flow direction in microfluidic devices. Here we compare the results from this model with experimental parametric studies including variations of the PZT driving frequencies and voltages as well as various particle sizes and compressidensities. These experimental parametric studies also provide insight into the development of an adjustable 'virtual' pore-size filter as well as optimal operating conditions for various microparticle sizes. We demonstrated the separation of Saccharomyces cerevisiae and MS2 bacteriophage using acoustic focusing. The acoustic radiation force did not affect the MS2 viruses, and their concentration profile remained unchanged. With optimized design of our microfluidic flow system we were able to achieve yields of > 90% for the MS2 with > 80% of the S. cerevisiae being removed in this continuous-flow sample preparation device.

  5. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Naoya, E-mail: [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Fujibayashi, Shunsuke, E-mail: [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Takemoto, Mitsuru, E-mail: [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Sasaki, Kiyoyuki, E-mail: [Sagawa Printing Co., Ltd., 5-3, Inui, Morimoto-Cho, Mukou-Shi, Kyoto 617-8588 (Japan); Otsuki, Bungo, E-mail: [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Nakamura, Takashi, E-mail: [National Hospital Organization Kyoto Medical Center, 1-1, Mukaihatacho, Hukakusa, Hushimi, Kyoto 612-8555 (Japan); Matsushita, Tomiharu, E-mail: [Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan); Kokubo, Tadashi, E-mail: [Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan); Matsuda, Shuichi, E-mail: [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan)


    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900 μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone–implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8 weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956 μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2 weeks than the other implants. After 4 weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4 weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. - Highlights: • We studied the effect of pore size on bone tissue in-growth in a rabbit in vivo model. • Titanium samples with 300/600/900 μm pore size in three-dimensionally controlled shapes were fabricated by additive manufacturing. • Samples were

  6. Influence of pore size distributions on decomposition of maize leaf residue: evidence from X-ray computed micro-tomography (United States)

    Negassa, Wakene; Guber, Andrey; Kravchenko, Alexandra; Rivers, Mark


    Soil's potential to sequester carbon (C) depends not only on quality and quantity of organic inputs to soil but also on the residence time of the applied organic inputs within the soil. Soil pore structure is one of the main factors that influence residence time of soil organic matter by controlling gas exchange, soil moisture and microbial activities, thereby soil C sequestration capacity. Previous attempts to investigate the fate of organic inputs added to soil did not allow examining their decomposition in situ; the drawback that can now be remediated by application of X-ray computed micro-tomography (µ-CT). The non-destructive and non-invasive nature of µ-CT gives an opportunity to investigate the effect of soil pore size distributions on decomposition of plant residues at a new quantitative level. The objective of this study is to examine the influence of pore size distributions on the decomposition of plant residue added to soil. Samples with contrasting pore size distributions were created using aggregate fractions of five different sizes (decomposition observed in all ground samples regardless of the aggregate fraction size. Consistent with µ-CT results, the proportion of decomposed leaf estimated with the conventional mass loss method was 48% and 60% for the decomposition of plant residues added to soil. Moreover, in presence of plant residues, differences in pore size distributions appear to also influence the rates of decomposition of the intrinsic soil organic material.

  7. Buffer sizing for multi-hop networks

    KAUST Repository

    Shihada, Basem


    A cumulative buffer may be defined for an interference domain in a wireless mesh network and distributed among nodes in the network to maintain or improve capacity utilization of network resources in the interference domain without increasing packet queuing delay times. When an interference domain having communications links sharing resources in a network is identified, a cumulative buffer size is calculated. The cumulative buffer may be distributed among buffers in each node of the interference domain according to a simple division or according to a cost function taking into account a distance of the communications link from the source and destination. The network may be monitored and the cumulative buffer size recalculated and redistributed when the network conditions change.

  8. Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks (United States)

    Ebrahimi, Ali N.; Or, Dani


    The dispersal rates of self-propelled microorganisms affect their spatial interactions and the ecological functioning of microbial communities. Microbial dispersal rates affect risk of contamination of water resources by soil-borne pathogens, the inoculation of plant roots, or the rates of spoilage of food products. In contrast with the wealth of information on microbial dispersal in water replete systems, very little is known about their dispersal rates in unsaturated porous media. The fragmented aqueous phase occupying complex soil pore spaces suppress motility and limits dispersal ranges in unsaturated soil. The primary objective of this study was to systematically evaluate key factors that shape microbial dispersal in model unsaturated porous media to quantify effects of saturation, pore space geometry, and chemotaxis on characteristics of principles that govern motile microbial dispersion in unsaturated soil. We constructed a novel 3-D angular pore network model (PNM) to mimic aqueous pathways in soil for different hydration conditions; within the PNM, we employed an individual-based model that considers physiological and biophysical properties of motile and chemotactic bacteria. The effects of hydration conditions on first passage times in different pore networks were studied showing that fragmentation of aquatic habitats under dry conditions sharply suppresses nutrient transport and microbial dispersal rates in good agreement with limited experimental data. Chemotactically biased mean travel speed of microbial cells across 9 mm saturated PNM was ˜3 mm/h decreasing exponentially to 0.45 mm/h for the PNM at matric potential of -15 kPa (for -35 kPa, dispersal practically ceases and the mean travel time to traverse the 9 mm PNM exceeds 1 year). Results indicate that chemotaxis enhances dispersal rates by orders of magnitude relative to random (diffusive) motions. Model predictions considering microbial cell sizes relative to available liquid pathways sizes were

  9. Micron-Sized Pored Membranes Based on Polyvinylidene Difluoride Hexafluoropropylene Prepared by Phase Inversion Techniques

    Directory of Open Access Journals (Sweden)

    Andreas Hofmann


    Full Text Available In this study, micron-sized pored membranes, based on the co-polymer polyvinylidene difluoride hexafluoropropylene (PVdF-HFP were prepared via phase inversion techniques. The aim of the approach was to find less harmful and less toxic solvents to fabricate such films. Therefore, the Hansen solubility approach was used to identify safer and less toxic organic solvents for the phase inversion process, relative to present solvent mixtures, based on acetone, dimethyl formamide, dimethyl acetamide or methanol. With this approach, it was possible to identify cyclopentanone, ethylene glycol and benzyl alcohol as suitable solvents for the membrane preparation process. Physicochemical and mechanical properties were analyzed and compared, which revealed a uniform membrane structure through the cross section. Differences were observed at the top surface, in dependence of both preparation approaches, which are described in detail.

  10. Investigation of Coupled model of Pore network and Continuum in shale gas (United States)

    Cao, G.; Lin, M.


    Flow in shale spanning over many scales, makes the majority of conventional treatment methods disabled. For effectively simulating, a coupled model of pore-scale and continuum-scale was proposed in this paper. Based on the SEM image, we decompose organic-rich-shale into two subdomains: kerogen and inorganic matrix. In kerogen, the nanoscale pore-network is the main storage space and migration pathway so that the molecular phenomena (slip and diffusive transport) is significant. Whereas, inorganic matrix, with relatively large pores and micro fractures, the flow is approximate to Darcy. We use pore-scale network models (PNM) to represent kerogen and continuum-scale models (FVM or FEM) to represent matrix. Finite element mortars are employed to couple pore- and continuum-scale models by enforcing continuity of pressures and fluxes at shared boundary interfaces. In our method, the process in the coupled model is described by pressure square equation, and uses Dirichlet boundary conditions. We discuss several problems: the optimal element number of mortar faces, two categories boundary faces of pore network, the difference between 2D and 3D models, and the difference between continuum models FVM and FEM in mortars. We conclude that: (1) too coarse mesh in mortars will decrease the accuracy, while too fine mesh will lead to an ill-condition even singular system, the optimal element number is depended on boundary pores and nodes number. (2) pore network models are adjacent to two different mortar faces (PNM to PNM, PNM to continuum model), incidental repeated mortar nodes must be deleted. (3) 3D models can be replaced by 2D models under certain condition. (4) FVM is more convenient than FEM, for its simplicity in assigning interface nodes pressure and calculating interface fluxes. This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB10020302), the 973 Program (2014CB239004), the Key Instrument Developing Project of the

  11. Single-Crystalline, Nanoporous Gallium Nitride Films With Fine Tuning of Pore Size for Stem Cell Engineering. (United States)

    Han, Lin; Zhou, Jing; Sun, Yubing; Zhang, Yu; Han, Jung; Fu, Jianping; Fan, Rong


    Single-crystalline nanoporous gallium nitride (GaN) thin films were fabricated with the pore size readily tunable in 20-100 nm. Uniform adhesion and spreading of human mesenchymal stem cells (hMSCs) seeded on these thin films peak on the surface with pore size of 30 nm. Substantial cell elongation emerges as pore size increases to ∼80 nm. The osteogenic differentiation of hMSCs occurs preferentially on the films with 30 nm sized nanopores, which is correlated with the optimum condition for cell spreading, which suggests that adhesion, spreading, and stem cell differentiation are interlinked and might be coregulated by nanotopography.

  12. Pore pressure prediction using probabilistic neural network: case study of South Sumatra Basin (United States)

    Haris, A.; Sitorus, R. J.; Riyanto, A.


    Pore pressure prediction in the planning of the drilling well commonly carried out using seismic stacking velocity and Normal Compaction Trend (NCT) analysis with Eaton’s equation. There are other parameters that correlate to pore pressure, i.e. density, P-impedance, S-impedance, and Vp/Vs ratio. The aims of this study are to predict pore pressure distribution from 2D pre and post-stack seismic data of South Sumatera field by applying the Probabilistic Neural Network (PNN). The pre-stack seismic inversion, which resulted in the elastic parameters such as Density (ρ), Vp/Vs ratio, P-impedance (Zp), S-impedance (Zs), is used as input for PNN training. In another hand, the post-stack seismic data, which resulted in the following parameters such as the average frequency, absolute integrated amplitude, apparent polarity, and dominant frequency, is also used to predict the lateral distribution of pore pressure. Our data training using PNN with pre-stack seismic data provided the best correlation up to 98% compared with the post-stack seismic data. Our prediction, in general, provides the pore pressure model and in detail provides over-pressure. The advantage of PNN shows vertical resolution as good as seismic resolution and provides more helpful information for a further drilling operation.

  13. Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors (United States)

    Miyoshi, Taro; Yuasa, Kotaku; Ishigami, Toru; Rajabzadeh, Saeid; Kamio, Eiji; Ohmukai, Yoshikage; Saeki, Daisuke; Ni, Jinren; Matsuyama, Hideto


    We investigated the effect of different membrane polymeric materials on the relationship between membrane pore size and development of membrane fouling in a membrane bioreactor (MBR). Membranes with different pore sizes were prepared using three different polymeric materials, cellulose acetate butyrate (CAB), polyvinyl butyral (PVB), and polyvinylidene fluoride (PVDF), and the development of membrane fouling in each membrane was evaluated by batch filtration tests using a mixed liquor suspension obtained from a laboratory-scale MBR. The results revealed that the optimal membrane pore size to mitigate membrane fouling differed depending on membrane polymeric material. For PVDF membranes, the degree of membrane fouling decreased as membrane pore size increased. In contrast, CAB membranes with smaller pores had less fouling propensity than those with larger ones. Such difference can be attributed to the difference in major membrane foulants in each membrane; in PVDF, they were small colloids or dissolved organics in which proteins are abundant, and in CAB, microbial flocs. The results obtained in this study strongly suggested that optimum operating conditions of MBRs differ depending on the characteristics of the used membrane.

  14. Unsaturated hydraulic properties of Sphagnum moss and peat reveal trimodal pore-size distributions (United States)

    Weber, Tobias K. D.; Iden, Sascha C.; Durner, Wolfgang


    In ombrotrophic peatlands, the moisture content of the vadose zone (acrotelm) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Whether peatlands act as sinks or sources of atmospheric carbon thus relies on variably saturated flow processes. The Richards equation is the standard model for water flow in soils, but it is not clear whether it can be applied to simulate water flow in live Sphagnum moss. Transient laboratory evaporation experiments were conducted to observe evaporative water fluxes in the acrotelm, containing living Sphagnum moss, and a deeper layer containing decomposed moss peat. The experimental data were evaluated by inverse modeling using the Richards equation as process model for variably-saturated flow. It was tested whether water fluxes and time series of measured pressure heads during evaporation could be simulated. The results showed that the measurements could be matched very well providing the hydraulic properties are represented by a suitable model. For this, a trimodal parametrization of the underlying pore-size distribution was necessary which reflects three distinct pore systems of the Sphagnum constituted by inter-, intra-, and inner-plant water. While the traditional van Genuchten-Mualem model led to great discrepancies, the physically more comprehensive Peters-Durner-Iden model which accounts for capillary and noncapillary flow, led to a more consistent description of the observations. We conclude that the Richards equation is a valid process description for variably saturated moisture fluxes over a wide pressure range in peatlands supporting the conceptualization of the live moss as part of the vadose zone.

  15. Mesoporous ethanesilica materials with bimodal and trimodal pore-size distributions synthesised in the presence of cobalt ions

    Directory of Open Access Journals (Sweden)

    Alufelwi M. Tshavhungwe


    Full Text Available Mesoporous organosilica materials containing ethane groups in their framework were formed with two and three pore sizes (i.e. bimodal and trimodal pores when synthesised by the sol-gel method in the presence of cobalt ions. The compounds 1,2-bistrimethoxysilylethane and tetraethylorthosilicate were used as silicon sources and the reactions were done in the presence of a surfactant, which served as a template. Diffuse reflectance infrared Fourier transform spectroscopy revealed that organic functional groups were incorporated into the ethanesilica. Powder X-ray diffraction and nitrogen adsorption data indicated that the mesophase and textural properties (surface area, pore volume, pore diameter of the materials were dependent on the ageing temperature, the amount/ratio of silica precursors and cobalt ion incorporation. Secondary mesopores were drastically reduced by changing the ratio of silicon precursors.

  16. Influence of pore and particle size on the frontal uptake of proteins. Implications for preparative anion-exchange chromatography. (United States)

    Kopaciewicz, W; Fulton, S; Lee, S Y


    Several silica-based anion-exchange packings were synthesized with nominal pore sizes of 250, 500 and 1000 A in 10-, 20- and 50-micron particles. The static ("equilibrium") adsorption capacities for bovene serum albumin (mol. wt. 69,000), alpha-lactalbumin (17,500) and ferritin (440,000) were first measured using bulk material. The media were then packed into columns for frontal uptake experiments to measure adsorption from a flowing mobile phase. In general, frontal uptake was inversely related to both flow-rate and particle size. However, the magnitude of these relationships was strongly dependent on the pore to protein diameter ratio. More specifically, the uptake of bovine serum albumin was significantly more sensitive to linear velocity and particle size than alpha-lactalbumin. A mathematical model of the chromatographic process was used to calculate radial adsorption profiles across the chromatographic particle during frontal uptake. It was shown that restricted intraparticle diffusion due to insufficient pore size causes incomplete utilization of internal surface area. Under such conditions, protein is only bound within a finite shell on the outermost side of the particle; therefore, the effective loadability of the packing is greatly reduced. These data suggest that a pore size of at least 500 A will be required for the preparative chromatography of proteins with a molecular weight higher than ca. 100,000. This observation is especially evident when using particle sizes greater than 10 micron.

  17. Pore Network Modeling and Synchrotron Imaging of Liquid Water in the Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cells (United States)

    Hinebaugh, James Thomas

    Polymer electrolyte membrane (PEM) fuel cells operate at levels of high humidity, leading to condensation throughout the cell components. The porous gas diffusion layer (GDL) must not become over-saturated with liquid water, due to its responsibility in providing diffusion pathways to and from the embedded catalyst sites. Due to the opaque and microscale nature of the GDL, a current challenge of the fuel cell industry is to identify the characteristics that make the GDL more or less robust against flooding. Modeling the system as a pore network is an attractive investigative strategy; however, for flooding simulations to provide meaningful material comparisons, accurate GDL topology and condensation distributions must be provided. The focus of this research is to provide the foundational tools with which to capture both of these requirements. The method of pore network modeling on topologically representative pore networks is demonstrated to describe flooding phenomena within GDL materials. A stochastic modeling algorithm is then developed to create pore spaces with the relevant features of GDL materials. Then, synchrotron based X-ray visualization experiments are developed and conducted to provide insight into condensation conditions. It was found that through-plane porosity distributions have significant effects on the GDL saturation levels. Some GDL manufacturing processes result in high porosity regions which are predicted to become heavily saturated with water if they are positioned between the condensation sites and the exhaust channels. Additionally, it was found that fiber diameter and the volume fraction of binding material applied to the GDL have significant impacts on the GDL heterogeneity and pore size distribution. Representative stochastic models must accurately describe these three material characteristics. In situ, dynamic liquid water behavior was visualized at the Canadian Light source, Inc. synchrotron using imaging and image processing

  18. Influences of composition of starting powders and sintering temperature on the pore size distribution of porous corundum-mullite ceramics

    Directory of Open Access Journals (Sweden)

    Shujing Li


    Full Text Available Porous corundum-mullite ceramics were prepared by an in-situ decomposition pore-forming technique. Starting powders were mixtures of milled Al(OH3 and microsilica and were formed into oblong samples with a length of 100mm and a square cross-section with edge size of 20mm. The samples were heated at 1300°C, 1400°C, 1500°C or 1600°C for 3h in air atmosphere, respectively. Apparent porosity was detected by Archimedes’ Principle with water as a medium. Pore size distribution and the volume percentage of micropores were measured by mercury intrusion porosimetry. The results show that the pore morphology parameters in the samples depend on four factors: particle size distribution of starting powders, decomposition of Al(OH3, the expansion caused by mullite and sintering. The optimum mode which has a higher apparent porosity up to 42.3%, well-distributed pores and more microsize pores up to 16.3% is sample No.3 and the most apposite sintering temperature of this sample is 1500°C.

  19. Pore size is a critical parameter for obtaining sustained protein release from electrochemically synthesized mesoporous silicon microparticles

    Directory of Open Access Journals (Sweden)

    Ester L. Pastor


    Full Text Available Mesoporous silicon has become a material of high interest for drug delivery due to its outstanding internal surface area and inherent biodegradability. We have previously reported the preparation of mesoporous silicon microparticles (MS-MPs synthesized by an advantageous electrochemical method, and showed that due to their inner structure they can adsorb proteins in amounts exceeding the mass of the carrier itself. Protein release from these MS-MPs showed low burst effect and fast delivery kinetics with complete release in a few hours. In this work, we explored if tailoring the size of the inner pores of the particles would retard the protein release process. To address this hypothesis, three new MS-MPs prototypes were prepared by electrochemical synthesis, and the resulting carriers were characterized for morphology, particle size, and pore structure. All MS-MP prototypes had 90 µm mean particle size, but depending on the current density applied for synthesis, pore size changed between 5 and 13 nm. The model protein α-chymotrypsinogen was loaded into MS-MPs by adsorption and solvent evaporation. In the subsequent release experiments, no burst release of the protein was detected for any prototype. However, prototypes with larger pores (>10 nm reached 100% release in 24–48 h, whereas prototypes with small mesopores (<6 nm still retained most of their cargo after 96 h. MS-MPs with ∼6 nm pores were loaded with the osteogenic factor BMP7, and sustained release of this protein for up to two weeks was achieved. In conclusion, our results confirm that tailoring pore size can modify protein release from MS-MPs, and that prototypes with potential therapeutic utility for regional delivery of osteogenic factors can be prepared by convenient techniques.

  20. Size reduction of complex networks preserving modularity

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.


    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  1. Inertial forces affect fluid front displacement dynamics in a pore-throat network model. (United States)

    Moebius, Franziska; Or, Dani


    The seemingly regular and continuous motion of fluid displacement fronts in porous media at the macroscopic scale is propelled by numerous (largely invisible) pore-scale abrupt interfacial jumps and pressure bursts. Fluid fronts in porous media are characterized by sharp phase discontinuities and by rapid pore-scale dynamics that underlie their motion; both attributes challenge standard continuum theories of these flow processes. Moreover, details of pore-scale dynamics affect front morphology and subsequent phase entrapment behind a front and thereby shape key macroscopic transport properties of the unsaturated zone. The study presents a pore-throat network model that focuses on quantifying interfacial dynamics and interactions along fluid displacement fronts. The porous medium is represented by a lattice of connected pore throats capable of detaining menisci and giving rise to fluid-fluid interfacial jumps (the study focuses on flow rate controlled drainage). For each meniscus along the displacement front we formulate a local inertial, capillary, viscous, and hydrostatic force balance that is then solved simultaneously for the entire front. The model enables systematic evaluation of the role of inertia and boundary conditions. Results show that while displacement patterns are affected by inertial forces mainly by invasion of throats with higher capillary resistance, phase entrapment (residual saturation) is largely unaffected by inertia, limiting inertial effects on hydrological properties behind a front. Interfacial jump velocities are often an order of magnitude larger than mean front velocity, are strongly dependent on geometrical throat dimensions, and become less predictable (more scattered) when inertia is considered. Model simulations of the distributions of capillary pressure fluctuations and waiting times between invasion events follow an exponential distribution and are in good agreement with experimental results. The modeling approach provides insights

  2. Pore-size dependent effects on structure and vibrations of 1-ethyl-3-methylimidazolium tetrafluoroborate in nanoporous carbon (United States)

    Thürmer, Stephan; Kobayashi, Yoshikazu; Ohba, Tomonori; Kanoh, Hirofumi


    We report XRD and IR measurements of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4) adsorbed in activated carbons, molecular sieving carbon, and single wall carbon nanohorn, where we specifically chose a wide range of pore sizes from 0.5 nm to 2.5 nm. Electron radial distribution function analysis reveals denser packing upon adsorption in two steps, for pore widths larger and comparable to the ion size. Average ion-distance was decreased by 0.05 nm in the latter case. With support of DFT calculations we identify a suppression of specific vibrational modes, which are interpreted as constrainment by the pore walls. Possible consequences for supercapacitor application are discussed.

  3. Determination of pore size distributions in capillary-channeled polymer fiber stationary phases by inverse size-exclusion chromatography and implications for fast protein separations. (United States)

    Wang, Zhengxin; Marcus, R Kenneth


    Capillary-channeled polymer (C-CP) fibers have been utilized as liquid chromatography stationary phases, primarily for biomacromolecule separations on the analytical and preparative scales. The collinear packing of the eight-channeled C-CP fibers provides for very efficient flow, allowing operation at high linear velocity (u>100mm s(-1)) and low backpressure (chromatography (iSEC) has been employed to determine the pore size distribution (PSD) within C-CP fibers. A diversity of test species (from metal ions to large proteins) was used as probes under non-retaining conditions to obtain a response curve reflecting the apparent partition coefficient (Kd) versus hydrodynamic radii (rm). A mean pore radius (rp) of 4.2nm with standard deviation (sp) of ±1.1nm was calculated by fitting the Kd versus rm data to model equations with a Gaussian pore size distribution, and a pore radius of 4.0±0.1nm was calculated based on a log-normal distribution. The derived mean pore radius is much smaller than traditional support materials, with the standard deviation showing a relatively uniform pore distribution. van Deemter plots were analyzed to provide practical confirmation of the structural implications. Large molecules (e.g., proteins) that are fully excluded from pores have no significant C-terms in the van Deemter plots whereas small molecules that can access the pore volumes display appreciable C-terms, as expected. Fitting of retention data to the Knox equation suggests that the columns operate with a characteristic particle diameter (dp) of ∼53μm. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Critical assessment of the pore size distribution in the rim region of high burnup UO{sub 2} fuels

    Energy Technology Data Exchange (ETDEWEB)

    Cappia, F. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Department of Nuclear Engineering, Faculty of Mechanical Engineering, Technische Universität München, D-85748 Garching bei München (Germany); Pizzocri, D. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Nuclear Engineering Division, Energy Department, Politecnico di Milano, 20156 Milano (Italy); Schubert, A.; Van Uffelen, P.; Paperini, G.; Pellottiero, D. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Macián-Juan, R. [Department of Nuclear Engineering, Faculty of Mechanical Engineering, Technische Universität München, D-85748 Garching bei München (Germany); Rondinella, V.V., E-mail: [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)


    A new methodology is introduced to analyse porosity data in the high burnup structure. Image analysis is coupled with the adaptive kernel density estimator to obtain a detailed characterisation of the pore size distribution, without a-priori assumption on the functional form of the distribution. Subsequently, stereological analysis is carried out. The method shows advantages compared to the classical approach based on the histogram in terms of detail in the description and accuracy within the experimental limits. Results are compared to the approximation of a log-normal distribution. In the investigated local burnup range (80–200 GWd/tHM), the agreement of the two approaches is satisfactory. From the obtained total pore density and mean pore diameter as a function of local burnup, pore coarsening is observed starting from ≈100 GWd/tHM, in agreement with a previous investigation. - Highlights: • A new methodology to analyse porosity is introduced. • The method shows advantages compared to the histogram. • Pore density and mean diameter data vs. burnup are presented. • Pore coarsening is observed starting from ≈100 GWd/tHM.

  5. Pore-Scale Investigation of Micron-Size Polyacrylamide Elastic Microspheres (MPEMs) Transport and Retention in Saturated Porous Media

    KAUST Repository

    Yao, Chuanjin


    Knowledge of micrometer-size polyacrylamide elastic microsphere (MPEM) transport and retention mechanisms in porous media is essential for the application of MPEMs as a smart sweep improvement and profile modification agent in improving oil recovery. A transparent micromodel packed with translucent quartz sand was constructed and used to investigate the pore-scale transport, surface deposition-release, and plugging deposition-remigration mechanisms of MPEMs in porous media. The results indicate that the combination of colloidal and hydrodynamic forces controls the deposition and release of MPEMs on pore-surfaces; the reduction of fluid salinity and the increase of Darcy velocity are beneficial to the MPEM release from pore-surfaces; the hydrodynamic forces also influence the remigration of MPEMs in pore-throats. MPEMs can plug pore-throats through the mechanisms of capture-plugging, superposition-plugging, and bridge-plugging, which produces resistance to water flow; the interception with MPEM particulate filters occurring in the interior of porous media can enhance the plugging effect of MPEMs; while the interception with MPEM particulate filters occurring at the surface of low-permeability layer can prevent the low-permeability layer from being damaged by MPEMs. MPEMs can remigrate in pore-throats depending on their elasticity through four steps of capture-plugging, elastic deformation, steady migration, and deformation recovery. © 2014 American Chemical Society.

  6. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. (United States)

    Taniguchi, Naoya; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Sasaki, Kiyoyuki; Otsuki, Bungo; Nakamura, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi


    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone-implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2weeks than the other implants. After 4weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Determination of filter pore size for use in HB line phase II production of plutonium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shehee, T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Crowder, M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rudisill, T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    H-Canyon and HB-Line are tasked with the production of plutonium oxide (PuO2) from a feed of plutonium (Pu) metal. The PuO2 will provide feed material for the Mixed Oxide (MOX) Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, plans are to transfer the solution to HB-Line for purification by anion exchange. Anion exchange will be followed by plutonium(IV) oxalate precipitation, filtration, and calcination to form PuO2. The filtrate solutions, remaining after precipitation, contain low levels of Pu ions, oxalate ions, and may include solids. These solutions are transferred to H-Canyon for disposition. To mitigate the criticality concern of Pu solids in a Canyon tank, past processes have used oxalate destruction or have pre-filled the Canyon tank with a neutron poison. The installation of a filter on the process lines from the HB-Line filtrate tanks to H-Canyon Tank 9.6 is proposed to remove plutonium oxalate solids. This report describes SRNL’s efforts to determine the appropriate pore size for the filters needed to perform this function. Information provided in this report aids in developing the control strategies for solids in the process.

  8. Synthesis of silica aerogel monoliths with controlled specific surface areas and pore sizes (United States)

    Gao, Bingying; Lu, Shaoxiang; Kalulu, Mulenga; Oderinde, Olayinka; Ren, Lili


    To replace traditional preparation methods of silica aerogels, a small-molecule 1,2-epoxypropane (PO) has been introduced into the preparation process instead of using ammonia as the cross-linking agent, thus generating a lightweight, high porosity, and large surface area silica aerogel monolithic. We put forward a simple solution route for the chemical synthesis of silica aerogels, which was characterized by scanning electron microscopy (SEM), TEM, XRD, FTIR, thermogravimetric analysis (TGA) and the Brunauer-Emmett-Teller (BET) method In this paper, the effect of the amount of PO on the microstructure of silica aerogels is discussed. The BET surface areas and pore sizes of the resulting silica aerogels can be freely adjusted by changing the amount of PO, which will be helpful in promoting the development of silica aerogels to fabricate other porous materials with similar requirements. We also adopted a new organic solvent sublimation drying (OSSD) method to replace traditional expensive and dangerous drying methods such as critical point drying and freeze drying. This simple approach is easy to operate and has good repeatability, which will further facilitate actual applications of silica aerogels.

  9. Beer Clarification by Novel Ceramic Hollow-Fiber Membranes: Effect of Pore Size on Product Quality. (United States)

    Cimini, Alessio; Moresi, Mauro


    In this work, the crossflow microfiltration performance of rough beer samples was assessed using ceramic hollow-fiber (HF) membrane modules with a nominal pore size ranging from 0.2 to 1.4 μm. Under constant operating conditions (that is, transmembrane pressure difference, TMP = 2.35 bar; feed superficial velocity, vS = 2.5 m/s; temperature, T = 10 °C), quite small steady-state permeation fluxes (J* ) of 32 or 37 L/m2 /h were achieved using the 0.2- or 0.5-μm symmetric membrane modules. Both permeates exhibited turbidity beer quality parameters. Moreover, it exhibited J* values of the same order of magnitude of those claimed for the polyethersulfone HF membrane modules currently commercialized. The 1.4-μm asymmetric membrane module yielded quite a high steady-state permeation flux (196 ± 38 L/m2 /h), and a minimum decline in permeate quality parameters, except for the high levels of turbidity at room temperature and chill haze. In the circumstances, such a membrane module might be regarded as a real valid alternative to conventional powder filters on condition that the resulting permeate were submitted to a final finishing step using 0.45- or 0.65-μm microbially rated membrane cartridges prior to aseptic bottling. A novel combined beer clarification process was thus outlined. © 2016 Institute of Food Technologists®.

  10. Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution (United States)

    Aouaini, F.; Knani, S.; Ben Yahia, M.; Ben Lamine, A.


    Water sorption isotherms of foodstuffs are very important in different areas of food science engineering such as for design, modeling and optimization of many processes. The equilibrium moisture content is an important parameter in models used to predict changes in the moisture content of a product during storage. A formulation of multilayer model with two energy levels was based on statistical physics and theoretical considerations. Thanks to the grand canonical ensemble in statistical physics. Some physicochemical parameters related to the adsorption process were introduced in the analytical model expression. The data tabulated in literature of water adsorption at different temperatures on: chickpea seeds, lentil seeds, potato and on green peppers were described applying the most popular models applied in food science. We also extend the study to the newest proposed model. It is concluded that among studied models the proposed model seems to be the best for description of data in the whole range of relative humidity. By using our model, we were able to determine the thermodynamic functions. The measurement of desorption isotherms, in particular a gas over a solid porous, allows access to the distribution of pore size PSD.

  11. Pore size dynamics in interpenetrated metal organic frameworks for selective sensing of aromatic compounds. (United States)

    Myers, Matthew; Podolska, Anna; Heath, Charles; Baker, Murray V; Pejcic, Bobby


    The two-fold interpenetrated metal-organic framework, [Zn2(bdc)2(dpNDI)]n (bdc=1,4-benzenedicarboxylate, dpNDI=N'N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide) can undergo structural re-arrangement upon adsorption of chemical species changing its pore structure. For a competitive binding process with multiple analytes of different sizes and geometries, the interpenetrated framework will adopt a conformation to maximize the overall binding interactions. In this study, we show for binary mixtures that there is a high selectivity for the larger methylated aromatic compounds, toluene and p-xylene, over the small non-methylated benzene. The dpNDI moiety within [Zn2(bdc)2(dpNDI)]n forms an exciplex with these aromatic compounds. The emission wavelength is dependent on the strength of the host-guest CT interaction allowing these compounds to be distinguished. We show that the sorption selectivity characteristics can have a significant impact on the fluorescence sensor response of [Zn2(bdc)2(dpNDI)]n towards environmentally important hydrocarbons based contaminants (i.e., BTEX, PAH). Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  12. Size Dependent Pore Formation in Germanium Nanowires Undergoing Reversible Delithiation Observed by In Situ TEM

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaotang; He, Yang; Mao, Scott X.; Wang, Chong-min; Korgel, Brian A.


    Germanium (Ge) nanowires coated with an amorphous silicon (Si) shell undergoing lithiation and delithiation were studied using in situ transmission electron microscopy (TEM). Delithiation creates pores in nanowires with diameters larger than ~25 nm, but not in smaller diameter nanowires. The formation of pores in Ge nanowires undergoing delithiation has been observed before in in situ TEM experiments, but there has been no indication that a critical diameter exists below which pores do not form. Pore formation occurs as a result of fast lithium diffusion compared to vacancy migration. We propose that a short diffusion path for vacancies to the nanowire surface plays a role in limiting pore formation even when lithium diffusion is fast.

  13. Water transport in the gas diffusion layer of a polymer electrolyte fuel cell : Dynamic Pore-Network Modeling

    NARCIS (Netherlands)

    Qin, C.


    The pore-scale modeling is a powerful tool for increasing our understanding of water transport in the fibrous gas diffusion layer (GDL) of a polymer electrolyte fuel cell (PEFC). In this work, a new dynamic pore-network model for air-water flow in the GDL is developed. It incorporates water vapor

  14. Tailoring Pore Size of Nitrogen-Doped Hollow Carbon Nanospheres for Confi ning Sulfur in Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weidong [General Motors Global Research and Development Center, Warren, MI (United States); Wang, Chong M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Quiglin [General Motors Global Research and Development Center, Warren, MI (United States); Abruna, Hector D. [Cornell Univ., Ithaca, NY (United States); He, Yang [Univ. of Pittsburgh, PA (United States); Wang, Jiangwei [Univ. of Pittsburgh, PA (United States); Mao, Scott X. [Univ. of Pittsburgh, PA (United States); Xiao, Xingcheng [General Motors Global Research and Development Center, Warren, MI (United States)


    Three types of nitrogen-doped hollow carbon spheres with different pore sized porous shells are prepared to investigate the performance of sulfur confinement. The reason that why no sulfur is observed in previous research is determined and it is successfully demonstrated that the sulfur/polysulfide will overflow the porous carbon during the lithiation process.

  15. Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption – Importance of mesopores

    NARCIS (Netherlands)

    Suresh Kumar, Prashanth; Prot, Thomas; Korving, Leon; Keesman, Karel J.; Dugulan, Iulian; Loosdrecht, van Mark C.M.; Witkamp, Geert Jan


    Adsorption is often suggested for to reach very low phosphate levels in municipal wastewater effluent and even to recover phosphate. Adsorbent performance is usually associated with surface area but the exact role of the pore size distribution (PSD) is unclear. Here, we show the effect of the PSD

  16. Comparison of Polytetrafluoroethylene Flat-Sheet Membranes with Different Pore Sizes in Application to Submerged Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Manabu Motoori


    Full Text Available This study focused on phase separation of activated sludge mixed liquor by flat-sheet membranes of polytetrafluoroethylene (PTFE. A 20 liter working volume lab-scale MBR incorporating immersed PTFE flat-sheet membrane modules with different pore sizes (0.3, 0.5 and 1.0 μm was operated for 19 days treating a synthetic wastewater. The experiment was interrupted twice at days 5 and 13 when the modules were removed and cleaned physically and chemically in sequence. The pure water permeate flux of each membrane module was measured before and after each cleaning step to calculate membrane resistances. Results showed that fouling of membrane modules with 0.3 μm pore size was more rapid than other membrane modules with different pore sizes (0.5 and 1.0 μm. On the other hand, it was not clear whether fouling of the 0.5 μm membrane module was more severe than that of the 1.0 μm membrane module. This was partly because of the membrane condition after chemical cleaning, which seemed to determine the fouling of those modules over the next period. When irreversible resistance (Ri i.e., differences in membrane resistance before use and after chemical cleaning was high, the transmembrane pressure increased quickly during the next period irrespective of membrane pore size.

  17. Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle. (United States)

    Hendriks, Frank C; Meirer, Florian; Kubarev, Alexey V; Ristanović, Zoran; Roeffaers, Maarten B J; Vogt, Eelco T C; Bruijnincx, Pieter C A; Weckhuysen, Bert M


    We used single-molecule fluorescence microscopy to study self-diffusion of a feedstock-like probe molecule with nanometer accuracy in the macropores of a micrometer-sized, real-life fluid catalytic cracking (FCC) particle. Movies of single fluorescent molecules allowed their movement through the pore network to be reconstructed. The observed tracks were classified into three different states by machine learning and all found to be distributed homogeneously over the particle. Most probe molecules (88%) were immobile, with the molecule most likely being physisorbed or trapped; the remainder was either mobile (8%), with the molecule moving inside the macropores, or showed hybrid behavior (4%). Mobile tracks had an average diffusion coefficient of D = 8 × 10-14 ± 1 × 10-13 m2 s-1, with the standard deviation thought to be related to the large range of pore sizes found in FCC particles. The developed methodology can be used to evaluate, quantify and map heterogeneities in diffusional properties within complex hierarchically porous materials.

  18. Influence of Pore Size on the Optical and Electrical Properties of Screen Printed TiO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Dinfa Luka Domtau


    Full Text Available Influence of pore size on the optical and electrical properties of TiO2 thin films was studied. TiO2 thin films with different weight percentages (wt% of carbon black were deposited by screen printing method on fluorine doped tin oxide (FTO coated on glass substrate. Carbon black decomposed on annealing and artificial pores were created in the films. All the films were 3.2 µm thick as measured by a surface profiler. UV-VIS-NIR spectrophotometer was used to study transmittance and reflectance spectra of the films in the photon wavelength of 300–900 nm while absorbance was studied in the range of 350–900 nm. Band gaps and refractive index of the films were studied using the spectra. Reflectance, absorbance, and refractive index were found to increase with concentrations of carbon black. There was no significant variation in band gaps of films with change in carbon black concentrations. Transmittance reduced as the concentration of carbon black in TiO2 increased (i.e., increase in pore size. Currents and voltages (I-V characteristics of the films were measured by a 4-point probe. Resistivity (ρ and conductivity (σ of the films were computed from the I-V values. It was observed that resistivity increased with carbon black concentrations while conductivity decreased as the pore size of the films increased.

  19. Droplet impact near a millimetre-size hole: closed pit versus open-ended pore

    CERN Document Server

    de Jong, Rianne; van der Meer, Devaraj


    We investigate drop impact dynamics near both closed pits and open- ended pores experimentally. The resulting impact phenomena differ greatly for a pit or a pore. For the first, we observe three phenomena: a splash, a jet and an air bubble, whose appearance depends on the distance between impact location and pit. Furthermore, we found that splash velocities can reach up to seven times the impact velocity. Drop impact near a pore, however, results solely in splashing. Surprisingly, two distinct and disconnected splashing regimes occur, with a region of plain spreading in-between. For pores, splashes are less pronounced than in the pit case. We state that, for the pit case, the presence of air inside the pit plays a crucial role: it promotes splashing and allows for air bubbles to appear.

  20. Size-exclusion partitioning of neutral solutes in crosslinked polymer networks: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Pérez, Manuel; Maroto-Centeno, José Alberto [Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700 Linares, Jaén (Spain); Adroher-Benítez, Irene [Grupo de Física de Fluidos y Biocoloides, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)


    In this work, the size-exclusion partitioning of neutral solutes in crosslinked polymer networks has been studied through Monte Carlo simulations. Two models that provide user-friendly expressions to predict the partition coefficient have been tested over a wide range of volume fractions: Ogston's model (especially devised for fibrous media) and the pore model. The effects of crosslinking and bond stiffness have also been analyzed. Our results suggest that the fiber model can acceptably account for size-exclusion effects in crosslinked gels. Its predictions are good for large solutes if the fiber diameter is assumed to be the effective monomer diameter. For solutes sizes comparable to the monomer dimensions, a smaller fiber diameter must be used. Regarding the pore model, the partition coefficient is poorly predicted when the pore diameter is estimated as the distance between adjacent crosslinker molecules. On the other hand, our results prove that the pore sizes obtained from the pore model by fitting partitioning data of swollen gels are overestimated.

  1. An Innovative Approach for Drainage Network Sizing

    Directory of Open Access Journals (Sweden)

    Luca Cozzolino


    Full Text Available In this paper, a procedure for the optimal design of rural drainage networks is presented and demonstrated. The suggested approach, exploring the potentialities offered by heuristic methods for the solution of complex optimization problems, is based on the use of a Genetic Algorithm (GA, coupled with a steady and uniform flow hydraulic module. In particular, this work has focused: on one hand, on the problems of a technical nature posed by the correct sizing of a drainage network; on the other hand, on the possibility to use a simple but nevertheless efficient GA to reach the minimal cost solution very quickly. The suitability of the approach is tested with reference to small and large scale drainage networks, already considered in the literature.

  2. Critical size of ego communication networks (United States)

    Wang, Qing; Gao, Jian; Zhou, Tao; Hu, Zheng; Tian, Hui


    With the help of information and communication technologies, studies on the overall social networks have been extensively reported recently. However, investigations on the directed Ego Communication Networks (ECNs) remain insufficient, where an ECN stands for a sub network composed of a centralized individual and his/her direct contacts. In this paper, the directed ECNs are built on the Call Detail Records (CDRs), which cover more than 7 million people of a provincial capital city in China for half a year. Results show that there is a critical size for ECN at about 150, above which the average emotional closeness between ego and alters drops, the balanced relationship between ego and network collapses, and the proportion of strong ties decreases. This paper not only demonstrate the significance of ECN size in affecting its properties, but also shows accordance with the “Dunbar's Number”. These results can be viewed as a cross-culture supportive evidence to the well-known Social Brain Hypothesis (SBH).

  3. Cyclic deformation-induced solute transport in tissue scaffolds with computer designed, interconnected, pore networks: experiments and simulations. (United States)

    Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L


    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.

  4. Estimating the surface relaxivity as a function of pore size from NMR T2 distributions and micro-tomographic images (United States)

    Benavides, Francisco; Leiderman, Ricardo; Souza, Andre; Carneiro, Giovanna; Bagueira, Rodrigo


    In the present work, we formulate and solve an inverse problem to recover the surface relaxivity as a function of pore size. The input data for our technique are the T2 distribution measurement and the micro-tomographic image of the rock sample under investigation. We simulate the NMR relaxation signal for a given surface relaxivity function using the random walk method and rank different surface relaxivity functions according to the correlation of the resulting simulated T2 distributions with the measured T2 distribution. The optimization is performed using genetic algorithms and determines the surface relaxivity function whose corresponding simulated T2 distribution best matches the measured T2 distribution. In the proposed methodology, pore size is associated with a number of collisions in the random walk simulations. We illustrate the application of the proposed method by performing inversions from synthetic and laboratory input data and compare the obtained results with those obtained using the uniform relaxivity assumption.

  5. Pore size distribution of soil near saturation as affected by soil type, land use, and soil amendments (United States)

    Mamedov, A. I.; Wagner, L. E.; Levy, G. J.


    Storage and flow of water in soil voids, which are related to the size and geometry of the voids and flow rate are usually controlled by the void of the smallest size. Another reason for the complexity of water flow in soils is the intricate nature and change of the soil pores due to the modification of soil structure under different agricultural management and climatic conditions. Shrinking and swelling stresses enhance breakdown of aggregates and to subsequent collapse of pores, thus adversely affecting the movement of water and solutes in the soil. Our objective was to study the role of soil type, nature of cultivation, waste and soil stabilizers application, and soil condition on disturbed soil pore-size distribution, drainable porosity and water holding capacity at near saturation (infiltration porosity) using the high energy moisture characteristic method. In this method, the wetting process of the aggregates is accurately controlled, and the energy of hydration and entrapped air are the main forces responsible for aggregate breakdown. We studied a large number (> 300) of soil samples from different climatic regions varying (i) in their inherent properties (clay mineralogy, dispersion potential, texture, organic matter, Fe and Al oxides content), and; (ii) the conditions prevailing in the soil (water quality, salinity, sodicity, redox potential, type of tillage); and finally that were subjected to the addition of different soil amendments (polymers, gypsum, manure, sludge). The results showed that structural stability and pore size distribution strongly depended on soil type, conditions prevailing in the soil and the type of amendment used. Detailed analyses of the results provided valuable information on inter- and intra- aggregate porosities that may have vital bearing on the understanding of (i) solution transport processes in different soil types under different treatments or with different solute concentration, and (ii) down-profile transport of soil

  6. ZnO Coatings with Controlled Pore Size, Crystallinity and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Roman SCHMACK


    Full Text Available Zinc oxide is a wide bandgap semiconductor with unique optical, electrical and catalytic properties. Many of its practical applications rely on the materials pore structure, crystallinity and electrical conductivity. We report a synthesis method for ZnO films with ordered mesopore structure and tuneable crystallinity and electrical conductivity. The synthesis relies on dip-coating of solutions containing micelles of an amphiphilic block copolymer and complexes of Zn2+ ions with aliphatic ligands. A subsequent calcination at 400°C removes the template and induces crystallization of the pore walls. The pore structure is controlled by the template polymer, whereas the aliphatic ligands control the crystallinity of the pore walls. Complexes with a higher thermal stability result in ZnO films with a higher content of residual carbon, smaller ZnO crystals and therefore lower electrical conductivity. The paper discusses the ability of different types of ligands to assist in the synthesis of mesoporous ZnO and relates the structure and thermal stability of the precursor complexes to the crystallinity and electrical conductivity of the zinc oxide.DOI:

  7. Measurement of the pore size distribution of limestone aggregates in concrete pavement cores : phase I. (United States)


    Freeze-thaw damage is one of the common forms of distress for concrete pavements in Kansas. D-Cracking is a form of : freeze-thaw damage caused by aggregates with poor freeze-thaw durability. It is believed that pores in the aggregates below : 10 m...

  8. Pore network modeling of drainage process in patterned porous media: a quasi-static study

    KAUST Repository

    Zhang, Tao


    This work represents a preliminary investigation on the role of wettability conditions on the flow of a two-phase system in porous media. Since such effects have been lumped implicitly in relative permeability-saturation and capillary pressure-saturation relationships, it is quite challenging to isolate its effects explicitly in real porous media applications. However, within the framework of pore network models, it is easy to highlight the effects of wettability conditions on the transport of two-phase systems. We employ quasi-static investigation in which the system undergo slow movement based on slight increment of the imposed pressure. Several numerical experiments of the drainage process are conducted to displace a wetting fluid with a non-wetting one. In all these experiments the network is assigned different scenarios of various wettability patterns. The aim is to show that the drainage process is very much affected by the imposed pattern of wettability. The wettability conditions are imposed by assigning the value of contact angle to each pore throat according to predefined patterns.

  9. Engineering enhanced pore sizes using FhuA Δ1-160 from E. coli outer membrane as template. (United States)

    Liu, Zhanzhi; Ghai, Ishan; Winterhalter, Mathias; Schwaneberg, Ulrich


    Biological membranes are the perfect example of a molecular filter using membrane channels to control the permeability of small water-soluble molecules. To allow filtering of larger hydrophilic molecules we started from the known mutant channel FhuA Δ1-160 in which the ´´cork´´ domain closing the channel had been removed. Here we further expand the pore diameter by copying the amino acid sequence of two ß-strands in a step-wise manner increasing the total number of ß-strands from 22 to 34. The pore size of the respective expanded channel protein was characterized by single-channel conductance. Insertion of additional ß-strands increased the pore conductance but also induced more ion current flickering on the millisecond scale. Further, polymer exclusion measurements were performed by analyzing single-channel conductance in the presence of differently sized polyethylene glycol of known polymer random coil radii. The conclusion from channel conductance of small channel penetrating polymers versus larger excluded ones suggested an increase in pore radii from 1.6 nm for FhuA Δ1-160 up to a maximum of about 2.7 nm for + 8 ß insertion. Integration of more ß-strand caused instability of the channel and exclusion of smaller sized polymer. FhuA Δ1-160 + 10 ß and FhuA Δ1-160 + 12 ß effective radius decreased to 1.4 and 1.3 nm respectively showing the limitations of this approach.

  10. Dynamic pore-scale network model (PNM) of water imbibition in porous media (United States)

    Li, J.; McDougall, S. R.; Sorbie, K. S.


    A dynamic pore-scale network model is presented which simulates 2-phase oil/water displacement during water imbibition by explicitly modelling intra-pore dynamic bulk and film flows using a simple local model. A new dynamic switching parameter, λ, is proposed within this model which is able to simulate the competition between local capillary forces and viscous forces over a very wide range of flow conditions. This quantity (λ) determines the primary pore filling mechanism during imbibition; i.e. whether the dominant force is (i) piston-like displacement under viscous forces, (ii) film swelling/collapse and snap-off due to capillary forces, or (iii) some intermediate local combination of both mechanisms. A series of 2D dynamic pore network simulations is presented which shows that the λ-model can satisfactorily reproduce and explain different filling regimes of water imbibition over a wide range of capillary numbers (Ca) and viscosity ratios (M). These imbibition regimes are more complex than those presented under drainage by (Lenormand et al. (1983)), since they are determined by a wider group of control parameters. Our simulations show that there is a coupling between viscous and capillary forces that is much less important in drainage. The effects of viscosity ratio during imbibition are apparent even under conditions of very slow flow (low Ca)-displacements that would normally be expected to be completely capillary dominated. This occurs as a result of the wetting films having a much greater relative mobility in the higher M cases (e.g. M = 10) thus leading to a higher level of film swelling/snap-off, resulting in local oil cluster bypassing and trapping, and hence a poorer oil recovery. This deeper coupled viscous mechanism is the underlying reason why the microscopic displacement efficiency is lower for higher M cases in water imbibition processes. Additional results are presented from the dynamic model on the corresponding effluent fractional flows (fw

  11. Persistent effects of subsoil compaction on pore size distribution and gas transport in a loamy soil

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Keller, T


    The ever-increasing weight of agricultural machines exacerbates the risk of subsoil compaction, a condition believed to be persistent and difficult to alleviate by soil tillage and natural loosening processes. However, experimental data on the persistency of subsoil compaction effects on soil pore...... functioning are scarce. This study evaluated and quantified persistent effects of subsoil compaction on soil pore structure and gas transport processes using intact cores taken at 0.3, 0.5, 0.7 and 0.9 m depth from a loamy soil in a compaction experiment in southern Sweden (Brahmehem Farm). The treatments...... included four repeated wheelings with ∼10 Mg wheel loads. Water retention characteristics (WRC), air permeability (ka) and gas diffusivity (Ds/Do) were measured. A dual-porosity model fitted the WRC well, and there was a reduction in the volume of macropores >30 μm in compacted compared with control soil...

  12. Novel iron(II) microporous spin-crossover coordination polymers with enhanced pore size. (United States)

    Muñoz-Lara, Francisco J; Gaspar, Ana B; Muñoz, M Carmen; Ksenofontov, Vadim; Real, José Antonio


    In this Communication, we report the synthesis and characterization of novel Hofmann-like spin-crossover porous coordination polymers of composition {Fe(L)[M(CN)(4)]}·G [L = 1,4-bis(4-pyridylethynyl)benzene and M(II) = Ni, Pd, and Pt]. The spin-crossover properties of the framework are closely related to the number and nature of the guest molecules included in the pores.

  13. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks (United States)

    Nogues, Juan P.; Fitts, Jeffrey P.; Celia, Michael A.; Peters, Catherine A.


    A reactive transport model was developed to simulate reaction of carbonates within a pore network for the high-pressure CO2-acidified conditions relevant to geological carbon sequestration. The pore network was based on a synthetic oolithic dolostone. Simulation results produced insights that can inform continuum-scale models regarding reaction-induced changes in permeability and porosity. As expected, permeability increased extensively with dissolution caused by high concentrations of carbonic acid, but neither pH nor calcite saturation state alone was a good predictor of the effects, as may sometimes be the case. Complex temporal evolutions of interstitial brine chemistry and network structure led to the counterintuitive finding that a far-from-equilibrium solution produced less permeability change than a nearer-to-equilibrium solution at the same pH. This was explained by the pH buffering that increased carbonate ion concentration and inhibited further reaction. Simulations of different flow conditions produced a nonunique set of permeability-porosity relationships. Diffusive-dominated systems caused dissolution to be localized near the inlet, leading to substantial porosity change but relatively small permeability change. For the same extent of porosity change caused from advective transport, the domain changed uniformly, leading to a large permeability change. Regarding precipitation, permeability changes happen much slower compared to dissolution-induced changes and small amounts of precipitation, even if located only near the inlet, can lead to large changes in permeability. Exponent values for a power law that relates changes in permeability and porosity ranged from 2 to 10, but a value of 6 held constant when conditions led to uniform changes throughout the domain.

  14. Effect of pore size of three-dimensionally ordered macroporous chitosan-silica matrix on solubility, drug release, and oral bioavailability of loaded-nimodipine. (United States)

    Gao, Yikun; Xie, Yuling; Sun, Hongrui; Zhao, Qinfu; Zheng, Xin; Wang, Siling; Jiang, Tongying


    To explore the effect of the pore size of three-dimensionally ordered macroporous chitosan-silica (3D-CS) matrix on the solubility, drug release, and oral bioavailability of the loaded drug. 3D-CS matrices with pore sizes of 180 nm, 470 nm, and 930 nm were prepared. Nimodipine (NMDP) was used as the drug model. The morphology, specific surface area, and chitosan mass ratio of the 3D-CS matrices were characterized before the effect of the pore size on drug crystallinity, solubility, release, and in vivo pharmacokinetics were investigated. With the pore size of 3D-CS matrix decreasing, the drug crystallinity decreased and the aqueous solubility increased. The drug release was synthetically controlled by the pore size and chitosan content of 3D-CS matrix in a pH 6.8 medium, while in a pH 1.2 medium the erosion of the 3D-CS matrix played an important role in the decreased drug release rate. The area under the curve of the drug-loaded 3D-CS matrices with pore sizes of 930 nm, 470 nm, and 180 nm was 7.46-fold, 5.85-fold, and 3.75-fold larger than that of raw NMDP respectively. Our findings suggest that the oral bioavailability decreased with a decrease in the pore size of the matrix.

  15. Effective porosity and pore-throat sizes of Conasauga Group mudrock: Application, test and evaluation of petrophysical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dorsch, J. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Katsube, T.J. [Geological Survey of Canada, Ottawa, Ontario (Canada). Mineral Resources Div.; Sanford, W.E. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Civil and Environmental Engineering; Dugan, B.E. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Civil and Mineral Engineering; Tourkow, L.M. [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth and Atmospheric Sciences


    Effective porosity (specifically referring to the interconnected pore space) was recently recognized as being essential in determining the effectiveness and extent of matrix diffusion as a transport mechanism within fractured low-permeability rock formations. The research presented in this report was performed to test the applicability of several petrophysical techniques for the determination of effective porosity of fine-grained siliciclastic rocks. In addition, the aim was to gather quantitative data on the effective porosity of Conasauga Group mudrock from the Oak Ridge Reservation (ORR). The quantitative data reported here include not only effective porosities based on diverse measurement techniques, but also data on the sizes of pore throats and their distribution, and specimen bulk and grain densities. The petrophysical techniques employed include the immersion-saturation method, mercury and helium porosimetry, and the radial diffusion-cell method.

  16. Pain tolerance predicts human social network size. (United States)

    Johnson, Katerina V-A; Dunbar, Robin I M


    Personal social network size exhibits considerable variation in the human population and is associated with both physical and mental health status. Much of this inter-individual variation in human sociality remains unexplained from a biological perspective. According to the brain opioid theory of social attachment, binding of the neuropeptide β-endorphin to μ-opioid receptors in the central nervous system (CNS) is a key neurochemical mechanism involved in social bonding, particularly amongst primates. We hypothesise that a positive association exists between activity of the μ-opioid system and the number of social relationships that an individual maintains. Given the powerful analgesic properties of β-endorphin, we tested this hypothesis using pain tolerance as an assay for activation of the endogenous μ-opioid system. We show that a simple measure of pain tolerance correlates with social network size in humans. Our results are in line with previous studies suggesting that μ-opioid receptor signalling has been elaborated beyond its basic function of pain modulation to play an important role in managing our social encounters. The neuroplasticity of the μ-opioid system is of future research interest, especially with respect to psychiatric disorders associated with symptoms of social withdrawal and anhedonia, both of which are strongly modulated by endogenous opioids.

  17. Impact of changes in grain size and pore space on the hydraulic conductivity and spectral induced polarization response of sand

    Directory of Open Access Journals (Sweden)

    K. Koch


    Full Text Available Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP response is critical for establishing relationships between the electrical and hydrological properties of surficial unconsolidated sedimentary deposits, which host the bulk of the world's readily accessible groundwater resources. Here, we present the results of laboratory SIP measurements on industrial-grade, saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel. We altered the pore space characteristics by changing (i the grain size spectra, (ii the degree of compaction, and (iii the level of sorting. We then examined how these changes affect the SIP response, the hydraulic conductivity, and the specific surface area of the considered samples. In general, the results indicate a clear connection between the SIP response and the granulometric as well as pore space characteristics. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the entire range of considered grain sizes. The results do, however, also indicate that the detailed nature of these relations depends strongly on variations in the pore space characteristics, such as, for example, the degree of compaction. This underlines the complexity of the origin of the SIP signal as well as the difficulty to relate it to a single structural factor of a studied sample, and hence raises some fundamental questions with regard to the practical use of SIP measurements as site- and/or sample-independent predictors of the hydraulic conductivity.

  18. Effect of Initial Hydraulic Conditions on Capillary Rise in a Porous Medium: Pore-Network Modeling

    KAUST Repository

    Joekar-Niasar, V.


    The dynamics of capillary rise in a porous medium have been mostly studied in initially dry systems. As initial saturation and initial hydraulic conditions in many natural and industrial porous media can be variable, it is important to investigate the influence of initial conditions on the dynamics of the process. In this study, using dynamic pore-network modeling, we simulated capillary rise in a porous medium for different initial saturations (and consequently initial capillary pressures). Furthermore, the effect of hydraulic connectivity of the wetting phase in corners on the height and velocity of the wetting front was studied. Our simulation results show that there is a trade-off between capillary forces and trapping due to snap-off, which leads to a nonlinear dependence of wetting front velocity on initial saturation at the pore scale. This analysis may provide a possible answer to the experimental observations in the literature showing a non-monotonic dependency between initial saturation and the macroscopic front velocity. © Soil Science Society of America.

  19. Engineering Homochiral Metal-Organic Frameworks by Spatially Separating 1D Chiral Metal-Peptide Ladders: Tuning the Pore Size for Enantioselective Adsorption. (United States)

    Stylianou, Kyriakos C; Gómez, Laura; Imaz, Inhar; Verdugo-Escamilla, Cristóbal; Ribas, Xavi; Maspoch, Daniel


    The reaction of the chiral dipeptide glycyl-L(S)-glutamate with Co(II) ions produces chiral ladders that can be used as rigid 1D building units. Spatial separation of these building units with linkers of different lengths allows the engineering of homochiral porous MOFs with enhanced pore sizes, pore volumes, and surface areas. This strategy enables the synthesis of a family of isoreticular MOFs, in which the pore size dictates the enantioselective adsorption of chiral molecules (in terms of their size and enantiomeric excess). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Processing and Characterization of Porous Ti2AlC with Controlled Porosity and Pore Size (United States)


    fabricate aluminum foams . Since then, this method has been utilized to fabricate open-cell aluminum foams [23– 25], shape memory alloy foams [26,27], titanium...method from the highly dispersed aqueous suspension using polyurethane sponges as a template [21]. Although the first method is simple and... foams [28] and other porous metals [29,30]. This inspired us to process porous Ti2AlC using NaCl powders as the pore former. NaCl can be easily and

  1. Transport properties and pore-network structure in variably-saturated Sphagnum peat soil

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Dissanayaka, Shiromi Himalika; Kawamoto, K.


    ) of layers in peat soil from two profiles were measured under different moisture conditions. A two-region Archie's Law (2RAL)-type model was applied successfully to the four properties; the reference point was taken at -9.8kPa of soil-water matric potential where volume shrinkage typically started to occur...... a need for specific hydraulic functions for peat soil. The 2RAL model for Dg agreed well with measured data, and performed better than existing unimodal models. To facilitate use of the 2RAL for Dg, we developed a simple predictive expression for Dg at the reference point. The pore-network tortuosity......Gas and water transport in peat soil are of increasing interest because of their potentially large environmental and climatic effects under different types of land use. In this research, the water retention curve (WRC), gas diffusion coefficient (Dg) and air and water permeabilities (ka and kw...

  2. Impact of the carbon pore size and topology on the equilibrium quantum sieving of hydrogen isotopes at zero coverage and finite pressures

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, Piotr [Applied Physics, RMIT University, GPO Box 2476V, Victoria 3001 (Australia); Gauden, Piotr A; Terzyk, Artur P; Furmaniak, Sylwester [Department of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicholas Copernicus University, Gagarin Street 7, 87-100 Torun (Poland)], E-mail:, E-mail:


    Carbonaceous slit-shaped and square-shaped pores efficiently differentiate adsorbed hydrogen isotopes at 77 and 33 K. Extensive path integral Monte Carlo simulations revealed that the square-shaped carbon pores enhanced the selectivity of deuterium over hydrogen in comparison to equivalent slit-shaped carbon pores at zero coverage as well as at finite pressures (i.e. quantum sieving of hydrogen isotopes is pore-topology-dependent). We show that this enhancement of the D{sub 2}/H{sub 2} equilibrium selectivity results from larger localization of hydrogen isotopes in square-shaped pores. The operating pressures for efficient quantum sieving of hydrogen isotopes are strongly dependent on the topology as well as on the size of the carbon pores. However, for both considered carbon pore topologies the highest D{sub 2}/H{sub 2} separation factor is observed at zero-coverage limit. Depending on carbon pore size and topology we predicted monotonic decreasing and non-monotonic shape of the D{sub 2}/H{sub 2} equilibrium selectivity at finite pressures. For both kinds of carbonaceous pores of molecular sizes we predict high compression of hydrogen isotopes at 77 and 33 K (for example, the pore density of compressed hydrogen isotopes at 77 K and 0.25 MPa in a square-shaped carbon pore of size 2.6 A exceeds 60 mmol cm{sup -3}; for comparison, the liquid density of para-H{sub 2} at 30 K and 30 MPa is 42 mmol cm{sup -3}). Finally, by direct comparison of simulation results with experimental data it is explained why 'ordinary' carbonaceous materials are not efficient quantum sieves.

  3. Impact of the carbon pore size and topology on the equilibrium quantum sieving of hydrogen isotopes at zero coverage and finite pressures. (United States)

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P; Furmaniak, Sylwester


    Carbonaceous slit-shaped and square-shaped pores efficiently differentiate adsorbed hydrogen isotopes at 77 and 33 K. Extensive path integral Monte Carlo simulations revealed that the square-shaped carbon pores enhanced the selectivity of deuterium over hydrogen in comparison to equivalent slit-shaped carbon pores at zero coverage as well as at finite pressures (i.e. quantum sieving of hydrogen isotopes is pore-topology-dependent). We show that this enhancement of the D(2)/H(2) equilibrium selectivity results from larger localization of hydrogen isotopes in square-shaped pores. The operating pressures for efficient quantum sieving of hydrogen isotopes are strongly dependent on the topology as well as on the size of the carbon pores. However, for both considered carbon pore topologies the highest D(2)/H(2) separation factor is observed at zero-coverage limit. Depending on carbon pore size and topology we predicted monotonic decreasing and non-monotonic shape of the D(2)/H(2) equilibrium selectivity at finite pressures. For both kinds of carbonaceous pores of molecular sizes we predict high compression of hydrogen isotopes at 77 and 33 K (for example, the pore density of compressed hydrogen isotopes at 77 K and 0.25 MPa in a square-shaped carbon pore of size 2.6 Å exceeds 60 mmol cm(-3); for comparison, the liquid density of para-H(2) at 30 K and 30 MPa is 42 mmol cm(-3)). Finally, by direct comparison of simulation results with experimental data it is explained why 'ordinary' carbonaceous materials are not efficient quantum sieves.

  4. Nanometer scale pores similar in size to the entrance of the ribosomal exit cavity are a common feature of large RNAs (United States)

    Rivas, Mario; Tran, Quyen; Fox, George E.


    The highly conserved peptidyl transferase center (PTC) of the ribosome contains an RNA pore that serves as the entrance to the exit tunnel. Analysis of available ribosome crystal structures has revealed the presence of multiple additional well-defined pores of comparable size in the ribosomal (rRNA) RNAs. These typically have dimensions of 1–2 nm, with a total area of ∼100 Å2 or more, and most are associated with one or more ribosomal proteins. The PTC example and the other rRNA pores result from the packing of helices. However, in the non-PTC cases the nitrogenous bases do not protrude into the pore, thereby limiting the potential for hydrogen bonding within the pore. Instead, it is the RNA backbone that largely defines the pore likely resulting in a negatively charged environment. In many but not all cases, ribosomal proteins are associated with the pores to a greater or lesser extent. With the exception of the PTC case, the large subunit pores are not found in what are thought to be the evolutionarily oldest regions of the 23S rRNA. The unusual nature of the PTC pore may reflect a history of being created by hybridization between two or more RNAs early in evolution rather than simple folding of a single RNA. An initial survey of nonribosomal RNA crystal structures revealed additional pores, thereby showing that they are likely a general feature of RNA tertiary structure. PMID:23940386

  5. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: Influence of pore size on release rate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling, E-mail:


    The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0 nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7 nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug–silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0 nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0 nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0 nm increased, the dissolution rate of CEL from FMS gradually increased. - Highlights: • Exploitation of 3D cubic mesoporous silica (16 nm) as a carrier was completed. • The release rate of CEL increased on increasing the pore size of carriers. • The crystallinity

  6. Effects of particle size and forming pressure on pore properties of Fe-Cr-Al porous metal by pressureless sintering (United States)

    Koo, Bon-Uk; Yi, Yujeong; Lee, Minjeong; Kim, Byoung-Kee


    With increased hydrogen consumption in ammonia production, refining and synthesis, fuel cells and vehicle industries, development of the material components related to hydrogen production is becoming an important factor in industry growth. Porous metals for fabrication of hydrogen are commonly known for their relative excellence in terms of large area, lightness, lower heat capacity, high toughness, and permeability. Fe-Cr-Al alloys not only have high corrosion resistance, heat resistance, and chemical stability but also ductility, excellent mechanical properties. In order to control powder size and sintering temperature effects of Fe-Cr-Al porous metal fabrication, Fe-Cr-Al powder was classified into 25-35 μm, 35-45 μm, 45-75 μm using an auto shaking sieve machine and then classified Fe-Cr-Al powders were pressed into disk shapes using a uniaxial press machine and CIP. The pelletized Fe-Cr-Al specimens were sintered at various temperatures in high vacuum. Properties such as pore size, porosity, and air permeability were evaluated using perm-porosimetry. Microstructure and phase changes were observed with SEM and XRD. Porosity and relative density were proportionated to increasing sintering temperature. With sufficient sintering at increasing temperatures, the pore size is expected to be gradually reduced. Porosity decreased with increasing sintering temperature and gradually increased necking of the powder.

  7. Series of Highly Stable Isoreticular Lanthanide Metal-Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties


    Yao, Qingxia; Bermejo Gómez, Antonio; Su, Jie; Pascanu, Vlad; Yun, Yifeng; Zheng, Haoquan; Chen, Hong; Liu, Leifeng; Abdelhamid, Hani Nasser; Martin-Matute, Belén; Zou, Xiaodong


    A series of highly porous isoreticular lanthanide-based metal organic frameworks (LnMOFs) denoted as SUMOE-7I to SUMOE-7IV (SU = Stockholm University; Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) have been synthesized using tritopic carboxylates as the organic linkers. The SUMOF-7 materials display one-dimensional pseudohexagonal channels with the pore diameter gradually enlarged from 8.4 to 23.9 angstrom, as a result of increasing sizes of the organic linkers. The structures have been solved by sing...

  8. Quantification of pore size distribution in reservoir rocks using MRI logging: A case study of South Pars Gas Field. (United States)

    Ghojogh, Jalal Neshat; Esmaili, Mohammad; Noruzi-Masir, Behrooz; Bakhshi, Puyan


    Pore size distribution (PSD) is an important factor for controlling fluid transport through porous media. The study of PSD can be applicable in areas such as hydrocarbon storage, contaminant transport, prediction of multiphase flow, and analysis of the formation damage by mud infiltration. Nitrogen adsorption, centrifugation method, mercury injection, and X-ray computed tomography are commonly used to measure the distribution of pores. A core sample is occasionally not available because of the unconsolidated nature of reservoirs, high cost of coring operation, and program limitations. Magnetic resonance imaging logging (MRIL) is a proper logging technique that allows the direct measurement of the relaxation time of protons in pore fluids and correlating T2 distribution to PSD using proper mathematical equations. It is nondestructive and fast and does not require core samples. In this paper, 8 core samples collected from the Dalan reservoir in South Pars Gas Field were studied by processing MRIL data and comparing them by PSD determined in the laboratory. By using the MRIL method, variation in PSD corresponding to the depth for the entire logged interval was determined. Moreover, a detailed mineralogical composition of the reservoir samples related to T2 distribution was obtained. A good correlation between MRIL and mercury injection data was observed. High degree of similarity was also observed between T2 distribution and PSD (R2 = 0.85 to 0.91). Based on the findings from the MRIL method, the obtained values for clay bond water varied between 1E-6 and 1E-3µm, a range that is comprehended from an extra peak on the PSD curve. The frequent pore radius was determined to be 1µm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Prediction of soil water retention properties using pore-size distribution and porosity

    National Research Council Canada - National Science Library

    Beckett, Christopher T.S; Augarde, Charles E


    .... This paper presents a method that builds on previous techniques by incorporating porosity and particles of different sizes, shapes, and separation distances to predict soil water retention properties...

  10. Rigorous GNSS network solutions of unlimited size (United States)

    Boomkamp, H.; Iag Working Group 1. 1. 1


    The session description states that rigorous estimation processes for millions of parameters are computationally impossible. A more accurate observation would be that such solutions exceed the capacity of current Analysis Centres by several orders of magnitude, as was already discussed during the IGS Workshop of 2004. We can however make processing elements that are smaller and simpler than conventional Analysis Centres, until we have a “centre” that can be replicated in arbitrary amounts, at zero cost. In practice this means that the processing element is reduced to a single, automated computer application that can run anywhere. These analysis elements are connected via the internet into a scalable grid computing scheme that can handle GNSS networks of any size. The approach is not fundamentally different from current combination solutions among a network of Analysis Centres, but refines the granularity of the network elements in order to reduce system complexity and eliminate cost. The Dancer project of IAG Working Group 1 has developed a JXTA peer-to-peer application to this purpose. Dancer splits a conventional batch least squares process into as many interacting subtasks as there are receivers. Each task can then run on a local PC of a permanent GNSS site, or anywhere else. All Dancer instances find the same global solution for satellite orbits, clocks and Earth rotation parameters via an efficient vector averaging method called square dancing. The hardware requirements for a single Dancer process do not exceed those of e.g. current mobile phone applications, so that future generations of GNSS receivers may be able to run such a task as an embedded process. This leads to the concept of “smart receivers” that no longer require any post-processing infrastructure. Instead they need an internet connection to join thousands of other smart receivers in a global network solution. The key algorithms, project status and further deployment of the Dancer system

  11. A combinatorial variation in surface chemistry and pore size of three-dimensional porous poly(ε-caprolactone) scaffolds modulates the behaviors of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yingdi; Tan, Ke; Zhou, Yan; Ye, Zhaoyang, E-mail:; Tan, Wen-Song


    Biomaterial properties play significant roles in controlling cellular behaviors. The objective of the present study was to investigate how pore size and surface chemistry of three-dimensional (3D) porous scaffolds regulate the fate of mesenchymal stem cells (MSCs) in vitro in combination. First, on poly(ε-caprolactone) (PCL) films, the hydrolytic treatment was found to stimulate the adhesion, spreading and proliferation of human MSCs (hMSCs) in comparison with pristine films, while the aminolysis showed mixed effects. Then, 3D porous PCL scaffolds with varying pore sizes (100–200 μm, 200–300 μm and 300–450 μm) were fabricated and subjected to either hydrolysis or aminolysis. It was found that a pore size of 200–300 μm with hydrolysis in 3D scaffolds was the most favorable condition for growth of hMSCs. Importantly, while a pore size of 200–300 μm with hydrolysis for 1 h supported the best osteogenic differentiation of hMSCs, the chondrogenic differentiation was greatest in scaffolds with a pore size of 300–450 μm and treated with aminolysis for 1 h. Taken together, these results suggest that surface chemistry and pore size of 3D porous scaffolds may potentially have a synergistic impact on the behaviors of MSCs. - Highlights: • Surface chemistry of poly(ε-caprolactone) films actively modulates MSC behaviors. • Varying surface chemistry and pore size in combination is enabled in 3D scaffolds. • Surface chemistry and pore size potentially dictate MSC fates in synergy.

  12. Dramatic effect of pore size reduction on the dynamics of hydrogen adsorbed in metal–organic materials

    KAUST Repository

    Nugent, Patrick


    The effects of pore size reduction on the dynamics of hydrogen sorption in metal-organic materials (MOMs) were elucidated by studying SIFSIX-2-Cu and its doubly interpenetrated polymorph SIFSIX-2-Cu-i by means of sorption, inelastic neutron scattering (INS), and computational modeling. SIFSIX-2-Cu-i exhibits much smaller pore sizes, which possess high H2 sorption affinity at low loadings. Experimental H2 sorption measurements revealed that the isosteric heat of adsorption (Qst) for H2 in SIFSIX-2-Cu-i is nearly two times higher than that for SIFSIX-2-Cu (8.6 vs. 4.6 kJ mol-1). The INS spectrum for H2 in SIFSIX-2-Cu-i is rather unique for a porous material, as only one broad peak appears at low energies near 6 meV, which simply increases in intensity with loading until the pores are filled. The value for this rotational transition is lower than that in most neutral metal-organic frameworks (MOFs), including those with open Cu sites (8-9 meV), which is indicative of a higher barrier to rotation and stronger interaction in the channels of SIFSIX-2-Cu-i than the open Cu sites in MOFs. Simulations of H2 sorption in SIFSIX-2-Cu-i revealed two hydrogen sorption sites in the MOM: direct interaction with the equatorial fluorine atom (site 1) and between two equatorial fluorine atoms on opposite walls (site 2). The calculated rotational energy levels and rotational barriers for the two sites in SIFSIX-2-Cu-i are in good agreement with INS data. Furthermore, the rotational barriers and binding energies for site 2 are slightly higher than that for site 1, which is consistent with INS results. The lowest calculated transition for the primary site in SIFSIX-2-Cu is also in good agreement with INS data. In addition, this transition in the non-interpenetrating material is higher than any of the sites in SIFSIX-2-Cu-i, which indicates a significantly weaker interaction with the host as a result of the larger pore size. This journal is © the Partner Organisations 2014.

  13. NMR studies of organic liquids confined in mesoporous materials: (1) Pore size distribution and (2) Phase behaviour and dynamic studies in restricted geometry

    Energy Technology Data Exchange (ETDEWEB)

    Foerland, Kjersti


    In the thesis NMR spectroscopy is used for studying liquids confined in various porous materials. In the first part, pore size distributions of mesoporous silicas and controlled pore glasses were determined by measuring the 1H NMR signal from the non-frozen fraction of the confined liquid as a function of temperature, using benzene, acetonitrile and HMDS as probe molecules. In the second part, the molecular dynamics of acetonitrile, hexamethyldisilane, cyclohexane and cyclopentane confined in mesoporous materials were studied as a function of temperature. 6 papers are included with titles: 1) Pore-size determination of mesoporous materials by 1H NMR spectroscopy. 2) Pore-size distribution in mesoporous materials as studied by 1H NMR. 3) Dynamic 1H and 2H NMR investigations of acetonitrile confined in porous silica. 4) NMR investigations of hexamethyldisilane confined in controlled pore glasses: Pore size distribution and molecular dynamics studies. 5) 1H and 2H NMR studies of cyclohexane nano crystals in controlled pore glasses. 6) 1H NMR relaxation and diffusion studies of cyclohexane and cyclopentane confined in MCM-41.

  14. Towards Optimal Buffer Size in Wi-Fi Networks

    KAUST Repository

    Showail, Ahmad J.


    Buffer sizing is an important network configuration parameter that impacts the quality of data traffic. Falling memory cost and the fallacy that ‘more is better’ lead to over provisioning network devices with large buffers. Over-buffering or the so called ‘bufferbloat’ phenomenon creates excessive end-to-end delay in today’s networks. On the other hand, under-buffering results in frequent packet loss and subsequent under-utilization of network resources. The buffer sizing problem has been studied extensively for wired networks. However, there is little work addressing the unique challenges of wireless environment. In this dissertation, we discuss buffer sizing challenges in wireless networks, classify the state-of-the-art solutions, and propose two novel buffer sizing schemes. The first scheme targets buffer sizing in wireless multi-hop networks where the radio spectral resource is shared among a set of con- tending nodes. Hence, it sizes the buffer collectively and distributes it over a set of interfering devices. The second buffer sizing scheme is designed to cope up with recent Wi-Fi enhancements. It adapts the buffer size based on measured link characteristics and network load. Also, it enforces limits on the buffer size to maximize frame aggregation benefits. Both mechanisms are evaluated using simulation as well as testbed implementation over half-duplex and full-duplex wireless networks. Experimental evaluation shows that our proposal reduces latency by an order of magnitude.

  15. Characterizing two-phase flow relative permeabilities in chemicalflooding using a pore-scale network model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingjie; Shen, Pingping; Wu, Yu-Shu


    A dynamic pore-scale network model is presented for investigating the effects of interfacial tension and oil-water viscosity on relative permeability during chemical flooding. This model takes into account both viscous and capillary forces in analyzing the impact of chemical properties on flow behavior or displacement configuration, as opposed to the conventional or invasion percolation algorithm which incorporates capillary pressure only. The study results indicate that both water and oil relative-permeability curves are dependent strongly on interfacial tension as well as an oil-water viscosity ratio. In particular, water and oil relative-permeability curves are both found to shift upward as interfacial tension is reduced, and they both tend to become linear versus saturation once interfacial tension is at low values. In addition, the oil-water viscosity ratio appears to have only a small effect under conditions of high interfacial tension. When the interfacial tension is low, however, water relative permeability decreases more rapidly (with the increase in the aqueous-phase viscosity) than oil relative permeability. The breakthrough saturation of the aqueous phase during chemical flooding tends to decrease with the reduction of interfacial tension and may also be affected by the oil-water viscosity ratio.

  16. Pore network modeling of the electrical signature of solute transport in dual-domain media (United States)

    Day-Lewis, F. D.; Linde, N.; Haggerty, R.; Singha, K.; Briggs, M. A.


    Dual-domain models are used to explain anomalous solute transport behavior observed in diverse hydrologic settings and applications, from groundwater remediation to hyporheic exchange. To constrain such models, new methods are needed with sensitivity to both immobile and mobile domains. Recent experiments indicate that dual-domain transport of ionic tracers has an observable geoelectrical signature, appearing as a nonlinear, hysteretic relation between paired bulk and fluid electrical conductivity. Here we present a mechanistic explanation for this geoelectrical signature and evaluate assumptions underlying a previously published petrophysical model for bulk conductivity in dual-domain media. Pore network modeling of fluid flow, solute transport, and electrical conduction (1) verifies the geoelectrical signature of dual-domain transport, (2) reveals limitations of the previously used petrophysical model, and (3) demonstrates that a new petrophysical model, based on differential effective media theory, closely approximates the simulated bulk/fluid conductivity relation. These findings underscore the potential of geophysically based calibration of dual-domain models.

  17. Large Mesopore Generation in an Amorphous Silica-Alumina by Controlling the Pore Size with the Gel Skeletal Reinforcement and Its Application to Catalytic Cracking

    Directory of Open Access Journals (Sweden)

    Hiroyuki Nasu


    Full Text Available Tetraethoxy orthosilicate (TEOS was used not only as a precursor of silica, but also as an agent which reinforces the skeleton of silica-gel to prepare an aerogel and resultant silica and silica-alumina with large pore size and pore volume. In this gel skeletal reinforcement, the strength of silica aerogel skeleton was enhanced by aging with TEOS/2-propanol mixed solution to prevent the shrink of the pores. When silica aerogel was reinforced by TEOS solution, the pore diameter and pore volume of calcined silica could be controlled by the amount of TEOS solution and reached 30 nm and 3.1 cm3/g. The results from N2 adsorption measurement indicated that most of pores for this silica consisted of mesopores. Silica-alumina was prepared by the impregnation of an aluminum tri-sec-butoxide/2-butanol solution with obtained silica. Mixed catalysts were prepared by the combination of β-zeolite (26 wt% and prepared silica-aluminas with large mesopore (58 wt% and subsequently the effects of their pore sizes on the catalytic activity and the product selectivity were investigated in catalytic cracking of n-dodecane at 500 °C. The mixed catalysts exhibited not only comparable activity to that for single zeolite, but also unique selectivity where larger amounts of branched products were formed.

  18. Porous glass membranes for vanadium redox-flow battery application - Effect of pore size on the performance (United States)

    Mögelin, H.; Yao, G.; Zhong, H.; dos Santos, A. R.; Barascu, A.; Meyer, R.; Krenkel, S.; Wassersleben, S.; Hickmann, T.; Enke, D.; Turek, T.; Kunz, U.


    The improvement of redox-flow batteries requires the development of chemically stable and highly conductive separators. Porous glass membranes can be an attractive alternative to the nowadays most common polymeric membranes. Flat porous glass membranes with a pore size in the range from 2 to 50 nm and a thickness of 300 and 500 μm have been used for that purpose. Maximum values for voltage efficiency of 85.1%, coulombic efficiency of 97.9% and energy efficiency of 76.3% at current densities in the range from 20 to 60 mA cm-2 have been achieved. Furthermore, a maximum power density of 95.2 mW cm-2 at a current density of 140 mA cm-2 was gained. These results can be related to small vanadium crossover, high conductivity and chemical stability, confirming the great potential of porous glass membranes for vanadium redox-flow applications.

  19. A Metal-Organic Framework with a Pore Size/Shape Suitable for Strong Binding and Close Packing of Methane. (United States)

    Lin, Jiao-Min; He, Chun-Ting; Liu, Yan; Liao, Pei-Qin; Zhou, Dong-Dong; Zhang, Jie-Peng; Chen, Xiao-Ming


    Much effort has been devoted to develop new porous structures for methane storage. We report a new porous coordination framework showing exceptional methane uptakes (e.g. 263 v/v at 298 K and 65 bar) and adsorption enthalpies (21.6 kJ mol(-1)) as high as current record holders functionalized by open metal sites. Computational simulations demonstrated that the hierarchical pore structure consisting of single-wall nanocages has suitable sizes/shapes and organic binding sites to enforce not only strong host-methane and methane-methane interactions but also dense packing of methane molecules. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell. (United States)

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B


    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. © 2016 The Author(s).

  1. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell (United States)

    Grellet-Tinner, Gerald; Foley, Matthew; Thompson, Michael B.


    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. PMID:27009182

  2. Multimodal porous carbon derived from ionic liquids: correlation between pore sizes and ionic clusters. (United States)

    Jeong, Jun Hui; Lee, Je Seung; Roh, Kwang Chul; Kim, Kwang-Bum


    In this proof of concept study on the synthesis of ionic liquid (IL)-derived multimodal porous carbon using ionic clusters of different sizes as porogens, the carbonization behaviors of binary IL mixtures of 1-ethyl-3-methylimidazolium dicyanamide (EMIM-dca) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-Tf 2 N) were systematically investigated to demonstrate the formation of multimodal porous carbons with hierarchical structures originating from the ionic cluster porogens. The multimodal porous structures of the resulting IL-derived porous carbons were characterized based on the quenched solid density functional theory, and the role of the ionic clusters as porogens is discussed. From the viewpoint of green and sustainable chemistry, the IL-based synthesis using ionic clusters as porogens is a simple, effective, and sustainable technique for synthesizing multimodal porous carbons with hierarchical structures. To the best of our knowledge, this is the first study demonstrating that a multimodal porous structure of IL-derived porous carbons could be systematically manipulated with the aid of ionic clusters of different sizes as porogens.

  3. Noninvasive bipolar double-pulsed-field-gradient NMR reveals signatures for pore size and shape in polydisperse, randomly oriented, inhomogeneous porous media. (United States)

    Shemesh, Noam; Ozarslan, Evren; Adiri, Tal; Basser, Peter J; Cohen, Yoram


    Noninvasive characterization of pore size and shape in opaque porous media is a formidable challenge. NMR diffusion-diffraction patterns were found to be exceptionally useful for obtaining such morphological features, but only when pores are monodisperse and coherently placed. When locally anisotropic pores are randomly oriented, conventional diffusion NMR methods fail. Here, we present a simple, direct, and general approach to obtain both compartment size and shape even in such settings and even when pores are characterized by internal field gradients. Using controlled porous media, we show that the bipolar-double-pulsed-field-gradient (bp-d-PFG) methodology yields diffusion-diffraction patterns from which pore size can be directly obtained. Moreover, we show that pore shape, which cannot be obtained by conventional methods, can be directly inferred from the modulation of the signal in angular bp-d-PFG experiments. This new methodology significantly broadens the types of porous media that can be studied using noninvasive diffusion-diffraction NMR.

  4. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan


    Separators are needed in microbial fuel cells (MFCs) to reduce electrode spacing and preventing electrode short circuiting. The use of nylon and glass fiber filter separators in single-chamber, air-cathode MFCs was examined for their effect on performance. Larger pore nylon mesh were used that had regular mesh weaves with pores ranging from 10 to 160 μm, while smaller pore-size nylon filters (0.2-0.45 μm) and glass fiber filters (0.7-2.0 μm) had a more random structure. The pore size of both types of nylon filters had a direct and predictable effect on power production, with power increasing from 443 ± 27 to 650 ± 7 mW m-2 for pore sizes of 0.2 and 0.45 μm, and from 769 ± 65 to 941 ± 47 mW m-2 for 10 to 160 μm. In contrast, changes in pore sizes of the glass fiber filters resulted in a relatively narrow change in power (732 ± 48 to 779 ± 43 mW m-2) for pore sizes of 0.7 to 2 μm. An ideal separator should increase both power density and Coulombic efficiency (CE). However, CEs measured for the different separators were inversely correlated with power production, demonstrating that materials which reduced the oxygen diffusion into the reactor also hindered proton transport to the cathode, reducing power production through increased internal resistance. Our results highlight the need to develop separators that control oxygen transfer and facilitate proton transfer to the cathode. © 2010 The Royal Society of Chemistry.

  5. Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery: influence of network structure and drug size on release rate. (United States)

    Bertz, Andreas; Wöhl-Bruhn, Stefanie; Miethe, Sebastian; Tiersch, Brigitte; Koetz, Joachim; Hust, Michael; Bunjes, Heike; Menzel, Henning


    Novel hydrogels based on hydroxyethyl starch modified with polyethylene glycol methacrylate (HES-P(EG)₆MA) were developed as delivery system for the controlled release of proteins. Since the drug release behavior is supposed to be related to the pore structure of the hydrogel network the pore sizes were determined by cryo-SEM, which is a mild technique for imaging on a nanometer scale. The results showed a decreasing pore size and an increase in pore homogeneity with increasing polymer concentration. Furthermore, the mesh sizes of the hydrogels were calculated based on swelling data. Pore and mesh size were significantly different which indicates that both structures are present in the hydrogel. The resulting structural model was correlated with release data for bulk hydrogel cylinders loaded with FITC-dextran and hydrogel microspheres loaded with FITC-IgG and FITC-dextran of different molecular size. The initial release depended much on the relation between hydrodynamic diameter and pore size while the long term release of the incorporated substances was predominantly controlled by degradation of the network of the much smaller meshes. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. On Field Size and Success Probability in Network Coding

    DEFF Research Database (Denmark)

    Geil, Hans Olav; Matsumoto, Ryutaroh; Thomsen, Casper


    Using tools from algebraic geometry and Gröbner basis theory we solve two problems in network coding. First we present a method to determine the smallest field size for which linear network coding is feasible. Second we derive improved estimates on the success probability of random linear network...

  7. Permeability and pore size distribution in medium strength self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Fernández Cánovas, M.


    Full Text Available The use of self-compacting concrete (SCC has been on the rise in recent years. Research on this type of concrete has focused primarily on determining optimal dosage, while durability, particularly for medium strength SCC, has received much less attention. The present study explored the permeability of a number of medium strength (characteristic strength, 30 MPa self-compacting concretes, including SCCs made with common cement, in pursuit of a balance between performance and cost. Pressurised water and mercury intrusion porosimetry tests were conducted to determine concrete behaviour when exposed to aggressive agents. The findings showed that the capillary networks of these concretes are essentially impermeable to aggressive agents.

    El hormigón autocompactante ha experimentado un amplio desarrollo en los últimos años. Los estudios sobre este hormigón se han centrado en obtener dosificaciones óptimas, mientras los relativos a su durabilidad son escasos, especialmente en el caso de hormigones de resistencia moderada. Este trabajo se centra en el estudio de la permeabilidad de distintos hormigones autocompactantes de resistencia moderada (resistencia característica 30 MPa. El estudio incluye hormigones fabricados con cementos comunes, en los que se ha buscado un equilibrio entre prestaciones y precio. Con el fin de estudiar su comportamiento frente a la penetración de agentes agresivos, se han realizado los ensayos de permeabilidad al agua bajo presión y estudio de la porosimetría por intrusión de mercurio. Los resultados de los ensayos ponen de manifiesto el buen comportamiento de estos hormigones frente a la posible penetración de agentes agresivos por la red capilar.

  8. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    ) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter......Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw*-model...... and clay). It performed reasonably well for the dry-end (above a pF value of 2.0; pF = log(|Ψ|), where Ψ is the matric potential in cm), but did not do as well closer to saturated conditions. The Xw*-model gives the volumetric water content as a function of volumetric content of particle size fractions...

  9. Development of solid SEDDS, VII: Effect of pore size of silica on drug release from adsorbed self-emulsifying lipid-based formulations. (United States)

    Gumaste, Suhas G; Serajuddin, Abu T M


    Lipid-based self-emulsifying drug delivery systems (SEDDS) are usually liquids, and they can be converted into solid dosage forms by adsorbing onto silicates. However, most commercially available silicates are mesoporous with small pore sizes of 1 to 50nm that lead to incomplete emulsification of SEDDS inside the pores and thus incomplete drug release. The objective of this study was to investigate the impact of silica pore size on the extent of drug release from SEDDS solidified by adsorbing onto macroporous silicas with different pore sizes. Silicas with average pore sizes of approx. 150nm, 500nm and 5μm were synthesized using the colloidal crystal templating method. A model poorly water-soluble drug, probucol, was dissolved in liquid SEDDS containing different lipid to surfactant ratios, and the formulations were then adsorbed onto equal weights of silicas (1:1 w/w ratio). Drug release from freshly prepared formulations and after storing at 40°C/60% RH for up to 6months was studied using a modified USP type 2 method with mini paddles and 50mL of 0.01M HCl (pH~2) at 37°C. Drug release was also studied similarly from silicas that were precoated with PVP K-30 at 5, 10, 20 and 30% w/w levels before adsorption of SEDDS. Freshly prepared formulations containing relatively higher lipid:surfactant ratio of 7:3% w/w exhibited 17, 40 and 60% drug release from uncoated (neat) silicas with pore sizes of 150nm, 500nm and 5μm, respectively, while the more hydrophilic formulations containing 3:7 w/w lipid:surfactant ratio had, respectively, 50, 65 and 85% drug release. No decrease in drug release was observed when the formulations were exposed to 40°C/60% RH for up to 6months. When the silicas were precoated with 20% PVP, the drug release was almost complete (>80%), which remained unchanged even after 6months of storage irrespective of the composition of adsorbed liquid SEDDS. Both pore size and composition of SEDDS had major impacts on drug release from silicas

  10. Mesoporous Silica Gel–Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler (United States)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei


    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4–30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565

  11. Magnetic properties of Fe{sub 20} Ni{sub 80} antidots: Pore size and array disorder

    Energy Technology Data Exchange (ETDEWEB)

    Palma, J.L., E-mail: [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Gallardo, C. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Spinu, L.; Vargas, J.M. [Advanced Material Research Institute (AMRI) and Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States); Dorneles, L.S. [Departamento de Fisica, Universidade Federal de Santa Maria UFSM, Av. Roraima 1000, Camobi, Santa Maria, RS 97105-900 (Brazil); Denardin, J.C.; Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)


    Magnetic properties of nanoscale Fe{sub 20}Ni{sub 80} antidot arrays with different hole sizes prepared on top of nanoporous alumina membranes have been studied by means of magnetometry and micromagnetic simulations. The results show a significant increase of the coercivity as well as a reduction of the remanence of the antidot arrays, as compared with their parent continuous film, which depends on the hole size introduced in the Fe{sub 20}Ni{sub 80} thin film. When the external field is applied parallel to the antidots, the reversal of magnetization is achieved by free-core vortex propagation, whereas when the external field is applied perpendicular to the antidots, the reversal occurs through a process other than the coherent rotation (a maze-like pattern). Besides, in-plane hysteresis loops varying the angle show that the degree of disorder in the sample breaks the expected hexagonal symmetry. - Highlights: • Magnetic properties are strongly influenced by the pore diameter of the samples. • Coercive fields for antidots are higher than the values for the continuous film. • Disorder breaks the hexagonal symmetry of the sample. • Each hole acts as a vortex nucleation point. • Antidots have unique properties that allow them to be used in applications.

  12. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore.

    Directory of Open Access Journals (Sweden)

    Anusha Panjwani


    Full Text Available Non-enveloped viruses must deliver their viral genome across a cell membrane without the advantage of membrane fusion. The mechanisms used to achieve this remain poorly understood. Human rhinovirus, a frequent cause of the common cold, is a non-enveloped virus of the picornavirus family, which includes other significant pathogens such as poliovirus and foot-and-mouth disease virus. During picornavirus cell entry, the small myristoylated capsid protein VP4 is released from the virus, interacts with the cell membrane and is implicated in the delivery of the viral RNA genome into the cytoplasm to initiate replication. In this study, we have produced recombinant C-terminal histidine-tagged human rhinovirus VP4 and shown it can induce membrane permeability in liposome model membranes. Dextran size-exclusion studies, chemical crosslinking and electron microscopy demonstrated that VP4 forms a multimeric membrane pore, with a channel size consistent with transfer of the single-stranded RNA genome. The membrane permeability induced by recombinant VP4 was influenced by pH and was comparable to permeability induced by infectious virions. These findings present a molecular mechanism for the involvement of VP4 in cell entry and provide a model system which will facilitate exploration of VP4 as a novel antiviral target for the picornavirus family.

  13. Effect of rock composition and texture on pore size distributions in shales: Applications in low field nuclear magnetic resonance (United States)

    Saidian, Milad

    There are various methods to assess the pore size distribution (PSD) of porous materials; amongst all, NMR is the only technique that can be utilized for subsurface applications. The key parameter to transform NMR time domain response to PSD size domain data is surface relaxivity. The common practice is to consider a constant surface relaxivity throughout a well, formation or rock type regardless of the variations in rock compositions; this results in inaccurate PSD estimation using NMR log data. In this thesis I established a methodology to calculate the surface relaxivity in shales considering the rock composition and texture. I present the steps to achieve this goal in three steps: (a) Understanding the challenges of NMR acquisition, analysis and interpretation in shales, (b) Measuring the porosity, PSD and surface area and providing a practice to check the reliability of these measurements in shales, (c) Developing a methodology to calculate the surface relaxivity honoring the variations paramagnetic mineral content, susceptibility, distribution and texture. Application of NMR in unconventional rocks requires adjustment of NMR data acquisition and analysis to the unique properties of these rocks such as high level of heterogeneity, complex pore structure, fine grains, and presence of nano-scale pores. Identifying these challenges improves our understanding of NMR response in shales and increases the quality of the acquired and analyzed data. Calculation of surface relaxivity, as a measure of how fluids and rock surfaces react, requires reliable measurement of different petrophysical properties of the rock such as porosity, total specific surface area, and PSD using other techniques. I studied the reliability of different techniques to measure these petrophysical properties for shales by performing a thorough comparative study of porosity and PSD for different shale formations. The result of my study showed that clay type and content, total organic carbon (TOC

  14. Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions (United States)

    Parlett, Christopher M. A.; Isaacs, Mark A.; Beaumont, Simon K.; Bingham, Laura M.; Hondow, Nicole S.; Wilson, Karen; Lee, Adam F.


    The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol-gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous-mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.

  15. Determination of size distribution using neural networks

    NARCIS (Netherlands)

    Stevens, JH; Nijhuis, JAG; Spaanenburg, L; Mohammadian, M


    In this paper we present a novel approach to the estimation of size distributions of grains in water from images. External conditions such as the concentrations of grains in water cannot be controlled. This poses problems for local image analysis which tries to identify and measure single grains.

  16. Synthesis of porous polymer based solid amine adsorbent: Effect of pore size and amine loading on CO2 adsorption. (United States)

    Liu, Fenglei; Chen, Shuixia; Gao, Yanting


    A series of porous polymers was synthesized by a suspension polymerization of divinylbenzene (DVB) and ethylene glycol dimethyl acrylate (EGDMA), which was further functionalized with polyethyleneimine (PEI) for CO2 capture. The results showed that the synthesized DVB and EGDMA (DE) copolymers were an effective support for loading PEI because of its larger pore size and specific surfaces area. It was found that DE (30, 10) loaded with 30wt% PEI exhibited a higher CO2 adsorption amount of 3.28mmol/g at 25°C under dry condition. The CO2 adsorption capacity would decline gradually as the temperature continuously raised, for the reaction between CO2 and amine groups was an exothermic reaction. The kinetics study showed that Avrami kinetic model could accurately describe the whole CO2 adsorption process, suggesting that both physical adsorption and chemical adsorption were involved with the CO2 adsorption process. The intraparticle diffusion and Boyd's film diffusion models were applied to investigate the CO2 diffusion mechanism, the intraparticle diffusion model could well distinguish the rate-limiting step during CO2 adsorption process. This solid amine adsorbent could be regenerated with nitrogen stream at 75°C, and it kept stable CO2 adsorption capacity after eight adsorption-desorption cycles. All these features indicated that this porous polymer based adsorbent has a high potential for CO2 capture and separation from flue gas. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Relationship between Pore-size Distribution and Flexibility of Adsorbent Materials: Statistical Mechanics and Future Material Characterization Techniques. (United States)

    Siderius, Daniel W; Mahynski, Nathan A; Shen, Vincent K


    Measurement of the pore-size distribution (PSD) via gas adsorption and the so-called "kernel method" is a widely used characterization technique for rigid adsorbents. Yet, standard techniques and analytical equipment are not appropriate to characterize the emerging class of flexible adsorbents that deform in response to the stress imparted by an adsorbate gas, as the PSD is a characteristic of the material that varies with the gas pressure and any other external stresses. Here, we derive the PSD for a flexible adsorbent using statistical mechanics in the osmotic ensemble to draw analogy to the kernel method for rigid materials. The resultant PSD is a function of the ensemble constraints including all imposed stresses and, most importantly, the deformation free energy of the adsorbent material. Consequently, a pressure-dependent PSD is a descriptor of the deformation characteristics of an adsorbent and may be the basis of future material characterization techniques. We discuss how, given a technique for resolving pressure-dependent PSDs, the present statistical mechanical theory could enable a new generation of analytical tools that measure and characterize certain intrinsic material properties of flexible adsorbents via otherwise simple adsorption experiments.

  18. Impact of the capillary pressure-saturation pore-size distribution parameter on geological carbon sequestration estimates

    Directory of Open Access Journals (Sweden)

    Chu-Lin Cheng


    Full Text Available Cost estimates for geologic carbon sequestration (GCS are vital for policy and decision makers evaluating carbon capture and storage strategies. Numerical models are often used in feasibility studies for the different stages of carbon injection and redistribution. Knowledge of the capillary pressure-saturation function for a selected storage rock unit is essential in applications used for simulating multiphase fluid flow and transport. However, the parameters describing these functions (e.g. the van Genuchten m pore size distribution parameter are often not measured or neglected compared to other physical properties such as porosity and intrinsic permeability. In addition, the use of average instead of point estimates of m for numerical simulations of flow and transport can result in significant errors, especially in the case of coarse-grained sediments and fractured rocks. Such erroneous predictions can pose great risks and challenges to decision-making. We present a comparison of numerical simulation results based on average and point estimates of the van Genuchten m parameter for different porous media. Forward numerical simulations using the STOMP code were employed to illustrate the magnitudes of the differences in carbon sequestration predictions resulting from the use of height-averaged instead of point parameters. The model predictions were converted into cost estimates and the results indicate that varying m values in GCS modeling can cause cost differences of up to hundreds of millions dollars.

  19. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous Colloidal Gas Aphron. (United States)

    Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao

    Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.

  20. Nonparametric pore size distribution using d-PFG: comparison to s-PFG and migration to MRI. (United States)

    Benjamini, Dan; Komlosh, Michal E; Basser, Peter J; Nevo, Uri


    Here we present the successful translation of a pore size distribution (PSD) estimation method from NMR to MRI. This approach is validated using a well-characterized MRI phantom consisting of stacked glass capillary arrays (GCA) having different diameters. By employing a double pulsed-field gradient (d-PFG) MRI sequence, this method overcomes several important theoretical and experimental limitations of previous single-PFG (s-PFG) based MRI methods by allowing the relative diffusion gradients' direction to vary. This feature adds an essential second dimension in the parameters space, which can potentially improve the reliability and stability of the PSD estimation. To infer PSDs from the MRI data in each voxel an inverse linear problem is solved in conjunction with the multiple correlation function (MCF) framework, which can account for arbitrary experimental parameters (e.g., long diffusion pulses). This scheme makes no a priori assumptions about the functional form of the underlying PSD. Creative use of region of interest (ROI) analysis allows us to create different underlying PSDs using the same GCA MRI phantom. We show that an s-PFG experiment on the GCA phantom fails to accurately reconstruct the size distribution, thus demonstrating the superiority of the d-PFG experiment. In addition, signal simulations corrupted by different noise levels were used to generate continuous and complex PSDs, which were then successfully reconstructed. Finally, owing to the reduced q- or b- values required to measure microscopic PSDs via d-PFG MRI, this method will be better suited to biomedical and clinical applications, in which gradient strength of scanners is limited. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Passage of Campylobacter jejuni and C. coli subtypes through 0.45 and 0.65 µm pore size nitro-cellulose filters (United States)

    Campylobacter can be difficult to recover from complex samples due to overgrowth by background bacteria. A 0.45 or 0.65 µm pore size filter overlaid on agar plates can be used as a means to separate Campylobacter from confounding non-Campylobacter cells, facilitating detection on solid plating medi...

  2. Cryo-FIB-SEM and MIP study of porosity and pore size distribution of bentonite and kaolin at different moisture contents

    NARCIS (Netherlands)

    Lubelli, B.; Winter, D.A.M. de; Post, J.A.; Hees, R.P.J. van; Drury, M.R.


    Clays often constitute the main component of poultices used for salt extraction from porous materials in conservation intervention. Knowledge of the evolution in porosity and pore size of clay based poultices, due to shrinkage during drying, is of crucial importance for the selection of the most

  3. The pore size of PLGA bone implants determines the de novo formation of bone tissue in tibial head defects in rats. (United States)

    Penk, Anja; Förster, Yvonne; Scheidt, Holger A; Nimptsch, Ariane; Hacker, Michael C; Schulz-Siegmund, Michaela; Ahnert, Peter; Schiller, Jürgen; Rammelt, Stefan; Huster, Daniel


    The influence of the pore size of biodegradable poly(lactic-co-glycolic acid) scaffolds on bone regeneration was investigated. Cylindrical poly(lactic-co-glycolic acid) scaffolds were implanted into a defect in the tibial head of rats. Pore sizes of 100-300, 300-500, and 500-710 μm were tested and compared to untreated defects as control. Two and four weeks after implantation, the specimens were explanted and defect regeneration and de novo extracellular matrix generation were investigated by MRI, quantitative solid-state NMR, and mass spectrometry. The pore size of the scaffolds had a pronounced influence on the quantity of the extracellular matrix synthesized in the graft; most collagen was synthesized within the first 2 weeks of implantation, while the amount of hydroxyapatite increased in the second 2 weeks. After 4 weeks, the scaffolds contained large quantities of newly formed lamellar bone while the control defects were filled by inhomogenous woven bone. Best results were obtained for scaffolds of a pore size of 300-500 μm. Our analysis showed that the structure and dynamics of the regenerated extracellular matrix was very similar to that of the native bone, suggesting that biomineralization was significantly enhanced by the choice of the most appropriate implant material. Copyright © 2012 Wiley Periodicals, Inc.

  4. Effects of pore-scale dispersion, degree of heterogeneity, sampling size, and source volume on the concentration moments of conservative solutes in heterogeneous formations (United States)

    Daniele Tonina; Alberto Bellin


    Pore-scale dispersion (PSD), aquifer heterogeneity, sampling volume, and source size influence solute concentrations of conservative tracers transported in heterogeneous porous formations. In this work, we developed a new set of analytical solutions for the concentration ensemble mean, variance, and coefficient of variation (CV), which consider the effects of all these...

  5. Interviewer Effects on a Network-Size Filter Question

    Directory of Open Access Journals (Sweden)

    Josten Michael


    Full Text Available There is evidence that survey interviewers may be tempted to manipulate answers to filter questions in a way that minimizes the number of follow-up questions. This becomes relevant when ego-centered network data are collected. The reported network size has a huge impact on interview duration if multiple questions on each alter are triggered. We analyze interviewer effects on a network-size question in the mixed-mode survey “Panel Study ‘Labour Market and Social Security’” (PASS, where interviewers could skip up to 15 follow-up questions by generating small networks. Applying multilevel models, we find almost no interviewer effects in CATI mode, where interviewers are paid by the hour and frequently supervised. In CAPI, however, where interviewers are paid by case and no close supervision is possible, we find strong interviewer effects on network size. As the area-specific network size is known from telephone mode, where allocation to interviewers is random, interviewer and area effects can be separated. Furthermore, a difference-in-difference analysis reveals the negative effect of introducing the follow-up questions in Wave 3 on CAPI network size. Attempting to explain interviewer effects we neither find significant main effects of experience within a wave, nor significantly different slopes between interviewers.

  6. Online social network size is reflected in human brain structure. (United States)

    Kanai, R; Bahrami, B; Roylance, R; Rees, G


    The increasing ubiquity of web-based social networking services is a striking feature of modern human society. The degree to which individuals participate in these networks varies substantially for reasons that are unclear. Here, we show a biological basis for such variability by demonstrating that quantitative variation in the number of friends an individual declares on a web-based social networking service reliably predicted grey matter density in the right superior temporal sulcus, left middle temporal gyrus and entorhinal cortex. Such regions have been previously implicated in social perception and associative memory, respectively. We further show that variability in the size of such online friendship networks was significantly correlated with the size of more intimate real-world social groups. However, the brain regions we identified were specifically associated with online social network size, whereas the grey matter density of the amygdala was correlated both with online and real-world social network sizes. Taken together, our findings demonstrate that the size of an individual's online social network is closely linked to focal brain structure implicated in social cognition.

  7. Pore size and LbL chitosan coating influence mesenchymal stem cell in vitro fibrosis and biomineralization in 3D porous poly(epsilon-caprolactone) scaffolds. (United States)

    Mehr, Nima Ghavidel; Li, Xian; Chen, Gaoping; Favis, Basil D; Hoemann, Caroline D


    Poly(epsilon-caprolactone) (PCL) is a hydrophobic bioplastic under development for bone tissue engineering applications. Limited information is available on the role of internal geometry and cell-surface attachment on osseous integration potential. We tested the hypothesis that human bone marrow mesenchymal stem cells (MSCs) deposit more mineral inside porous 3D PCL scaffolds with fully interconnected 84 or 141 µm pores, when the surfaces are coated with chitosan via Layer-by-Layer (LbL)-deposited polyelectrolytes. Freshly trypsinized MSCs were seeded on PCL 3D cylinders using a novel static cold seeding method in 2% serum to optimally populate all depths of the scaffold discs, followed by 10 days of culture in proliferation medium and 21 additional days in osteogenic medium. MSCs were observed by SEM and histology to spread faster and to proliferate more on chitosan-coated pore surfaces. Most pores, with or without chitosan, became filled by collagen networks sparsely populated with fibroblast-like cells. After 21 days of culture in osteogenic medium, sporadic matrix mineralization was detected histologically and by micro-CT in highly cellular surface layers that enveloped all scaffolds and in cell aggregates in 141 µm pores near the edges. LbL-chitosan promoted punctate mineral deposition on the surfaces of 84 µm pores (p < 0.05 vs. PCL-only) but not the 141 µm pores. This study revealed that LbL-chitosan coatings are sufficient to promote MSC attachment to PCL but only enhance mineral formation in 84 µm pores, suggesting a potential inhibitory role for MSC-derived fibroblasts in osteoblast terminal differentiation. © 2014 Wiley Periodicals, Inc.

  8. Studying Pore Structure of Nonwovens with 3D Imaging and Modeling Permeability (United States)

    Baradari, Mehdi Gholipour

    Nonwovens are classified as a porous material and pore structure is named as the most important and complex feature of them. Since pore structure is out of control during any nonwovens manufacturing processes, many attempts have been made to measure the major characteristics of a pore network including: pore size, pore volume, pore surface area and pore shape. Among all pore characteristics, pore size due to its significant influence on many nonwovens applications such as filtration is counted as the most significant one. Generally, experiment, theoretical modeling and image analysis are the most common methods to measure pore size of nonwovens. Normally, pores in nonwovens make many convergences and divergences along the length and for this reason, many pore diameters could be assigned for a media. Due to inefficiency of the aforementioned techniques to measure all these diameters, they are not precise enough to study pore structure. The initial objective of this research is obtaining information of the pore structure, especially pore sizes, by applying image analysis techniques to a 3D image of nonwovens obtained through 3D imaging techniques such as DVI and micro CT. This 3D structure of the nonwoven media will be transformed to a graph, employing skeletonization through AvizoRTM software. The obtained graph exhibits topology, shape and connectivity of the pore structure for the utilized nonwoven. In this graph, each node and link would be a representative for pores intersection and body of pore, respectively. Saving the information of this graph results to some matrices/vectors including nodes coordinated, connectivity and nodes thickness, which exhibits the pore size. Therefore, all the pore sizes available in the structure will be extracted through this method. As expected, the information obtained from pore network is very complex consisting many numbers, so analyse them would be very difficult. Therefore, it was tried to use the saved information to model

  9. Buffer Sizing in 802.11 Wireless Mesh Networks

    KAUST Repository

    Jamshaid, Kamran


    We analyze the problem of buffer sizing for TCP flows in 802.11-based Wireless Mesh Networks. Our objective is to maintain high network utilization while providing low queueing delays. The problem is complicated by the time-varying capacity of the wireless channel as well as the random access mechanism of 802.11 MAC protocol. While arbitrarily large buffers can maintain high network utilization, this results in large queueing delays. Such delays may affect TCP stability characteristics, and also increase queueing delays for other flows (including real-time flows) sharing the buffer. In this paper we propose sizing link buffers collectively for a set of nodes within mutual interference range called the \\'collision domain\\'. We aim to provide a buffer just large enough to saturate the available capacity of the bottleneck collision domain that limits the carrying capacity of the network. This neighborhood buffer is distributed over multiple nodes that constitute the network bottleneck; a transmission by any of these nodes fully utilizes the available spectral resource for the duration of the transmission. We show that sizing routing buffers collectively for this bottleneck allows us to have small buffers (as low as 2 - 3 packets) at individual nodes without any significant loss in network utilization. We propose heuristics to determine these buffer sizes in WMNs. Our results show that we can reduce the end-to-end delays by 6× to 10× at the cost of losing roughly 5% of the network capacity achievable with large buffers.

  10. Distance metric learning for complex networks: Towards size-independent comparison of network structures (United States)

    Aliakbary, Sadegh; Motallebi, Sadegh; Rashidian, Sina; Habibi, Jafar; Movaghar, Ali


    Real networks show nontrivial topological properties such as community structure and long-tail degree distribution. Moreover, many network analysis applications are based on topological comparison of complex networks. Classification and clustering of networks, model selection, and anomaly detection are just some applications of network comparison. In these applications, an effective similarity metric is needed which, given two complex networks of possibly different sizes, evaluates the amount of similarity between the structural features of the two networks. Traditional graph comparison approaches, such as isomorphism-based methods, are not only too time consuming but also inappropriate to compare networks with different sizes. In this paper, we propose an intelligent method based on the genetic algorithms for integrating, selecting, and weighting the network features in order to develop an effective similarity measure for complex networks. The proposed similarity metric outperforms state of the art methods with respect to different evaluation criteria.

  11. Effect of size heterogeneity on community identification in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Danon, L.; Diaz-Guilera, A.; Arenas, A.


    Identifying community structure can be a potent tool in the analysis and understanding of the structure of complex networks. Up to now, methods for evaluating the performance of identification algorithms use ad-hoc networks with communities of equal size. We show that inhomogeneities in community sizes can and do affect the performance of algorithms considerably, and propose an alternative method which takes these factors into account. Furthermore, we propose a simple modification of the algorithm proposed by Newman for community detection (Phys. Rev. E 69 066133) which treats communities of different sizes on an equal footing, and show that it outperforms the original algorithm while retaining its speed.

  12. Nitrogen-doped porous “green carbon” derived from shrimp shell: Combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jiangying, E-mail: [Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029 (China); Carbon Research Laboratory, Center for Nano Materials and Science, School of Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian, 116024 (China); Lv, Siyuan; Peng, Xiyue; Tian, Shuo; Wang, Jia [Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029 (China); Gao, Feng, E-mail: [Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029 (China); Carbon Research Laboratory, Center for Nano Materials and Science, School of Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian, 116024 (China)


    Nitrogen-rich porous “green carbons” derived from abundant shrimp shell shows good performance for Li–S batteries. The strategy in this work is highlighted to selective removal of intrinsic CaCO{sub 3} in shrimp shell followed by KOH activation to tune the pore sizes of the obtained carbons. On the basis of the different porous structures, the discharge capacity of the obtained carbons as Li–S cathodes follows the order of micro-mesoporous carbon>mesoporous carbon>microporous carbon. The high capacity of the micro-mesoporous carbon is attributed to its positive characters such as the coexistence of micro-mesoporous structure, the large pore volume and the high specific surface area. Furthermore, well-dispersed nitrogen in the porous carbons is naturally doped and inherited from shrimp shell, and can help to enhance cycle stability when used as cathodes. As a result, all carbon cathodes exhibit the good cycle stability (>78%) due to their nitrogen doping induced chemical adsorption of sulfur on the surface areas of the porous carbons. Among them, mesoporous carbon cathode shows the best cycle stability with 90% retention within 100 cycles, which is mainly attributed to the synergistic effects of its both large pore size (5.12 nm) and high nitrogen content (6.67 wt %). - Highlights: • Nitrogen-rich porous “green carbons” derived from abundant shrimp shell shows good performance for Li–S batteries. • Intrinsic CaCO{sub 3} in shrimp shell as the natural template plays an important role on tailoring of the pore sizes of the porous carbons. • Nitrogen containing polysaccharide in shrimp shell benefits to produce nitrogen-rich carbons. • The effects of pore sizes on the electrochemical performance are investigated in detail. • The carbon-sulfur cathodes exhibit the good cycle stability because of nitrogen doping induced chemical adsorption of sulfur.

  13. Study on the Matching Relationship between Polymer Hydrodynamic Characteristic Size and Pore Throat Radius of Target Block S Based on the Microporous Membrane Filtration Method

    Directory of Open Access Journals (Sweden)

    Li Yiqiang


    Full Text Available The concept of the hydrodynamic characteristic size of polymer was proposed in this study, to characterize the size of aggregates of many polymer molecules in the polymer percolation process. The hydrodynamic characteristic sizes of polymers used in the target block S were examined by employing microporous membrane filtration method, and the factors were studied. Natural core flow experiments were conducted in order to set up the flow matching relationship plate. According to the flow matching plate, the relationship between the hydrodynamic characteristic size of polymer and pore throat radius obtained from core mercury injection data was found. And several suitable polymers for different reservoirs permeability were given. The experimental results of microporous membrane filtration indicated that the hydrodynamic characteristic size of polymer maintained a good nonlinear relationship with polymer viscosity; the value increased as the molecular weight and concentration of the polymer increased and increased as the salinity of dilution water decreased. Additionally, the hydrodynamic characteristic size decreased as the pressure increased, so the hydrodynamic characteristic size ought to be determined based on the pressure of the target block. In the core flow studies, good matching of polymer and formation was identified as polymer flow pressure gradient lower than the fracture pressure gradient of formation. In this case, good matching that was the pore throat radius should be larger than 10 times the hydrodynamic characteristic size of polymer in this study. Using relationship, more matching relationship between the hydrodynamic characteristic sizes of polymer solutions and the pore throat radius of target block was determined.

  14. Effects of pore sizes and oxygen-containing functional groups on desulfurization activity of Fe/NAC prepared by ultrasonic-assisted impregnation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Song [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); Guo, Jia-Xiu, E-mail: [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China); Sichuan Provincial Environmental Protection Environmental Catalysis and Materials Engineering Technology Center, Chengdu 610065, Sichuan (China); Liu, Xiao-Li [National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China); Wang, Xue-Jiao [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); Yin, Hua-Qiang [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China); Sichuan Provincial Environmental Protection Environmental Catalysis and Materials Engineering Technology Center, Chengdu 610065, Sichuan (China); Luo, De-Ming [National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China)


    Graphical abstract: - Highlights: • Fe/NAC-60 exhibits the best desulfurization activity. • Different oscillation time can change surface area and pore volume of catalysts. • Ultrasonic oscillation increases Fe dispersion on carrier and effective pores. • Pore sizes play a crucial role during the SO{sub 2} removal. - Abstract: A series of Fe-loaded activated carbons treated by HNO{sub 3} (Fe/NAC) were prepared by incipient impregnation method with or without ultrasonic assistance and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy disperse spectroscope (SEM-EDS), transmission electron microscopy (TEM) and N{sub 2} adsorption/desorption. The desulfurization activities were evaluated at a fixed bed reactor under a mixed gas simulated from flue gas. The results showed that desulfurization activity from excellent to poor is as follows: Fe/NAC-60 > Fe/NAC-80 > Fe/NAC-30 > Fe/NAC-15 > Fe/NAC-0 > Fe/NAC-100 > NAC. Fe/NAC-60 exhibits the best desulfurization activity and has breakthrough sulfur capacity of 319 mg/g and breakthrough time of 540 min. The introduction of ultrasonic oscillation does not change the form of Fe oxides on activated carbon but can change the dispersion and relative contents of Fe{sub 3}O{sub 4}. The types of oxygen-containing functional groups have no obvious change for all samples but the texture properties show some differences when they are oscillated for different times. The fresh Fe/NAC-60 has a surface area of 1045 m{sup 2}/g and total pore volume of 0.961 cm{sup 3}/g with micropore volume of 0.437 cm{sup 3}/g and is larger than Fe/NAC-0 (823 m{sup 2}/g, 0.733 and 0.342 cm{sup 3}/g). After desulfurization, surface area and pore volume of all samples decrease significantly, and those of the exhausted Fe/NAC-60 decrease to 233 m{sup 2}/g and 0.481 cm{sup 3}/g, indicating that some byproducts deposit on surface to cover pores. Pore size distribution

  15. Extent of hepatitis E virus elimination is affected by stabilizers present in plasma products and pore size of nanofilters. (United States)

    Yunoki, M; Yamamoto, S; Tanaka, H; Nishigaki, H; Tanaka, Y; Nishida, A; Adan-Kubo, J; Tsujikawa, M; Hattori, S; Urayama, T; Yoshikawa, M; Yamamoto, I; Hagiwara, K; Ikuta, K


    To investigate the physico-chemical properties of hepatitis E virus (HEV) with regard to inactivation/removal, we have studied four isolates with respect to sensitivity to heat during liquid/dry-heating as well as removal by nanofiltration. Hepatitis E virus in an albumin solution or phosphate-buffered saline (PBS) was liquid-heated at 60 degrees C for a preset time. HEV in a freeze-dried fibrinogen containing stabilizers was also dry-heated at 60 or 80 degrees C for a preset time. In addition, to clarify the removal of HEV, the purified virus in PBS was filtered using several types of virus-removal filter (nanofilters) that have different pore sizes. HEV infectivity or genome equivalents before and after the treatments were assayed by a semiquantitative cell-based infectivity assay or quantitative polymerase chain reaction assay, respectively. Hepatitis E virus isolates in albumin solutions were inactivated slowly at 60 degrees C for 5 h and the resultant log reduction factor (LRF) was from 1.0 to > or = 2.2, whereas the virus in PBS was inactivated quickly to below the detection limit and the LRF was > or = 2.4 to > or = 3.7. The virus in a freeze dried fibrinogen containing trisodium citrate dihydrate and l-arginine hydrochloride as stabilizers was inactivated slowly and the LRF was 2.0 and 3.0, respectively, of the 72 h at 60 degrees C, but inactivated to below the detection limit within 24 h at 80 degrees C with an LRF of > or = 4.0. The virus in PBS was also confirmed as to be approximately 35 nm in diameter by nanofiltration. These results are useful for evaluating viral safety against HEV contamination in blood products. The sensitivity of HEV to heat was shown to vary greatly depending on the heating conditions. On the other hand, the HEV particles were completely removed using 20-nm nanofilters. However, each inactivation/removal step should be carefully evaluated with respect to the HEV inactivation/removal capacity, which may be influenced by processing

  16. Grain-size considerations for optoelectronic multistage interconnection networks. (United States)

    Krishnamoorthy, A V; Marchand, P J; Kiamilev, F E; Esener, S C


    This paper investigates, at the system level, the performance-cost trade-off between optical and electronic interconnects in an optoelectronic interconnection network. The specific system considered is a packet-switched, free-space optoelectronic shuffle-exchange multistage interconnection network (MIN). System bandwidth is used as the performance measure, while system area, system power, and system volume constitute the cost measures. A detailed design and analysis of a two-dimensional (2-D) optoelectronic shuffle-exchange routing network with variable grain size K is presented. The architecture permits the conventional 2 x 2 switches or grains to be generalized to larger K x K grain sizes by replacing optical interconnects with electronic wires without affecting the functionality of the system. Thus the system consists of log(k) N optoelectronic stages interconnected with free-space K-shuffles. When K = N, the MIN consists of a single electronic stage with optical input-output. The system design use an effi ient 2-D VLSI layout and a single diffractive optical element between stages to provide the 2-D K-shuffle interconnection. Results indicate that there is an optimum range of grain sizes that provides the best performance per cost. For the specific VLSI/GaAs multiple quantum well technology and system architecture considered, grain sizes larger than 256 x 256 result in a reduced performance, while grain sizes smaller than 16 x 16 have a high cost. For a network with 4096 channels, the useful range of grain sizes corresponds to approximately 250-400 electronic transistors per optical input-output channel. The effect of varying certain technology parameters such as the number of hologram phase levels, the modulator driving voltage, the minimum detectable power, and VLSI minimum feature size on the optimum grain-size system is studied. For instance, results show that using four phase levels for the interconnection hologram is a good compromise for the cost

  17. Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. (United States)

    Rohde, Kerstin; Rohrbach, Daniel; Glüer, Claus-C; Laugier, Pascal; Grimal, Quentin; Raum, Kay; Barkmann, Reinhard


    The femoral neck is a common fracture site in elderly people. The cortical shell is thought to be the major contributor to the mechanical competence of the femoral neck, but its microstructural parameters are not sufficiently accessible under in vivo conditions with current X-ray-based methods. To systematically investigate the influences of pore size, porosity, and thickness of the femoral neck cortex on the propagation of ultrasound, we developed 96 different bone models (combining 6 different pore sizes with 4 different porosities and 4 different thicknesses) and simulated the ultrasound propagation using a finite-difference time-domain algorithm. The simulated single-element emitter and receiver array consisting of 16 elements (8 inferior and 8 superior) were placed at anterior and posterior sides of the bone, respectively (transverse transmission). From each simulation, we analyzed the waveform collected by each of the inferior receiver elements for the one with the shortest time of flight. The first arriving signal of this waveform, which is associated with the wave traveling through the cortical shell, was then evaluated for its three different waveform characteristics (TOF: time point of the first point of inflection of the received signal, Δt: difference between the time point at which the signal first crosses the zero baseline and TOF, and A: amplitude of the first extreme of the first arriving signal). From the analyses of these waveform characteristics, we were able to develop multivariate models to predict pore size, porosity, and cortical thickness, corresponding to the 96 different bone models, with remaining errors in the range of 50 μm for pore size, 1.5% for porosity, and 0.17 mm for cortical thickness.

  18. Exploring droplet impact near a millimetre-sized hole: comparing a closed pit with an open-ended pore

    NARCIS (Netherlands)

    de Jong, Rianne; Enriquez Paz y Puente, O.R.; van der Meer, Roger M.


    We investigate drop impact dynamics near closed pits and open-ended pores experimentally. The resulting impact phenomena differ greatly in each case. For a pit, we observe three distinct phenomena, which we denote as a splash, a jet and an air bubble, whose appearance depends on the distance between

  19. Artificial neural network based particle size prediction of polymeric nanoparticles. (United States)

    Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf


    Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The degree distribution of fixed act-size collaboration networks

    Indian Academy of Sciences (India)

    There are a large number of fixed act-size collaboration networks [11]. For ex- ample, each football team has eleven players. In athletic sports or other items, the number of players is fixed, etc. In this paper, we propose a new approach to provide a rigorous proof for the existence of the degree distribution of this model, and ...

  1. Random linear network coding for streams with unequally sized packets

    DEFF Research Database (Denmark)

    Taghouti, Maroua; Roetter, Daniel Enrique Lucani; Pedersen, Morten Videbæk


    State of the art Random Linear Network Coding (RLNC) schemes assume that data streams generate packets with equal sizes. This is an assumption that results in the highest efficiency gains for RLNC. A typical solution for managing unequal packet sizes is to zero-pad the smallest packets. However...... of packets, which are strategies that require additional signalling. Performance is evaluated using CAIDA TCP packets and 4k video traces. Our results show that our mechanisms reduce significantly the padding overhead even for small field sizes. Finally, our strategies provide a natural trade-off between...

  2. Alkali metal ion storage properties of sulphur and phosphorous molecules encapsulated in nanometer size carbon cylindrical pores

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yosuke, E-mail:; Sakamoto, Yuki; Song, Hayong; Tashiro, Kosuke; Nishiwaki, Yoshiki; Al-zubaidi, Ayar; Kawasaki, Shinji [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)


    We investigated the physical and chemical stabilities of sulfur and phosphorus molecules encapsulated in a mesoporous carbon (MPC) and two kinds of single-walled carbon nanotubes (SWCNTs) having different cylindrical pore diameters. The sublimation temperatures of sulfur molecules encapsulated in MPC and the two kinds of SWCNTs were measured by thermo-gravimetric measurements. It was found that the sublimation temperature of sulfur molecules encapsulated in SWCNTs having mean tube diameter of 1.5 nm is much higher than any other molecules encapsulated in larger pores. It was also found that the capacity fading of lithium-sulfur battery can be diminished by encapsulation of sulfur molecules in SWCNTs. We also investigated the electrochemical properties of phosphorus molecules encapsulated in SWCNTs (P@SWCNTs). It was shown that P@SWCNT can adsorb and desorb both Li and Na ions reversibly.

  3. Experimental study on nonmonotonicity of capillary desaturation curves in a 2-D pore-network

    Energy Technology Data Exchange (ETDEWEB)

    Rodriquez de Castro, Antonio [Univ. of Manchester (United Kingdom); Shokri, Nima [Univ. of Manchester (United Kingdom); Karadimitriou, Nikolaos [Univ. of Manchester (United Kingdom); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joekar-Niasar, Vahid [Univ. of Manchester (United Kingdom)


    Immiscible displacement in a porous medium is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oils saturation and Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigate the CDC as influenced by the viscosity ratio. A comprehensive series of experiments using a high-resolution microscope and state-of-the-art micromodels were conducted. The CDCs were calculated and the effects of Ca and M on phase entrapments were quantified. The results show that CDCs are not necessarily monotonic for all M.

  4. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation. (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali


    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  5. Finite-Size Geometric Entanglement from Tensor Network Algorithms


    Shi, Qian-Qian; Orus, Roman; Fjaerestad, John Ove; Zhou, Huan-Qiang


    The global geometric entanglement is studied in the context of newly-developed tensor network algorithms for finite systems. For one-dimensional quantum spin systems it is found that, at criticality, the leading finite-size correction to the global geometric entanglement per site behaves as $b/n$, where $n$ is the size of the system and $b$ a given coefficient. Our conclusion is based on the computation of the geometric entanglement per spin for the quantum Ising model in a transverse magneti...

  6. Buffer Sizing in Wireless Networks: Challenges, Solutions, and Opportunities

    KAUST Repository

    Showail, Ahmad


    Buffer sizing is an important network configuration parameter that impacts the Quality of Service (QoS) characteristics of data traffic. With falling memory costs and the fallacy that \\'more is better\\', network devices are being overprovisioned with large bu ers. This may increase queueing delays experienced by a packet and subsequently impact stability of core protocols such as TCP. The problem has been studied extensively for wired networks. However, there is little work addressing the unique challenges of wireless environment such as time-varying channel capacity, variable packet inter-service time, and packet aggregation, among others. In this paper we discuss these challenges, classify the current state-of-the-art solutions, discuss their limitations, and provide directions for future research in the area.

  7. Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction

    KAUST Repository

    Xue, Dongxu


    Reticular chemistry approach was successfully employed to deliberately construct new rare-earth (RE, i.e. Eu3+, Tb3+ and Y3+) fcu metal‒organic frameworks (MOFs) with restricted window apertures. Controlled and selective access to the resultant contracted fcu-MOF pores permits the achievement of the requisite sorbate cut-off ideal for selective adsorption kinetics separation and/or molecular sieving of gases and vapors. Predetermined reaction conditions that permitted the formation in-situ of the 12-connected RE hexanuclear molecular building block (MBB) and the establishment of the RE-fcu-MOF plat-form, especially in the presence of 2-fluorobenzoic acid (2-FBA) as a modulator and a structure directing agent, were used to synthesize isostructural RE-1,4-NDC-fcu-MOFs based on a relatively bulkier 2-connected bridging ligand, namely 1,4-naphthalenedicarboxylate (1,4-NDC). The subsequent RE-1,4-NDC-fcu-MOF structural features, contracted windows/pores and high concentration of open metal sites combined with exceptional hydrothermal and chemical stabilities, yielded nota-ble gas/solvent separation properties, driven mostly by adsorption kinetics as exemplified in this work for n-butane/methane, butanol/methanol and butanol/water pair systems.

  8. Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. (United States)

    Xue, Dong-Xu; Belmabkhout, Youssef; Shekhah, Osama; Jiang, Hao; Adil, Karim; Cairns, Amy J; Eddaoudi, Mohamed


    Reticular chemistry approach was successfully employed to deliberately construct new rare-earth (RE, i.e., Eu(3+), Tb(3+), and Y(3+)) fcu metal-organic frameworks (MOFs) with restricted window apertures. Controlled and selective access to the resultant contracted fcu-MOF pores permits the achievement of the requisite sorbate cutoff, ideal for selective adsorption kinetics based separation and/or molecular sieving of gases and vapors. Predetermined reaction conditions that permitted the formation in situ of the 12-connected RE hexanuclear molecular building block (MBB) and the establishment of the first RE-fcu-MOF platform, especially in the presence of 2-fluorobenzoic acid (2-FBA) as a modulator and a structure directing agent, were used to synthesize isostructural RE-1,4-NDC-fcu-MOFs based on a relatively bulkier 2-connected bridging ligand, namely 1,4-naphthalenedicarboxylate (1,4-NDC). The subsequent RE-1,4-NDC-fcu-MOF structural features, contracted windows/pores and high concentration of open metal sites combined with exceptional hydrothermal and chemical stabilities, yielded notable gas/solvent separation properties, driven mostly by adsorption kinetics as exemplified in this work for n-butane/methane, butanol/methanol, and butanol/water pair systems.

  9. A framework for detecting communities of unbalanced sizes in networks (United States)

    Žalik, Krista Rizman; Žalik, Borut


    Community detection in large networks has been a focus of recent research in many of fields, including biology, physics, social sciences, and computer science. Most community detection methods partition the entire network into communities, groups of nodes that have many connections within communities and few connections between them and do not identify different roles that nodes can have in communities. We propose a community detection model that integrates more different measures that can fast identify communities of different sizes and densities. We use node degree centrality, strong similarity with one node from community, maximal similarity of node to community, compactness of communities and separation between communities. Each measure has its own strength and weakness. Thus, combining different measures can benefit from the strengths of each one and eliminate encountered problems of using an individual measure. We present a fast local expansion algorithm for uncovering communities of different sizes and densities and reveals rich information on input networks. Experimental results show that the proposed algorithm is better or as effective as the other community detection algorithms for both real-world and synthetic networks while it requires less time.

  10. Pore-Network Modeling of Water and Vapor Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NARCIS (Netherlands)

    Qin, C.; Hassanizadeh, S.M.; van Oosterhout, L.M.


    In the cathode side of a polymer electrolyte fuel cell (PEFC), a micro porous layer (MPL) added between the catalyst layer (CL) and the gas diffusion layer (GDL) plays an important role in water management. In this work, by using both quasi-static and dynamic pore-network models, water and vapor

  11. Size-Dependent Filling Behavior of UV-Curable Di(meth)acrylate Resins into Carbon-Coated Anodic Aluminum Oxide Pores of around 20 nm. (United States)

    Nakagawa, Masaru; Nakaya, Akifumi; Hoshikawa, Yasuto; Ito, Shunya; Hiroshiba, Nobuya; Kyotani, Takashi


    Ultraviolet (UV) nanoimprint lithography is a promising nanofabrication technology with cost efficiency and high throughput for sub-20 nm size semiconductor, data storage, and optical devices. To test formability of organic resist mask patterns, we investigated whether the type of polymerizable di(meth)acrylate monomer affected the fabrication of cured resin nanopillars by UV nanoimprinting using molds with pores of around 20 nm. We used carbon-coated, porous, anodic aluminum oxide (AAO) films prepared by electrochemical oxidation and thermal chemical vapor deposition as molds, because the pore diameter distribution in the range of 10-40 nm was suitable for combinatorial testing to investigate whether UV-curable resins comprising each monomer were filled into the mold recesses in UV nanoimprinting. Although the UV-curable resins, except for a bisphenol A-based one, detached from the molds without pull-out defects after radical photopolymerization under UV light, the number of cured resin nanopillars was independent of the viscosity of the monomer(s) in each resin. The number of resin nanopillars increased and their diameter decreased as the number of hydroxy groups in the aliphatic diacrylate monomers increased. It was concluded that the filling of the carbon-coated pores having diameters of around 20 nm with UV-curable resins was promoted by the presence of hydroxy groups in the aliphatic di(meth)acrylate monomers.

  12. Microfluidic synthesis of atto-liter scale double emulsions toward ultrafine hollow silica spheres with hierarchical pore networks. (United States)

    Jeong, Woong-Chan; Choi, Minkee; Lim, Che Ho; Yang, Seung-Man


    A facile PDMS-glass hybrid microfluidic device is developed for generating uniform submicrometer-scale double emulsion droplets with unprecedented simplicity and controllability. Compared with planar flow-focusing geometries, our three-dimensional flow-focusing geometry is advantageous for stably producing femto- to atto-liter droplets without the retraction problem of the dispersed phase fluid. In addition, this microfluidic platform can withstand the use of strong organic solvents (e.g. tetrahydrofuran (THF) and toluene) as a dispersed phase without deforming PDMS devices because the dispersed phase containing organic solvents does not directly contact the PDMS wall. In particular, monodisperse double emulsions are generated spontaneously via the internal phase separation of single emulsions driven by the diffusion of a co-solvent (tetrahydrofuran) in microfluidic devices. Finally, we demonstrated that the double emulsions can be used as morphological templates of ultrafine spherical silica capsules with controlled hierarchical pore networks via the evaporation-induced self-assembly (EISA) method. During EISA, triblock copolymers (Pluronic F127) act as a surfactant barrier separating the internal droplet from the continuous oil phase, resulting in the 'inverse' morphology (i.e. hydrophobic polymer-in-water-in-oil emulsions). Depending on the precursor composition and kinetic condition, various structural and morphological features, such as mesoporous hollow silica spheres with a single central core, multi-cores, or a combination of these with robust controllability can be seen. Electron microscopy (SEM, STEM, HR-TEM), small angle X-ray scattering (SAXS), and N(2) adsorption-desorption confirm the well-controlled hierarchical pore structure of the resulting particles.

  13. Estimation of LOCA break size using cascaded Fuzzy neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geon Pil; Yoo, Kwae Hwan; Back, Ju Hyun; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)


    Operators of nuclear power plants may not be equipped with sufficient information during a loss-of-coolant accident (LOCA), which can be fatal, or they may not have sufficient time to analyze the information they do have, even if this information is adequate. It is not easy to predict the progression of LOCAs in nuclear power plants. Therefore, accurate information on the LOCA break position and size should be provided to efficiently manage the accident. In this paper, the LOCA break size is predicted using a cascaded fuzzy neural network (CFNN) model. The input data of the CFNN model are the time-integrated values of each measurement signal for an initial short-time interval after a reactor scram. The training of the CFNN model is accomplished by a hybrid method combined with a genetic algorithm and a least squares method. As a result, LOCA break size is estimated exactly by the proposed CFNN model.

  14. Estimation of LOCA Break Size Using Cascaded Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Geon Pil Choi


    Full Text Available Operators of nuclear power plants may not be equipped with sufficient information during a loss-of-coolant accident (LOCA, which can be fatal, or they may not have sufficient time to analyze the information they do have, even if this information is adequate. It is not easy to predict the progression of LOCAs in nuclear power plants. Therefore, accurate information on the LOCA break position and size should be provided to efficiently manage the accident. In this paper, the LOCA break size is predicted using a cascaded fuzzy neural network (CFNN model. The input data of the CFNN model are the time-integrated values of each measurement signal for an initial short-time interval after a reactor scram. The training of the CFNN model is accomplished by a hybrid method combined with a genetic algorithm and a least squares method. As a result, LOCA break size is estimated exactly by the proposed CFNN model.

  15. Bipartite producer consumer networks and the size distribution of firms (United States)

    Dahui, Wang; Li, Zhou; Zengru, Di


    A bipartite producer-consumer network is constructed to describe the industrial structure. The edges from consumer to producer represent the choices of the consumer for the final products and the degree of producer can represent its market share. So the size distribution of firms can be characterized by producer's degree distribution. The probability for a producer receiving a new consumption is determined by its competency described by initial attractiveness and the self-reinforcing mechanism in the competition described by preferential attachment. The cases with constant total consumption and with growing market are studied. The following results are obtained: (1) Without market growth and a uniform initial attractiveness a, the final distribution of firm sizes is Gamma distribution for a>1 and is exponential for a=1. If amarket, the size distribution of firms obeys the power-law. The exponent is affected by the market growth and the initial attractiveness of the firms.

  16. Process to remove turbidity-causing components from a fluid by micro-filtration - passes the fluid across an asymmetric membrane with inlet pores larger than those of nominal size, and cleans the membrane by backwashing

    DEFF Research Database (Denmark)


    Process is based on microfiltration using an asymmetric membrane. The membrane has inlet pores which are larger than the nominal pore size; pores of nominal size are located towards the membrane outlet side. The fluid is fed across the membrane. and backwashing is used for cleaning. USE-To remove...... turbidity-causing components from beer, wine, fruit juice, milk and blood, and from bacterial and enzyme suspensions. ADVANTAGE-The process greatly reduces the lost production time associated with earlier filtration methods, and beneficial components can pass through the membrane, thereby improving...

  17. Impact of Pore Size on Fenton Oxidation of Methyl Orange Adsorbed on Magnetic Carbon Materials: Trade-Off between Capacity and Regenerability. (United States)

    Xiao, Ye; Hill, Josephine M


    The economic cleanup of wastewater continues to be an active area of research. In this study, the influence of pore size on regeneration by Fenton oxidation for carbon materials with adsorbed methyl orange (MO) was investigated. More specifically three carbon supports, with pore sizes ranging from mainly microporous to half microporous-half mesoporous to mainly mesoporous, were impregnated with γ-Fe2O3 to make them magnetic and easy to separate from solution. The carbon samples were characterized before adsorption and after regeneration with hydrogen peroxide at 20 °C. In addition, adsorption kinetics and isotherms were collected, and the Weber-Morris intraparticle diffusion model and Freundlich isotherm model fit to the data. The adsorption capacity increased with increasing microporosity while the regeneration efficiency increased with increasing mesoporosity. Further experiments with varying regeneration and adsorption conditions suggested that the regeneration process may be kinetically limited. The MO adsorbed in the micropores was strongly adsorbed and difficult to remove unlike the MO adsorbed in the mesopores, which could be reacted under relatively mild conditions. Thus, there was a trade-off between adsorption capacity and regeneration.

  18. One-pot hydrothermal synthesis of a mesoporous SiO{sub 2}-graphene hybrid with tunable surface area and pore size

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xun [School of Chemical Engineering of Hefei University of Technology, Hefei, 230009 (China); Shi Tiejun, E-mail: [School of Chemical Engineering of Hefei University of Technology, Hefei, 230009 (China)


    Highlights: Black-Right-Pointing-Pointer A one-pot hydrothermal synthesis was used to prepare a mesoporous SiO{sub 2}-graphene hybrid from tetraethyl ortho silicate (TEOS) and graphene oxide (GO) without any surfactant. Black-Right-Pointing-Pointer The synthesis technique combines protection, reduction and functionalization in one step. Black-Right-Pointing-Pointer Nitrogen adsorption/desorption isotherms showed that the hybrid was tunable in surface area, pore size and its distribution by simple adjustment of the mass ratio of TEOS and GO. - Abstract: A one-pot hydrothermal synthesis was used to obtain a mesoporous SiO{sub 2}-graphene hybrid from tetraethylortho silicate and graphene oxide without any surfactant. Graphene obtained from hydrothermal reduction, with a certain oxygen-containing groups, plays a key role in attaching SiO{sub 2} nanoparticles, as examined by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. The synthesis technique combines protection, reduction and functionalization in one step. Nitrogen adsorption/desorption isotherms showed that the hybrid was tunable in surface area (244.7-524.61 m{sup 2}/g), pore size (8.9-69.26 nm) and its distribution by simple adjustment of the mass ratio of tetraethylortho silicate and graphene oxide.

  19. Effects of shear-thinning fluids on residual oil formation in microfluidic pore networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez de Castro, Antonio; Oostrom, Mart; Shokri, Nima


    Two-phase immiscible displacement in porous media is controlled by capillary and viscous forces when gravitational effects are negligible. The relative importance of these forces is quantified through the dimensionless capillary number Ca and the viscosity ratio M between fluid phases. When the displacing fluid is Newtonian, the effects of Ca and M on the displacement patterns can be evaluated independently. However, when the injecting fluids exhibit shear-thinning viscosity behaviour the values of M and Ca are interdependent. Under these conditions, the effects on phase entrapment and the general displacement dynamics cannot be dissociated. In the particular case of shear-thinning aqueous polymer solutions, the degree of interdependence between M and Ca is determined by the polymer concentration. In this work, two-phase immiscible displacement experiments were performed in micromodels, using shear-thinning aqueous polymer solutions as displacing fluids, to investigate the effect of polymer concentration on the relationship between Ca and M, the recovery efficiency, and the size distribution of the trapped non-wetting fluid. Our results show that the differences in terms of magnitude and distribution of the trapped phase are related to the polymer concentration which influences the values of Ca and M.

  20. Pore networks and polymer rearrangement on a drug-eluting stent as revealed by correlated confocal Raman and atomic force microscopy. (United States)

    Biggs, Kevin B; Balss, Karin M; Maryanoff, Cynthia A


    Drug release from and coating morphology on a CYPHER sirolimus-eluting coronary stent (SES) during in vitro elution were studied by correlated confocal Raman and atomic force microscopy (CRM and AFM, respectively). Chemical surface and subsurface maps of the SES were generated in the same region of interest by CRM and were correlated with surface topography measured by AFM at different elution times. For the first time, a direct correlation between drug-rich regions and the coating morphology was made on a drug-eluting medical device, linking drug release with pore formation, pore throats, and pore networks. Drug release was studied on a drug-eluting stent (DES) system with a multicomponent carrier matrix (poly(n-butyl methacrylate) [PBMA] and poly(ethylene-co-vinyl acetate) [PEVA]). The polymer was found to rearrange postelution because confluence of the carrier polymer matrix reconstituted the voids created by drug release.

  1. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous Colloidal Gas Aphron

    National Research Council Canada - National Science Library

    Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao

    ...; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied...

  2. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology. (United States)

    Parkes, Marie V; Staiger, Chad L; Perry, John J; Allendorf, Mark D; Greathouse, Jeffery A


    The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.

  3. Dip TIPS as a facile and versatile method for fabrication of polymer foams with controlled shape, size and pore architecture for bioengineering applications. (United States)

    Kasoju, Naresh; Kubies, Dana; Kumorek, Marta M; Kříž, Jan; Fábryová, Eva; Machová, Lud'ka; Kovářová, Jana; Rypáček, František


    The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the "Dip TIPS" as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields.

  4. Dip TIPS as a facile and versatile method for fabrication of polymer foams with controlled shape, size and pore architecture for bioengineering applications.

    Directory of Open Access Journals (Sweden)

    Naresh Kasoju

    Full Text Available The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T, a metallic conducting block (C and a non-metallic reservoir tube (R, connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the "Dip TIPS" as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields.

  5. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous Colloidal Gas Aphron


    Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao


    Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media we...

  6. Tailoring the Pore Size and Functionality of UiO-Type Metal-Organic Frameworks for Optimal Nerve Agent Destruction. (United States)

    Peterson, Gregory W; Moon, Su-Young; Wagner, George W; Hall, Morgan G; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K


    Evaluation of UiO-66 and UiO-67 metal-organic framework derivatives as catalysts for the degradation of soman, a chemical warfare agent, showed the importance of both the linker size and functionality. The best catalysts yielded half-lives of less than 1 min. Further testing with a nerve agent simulant established that different rate-assessment techniques yield similar values for degradation half-lives.

  7. Nuclear routing networks span between nuclear pore complexes and genomic DNA to guide nucleoplasmic trafficking of biomolecules (United States)

    Malecki, Marek; Malecki, Bianca


    In health and disease, biomolecules, which are involved in gene expression, recombination, or reprogramming have to traffic through the nucleoplasm, between nuclear pore complexes (NPCs) and genomic DNA (gDNA). This trafficking is guided by the recently revealed nuclear routing networks (NRNs). In this study, we aimed to investigate, if the NRNs have established associations with the genomic DNA in situ and if the NRNs have capabilities to bind the DNA de novo. Moreover, we aimed to study further, if nucleoplasmic trafficking of the histones, rRNA, and transgenes’ vectors, between the NPCs and gDNA, is guided by the NRNs. We used Xenopus laevis oocytes as the model system. We engineered the transgenes’ DNA vectors equipped with the SV40 LTA nuclear localization signals (NLS) and/or HIV Rev nuclear export signals (NES). We purified histones, 5S rRNA, and gDNA. We rendered all these molecules superparamagnetic and fluorescent for detection with nuclear magnetic resonance (NMR), total reflection x-ray fluorescence (TXRF), energy dispersive x-ray spectroscopy (EDXS), and electron energy loss spectroscopy (EELS). The NRNs span between the NPCs and genomic DNA. They form firm bonds with the gDNA in situ. After complete digestion of the nucleic acids with the RNases and DNases, the newly added DNA - modified with the dNTP analogs, bonds firmly to the NRNs. Moreover, the NRNs guide the trafficking of the DNA transgenes’ vectors - modified with the SV40 LTA NLS, following their import into the nuclei through the NPCs. The pathway is identical to that of histones. The NRNs also guide the trafficking of the DNA transgenes’ vectors, modified with the HIV Rev NES, to the NPCs, followed by their export out of the nuclei. Ribosomal RNAs follow the same pathway. To summarize, the NRNs are the structures connecting the NPCs and the gDNA. They guide the trafficking of the biomolecules between the NPCs and the gDNA. PMID:23275893

  8. An experimental investigation into the influence of specimen size, in-situ pore pressures and temperatures on the spalling of difference size concrete panels when exposed to a hydrocarbon fire

    Directory of Open Access Journals (Sweden)

    Guerrieri M.


    Full Text Available Small and large scale reinforced concrete panels/walls were tested under hydrocarbon fire conditions to investigate concrete spalling. Results indicated that spalling is caused by the combination of thermal stresses and pore water pressure build-up. The degree and magnitude of spalling is governed by a number of inter-dependent factors including panel size, thickness and compressive strengths, all of which are investigated in this research. High strength concrete panels of increased surface area and thickness had higher degrees of concrete spalling.

  9. Complex networks for rainfall modeling: Spatial connections, temporal scale, and network size (United States)

    Jha, Sanjeev Kumar; Sivakumar, Bellie


    We apply the concepts of complex networks to investigate the properties of rainfall. Specifically, we examine the rainfall properties in terms of spatial connections, temporal scale, and network size. We employ the clustering coefficient method to rainfall data at six different temporal scales (daily, 2-day, 4-day, 8-day, 16-day, and monthly) from a large number of stations in the Murray-Darling basin in Australia. We consider different correlation thresholds to identify the existence of links between stations. To account for the influence of network size (i.e. number of stations) and length of data, we consider three different networks: (1) 430 stations with 30 years of daily data; (2) 383 stations with 30 years of daily data; and (3) 383 stations with 64 years of daily data. The results indicate that the nature of spatial connections changes with correlation threshold, with changes occurring at different temporal scales for different thresholds. Identification of an appropriate threshold is key to understand the rainfall connectivity properties.

  10. Model data for pore network modeling of the electrical signature of solute transport in dual-domain media, U.S. Geological Survey data release: U.S. Geological Survey data release (United States)

    U.S. Geological Survey, Department of the Interior — Pore network simulations were performed to investigate the electrical geophysical signature of solute-transport in dual-domain media. This data release includes...

  11. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix. (United States)

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N


    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.

  12. Pore-Network Modeling of Water and Vapor Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    Directory of Open Access Journals (Sweden)

    Chao-Zhong Qin


    Full Text Available In the cathode side of a polymer electrolyte fuel cell (PEFC, a micro porous layer (MPL added between the catalyst layer (CL and the gas diffusion layer (GDL plays an important role in water management. In this work, by using both quasi-static and dynamic pore-network models, water and vapor transport in the MPL and GDL has been investigated. We illustrated how the MPL improved water management in the cathode. Furthermore, it was found that dynamic liquid water transport in the GDL was very sensitive to the built-up thermal gradient along the through-plane direction. Thus, we may control water vapor condensation only along GDL-land interfaces by properly adjusting the GDL thermal conductivity. Our numerical results can provide guidelines for optimizing GDL pore structures for good water management.

  13. Large pore size and controlled mesh elongation are relevant predictors for mesh integration quality and low shrinkage--Systematic analysis of key parameters of meshes in a novel minipig hernia model. (United States)

    Weyhe, Dirk; Cobb, William; Lecuivre, Julie; Alves, Antoine; Ladet, Sebastien; Lomanto, Davide; Bayon, Yves


    Prosthetic mesh implants in hernia repair are frequently used based on the fact that lower recurrence rates are detected. However, an undesirable side effect is persistent foreign body reaction that drives adhesions and shrinkage among other things in the course of time. Thereby a variety of meshes have been created in an attempt to alleviate these side effects, and particular relating to shrinkage, the ideal mesh has not been developed. Large pore size is one of the properties to get better ingrowth of the implants but could also be a risk factor to shrinkage behavior. The aim of this preclinical study was to determine optimal pore size based on mesh integration and shrinkage in a hernia minipig model. Twenty female minipigs were each implanted at four abdominal retromuscular sites with meshes (designed and knitted specifically for this study) that had various weights and pore sizes, but similar weave. At 3 and 21 weeks post-operation, ten pigs each were euthanized. Mesh integration and shrinkage were evaluated through macroscopic observation, biomechanical testing and histopathological analysis. The large pore meshes (6.1-6.6 mm(2)) showed significantly better integration than small pore (0.9-1.1 mm(2)) counterparts, by biomechanical testing and histological assessment. This was independent of mesh weight. The lightweight small pore mesh exhibited significantly more shrinkage than any of the other meshes, while the three-dimensional heavyweight large pore mesh exhibited the least shrinkage. Mesh shrinkage and elongation at 50 Newton (N) as one parameter of the implant structural stability appeared to be strongly interrelated. Tissue ingrowth of meshes depends on increasing pore size. Macroporous mesh design >1.5 mm diameter appears to be optimal in terms of mesh integration. Lightweight meshes with a large pore size on one hand and a lack of structural stability on the other hand drives mesh shrinkage. High stretchability (Elongation >50 N) induces higher

  14. Fine-tuning pore size by shifting coordination sites of ligands and surface polarization of metal-organic frameworks to sharply enhance the selectivity for CO2. (United States)

    Du, Liting; Lu, Zhiyong; Zheng, Kaiyuan; Wang, Junyi; Zheng, Xin; Pan, Yi; You, Xiaozeng; Bai, Junfeng


    Based upon the (3,6)-connected metal-organic framework {Cu(L1)·2H(2)O·1.5DMF}(∞) (L1 = 5-(pyridin-4-yl)isophthalic acid) (SYSU, for Sun Yat-Sen University), iso-reticular {Cu(L2)·DMF}(∞) (L2 = 5-(pyridin-3-yl)isophthalic acid) (NJU-Bai7; NJU-Bai for Nanjing University Bai group) and {Cu(L3)·DMF·H(2)O}(∞) (L3 = 5-(pyrimidin-5-yl)isophthalic acid) (NJU-Bai8) were designed by shifting the coordination sites of ligands to fine-tune pore size and polarizing the inner surface with uncoordinated nitrogen atoms, respectively, with almost no changes in surface area or porosity. Compared with those of the prototype SYSU, both the adsorption enthalpy and selectivity of CO(2) for NJU-Bai7 and NJU-Bai8 have been greatly enhanced, which makes NJU-Bai7 and NJU-Bai8 good candidates for postcombustion CO(2) capture. Notably, the CO(2) adsorption enthalpy of NJU-Bai7 is the highest reported so far among the MOFs without any polarizing functional groups or open metal sites. Meanwhile, NJU-Bai8 exhibits high uptake of CO(2) and good CO(2)/CH(4) selectivity at high pressure, which are quite valuable characteristics in the purification of natural gases.

  15. Development of a Repeatable Protocol to Uniformly Coat Internal Complex Geometries of Fine Featured 3D Printed Objects with Ceramic Material, including Determination of Viscosity Limits to Properly Coat Certain Pore Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    HEPA filters are commonly used in air filtration systems ranging in application from simple home systems to the more advanced networks used in research and development. Currently, these filters are most often composed of glass fibers with diameter on the order of one micron with polymer binders. These fibers, as well as the polymers used, are known to be fragile and can degrade or become extremely brittle with heat, severely limiting their use in high temperature applications. Ceramics are one promising alternative and can enhance the filtration capabilities compared to the current technology. Because ceramic materials are more thermally resistant and chemically stable, there is great interest in developing a repeatable protocol to uniformly coat fine featured polymer objects with ceramic material for use as a filter. The purpose of this experiment is to determine viscosity limits that are able to properly coat certain pore sizes in 3D printed objects, and additionally to characterize the coatings themselves. Latex paint was used as a surrogate because it is specifically designed to produce uniform coatings.

  16. Effects of network dissolution changes on pore-to-core upscaled reaction rates for kaolinite and anorthite reactions under acidic conditions

    KAUST Repository

    Kim, Daesang


    We have extended reactive flow simulation in pore-network models to include geometric changes in the medium from dissolution effects. These effects include changes in pore volume and reactive surface area, as well as topological changes that open new connections. The computed changes were based upon a mineral map from an X-ray computed tomography image of a sandstone core. We studied the effect of these changes on upscaled (pore-scale to core-scale) reaction rates and compared against the predictions of a continuum model. Specifically, we modeled anorthite and kaolinite reactions under acidic flow conditions during which the anorthite reactions remain far from equilibrium (dissolution only), while the kaolinite reactions can be near-equilibrium. Under dissolution changes, core-scale reaction rates continuously and nonlinearly evolved in time. At higher injection rates, agreement with predictions of the continuum model degraded significantly. For the far-from-equilibrium reaction, our results indicate that the ability to correctly capture the heterogeneity in dissolution changes in the reactive mineral surface area is critical to accurately predict upscaled reaction rates. For the near-equilibrium reaction, the ability to correctly capture the heterogeneity in the saturation state remains critical. Inclusion of a Nernst-Planck term to ensure neutral ionic currents under differential diffusion resulted in at most a 9% correction in upscaled rates.

  17. Effects of Soil Bulk Density on Gas Transport Parameters and Pore-Network Properties across a Sandy Field Site

    DEFF Research Database (Denmark)

    Masis Melendez, Federico; de Jonge, Lis Wollesen; Chamindu, T K K Deepagoda


    The gas diffusion coefficient, air permeability, and their interrelations with air-filled porosity are crucial for characterization of diffusive and convective transport of gases in soils. Variations in soil bulk density can affect water retention, air-filled pore space, pore tortuosity...... and connectivity, and hence control gas diffusion and air permeability. Considering 86 undisturbed core samples with variable bulk density that were extracted on a grid from the top layer of a sandy field, the effects of soil bulk density on gas transport parameters and the soil water characteristic were...... to quantify gas transport and water retention processes across the field. Results revealed significant negative correlations between all six parameters and soil bulk density. Areas with higher bulk density exhibited reduced air-filled porosity and lower diffusivity- and air permeability-based connectivity...

  18. How the Size of Our Social Network Influences Our Semantic Skills (United States)

    Lev-Ari, Shiri


    People differ in the size of their social network, and thus in the properties of the linguistic input they receive. This article examines whether differences in social network size influence individuals' linguistic skills in their native language, focusing on global comprehension of evaluative language. Study 1 exploits the natural variation in…

  19. Do online social media cut through the constraints that limit the size of offline social networks?


    Dunbar, RI


    The social brain hypothesis has suggested that natural social network sizes may have a characteristic size in humans. This is determined in part by cognitive constraints and in part by the time costs of servicing relationships. Online social networking offers the potential to break through the glass ceiling imposed by at least the second of these, potentially enabling us to maintain much larger social networks. This is tested using two separate UK surveys, each randomly stratified by age, gen...

  20. Do online social media cut through the constraints that limit the size of offline social networks? (United States)

    Dunbar, R I M


    The social brain hypothesis has suggested that natural social network sizes may have a characteristic size in humans. This is determined in part by cognitive constraints and in part by the time costs of servicing relationships. Online social networking offers the potential to break through the glass ceiling imposed by at least the second of these, potentially enabling us to maintain much larger social networks. This is tested using two separate UK surveys, each randomly stratified by age, gender and regional population size. The data show that the size and range of online egocentric social networks, indexed as the number of Facebook friends, is similar to that of offline face-to-face networks. For one sample, respondents also specified the number of individuals in the inner layers of their network (formally identified as support clique and sympathy group), and these were also similar in size to those observed in offline networks. This suggests that, as originally proposed by the social brain hypothesis, there is a cognitive constraint on the size of social networks that even the communication advantages of online media are unable to overcome. In practical terms, it may reflect the fact that real (as opposed to casual) relationships require at least occasional face-to-face interaction to maintain them.

  1. Student Learning Networks on Residential Field Courses: Does Size Matter? (United States)

    Langan, A. Mark; Cullen, W. Rod; Shuker, David M.


    This article describes learner and tutor reports of a learning network that formed during the completion of investigative projects on a residential field course. Staff and students recorded project-related interactions, who they were with and how long they lasted over four phases during the field course. An enquiry based learning format challenged…

  2. Research Note: Networking Among Small and Medium-sized Enterprises

    DEFF Research Database (Denmark)

    Limborg, Hans Jørgen; Grøn, Sisse; Flensborg Jensen, Maya


    Researchers and regulatory bodies lack an in-depth understanding of how small and mediumsized enterprises (SMEs) make decisions about workplace health and safety improvements and the role played by business networks in these decisions. To improve regulation and support there is a need to understa...

  3. Size matters: concurrency and the epidemic potential of HIV in small networks.

    Directory of Open Access Journals (Sweden)

    Nicole Bohme Carnegie

    Full Text Available BACKGROUND: Generalized heterosexual epidemics are responsible for the largest share of the global burden of HIV. These occur in populations that do not have high rates of partner acquisition, and research suggests that a pattern of fewer, but concurrent, partnerships may be the mechanism that provides the connectivity necessary for sustained transmission. We examine how network size affects the impact of concurrency on network connectivity. METHODOLOGY/PRINCIPAL FINDINGS: We use a stochastic network model to generate a sample of networks, varying the size of the network and the level of concurrency, and compare the largest components for each scenario to the asymptotic expected values. While the threshold for the growth of a giant component does not change, the transition is more gradual in the smaller networks. As a result, low levels of concurrency generate more connectivity in small networks. CONCLUSIONS/SIGNIFICANCE: Generalized HIV epidemics are by definition those that spread to a larger fraction of the population, but the mechanism may rely in part on the dynamics of transmission in a set of linked small networks. Examples include rural populations in sub-Saharan Africa and segregated minority populations in the US, where the effective size of the sexual network may well be in the hundreds, rather than thousands. Connectivity emerges at lower levels of concurrency in smaller networks, but these networks can still be disconnected with small changes in behavior. Concurrency remains a strategic target for HIV combination prevention programs in this context.

  4. Design of a Seismic Reflection Multi-Attribute Workflow for Delineating Karst Pore Systems Using Neural Networks and Statistical Dimensionality Reduction Techniques (United States)

    Ebuna, D. R.; Kluesner, J.; Cunningham, K. J.; Edwards, J. H.


    An effective method for determining the approximate spatial extent of karst pore systems is critical for hydrological modeling in such environments. When using geophysical techniques, karst features are especially challenging to constrain due to their inherent heterogeneity and complex seismic signatures. We present a method for mapping these systems using three-dimensional seismic reflection data by combining applications of machine learning and modern data science. Supervised neural networks (NN) have been successfully implemented in seismic reflection studies to produce multi-attributes (or meta-attributes) for delineating faults, chimneys, salt domes, and slumps. Using a seismic reflection dataset from southeast Florida, we develop an objective multi-attribute workflow for mapping karst in which potential interpreter bias is minimized by applying linear and non-linear data transformations for dimensionality reduction. This statistical approach yields a reduced set of input seismic attributes to the NN by eliminating irrelevant and overly correlated variables, while still preserving the vast majority of the observed data variance. By initiating the supervised NN from an eigenspace that maximizes the separation between classes, the convergence time and accuracy of the computations are improved since the NN only needs to recognize small perturbations to the provided decision boundaries. We contend that this 3D seismic reflection, data-driven method for defining the spatial bounds of karst pore systems provides great value as a standardized preliminary step for hydrological characterization and modeling in these complex geological environments.

  5. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model (United States)

    Ruspini, L. C.; Farokhpoor, R.; Øren, P. E.


    We present a pore-network model study of capillary trapping in water-wet porous media. The amount and distribution of trapped non-wetting phase is determined by the competition between two trapping mechanisms - snap-off and cooperative pore-body filling. We develop a new model to describe the pore-body filling mechanism in geologically realistic pore-networks. The model accounts for the geometrical characteristics of the pore, the spatial location of the connecting throats and the local fluid topology at the time of the displacement. We validate the model by comparing computed capillary trapping curves with published data for four different water-wet rocks. Computations are performed on pore-networks extracted from micro-CT images and process-based reconstructions of the actual rocks used in the experiments. Compared with commonly used stochastic models, the new model describes more accurately the experimental measurements, especially for well connected porous systems where trapping is controlled by subtleties of the pore structure. The new model successfully predicts relative permeabilities and residual saturation for Bentheimer sandstone using in-situ measured contact angles as input to the simulations. The simulated trapped cluster size distributions are compared with predictions from percolation theory.

  6. Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers (United States)

    Fazeli, Mohammadreza; Hinebaugh, James; Fishman, Zachary; Tötzke, Christian; Lehnert, Werner; Manke, Ingo; Bazylak, Aimy


    Understanding how compression affects the distribution of liquid water and gaseous oxygen in the polymer electrolyte membrane fuel cell gas diffusion layer (GDL) is vital for informing the design of improved porous materials for effective water management strategies. Pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures. The oxygen transport resistance was predicted for each sample under dry and partially saturated conditions. A favorable GDL compression value for a preferred liquid water distribution and oxygen diffusion was found for Toray TGP-H-090 (10%), yet an optimum compression value was not recognized for SGL Sigracet 25BC. SGL Sigracet 25BC exhibited lower transport resistance values compared to Toray TGP-H-090, and this is attributed to the additional diffusion pathways provided by the microporous layer (MPL), an effect that is particularly significant under partially saturated conditions.

  7. The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size

    DEFF Research Database (Denmark)

    Christensen, Alex Hørby; Chatelain, Franck C; Huttner, Inken G


    The two-pore domain potassium (K(+)) channel TWIK-1 (or K2P1.1) contributes to background K(+) conductance in diverse cell types. TWIK-1, encoded by the KCNK1 gene, is present in the human heart with robust expression in the atria, however its physiological significance is unknown. To evaluate th...

  8. Positron insight into evolution of pore volume and penetration of the polymer network by n-heptane molecules in mesoporous XAD4. (United States)

    Zaleski, Radosław; Kierys, Agnieszka; Gorgol, Marek


    The adsorption and desorption of n-heptane on the mesoporous polymer resin Amberlite XAD4 were investigated in situ by positron annihilation lifetime spectroscopy (PALS). This technique allows the monitoring of porosity and subnanometer free volume changes as well as the amount of liquid adsorbate captured within an investigated sorbent, without causing any interference with the course of adsorption/desorption. In consequence, the conducted studies provide microscale insight into the sorption processes of n-heptane (which is a significant component of volatile organic compounds - VOCs) on the polymeric material. The total pore volume decreases parabolically with n-heptane pressure until it reaches zero just below the saturated vapor pressure. Simultaneously, the average pore size increases linearly until it has approximately doubled. However, much faster rates of change in both these parameters occur at relative pressures below 0.05. The PALS results can be properly explained only if the swelling of the polymer skeleton is taken into account during the alkane adsorption process. This is confirmed by long-term pumping, which was required to achieve stabilization of PAL spectra during the final phase of desorption. In addition, the evolution of subnanometer free volumes (located between polymer chains and formed in liquid n-heptane) support this interpretation of the results.

  9. Size-dependent regulation of synchronized activity in living neuronal networks. (United States)

    Yamamoto, Hideaki; Kubota, Shigeru; Chida, Yudai; Morita, Mayu; Moriya, Satoshi; Akima, Hisanao; Sato, Shigeo; Hirano-Iwata, Ayumi; Tanii, Takashi; Niwano, Michio


    We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (∼20 cells), medium (∼100 cells), and large (∼400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this.

  10. Geometry-driven cell organization determines tissue growths in scaffold pores: consequences for fibronectin organization.

    Directory of Open Access Journals (Sweden)

    Pascal Joly

    Full Text Available To heal tissue defects, cells have to bridge gaps and generate new extracellular matrix (ECM. Macroporous scaffolds are frequently used to support the process of defect filling and thus foster tissue regeneration. Such biomaterials contain micro-voids (pores that the cells fill with their own ECM over time. There is only limited knowledge on how pore geometry influences cell organization and matrix production, even though it is highly relevant for scaffold design. This study hypothesized that 1 a simple geometric description predicts cellular organization during pore filling at the cell level and that 2 pore closure results in a reorganization of ECM. Scaffolds with a broad distribution of pore sizes (macroporous starPEG-heparin cryogel were used as a model system and seeded with primary fibroblasts. The strategies of cells to fill pores could be explained by a simple geometrical model considering cells as tensioned chords. The model matched qualitatively as well as quantitatively by means of cell number vs. open cross-sectional area for all pore sizes. The correlation between ECM location and cell position was higher when the pores were not filled with tissue (Pearson's coefficient ρ = 0.45±0.01 and reduced once the pores were closed (ρ = 0.26±0.04 indicating a reorganization of the cell/ECM network. Scaffold pore size directed the time required for pore closure and furthermore impacted the organization of the fibronectin matrix. Understanding how cells fill micro-voids will help to design biomaterial scaffolds that support the endogenous healing process and thus allow a fast filling of tissue defects.

  11. Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; Kneafsey, Timothy J.; Mehta, Hardeep


    Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO2 (scCO2) and a prolonged depletion of residual scCO2. In this study, pore-scale scCO2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO2 into the sandstone-analogue pore network initially saturated by water without dissolved CO2 (dsCO2). During the experiments, time-lapse images of dye intensity, reflecting water pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO2 dissolution and phase equilibrium occurs when scCO2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO2 dissolution at phase interfaces and diffusion of dsCO2 at the pore scale (10-100 µm) observed after scCO2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase


    Directory of Open Access Journals (Sweden)

    Piet Stroeven


    Full Text Available This paper concentrates on discrete element computer-simulation of concrete. It is argued on the basis of stochastic heterogeneity theory that modern concurrent-algorithm-based systems should be employed for the assessment of pore characteristics underlying durability performance of cementitious materials. The SPACE system was developed at Delft University of Technology for producing realistic schematizations of realcrete for a wide range of other particle packing problems, involving aggregate and fresh cement, and for the purpose of exploring characteristics in the hardened state of concrete, including of the pore network structure because of obvious durability problems. Since structure-sensitive properties are involved, schematization of reality should explicitly deal with the configuration of the cement particles in the fresh state. The paper concentrates on the stereological and mathematical morphology operations executed to acquire information on particle size, global porosity, and on distribution of porosity and of the connected pore fraction as a result of the near neighbourhood of aggregate grains. Goal is to provide information obtained along different exploration routes of concrete's pore space for setting up a pore network modelling approach. This type of methodological papers is scarce in concrete technology, if not missing at all. Technical publications that report on obtained results in our investigations are systematically referred to.

  13. Unlocking the Physiochemical Controls on Organic Carbon Dynamics from the Soil Pore- to Core-Scale (United States)

    Smith, A. P.; Tfaily, M. M.; Bond-Lamberty, B. P.; Todd-Brown, K. E.; Bailey, V. L.


    The physical organization of soil includes pore networks of varying size and connectivity. These networks control microbial access to soil organic carbon (C) by spatially separating microorganisms and C by both distance and size exclusion. The extent to which this spatially isolated C is vulnerable to microbial transformation under hydrologically dynamic conditions is unknown, and limits our ability to predict the source and sink capacity of soils. We investigated the effects of shifting hydrologic connectivity and soil structure on greenhouse gas C emissions from surface soils collected from the Disney Wilderness Preserve (Florida, USA). We subjected intact soil cores and re-packed homogenized soil cores to simulated groundwater rise or precipitation, monitoring their CO2 and CH4 emissions over 24 hours. Soil pore water was then extracted from each core using different suctions to sample water retained by pore throats of different sizes and then characterized by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Greater respiration rates were observed from homogenized cores compared to intact cores, and from soils wet from below, in which the wetting front is driven by capillary forces, filling fine pores first. This suggests that C located in fine pores may turn over via diffusion processes that lead to the colocation of this C with other resources and microorganisms. Both the complexity and concentration of soluble-C increased with decreasing pore size domains. Pore water extracted from homogenized cores had greater C concentrations than from intact cores, with the greatest concentrations in pore waters sampled from very fine pores, highlighting the importance of soil structure in physically protecting C. These results suggest that the spatial separation of decomposers from C is a key mechanism stabilizing C in these soils. Further research is ongoing to accurately represent this protection mechanism, and the conditions under which it breaks

  14. Contingent association between the size of the social support network and osteoporosis among Korean elderly women. (United States)

    Lee, Seungwon; Seo, Da Hea; Kim, Kyoung Min; Lee, Eun Young; Kim, Hyeon Chang; Kim, Chang Oh; Youm, Yoosik; Rhee, Yumie


    To investigate the association between the number of personal ties (or the size of the social support network) and the incidence of osteoporosis among older women in Korea. Data from the Korean Urban Rural Elderly Study were used. Bone density was measured by dual-energy X-ray absorptiometry at the lumbar spine (L1-L4) and femur neck. T-score, the standardized bone density compared with what is normally expected in a healthy young adult, was measured and the presence of osteoporosis was determined, if the T-score was social support network size was measured by self-responses (number of confidants and spouse). Of the 1,846 participants, 44.9% were diagnosed with osteoporosis. The association between the social support network size and the incidence of osteoporosis was curvilinear in both bivariate and multivariate analyses. Having more people in one's social support network size was associated with lower risk of osteoporosis until it reached around four. Increasing the social support network size beyond four, in contrast, was associated with a higher risk of osteoporosis. This association was contingent on the average intimacy level of the social network. At the highest average intimacy level ("extremely close"), increasing the number of social support network members from one to six was associated with linear decrease in the predicted probability of osteoporosis from 45% to 30%. However, at the lowest average intimacy level ("not very close"), the predicted probability of osteoporosis dramatically increased from 48% to 80% as the size of the social network increased from one to six. Our results show that maintaining a large and intimate social support network is associated with a lower risk of osteoporosis among elderly Korean women, while a large but less-intimate social relationship is associated with a higher risk.

  15. Use of social network sites and instant messaging does not lead to increased offline social network size, or to emotionally closer relationships with offline network members. (United States)

    Pollet, Thomas V; Roberts, Sam G B; Dunbar, Robin I M


    The effect of Internet use on social relationships is still a matter of intense debate. This study examined the relationships between use of social media (instant messaging and social network sites), network size, and emotional closeness in a sample of 117 individuals aged 18 to 63 years old. Time spent using social media was associated with a larger number of online social network "friends." However, time spent using social media was not associated with larger offline networks, or feeling emotionally closer to offline network members. Further, those that used social media, as compared to non-users of social media, did not have larger offline networks, and were not emotionally closer to offline network members. These results highlight the importance of considering potential time and cognitive constraints on offline social networks when examining the impact of social media use on social relationships.

  16. Percolated pore networks of oxygen plasma-activated multi-walled carbon nanotubes for fast response, high sensitivity capacitive humidity sensors (United States)

    Hong, H. P.; Jung, K. H.; Kim, J. H.; Kwon, K. H.; Lee, C. J.; Yun, K. N.; Min, N. K.


    We report on the preparation of capacitive-type relative humidity sensors incorporating plasma-activated multi-wall carbon nanotube (p-MWCNT) electrodes and on their performance compared with existing commercial technology. Highly open porous conductive electrodes, which are almost impossible to obtain with conventional metal electrodes, are fabricated by spray-depositing MWCNT networks on a polyimide layer. Oxygen plasma activation of the MWCNTs is also explored to improve the water adsorption of the MWCNT films, by introducing oxygen-containing functional groups on the CNT surface. Polyimide humidity sensors with optimized p-MWCNT network electrodes exhibit exceptionally fast response times (1.5 for adsorption and 2 s for desorption) and high sensitivity (0.75 pF/% RH). These results may be partially due to their percolated pore structure being more accessible for water molecules, expending the diffusion of moisture to the polyimide sensing film, and partially due to the oxygenated surface of p-MWCNT films, allocating more locations for adsorption or attraction of water molecules to contribute to the sensitivity.

  17. Gender differences in social network size and satisfaction in adults in their 70s. (United States)

    McLaughlin, Deirdre; Vagenas, Dimitrios; Pachana, Nancy A; Begum, Nelufa; Dobson, Annette


    Strong social support is associated with lower mortality and morbidity and better self-rated health in later life. The aim of this study was to compare social network size and satisfaction in men (N = 2589) and women (n = 3152), aged 72-78 years. Women reported significantly larger networks (Difference 1.36, 95% CI 0.89, 1.83) than men. However, being separated, divorced or single had a significantly greater impact on men's social networks (Difference 0.92, 95% CI 0.17, 1.68). Poor mental health and sensory impairments were associated with smaller networks and lower satisfaction with support for both men and women.

  18. Use of Social Network Sites and Instant Messaging Does Not Lead to Increased Offline Social Network Size, or to Emotionally Closer Relationships with Offline Network Members

    NARCIS (Netherlands)

    Pollet, Thomas V.; Roberts, Sam G. B.; Dunbar, Robin I. M.

    The effect of Internet use on social relationships is still a matter of intense debate. This study examined the relationships between use of social media (instant messaging and social network sites), network size, and emotional closeness in a sample of 117 individuals aged 18 to 63 years old. Time

  19. Empirically determining the sample size for large-scale gene network inference algorithms. (United States)

    Altay, G


    The performance of genome-wide gene regulatory network inference algorithms depends on the sample size. It is generally considered that the larger the sample size, the better the gene network inference performance. Nevertheless, there is not adequate information on determining the sample size for optimal performance. In this study, the author systematically demonstrates the effect of sample size on information-theory-based gene network inference algorithms with an ensemble approach. The empirical results showed that the inference performances of the considered algorithms tend to converge after a particular sample size region. As a specific example, the sample size region around ≃64 is sufficient to obtain the most of the inference performance with respect to precision using the representative algorithm C3NET on the synthetic steady-state data sets of Escherichia coli and also time-series data set of a homo sapiens subnetworks. The author verified the convergence result on a large, real data set of E. coli as well. The results give evidence to biologists to better design experiments to infer gene networks. Further, the effect of cutoff on inference performances over various sample sizes is considered. [Includes supplementary material].

  20. A Markov model for the temporal dynamics of balanced random networks of finite size (United States)

    Lagzi, Fereshteh; Rotter, Stefan


    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between

  1. Scandium functionalized carbon aerogel: Synthesis of nanoparticles and structure of a new ScOCl and properties of NaAlH{sub 4} as a function of pore size

    Energy Technology Data Exchange (ETDEWEB)

    Javadian, Payam; Nielsen, Thomas K. [Center for Energy Materials, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000 Aarhus (Denmark); Ravnsbæk, Dorthe B. [Department of Material Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02142, MA (United States); Jepsen, Lars H. [Center for Energy Materials, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000 Aarhus (Denmark); Polanski, Marek [Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw (Poland); Plocinski, Tomasz [Faculty of Material Science and Engineering, Warsaw University of Technology, 144 Woloska Str., 02-507 Warsaw (Poland); Kunce, Izabela [Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw (Poland); Besenbacher, Flemming [Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Bystrzycki, Jerzy [Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw (Poland); Jensen, Torben R., E-mail: [Center for Energy Materials, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000 Aarhus (Denmark)


    A new method for scandium-functionalization of carbon aerogels forming nanoparticles of a new scandiumoxochloride, ScOCl is presented. Sodium aluminiumhydride, NaAlH{sub 4}, is successfully melt infiltrated into the nano porous scaffolds with pore sizes of D{sub max}=7, 10, 13, 21, 26 and 39 nm, containing scandium based nano particles (<2.9 wt%) confirmed by elemental analysis and scanning electron microscopy. A systematic study of hydrogen storage properties of the nano composite materials is presented. An aqueous solution of ScCl{sub 3} was initially infiltrated and formed nanoconfined [Sc(OH)(H{sub 2}O){sub 5}]{sub 2}Cl{sub 4}(H{sub 2}O){sub 2}, which transforms to nanoparticles of a new scandium oxochloride, ScOCl at 192 °C and to Sc{sub 2}O{sub 3} at 420 °C. ScOCl crystallizes in an orthorhombic unit cell a=3.4409(8), b=3.9613(6) and c=8.178(2) Å, space group Pmmn, and is built from layers of [ScO{sub 4}Cl{sub 2}] octahedra forming neutral ScOCl layers. Temperature programmed desorption mass spectroscopy shows slightly improved kinetics for release of hydrogen with decreasing pore size. Continuous cycling of hydrogen release and uptake measured by the Sieverts' method reveal a larger preserved hydrogen storage capacity for scandium-functionalized aerogel with the larger pores (39 nm). - Highlights: • New synthesis approach for nanoporous Sc-functionalization carbon aerogel (Sc-CA). • The new scandium oxochloride, ScOCl, structure is obtained. • NaAlH{sub 4} nanoconfined in Sc-CA with pores ranging between 7 nmpore size. • Nanoconfinement (D{sub max}=39 nm) retains 71% of the H{sub 2} capacity after four cycles.

  2. Evaluation of Pore Networks in Caprocks at Geologic Storage Sites: A Combined Study using High Temperature and Pressure Reaction Experiments, Small Angle Neutron Scattering, and Focused Ion Beam-Scanning Electron Microscopy (United States)

    Mouzakis, K. M.; Sitchler, A.; Wang, X.; McCray, J. E.; Kaszuba, J. P.; Rother, G.; Dewers, T. A.; Heath, J. E.


    Low permeability rock units, often shales or mudstones, that overlie geologic formations under consideration for CO2 sequestration will help contain injected CO2. CO2 that does flow through these rocks will dissolve into the porewaters, creating carbonic acid lowering the pH. This perturbation of the system may result in mineral dissolution or precipitation, which can change the pore structure and impact the flow properties of the caprocks. In order to investigate the impacts that reaction can have on caprock pore structure, we performed a combination of high pressure high temperature reaction experiments, small angle neutron scattering (SANS) experiments and high resolution focused ion beam-scanning electron microscope (FIB-SEM) imaging on samples from the Gothic shale and Marine Tuscaloosa Group. Small angle neutron scattering was performed on unreacted and reacted caprocks at the High Flux Isotope Reactor at Oak Ridge National Laboratory. New precipitates and pores are observed in high-resolution images of the reacted samples. The precipitates have been preliminarily identified as gypsum or anhydrite, and sulfide minerals. Results from small angle neutron scattering, a technique that provides information about pores and pore/mineral interfaces at scales ~ 5 to 300 nm, show an increased porosity and specific surface area after reaction with brine and CO2. However, there appear to be differences in how the pore networks change between the two samples that are related to sample mineralogy and original pore network structure. Changes to pores and formation of new pores may lead to different capillary sealing behavior and permeability. This combination of controlled laboratory experiments, neutron scattering and high-resolution imaging provides detailed information about the geochemical processes that occur at the pore scale as CO2 reacts with rocks underground. Such information is integral to the evaluation of large-scale CO2 sequestration as a feasible technology

  3. SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size (United States)

    Dong, Suyalatu; Deng, Yan-Bin; Huang, Yong-Chang


    Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network. Supported by National Natural Science Foundation of China under Grant Nos. 11275017 and 11173028

  4. Influence of Porosity and Pore-Size Distribution in Ti6Al4 V Foam on Physicomechanical Properties, Osteogenesis, and Quantitative Validation of Bone Ingrowth by Micro-Computed Tomography. (United States)

    Kapat, Kausik; Srivas, Pavan Kumar; Rameshbabu, Arun Prabhu; Maity, Priti Prasanna; Jana, Subhodeep; Dutta, Joy; Majumdar, Pallab; Chakrabarti, Debalay; Dhara, Santanu


    Cementless fixation for orthopedic implants aims to obviate challenges associated with bone cement, providing long-term stability of bone prostheses after implantation. The application of porous titanium and its alloy-based implants is emerging for load-bearing applications due to their high specific strength, low stiffness, corrosion resistance, and superior osteoconductivity. In this study, coagulant-assisted foaming was utilized for the fabrication of porous Ti6Al4 V using egg-white foam. Samples with three different porosities of 68.3%, 75.4%, and 83.1% and average pore sizes of 92, 178, and 297 μm, respectively, were prepared and subsequently characterized for mechanical properties, osteogenesis, and tissue ingrowth. A microstructure-mechanical properties relationship study revealed that an increase of porosity from 68.3 to 83.1% increased the average pore size from 92 to 297 μm with the subsequent reduction of compresive strength by 85% and modulus by 90%. Samples with 75.4% porosity and a 178 μm average pore size produced signifcant osteogenic effects on human mesenchymal stem cells, which was further supported by immunocytochemistry and real-time polymerase chain reaction data. Quantitative assessment of bone ingrowth by micro-computed tomography revealed that there was an approximately 52% higher bone formation and more than 90% higher bone penetration at the center of femoral defects in rabbit when implanted with Ti6Al4 V foam (75.4% porosity) compared to the empty defects after 12 weeks. Hematoxylin and eosin (H&E) and Masson trichrome (MT) staining along with energy-dispersive X-ray mapping on the sections obtained from the retrieved bone samples support bone ingrowth into the implanted region.

  5. Facial Pores: Definition, Causes, and Treatment Options. (United States)

    Lee, Sang Ju; Seok, Joon; Jeong, Se Yeong; Park, Kui Young; Li, Kapsok; Seo, Seong Jun


    Enlarged skin pores refer to conditions that present with visible topographic changes of skin surfaces. Although not a medical concern, enlarged pores are a cosmetic concern for a large number of individuals. Moreover, clear definition and possible causes of enlarged pores have not been elucidated. To review the possible causes and treatment options for skin pores. This article is based on a review of the medical literature and the authors' clinical experience in investigating and treating skin pores. There are 3 major clinical causes of enlarged facial pores, namely high sebum excretion, decreased elasticity around pores, and increased hair follicle volume. In addition, chronic recurrent acne, sex hormones, and skin care regimen can affect pore size. Given the different possible causes for enlarged pores, therapeutic modalities must be individualized for each patient. Potential factors that contribute to enlarged skin pores include excessive sebum, decreased elasticity around pores, and increased hair follicle volume. Because various factors cause enlarged facial pores, it might be useful to identify the underlying causes to be able to select the appropriate treatment.

  6. Turbofan engine diagnostics neuron network size optimization method which takes into account overlaerning effect

    Directory of Open Access Journals (Sweden)

    О.С. Якушенко


    Full Text Available  The article is devoted to the problem of gas turbine engine (GTE technical state class automatic recognition with operation parameters by neuron networks. The one of main problems for creation the neuron networks is determination of their optimal structures size (amount of layers in network and count of neurons in each layer.The method of neuron network size optimization intended for classification of GTE technical state is considered in the article. Optimization is cared out with taking into account of overlearning effect possibility when a learning network loses property of generalization and begins strictly describing educational data set. To determinate a moment when overlearning effect is appeared in learning neuron network the method  of three data sets is used. The method is based on the comparison of recognition quality parameters changes which were calculated during recognition of educational and control data sets. As the moment when network overlearning effect is appeared the moment when control data set recognition quality begins deteriorating but educational data set recognition quality continues still improving is used. To determinate this moment learning process periodically is terminated and simulation of network with education and control data sets is fulfilled. The optimization of two-, three- and four-layer networks is conducted and some results of optimization are shown. Also the extended educational set is created and shown. The set describes 16 GTE technical state classes and each class is represented with 200 points (200 possible technical state class realizations instead of 20 points using in the former articles. It was done to increase representativeness of data set.In the article the algorithm of optimization is considered and some results which were obtained with it are shown. The results of experiments were analyzed to determinate most optimal neuron network structure. This structure provides most high-quality GTE

  7. Effective porosity and pore-throat sizes of mudrock saprolite from the Nolichucky Shale within Bear Creek Valley on the Oak Ridge Reservation: Implications for contaminant transport and retardation through matrix diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Dorsch, J. [Oak Ridge National Laboratory, TN (United States); Katsube, T.J. [Geological Survey of Canada, Ottawa, Ontario (Canada)


    Specimens of saprolite developed from mudrock of the Nolichucky Shale (Upper Cambrian, Conasauga Group) from the Whiteoak Mountain thrust sheet on the Oak Ridge Reservation (ORR) were analyzed. Petrophysical techniques include helium porosimetry and mercury porosimetry. Petrophysical data obtained from the laboratory experiments include effective porosity, pore-throat sizes and their distribution, specimen bulk-density, and specimen grain-density. It is expected that the data from this study will significantly contribute to constraining the modeling of the hydrologic behavior of saprolite developed from mudrock of the Conasauga Group in general and from the Nolichucky Shale specifically.

  8. Estimating the Size of a Large Network and its Communities from a Random Sample. (United States)

    Chen, Lin; Karbasi, Amin; Crawford, Forrest W


    Most real-world networks are too large to be measured or studied directly and there is substantial interest in estimating global network properties from smaller sub-samples. One of the most important global properties is the number of vertices/nodes in the network. Estimating the number of vertices in a large network is a major challenge in computer science, epidemiology, demography, and intelligence analysis. In this paper we consider a population random graph G = (V, E) from the stochastic block model (SBM) with K communities/blocks. A sample is obtained by randomly choosing a subset W ⊆ V and letting G(W) be the induced subgraph in G of the vertices in W. In addition to G(W), we observe the total degree of each sampled vertex and its block membership. Given this partial information, we propose an efficient PopULation Size Estimation algorithm, called PULSE, that accurately estimates the size of the whole population as well as the size of each community. To support our theoretical analysis, we perform an exhaustive set of experiments to study the effects of sample size, K, and SBM model parameters on the accuracy of the estimates. The experimental results also demonstrate that PULSE significantly outperforms a widely-used method called the network scale-up estimator in a wide variety of scenarios.

  9. Probabilistic structure of the distance between tributaries of given size in river networks (United States)

    Convertino, Matteo; Rigon, Riccardo; Maritan, Amos; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea


    We analyze the distribution of the distances between tributaries of a given size (or of sizes larger than a given area) draining along either an open boundary or the mainstream of a river network. By proposing a description of the distance separating prescribed merging contributing areas, we also address related variables, like mean (or bankfull) flow rates and channel and riparian area widths, which are derived under a set of reasonable hydrologic assumptions. The importance of such distributions lies in their ecological, hydrologic, and geomorphic implications on the spreading of species along the ecological corridor defined by the river network and on the propagation of infections due to water-borne diseases, particularly in view of exact theoretical predictions explicitly using the alongstream distribution of confluences carrying a given flow. Use is made here of real river networks, suitably extracted from digital elevation models, optimal channel networks, and exactly solved tree-like constructs like the Peano and the Scheidegger networks. The results obtained redefine theoretically in a coherent and general manner and verify observationally the distribution function of the above distances and thus provide the general probabilistic structure of tributaries in river networks. Specifically, we find that the probability of exceedence of the alongstream distance d of tributaries of size larger than a has the explicit form P(≥d) = exp (-Cd/aH/(1+H)), where C is a constant that depends on the choice of boundary conditions and H ≤ 1 is the Hurst exponent.

  10. Tight bounds on the size of neural networks for classification problems

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V. [Los Alamos National Lab., NM (United States); Pauw, T. de [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium). Dept. de Mathematique


    This paper relies on the entropy of a data-set (i.e., number-of-bits) to prove tight bounds on the size of neural networks solving a classification problem. First, based on a sequence of geometrical steps, the authors constructively compute an upper bound of O(mn) on the number-of-bits for a given data-set - here m is the number of examples and n is the number of dimensions (i.e., R{sup n}). This result is used further in a nonconstructive way to bound the size of neural networks which correctly classify that data-set.

  11. The social network-network: size is predicted by brain structure and function in the amygdala and paralimbic regions. (United States)

    Von Der Heide, Rebecca; Vyas, Govinda; Olson, Ingrid R


    The social brain hypothesis proposes that the large size of the primate neocortex evolved to support complex and demanding social interactions. Accordingly, recent studies have reported correlations between the size of an individual's social network and the density of gray matter (GM) in regions of the brain implicated in social cognition. However, the reported relationships between GM density and social group size are somewhat inconsistent with studies reporting correlations in different brain regions. One factor that might account for these discrepancies is the use of different measures of social network size (SNS). This study used several measures of SNS to assess the relationships SNS and GM density. The second goal of this study was to test the relationship between social network measures and functional brain activity. Participants performed a social closeness task using photos of their friends and unknown people. Across the VBM and functional magnetic resonance imaging analyses, individual differences in SNS were consistently related to structural and functional differences in three regions: the left amygdala, right amygdala and the right entorhinal/ventral anterior temporal cortex. © The Author (2014). Published by Oxford University Press. For Permissions, please email:

  12. A microfluidic platform for size-dependent generation of droplet interface bilayer networks on rails (United States)

    Carreras, P.; Elani, Y.; Law, R. V.; Brooks, N. J.; Seddon, J. M.; Ces, O.


    Droplet interface bilayer (DIB) networks are emerging as a cornerstone technology for the bottom up construction of cell-like and tissue-like structures and bio-devices. They are an exciting and versatile model-membrane platform, seeing increasing use in the disciplines of synthetic biology, chemical biology, and membrane biophysics. DIBs are formed when lipid-coated water-in-oil droplets are brought together—oil is excluded from the interface, resulting in a bilayer. Perhaps the greatest feature of the DIB platform is the ability to generate bilayer networks by connecting multiple droplets together, which can in turn be used in applications ranging from tissue mimics, multicellular models, and bio-devices. For such applications, the construction and release of DIB networks of defined size and composition on-demand is crucial. We have developed a droplet-based microfluidic method for the generation of different sized DIB networks (300–1500 pl droplets) on-chip. We do this by employing a droplet-on-rails strategy where droplets are guided down designated paths of a chip with the aid of microfabricated grooves or “rails,” and droplets of set sizes are selectively directed to specific rails using auxiliary flows. In this way we can uniquely produce parallel bilayer networks of defined sizes. By trapping several droplets in a rail, extended DIB networks containing up to 20 sequential bilayers could be constructed. The trapped DIB arrays can be composed of different lipid types and can be released on-demand and regenerated within seconds. We show that chemical signals can be propagated across the bio-network by transplanting enzymatic reaction cascades for inter-droplet communication. PMID:26759638

  13. An on-chip cardiomyocyte cell network assay for stable drug screening regarding community effect of cell network size. (United States)

    Kaneko, Tomoyuki; Kojima, Kensuke; Yasuda, Kenji


    We investigate the effect of haloperidol on a four-cell and nine-cell cardiomyocyte network on an agarose microchamber array chip to evaluate a cell-based model for drug screening. Using a network of cardiomyocytes whose beating intervals were stable and relatively uniform (they only fluctuated 10% from the mean beating interval), we easily observed the effect of haloperidol on the cell network beating interval 5 min after administering it. We also observed the beating interval returned to its original state 10 min after the haloperidol was washed out of the chip. Although the four-cell network showed the unstable recovery of its beating rhythm after washout of haloperidol, the nine-cell network recovered completely to the stable original beating rhythm even after a second administration of haloperidol. The results indicate the importance of the community size in cell networks used in the stable cell-based screening model. Moreover, they indicate the advantage of using direct cell-based measurements in which the amount of drug administered and the time course over which it is administered are strictly controlled for evaluating the quantitative chemical effects of drugs on cells.

  14. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes

    Directory of Open Access Journals (Sweden)

    Armin Delavari


    Full Text Available Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL. PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle–membrane interactions at the pore mouth result in particle “funneling” in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined.

  15. Polarimetric weather radar retrieval of raindrop size distribution by means of a regularized artificial neural network

    NARCIS (Netherlands)

    Vulpiani, G.; Marzano, F.S.; Chandrasekar, V.; Berne, A.D.; Uijlenhoet, R.


    The raindrop size distribution (RSD) is a critical factor in estimating rain intensity using advanced dual-polarized weather radars. A new neural-network algorithm to estimate the RSD from S-band dual-polarized radar measurements is presented. The corresponding rain rates are then computed assuming

  16. A stochastic-field description of finite-size spiking neural networks. (United States)

    Dumont, Grégory; Payeur, Alexandre; Longtin, André


    Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity-the density of active neurons per unit time-is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics.

  17. HRM implications for network collaboration of small and medium sized companies

    DEFF Research Database (Denmark)

    Kesting, Peter; Müller, Sabine; Jørgensen, Frances

    Collaboration in innovation networks is particularly important for small and medium enterprises (SMEs) to remain competitive in a rapidly changing environment. Collaboration may however be particularly challenging for SMEs, due to their size and their inherent shortage of resources. In this paper...

  18. Immobilization of nanobeads on a surface to control the size, shape and distribution of pores in electrochemically generated sol-gel films (United States)

    Ciabocco, Michela; Berrettoni, Mario; Zamponi, Silvia


    Electrochemically assisted deposition of an ormosil film at a potential where hydrogen ion is generated as the catalyst yields insulating films on electrodes. When the base electrode is modified with 20-nm poly(styrene sulfonate), PSS, beads bound to the surface with 3-aminopropyltriethoxysilane (APTES) and using (CH3)3SiOCH3 as the precursor, the resulting film of organically modified silica (ormosil) has cylindrical channels that reflect both the diameter of the PSS and the distribution of the APTES-PSS on the electrode. At an electrode modified by a 20-min immersion in 0.5 mmol dm-3 APTES followed by a 30-s immersion in PSS, a 20-min electrolysis at 1.5 V in acidified (CH3)3SiOCH3 resulted in an ormosil film with 20-nm pores separated by 100 nm. Cyclic voltammetry of Ru(CN)64- at scan rates above 5 mVs-1 yielded currents controlled primarily by linear diffusion. Below 5 mVs-1, convection rather than the expected factor, radial diffusion, apparently limited the current. PMID:26167128

  19. Source and Size of Social Support Network on Sedentary Behavior Among Older Adults. (United States)

    Loprinzi, Paul D; Crush, Elizabeth A


    To examine the association of source of social support and size of social support network on sedentary behavior among older adults. Cross-sectional. National Health and Nutrition Examination Survey 2003 to 2006. 2519 older adults (60+ years). Sedentary behavior was assessed via accelerometry over a 7-day period. Social support was assessed via self-report. Sources evaluated include spouse, son, daughter, sibling, neighbor, church member, and friend. Regarding size of social network, participants were asked, "In general, how many close friends do you have?" Multivariable linear regression. After adjustment, there was no evidence of an association between the size of social support network and sedentary behavior. With regard to specific sources of social support, spousal social support was associated with less sedentary behavior (β = -11.6; 95% confidence interval: -20.7 to -2.5), with evidence to suggest that this was only true for men. Further, an inverse association was observed between household size and sedentary behavior, with those having a greater number of individuals in the house having lower levels of sedentary behavior. These associations occurred independent of moderate-to-vigorous physical activity, age, gender, race-ethnicity, measured body mass index, total cholesterol, self-reported smoking status, and physician diagnosis of congestive heart failure, coronary artery disease, stroke, cancer, hypertension, or diabetes. Spouse-specific emotion-related social support (particularly for men) and household size were associated with less sedentary behavior.

  20. Particles in Pores

    DEFF Research Database (Denmark)

    Yuan, Hao

    injection, and deep bed filtration during waste water treatment. The current thesis aims at better understanding the transport and fate of colloids in porous media. A number of methodologies have been applied in this study, such as developing new mathematical models for colloid filtration, comparing......Colloid flow, filtration, and migration in porous media are widely observed in importantnatural and industrial processes, such as pathogen (bacteria) spreading in aquifers, colloid-facilitated migration of heavy metal in soils, mud filtration during drilling wells, injectivity decline during water...... the modeling results to experimental observations, uncertainty and sensitivity analysis of the new models, and realizing the pore-scale physics in network models. This thesis has been compiled in such a way that each chapter arises from a selfcontained study targeting a particular problem of colloid filtration...

  1. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Daehee Kim


    Full Text Available Code dissemination in wireless sensor networks (WSNs is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.

  2. The effect of grid size on the quantification of erosion, deposition, and rill network

    Directory of Open Access Journals (Sweden)

    Xiaoyu Lu


    Full Text Available Hillslope rill/interrill erosion has been investigated from the perspective of runoff transport of sediment. Recent advances in terrestrial laser scanning can provide high-resolution elevation data up to centimeter levels, and temporal digital elevation models (DEMs enabled the detection and quantification of sediment redistribution. Erosion and deposition are spatially heterogeneous across hillslopes, and the choice of resolution is critical when using a DEM to study the spatial pattern of the processes. This study investigates the influence of grid size on the sediment change calculation and rill network delineation based on two surveys using a terrestrial laser scanner on a hillslope with well-developed rills in 2014 and 2015. Temporal DEMs were used to quantify elevation changes and used to delineate rill networks. We produced DEM pairs of incremental grid sizes (1-cm, 2-cm, 5-cm, 8-cm, 10-cm, 15-cm, 20-cm, and 30-cm for DEM difference and rill network delineation. We used the 1-cm DEM as the reference to compare the results produced from other DEMs. Our results suggest that erosion mainly occurs on the rill sidewalls, and deposition on the rill floors, with patches of erosion/deposition within the interrill areas. Both the area and volume of detectable change decrease as the grid size increases, while the area and volume of erosion are less sensitive compared to those of deposition. The total length and number of rills decrease with the increased grid size, whereas the average length of rills increases. The mean offset between delineated rill network and the reference increases with larger grid sizes. In contrast to the erosion and deposition detected within rills, minor changes are detected on the interrill areas, indicating that either no topographic changes occurred or the changes were too small to be detected on the interill areas by our finest 1-cm DEMs. We recommend to use the finest possible grid size that can be achieved for future

  3. Distribuição e tamanho de poros em três tipos de solos do estado de São Paulo Pore size-distribution in three types of soil of the state of São Paulo

    Directory of Open Access Journals (Sweden)

    F. Grohmann


    Full Text Available Curvas da distribuição e tamanho de poros dos solos terra-roxa-misturada, terra-roxa-legítima, arenito Bauru e de um bloco de areia foram obtidas pela aplicação das tensões 0-15, 15-30, 30-60 e 60-150 cm de altura de água. Estudaram-se as camadas 0-25, 25-50 e 50-80 cm de profundidade, com sua estrutura natural e em três repetições. Procurou-se, também, caracterizar a porosidade capilar (microporosidade e a não capilar (macroporosidade, tomando-se por base a tensão de 60 cm de altura de água. As curvas de distribuição e tamanho de poros mostram que nas terras roxa-misturada e roxa-legítima o tamanho e distribuição dos poros aumenta em profundidade no perfil de solo. Como conseqüência, a porosidade capilar, que é maior na camada superficial, decresce nas camadas mais profundas do perfil. Em um bloco de areia, com distribuição granulométrica conhecida, aplicamos também as mesmas tensões, e os dados obtidos mostram que 89,9% da água foi extraída do bloco a uma tensão de 30 cm de altura de água, e que 76% dos poros são maiores que 0,2 mm de diâmetro. A porosidade capilar é baixa, sendo elevada a porosidade não capilar.Natural soil cores were used in this study to obtain the pore size-distribution of the "terra-roxa-misturada", "terra-roxa-legítima" and "arenito Bauru". For textural comparison a sand core artificially packed was included in this group of soils. Data for pore space were obtained by water tensions of from 0-15, 15-30, 30-60 and 60-150 cm. The pore space at tension of 60 cm of water was used to define noncapitlary and capillary porosity. The tension-moisture curves of the "terra-roxa-misturada" and "terra-roxa-legíitima" indicated that in both soils the top soil hos a higher percentage of small pores than in the sub-soil. The capillary porosity is also higher in the top soil. In the "arenito Bauru" soil a large proportion of small pores is in the sub-soil. At 30 cm tension a high percentage of woter

  4. Estimating the Size of a Large Network and its Communities from a Random Sample

    CERN Document Server

    Chen, Lin; Crawford, Forrest W


    Most real-world networks are too large to be measured or studied directly and there is substantial interest in estimating global network properties from smaller sub-samples. One of the most important global properties is the number of vertices/nodes in the network. Estimating the number of vertices in a large network is a major challenge in computer science, epidemiology, demography, and intelligence analysis. In this paper we consider a population random graph G = (V;E) from the stochastic block model (SBM) with K communities/blocks. A sample is obtained by randomly choosing a subset W and letting G(W) be the induced subgraph in G of the vertices in W. In addition to G(W), we observe the total degree of each sampled vertex and its block membership. Given this partial information, we propose an efficient PopULation Size Estimation algorithm, called PULSE, that correctly estimates the size of the whole population as well as the size of each community. To support our theoretical analysis, we perform an exhausti...

  5. Size effect on brittle and ductile fracture of two-dimensional interlinked carbon nanotube network (United States)

    Jing, Yuhang; Aluru, N. R.


    The mechanical properties of two-dimensional (2D) interlinked carbon nanotube (CNT) network are investigated using ab initio calculation and molecular dynamics simulations (MD) with Reaxff force field. The simulation results show that bulk 2D interlinked CNT network has good mechanical properties along the axial direction which can be comparable to that of single-walled CNT and graphene, but has better ductility along the radial direction than single-walled CNT and graphene. In addition, the mechanical properties of 2D interlinked CNT network ribbon along the radial direction depend strongly on the size of the ribbon. The Young's modulus and Poisson's ratio decrease as the size increases while the fracture strain increases with the size increasing. By analyzing the atomic structural (both bond length and atomic von Mises stress) evolution of the ribbons, the mechanism of a brittle-to-ductile transition is revealed. The exploration of the mechanical properties of the 2D interlinked CNT network paves the way for application of the relevant devices that can benefit from the high Young's modulus, high tensile strength, and good ductility.

  6. Synchronization in scale-free networks: The role of finite-size effects (United States)

    Torres, D.; Di Muro, M. A.; La Rocca, C. E.; Braunstein, L. A.


    Synchronization problems in complex networks are very often studied by researchers due to their many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, scale-free networks with degree distribution P(k)∼ k-λ , are widely used in research since they are ubiquitous in Nature and other real systems. In this paper we focus on the surface relaxation growth model in scale-free networks with 2.5< λ <3 , and study the scaling behavior of the fluctuations, in the steady state, with the system size N. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of N=N* that depends on λ: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above N* , the fluctuations decrease with λ, which means that the synchronization of the system improves as λ increases. We explain this crossover analyzing the role of the network's heterogeneity produced by the system size N and the exponent of the degree distribution.

  7. Modeling the interaction of ultrasound with pores (United States)

    Lu, Yichi; Wadley, Haydn N. G.; Parthasarathi, Sanjai


    Factors that affect ultrasonic velocity sensing of density during consolidation of metal powders are examined. A comparison is made between experimental results obtained during the final stage of densification and the predictions of models that assume either a spherical or a spheroidal pore shape. It is found that for measurements made at low frequencies during the final stage of densification, relative density (pore fraction) and pore shape are the two most important factors determining the ultrasonic velocity, the effect of pore size is negligible.

  8. Ventromedial prefrontal volume predicts understanding of others and social network size. (United States)

    Lewis, Penelope A; Rezaie, Roozbeh; Brown, Rachel; Roberts, Neil; Dunbar, R I M


    Cognitive abilities such as Theory of Mind (ToM), and more generally mentalizing competences, are central to human sociality. Neuroimaging has associated these abilities with specific brain regions including temporo-parietal junction, superior temporal sulcus, frontal pole, and ventromedial prefrontal cortex. Previous studies have shown both that mentalizing competence, indexed as the ability to correctly understand others' belief states, is associated with social network size and that social group size is correlated with frontal lobe volume across primate species (the social brain hypothesis). Given this, we predicted that both mentalizing competences and the number of social relationships a person can maintain simultaneously will be a function of gray matter volume in these regions associated with conventional Theory of Mind. We used voxel-based morphometry of Magnetic Resonance Images (MRIs) to test this hypothesis in humans. Specifically, we regressed individuals' mentalizing competences and social network sizes against gray matter volume. This revealed that gray matter volume in bilateral posterior frontal pole and left temporoparietal junction and superior temporal sucus varies parametrically with mentalizing competence. Furthermore, gray matter volume in the medial orbitofrontal cortex and the ventral portion of medial frontal gyrus, varied parametrically with both mentalizing competence and social network size, demonstrating a shared neural basis for these very different facets of sociality. These findings provide the first fine-grained anatomical support for the social brain hypothesis. As such, they have important implications for our understanding of the constraints limiting social cognition and social network size in humans, as well as for our understanding of how such abilities evolved across primates. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Integrating Temporal and Spatial Scales: Human Structural Network Motifs Across Age and Region of Interest Size (United States)

    Echtermeyer, Christoph; Han, Cheol E.; Rotarska-Jagiela, Anna; Mohr, Harald; Uhlhaas, Peter J.; Kaiser, Marcus


    Human brain networks can be characterized at different temporal or spatial scales given by the age of the subject or the spatial resolution of the neuroimaging method. Integration of data across scales can only be successful if the combined networks show a similar architecture. One way to compare networks is to look at spatial features, based on fiber length, and topological features of individual nodes where outlier nodes form single node motifs whose frequency yields a fingerprint of the network. Here, we observe how characteristic single node motifs change over age (12–23 years) and network size (414, 813, and 1615 nodes) for diffusion tensor imaging structural connectivity in healthy human subjects. First, we find the number and diversity of motifs in a network to be strongly correlated. Second, comparing different scales, the number and diversity of motifs varied across the temporal (subject age) and spatial (network resolution) scale: certain motifs might only occur at one spatial scale or for a certain age range. Third, regions of interest which show one motif at a lower resolution may show a range of motifs at a higher resolution which may or may not include the original motif at the lower resolution. Therefore, both the type and localization of motifs differ for different spatial resolutions. Our results also indicate that spatial resolution has a higher effect on topological measures whereas spatial measures, based on fiber lengths, remain more comparable between resolutions. Therefore, spatial resolution is crucial when comparing characteristic node fingerprints given by topological and spatial network features. As node motifs are based on topological and spatial properties of brain connectivity networks, these conclusions are also relevant to other studies using connectome analysis. PMID:21811454

  10. Comparing brain networks of different size and connectivity density using graph theory.

    Directory of Open Access Journals (Sweden)

    Bernadette C M van Wijk

    Full Text Available Graph theory is a valuable framework to study the organization of functional and anatomical connections in the brain. Its use for comparing network topologies, however, is not without difficulties. Graph measures may be influenced by the number of nodes (N and the average degree (k of the network. The explicit form of that influence depends on the type of network topology, which is usually unknown for experimental data. Direct comparisons of graph measures between empirical networks with different N and/or k can therefore yield spurious results. We list benefits and pitfalls of various approaches that intend to overcome these difficulties. We discuss the initial graph definition of unweighted graphs via fixed thresholds, average degrees or edge densities, and the use of weighted graphs. For instance, choosing a threshold to fix N and k does eliminate size and density effects but may lead to modifications of the network by enforcing (ignoring non-significant (significant connections. Opposed to fixing N and k, graph measures are often normalized via random surrogates but, in fact, this may even increase the sensitivity to differences in N and k for the commonly used clustering coefficient and small-world index. To avoid such a bias we tried to estimate the N,k-dependence for empirical networks, which can serve to correct for size effects, if successful. We also add a number of methods used in social sciences that build on statistics of local network structures including exponential random graph models and motif counting. We show that none of the here-investigated methods allows for a reliable and fully unbiased comparison, but some perform better than others.

  11. Comparing brain networks of different size and connectivity density using graph theory. (United States)

    van Wijk, Bernadette C M; Stam, Cornelis J; Daffertshofer, Andreas


    Graph theory is a valuable framework to study the organization of functional and anatomical connections in the brain. Its use for comparing network topologies, however, is not without difficulties. Graph measures may be influenced by the number of nodes (N) and the average degree (k) of the network. The explicit form of that influence depends on the type of network topology, which is usually unknown for experimental data. Direct comparisons of graph measures between empirical networks with different N and/or k can therefore yield spurious results. We list benefits and pitfalls of various approaches that intend to overcome these difficulties. We discuss the initial graph definition of unweighted graphs via fixed thresholds, average degrees or edge densities, and the use of weighted graphs. For instance, choosing a threshold to fix N and k does eliminate size and density effects but may lead to modifications of the network by enforcing (ignoring) non-significant (significant) connections. Opposed to fixing N and k, graph measures are often normalized via random surrogates but, in fact, this may even increase the sensitivity to differences in N and k for the commonly used clustering coefficient and small-world index. To avoid such a bias we tried to estimate the N,k-dependence for empirical networks, which can serve to correct for size effects, if successful. We also add a number of methods used in social sciences that build on statistics of local network structures including exponential random graph models and motif counting. We show that none of the here-investigated methods allows for a reliable and fully unbiased comparison, but some perform better than others.

  12. Effect of morphology and pore size of sulfonated mesoporous benzene-silicas in the preparation of poly(vinyl alcohol)-based hybrid nanocomposite membranes for direct methanol fuel cell application. (United States)

    Cho, Eun-Bum; Kim, Hoyoung; Kim, Dukjoon


    Sulfonated mesoporous benzene-silicas were introduced into a poly(vinyl alcohol) (PVA) polymer matrix to act as a barrier for methanol crossover, to prepare composite electrolyte membranes for direct methanol fuel cell applications. Highly ordered 2D hexagonal mesoporous benzene-silicas were prepared using 1,4-bis(triethoxysilyl)benzene (BTEB) organosilica precursor and two kinds of organic templates, such as an octadecyltrimethylammonium bromide (ODTMA) and a Pluronic P123 poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer, to investigate the effect of the morphology and the pore size on the methanol permeability and the proton conductivity of the membranes. The sulfonated mesoporous benzene-silica and PVA were mixed with a sulfosuccinic acid (SSA) cross-linker to improve the membrane stability from mechanical and conductive viewpoints. The physical and chemical characterization of the hybrid electrolyte membranes was performed by varying the contents of sulfonated mesoporous benzene-silicas and SSA. All the hybrid membranes studied showed good performance in lowering the methanol crossover (i.e., approximately 68% reduction in comparison with the Nafion117 membrane), and mesoporous benzene-silica with smaller particle morphology and pores (2-3 nm) was observed to be a more effective additive.

  13. Effect of pore-size optimization on the performance of polysaccharide-based superficially porous chiral stationary phases for the separation of enantiomers in high-performance liquid chromatography. (United States)

    Bezhitashvili, Lia; Bardavelidze, Anna; Ordjonikidze, Teona; Chankvetadze, Lali; Chity, Mike; Farkas, Tivadar; Chankvetadze, Bezhan


    Our earlier studies on the preparation of chiral stationary phases (CSP) based on superficially porous (or core-shell) silica (SPS) particles for the separation of enantiomers in HPLC have provided proof to the advantages of such sorbents. In particular, higher enantioselectivity was observed with the columns packed with superficially porous CSP compared to the columns packed with fully-porous (FP) silica-based CSPs at comparable content of chiral selector (polysaccharide derivative) in CSP. Also, less dependence of plate height on mobile phase flow rate and higher plate numbers and resolution calculated per unit time (i.e. speed of separation) were observed with SPS-based CSPs. Thirty years of CSP development have demonstrated that wide-pore silica has to be used as a support for large molecular weight chiral selectors such as the ones based on polysaccharides. In this study the effect of pore size of the core-shell silica support and of other experimental factors on column performance is demonstrated. Reduced plate heights in the range 1.4-1.5 were obtained, as well as highly effective baseline separations of enantiomers were observed with analysis times of less than 15s. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A new approach for sizing stand alone photovoltaic systems based in neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hontoria, L.; Aguilera, J. [Universidad de Jaen, Dept. de Electronica, Jaen (Spain); Zufiria, P. [UPM Ciudad Universitaria, Dept. de Matematica Aplicada a las Tecnologias de la Informacion, Madrid (Spain)


    Several methods for sizing stand alone photovoltaic (pv) systems has been developed. The more simplistic are called intuitive methods. They are a useful tool for a first approach in sizing stand alone photovoltaic systems. Nevertheless they are very inaccurate. Analytical methods use equations to describe the pv system size as a function of reliability. These ones are more accurate than the previous ones but they are also not accurate enough for sizing of high reliability. In a third group there are methods which use system simulations. These ones are called numerical methods. Many of the analytical methods employ the concept of reliability of the system or the complementary term: loss of load probability (LOLP). In this paper an improvement for obtaining LOLP curves based on the neural network called Multilayer Perceptron (MLP) is presented. A unique MLP for many locations of Spain has been trained and after the training, the MLP is able to generate LOLP curves for any value and location. (Author)

  15. Determination of factors controlling the particle size in nanoemulsions using Artificial Neural Networks. (United States)

    Amani, Amir; York, Peter; Chrystyn, Henry; Clark, Brian J; Do, Duong Q


    The purpose of this study was to use Artificial Neural Networks (ANNs) in identifying factors, in addition to surfactant and internal phase content, that influence the particle size of nanoemulsions. The phase diagram and rheometric characteristics of a nanoemulsion system containing polysorbate 80, ethanol, medium chain triglycerides and normal saline loaded with budesonide were investigated. The particle size of samples of various compositions prepared using different rates and amounts of applied energy was measured. Data, divided into training, test and validation sets, were modelled by ANNs. The developed model was assessed and found to be of high quality. The model was then used to explore the effect of composition and processing factors on particle size of the nanoemulsion preparation. The study demonstrates the potential of ANNs in identifying critical parameters controlling preparation for this system, with the total amount of applied energy during preparation found to be the dominant factor in controlling the final particle size.

  16. Optimal system size for complex dynamics in random neural networks near criticality

    Energy Technology Data Exchange (ETDEWEB)

    Wainrib, Gilles, E-mail: [Laboratoire Analyse Géométrie et Applications, Université Paris XIII, Villetaneuse (France); García del Molino, Luis Carlos, E-mail: [Institute Jacques Monod, Université Paris VII, Paris (France)


    In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices.

  17. The Effects of Neighbourhoods on Size of Social Network of the Elderly and Loneliness : A Multilevel Approach

    NARCIS (Netherlands)

    Moorer, P; Suurmeijer, TPBM

    Our goal was to find out how much influence neighbourhoods have on the size of the social network and loneliness of elderly people. The results show that the average size of the social network was 9, while the elderly had few feelings of loneliness. Neighbourhoods could at most explain 8 per cent of

  18. Multi-scale fractal analysis of pores in shale rocks (United States)

    Liu, Kouqi; Ostadhassan, Mehdi


    Pore structures is a very critical parameter that affects the physical, mechanical and chemical properties of the reservoir rock. Pore shapes and pore size distributions can impact the transport and storage capacity of the reservoir rocks. This necessitates the adequate knowledge of the pore structures of the rocks. In this paper, we characterized and quantified the pore structures of rock samples from the Bakken Formation which is a typical unconventional shale oil reservoir. Samples of Upper and Middle Bakken were collected and studied based on the Scanning Electron Microscope (SEM) images. First, the threshold of each image was determined from overflow criteria and then the related pores were extracted from the corresponding image. In the next step, the pore microstructures such as pore size, pore shape distributions of different samples were calculated and compared. Finally, we used fractal theory to describe the pore structures of the shale formation and investigated the relationship between fractal dimension and pore structures. The results showed that pores with various sizes and shapes were widely distributed in the shale samples. Compared with samples from Middle Bakken, samples from Upper Bakken Formation with higher clay content showed higher fractal dimension and more complex pore structures. Finally, the fractal dimension was used to quantify the impact of the magnification on the pore structures.

  19. Straight Pore Microfilter with Efficient Regeneration Project (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II project is directed toward development of a novel microfiltration filter that has distinctively narrow pore size...

  20. Straight Pore Microfilter with Efficient Regeneration Project (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is directed toward development of a novel microfiltration filter that has distinctively narrow pore size...

  1. Impact Analysis of Demand Response Intensity and Energy Storage Size on Operation of Networked Microgrids

    Directory of Open Access Journals (Sweden)

    Akhtar Hussain


    Full Text Available Integration of demand response (DR programs and battery energy storage system (BESS in microgrids are beneficial for both microgrid owners and consumers. The intensity of DR programs and BESS size can alter the operation of microgrids. Meanwhile, the optimal size for BESS units is linked with the uncertainties associated with renewable energy sources and load variations. Similarly, the participation of enrolled customers in DR programs is also uncertain and, among various other factors, uncertainty in market prices is a major cause. Therefore, in this paper, the impact of DR program intensity and BESS size on the operation of networked microgrids is analyzed while considering the prevailing uncertainties. The uncertainties associated with forecast load values, output of renewable generators, and market price are realized via the robust optimization method. Robust optimization has the capability to provide immunity against the worst-case scenario, provided the uncertainties lie within the specified bounds. The worst-case scenario of the prevailing uncertainties is considered for evaluating the feasibility of the proposed method. The two representative categories of DR programs, i.e., price-based and incentive-based DR programs are considered. The impact of change in DR intensity and BESS size on operation cost of the microgrid network, external power trading, internal power transfer, load profile of the network, and state-of-charge (SOC of battery energy storage system (BESS units is analyzed. Simulation results are analyzed to determine the integration of favorable DR program and/or BESS units for different microgrid networks with diverse objectives.

  2. Large-Pore Mesoporous Silica with Three-Dimensional Wormhole Framework Structures. (United States)

    Park, In; Pinnavaia, Thomas J


    Large-pore mesoporous silica with 3D wormhole framework structures (denoted MSU-J) are prepared through a supramolecular hydrogen-bonding assembly pathway from low-cost sodium silicate as the silica source and commercially available mono- and triamine Jeffamine and Surfonamine surfactants as structure-directing porogens. The calcined mesostructures exhibit large pore sizes (up to 8.2 nm), surface areas (632-1030 m(2)/g) and pore volumes (0.5-2.0 cm(3)/g), depending on the surfactant chain length and synthesis temperature (25-65 °C). The textural properties of these new wormhole mesostructures are comparable to those of hexagonal SBA-15 derivatives and large pore MCM-48. However, unlike the SBA-15 structure type, wherein the 3D pore network is formed by connecting 1D cylindrical mesopores through micropores, MSU-J mesophases have wormhole framework structures containing fully interconnected 3D mesopores that can minimize the diffusion limitations often encountered in adsorption and chemical catalysis. Also, unlike large pore MCM-48, which requires cost-intensive tetraethylorthosilicate as a silica source and the use of a co-surfactant as a pore expander under strong acid conditions, MSU-J mesostructures are assembled from low cost sodium silicate in the presence of a single Jeffamine or Surfonamine porogen at near-neutral pH.

  3. Design of Pore Size and Functionality in Pillar-Layered Zn-Triazolate-Dicarboxylate Frameworks and Their High CO2/CH4 and C2 Hydrocarbons/CH4 Selectivity. (United States)

    Zhai, Quan-Guo; Bai, Ni; Li, Shu'ni; Bu, Xianhui; Feng, Pingyun


    In the design of new materials, those with rare and exceptional compositional and structural features are often highly valued and sought after. On the other hand, materials with common and more accessible modes can often provide richer and unsurpassed compositional and structural variety that makes them a more suitable platform for systematically probing the composition-structure-property correlation. We focus here on one such class of materials, pillar-layered metal-organic frameworks (MOFs), because different pore size and shape as well as functionality can be controlled and adjusted by using pillars with different geometrical and chemical features. Our approach takes advantage of the readily accessible layered Zn-1,2,4-triazolate motif and diverse dicarboxylate ligands with variable length and functional groups, to prepare seven Zn-triazolate-dicarboxylate pillar-layered MOFs. Six different gases (N2, H2, CO2, C2H2, C2H4, and CH4) were used to systematically examine the dependency of gas sorption properties on chemical and geometrical properties of those MOFs as well as their potential applications in gas storage and separation. All of these pillar-layered MOFs show not only remarkable CO2 uptake capacity, but also high CO2 over CH4 and C2 hydrocarbons over CH4 selectivity. An interesting observation is that the BDC ligand (BDC = benzenedicarboxylate) led to a material with the CO2 uptake outperforming all other metal-triazolate-dicarboxylate MOFs, even though most of them are decorated with amino groups, generally believed to be a key factor for high CO2 uptake. Overall, the data show that the exploration of the synergistic effect resulting from combined tuning of functional groups and pore size may be a promising strategy to develop materials with the optimum integration of geometrical and chemical factors for the highest possible gas adsorption capacity and separation performance.

  4. Surface characterisation and photocatalytic performance of N-doped TiO{sub 2} thin films deposited onto 200 nm pore size alumina membranes by sol–gel methods

    Energy Technology Data Exchange (ETDEWEB)

    Grilli, R., E-mail: [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Di Camillo, D.; Lozzi, L. [Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Horovitz, I.; Mamane, H.; Avisar, D. [School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Baker, M.A. [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom)


    Membrane filtration is employed for water treatment and wastewater reclamation purposes, but membranes alone are unable to remove pollutant molecules and certain pathogens. Photocatalytically active N-doped TiO{sub 2} coatings have been deposited by sol–gel onto 200 nm pore size alumina membranes for water treatment applications using two different methods, via pipette droplets or spiral bar applicator. The uncoated and coated membranes were characterised by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectrometry (EDX). Both coatings showed the presence of N-doped anatase, with a surface coverage between 84 and 92%, and nitrogen concentration (predominantly interstitial) of 0.9 at.%. The spiral bar applicator deposited coatings exhibit a thicker mud-cracked surface layer with limited penetration of the porous membrane, whilst the pipette deposited coatings have mostly penetrated into the bulk of the membrane and a thinner layer is present at the surface. The photocatalytic activity (PCA), measured through the degradation of carbamazepine (CBZ), under irradiation of a solar simulator was 58.6% for the pipette coating and 63.3% for the spiral bar coating. These photocatalytically active N-doped sol–gel coated membranes offer strong potential in forming the fundamental basis of a sunlight based water treatment system. - Highlights: • Sol gel N-doped TiO{sub 2} thin films were deposited on 200 nm pore size Al{sub 2}O{sub 3} membranes. • Two sol–gel methods have been compared – pipette drop and spiral bar deposition. • The coatings showed a similar microstructure and composition but different morphology. • The PCA (degradation of carbamazepine) was ∼60% for both sol–gel coatings. • The coated membranes are promising for use in a membrane based water treatment system.

  5. Control of the pore architecture in three-dimensional hydroxyapatite-reinforced hydrogel scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Jesus; Cabanas, MarIa Victoria; Pena, Juan; Vallet-RegI, MarIa, E-mail: [Departamento de Quimica Inorganica y Bioinorganica, Facultad de Farmacia, Universidad Complutense, 28040-Madrid (Spain)


    Hydrogels (gellan or agarose) reinforced with nanocrystalline carbonated hydroxyapatite (nCHA) were prepared by the GELPOR3D technique. This simple method is characterized by compositional flexibility; it does not require expensive equipment, thermal treatment, or aggressive or toxic solvents, and yields a three-dimensional (3D) network of interconnected pores 300-900 {mu}m in size. In addition, an interconnected porosity is generated, yielding a hierarchical porous architecture from the macro to the molecular scale. This porosity depends on both the drying/preservation technology (freeze drying or oven drying at 37 deg. C) and on the content and microstructure of the reinforcing ceramic. For freeze-dried samples, the porosities were approximately 30, 66 and below 3% for pore sizes of 600-900 {mu}m, 100-200 {mu}m and 50-100 nm, respectively. The pore structure depends much on the ceramic content, so that higher contents lead to the disappearance of the characteristic honeycomb structure observed in low-ceramic scaffolds and to a lower fraction of the 100-200-{mu}m-sized pores. The nature of the hydrogel did not affect the pore size distribution but was crucial for the behavior of the scaffolds in a hydrated medium: gellan-containing scaffolds showed a higher swelling degree owing to the presence of more hydrophilic groups.

  6. Pore-scale Analysis of Equilibrium and Non-equilibrium DNAPL Mass Transfer (United States)

    Roberts, K. L.; Willson, C. S.; Thompson, K. E.; Moe, W. M.


    A large number of groundwater aquifers are contaminated by dense nonaqueous phase liquids (DNAPL) comprised of chlorinated hydrocarbons. While there have been a large number of experimental and modeling studies investigating NAPL dissolution at various length scales, rate-limiting processes involved in DNAPL dissolution remain poorly understood. Appropriate mathematical models for describing localized phenomena in a manner conducive to continuum scale modeling are not yet fully developed or have not been robustly tested in comparison to experimental data. Here, high-resolution (i.e., ~10 micron) synchrotron X-ray tomography was used to non-destructively obtain three-dimensional images of the internal structure of a series of unconsolidated porous media (40/50 Accusand) systems at various stages of tetrachloroethene (PCE) dissolution during equilibrium and non-equilibrium mass transfer conditions. Algorithms developed by our group were used to: (1) quantify the granular packing characteristics (e.g., grain sizes, shapes, coordination number); (2) pore network structure (e.g., individual pore body geometry and connectivity); and (3) DNAPL blob characteristics (e.g., blobs sizes, interfacial areas); and (4) correlations between the blob characteristics and pore network structure. Generation of the detailed pore network structure allowed pore network modeling to be performed on the actual void space geometry and topology. A unique aspect of this approach is that it directly incorporated pore-scale preferential flow paths that formed due to pore-level heterogeneities and NAPL blob location and geometry. Analysis of the granular packing and pore network structure properties indicate that the column preparation technique resulted in uniform packing among the different systems. This allowed us to assess the impact of flowrates and local pore-level properties on mass transfer and dissolution of individual DNAPL blobs. Experimental results from columns subjected to low flow

  7. Unravelling the size distribution of social groups with information theory in complex networks (United States)

    Hernando, A.; Villuendas, D.; Vesperinas, C.; Abad, M.; Plastino, A.


    The minimization of Fisher’s information (MFI) approach of Frieden et al. [Phys. Rev. E 60, 48 (1999)] is applied to the study of size distributions in social groups on the basis of a recently established analogy between scale invariant systems and classical gases [Phys. A 389, 490 (2010)]. Going beyond the ideal gas scenario is seen to be tantamount to simulating the interactions taking place, for a competitive cluster growth process, in a scale-free ideal network - a non-correlated network with a connection-degree’s distribution that mimics the scale-free ideal gas density distribution. We use a scaling rule that allows one to classify the final cluster-size distributions using only one parameter that we call the competitiveness, which can be seen as a measure of the strength of the interactions. We find that both empirical city-size distributions and electoral results can be thus reproduced and classified according to this competitiveness-parameter, that also allow us to infer the maximum number of stable social relationships that one person can maintain, known as the Dunbar number, together with its standard deviation. We discuss the importance of this number in connection with the empirical phenomenon known as “six-degrees of separation”. Finally, we show that scaled city-size distributions of large countries follow, in general, the same universal distribution.

  8. General expression for the component size distribution in infinite configuration networks. (United States)

    Kryven, Ivan


    In the infinite configuration network the links between nodes are assigned randomly with the only restriction that the degree distribution has to match a predefined function. This work presents a simple equation that gives for an arbitrary degree distribution the corresponding size distribution of connected components. This equation is suitable for fast and stable numerical computations up to the machine precision. The analytical analysis reveals that the asymptote of the component size distribution is completely defined by only a few parameters of the degree distribution: the first three moments, scale, and exponent (if applicable). When the degree distribution features a heavy tail, multiple asymptotic modes are observed in the component size distribution that, in turn, may or may not feature a heavy tail.

  9. Mortar Methods for Pore-to-Continuum Modeling of Flow and Transport in Porous Media (United States)

    Balhoff, M.


    Pore-scale network modeling has become an effective method for accurate prediction and upscaling of macroscopic properties in porous media. Computational and imaging restrictions generally limit the network size to the order of 1.0 mm3 (few thousand pores). For extremely heterogeneous media these models are not large enough to capture the petrophysical properties of the entire medium and inaccurate results can be obtained when upscaling to the continuum scale. Moreover, the boundary conditions imposed are artificial; a pressure gradient is imposed in one dimension so the influence of flow behavior in the surrounding media is not included. Here we model flow and transport at the pore scale but develop hybrid multiscale techniques to bridge the pore and macro-scales. Novel domain decomposition methods are used for upscaling; finite element mortars are used as a mathematical tool to ensure interfacial pressures and fluxes are matched at the interfaces of the networks boundaries. The results compare favorably to the more computationally intensive (and impractical) approach of upscaling the media as a single model. Moreover, the results are much more accurate than traditional hierarchal upscaling methods. This upscaling technique has important implications for using pore-scale models directly in reservoir simulators in a multiscale setting.

  10. Influence of pore structure on carbon retention/loss in soil macro-aggregates (United States)

    Quigley, Michelle; Kravchenko, Alexandra; Rivers, Mark


    Carbon protection within soil macro-aggregates is an important component of soil carbon sequestration. Pores, as the transportation network for microorganisms, water, air and nutrients within macro-aggregates, are among the factors controlling carbon protection through restricting physical accessibility of carbon to microorganisms. The understanding of how the intra-aggregate pore structure relates to the degree of carbon physical protection, however, is currently lacking. This knowledge gap can lead to potentially inaccurate models and predictions of soil carbon's fate and storage in future changing climates. This study utilized the natural isotopic difference between C3 and C4 plants to trace the location of newly added carbon within macro-aggregates before and after decomposition and explored how location of this carbon relates to characteristics of intra-aggregate pores. To mimic the effect of decomposition, aggregates were incubated at 23˚ C for 28 days. Computed micro-tomographic images were used to determine pore characteristics at 6 μm resolution before and after incubation. Soil (0-10 cm depth) from a 20 year continuous corn (C4 plant) experiment was used. Two soil treatments were considered: 1) "destroyed-structure", where 1 mm sieved soil was used and 2) "intact-structure", where intact blocks of soil were used. Cereal rye (Secale cereale L.) (C3 plant) was grown in the planting boxes (2 intact, 3 destroyed, and one control) for three months in a greenhouse. From each box, ˜5 macro-aggregates of ˜5 mm size were collected for a total of 27 macro-aggregates. Half of the aggregates were cut into 5-11 sections, with relative positions of the sections within the aggregate recorded, and analyzed for δ13C. The remaining aggregates were incubated and then subjected to cutting and δ13C analysis. While there were no significant differences between the aggregate pore size distributions of the two treatments, the roles that specific pores sizes played in

  11. Quantifying the Relationship Between Drainage Networks at Hillslope Scale and Particle Size Distribution at Pedon Scale (United States)

    Cámara, Joaquín; Martín, Miguel Ángel; Gómez-Miguel, Vicente


    Nowadays, translating information about hydrologic and soil properties and processes across scales has emerged as a major theme in soil science and hydrology, and suitable theories for upscaling or downscaling hydrologic and soil information are being looked forward. The recognition of low-order catchments as self-organized systems suggests the existence of a great amount of links at different scales between their elements. The objective of this work was to research in areas of homogeneous bedrock material, the relationship between the hierarchical structure of the drainage networks at hillslope scale and the heterogeneity of the particle-size distribution at pedon scale. One of the most innovative elements in this work is the choice of the parameters to quantify the organization level of the studied features. The fractal dimension has been selected to measure the hierarchical structure of the drainage networks, while the Balanced Entropy Index (BEI) has been the chosen parameter to quantify the heterogeneity of the particle-size distribution from textural data. These parameters have made it possible to establish quantifiable relationships between two features attached to different steps in the scale range. Results suggest that the bedrock lithology of the landscape constrains the architecture of the drainage networks developed on it and the particle soil distribution resulting in the fragmentation processes.

  12. Synchronization in Scale Free networks: The role of finite size effects

    CERN Document Server

    Torres, Débora; La Rocca, Cristian E; Braunstein, Lidia A


    Synchronization problems in complex networks are very often studied by researchers due to its many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, Scale Free networks with degree distribution $P(k)\\sim k^{-\\lambda}$, are widely used in research since they are ubiquitous in nature and other real systems. In this paper we focus on the surface relaxation growth model in Scale Free networks with $2.5< \\lambda <3$, and study the scaling behavior of the fluctuations, in the steady state, with the system size $N$. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of $N=N^*$ that depends on $\\lambda$: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above $N^{*}$, the fluctuations decrease with $\\lambda$, which means that the synchroniza...

  13. Characterization of pore structure in metal-organic framework by small-angle X-ray scattering. (United States)

    Tsao, Cheng-Si; Yu, Ming-Sheng; Chung, Tsui-Yun; Wu, Hsiu-Chu; Wang, Cheng-Yu; Chang, Kuei-Sen; Chen, Hsin-Lung


    MOF-5-like crystals were studied by small-angle X-ray scattering (SAXS) to reveal, both quantitatively and qualitatively, their real structural details, including pore surface characteristics, pore shape, size distribution, specific surface area (SSA), spatial distribution, and pore-network structure. A combined SAXS and wide-angle X-ray scattering (WAXS) experiment was conducted to investigate the variation of the pore structure with the MOF-5 crystalline phase produced at different cooling rates. The SSA of the MOF-5 crystals synthesized herein spanned a broad range from approximately 3100 to 800 m2/g. The real pore structures were divided into two regimes. In regime I the material consisted mainly of micropores of radius approximately 8 A as well as mesopores of radius 120 approximately 80 A. The structure in regime II was a fractal network of aggregated mesopores with radius >or=32 A as the monomer, reducing SSA and hydrogen uptake capacity at room temperature. The two regimes can be manipulated by controlling the synthesis parameters. The concurrent evolution of pore structure and crystalline phase during heating for solvent removal was also revealed by the in-situ SAXS/WAXS measurement. The understanding of the impact of the real pore structure on the properties is important to establish a favorable synthetic approach for markedly improving the hydrogen storage capacity of MOF-5.

  14. A Hh-driven gene network controls specification, pattern and size of the Drosophila simple eyes. (United States)

    Aguilar-Hidalgo, Daniel; Domínguez-Cejudo, María A; Amore, Gabriele; Brockmann, Anette; Lemos, María C; Córdoba, Antonio; Casares, Fernando


    During development, extracellular signaling molecules interact with intracellular gene networks to control the specification, pattern and size of organs. One such signaling molecule is Hedgehog (Hh). Hh is known to act as a morphogen, instructing different fates depending on the distance to its source. However, how Hh, when signaling across a cell field, impacts organ-specific transcriptional networks is still poorly understood. Here, we investigate this issue during the development of the Drosophila ocellar complex. The development of this sensory structure, which is composed of three simple eyes (or ocelli) located at the vertices of a triangular patch of cuticle on the dorsal head, depends on Hh signaling and on the definition of three domains: two areas of eya and so expression--the prospective anterior and posterior ocelli--and the intervening interocellar domain. Our results highlight the role of the homeodomain transcription factor engrailed (en) both as a target and as a transcriptional repressor of hh signaling in the prospective interocellar region. Furthermore, we identify a requirement for the Notch pathway in the establishment of en maintenance in a Hh-independent manner. Therefore, hh signals transiently during the specification of the interocellar domain, with en being required here for hh signaling attenuation. Computational analysis further suggests that this network design confers robustness to signaling noise and constrains phenotypic variation. In summary, using genetics and modeling we have expanded the ocellar gene network to explain how the interaction between the Hh gradient and this gene network results in the generation of stable mutually exclusive gene expression domains. In addition, we discuss some general implications our model may have in some Hh-driven gene networks.

  15. Sleep-time sizing and scheduling in green passive optical networks

    KAUST Repository

    Elrasad, Amr


    Next-generation passive optical network (PON) has been widely considered as a cost-effective broadband access technology. With the ever-increasing power saving concern, energy efficiency has been an important issue for its operations. In this paper, we present a novel sleep time sizing and scheduling framework that satisfies power efficient bandwidth allocation in PONs. We consider the downstream links from an optical line terminal (OLT) to an optical network unit (ONU). The ONU has two classes of traffic, control and data. Control traffic are delay intolerant with higher priority than the data traffic. Closed form model for average ONU sleeping time and end-to-end data traffic delay are presented and evaluated. Our framework decouples the dependency between ONU sleeping time and the QoS of the traffic.

  16. A variable step-size strategy for distributed estimation over adaptive networks (United States)

    Bin Saeed, Muhammad O.; Zerguine, Azzedine; Zummo, Salam A.


    A lot of work has been done recently to develop algorithms that utilize the distributed structure of an ad hoc wireless sensor network to estimate a certain parameter of interest. One such algorithm is called diffusion least-mean squares (DLMS). This algorithm estimates the parameter of interest using the cooperation between neighboring sensors within the network. The present work proposes an improvement on the DLMS algorithm by using a variable step-size LMS (VSSLMS) algorithm. In this work, first, the well-known variants of VSSLMS algorithms are compared with each other in order to select the most suitable algorithm which provides the best trade-off between performance and complexity. Second, the detailed convergence and steady-state analyses of the selected VSSLMS algorithm are performed. Finally, extensive simulations are carried out to test the robustness of the proposed algorithm under different scenarios. Moreover, the simulation results are found to corroborate the theoretical findings very well.

  17. Bipartite networks improve understanding of effects of waterbody size and angling method on angler–fish interactions (United States)

    Chizinski, Christopher J.; Martin, Dustin R.; Shizuka, Daizaburo; Pope, Kevin L.


    Networks used to study interactions could provide insights to fisheries. We compiled data from 27 297 interviews of anglers across waterbodies that ranged in size from 1 to 12 113 ha. Catch rates of fish species among anglers grouped by species targeted generally differed between angling methods (bank or boat). We constructed angler–catch bipartite networks (angling method specific) between anglers and fish and measured several network metrics. There was considerable variation in networks among waterbodies, with multiple metrics influenced by waterbody size. Number of species-targeting angler groups and number of fish species caught increased with increasing waterbody size. Mean number of links for species-targeting angler groups and fish species caught also increased with waterbody size. Connectance (realized proportion of possible links) of angler–catch interaction networks decreased slower for boat anglers than for bank anglers with increasing waterbody size. Network specialization (deviation of number of interactions from expected) was not significantly related to waterbody size or angling methods. Application of bipartite networks in fishery science requires careful interpretation of outputs, especially considering the numerous confounding factors prevalent in recreational fisheries.

  18. Predicting the particle size distribution of eroded sediment using artificial neural networks. (United States)

    Lagos-Avid, María Paz; Bonilla, Carlos A


    Water erosion causes soil degradation and nonpoint pollution. Pollutants are primarily transported on the surfaces of fine soil and sediment particles. Several soil loss models and empirical equations have been developed for the size distribution estimation of the sediment leaving the field, including the physically-based models and empirical equations. Usually, physically-based models require a large amount of data, sometimes exceeding the amount of available data in the modeled area. Conversely, empirical equations do not always predict the sediment composition associated with individual events and may require data that are not always available. Therefore, the objective of this study was to develop a model to predict the particle size distribution (PSD) of eroded soil. A total of 41 erosion events from 21 soils were used. These data were compiled from previous studies. Correlation and multiple regression analyses were used to identify the main variables controlling sediment PSD. These variables were the particle size distribution in the soil matrix, the antecedent soil moisture condition, soil erodibility, and hillslope geometry. With these variables, an artificial neural network was calibrated using data from 29 events (r2=0.98, 0.97, and 0.86; for sand, silt, and clay in the sediment, respectively) and then validated and tested on 12 events (r2=0.74, 0.85, and 0.75; for sand, silt, and clay in the sediment, respectively). The artificial neural network was compared with three empirical models. The network presented better performance in predicting sediment PSD and differentiating rain-runoff events in the same soil. In addition to the quality of the particle distribution estimates, this model requires a small number of easily obtained variables, providing a convenient routine for predicting PSD in eroded sediment in other pollutant transport models. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of the size of an artificial neural network used as pattern identifier

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso V, M.R.; Vega C, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)


    A novel way to extract relevant parameters associated with the outgoing ions from nuclear reactions, obtained by digitizing the signals provided by a Bragg curve spectrometer (BCS) is presented. This allowed the implementation of a more thorough pulse-shape analysis. Due to the complexity of this task, it was required to take advantage of new and more powerful computational paradigms. This was fulfilled using a back-propagation artificial neural network (ANN) as a pattern identifier. Over training of ANNs is a common problem during the training stage. In the performance of the ANN there is a compromise between its size and the size of the training set. Here, this effect will be illustrated in relation to the problem of Bragg Curve (BC) identification. (Author)

  20. An Improved Method for Sizing Standalone Photovoltaic Systems Using Generalized Regression Neural Network

    Directory of Open Access Journals (Sweden)

    Tamer Khatib


    Full Text Available In this research an improved approach for sizing standalone PV system (SAPV is presented. This work is an improved work developed previously by the authors. The previous work is based on the analytical method which faced some concerns regarding the difficulty of finding the model’s coefficients. Therefore, the proposed approach in this research is based on a combination of an analytical method and a machine learning approach for a generalized artificial neural network (GRNN. The GRNN assists to predict the optimal size of a PV system using the geographical coordinates of the targeted site instead of using mathematical formulas. Employing the GRNN facilitates the use of a previously developed method by the authors and avoids some of its drawbacks. The approach has been tested using data from five Malaysian sites. According to the results, the proposed method can be efficiently used for SAPV sizing whereas the proposed GRNN based model predicts the sizing curves of the PV system accurately with a prediction error of 0.6%. Moreover, hourly meteorological and load demand data are used in this research in order to consider the uncertainty of the solar energy and the load demand.

  1. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...... volume and threshold pore size were found when comparing with plain cement paste at the same curing conditions. The porosity methods MIP, LTC and SEM have been shown to be suitable to characterise pore parameters of the pastes. MIP is a simple and fast method which covers a large range of pore sizes...

  2. Spatial, socio-economic, and ecological implications of incorporating minimum size constraints in marine protected area network design. (United States)

    Metcalfe, Kristian; Vaughan, Gregory; Vaz, Sandrine; Smith, Robert J


    Marine protected areas (MPAs) are the cornerstone of most marine conservation strategies, but the effectiveness of each one partly depends on its size and distance to other MPAs in a network. Despite this, current recommendations on ideal MPA size and spacing vary widely, and data are lacking on how these constraints might influence the overall spatial characteristics, socio-economic impacts, and connectivity of the resultant MPA networks. To address this problem, we tested the impact of applying different MPA size constraints in English waters. We used the Marxan spatial prioritization software to identify a network of MPAs that met conservation feature targets, whilst minimizing impacts on fisheries; modified the Marxan outputs with the MinPatch software to ensure each MPA met a minimum size; and used existing data on the dispersal distances of a range of species found in English waters to investigate the likely impacts of such spatial constraints on the region's biodiversity. Increasing MPA size had little effect on total network area or the location of priority areas, but as MPA size increased, fishing opportunity cost to stakeholders increased. In addition, as MPA size increased, the number of closely connected sets of MPAs in networks and the average distance between neighboring MPAs decreased, which consequently increased the proportion of the planning region that was isolated from all MPAs. These results suggest networks containing large MPAs would be more viable for the majority of the region's species that have small dispersal distances, but dispersal between MPA sets and spill-over of individuals into unprotected areas would be reduced. These findings highlight the importance of testing the impact of applying different MPA size constraints because there are clear trade-offs that result from the interaction of size, number, and distribution of MPAs in a network. © 2015 Society for Conservation Biology.

  3. Population size estimation of men who have sex with men through the network scale-up method in Japan.

    Directory of Open Access Journals (Sweden)

    Satoshi Ezoe

    Full Text Available BACKGROUND: Men who have sex with men (MSM are one of the groups most at risk for HIV infection in Japan. However, size estimates of MSM populations have not been conducted with sufficient frequency and rigor because of the difficulty, high cost and stigma associated with reaching such populations. This study examined an innovative and simple method for estimating the size of the MSM population in Japan. We combined an internet survey with the network scale-up method, a social network method for estimating the size of hard-to-reach populations, for the first time in Japan. METHODS AND FINDINGS: An internet survey was conducted among 1,500 internet users who registered with a nationwide internet-research agency. The survey participants were asked how many members of particular groups with known population sizes (firepersons, police officers, and military personnel they knew as acquaintances. The participants were also asked to identify the number of their acquaintances whom they understood to be MSM. Using these survey results with the network scale-up method, the personal network size and MSM population size were estimated. The personal network size was estimated to be 363.5 regardless of the sex of the acquaintances and 174.0 for only male acquaintances. The estimated MSM prevalence among the total male population in Japan was 0.0402% without adjustment, and 2.87% after adjusting for the transmission error of MSM. CONCLUSIONS: The estimated personal network size and MSM prevalence seen in this study were comparable to those from previous survey results based on the direct-estimation method. Estimating population sizes through combining an internet survey with the network scale-up method appeared to be an effective method from the perspectives of rapidity, simplicity, and low cost as compared with more-conventional methods.

  4. Bidirectional Influence: A Longitudinal Analysis of Size of Drug Network and Depression Among Inner-City Residents in Baltimore, Maryland. (United States)

    Yang, Jingyan; Latkin, Carl; Davey-Rothwell, Melissa; Agarwal, Mansi


    The prevalence of depression among drug users is high. It has been recognized that drug use behaviors can be influenced and spread through social networks. We investigated the directional relationship between social network factors and depressive symptoms among a sample of inner-city residents in Baltimore, MD. We performed a longitudinal study of four-wave data collected from a network-based HIV/STI prevention intervention for women and network members, consisting of both men and women. Our primary outcome and exposure were depression using CESD scale and social network characteristics, respectively. Linear-mixed model with clustering adjustment was used to account for both repeated measurement and network design. Of the 746 participants, those who had high levels of depression tended to be female, less educated, homeless, smokers, and did not have a main partner. In the univariate longitudinal model, larger size of drug network was significantly associated with depression (OR = 1.38, p < .001). This relationship held after controlling for age, gender, homeless in the past 6 months, college education, having a main partner, cigarette smoking, perceived health, and social support network (aOR = 1.19, p = .001). In the univariate mixed model using depression to predict size of drug network, the data suggested that depression was associated with larger size of drug network (coef. = 1.23, p < .001) and the same relation held in multivariate model (adjusted coef. = 1.08, p = .001). The results suggest that larger size of drug network is a risk factor for depression, and vice versa. Further intervention strategies to reduce depression should address social networks factors.

  5. Artificial neural network (ANN)-based prediction of depth filter loading capacity for filter sizing. (United States)

    Agarwal, Harshit; Rathore, Anurag S; Hadpe, Sandeep Ramesh; Alva, Solomon J


    This article presents an application of artificial neural network (ANN) modelling towards prediction of depth filter loading capacity for clarification of a monoclonal antibody (mAb) product during commercial manufacturing. The effect of operating parameters on filter loading capacity was evaluated based on the analysis of change in the differential pressure (DP) as a function of time. The proposed ANN model uses inlet stream properties (feed turbidity, feed cell count, feed cell viability), flux, and time to predict the corresponding DP. The ANN contained a single output layer with ten neurons in hidden layer and employed a sigmoidal activation function. This network was trained with 174 training points, 37 validation points, and 37 test points. Further, a pressure cut-off of 1.1 bar was used for sizing the filter area required under each operating condition. The modelling results showed that there was excellent agreement between the predicted and experimental data with a regression coefficient (R2 ) of 0.98. The developed ANN model was used for performing variable depth filter sizing for different clarification lots. Monte-Carlo simulation was performed to estimate the cost savings by using different filter areas for different clarification lots rather than using the same filter area. A 10% saving in cost of goods was obtained for this operation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1436-1443, 2016. © 2016 American Institute of Chemical Engineers.

  6. Social cognition on the Internet: testing constraints on social network size (United States)

    Dunbar, R. I. M.


    The social brain hypothesis (an explanation for the evolution of brain size in primates) predicts that humans typically cannot maintain more than 150 relationships at any one time. The constraint is partly cognitive (ultimately determined by some aspect of brain volume) and partly one of time. Friendships (but not necessarily kin relationships) are maintained by investing time in them, and failure to do so results in an inexorable deterioration in the quality of a relationship. The Internet, and in particular the rise of social networking sites (SNSs), raises the possibility that digital media might allow us to circumvent some or all of these constraints. This allows us to test the importance of these constraints in limiting human sociality. Although the recency of SNSs means that there have been relatively few studies, those that are available suggest that, in general, the ability to broadcast to many individuals at once, and the possibilities this provides in terms of continuously updating our understanding of network members’ behaviour and thoughts, do not allow larger networks to be maintained. This may be because only relatively weak quality relationships can be maintained without face-to-face interaction. PMID:22734062

  7. Social cognition on the Internet: testing constraints on social network size. (United States)

    Dunbar, R I M


    The social brain hypothesis (an explanation for the evolution of brain size in primates) predicts that humans typically cannot maintain more than 150 relationships at any one time. The constraint is partly cognitive (ultimately determined by some aspect of brain volume) and partly one of time. Friendships (but not necessarily kin relationships) are maintained by investing time in them, and failure to do so results in an inexorable deterioration in the quality of a relationship. The Internet, and in particular the rise of social networking sites (SNSs), raises the possibility that digital media might allow us to circumvent some or all of these constraints. This allows us to test the importance of these constraints in limiting human sociality. Although the recency of SNSs means that there have been relatively few studies, those that are available suggest that, in general, the ability to broadcast to many individuals at once, and the possibilities this provides in terms of continuously updating our understanding of network members' behaviour and thoughts, do not allow larger networks to be maintained. This may be because only relatively weak quality relationships can be maintained without face-to-face interaction.

  8. Pore size distribution in soils irrigated with sodic water and wastewater Distribuição de poros em solos irrigados com água salina e com água residuária

    Directory of Open Access Journals (Sweden)

    Roberta Alessandra Bruschi Gonçalves


    Full Text Available Soil porosity, especially pore size distribution, is an important controlling factor for soil infiltration, hydraulic conductivity, and water retention. This study aimed to verify the effect of secondary-treated domestic wastewater (STW on the porosity of a sandy loam Oxisol in the city of Lins, state of São Paulo, Brazil. The two-year experiment was divided into three plots: soil cultivated with corn and sunflower and irrigated with STW, soil cultivated and irrigated with sodic groundwater, and non-irrigated and non-cultivated soil (control. At the end of the experiment, undisturbed core samples were sampled from 0 to 2.0 m (8 depths. The water retention curves were obtained by tension plates and Richard's pressure plate apparatus, and the pore size distribution inferred from the retention curves. It was found that irrigation with treated wastewater and treated groundwater led to a decrease in microporosity (V MI, defined as the pore class ranging from 0.2 to 50 μm diameter. On the other hand, a significant increase in cryptoporosity (V CRI (A porosidade do solo, principalmente a distribuição dos poros, é um fator importante que controla a infiltração de água, condutividade hidráulica e retenção da água no solo. Este estudo teve como objetivo verificar os efeitos do efluente de estação de tratamento de esgoto (TSE na porosidade de um Latossolo de textura média. A área experimental foi dividida em três parcelas: solo cultivado com milho e girassol e irrigado com TSE (STW; solo cultivado e irrigado com água subterrânea sódica (W; e solo não cultivado e não irrigado (C-controle. No final de dois anos de experimento, amostras não deformadas de solo foram coletadas de 0 a 2,0 m (oito amostras. As curvas de retenção de água no solo foram obtidas com mesas de tensão e câmara de Richards, e a distribuição de poros no solo foi calculada a partir da derivação dessas curvas. Foi observado decréscimo da microporosidade V MI

  9. H-Seda: Partial Packet Recovery with Heterogeneous Block Sizes for Wireless Sensor Networks

    KAUST Repository

    Meer, Ammar M.


    Wireless sensor networks (WSN) have been largely used in various applications due to its ease of deployment and scalability. The throughput of such networks, however, suffers from high bit error rates mainly because of medium characteristics. Maximizing bandwidth utilization while maintaining low frame error rate has been an interesting problem. Frame fragmentation into small blocks with dedicated error detection codes per block can reduce the unnecessary retransmission of the correctly received blocks. The optimal block size, however, varies based on the wireless channel conditions. In addition, blocks within a frame can have different optimal sizes based on the variations on interference patterns. This thesis studies two dynamic partial packet recovery approaches experimentally over several interference intensities with various transmission-power levels. It also proposes a dynamic data link layer protocol: Hybrid Seda (H-Seda). H-Seda effectively addresses the challenges associated with dynamic partitioning of blocks while taking the observed error patterns into consideration. The design of H-Seda is discussed in details and compared to other previous approaches, namely Seda+ and Seda. The implementation of H-Seda shows substantial enhancements over fixed-size partial packet recovery protocols, achieving up to 2.5x improvement in throughput when the channel condition is noisy, while delay experienced decreases to only 14 % of the delay observed in Seda. On average, it shows 35% gain in goodput across all channel conditions used in our experiments. This significant improvement is due to the selective nature of H-Seda which minimizes retransmission overhead by selecting the appropriate number of blocks in each data frame. Additionally, H-Seda successfully reduces block overhead by 50% through removing block number field reaching to better performance when channel conditions are identical.

  10. Pore microgeometry analysis in low-resistivity sandstone reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Cerepi, Adrian [Institut EGID-Bordeaux 3, Universite Michel de Montaigne, 1, allee F. Daguin, 33607, cedex Pessac (France); Durand, Claudine; Brosse, Etienne [Institut Francais du Petrole, 1 and 4 avenue de Bois Preau, 92852, cedex Rueil-Malmaison (France)


    The objective of this work is to analyse the pore microgeometry and its effect on petrophysical properties in six low-resistivity sandstone reservoirs by combining a 2D quantitative petrographic image analysis (PIA) and 3D petrophysical tools. The classic petrophysical tools enable the measurement of different classic reservoir properties such as specific surface area, average pore diameter, pore size distribution, macroporosity and microporosity, capillary pressure versus saturation, pore chamber-pore throat diameter ratio, electrical properties and permeability. The petrographic image analysis quantifies pore microgeometry in more than four orders of magnitude, from submicron to millimeter scale. Chloritic low-resistivity sandstones show dual porosity structure defined as chloritic texture. The pore microgeometrical parameters measured by petrographic image analysis allow one to model different reservoir properties such as capillary pressure, permeability and electrical behaviour. The results obtained in these models show that pore microgeometry plays an important role in the physical properties of low-resistivity sandstone reservoirs.

  11. Impact of Porous Media and NAPL Spatial Variability at the Pore Scale on Interphase Mass Transfer (United States)

    Copty, N. K.; Agaoglu, B.; Scheytt, T.


    Sherwood number expressions are often used to model NAPL dissolution in porous media. Such expressions are generally derived from meso-scale experiments and expressed in terms of fluid and porous medium properties averaged over some representative volume. In this work a pore network model is used to examine the influence of porous media and NAPL pore scale variability on interphase mass transfer. The focus was on assessing the impact of (i) NAPL saturation, (ii) interfacial area (iii) NAPL spatial distribution at the pore scale, (iv) grain size heterogeneity and (v) REV or domain size on the apparent interphase mass transfer. Variability of both the mass transfer coefficient that explicitly accounts for the interfacial area and the mass transfer coefficient that lumps the interfacial area was examined. It was shown that pore scale NAPL distribution and its orientation relative to the flow direction have significant impact on flow bypassing and the interphase mass transfer coefficient. This results in a complex non-linear relationship between interfacial area and the REV-based interphase mass transfer rate. In other words, explicitly accounting for the interfacial area does not eliminate the variability of the mass transfer coefficient. Moreover, grain size heterogeneity can also lead to a decrease in the interphase mass transfer. It was also shown that, even for explicitly defined flow patterns, changing the domain size over which the mass transfer process is average influences the extent of NAPL bypassing and dilution and, consequently, the interphase mass transfer.

  12. The water-induced linear reduction gas diffusivity model extended to three pore regions

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; De Jonge, Lis Wollesen; Kawamoto, Ken


    gas diffusivity from moist to dry conditions across differently structured porous media, including narrow soil size fractions, perforated plastic blocks, fractured limestone, peaty soils, aggregated volcanic ash soils, and particulate substrates for Earth- or space-based applications. The new Cip......An existing gas diffusivity model developed originally for sieved, repacked soils was extended to characterize gas diffusion in differently structured soils and functional pore networks. A gas diffusivity-derived pore connectivity index was used as a measure of soil structure development....... Characterization of soil functional pore structure is an essential prerequisite to understand key gas transport processes in variably saturated soils in relation to soil ecosystems, climate, and environmental services. In this study, the water-induced linear reduction (WLR) soil gas diffusivity model originally...

  13. [Analysis of the design and renovation of mid-sized hospital's local area network]. (United States)

    Cao, Yang; Li, Min; Guo, Yifeng


    To address several hospital network issues, this paper discusses the overall plan, design and renovation of hospital's Local Area Network, making full use of existing network facilities. The techniques, such as Physical Separation of Internal and External Network, HSRP, OSPF, All-Routers Networking Model, etc., create features of extensibility, manageability, high safety, stability and so on to the overall network, and provide a reliable network platform to the function of the information systems.

  14. Networked Virtual Organizations: A Chance for Small and Medium Sized Enterprises on Global Markets (United States)

    Cellary, Wojciech

    Networked Virtual Organizations (NVOs) are a right answer to challenges of globalized, diversified, and dynamic contemporary economy. NVOs need more than e-trade and outsourcing, namely, they need out-tasking and e-collaboration. To out-task, but retain control on the way a task is performed by an external partner, two integrations are required: (1) integration of computer management systems of enterprises cooperating within an NVO; and (2) integration of cooperating representatives of NVO member enterprises into a virtual team. NVOs provide a particular chance to Small and Medium size Enterprises (SMEs) to find their place on global markets and to play a significant role on them. Requirements for SMEs to be able to successfully join an NVO are analyzed in the paper.

  15. Optimal Location and Sizing of UPQC in Distribution Networks Using Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Seyed Abbas Taher


    Full Text Available Differential evolution (DE algorithm is used to determine optimal location of unified power quality conditioner (UPQC considering its size in the radial distribution systems. The problem is formulated to find the optimum location of UPQC based on an objective function (OF defined for improving of voltage and current profiles, reducing power loss and minimizing the investment costs considering the OF's weighting factors. Hence, a steady-state model of UPQC is derived to set in forward/backward sweep load flow. Studies are performed on two IEEE 33-bus and 69-bus standard distribution networks. Accuracy was evaluated by reapplying the procedures using both genetic (GA and immune algorithms (IA. Comparative results indicate that DE is capable of offering a nearer global optimal in minimizing the OF and reaching all the desired conditions than GA and IA.

  16. Reconstituted Fusion Pore


    Jeremic, Aleksandar; Kelly, Marie; Cho, Sang-Joon; Stromer, Marvin H.; Jena, Bhanu P.


    Fusion pores or porosomes are basket-like structures at the cell plasma membrane, at the base of which, membrane-bound secretory vesicles dock and fuse to release vesicular contents. Earlier studies using atomic force microscopy (AFM) demonstrated the presence of fusion pores at the cell plasma membrane in a number of live secretory cells, revealing their morphology and dynamics at nm resolution and in real time. ImmunoAFM studies demonstrated the release of vesicular contents through the por...

  17. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro. (United States)

    Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros


    The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based

  18. Effect of heat treatment on pore structure in nanocrystalline NiO: A ...

    Indian Academy of Sciences (India)

    Nanocrystalline nickel oxide powders were calcined at 300, 600 and 900°C and pore structure evolution was followed by small angle neutron scattering (SANS). Pore size distributions at two widely separated size ranges have been revealed. Shrinkage of larger-sized pore with reduction in polydispersity has been observed ...

  19. Effects of pore topology and iron oxide core on doxorubicin loading and release from mesoporous silica nanoparticles (United States)

    Ronhovde, Cicily J.; Baer, John; Larsen, Sarah C.


    Mesoporous silica nanoparticles (MSNs) have a network of pores that give rise to extremely high specific surface areas, making them attractive materials for applications such as adsorption and drug delivery. The pore topology can be readily tuned to achieve a variety of structures such as the hexagonally ordered Mobil Crystalline Material 41 (MCM-41) and the disordered "wormhole" (WO) mesoporous silica (MS) structure. In this work, the effects of pore topology and iron oxide core on doxorubicin loading and release were investigated using MSNs with pore diameters of approximately 3 nm and sub-100 nm particle diameters. The nanoparticles were loaded with doxorubicin, and the drug release into phosphate-buffered saline (PBS, 10 mM, pH 7.4) at 37 °C was monitored by fluorescence spectroscopy. The release profiles were fit using the Peppas model. The results indicated diffusion-controlled release for all samples. Statistically significant differences were observed in the kinetic host-guest parameters for each sample due to the different pore topologies and the inclusion of an iron oxide core. Applying a static magnetic field to the iron oxide core WO-MS shell materials did not have a significant impact on the doxorubicin release. This is the first time that the effects of pore topology and iron oxide core have been isolated from pore diameter and particle size for these materials.

  20. Velocities in Solar Pores (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.


    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  1. Clique size and network characteristics in hyperlink cinema. Constraints of evolved psychology. (United States)

    Krems, Jaimie Arona; Dunbar, R I M


    Hyperlink cinema is an emergent film genre that seeks to push the boundaries of the medium in order to mirror contemporary life in the globalized community. Films in the genre thus create an interacting network across space and time in such a way as to suggest that people's lives can intersect on scales that would not have been possible without modern technologies of travel and communication. This allows us to test the hypothesis that new kinds of media might permit us to break through the natural cognitive constraints that limit the number and quality of social relationships we can manage in the conventional face-to-face world. We used network analysis to test this hypothesis with data from 12 hyperlink films, using 10 motion pictures from a more conventional film genre as a control. We found few differences between hyperlink cinema films and the control genre, and few differences between hyperlink cinema films and either the real world or classical drama (e.g., Shakespeare's plays). Conversation group size seems to be especially resilient to alteration. It seems that, despite many efficiency advantages, modern media are unable to circumvent the constraints imposed by our evolved psychology.

  2. Social support and subsequent disability: it is not the size of your network that counts. (United States)

    McLaughlin, Deirdre; Leung, Janni; Pachana, Nancy; Flicker, Leon; Hankey, Graeme; Dobson, Annette


    high levels of social support and engagement may help sustain good health and functional ability. However, the definition of social support in previous research has been inconsistent and findings are mixed. The aim of this analysis was to explore the effect of two aspects of social support on subsequent disability in a group of community dwelling older women and men. data were drawn from two concurrent prospective observational cohort studies of community-based older Australian women (N = 2,013) and men (N = 680). Baseline and follow-up data were drawn from the second (1999) and fifth (2008) surveys of the women and the second (2001) and third (2008) surveys of the men. At baseline, social support was measured by the two subscales (social network and subjective support) of the Duke Social Support Index (DSSI). The outcome measure was Activities of Daily Living (ADLs) and Instrumental Activities of Daily Living (IADLs). overall, social network size was not associated with subsequent disability in either women or men. After adjusting for health status at baseline, lack of satisfaction with social support was associated with greater difficulties in ADLs and IADLs for both women and men. our results suggest that the provision of social support is insufficient to limit subsequent disability: support provided must be subjectively perceived to be relevant and adequate.

  3. Colloid dispersion on the pore scale. (United States)

    Baumann, Thomas; Toops, Laura; Niessner, Reinhard


    Dispersion describes the spreading of a tracer or contaminant in an aquifer. Detailed knowledge of dispersion is the key to successful risk assessment in case of groundwater pollution or groundwater protection. The dispersion of colloids on the pore scale is controlled by flow velocity, ionic strength, colloid size, colloid concentration, and colloid-matrix interactions. The objective of this study was to provide quantitative data and to assess the scale dependency of colloid dispersion on the pore scale. The positions of carboxylated polystyrene microspheres (1 microm, 0.5 microm) were recorded during transport experiments in silicon micromodels with three pore topologies. The positions were combined into particle trajectories revealing the flow path of individual colloids. More than thousand trajectories were evaluated for each experiment to obtain the dispersivity of the colloids for flow distances between 10 and 1000 microm. All experiments were run at high Peclet numbers. The pore scale dispersivity was on the order of 8-30% of the flow distance with pure water, dependent on the heterogeneity of the pore topology. The dispersivity was positively correlated with the ionic strength and inversely correlated with the colloid size and the flow velocity. A coating of the micromodel surface with humic acid also increased dispersivity. The quantitative data set presented here supports the theoretical framework for colloid transport and allows to parametrize colloid transport on the pore scale. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Multiple Approaches to Characterizing Pore Structure in Natural Rock (United States)

    Hu, Q.; Dultz, S.; Hamamoto, S.; Ewing, R. P.


    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and chemical transport, and are important in hydrogeological studies of rock formations in the context of energy, environmental, and water resources management. This presentation discusses various approaches to investigating pore structure of rock, with a particular focus on the Barnett Shale in north Texas used for natural gas production. Approaches include imbibition, tracer diffusion, porosimetry (MIP, vapor adsorption/desorption isotherms, NMR cyroporometry), and imaging (μ-tomography, Wood's metal impregnation, FIB/SEM). Results show that the Barnett Shale pores are predominantly in the nm size range, with a measured median pore-throat diameter of 6.5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low gas diffusivity appears to be caused by low pore connectivity. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the pore structure characteristics in the Barnett Shale and other natural rocks.

  5. Fiscal 1998 research report. Survey on development and application of membranes with pores of micron to nano-meter sizes; 1998 nendo chosa kenkyu hokokusho. Makuro kara mikuro (nano mezo dai) size wo motsu, menburenmaku no kaihatsu narabi ni oyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)



    Researches on preparation of membranes of various materials have been promoted by not systematic technique but separate techniques according to needs of concerned fields. To establish the efficient technique for membranes with pores of required uniform size according to needs of various industries, survey and study were made on process optimization and low-cost production method. Porous membrane is the leading candidate for new separation systems as separation medium in chemical industry, hot gas filtration for energy production and environmental purification engineering. The electrode, separator and gas storage medium of fuel cell vehicles and next-generation batteries require effective porous materials. The workshop on engineering porous materials held in May 1993 confirmed the time of following materials: High-efficiency gas separation membrane, chemical catalytic membrane, fuel cell electrode and absorbent for environmental purification. Development of inorganic membranes more excellent in high-temperature stability, strength, catalytic activity and corrosion resistance than previous polymer membranes is important. (NEDO)

  6. [The application of network scale-up method on female sex workers and clients size estimation in Taizhou city]. (United States)

    Huan, Xi-ping; Bao, Shui-lian; Yang, Hai-tao; Xu, Jin-shui; Qiu, Tao; Zhang, Xiang; Pan, Long; Zhu, Zhong-kui; Guo, Wei; Wang, Lu


    To estimate the size of female sex workers and clients in Taizhou city. A household survey using network scale-up method (NSUM) was conducted among the 3000 community residents in Taizhou city from August to October in 2011, which aimed to estimate the social network size (c value) of Taizhou residents, and the c value was adjusted by demographic characteristics, back estimation and outlier elimination. Using the adjusted c value, the number of acquaintance of female sex workers or clients and the respect level toward female sex workers or clients were used to estimate the size of female sex workers and clients. A total of 2783 valid questionnaires were collected, among which 1380 (49.6%) were collected from Taixing city, 1403 (50.4%) were collected from Jingjiang city. 1334 respondents were male (47.9%) and 1449 (47.9%) respondents were female. The mean age was (39.4 ± 10.7) years. The average personal social network size using original data for Taizhou residents was 525, which differed from place, sex, age, educational level and marriage status. Using the remaining known populations through back estimation, the social network size was 419 and became 424 after the elimination of outliers. The estimated population size for female sex worker was 6370 (95%CI: 5886 - 6853), which accounted for 0.52% (6370/1 229 980) of the total number of female aged from 15 to 49. The estimated population size for clients was 15 202 (95%CI: 14 560 - 15 847), which accounted for 1.28% (15 202/1 190 340) of the total number of males aged from 15 to 49 and the ration of clients to female sex worker was 2.39:1. NSUM is an easy and quick way to estimate the size of female sex workers or clients, but the estimated sizes are subject to bias and error due to estimate effect and sample representativeness.

  7. Capillary filling rules and displacement mechanisms for spontaneous imbibition of CO2 for carbon storage and EOR using micro-model experiments and pore scale simulation (United States)

    Chapman, E.; Yang, J.; Crawshaw, J.; Boek, E. S.


    geometry of the pore body rather than the downstream pore throat sizes, contrary to the established capillary filling rules as used in current pore network models. Our experimental observations are confirmed by detailed lattice-Boltzmann pore scale computer simulations of fluid displacement in the same geometries. This suggests that capillary filling rules for imbibition as used in pore network models may need to be revised. [1] G. Lenormand, C. Zarcone and A. Sarr, J. Fluid Mech. 135 , 337-353 (1983).

  8. Low pore connectivity in natural rock (United States)

    Hu, Qinhong; Ewing, Robert P.; Dultz, Stefan


    As repositories for CO2 and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in air-water system) and diffusion rate than expected from classical behavior.

  9. TIG Dressing Effects on Weld Pores and Pore Cracking of Titanium Weldments

    Directory of Open Access Journals (Sweden)

    Hui-Jun Yi


    Full Text Available Weld pores redistribution, the effectiveness of using tungsten inert gas (TIG dressing to remove weld pores, and changes in the mechanical properties due to the TIG dressing of Ti-3Al-2.5V weldments were studied. Moreover, weld cracks due to pores were investigated. The results show that weld pores less than 300 μm in size are redistributed or removed via remelting due to TIG dressing. Regardless of the temperature condition, TIG dressing welding showed ductility, and there was a loss of 7% tensile strength of the weldments. Additionally, it was considered that porosity redistribution by TIG dressing was due to fluid flow during the remelting of the weld pool. Weld cracks in titanium weldment create branch cracks around pores that propagate via the intragranular fracture, and oxygen is dispersed around the pores. It is suggested that the pore locations around the LBZ (local brittle zone and stress concentration due to the pores have significant effects on crack initiation and propagation.

  10. Oil-collecting bee–flower interaction network: do bee size and anther type influence the use of pollen sources?


    Rabelo, Laíce S.; Vilhena, Alice M. G. F.; Bastos, Esther M. A. F.; Aguiar, Cândida M.L.; Augusto, Solange Cristina


    International audience; AbstractPollination is an ecosystem service sustained by a differentiated use of resources among sympatric species. The bee size can influence the similarity in the use of resources, and poricidal anthers limit the access to pollen. Therefore, we evaluated the influence of body size and the anther type of pollen sources in Centridini–flower interaction network. We expected that the low niche overlap, promoted by these morphological parameters, would result in the forma...

  11. Elastic Pore Structure in Activated Carbon (United States)

    Connolly, M. J.; Wexler, Carlos


    Adsorbent materials such as activated carbon and Metal-Organic Frameworks (MOFs) have received significant attention as a potential storage material for hydrogen and natural gas. Typically the adsorbent material is assumed to consist of rigid slit- or cylindrical-shaped pores. Recent work, for MOFs in particular, revealed the importance of the mechanical response of the adsorbent in the presence of an adsorbate. In the absence of an adsorbate the pore structure is defined by the size, shape and inter-molecular interactions of the constituent parts of the solid. Here, we demonstrate the flexibility of pore walls in activated carbon and the effect this has on the pore structure of the bulk samples. The interaction is modeled as a competition between Van der Waals interactions between neighboring walls and a resistance to bending due to the rigidity of graphene. Minimal energy configurations were calculated analytically for a simplified potential and numerically for a more realistic potential. The pore structures are discussed in the context of pore measurements on activated carbon samples.

  12. The six dimensions of personality (HEXACO) and their associations with network layer size and emotional closeness to network members

    NARCIS (Netherlands)

    Molho, Catherine; Lis, Sam G.B.; de Vries, Reinout Everhard; Pollet, Thomas V.


    Previous work has examined how specific personality dimensions are associated with social network characteristics. However, it is unclear how the full range of personality traits relates to the quantity and quality of relationships at different network layers. This study (N = 525) investigates how

  13. Evaluation and improvement of the regulatory inference for large co-expression networks with limited sample size. (United States)

    Guo, Wenbin; Calixto, Cristiane P G; Tzioutziou, Nikoleta; Lin, Ping; Waugh, Robbie; Brown, John W S; Zhang, Runxuan


    Co-expression has been widely used to identify novel regulatory relationships using high throughput measurements, such as microarray and RNA-seq data. Evaluation studies on co-expression network analysis methods mostly focus on networks of small or medium size of up to a few hundred nodes. For large networks, simulated expression data usually consist of hundreds or thousands of profiles with different perturbations or knock-outs, which is uncommon in real experiments due to their cost and the amount of work required. Thus, the performances of co-expression network analysis methods on large co-expression networks consisting of a few thousand nodes, with only a small number of profiles with a single perturbation, which more accurately reflect normal experimental conditions, are generally uncharacterized and unknown. We proposed a novel network inference methods based on Relevance Low order Partial Correlation (RLowPC). RLowPC method uses a two-step approach to select on the high-confidence edges first by reducing the search space by only picking the top ranked genes from an intial partial correlation analysis and, then computes the partial correlations in the confined search space by only removing the linear dependencies from the shared neighbours, largely ignoring the genes showing lower association. We selected six co-expression-based methods with good performance in evaluation studies from the literature: Partial correlation, PCIT, ARACNE, MRNET, MRNETB and CLR. The evaluation of these methods was carried out on simulated time-series data with various network sizes ranging from 100 to 3000 nodes. Simulation results show low precision and recall for all of the above methods for large networks with a small number of expression profiles. We improved the inference significantly by refinement of the top weighted edges in the pre-inferred partial correlation networks using RLowPC. We found improved performance by partitioning large networks into smaller co

  14. Dendritic nonlinearities reduce network size requirements and mediate ON and OFF states of persistent activity in a PFC microcircuit model.

    Directory of Open Access Journals (Sweden)

    Athanasia Papoutsi


    Full Text Available Technological advances have unraveled the existence of small clusters of co-active neurons in the neocortex. The functional implications of these microcircuits are in large part unexplored. Using a heavily constrained biophysical model of a L5 PFC microcircuit, we recently showed that these structures act as tunable modules of persistent activity, the cellular correlate of working memory. Here, we investigate the mechanisms that underlie persistent activity emergence (ON and termination (OFF and search for the minimum network size required for expressing these states within physiological regimes. We show that (a NMDA-mediated dendritic spikes gate the induction of persistent firing in the microcircuit. (b The minimum network size required for persistent activity induction is inversely proportional to the synaptic drive of each excitatory neuron. (c Relaxation of connectivity and synaptic delay constraints eliminates the gating effect of NMDA spikes, albeit at a cost of much larger networks. (d Persistent activity termination by increased inhibition depends on the strength of the synaptic input and is negatively modulated by dADP. (e Slow synaptic mechanisms and network activity contain predictive information regarding the ability of a given stimulus to turn ON and/or OFF persistent firing in the microcircuit model. Overall, this study zooms out from dendrites to cell assemblies and suggests a tight interaction between dendritic non-linearities and network properties (size/connectivity that may facilitate the short-memory function of the PFC.

  15. Packet size optimization for goodput and energy efficiency enhancement in slotted IEEE 802.15.4 networks

    NARCIS (Netherlands)

    Zhang, Y.; Shu, F.


    To address system goodput and energy efficiency enhancement, this paper studies packet size optimization for IEEE 802.15.4 networks. Taking into account of the CSMA-CA contention, protocol overhead, and channel condition, new analytical models are proposed to calculate the goodput and the energy

  16. Introducing a new formula based on an artificial neural network for prediction of droplet size in venturi scrubbers

    Directory of Open Access Journals (Sweden)

    A. Sharifi


    Full Text Available Droplet size is a fundamental parameter for Venturi scrubber performance. For many years, the correlations proposed by Nukiyama and Tanasawa (1938 and Boll et al. (1974 were used for calculating mean droplet size in Venturi scrubbers with limited operating parameters. This study proposes an alternative approach on the basis of artificial neural networks (ANNs to determine the mean droplet size in Venturi scrubbers, in a wide range of operating parameters. Experimental data were used to design the ANNs. A neural network was trained based on the liquid to gas ratio (L/G and throat gas velocity (Vgth, as input parameters, and the Sauter mean diameter (D32 as the desired parameter. The back-propagation learning algorithms were used in the network and the best approach was found. A new formula for the prediction of D32 using the weights of the network was then generated. This formula predicts mean droplet size in Venturi scrubbers more accurately than the correlations of Boll et al. (1974 and Nukiyama and Tanasawa (1938. The Average Absolute Percent Deviation (AAPD of our formula and the Boll et al. and Nukiyama and Tanasawa correlations for the full ranges of experimental data are 26.04%, 40.19% and 32.99%, respectively.

  17. Analytical electron tomography mapping of the SiC pore oxidation at the nanoscale. (United States)

    Florea, Ileana; Ersen, Ovidiu; Hirlimann, Charles; Roiban, Lucian; Deneuve, Adrien; Houllé, Matthieu; Janowska, Izabela; Nguyen, Patrick; Pham, Charlotte; Pham-Huu, Cuong


    Silicon carbide is a ceramic material that has been widely studied because of its potential applications, ranging from electronics to heterogeneous catalysis. Recently, a new type of SiC materials with a medium specific surface area and thermal conductivity, called β-SiC, has attracted overgrowing interest as a new class of catalyst support in several catalytic reactions. A primary electron tomography study, performed in usual mode, has revealed a dual surface structure defined by two types of porosities made of networks of connected channels with sizes larger than 50 nm and ink-bottled pores with sizes spanning from 4 to 50 nm. Depending on the solvent nature, metal nanoparticles could be selectively deposited inside one of the two porosities, a fact that illustrates a selective wetting titration of the two types of surfaces by different liquids. The explaining hypothesis that has been put forward was that this selectivity against solvents is related to the pore surface oxidation degree of the two types of pores. A new technique of analytical electron tomography, where the series of projections used to reconstruct the volume of an object is recorded in energy filtered mode (EFTEM), has been implemented to map the pore oxidation state and to correlate it with the morphology and the accessibility of the porous network. Applied, for the first time, at a nanoscale resolution, this technique allowed us to obtain 3D elemental maps of different elements present in the analysed porous grains, in particular oxygen; we found thus that the interconnected channel pores are more rapidly oxidized than the ink-bottled ones. Alternatively, our study highlights the great interest of this method that opens the way for obtaining precise information on the chemical composition of a 3D surface at a nanometer scale.

  18. Influence of pore structure on compressive strength of cement mortar. (United States)

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping


    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  19. Measurements of pore-scale flow through apertures

    Energy Technology Data Exchange (ETDEWEB)

    Chojnicki, Kirsten [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  20. An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: application for isolated sites in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, A. [Univ. Center of Medea, Inst. of Engineering Sciences, Ain Dahab (Algeria); Benghanem, M. [Univ. of Sciences and Technology Houari Boumediene (USTHB), Faculty of Electrical Engineering, Algiers (Algeria); Arab, A. Hadj [Development Center of Renewable Energy (CDER), Algiers (Algeria); CIEMAT, Dept. de Energias Renerables, Madrid (Spain); Guessoum, A. [Ministry for the Higher Education and Scientific Research, Algiers (Algeria)


    In this paper we investigate, the possibility of using an adaptive Artificial Neural Network (ANN), in order to find a suitable model for sizing Stand-Alone Photovoltaic (SAPV) systems, based on a minimum of input data. The model combines Radial Basis Function (RBF) network and Infinite Impulse Response (IIR) filter in order to accelerate the convergence of the network. For the sizing of a photovoltaic (PV) systems, we need to determine the optimal sizing coefficients (K{sub PV}, K{sub B}). These coefficients allow us to determine the number of solar panels and storage batteries necessary to satisfy a given consumption, especially in isolated sites where the global solar radiation data is not always available. These coefficients are considered the most important parameters for sizing a PV system. Results obtained by classical models (analytical, numerical, analytical-numerical, B-spline function) and new models like feed-forward (MLP), radial basis function (RBF), MLP-IIR and RBF-IIR are compared with experimental sizing coefficients in order to illustrate the accuracy of the new developed model. This model has been trained by using 200 known optimal sizing coefficients corresponding to 200 locations in Algeria. In this way, the adaptive model was trained to accept and handle a number of unusual cases. The unknown validation sizing coefficients set produced very accurate estimation with a correlation coefficient of 98%. This result indicates that the proposed method can be successfully used for the estimation of optimal sizing coefficients of SAPV systems for any locations in Algeria. The methodology proposed in this paper however, can be generalized using different locations of the world. (Author)

  1. Microfluidic generation of droplet interface bilayer networks incorporating real-time size sorting in linear and non-linear configurations (United States)

    Carreras, P.; Law, R. V.; Brooks, N.; Seddon, J. M.; Ces, O.


    In this study, a novel droplet based microfluidic method for the generation of different sized droplet interface bilayers is reported. A microfluidic platform was designed, which allows the generation and packing of picoliter lipid coated water droplets. Droplets were generated by hydrodynamic focusing coupled with selective transport along grooves according to their size. A trapping structure at the end of the groove and a fine control of the flow pressures allowed for the droplets to be successfully trapped and aligned on demand. This technology facilitates the fine control of droplet size production as well as the generation of extended networks from a variety of lipids including 1,2-diphytanoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine in linear and non-linear configurations, which is vital to the application of Droplet Interface Bilayers to biological network construction on-chip. PMID:25538807

  2. Investigation on pore structure and small-scale agglomeration ...

    Indian Academy of Sciences (India)

    tives results in the modification in the pore size distribution and to some extent the total porosity. SANS revealed a ... agglomeration behaviour of the primary particles also affects the microstructure and the density of the .... estimated parameters from the fit of the model to the data are tabulated in table 1. The estimated pore ...

  3. The Pore Structure of Direct Methanol Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Lund, Peter Brilner


    The pore structure and morphology of direct methanol fuel cell electrodes are characterized using mercury intrusion porosimetry and scanning electron microscopy. It is found that the pore size distributions of printed primer and catalyst layers are largely dictated by the powders used to make...

  4. Stochastic Prediction and Feedback Control of Router Queue Size in a Virtual Network Environment (United States)


    OPNET model of the simple queuing system had used [3]. Client ServerRouter Figure 3.8: 1 router network topology 2 Routers Network...traffic demand with the inclusion of real operating systems and applications versus application models provided by discrete-event modeling and...2.1 Network Queues The mathematical study of queues or waiting lines is referred to as queuing theory. It consist of models constructed with the aim

  5. Cluster-size entropy in the Axelrod model of social influence: small-world networks and mass media. (United States)

    Gandica, Y; Charmell, A; Villegas-Febres, J; Bonalde, I


    We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy S(c), which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the S(c)(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait q(c) and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.

  6. Cluster-size entropy in the Axelrod model of social influence: Small-world networks and mass media (United States)

    Gandica, Y.; Charmell, A.; Villegas-Febres, J.; Bonalde, I.


    We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy Sc, which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the Sc(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait qc and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.

  7. Formation of Molecular Networks: Tailored Quantum Boxes and Behavior of Adsorbed CO in Them (United States)

    Wyrick, Jon; Sun, Dezheng; Kim, Dae-Ho; Cheng, Zhihai; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Kim, Yong Su; Rotenberg, Eli; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig


    We show that the behavior of CO adsorbed into the pores of large regular networks on Cu(111) is significantly affected by their nano-scale lateral confinement and that formation of the networks themselves is directed by the Shockley surface state. Saturation coverages of CO are found to exhibit persistent dislocation lines; at lower coverages their mobility increases. Individual CO within the pores titrate the surface state, providing crucial information for understanding formation of the network as a result of optimization of the number N of electrons bound within each pore. Determination of N is based on quinone-coverage-dependent UPS data and an analysis of states of particles in a pore-shaped box (verified by CO's titration); a wide range of possible pore shapes and sizes has been considered. Work at UCR supported by NSF CHE 07-49949; at UMD by NSF CHE 07-50334 & UMD NSF-MRSEC DMR 05-20471.

  8. A new model for sizing of stand-alone photovoltaic systems using neural network adaptive frame wavelet

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, A. [University Center of Medea, Institute of Engineering Sciences, Ain Dahab (Algeria); Benghanem, M. [University of Sciences Technology Houari Boumediene (USTHB), Faculty of ElectricalEngineering, El-Alia, Algiers (Algeria); Hadj Arab, A. [Development Center of Renewable Energy (CDER), Bouzareah, Algiers (Algeria); Guessoum, A. [Ministry for the Higher Education and Scientific Research, Algiers (Algeria)


    The objective of this work is to train the MLP-IIR model to learn the estimation and modeling of the optimal sizing coefficients of stand-alone PV system with a minimum of input data. Once trained, the MLP-IIR estimates these coefficients faster. The validation of the model was performed with unknown sizing coefficient, which the network has not seen before. The ability of the network to make acceptable estimations even in an unusual day is an advantage of the present method. It should be stressed that the training of the network required about 1 minute on a Pentium III 800MHz machine. The estimation with correlation coefficient of 98 % was obtained. This accuracy is well within the acceptable level used by design engineers. The traditional methods of sizing PV system (empirical, analytical, numerical and hybrid) allows to estimate the sizing of PV system for one given site, and requires the availability of several parameters such as the daily solar radiation data, altitude, longitude, the load, the characteristics of stand alone PV system, the inclination of the panels and to take very much computing time for estimation of optimal coefficients. On the other hand, the model that we developed allows estimating the PV-array area and the storage capacity from a minimum input data (altitude, longitude) based on the optimal sizing coefficients and does not take much time for simulation. The advantage of this model is to estimate of the PV-array area and the storage capacity in any site in Algeria particularly in isolated sites, where the global solar radiation data is not always available. Also, this presents a good result compared between other neural network architecture. The results have been obtained for Algerian meteorological data, but the methodology can be applied to any geographical area. (orig.)

  9. High transmembrane voltage raised by close contact initiates fusion pore

    Directory of Open Access Journals (Sweden)

    Bing Bu


    Full Text Available Membrane fusion lies at the heart of neuronal communication but the detailed mechanism of a critical step, fusion pore initiation, remains poorly understood. Here, through atomistic molecular dynamics simulations, a transient pore formation induced by a close contact of two apposed bilayers is firstly reported. Such a close contact gives rise to a high local transmembrane voltage that induces the transient pore formation. Through simulations on two apposed bilayers fixed at a series of given distances, the process in which two bilayers approaching to each other under the pulling force from fusion proteins for membrane fusion was mimicked. Of note, this close contact induced fusion pore formation is contrasted with previous reported electroporation under ad hoc applied external electric field or ionic charge in-balance. We show that the transmembrane voltage increases with the decrease of the distance between the bilayers. Below a critical distance, depending on the lipid composition, the local transmembrane voltage can be sufficiently high to induce the transient pores. The size of these pores is approximately 1~2 nm in diameter, which is large enough to allow passing of neurotransmitters. A resealing of the membrane pores resulting from the neutralization of the transmembrane voltage by ions through the pores was then observed. We also found that the membrane tension can either prolong the lifetime of transient pores or cause them to dilate for full collapse. This result provides a possible mechanism for fusion pore formation and regulation of pathway of fusion process.

  10. The pore space scramble (United States)

    Gormally, Alexandra; Bentham, Michelle; Vermeylen, Saskia; Markusson, Nils


    Climate change and energy security continue to be the context of the transition to a secure, affordable and low carbon energy future, both in the UK and beyond. This is reflected in for example, binding climate policy targets at the EU level, the introduction of renewable energy targets, and has also led to an increasing interest in Carbon Capture and Storage (CCS) technology with its potential to help mitigate against the effects of CO2 emissions from fossil fuel burning. The UK has proposed a three phase strategy to integrate CCS into its energy system in the long term focussing on off-shore subsurface storage (DECC, 2014). The potential of CCS therefore, raises a number of challenging questions and issues surrounding the long-term storage of CO2 captured and injected into underground spaces and, alongside other novel uses of the subsurface, contributes to opening a new field for discussion on the governance of the subsurface. Such 'novel' uses of the subsurface have lead to it becoming an increasingly contested space in terms of its governance, with issues emerging around the role of ownership, liability and property rights of subsurface pore space. For instance, questions over the legal ownership of pore space have arisen with ambiguity over the legal standpoint of the surface owner and those wanting to utilise the pore space for gas storage, and suggestions of whether there are depths at which legal 'ownership' becomes obsolete (Barton, 2014). Here we propose to discuss this 'pore space scramble' and provide examples of the competing trajectories of different stakeholders, particularly in the off-shore context given its priority in the UK. We also propose to highlight the current ambiguity around property law of pore space in the UK with reference to approaches currently taken in different national contexts. Ultimately we delineate contrasting models of governance to illustrate the choices we face and consider the ethics of these models for the common good


    Directory of Open Access Journals (Sweden)

    Erhan Bat


    Full Text Available Hydroxyethyl methacrylate (HEMA based hydrogels have found increasing number of applications in areas such as chromatographic separations, controlled drug release, biosensing, and membrane separations. In all these applications, the pore size and pore interconnectivity are crucial for successful application of these materials as they determine the rate of diffusion through the matrix. 2-Hydroxyethyl methacrylate is a water soluble monomer but its polymer, polyHEMA, is not soluble in water. Therefore, during polymerization of HEMA in aqueous media, a porous structure is obtained as a result of phase separation. Pore size and interconnectivity in these hydrogels is a function of several variables such as monomer concentration, cross-linker concentration, temperature etc. In this study, we investigated the effect of monomer concentration, graphene oxide addition or clay addition on hydrogel pore size, pore interconnectivity, water uptake, and thermal properties. PolyHEMA hydrogels have been prepared by redox initiated free radical polymerization of the monomer using ethylene glycol dimethacrylate as a cross-linker. As a nanofiller, a synthetic hectorite Laponite® XLG and graphene oxide were used. Graphene oxide was prepared by the Tour Method. Pore morphology of the pristine HEMA based hydrogels and nanocomposite hydrogels were studied by scanning electron microscopy. The formed hydrogels were found to be highly elastic and flexible. A dramatic change in the pore structure and size was observed in the range between 22 to 24 wt/vol monomer at 0.5 % of cross-linker. In this range, the hydrogel morphology changes from typical cauliflower architecture to continuous hydrogel with dispersed water droplets forming the pores where the pores are submicron in size and show an interconnected structure. Such controlled pore structure is highly important when these hydrogels are used for solute diffusion or when there’s flow through monolithic hydrogels

  12. Case study of networking in the Danish small and medium sized dairy firms

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard


    The networking of small and mediumsized dairy firms in denmark is an effective way to get new information about markets, technology, competitors and prospective possiblities to develop new products.......The networking of small and mediumsized dairy firms in denmark is an effective way to get new information about markets, technology, competitors and prospective possiblities to develop new products....

  13. Optimal Sizing and Allocation of Residential Photovoltaic Panels in a Distribution Network for Ancillary Services Application

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi; Pourmousavi, Ali; Pillai, Jayakrishnan Radhakrishna


    Tremendous penetration of renewable energy in electric networks, despite its valuable opportunities, such as balancing reserve and ancillary service, has raised concerns for network operators. Such concern stems from grid operating conditions. Such huge penetration can lead to violation in the gr...

  14. Covalent Cross-Linking of Porous Poly(ionic liquid) Membrane via a Triazine Network


    Täuber, K.; Dani, A.; Yuan, J.


    Porous poly(ionic liquid) membranes that were prepared via electrostatic cross-linking were subsequently covalently cross-linked via formation of a 1,3,5-triazine network. The additional covalent cross-links do not affect the pore size and pore size distribution of the membranes and stabilize them towards salt solutions of high ionic strength, enabling the membranes to work in a broader environmental window.

  15. Crossed and Linked Histories of Tetrapyrrolic Macrocycles and Their Use for Engineering Pores within Sol-Gel Matrices

    Directory of Open Access Journals (Sweden)

    Miguel A. García-Sánchez


    Full Text Available The crossed and linked histories of tetrapyrrolic macrocycles, interwoven with new research discoveries, suggest that Nature has found in these structures a way to ensure the continuity of life. For diverse applications porphyrins or phthalocyanines must be trapped inside solid networks, but due to their nature, these compounds cannot be introduced by thermal diffusion; the sol-gel method makes possible this insertion through a soft chemical process. The methodologies for trapping or bonding macrocycles inside pristine or organo-modified silica or inside ZrO2 xerogels were developed by using phthalocyanines and porphyrins as molecular probes. The sizes of the pores formed depend on the structure, the cation nature, and the identities and positions of peripheral substituents of the macrocycle. The interactions of the macrocyclic molecule and surface Si-OH groups inhibit the efficient displaying of the macrocycle properties and to avoid this undesirable event, strategies such as situating the macrocycle far from the pore walls or to exchange the Si-OH species by alkyl or aryl groups have been proposed. Spectroscopic properties are better preserved when long unions are established between the macrocycle and the pore walls, or when oligomeric macrocyclic species are trapped inside each pore. When macrocycles are trapped inside organo-modified silica, their properties result similar to those displayed in solution and their intensities depend on the length of the alkyl chain attached to the matrix. These results support the prospect of tuning up the pore size, surface area, and polarity inside the pore cavities in order to prepare efficient catalytic, optical, sensoring, and medical systems. The most important feature is that research would confirm again that tetrapyrrolic macrocycles can help in the development of the authentic pore engineering in materials science.

  16. Simulation of Supply-Chain Networks: A Source of Innovation and Competitive Advantage for Small and Medium-Sized Enterprises

    Directory of Open Access Journals (Sweden)

    Giacomo Liotta


    Full Text Available On a daily basis, enterprises of all sizes cope with the turbulence and volatility of market demands, cost variability, and severe pressure from globally distributed competitors. Managing uncertainty about future demand requirements and volumes in supply-chain networks has become a priority. One of the ways to deal with uncertainty is the utilization of simulation techniques and tools, which provide greater predictability of decision-making outcomes. For example, simulation has been widely applied in decision-making processes related to global logistics and production networks at the strategic, tactical, and operational levels, where it is used to predict the impact of decisions before their implementation in complex and uncertain environments. Large enterprises are inclined to use simulation tools whereas small and medium-sized enterprises seem to underestimate its advantages. The objective of this article is to emphasize the relevance of simulation for the design and management of supply-chain networks from the perspective of small and medium-sized firms.

  17. Source and Size of Emotional and Financial-Related Social Support Network on Physical Activity Behavior Among Older Adults. (United States)

    Loprinzi, Paul D; Joyner, Chelsea


    To examine the association of source of emotional- and financial-related social support and size of social support network on physical activity behavior among older adults. Data from the 1999-2006 NHANES were used (N = 5616; 60 to 85 yrs). Physical activity and emotional- and financial-related social support were assessed via self-report. Older adults with perceived having emotional social support had a 41% increased odds of meeting physical activity guidelines (OR = 1.41; 95% CI: 1.01-1.97). The only specific sources of social support that were associated with meeting physical activity guidelines was friend emotional support (OR = 1.19; 95% CI: 1.01-1.41) and financial support (OR = 1.28; 95% CI: 1.09-1.49). With regard to size of social support network, a dose-response relationship was observed. Compared with those with 0 close friends, those with 1 to 2, 3 to 4, 5, and 6+ close friends, respectively, had a 1.70-, 2.38-, 2.57-, and 2.71-fold increased odds of meeting physical activity guidelines. There was some evidence of gender- and age-specific associations between social support and physical activity. Emotional- and financial-related social support and size of social support network are associated with higher odds of meeting physical activity guidelines among older adults.

  18. Time evolution of pore system in lime - Pozzolana composites (United States)

    Doleželová, Magdaléna; Čáchová, Monika; Scheinherrová, Lenka; Keppert, Martin


    The lime - pozzolana mortars and plasters are used in restoration works on building cultural heritage but these materials are also following the trend of energy - efficient solutions in civil engineering. Porosity and pore size distribution is one of crucial parameters influencing engineering properties of porous materials. The pore size distribution of lime based system is changing in time due to chemical processes occurring in the material. The present paper describes time evolution of pore system in lime - pozzolana composites; the obtained results are useful in prediction of performance of lime - pozzolana systems in building structures.

  19. Options for efficient use of social networks for small and medium-sized enterprises


    Král, Marek


    This bachelor thesis concerns the problematic of social networks and their usage for marketing purposes. In theoretical part there are described tools of the most famous social site -- Facebook, that are usable for marketing purposes, as well as its advantages and disadvantages. In practical part there is analysed outdoor segment and suitable usage of social networks as Facebook. Furthermore analysis of electivity and current usefulness is done. In last practical part there are suggested and ...

  20. Pore structure and growth kinetics in carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Bose, S.


    Pore structure of glassy carbon (GC) and pyrolytic graphite (PG) have been investigated. GC is one of the most impervious of solids finding applications in prosthetic devices and fuel cells while PG is used extensively in the aerospace industry. One third of the microstructure of GC consists of closed pores inaccessible to fluids. The microstructure of this material has been characterized using x-ray diffraction (XRD) and high resolution electron microscopy. Small angle x-ray scattering (SAXS) has been used to measure the angstrom sized pores and to follow the evolution of pore surface area as a function of heat treatment temperature (HTT) and heat treatment time (HTt) at constant temperature. From these measurements an analysis of the surface area kinetics was made to find out if rate processes are involved and to locate graphitization occurring at pore surfaces. PG on the other hand has been found to have larger sized pores that comprise five percent of its volume. In addition to being closed these pores are oriented. Some pore models are proposed for PG and the existing scattering theory from oriented ellipsoids is modified to include the proposed shapes.

  1. Self-assembled Ag nanoparticle network passivated by a nano-sized ZnO layer for transparent and flexible film heaters

    Directory of Open Access Journals (Sweden)

    Ki-Won Seo


    Full Text Available We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs. The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, the TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.

  2. Size of the social network versus quality of social support: which is more protective against PTSD? (United States)

    Platt, Jonathan; Keyes, Katherine M; Koenen, Karestan C


    Supportive social networks are important to the post-traumatic response process. However, the effects of social network structure may be distinct from the perceived function of those networks. The present study examined the relative importance of role diversity and perceived strength of social support in mitigating post-traumatic stress disorder (PTSD). Data were drawn from respondents who report lifetime potentially traumatic events in the National Epidemiologic Survey on Alcohol and Related Conditions (N = 31,650). The Social Network Index (SNI) was used to measure the diversity of social connections. The Interpersonal Support Evaluation List (ISEL-12) was used to measure the perceived availability of social support within the network. Odds of current PTSD were compared among individuals representing four dichotomous types of social support: high diversity/high perceived strength, high diversity/low perceived strength, low diversity/high perceived strength, and low diversity/low perceived strength to examine which type of support is more protective against PTSD. Unadjusted odds of PTSD were 1.59 (95 % CI 1.39-1.82) for those with low versus high perceived support strength, and 1.10 (0.94-1.28) among those with non-diverse versus diverse social networks. Compared to the reference group (high diversity/high perceived strength), the adjusted odds of current PTSD were higher for two groups: low diversity/low perceived strength (OR = 1.62; 1.33-1.99), and low diversity/high perceived strength (OR = 1.57; 1.3-1.91). The high diversity/low perceived strength group had no greater odds of PTSD (OR = 1.02; 0.81-1.28). The diversity of a social network is potentially more protective against PTSD than the perception of strong social support. This suggests that programs, which engage individuals in social groups and activities may effectively attenuate the risk of PTSD. A better understanding of how these networks operate with respect to PTSD prevention and mitigation holds

  3. Effects of Land Configuration and Wood-shavings Mulch on Pore ...

    African Journals Online (AJOL)

    Effects of Land Configuration and Wood-shavings Mulch on Pore Size Distribution and Water Retention Properties of an Ustipsamment in Northeast Nigeria. ... On the other hand, the proportion of total pore space comprised by macro pore space (diameter >36µm) was little affected by tillage and residue management at all ...

  4. Cluster size entropy in the Axelrod model of social influence: small-world networks and mass media

    CERN Document Server

    Gandica, Yérali; Villegas-Febres, J; Bonalde, I


    We study the Axelrod's cultural adaptation model using the concept of cluster size entropy, $S_{c}$ that gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is unambiguously given by the maximum of the $S_{c}(q)$ distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first- or second-order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait $q_c$ and the number $F$ of cultural features in regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a new partially ordered phase whose largest cultural cluster is not aligned with the external fiel...

  5. Investigating a reduced size real-time transport protocol for low-bandwidth networks

    CSIR Research Space (South Africa)

    Kakande, JN


    Full Text Available Optimization of bandwidth usage for video streaming is of paramount importance in networks where low bitrate links are typical. Among the solutions proposed to address this problem is header compression. Real-Time Transport Protocol (RTP) and RTP...

  6. Optimal Sizing and Placement of Power-to-Gas Systems in Future Active Distribution Networks

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Bhattarai, Bishnu Prasad; Kouzelis, Konstantinos


    of medium voltage distribution networks does not normally follow a common pattern, finding a singular and very particular layouts in each case. This fact, makes the placement and dimensioning of such flexible loads a complicated task for the distribution system operator in the future. This paper describes...

  7. Deep learning in the small sample size setting: cascaded feed forward neural networks for medical image segmentation (United States)

    Gaonkar, Bilwaj; Hovda, David; Martin, Neil; Macyszyn, Luke


    Deep Learning, refers to large set of neural network based algorithms, have emerged as promising machine- learning tools in the general imaging and computer vision domains. Convolutional neural networks (CNNs), a specific class of deep learning algorithms, have been extremely effective in object recognition and localization in natural images. A characteristic feature of CNNs, is the use of a locally connected multi layer topology that is inspired by the animal visual cortex (the most powerful vision system in existence). While CNNs, perform admirably in object identification and localization tasks, typically require training on extremely large datasets. Unfortunately, in medical image analysis, large datasets are either unavailable or are extremely expensive to obtain. Further, the primary tasks in medical imaging are organ identification and segmentation from 3D scans, which are different from the standard computer vision tasks of object recognition. Thus, in order to translate the advantages of deep learning to medical image analysis, there is a need to develop deep network topologies and training methodologies, that are geared towards medical imaging related tasks and can work in a setting where dataset sizes are relatively small. In this paper, we present a technique for stacked supervised training of deep feed forward neural networks for segmenting organs from medical scans. Each `neural network layer' in the stack is trained to identify a sub region of the original image, that contains the organ of interest. By layering several such stacks together a very deep neural network is constructed. Such a network can be used to identify extremely small regions of interest in extremely large images, inspite of a lack of clear contrast in the signal or easily identifiable shape characteristics. What is even more intriguing is that the network stack achieves accurate segmentation even when it is trained on a single image with manually labelled ground truth. We validate

  8. Pore architecture of nanoporous gold and titania by hydrogen thermoporometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, L. T.; Biener, M. M.; Ye, J. C.; Baumann, T. F.; Kucheyev, S. O.


    Nanoporous gold (NPG) and materials derived from it by templating have complex pore architecture that determines their technologically relevant physical properties. Here, we apply high-resolution hydrogen thermoporometry to study the pore structure of NPG and NPG-derived titania nanofoam (TNF). Results reveal complex multimodal pore size distributions for NPG and TNF. The freezing–melting hysteresis is pronounced, with freezing and melting scans having entirely different shapes. Experiments involving partial freeze–melt cycles reveal the lack of direct correlation between individual freezing and melting peaks, pointing to phenomena that are beyond the Gibbs-Thomson formalism. The depression of the average freezing temperature scales linearly with the ratio of the internal surface area (measured by gas sorption) and the total pore volume derived from the density of monoliths. Thermoporometry yields total pore volumes in good agreement with those derived from monolith densities for both NPG and TNF.

  9. Visual data mining of biological networks: one size does not fit all.

    Directory of Open Access Journals (Sweden)

    Chiara Pastrello

    Full Text Available High-throughput technologies produce massive amounts of data. However, individual methods yield data specific to the technique used and biological setup. The integration of such diverse data is necessary for the qualitative analysis of information relevant to hypotheses or discoveries. It is often useful to integrate these datasets using pathways and protein interaction networks to get a broader view of the experiment. The resulting network needs to be able to focus on either the large-scale picture or on the more detailed small-scale subsets, depending on the research question and goals. In this tutorial, we illustrate a workflow useful to integrate, analyze, and visualize data from different sources, and highlight important features of tools to support such analyses.

  10. Is Cooperative Memory Special? The Role of Costly Errors, Context, and Social Network Size When Remembering Cooperative Actions

    Directory of Open Access Journals (Sweden)

    Tim Winke


    Full Text Available Theoretical studies of cooperative behavior have focused on decision strategies, such as tit-for-tat, that depend on remembering a partner’s last choices. Yet, an empirical study by Stevens et al. (2011 demonstrated that human memory may not meet the requirements that needed to use these strategies. When asked to recall the previous behavior of simulated partners in a cooperative memory task, participants performed poorly, making errors in 10–24% of the trials. However, we do not know the extent to which this task taps specialized cognition for cooperation. It may be possible to engage participants in more cooperative, strategic thinking, which may improve memory. On the other hand, compared with other situations, a cooperative context may already engage improved memory via cheater detection mechanisms. This study investigated the specificity of memory in cooperative contexts by varying (1 the costs of errors in memory by making forgetting defection more costly and (2 whether the recall situation is framed as a cooperative or neutral context. Also, we investigated whether variation in participants’ social network size could account for individual differences observed in memory accuracy. We found that neither including differential costs for misremembering defection nor removing the cooperative context influenced memory accuracy for cooperation. Combined, these results suggest that memory accuracy is robust to differences in the cooperative context: Adding more strategic components does not help accuracy, and removing cooperative components does not hurt accuracy. Social network size, however, did correlate with memory accuracy: People with larger networks remembered the events better. These findings suggest that cooperative memory does not seem to be special compared with other forms of memory, which aligns with previous work demonstrating the domain generality of memory. However, the demands of interacting in a large social network may

  11. A pore water conductivity sensor

    NARCIS (Netherlands)

    Hilhorst, M.A.


    The electrical permittivity and conductivity of the bulk soil are a function of the permittivity and conductivity of the pore water. For soil water contents higher than 0.10 both functions are equal, facilitating in situ conductivity measurements of the pore water. A novel method is described, based

  12. Estimation of mean grain size of seafloor sediments using neural network

    Digital Repository Service at National Institute of Oceanography (India)

    De, C.; Chakraborty, B.

    surveying. Hydrographic J 56: 9-17. De C, Chakraborty B (2009) Acoustic characterization of seafloor sediment employing a hybrid method of neural network architecture and fuzzy algorithm. IEEE Geosci Rem Sens Lett 6(4): 743-747. De C, Chakraborty B (2010... classification using single-beam echosounder signals. J Acoust Soc Am 129(5): 2878-2888. Stepnowski A, Moszynski M, Dung TV (2003) Adaptive neuro-fuzzy and fuzzy decision tree classifiers as applied to seafloor characterization. Acoust Phys 49(2): 193...

  13. Nonlinear preferential rewiring in fixed-size networks as a diffusion process. (United States)

    Johnson, Samuel; Torres, Joaquín J; Marro, Joaquín


    We present an evolving network model in which the total numbers of nodes and edges are conserved, but in which edges are continuously rewired according to nonlinear preferential detachment and reattachment. Assuming power-law kernels with exponents alpha and beta , the stationary states which the degree distributions evolve toward exhibit a second-order phase transition-from relatively homogeneous to highly heterogeneous (with the emergence of starlike structures) at alpha=beta . Temporal evolution of the distribution in this critical regime is shown to follow a nonlinear diffusion equation, arriving at either pure or mixed power laws of exponents -alpha and 1-alpha .

  14. Inter-firm networking propensity in small and medium-sized enterprises (SMEs)


    Nkongolo-Bakenda, Jean-Marie


    In the past decade, market globalization has not only been a threat for small and medium-sized enterprises (SMEs), but also an opportunity to expand their activities in many countries (Murphy and al., 1991). In fact, some of SMEs are worldwide leaders in their sectors (Simon, 1990; Entreprise, 1995). Moreover, few of these worldwide SME leaders started businesses directly on an international level (Christensen, 1991; Brush, 1992; McDougall and al., 1994). This suggests that these SMEs use man...

  15. Climbing fiber burst size and olivary sub-threshold oscillations in a network setting.

    Directory of Open Access Journals (Sweden)

    Jornt R De Gruijl

    Full Text Available The inferior olivary nucleus provides one of the two main inputs to the cerebellum: the so-called climbing fibers. Activation of climbing fibers is generally believed to be related to timing of motor commands and/or motor learning. Climbing fiber spikes lead to large all-or-none action potentials in cerebellar Purkinje cells, overriding any other ongoing activity and silencing these cells for a brief period of time afterwards. Empirical evidence shows that the climbing fiber can transmit a short burst of spikes as a result of an olivary cell somatic spike, potentially increasing the information being transferred to the cerebellum per climbing fiber activation. Previously reported results from in vitro studies suggested that the information encoded in the climbing fiber burst is related to the occurrence of the spike relative to the ongoing sub-threshold membrane potential oscillation of the olivary cell, i.e. that the phase of the oscillation is reflected in the size of the climbing fiber burst. We used a detailed three-compartmental model of an inferior olivary cell to further investigate the possible factors determining the size of the climbing fiber burst. Our findings suggest that the phase-dependency of the burst size is present but limited and that charge flow between soma and dendrite is a major determinant of the climbing fiber burst. From our findings it follows that phenomena such as cell ensemble synchrony can have a big effect on the climbing fiber burst size through dendrodendritic gap-junctional coupling between olivary cells.

  16. The role of cluster types and firm size in designing the level of network relations: The experience of the Antalya tourism region

    NARCIS (Netherlands)

    Erkus Öztürk, H.


    The importance of developing global as well as local networks between tourism firms and clusters seeking to attain global competitiveness has been increasingly emphasized in previous studies. The aim of this paper is to examine the role of local and global networking in firms of different sizes and

  17. Facial skin pores: a multiethnic study

    Directory of Open Access Journals (Sweden)

    Flament F


    Full Text Available Frederic Flament,1 Ghislain Francois,1 Huixia Qiu,2 Chengda Ye,2 Tomoo Hanaya,3 Dominique Batisse,3 Suzy Cointereau-Chardon,1 Mirela Donato Gianeti Seixas,4 Susi Elaine Dal Belo,4 Roland Bazin5 1Department of Applied Research and Development, L’Oreal Research and Innovation, Paris, France; 2Department of Applied Research and Development, L’Oreal Research and Innovation, Shanghai, People’s Republic of China; 3Department of Applied Research and Development, L’Oreal Research and Innovation, Tokyo, Japan; 4Department of Applied Research and Development, L’Oreal Research and Innovation, Rio de Janeiro, Brazil; 5RB Consult, Bievres, France Abstract: Skin pores (SP, as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 µm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm2 and determination of their respective sizes in mm2. Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1 were recorded in all studied subjects; 2 varied greatly with ethnicity; 3 plateaued with age in most cases; and 4 globally reflected self-assessment by subjects, in particular those who self-declare having “enlarged pores” like Brazilian women. Inversely, Chinese women were clearly

  18. The study of the relationship between pore structure and ...

    Indian Academy of Sciences (India)


    In contrast, the particles of. TiO2-X114 and TiO2-Span85 congregate loosely. The particle size of TiO2-X114 is slightly larger than that of TiO2-Span85. The agglomeration of TiO2 particles resulted in have low surface area and pore volume. 3.3 Photocatalytic activity. The pore-structure of mesoporous TiO2 influences.

  19. Active Pore Volume in Danish Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte


    Phosphorus release within the soil matrix caused by the changed redox conditions due to re-establishment of a riparian wetland can be critical for the aquatic environment. However, phosphorous released in the soil will not always result in an immediate contribution to this loss to the aquatic...... environment. Lowland soils are primarily peat soils, and only a minor part of the total soil volume of peat soils is occupied by macropores (>30 µm). Since water primarily flows in these macropores, the majority of the soil matrix is bypassed (the immobile domain). Phosphorus released in the immobile domain...... is not actively transported out of the system, but is only transported via diffusion, which is a very slow process. Thus it is interesting to investigate the size of the active pore volume in peat soils. The hypothesis of this study is that the active pores volume of a peat soil can be expressed using bulk...

  20. National population size estimation of illicit drug users through the network scale-up method in 2013 in Iran. (United States)

    Nikfarjam, Ali; Shokoohi, Mostafa; Shahesmaeili, Armita; Haghdoost, Ali Akbar; Baneshi, Mohammad Reza; Haji-Maghsoudi, Saiedeh; Rastegari, Azam; Nasehi, Abbas Ali; Memaryan, Nadereh; Tarjoman, Termeh


    For a better understanding of the current situation of drug use in Iran, we utilized the network scale-up approach to estimate the prevalence of illicit drug use in the entire country. We implemented a self-administered, street-based questionnaire to 7535 passersby from the general public over 18 years of age by street based random walk quota sampling (based on gender, age and socio-economic status) from 31 provinces in Iran. The sample size in each province was approximately 400, ranging from 200 to 1000. In each province 75% of sample was recruited from the capital and the remaining 25% was recruited from one of the large cities of that province through stratified sampling. The questionnaire comprised questions on demographic information as well as questions to measure the total network size of participants as well as the network size in each of seven drug use groups including Opium, Shire (combination of Opium residue and pure opium), Crystal Methamphetamine, heroin/crack (which in Iranian context is a cocaine-free drug that mostly contains heroin, codeine, morphine and caffeine with or without other drugs), Hashish, Methamphetamine/LSD/ecstasy, and injecting drugs. The estimated size for each group was adjusted for transmission and barrier ratios. The most common type of illicit drug used was opium with the prevalence of 1500 per 100,000 population followed by shire (660), crystal methamphetamine (590), hashish (470), heroin/crack (350), methamphetamine, LSD and ecstasy (300) and injecting drugs (280). All types of substances were more common among men than women. The use of opium, shire and injecting drugs was more common in individuals over 30 whereas the use of stimulants and hashish was largest among individuals between 18 and 30 years of age. It seems that younger individuals and women are more desired to use new synthetic drugs such as crystal methamphetamine. Extending the preventive programs especially in youth as like as scaling up harm reduction

  1. Templating fullerenes by domain boundaries of a nanoporous network. (United States)

    den Boer, Duncan; Han, Ggoch Ddeul; Swager, Timothy M


    We present a new templating approach that combines the templating properties of nanoporous networks with the dynamic properties and the lattice mismatch of domain boundaries. This templating approach allows for the inclusion of guests with different sizes without the need for a strict molecular design to tailor the nanoporous network. With this approach, nonperiodic patterns of functional molecules can be formed and studied. We show that domain boundaries in a trimesic acid network are preferred over pores within the network as adsorption sites for fullerenes by a factor of 100-200. Pristine fullerenes of different sizes and functionalized fullerenes were templated in this way.

  2. Software Image J to study soil pore distribution

    Directory of Open Access Journals (Sweden)

    Sabrina Passoni


    Full Text Available In the soil science, a direct method that allows the study of soil pore distribution is the bi-dimensional (2D digital image analysis. Such technique provides quantitative results of soil pore shape, number and size. The use of specific softwares for the treatment and processing of images allows a fast and efficient method to quantify the soil porous system. However, due to the high cost of commercial softwares, public ones can be an interesting alternative for soil structure analysis. The objective of this work was to evaluate the quality of data provided by the Image J software (public domain used to characterize the voids of two soils, characterized as Geric Ferralsol and Rhodic Ferralsol, from the southeast region of Brazil. The pore distribution analysis technique from impregnated soil blocks was utilized for this purpose. The 2D image acquisition was carried out by using a CCD camera coupled to a conventional optical microscope. After acquisition and treatment of images, they were processed and analyzed by the software Noesis Visilog 5.4® (chosen as the reference program and ImageJ. The parameters chosen to characterize the soil voids were: shape, number and pore size distribution. For both soils, the results obtained for the image total porosity (%, the total number of pores and the pore size distribution showed that the Image J is a suitable software to be applied in the characterization of the soil sample voids impregnated with resin.

  3. Pore structure analysis of activated carbon fiber by microdomain-based model. (United States)

    Shiratori, Nanako; Lee, Kyung Jin; Miyawaki, Jin; Hong, Seong-Hwa; Mochida, Isao; An, Bai; Yokogawa, Kiyoshi; Jang, Jyongsik; Yoon, Seong-Ho


    The pore structures of commercial pitch and PAN-based activated carbon fibers (ACFs) were investigated. The pore size and pore size distribution of pitch-based ACFs were measured by nitrogen adsorption isotherms and 129Xe NMR spectroscopy and compared with each other. Scanning tunneling microscopy showed that the ACFs were composed of spherical microdomain units the size of a few nanometers. The activation mechanism of ACFs was considered and explained by novel hypothesis; the concept of microdomain structure of ACFs was considered and explained to overcome limitation of the conventional fractal hypothesis. Whereas micropores were generated on each microdomain, the origin of mesopores was interdomain pores, resulting from the microdomain hypothesis.

  4. Diffusion and electromigration in clay bricks influenced by differences in the pore system resulting from firing

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge; Ottosen, Lisbeth M.; Hansen, Kurt Kielsgaard


    to the distance to the surface.The influence of the pore system on ion transport through the water saturated pore system of the bricks was supported by measurements for calculation of the electrical resistance and an increasing resistance was found for increasing brick firing temperatures. The effective diffusion...... bricks were examined with respect to shape, size and interconnection of the pores. The pores were studied at a microscopic level, the interconnected pore system at a macroscopic level and the results obtained were compared with the measurement of the corresponding ion transport of Cl− and Na+ through...... the pore system to contribute to an overall understanding of ion transport in porous materials.The pore system in bricks are influenced by the firing degree, clay mixture composition and ion content. The present paper focuses on the pore system and effects from clay mixture composition and ion content were...

  5. An actor-based model of social network influence on adolescent body size, screen time, and playing sports. (United States)

    Shoham, David A; Tong, Liping; Lamberson, Peter J; Auchincloss, Amy H; Zhang, Jun; Dugas, Lara; Kaufman, Jay S; Cooper, Richard S; Luke, Amy


    Recent studies suggest that obesity may be "contagious" between individuals in social networks. Social contagion (influence), however, may not be identifiable using traditional statistical approaches because they cannot distinguish contagion from homophily (the propensity for individuals to select friends who are similar to themselves) or from shared environmental influences. In this paper, we apply the stochastic actor-based model (SABM) framework developed by Snijders and colleagues to data on adolescent body mass index (BMI), screen time, and playing active sports. Our primary hypothesis was that social influences on adolescent body size and related behaviors are independent of friend selection. Employing the SABM, we simultaneously modeled network dynamics (friendship selection based on homophily and structural characteristics of the network) and social influence. We focused on the 2 largest schools in the National Longitudinal Study of Adolescent Health (Add Health) and held the school environment constant by examining the 2 school networks separately (N = 624 and 1151). Results show support in both schools for homophily on BMI, but also for social influence on BMI. There was no evidence of homophily on screen time in either school, while only one of the schools showed homophily on playing active sports. There was, however, evidence of social influence on screen time in one of the schools, and playing active sports in both schools. These results suggest that both homophily and social influence are important in understanding patterns of adolescent obesity. Intervention efforts should take into consideration peers' influence on one another, rather than treating "high risk" adolescents in isolation.

  6. An actor-based model of social network influence on adolescent body size, screen time, and playing sports.

    Directory of Open Access Journals (Sweden)

    David A Shoham

    Full Text Available Recent studies suggest that obesity may be "contagious" between individuals in social networks. Social contagion (influence, however, may not be identifiable using traditional statistical approaches because they cannot distinguish contagion from homophily (the propensity for individuals to select friends who are similar to themselves or from shared environmental influences. In this paper, we apply the stochastic actor-based model (SABM framework developed by Snijders and colleagues to data on adolescent body mass index (BMI, screen time, and playing active sports. Our primary hypothesis was that social influences on adolescent body size and related behaviors are independent of friend selection. Employing the SABM, we simultaneously modeled network dynamics (friendship selection based on homophily and structural characteristics of the network and social influence. We focused on the 2 largest schools in the National Longitudinal Study of Adolescent Health (Add Health and held the school environment constant by examining the 2 school networks separately (N = 624 and 1151. Results show support in both schools for homophily on BMI, but also for social influence on BMI. There was no evidence of homophily on screen time in either school, while only one of the schools showed homophily on playing active sports. There was, however, evidence of social influence on screen time in one of the schools, and playing active sports in both schools. These results suggest that both homophily and social influence are important in understanding patterns of adolescent obesity. Intervention efforts should take into consideration peers' influence on one another, rather than treating "high risk" adolescents in isolation.

  7. Evolution of network of clastic petroleum source rock during catagenesis (lower Toarcian Posidonia shale, Hils syncline, northwestern Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Mann, U.; Duppenbecker, S.; Langen, A.; Ropertz, B.; Welte, D.H.


    The Posidonia shale represents the most prolific petroleum source rock of central Europe. Completely cored sections of this lower Toarcian oil shale interval from six shallow boreholes were studied in order to investigate the influences of lithofacies, diagenesis, hydrocarbon content, and compaction on the pore network at various catagenetic stages. Based on geochemistry, petrophysics, and basin modeling, the following conclusions can be drawn. (1) Of the two lithofacies penetrated, the pore network of the marlstone is more permeable than that of the claystone. Therefore, according to this criterion, the marlstones ought to have expelled hydrocarbons earlier than did the claystones. (2) Early diagenetic carbonate cementation has reduced the size and volume of the pores at specific stratigraphic levels. However, around the contact of the two lithofacies, updip-streaming formation waters created secondary porosity which can be considered a migration avenue for generated hydrocarbons from the source rock. (3) Before hydrocarbon expulsion, soluble organic matter, which is evenly distributed within the pore network, occupied up to 60% of the available pore space. (4) With progressive maturation of the organic matter, analyzed pore size and porosity values became continuously smaller. Using the method of computer-aided integrated basin modeling, they can explain the observed porosity reduction trend only partly by mechanical compaction. Mechanical compaction is computed considering the changes in effective stress by taking into account several parameters controlling water flow and pressure buildup. As a consequence, the diminution of the pore network during catagenesis seems to be tied to the collapse of the alginite structures.

  8. The phylogenetic structure of plant-pollinator networks increases with habitat size and isolation. (United States)

    Aizen, Marcelo A; Gleiser, Gabriela; Sabatino, Malena; Gilarranz, Luis J; Bascompte, Jordi; Verdú, Miguel


    Similarity among species in traits related to ecological interactions is frequently associated with common ancestry. Thus, closely related species usually interact with ecologically similar partners, which can be reinforced by diverse co-evolutionary processes. The effect of habitat fragmentation on the phylogenetic signal in interspecific interactions and correspondence between plant and animal phylogenies is, however, unknown. Here, we address to what extent phylogenetic signal and co-phylogenetic congruence of plant-animal interactions depend on habitat size and isolation by analysing the phylogenetic structure of 12 pollination webs from isolated Pampean hills. Phylogenetic signal in interspecific interactions differed among webs, being stronger for flower-visiting insects than plants. Phylogenetic signal and overall co-phylogenetic congruence increased independently with hill size and isolation. We propose that habitat fragmentation would erode the phylogenetic structure of interaction webs. A decrease in phylogenetic signal and co-phylogenetic correspondence in plant-pollinator interactions could be associated with less reliable mutualism and erratic co-evolutionary change. © 2015 John Wiley & Sons Ltd/CNRS.

  9. Detectability of Pore Defect in Wind Turbine Blade Composites Using Image Correlation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Il; Huh, Yong Hak; Lee, Gun Chang [Korea Research institute of Standard and Science, Daejeon (Korea, Republic of)


    Defects that occur during the manufacturing process or operation of a wind turbine blade have a great influence on its life and safety. Typically, defects such as delamination, pore, wrinkle and matrix crack are found in a blade. In this study, the detectability of the pores, a type of defect that frequently occur during manufacturing, was examined from the full field strain distribution determined with the image correlation technique. Pore defects were artificially introduced in four-ply laminated GFRP composites with 0 .deg/{+-}45 .deg fiber direction. The artificial pores were introduced in consideration of their size and location. Three different-sized pores with diameter of 1, 2 and 3 mm were located on the top and bottom surface and embedded. By applying static loads of 0-200 MPa, the strain distributions over the specimen with the pore defects were determined using image correlation technique. It was found the pores with diameter exceeding 2 mm can be detected in diameter.

  10. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale (United States)

    Seetha, N.; Raoof, Amir; Mohan Kumar, M. S.; Majid Hassanizadeh, S.


    Transport and deposition of nanoparticles in porous media is a multi-scale problem governed by several pore-scale processes, and hence, it is critical to link the processes at pore scale to the Darcy-scale behavior. In this study, using pore network modeling, we develop correlation equations for deposition rate coefficients for nanoparticle transport under unfavorable conditions at the Darcy scale based on pore-scale mechanisms. The upscaling tool is a multi-directional pore-network model consisting of an interconnected network of pores with variable connectivities. Correlation equations describing the pore-averaged deposition rate coefficients under unfavorable conditions in a cylindrical pore, developed in our earlier studies, are employed for each pore element. Pore-network simulations are performed for a wide range of parameter values to obtain the breakthrough curves of nanoparticle concentration. The latter is fitted with macroscopic 1-D advection-dispersion equation with a two-site linear reversible deposition accounting for both equilibrium and kinetic sorption. This leads to the estimation of three Darcy-scale deposition coefficients: distribution coefficient, kinetic rate constant, and the fraction of equilibrium sites. The correlation equations for the Darcy-scale deposition coefficients, under unfavorable conditions, are provided as a function of measurable Darcy-scale parameters, including: porosity, mean pore throat radius, mean pore water velocity, nanoparticle radius, ionic strength, dielectric constant, viscosity, temperature, and surface potentials of the particle and grain surfaces. The correlation equations are found to be consistent with the available experimental results, and in qualitative agreement with Colloid Filtration Theory for all parameters, except for the mean pore water velocity and nanoparticle radius.

  11. Effect of sintering atmosphere on the pore-structure stability of cerium-doped nanostructured alumina

    NARCIS (Netherlands)

    Kumar, K.N.P.; Kumar, Krishnankutty-Nair P.; Tranto, Janne; Balagopal, N.; Balagopal N., Nair; Kumar, Jalajakumari; Hoj, Jacob W.; Engell, John E.


    Pore-structure stability of pure and Ce-doped alumina in air and argon atmospheres was studied using DTA, TGA, N2 ads./des. and XRD with a view to understand the importance of the ionic size of the dopant cation on the pore-structure stability of alumina. The ionic size effect was studied by heat

  12. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions play a major role in the shale oil occurrence (free or absorbed state, amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1 Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2 There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3 Pores in lacustrine shale are well developed when the organic matter maturity (Ro is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  13. Multiscale modelling of dual-porosity porous media; a computational pore-scale study for flow and solute transport (United States)

    de Vries, Enno T.; Raoof, Amir; van Genuchten, Martinus Th.


    Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have been used to simulate contaminant transport in such media. Many of these models consider advective-dispersive transport through relatively large inter-aggregate pore domains, while exchange with the smaller intra-aggregate pores is assumed to be controlled by diffusion. Exchange of solute between the two domains is often represented using a first-order mass transfer coefficient, which is commonly obtained by fitting to observed data. This study aims to understand and quantify the solute exchange term by applying a dual-porosity pore-scale network model to relatively large domains, and analysing the pore-scale results in terms of the classical dual-porosity (mobile-immobile) transport formulation. We examined the effects of key parameters (notably aggregate porosity and aggregate permeability) on the main dual-porosity model parameters, i.e., the mobile water fraction (ϕm) and the mass transfer coefficient (α). Results were obtained for a wide range of aggregate porosities (between 0.082 and 0.700). The effect of aggregate permeability was explored by varying pore throat sizes within the aggregates. Solute breakthrough curves (BTCs) obtained with the pore-scale network model at several locations along the domain were analysed using analytical solutions of the dual-porosity model to obtain estimates of ϕm and α. An increase in aggregate porosity was found to decrease ϕm and increase α, leading to considerable tailing in the BTCs. Changes in the aggregate pore throat size affected the relative flow velocity between the intra- and inter-aggregate domains. Higher flow velocities within the aggregates caused a change in the transport regime from diffusion dominated to more

  14. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn


    Mesoporous silica with cubic symmetry has attract