WorldWideScience

Sample records for network oscillations suggest

  1. Frequency and motivational state: evolutionary simulations suggest an adaptive function for network oscillations

    NARCIS (Netherlands)

    Heerebout, B.T.; Phaf, R.H.; Taatgen, N.A.; van Rijn, H.

    2009-01-01

    Evolutionary simulations of foraging agents, controlled by artificial neural networks, unexpectedly yielded oscillating node activations in the networks. The agents had to navigate a virtual environment to collect food while avoiding predation. Between generations their neural networks were

  2. Modeling the zebrafish segmentation clock's gene regulatory network constrained by expression data suggests evolutionary transitions between oscillating and nonoscillating transcription.

    Science.gov (United States)

    Schwendinger-Schreck, Jamie; Kang, Yuan; Holley, Scott A

    2014-06-01

    During segmentation of vertebrate embryos, somites form in accordance with a periodic pattern established by the segmentation clock. In the zebrafish (Danio rerio), the segmentation clock includes six hairy/enhancer of split-related (her/hes) genes, five of which oscillate due to negative autofeedback. The nonoscillating gene hes6 forms the hub of a network of 10 Her/Hes protein dimers, which includes 7 DNA-binding dimers and 4 weak or non-DNA-binding dimers. The balance of dimer species is critical for segmentation clock function, and loss-of-function studies suggest that the her genes have both unique and redundant functions within the clock. However, the precise regulatory interactions underlying the negative feedback loop are unknown. Here, we combine quantitative experimental data, in silico modeling, and a global optimization algorithm to identify a gene regulatory network (GRN) designed to fit measured transcriptional responses to gene knockdown. Surprisingly, we find that hes6, the clock gene that does not oscillate, responds to negative feedback. Consistent with prior in silico analyses, we find that variation in transcription, translation, and degradation rates can mediate the gain and loss of oscillatory behavior for genes regulated by negative feedback. Extending our study, we found that transcription of the nonoscillating Fgf pathway gene sef responds to her/hes perturbation similarly to oscillating her genes. These observations suggest a more extensive underlying regulatory similarity between the zebrafish segmentation clock and the mouse and chick segmentation clocks, which exhibit oscillations of her/hes genes as well as numerous other Notch, Fgf, and Wnt pathway genes. Copyright © 2014 by the Genetics Society of America.

  3. Spatiotemporal Patterns of an Evoked Network Oscillation in Neocortical Slices: Coupled Local Oscillators

    Science.gov (United States)

    Bai, Li; Huang, Xiaoying; Yang, Qian; Wu, Jian-young

    2015-01-01

    We have discovered an evoked network oscillation in rat neocortical slices and have examined its spatiotemporal patterns with voltage sensitive dye imaging. The slices (visual and auditory cortices) were prepared in a medium of low calcium, high magnesium and with sodium replaced by choline in order to reduce the excito-toxicity and sodium loading. After slicing, the choline was washed out while normal calcium, magnesium and sodium concentrations were restored. The oscillation was evoked by a single electrical shock to slices bathed in normal artificial cerebral spinal fluid (ACSF). The oscillation was organized as an all-or-none epoch containing 4 to 13 cycles at a central frequency around 25 Hz. The activity can be reversibly blocked by CNQX, APV and atropine, but not by bicuculline, indicating poly-synaptic excitatory mechanisms. Voltage sensitive dye imaging showed high amplitude oscillation signals in superficial and middle cortical layers. Spatiotemporally, the oscillations were organized as waves, propagating horizontally along cortical laminar. Each oscillation cycle was associated with one wave propagating in space. The waveforms were often different at different locations (e.g., extra cycles), suggesting the co-existence of multiple local oscillators. For different cycles, the waves often initiated at different locations, suggesting that local oscillators are competing to initiate each oscillation cycle. Overall our results suggest that this cortical network oscillation is organized at two levels: locally, oscillating neurons are tightly coupled to form local oscillators, and globally the coupling between local oscillators is weak, allowing abrupt spatial phase lags and propagating waves with multiple initiation sites. PMID:16870836

  4. Neuronal Network Mechanisms of Gamma Oscillations

    NARCIS (Netherlands)

    Viriyopase, A.

    2017-01-01

    Neuronal oscillations at various frequency bands play an important role in neuronal information processing. In this thesis, we mathematically and computationally investigated the properties of the gamma band (30-80 Hz) with different networks: a simplified network with two neurons, a large network

  5. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to explore ...

  6. Hyperbolic geometry of Kuramoto oscillator networks

    Science.gov (United States)

    Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato

    2017-09-01

    Kuramoto oscillator networks have the special property that their trajectories are constrained to lie on the (at most) 3D orbits of the Möbius group acting on the state space T N (the N-fold torus). This result has been used to explain the existence of the N-3 constants of motion discovered by Watanabe and Strogatz for Kuramoto oscillator networks. In this work we investigate geometric consequences of this Möbius group action. The dynamics of Kuramoto phase models can be further reduced to 2D reduced group orbits, which have a natural geometry equivalent to the unit disk \

  7. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    This being the most conservative assumption will cover the largest class of oscillators including those which have multiple, disjoint α regions of stability as can ..... intake of food and energy which will be fruitful only if the new networks are a great improvement and provide the organisms some evolutionary advantages. In.

  8. Synchronization of mobile chaotic oscillator networks

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp [Center for Spatial Information Science, The University of Tokyo, 277-8568 Chiba (Japan); Kurths, Jürgen [Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany and Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen (United Kingdom); Díaz-Guilera, Albert [Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona (Spain)

    2016-09-15

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  9. Restoration of oscillation in network of oscillators in presence of direct and indirect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Soumen; Bera, Bidesh K. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India); Bhowmick, Sourav K. [Department of Electronics, Asutosh College, Kolkata-700026 (India); Ghosh, Dibakar, E-mail: diba.ghosh@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2016-10-23

    The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. - Highlights: • Amplitude death is observed using direct and indirect coupling. • Revival of oscillation using feedback parameter is discussed. • Restoration of oscillation is observed in limit cycle and chaotic systems.

  10. Hippocampal network oscillations in APP/APLP2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhang

    Full Text Available The physiological function of amyloid precursor protein (APP and its two homologues APP-like protein 1 (APLP1 and 2 (APLP2 is largely unknown. Previous work suggests that lack of APP or APLP2 impairs synaptic plasticity and spatial learning. There is, however, almost no data on the role of APP or APLP at the network level which forms a critical interface between cellular functions and behavior. We have therefore investigated memory-related synaptic and network functions in hippocampal slices from three lines of transgenic mice: APPsα-KI (mice expressing extracellular fragment of APP, corresponding to the secreted APPsα ectodomain, APLP2-KO, and combined APPsα-KI/APLP2-KO (APPsα-DM for "double mutants". We analyzed two prominent patterns of network activity, gamma oscillations and sharp-wave ripple complexes (SPW-R. Both patterns were generally preserved in all strains. We find, however, a significantly reduced frequency of gamma oscillations in CA3 of APLP2-KO mice in comparison to APPsα-KI and WT mice. Network activity, basic synaptic transmission and short-term plasticity were unaltered in the combined mutants (APPsα-DM which showed, however, reduced long-term potentiation (LTP. Together, our data indicate that APLP2 and the intracellular domain of APP are not essential for coherent activity patterns in the hippocampus, but have subtle effects on synaptic plasticity and fine-tuning of network oscillations.

  11. Coherence in Complex Networks of Oscillators

    Science.gov (United States)

    Lind, Pedro G.; Gallas, Jason A. C.; Herrmann, Hans J.

    We study fully synchronized (coherent) states in complex networks of chaotic oscillators, reviewing the analytical approach of determining the stability conditions for synchronizability and comparing them with numerical criteria. As an example, we present detailed results for networks of chaotic logistic maps having three different scale-free topologies: random scale-free topology, deterministic pseudo-fractal scale-free network and Apollonian network. For random scale-free topology we find that the lower boundary of the synchronizability region scales approximately as k-μ, where k is the outgoing connectivity and μ depends on the local nonlinearity. For deterministic scale-free networks coherence is observed only when the coupling is heterogeneous, namely when it is proportional to some power of the neighbour connectivity. In all cases, stability conditions are determined from the eigenvalue spectrum of the Laplacian matrix and agree well with numerical results based on histograms of coherent states in parameter space. Additionally, we show that almost everywhere in the synchronizability region the basin of attraction of the coherent states fills the entire phase space, and that the transition to coherence is of first-order.

  12. Two port network analysis for three impedance based oscillators

    KAUST Repository

    Said, Lobna A.

    2011-12-01

    Two-port network representations are applied to analyze complex networks which can be dissolved into sub-networks connected in series, parallel or cascade. In this paper, the concept of two-port network has been studied for oscillators. Three impedance oscillator based on two port concept has been analyzed using different impedance structures. The effect of each structure on the oscillation condition and the frequency of oscillation have been introduced. Two different implementations using MOS and BJT have been introduced. © 2011 IEEE.

  13. Characterization of critical network components of coupled oscillators

    Science.gov (United States)

    Holifield, Gregory A.

    This dissertation analyzes the fundamental limits for the determination of the network structure of loosely coupled oscillators based on observing the behavior of the network, specifically, node synchronization. The determination of the requisite characteristics and underlying behaviors necessary for the application of a theoretical mechanism for determining the underlying network topology in a network of loosely coupled natural oscillators are the desired outcome. To that end, this effort defines an analytical framework where key components of networks of coupled oscillators are isolated in order to determine the relationships between the various components. The relationship between the number of nodes in a network, the number of connections in the network, the number of connections of a given node, the distribution of the phases of the network, and the resolution of measurement of the components of the network, and system noise is investigated.

  14. Network architectural conditions for prominent and robust stochastic oscillations

    Science.gov (United States)

    Joo, Jaewook; Choi, Jinmyung

    2012-02-01

    Understanding relationship between noisy dynamics and biological network architecture is a fundamentally important question, particularly in order to elucidate how cells encode and process information. We analytically and numerically investigate general network architectural conditions that are necessary to generate stochastic amplified and coherent oscillations. We enumerate all possible topologies of coupled negative feedbacks in the underlying biochemical networks with three components, negative feedback loops, and mass action kinetics. Using the linear noise approximation to analytically obtain the time-dependent solution of the master equation and derive the algebraic expression of power spectra, we find that (a) all networks with coupled negative feedbacks are capable of generating stochastic amplified and coherent oscillations; (b) networks with a single negative feedback are better stochastic amplified and coherent oscillators than those with multiple coupled negative feedbacks; (c) multiple timescale difference among the kinetic rate constants is required for stochastic amplified and coherent oscillations.

  15. Diffusion driven oscillations in gene regulatory networks.

    Science.gov (United States)

    Macnamara, Cicely K; Chaplain, Mark Aj

    2016-10-21

    Gene regulatory networks (GRNs) play an important role in maintaining cellular function by correctly timing key processes such as cell division and apoptosis. GRNs are known to contain similar structural components, which describe how genes and proteins within a network interact - typically by feedback. In many GRNs, proteins bind to gene-sites in the nucleus thereby altering the transcription rate. If the binding reduces the transcription rate there is a negative feedback leading to oscillatory behaviour in mRNA and protein levels, both spatially (e.g. by observing fluorescently labelled molecules in single cells) and temporally (e.g. by observing protein/mRNA levels over time). Mathematical modelling of GRNs has focussed on such oscillatory behaviour. Recent computational modelling has demonstrated that spatial movement of the molecules is a vital component of GRNs, while it has been proved rigorously that the diffusion coefficient of the protein/mRNA acts as a bifurcation parameter and gives rise to a Hopf-bifurcation. In this paper we consider the spatial aspect further by considering the specific location of gene and protein production, showing that there is an optimum range for the distance between an mRNA gene-site and a protein production site in order to achieve oscillations. We first present a model of a well-known GRN, the Hes1 system, and then extend the approach to examine spatio-temporal models of synthetic GRNs e.g. n-gene repressilator and activator-repressor systems. By incorporating the idea of production sites into such models we show that the spatial component is vital to fully understand GRN dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  17. Amplitude death and resurgence of oscillation in networks of mobile oscillators

    Science.gov (United States)

    Majhi, Soumen; Ghosh, Dibakar

    2017-05-01

    The phenomenon of amplitude death has been explored using a variety of different coupling strategies in the last two decades. In most of the works, the basic coupling arrangement is considered to be static over time, although many realistic systems exhibit significant changes in the interaction pattern as time varies. In this article, we study the emergence of amplitude death in a dynamical network composed of time-varying interaction amidst a collection of random walkers in a finite region of three-dimensional space. We consider an oscillator for each walker and demonstrate that depending upon the network parameters and hence the interaction between them, the global oscillation in the network gets suppressed. In this framework, the vision range of each oscillator decides the number of oscillators with which it interacts. In addition, with the use of an appropriate feedback parameter in the coupling strategy, we articulate how the suppressed oscillation can be resurrected in the systems' parameter space. The phenomenon of amplitude death and the resurgence of oscillation is investigated taking limit cycle and chaotic oscillators for broad ranges of the parameters, like the interaction strength k between the entities, the vision range r and the speed of movement v.

  18. Synchronization in Complex Oscillator Networks and Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Dorfler, Florian [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory; Bullo, Francesco [Center for Control, Dynamical Systems and Computation, University of California at Santa Babara, Santa Barbara CA

    2012-07-24

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A coupled oscillator network is characterized by a population of heterogeneous oscillators and a graph describing the interaction among them. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here we present a novel, concise, and closed-form condition for synchronization of the fully nonlinear, non-equilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters, or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters, they are statistically correct for almost all networks, and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks such as electric power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex networks scenarios and in smart grid applications.

  19. Synchronization in complex oscillator networks and smart grids.

    Science.gov (United States)

    Dörfler, Florian; Chertkov, Michael; Bullo, Francesco

    2013-02-05

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A widely adopted model of a coupled oscillator network is characterized by a population of heterogeneous phase oscillators, a graph describing the interaction among them, and diffusive and sinusoidal coupling. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here, we present a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters; they are statistically correct for almost all networks; and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks, such as electrical power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex network scenarios and in smart grid applications.

  20. Energy substrates that fuel fast neuronal network oscillations

    Directory of Open Access Journals (Sweden)

    Lukas V. Galow

    2014-12-01

    Full Text Available Fast neuronal network oscillations in the gamma-frequency band (30-100 Hz provide a fundamental mechanism of complex neuronal information processing in the hippocampus and neocortex of mammals. Gamma oscillations have been implicated in higher brain functions such as sensory perception, motor activity and memory formation. The oscillations emerge from precise synapse interactions between excitatory principal neurons such as pyramidal cells and inhibitory GABAergic interneurons, and they are associated with high energy expenditure. However, both energy substrates and metabolic pathways that are capable to power cortical gamma oscillations have been less defined. Here, we investigated the energy sources fueling persistent gamma oscillations in the CA3 subfield of organotypic hippocampal slice cultures of the rat. This preparation permits superior oxygen supply as well as fast application of glucose, glycolytic metabolites or drugs such as glycogen phosphorylase inhibitor during extracellular recordings of the local field potential. Our findings are: (i gamma oscillations persist in the presence of glucose (10 mmol/L for greater than 60 minutes in slice cultures while (ii lowering glucose levels (2.5 mmol/L significantly reduces the amplitude of the oscillation. (iii Gamma oscillations are absent at low concentration of lactate (2 mmol/L. (iv Gamma oscillations persist at high concentration (20 mmol/L of either lactate or pyruvate, albeit showing significant reductions in the amplitude. (v The breakdown of glycogen significantly delays the decay of gamma oscillations during glucose deprivation. However, when glucose is present, the turnover of glycogen is not essential to sustain gamma oscillations. Our study shows that fast neuronal network oscillations can be fueled by different energy-rich substrates, with glucose being most effective.

  1. Control of coupled oscillator networks with application to microgrid technologies

    Science.gov (United States)

    Arenas, Alex

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable syn- chronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.

  2. Control of coupled oscillator networks with application to microgrid technologies.

    Science.gov (United States)

    Skardal, Per Sebastian; Arenas, Alex

    2015-08-01

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies, we study the control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions-a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.

  3. Oscillations in the bistable regime of neuronal networks

    Science.gov (United States)

    Roxin, Alex; Compte, Albert

    2016-07-01

    Bistability between attracting fixed points in neuronal networks has been hypothesized to underlie persistent activity observed in several cortical areas during working memory tasks. In network models this kind of bistability arises due to strong recurrent excitation, sufficient to generate a state of high activity created in a saddle-node (SN) bifurcation. On the other hand, canonical network models of excitatory and inhibitory neurons (E-I networks) robustly produce oscillatory states via a Hopf (H) bifurcation due to the E-I loop. This mechanism for generating oscillations has been invoked to explain the emergence of brain rhythms in the β to γ bands. Although both bistability and oscillatory activity have been intensively studied in network models, there has not been much focus on the coincidence of the two. Here we show that when oscillations emerge in E-I networks in the bistable regime, their phenomenology can be explained to a large extent by considering coincident SN and H bifurcations, known as a codimension two Takens-Bogdanov bifurcation. In particular, we find that such oscillations are not composed of a stable limit cycle, but rather are due to noise-driven oscillatory fluctuations. Furthermore, oscillations in the bistable regime can, in principle, have arbitrarily low frequency.

  4. Friend suggestion in social network based on user log

    Science.gov (United States)

    Kaviya, R.; Vanitha, M.; Sumaiya Thaseen, I.; Mangaiyarkarasi, R.

    2017-11-01

    Simple friend recommendation algorithms such as similarity, popularity and social aspects is the basic requirement to be explored to methodically form high-performance social friend recommendation. Suggestion of friends is followed. No tags of character were followed. In the proposed system, we use an algorithm for network correlation-based social friend recommendation (NC-based SFR).It includes user activities like where one lives and works. A new friend recommendation method, based on network correlation, by considering the effect of different social roles. To model the correlation between different networks, we develop a method that aligns these networks through important feature selection. We consider by preserving the network structure for a more better recommendations so that it significantly improves the accuracy for better friend-recommendation.

  5. Chimera states in mechanical oscillator networks

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Thutupalli, Shashi; Fourrière, Antoine

    2013-01-01

    of whether chimeras are indeed characteristic of natural systems. This calls for a palpable realization of chimera states without any fine-tuning, from which physical mechanisms underlying their emergence can be uncovered. Here, we devise a simple experiment with mechanical oscillators coupled...... in our experiments is controlled by elementary dynamical equations from mechanics that are ubiquitous in many natural and technological systems. The symmetry-breaking mechanism revealed by our experiments may thus be prevalent in systems exhibiting collective behavior, such as power grids, optomechanical...

  6. Oscillations in biochemical reaction networks arising from pairs of subnetworks.

    Science.gov (United States)

    Mincheva, Maya

    2011-10-01

    Biochemical reaction models show a variety of dynamical behaviors, such as stable steady states, multistability, and oscillations. Biochemical reaction networks with generalized mass action kinetics are represented as directed bipartite graphs with nodes for species and reactions. The bipartite graph of a biochemical reaction network usually contains at least one cycle, i.e., a sequence of nodes and directed edges which starts and ends at the same species node. Cycles can be positive or negative, and it has been shown that oscillations can arise as a result of either a positive cycle or a negative cycle. In earlier work it was shown that oscillations associated with a positive cycle can arise from subnetworks with an odd number of positive cycles. In this article we formulate a similar graph-theoretic condition, which generalizes the negative cycle condition for oscillations. This new graph-theoretic condition for oscillations involves pairs of subnetworks with an even number of positive cycles. An example of a calcium reaction network with generalized mass action kinetics is discussed in detail.

  7. Flow version of statistical neurodynamics for oscillator neural networks

    Science.gov (United States)

    Uchiyama, Satoki

    2012-04-01

    We consider a neural network of Stuart-Landau oscillators as an associative memory. This oscillator network with N elements is a system of an N-dimensional differential equation, works as an attractor neural network, and is expected to have no Lyapunov functions. Therefore, the technique of equilibrium statistical physics is not applicable to the study of this system in the thermodynamic limit. However, the simplicity of this system allows us to extend statistical neurodynamics [S. Amari, K. Maginu, Neural Netw. 1 (1988) 63-73], which was originally developed to analyse the discrete time evolution of the Hopfield model, into the version for continuous time evolution. We have developed and attempted to apply this method in the analysis of the phase transition of our model network.

  8. Synchronization-based computation through networks of coupled oscillators

    Directory of Open Access Journals (Sweden)

    Daniel eMalagarriga

    2015-08-01

    Full Text Available The mesoscopic activity of the brain is strongly dynamical, while at the sametime exhibiting remarkable computational capabilities. In order to examinehow these two features coexist, here we show that the patterns of synchronizedoscillations displayed by networks of neural mass models, representing cortical columns, can be usedas substrates for Boolean computation. Our results reveal that different logicaloperations can be implemented by the same neural mass network at different timesfollowing the dynamics of the input. The results are reproduced experimentallywith electronic circuits of coupled Chua oscillators, showing the robustness of this kind of computation to the intrinsic noise and parameter mismatch of the oscillators responsible for the functioning of the gates. We also show that theinformation-processing capabilities of coupled oscillations go beyond thesimple juxtaposition of logic gates.

  9. GABAergic synapse properties may explain genetic variation in hippocampal network oscillations in mice

    Directory of Open Access Journals (Sweden)

    Tim S Heistek

    2010-06-01

    Full Text Available Cognitive ability and the properties of brain oscillation are highly heritable in humans. Genetic variation underlying oscillatory activity might give rise to differences in cognition and behavior. How genetic diversity translates into altered properties of oscillations and synchronization of neuronal activity is unknown. To address this issue, we investigated cellular and synaptic mechanisms of hippocampal fast network oscillations in eight genetically distinct inbred mouse strains. The frequency of carbachol-induced oscillations differed substantially between mouse strains. Since GABAergic inhibition sets oscillation frequency, we studied the properties of inhibitory synaptic inputs (IPSCs received by CA3 and CA1 pyramidal cells of three mouse strains that showed the highest, lowest and intermediate frequencies of oscillations. In CA3 pyramidal cells, the frequency of rhythmic IPSC input showed the same strain differences as the frequency of field oscillations. Furthermore, IPSC decay times in both CA1 and CA3 pyramidal cells were faster in mouse strains with higher oscillation frequencies than in mouse strains with lower oscillation frequency, suggesting that differences in GABAA-receptor subunit composition exist between these strains. Indeed, gene expression of GABAA-receptor β2 (Gabrb2 and β3 (Gabrb2 subunits was higher in mouse strains with faster decay kinetics compared with mouse strains with slower decay kinetics. Hippocampal pyramidal neurons in mouse strains with higher oscillation frequencies and faster decay kinetics fired action potential at higher frequencies. These data indicate that differences in genetic background may result in different GABAA-receptor subunit expression, which affects the rhythm of pyramidal neuron firing and fast network activity through GABA synapse kinetics.

  10. Synchronization of Lienard-Type Oscillators in Uniform Electrical Networks

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Mohit; Dorfler, Florian; Johnson, Brian B.; Dhople, Sairaj V.

    2016-08-01

    This paper presents a condition for global asymptotic synchronization of Lienard-type nonlinear oscillators in uniform LTI electrical networks with series R-L circuits modeling interconnections. By uniform electrical networks, we mean that the per-unit-length impedances are identical for the interconnecting lines. We derive conditions for global asymptotic synchronization for a particular feedback architecture where the derivative of the oscillator output current supplements the innate current feedback induced by simply interconnecting the oscillator to the network. Our proof leverages a coordinate transformation to a set of differential coordinates that emphasizes signal differences and the particular form of feedback permits the formulation of a quadratic Lyapunov function for this class of networks. This approach is particularly interesting since synchronization conditions are difficult to obtain by means of quadratic Lyapunov functions when only current feedback is used and for networks composed of series R-L circuits. Our synchronization condition depends on the algebraic connectivity of the underlying network, and reiterates the conventional wisdom from Lyapunov- and passivity-based arguments that strong coupling is required to ensure synchronization.

  11. Oscillations and synchrony in a cortical neural network.

    Science.gov (United States)

    Qu, Jingyi; Wang, Rubin; Yan, Chuankui; Du, Ying

    2014-04-01

    In this paper, the oscillations and synchronization status of two different network connectivity patterns based on Izhikevich model are studied. One of the connectivity patterns is a randomly connected neuronal network, the other one is a small-world neuronal network. This Izhikevich model is a simple model which can not only reproduce the rich behaviors of biological neurons but also has only two equations and one nonlinear term. Detailed investigations reveal that by varying some key parameters, such as the connection weights of neurons, the external current injection, the noise of intensity and the neuron number, this neuronal network will exhibit various collective behaviors in randomly coupled neuronal network. In addition, we show that by changing the number of nearest neighbor and connection probability in small-world topology can also affect the collective dynamics of neuronal activity. These results may be instructive in understanding the collective dynamics of mammalian cortex.

  12. Synchrony-optimized networks of Kuramoto oscillators with inertia

    Science.gov (United States)

    Pinto, Rafael S.; Saa, Alberto

    2016-12-01

    We investigate synchronization in networks of Kuramoto oscillators with inertia. More specifically, we introduce a rewiring algorithm consisting basically in a hill climb scheme in which the edges of the network are swapped in order to enhance its synchronization capacity. We show that the synchrony-optimized networks generated by our algorithm have some interesting topological and dynamical properties. In particular, they typically exhibit an anticipation of the synchronization onset and are more robust against certain types of perturbations. We consider synthetic random networks and also a network with a topology based on an approximated model of the (high voltage) power grid of Spain, since networks of Kuramoto oscillators with inertia have been used recently as simplified models for power grids, for which synchronization is obviously a crucial issue. Despite the extreme simplifications adopted in these models, our results, among others recently obtained in the literature, may provide interesting principles to guide the future growth and development of real-world grids, specially in the case of a change of the current paradigm of centralized towards distributed generation power grids.

  13. A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network

    Science.gov (United States)

    Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien

    2017-03-01

    With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.

  14. The slow oscillation in cortical and thalamic networks: mechanisms and functions

    Directory of Open Access Journals (Sweden)

    Garrett T. Neske

    2016-01-01

    Full Text Available During even the most quiescent behavioral periods, the cortex and thalamus express rich spontaneous activity in the form of slow (<1 Hz, synchronous network state transitions. Throughout this so-called slow oscillation, cortical and thalamic neurons fluctuate between periods of intense synaptic activity (Up states and almost complete silence (Down states. The two decades since the original characterization of the slow oscillation in the cortex and thalamus have seen considerable advances in deciphering the cellular and network mechanisms associated with this pervasive phenomenon. There are, nevertheless, many questions regarding the slow oscillation that await more thorough illumination, particularly the mechanisms by which Up states initiate and terminate, the functional role of the rhythmic activity cycles in unconscious or minimally conscious states, and the precise relation between Up states and the activated states associated with waking behavior. Given the substantial advances in multineuronal recording and imaging methods in both in vivo and in vitro preparations, the time is ripe to take stock of our current understanding of the slow oscillation and pave the way for future investigations of its mechanisms and functions. My aim in this Review is to provide a comprehensive account of the mechanisms and functions of the slow oscillation, and to suggest avenues for further exploration.

  15. The energy demand of fast neuronal network oscillations: insights from brain slice preparations

    Directory of Open Access Journals (Sweden)

    Oliver eKann

    2012-01-01

    Full Text Available Fast neuronal network oscillations in the gamma range (30-100 Hz in the cerebral cortex have been implicated in higher cognitive functions such as sensual perception, working memory, and, perhaps, consciousness. However, little is known about the energy demand of gamma oscillations. This is mainly caused by technical limitations that are associated with simultaneous recordings of neuronal activity and energy metabolism in small neuronal networks and at the level of mitochondria in vivo. Thus recent studies have focused on brain slice preparations to address the energy demand of gamma oscillations in vitro. Here, reports will be summarized and discussed that combined electrophysiological recordings, oxygen sensor microelectrodes and live-cell fluorescence imaging in acutely prepared slices and organotypic slice cultures of the hippocampus from both, mouse and rat. These reports consistently show that gamma oscillations can be reliably induced in hippocampal slice preparations by different pharmacological tools. They suggest that gamma oscillations are associated with high energy demand, requiring both rapid adaptation of oxidative energy metabolism and sufficient supply with oxygen and nutrients. These findings might help to explain the exceptional vulnerability of higher cognitive functions during pathological processes of the brain, such as circulatory disturbances, genetic mitochondrial diseases, and neurodegeneration.

  16. Effects of XE991, retigabine, losigamone and ZD7288 on kainate-induced theta-like and gamma network oscillations in the rat hippocampus in vitro.

    Science.gov (United States)

    Boehlen, Anne; Kunert, Alexandra; Heinemann, Uwe

    2009-10-27

    Ion currents such as M-currents (I(M)), persistent sodium currents (I(NaP)) and H-currents (I(h)) have been observed in a variety of brain regions, including the hippocampal formation, where storage and retrieval of information are facilitated by oscillatory network activities. They have been suggested to play an important role in neuronal excitability, synaptic transmission, membrane oscillatory activity, and in shaping resonance. Resonance and membrane potential oscillations have been implied in the generation of theta but not gamma oscillations. Here, we performed extracellular field potential recordings in hippocampal slices from adult rats and applied either the I(M) blocker XE991, the I(M) activator retigabine, the I(NaP) blocker losigamone or the I(h) inhibitor ZD7288 to test if these currents contribute to the generation of network oscillations. Kainate application induced network theta-like frequency oscillations in coronal slices as well as network gamma frequency oscillations in horizontal slices, and these remained stable for up to 3h. Power spectrum analysis revealed that all agents dose-dependently reduced the network oscillations in both frequency bands in areas CA3 and CA1. In contrast, the peak oscillation frequency was affected differentially. These results confirm that theta-like frequency oscillations are induced in longitudinal slices while gamma frequency oscillations dominate in horizontal slices. They also suggest that modifying neuronal excitability and transmitter release alters hippocampal network oscillations which are thought to be crucial for memory processing.

  17. Variety of alternative stable phase-locking in networks of electrically coupled relaxation oscillators.

    Directory of Open Access Journals (Sweden)

    Pierre Meyrand

    Full Text Available We studied the dynamics of a large-scale model network comprised of oscillating electrically coupled neurons. Cells are modeled as relaxation oscillators with short duty cycle, so they can be considered either as models of pacemaker cells, spiking cells with fast regenerative and slow recovery variables or firing rate models of excitatory cells with synaptic depression or cellular adaptation. It was already shown that electrically coupled relaxation oscillators exhibit not only synchrony but also anti-phase behavior if electrical coupling is weak. We show that a much wider spectrum of spatiotemporal patterns of activity can emerge in a network of electrically coupled cells as a result of switching from synchrony, produced by short external signals of different spatial profiles. The variety of patterns increases with decreasing rate of neuronal firing (or duty cycle and with decreasing strength of electrical coupling. We study also the effect of network topology--from all-to-all--to pure ring connectivity, where only the closest neighbors are coupled. We show that the ring topology promotes anti-phase behavior as compared to all-to-all coupling. It also gives rise to a hierarchical organization of activity: during each of the main phases of a given pattern cells fire in a particular sequence determined by the local connectivity. We have analyzed the behavior of the network using geometric phase plane methods and we give heuristic explanations of our findings. Our results show that complex spatiotemporal activity patterns can emerge due to the action of stochastic or sensory stimuli in neural networks without chemical synapses, where each cell is equally coupled to others via gap junctions. This suggests that in developing nervous systems where only electrical coupling is present such a mechanism can lead to the establishment of proto-networks generating premature multiphase oscillations whereas the subsequent emergence of chemical synapses would

  18. Cell-specific synaptic plasticity induced by network oscillations.

    Science.gov (United States)

    Zarnadze, Shota; Bäuerle, Peter; Santos-Torres, Julio; Böhm, Claudia; Schmitz, Dietmar; Geiger, Jörg Rp; Dugladze, Tamar; Gloveli, Tengis

    2016-05-24

    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave-ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner.

  19. Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression

    KAUST Repository

    Kilpatrick, Zachary P.

    2009-10-29

    We study the spatiotemporal dynamics of a two-dimensional excitatory neuronal network with synaptic depression. Coupling between populations of neurons is taken to be nonlocal, while depression is taken to be local and presynaptic. We show that the network supports a wide range of spatially structured oscillations, which are suggestive of phenomena seen in cortical slice experiments and in vivo. The particular form of the oscillations depends on initial conditions and the level of background noise. Given an initial, spatially localized stimulus, activity evolves to a spatially localized oscillating core that periodically emits target waves. Low levels of noise can spontaneously generate several pockets of oscillatory activity that interact via their target patterns. Periodic activity in space can also organize into spiral waves, provided that there is some source of rotational symmetry breaking due to external stimuli or noise. In the high gain limit, no oscillatory behavior exists, but a transient stimulus can lead to a single, outward propagating target wave. © Springer Science + Business Media, LLC 2009.

  20. Emergence of localized patterns in globally coupled networks of relaxation oscillators with heterogeneous connectivity

    Science.gov (United States)

    Leiser, Randolph J.; Rotstein, Horacio G.

    2017-08-01

    Oscillations in far-from-equilibrium systems (e.g., chemical, biochemical, biological) are generated by the nonlinear interplay of positive and negative feedback effects operating at different time scales. Relaxation oscillations emerge when the time scales between the activators and the inhibitors are well separated. In addition to the large-amplitude oscillations (LAOs) or relaxation type, these systems exhibit small-amplitude oscillations (SAOs) as well as abrupt transitions between them (canard phenomenon). Localized cluster patterns in networks of relaxation oscillators consist of one cluster oscillating in the LAO regime or exhibiting mixed-mode oscillations (LAOs interspersed with SAOs), while the other oscillates in the SAO regime. Because the individual oscillators are monostable, localized patterns are a network phenomenon that involves the interplay of the connectivity and the intrinsic dynamic properties of the individual nodes. Motivated by experimental and theoretical results on the Belousov-Zhabotinsky reaction, we investigate the mechanisms underlying the generation of localized patterns in globally coupled networks of piecewise-linear relaxation oscillators where the global feedback term affects the rate of change of the activator (fast variable) and depends on the weighted sum of the inhibitor (slow variable) at any given time. We also investigate whether these patterns are affected by the presence of a diffusive type of coupling whose synchronizing effects compete with the symmetry-breaking global feedback effects.

  1. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Bidesh K., E-mail: bideshbera18@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India); Hens, Chittaranjan, E-mail: chittaranjanhens@gmail.com [Department of Mathematics, Bar-Ilan University, Ramat Gan 52900 (Israel); Ghosh, Dibakar, E-mail: dibakar@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)

    2016-07-15

    Highlights: • Amplitude death is observed using repulsive mean coupling. • Analytical conditions for amplitude death are derived. • Effect of asymmetry time delay coupling for death is discussed. - Abstract: We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey–Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart–Landau and Van der Pol oscillators.

  2. Investigating Synchronous Oscillation and Deep Brain Stimulation Treatment in A Model of Cortico-Basal Ganglia Network.

    Science.gov (United States)

    Lu, Meili; Wei, Xile; Loparo, Kenneth A

    2017-11-01

    Altered firing properties and increased pathological oscillations in the basal ganglia have been proven to be hallmarks of Parkinson's disease (PD). Increasing evidence suggests that abnormal synchronous oscillations and suppression in the cortex may also play a critical role in the pathogenic process and treatment of PD. In this paper, a new closed-loop network including the cortex and basal ganglia using the Izhikevich models is proposed to investigate the synchrony and pathological oscillations in motor circuits and their modulation by deep brain stimulation (DBS). Results show that more coherent dynamics in the cortex may cause stronger effects on the synchrony and pathological oscillations of the subthalamic nucleus (STN). The pathological beta oscillations of the STN can both be efficiently suppressed with DBS applied directly to the STN or to cortical neurons, respectively, but the underlying mechanisms by which DBS suppresses the beta oscillations are different. This research helps to understand the dynamics of pathological oscillations in PD-related motor regions and supports the therapeutic potential of stimulation of cortical neurons.

  3. Log-periodic oscillations due to discrete effects in complex networks

    Science.gov (United States)

    Sienkiewicz, Julian; Fronczak, Piotr; Hołyst, Janusz A.

    2007-06-01

    We show how discretization affects two major characteristics in complex networks: internode distances (measured as the shortest number of edges between network sites) and average path length, and as a result there are log-periodic oscillations of the above quantities. The effect occurs both in numerical network models as well as in such real systems as coauthorship, language, food, and public transport networks. Analytical description of these oscillations fits well numerical simulations. We consider a simple case of the network optimization problem, arguing that discrete effects can lead to a nontrivial solution.

  4. Bubbling effect in the electro-optic delayed feedback oscillator coupled network

    Science.gov (United States)

    Liu, Lingfeng; Lin, Jun; Miao, Suoxia

    2017-03-01

    Synchronization in the optical systems coupled network always suffers from bubbling events. In this paper, we numerically investigate the statistical properties of the synchronization characteristics and bubbling effects in the electro-optic delayed feedback oscillator coupled network with different coupling strength, delay time and gain coefficient. Furthermore, we compare our results with the synchronization properties of semiconductor laser (SL) coupled network, which indicates that the electro-optic delayed feedback oscillator can be better to suppress the bubbling effects in the synchronization of coupled network under the same conditions.

  5. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

    Science.gov (United States)

    Bick, Christian; Sebek, Michael; Kiss, István Z.

    2017-10-01

    We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

  6. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy.

    Science.gov (United States)

    Zweiphenning, W J E M; van 't Klooster, M A; van Diessen, E; van Klink, N E C; Huiskamp, G J M; Gebbink, T A; Leijten, F S S; Gosselaar, P H; Otte, W M; Stam, C J; Braun, K P J; Zijlmans, G J M

    2016-01-01

    High frequency oscillations (HFOs; > 80 Hz), especially fast ripples (FRs, 250-500 Hz), are novel biomarkers for epileptogenic tissue. The pathophysiology suggests enhanced functional connectivity within FR generating tissue. Our aim was to determine the relation between brain areas showing FRs and 'baseline' functional connectivity within EEG networks, especially in the high frequency bands. We marked FRs, ripples (80-250 Hz) and spikes in the electrocorticogram of 14 patients with refractory temporal lobe epilepsy. We assessed 'baseline' functional connectivity in epochs free of epileptiform events within these recordings, using the phase lag index. We computed the Eigenvector Centrality (EC) per channel in the FR and gamma band network. We compared EC between channels that did or did not show events at other moments in time. FR-band EC was higher in channels with than without spikes. Gamma-band EC was lower in channels with ripples and FRs. We confirmed previous findings of functional isolation in the gamma-band and found a first proof of functional integration in the FR-band network of channels covering presumed epileptogenic tissue. 'Baseline' high-frequency network parameters might help intra-operative recognition of epileptogenic tissue without the need for waiting for events. These findings can increase our understanding of the 'architecture' of epileptogenic networks and help unravel the pathophysiology of HFOs.

  7. Stimulus induced high frequency oscillations are present in neuronal networks on microelectrode arrays.

    Directory of Open Access Journals (Sweden)

    Chadwick M Hales

    2012-05-01

    Full Text Available Pathological high frequency oscillations (250-600Hz are present in the brains of epileptic animals and humans. The etiology of these oscillations and how they contribute to the diseased state remains unclear. This work identifies the presence of microstimulation-evoked high frequency oscillations (250-400Hz in dissociated neuronal networks cultured on microelectrode arrays (MEAs. Oscillations are more apparent with higher stimulus voltages. As with in vivo studies, activity is isolated to a single electrode, however the MEA provides improved spatial resolution with no spread of the oscillation to adjacent electrodes 200µm away. Oscillations develop across 4 weeks in vitro. Oscillations still occur in the presence of tetrodotoxin and synaptic blockers, and they cause no apparent disruption in the ability of oscillation-presenting electrodes to elicit directly evoked action potentials (dAPs or promote the spread of synaptic activity throughout the culture. Chelating calcium with ethylene glycol tetraacetic acid (EGTA causes a temporal prolongation of the oscillation. Finally, carbenoxolone significantly reduces or eliminates the high frequency oscillations. Gap junctions may play a significant role in maintaining the oscillation given the inhibitory effect of carbenoxolone, the propagating effect of reduced calcium conditions and the isolated nature of the activity as demonstrated in previous studies. This is the first demonstration of stimulus evoked high frequency oscillations in dissociated cultures. Unlike current models that rely on complex in vivo recording conditions, this work presents a simple controllable model in neuronal cultures on MEAs to further investigate how the oscillations occur at the molecular level and how they may contribute to the pathophysiology of disease.

  8. Neural oscillations: beta band activity across motor networks.

    Science.gov (United States)

    Khanna, Preeya; Carmena, Jose M

    2015-06-01

    Local field potential (LFP) activity in motor cortical and basal ganglia regions exhibits prominent beta (15-40Hz) oscillations during reaching and grasping, muscular contraction, and attention tasks. While in vitro and computational work has revealed specific mechanisms that may give rise to the frequency and duration of this oscillation, there is still controversy about what behavioral processes ultimately drive it. Here, simultaneous behavioral and large-scale neural recording experiments from non-human primate and human subjects are reviewed in the context of specific hypotheses about how beta band activity is generated. Finally, a new experimental paradigm utilizing operant conditioning combined with motor tasks is proposed as a way to further investigate this oscillation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. High-frequency oscillations in distributed neural networks reveal the dynamics of human decision making

    Directory of Open Access Journals (Sweden)

    Adrian G Guggisberg

    2008-03-01

    Full Text Available We examine the relative timing of numerous brain regions involved in human decisions that are based on external criteria, learned information, personal preferences, or unconstrained internal considerations. Using magnetoencephalography (MEG and advanced signal analysis techniques, we were able to non-invasively reconstruct oscillations of distributed neural networks in the high-gamma frequency band (60–150 Hz. The time course of the observed neural activity suggested that two-alternative forced choice tasks are processed in four overlapping stages: processing of sensory input, option evaluation, intention formation, and action execution. Visual areas are activated fi rst, and show recurring activations throughout the entire decision process. The temporo-occipital junction and the intraparietal sulcus are active during evaluation of external values of the options, 250–500 ms after stimulus presentation. Simultaneously, personal preference is mediated by cortical midline structures. Subsequently, the posterior parietal and superior occipital cortices appear to encode intention, with different subregions being responsible for different types of choice. The cerebellum and inferior parietal cortex are recruited for internal generation of decisions and actions, when all options have the same value. Action execution was accompanied by activation peaks in the contralateral motor cortex. These results suggest that high-gamma oscillations as recorded by MEG allow a reliable reconstruction of decision processes with excellent spatiotemporal resolution.

  10. Intraburst versus interburst locking in networks of driven nonidentical oscillators

    Science.gov (United States)

    Waddell, Jack; Zochowski, Michal

    2007-11-01

    We investigate the effect of common periodic drive applied to mean-field coupled oscillators and observe a specific realization of synchronization for particular ranges of drive frequency. This synchronization occurs when the phase difference variability between a pair of oscillators on a given cycle is larger than that between consecutive cycles. This synchrony may have implications for neural systems, in which case the apparent locking between neurons based on the magnitude of their interspike intervals may not be consistent with their dynamical locking.

  11. Coherence of biochemical oscillations is bounded by driving force and network topology

    Science.gov (United States)

    Barato, Andre C.; Seifert, Udo

    2017-06-01

    Biochemical oscillations are prevalent in living organisms. Systems with a small number of constituents cannot sustain coherent oscillations for an indefinite time because of fluctuations in the period of oscillation. We show that the number of coherent oscillations that quantifies the precision of the oscillator is universally bounded by the thermodynamic force that drives the system out of equilibrium and by the topology of the underlying biochemical network of states. Our results are valid for arbitrary Markov processes, which are commonly used to model biochemical reactions. We apply our results to a model for a single KaiC protein and to an activator-inhibitor model that consists of several molecules. From a mathematical perspective, based on strong numerical evidence, we conjecture a universal constraint relating the imaginary and real parts of the first nontrivial eigenvalue of a stochastic matrix.

  12. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators

    Science.gov (United States)

    Papadopoulos, Lia; Kim, Jason Z.; Kurths, Jürgen; Bassett, Danielle S.

    2017-07-01

    Synchronization of non-identical oscillators coupled through complex networks is an important example of collective behavior, and it is interesting to ask how the structural organization of network interactions influences this process. Several studies have explored and uncovered optimal topologies for synchronization by making purposeful alterations to a network. On the other hand, the connectivity patterns of many natural systems are often not static, but are rather modulated over time according to their dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can shape the organization of the network itself are less well understood. Here, we study initially randomly connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reorganization to be isolated. We find that a simple rule—which preserves connections between more out-of-phase oscillators while rewiring connections between more in-phase oscillators—can cause initially disordered networks to organize into more structured topologies that support enhanced synchronization dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic frequencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive mechanism reorganizes the network and influences the dynamics. Importantly, for large enough coupling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including degree-frequency and frequency-neighbor frequency correlations. These properties have previously been associated with optimal synchronization or explosive transitions in which the networks were constructed using global information. On the contrary, by

  13. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.

    Science.gov (United States)

    Goto, Hayato

    2016-02-22

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  14. A universal order parameter for synchrony in networks of limit cycle oscillators

    Science.gov (United States)

    Schröder, Malte; Timme, Marc; Witthaut, Dirk

    2017-07-01

    We analyze the properties of order parameters measuring synchronization and phase locking in complex oscillator networks. First, we review network order parameters previously introduced and reveal several shortcomings: none of the introduced order parameters capture all transitions from incoherence over phase locking to full synchrony for arbitrary, finite networks. We then introduce an alternative, universal order parameter that accurately tracks the degree of partial phase locking and synchronization, adapting the traditional definition to account for the network topology and its influence on the phase coherence of the oscillators. We rigorously prove that this order parameter is strictly monotonously increasing with the coupling strength in the phase locked state, directly reflecting the dynamic stability of the network. Furthermore, it indicates the onset of full phase locking by a diverging slope at the critical coupling strength. The order parameter may find applications across systems where different types of synchrony are possible, including biological networks and power grids.

  15. A NEURAL OSCILLATOR-NETWORK MODEL OF TEMPORAL PATTERN GENERATION

    NARCIS (Netherlands)

    Schomaker, Lambert

    Most contemporary neural network models deal with essentially static, perceptual problems of classification and transformation. Models such as multi-layer feedforward perceptrons generally do not incorporate time as an essential dimension, whereas biological neural networks are inherently temporal

  16. Temperature effects on a network of dissipative quantum harmonic oscillators: collective damping and dispersion processes

    Science.gov (United States)

    de Ponte, M. A.; Mizrahi, S. S.; Moussa, M. H. Y.

    2009-09-01

    In this paper we extend the results presented in (de Ponte, Mizrahi and Moussa 2007 Phys. Rev. A 76 032101) to treat quantitatively the effects of reservoirs at finite temperature in a bosonic dissipative network: a chain of coupled harmonic oscillators whatever its topology, i.e., whichever the way the oscillators are coupled together, the strength of their couplings and their natural frequencies. Starting with the case where distinct reservoirs are considered, each one coupled to a corresponding oscillator, we also analyze the case where a common reservoir is assigned to the whole network. Master equations are derived for both situations and both regimes of weak and strong coupling strengths between the network oscillators. Solutions of these master equations are presented through the normal ordered characteristic function. These solutions are shown to be significantly involved when temperature effects are considered, making difficult the analysis of collective decoherence and dispersion in dissipative bosonic networks. To circumvent these difficulties, we turn to the Wigner distribution function which enables us to present a technique to estimate the decoherence time of network states. Our technique proceeds by computing separately the effects of dispersion and the attenuation of the interference terms of the Wigner function. A detailed analysis of the dispersion mechanism is also presented through the evolution of the Wigner function. The interesting collective dispersion effects are discussed and applied to the analysis of decoherence of a class of network states. Finally, the entropy and the entanglement of a pure bipartite system are discussed.

  17. Temperature effects on a network of dissipative quantum harmonic oscillators: collective damping and dispersion processes

    Energy Technology Data Exchange (ETDEWEB)

    De Ponte, M A; Mizrahi, S S [Departamento de Fisica, Universidade Federal de Sao Carlos, Caixa Postal 676, Sao Carlos, 13565-905, Sao Paulo (Brazil); Moussa, M H Y [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 369, 13560-590 Sao Carlos, SP (Brazil)

    2009-09-11

    In this paper we extend the results presented in (de Ponte, Mizrahi and Moussa 2007 Phys. Rev. A 76 032101) to treat quantitatively the effects of reservoirs at finite temperature in a bosonic dissipative network: a chain of coupled harmonic oscillators whatever its topology, i.e., whichever the way the oscillators are coupled together, the strength of their couplings and their natural frequencies. Starting with the case where distinct reservoirs are considered, each one coupled to a corresponding oscillator, we also analyze the case where a common reservoir is assigned to the whole network. Master equations are derived for both situations and both regimes of weak and strong coupling strengths between the network oscillators. Solutions of these master equations are presented through the normal ordered characteristic function. These solutions are shown to be significantly involved when temperature effects are considered, making difficult the analysis of collective decoherence and dispersion in dissipative bosonic networks. To circumvent these difficulties, we turn to the Wigner distribution function which enables us to present a technique to estimate the decoherence time of network states. Our technique proceeds by computing separately the effects of dispersion and the attenuation of the interference terms of the Wigner function. A detailed analysis of the dispersion mechanism is also presented through the evolution of the Wigner function. The interesting collective dispersion effects are discussed and applied to the analysis of decoherence of a class of network states. Finally, the entropy and the entanglement of a pure bipartite system are discussed.

  18. Instabilities in RF-power amplifiers caused by a self-oscillation in the transistor bias network

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    1976-01-01

    This paper describes a self-oscillation in the bias network of an amplifier which is commonly used for the output stage in mobile transmitters. It is demonstrated how some often observed spurious oscillations may be related to the self-oscillation and a method for stabilizing the amplifier is der...

  19. Cortical EEG oscillations and network connectivity as efficacy indices for assessing drugs with cognition enhancing potential.

    Science.gov (United States)

    Ahnaou, A; Huysmans, H; Jacobs, T; Drinkenburg, W H I M

    2014-11-01

    Synchronization of electroencephalographic (EEG) oscillations represents a core mechanism for cortical and subcortical networks, and disturbance in neural synchrony underlies cognitive processing deficits in neurological and neuropsychiatric disorders. Here, we investigated the effects of cognition enhancers (donepezil, rivastigmine, tacrine, galantamine and memantine), which are approved for symptomatic treatment of dementia, on EEG oscillations and network connectivity in conscious rats chronically instrumented with epidural electrodes in different cortical areas. Next, EEG network indices of cognitive impairments with the muscarinic receptor antagonist scopolamine were modeled. Lastly, we examined the efficacy of cognition enhancers to normalize those aberrant oscillations. Cognition enhancers elicited systematic ("fingerprint") enhancement of cortical slow theta (4.5-6 Hz) and gamma (30.5-50 Hz) oscillations correlated with lower activity levels. Principal component analysis (PCA) revealed a compact cluster that corresponds to shared underlying mechanisms as compared to different drug classes. Functional network connectivity revealed consistent elevated coherent slow theta activity in parieto-occipital and between interhemispheric cortical areas. In rats instrumented with depth hippocampal CA1-CA3 electrodes, donepezil elicited similar oscillatory and coherent activities in cortico-hippocampal networks. When combined with scopolamine, the cognition enhancers attenuated the leftward shift in coherent slow delta activity. Such a consistent shift in EEG coherence into slow oscillations associated with altered slow theta and gamma oscillations may underlie cognitive deficits in scopolamine-treated animals, whereas enhanced coherent slow theta and gamma activity may be a relevant mechanism by which cognition enhancers exert their beneficial effect on plasticity and cognitive processes. The findings underscore that PCA and network connectivity are valuable tools to

  20. Emergence and coherence of oscillations in star networks of stochastic excitable elements

    Science.gov (United States)

    Kromer, Justus A.; Schimansky-Geier, Lutz; Neiman, Alexander B.

    2016-04-01

    We study the emergence and coherence of stochastic oscillations in star networks of excitable elements in which peripheral nodes receive independent random inputs. A biophysical model of a distal branch of sensory neuron in which peripheral nodes of Ranvier are coupled to a central node by myelinated cable segments is used along with a generic model of networked stochastic active rotators. We show that coherent oscillations can emerge due to stochastic synchronization of peripheral nodes and that the degree of coherence can be maximized by tuning the coupling strength and the size of the network. Analytical results are obtained for the strong-coupling regime of the active rotator network. In particular, we show that in the strong-coupling regime, the network dynamics can be described by an effective single active rotator with rescaled parameters and noise.

  1. Emergence and coherence of oscillations in star networks of stochastic excitable elements

    CERN Document Server

    Kromer, Justus A; Neiman, Alexander B

    2015-01-01

    We study the emergence and coherence of stochastic oscillations in star networks of excitable elements in which peripheral nodes receive independent random inputs. A biophysical model of a distal branch of sensory neuron in which peripheral nodes of Ranvier are coupled to a central node by myelinated cable segments is used along with a generic model of networked stochastic active rotators. We show that coherent oscillations can emerge due to stochastic synchronization of peripheral nodes and that the degree of coherence can be maximized by tuning the coupling strength and the size of the network. Analytical results are obtained for the strong coupling regime of the active rotator network. In particular, we show that in the strong coupling regime the network dynamics can be described by an effective single active rotator with rescaled parameters and noise.

  2. Coherency and connectivity in oscillating neural networks: linear partialization analysis

    NARCIS (Netherlands)

    Kalitzin, S.; van Dijk, B. W.; Spekreijse, H.; van Leeuwen, W. A.

    1997-01-01

    This paper studies the relation between the functional synaptic connections between two artificial neural networks and the correlation of their spiking activities. The model neurons had realistic non-oscillatory dynamic properties and the networks showed oscillatory behavior as a result of their

  3. Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks

    Science.gov (United States)

    Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F

    2015-01-01

    Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940

  4. The Global Oscillation Network Group site survey. 1: Data collection and analysis methods

    Science.gov (United States)

    Hill, Frank; Fischer, George; Grier, Jennifer; Leibacher, John W.; Jones, Harrison B.; Jones, Patricia P.; Kupke, Renate; Stebbins, Robin T.

    1994-01-01

    The Global Oscillation Network Group (GONG) Project is planning to place a set of instruments around the world to observe solar oscillations as continuously as possible for at least three years. The Project has now chosen the sites that will comprise the network. This paper describes the methods of data collection and analysis that were used to make this decision. Solar irradiance data were collected with a one-minute cadence at fifteen sites around the world and analyzed to produce statistics of cloud cover, atmospheric extinction, and transparency power spectra at the individual sites. Nearly 200 reasonable six-site networks were assembled from the individual stations, and a set of statistical measures of the performance of the networks was analyzed using a principal component analysis. An accompanying paper presents the results of the survey.

  5. Pacemaker neuron and network oscillations depend on a neuromodulator-regulated linear current

    Directory of Open Access Journals (Sweden)

    Shunbing Zhao

    2010-05-01

    Full Text Available Linear leak currents have been implicated in the regulation of neuronal excitability, generation of neuronal and network oscillations, and network state transitions. Yet, few studies have directly tested the dependence of network oscillations on leak currents or explored the role of leak currents on network activity. In the oscillatory pyloric network of decapod crustaceans neuromodulatory inputs are necessary for pacemaker activity. A large subset of neuromodulators is known to activate a single voltage-gated inward current IMI, which has been shown to regulate the rhythmic activity of the network and its pacemaker neurons. Using the dynamic clamp technique, we show that the crucial component of IMI for the generation of oscillatory activity is only a close-to-linear portion of the current-voltage relationship. The nature of this conductance is such that the presence or the absence of neuromodulators effectively regulates the amount of leak current and the input resistance in the pacemaker neurons. When deprived of neuromodulatory inputs, pyloric oscillations are disrupted; yet, a linear reduction of the total conductance in a single neuron within the pacemaker group recovers not only the pacemaker activity in that neuron, but also leads to a recovery of oscillations in the entire pyloric network. The recovered activity produces proper frequency and phasing that is similar to that induced by neuromodulators. These results show that the passive properties of pacemaker neurons can significantly affect their capacity to generate and regulate the oscillatory activity of an entire network, and that this feature is exploited by neuromodulatory inputs.

  6. Sensorimotor oscillations prior to speech onset reflect altered motor networks in adults who stutter

    OpenAIRE

    Anna-Maria Mersov; Cecilia Jobst; Douglas Owen Cheyne; Douglas Owen Cheyne; Douglas Owen Cheyne; Luc De Nil

    2016-01-01

    Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG). Twelve AWS and twelve age-matched controls were presented...

  7. Sensorimotor Oscillations Prior to Speech Onset Reflect Altered Motor Networks in Adults Who Stutter

    OpenAIRE

    Mersov, Anna-Maria; Jobst, Cecilia; Cheyne, Douglas O.; De Nil, Luc

    2016-01-01

    Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG). Twelve AWS and 12 age-matched controls were presented wit...

  8. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wang

    2011-06-01

    Full Text Available Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. They are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality. We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. It was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We find that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and self-organized criticality, which are not present in the respective random networks. The underlying mechanism is that each dense module cannot sustain activity on its own, but displays self-organized criticality in the presence of weak perturbations. The hierarchical modular networks provide the coupling among subsystems with self-organized criticality. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivityof critical state and predictability and timing of oscillations for efficient

  9. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION.

    Science.gov (United States)

    Taylor, Dane; Skardal, Per Sebastian; Sun, Jie

    2016-01-01

    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications-for which proper functionality depends sensitively on the extent of synchronization-there remains a lack of understanding for how systems can best evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system's ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments.

  10. Synchronization in a neural network of phase oscillators with time delayed coupling

    Science.gov (United States)

    Luzyanina, T. B.

    1994-08-01

    We investigate a neural network model designed as a system of the central oscillator and peripheral oscillators interacting with a time delay τ in a phase-locking loop. The delay corresponds to the finite velocity of signal propagation along nerve fibers. We study the synchronization under various values of τ. It is shown that under some conditions for a finite delay time there exist a multitude of synchronization frequencies in contrast to the case without delay where one has at most one solution. The criteria for the existence of multiple solutions and their stability are found. The asymptotic behavior under increasing connection strengths is analyzed.

  11. An Investigation of a New Social Networks Contact Suggestion Based on Face Recognition Algorithm

    Directory of Open Access Journals (Sweden)

    Ivan Zelinka

    2016-01-01

    Full Text Available Automated comparison of faces in the photographs is a well established discipline. The main aim of this paper is to describe an approach whereby face recognition can be used in suggestion of a new contacts. The new contact suggestion is a common technique used across all main social networks. Our approach uses a freely available face comparison called "Betaface" together with our automated processig of the user´s Facebook profile. The research´s main point of interest is the comparison of friend´s facial images in a social network itself, how to process such a great amount of photos and what additional sources of data should be used. In this approach we used our automated processing algorithm Betaface in the social network Facebook and for the additional data, the Flickr social network was used. The results and their quality are discussed at the end.

  12. Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality

    NARCIS (Netherlands)

    Lozano Soldevilla, D.; Huurne, N.P. ter; Oostenveld, R.

    2016-01-01

    Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in

  13. Action Potential Modulation of Neural Spin Networks Suggests Possible Role of Spin

    CERN Document Server

    Hu, H P

    2004-01-01

    In this paper we show that nuclear spin networks in neural membranes are modulated by action potentials through J-coupling, dipolar coupling and chemical shielding tensors and perturbed by microscopically strong and fluctuating internal magnetic fields produced largely by paramagnetic oxygen. We suggest that these spin networks could be involved in brain functions since said modulation inputs information carried by the neural spike trains into them, said perturbation activates various dynamics within them and the combination of the two likely produce stochastic resonance thus synchronizing said dynamics to the neural firings. Although quantum coherence is desirable and may indeed exist, it is not required for these spin networks to serve as the subatomic components for the conventional neural networks.

  14. Synaptic Plasticity, Engrams, and Network Oscillations in Amygdala Circuits for Storage and Retrieval of Emotional Memories.

    Science.gov (United States)

    Bocchio, Marco; Nabavi, Sadegh; Capogna, Marco

    2017-05-17

    The neuronal circuits of the basolateral amygdala (BLA) are crucial for acquisition, consolidation, retrieval, and extinction of associative emotional memories. Synaptic plasticity in BLA neurons is essential for associative emotional learning and is a candidate mechanism through which subsets of BLA neurons (commonly termed "engram") are recruited during learning and reactivated during memory retrieval. In parallel, synchronous oscillations in the theta and gamma bands between the BLA and interconnected structures have been shown to occur during consolidation and retrieval of emotional memories. Understanding how these cellular and network phenomena interact is vital to decipher the roles of emotional memory formation and storage in the healthy and pathological brain. Here, we review data on synaptic plasticity, engrams, and network oscillations in the rodent BLA. We explore mechanisms through which synaptic plasticity, engrams, and long-range synchrony might be interconnected. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Phase models and clustering in networks of oscillators with delayed coupling

    Science.gov (United States)

    Campbell, Sue Ann; Wang, Zhen

    2018-01-01

    We consider a general model for a network of oscillators with time delayed coupling where the coupling matrix is circulant. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to determine model independent existence and stability results for symmetric cluster solutions. Our results extend previous work to systems with time delay and a more general coupling matrix. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies.

  16. Dual oscillator model of the respiratory neuronal network generating quantal slowing of respiratory rhythm.

    Science.gov (United States)

    Lal, Amit; Oku, Yoshitaka; Hülsmann, Swen; Okada, Yasumasa; Miwakeichi, Fumikazu; Kawai, Shigeharu; Tamura, Yoshiyasu; Ishiguro, Makio

    2011-04-01

    We developed a dual oscillator model to facilitate the understanding of dynamic interactions between the parafacial respiratory group (pFRG) and the preBötzinger complex (preBötC) neurons in the respiratory rhythm generation. Both neuronal groups were modeled as groups of 81 interconnected pacemaker neurons; the bursting cell model described by Butera and others [model 1 in Butera et al. (J Neurophysiol 81:382-397, 1999a)] were used to model the pacemaker neurons. We assumed (1) both pFRG and preBötC networks are rhythm generators, (2) preBötC receives excitatory inputs from pFRG, and pFRG receives inhibitory inputs from preBötC, and (3) persistent Na(+) current conductance and synaptic current conductances are randomly distributed within each population. Our model could reproduce 1:1 coupling of bursting rhythms between pFRG and preBötC with the characteristic biphasic firing pattern of pFRG neurons, i.e., firings during pre-inspiratory and post-inspiratory phases. Compatible with experimental results, the model predicted the changes in firing pattern of pFRG neurons from biphasic expiratory to monophasic inspiratory, synchronous with preBötC neurons. Quantal slowing, a phenomena of prolonged respiratory period that jumps non-deterministically to integer multiples of the control period, was observed when the excitability of preBötC network decreased while strengths of synaptic connections between the two groups remained unchanged, suggesting that, in contrast to the earlier suggestions (Mellen et al., Neuron 37:821-826, 2003; Wittmeier et al., Proc Natl Acad Sci USA 105(46):18000-18005, 2008), quantal slowing could occur without suppressed or stochastic excitatory synaptic transmission. With a reduced excitability of preBötC network, the breakdown of synchronous bursting of preBötC neurons was predicted by simulation. We suggest that quantal slowing could result from a breakdown of synchronized bursting within the preBötC.

  17. Computational Principle and Performance Evaluation of Coherent Ising Machine Based on Degenerate Optical Parametric Oscillator Network

    Directory of Open Access Journals (Sweden)

    Yoshitaka Haribara

    2016-04-01

    Full Text Available We present the operational principle of a coherent Ising machine (CIM based on a degenerate optical parametric oscillator (DOPO network. A quantum theory of CIM is formulated, and the computational ability of CIM is evaluated by numerical simulation based on c-number stochastic differential equations. We also discuss the advanced CIM with quantum measurement-feedback control and various problems which can be solved by CIM.

  18. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  19. Setting up the speech production network: How oscillations contribute to lateralized information routing

    Directory of Open Access Journals (Sweden)

    Johannes eGehrig

    2012-06-01

    Full Text Available Speech production involves widely distributed brain regions. This study focuses on the spectro-temporal dynamics that contribute to the setup of this network. 26 participants performed a cue-target reading paradigm during MEG. We analyzed local oscillations during preparation for overt and covert reading in the time-frequency domain and localized sources using beamforming. Network dynamics were studied by comparing different dynamic causal models of beta phase coupling. While a broadband low frequency effect was found for any task preparation in bilateral prefrontal cortices, preparation for overt speech production was specifically associated with left-lateralized alpha and beta suppression in temporal cortices and beta suppression in motor-related brain regions. Beta phase coupling in the entire network was modulated by anticipation of overt reading.We propose that the cognitive processes underlying the intention to speak group brain regions belonging to the speech production network by means of beta synchronization and prepare the network for left-lateralized routing of information by suppression of inhibitory alpha and beta oscillations.

  20. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy

    NARCIS (Netherlands)

    Zweiphenning, W. J E M; van 't Klooster, M. A.; van Diessen, E.; van Klink, N. E C; Huiskamp, G. J M; Gebbink, T. A.; Leijten, F. S S; Gosselaar, P. H.; Otte, W. M.; Stam, C. J.; Braun, K. P J; Zijlmans, G. J M

    2016-01-01

    OBJECTIVE: High frequency oscillations (HFOs; > 80 Hz), especially fast ripples (FRs, 250-500 Hz), are novel biomarkers for epileptogenic tissue. The pathophysiology suggests enhanced functional connectivity within FR generating tissue. Our aim was to determine the relation between brain areas

  1. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine

    Science.gov (United States)

    Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa

    2014-12-01

    Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.

  2. Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types.

    Science.gov (United States)

    Tomov, Petar; Pena, Rodrigo F O; Zaks, Michael A; Roque, Antonio C

    2014-01-01

    The cerebral cortex exhibits neural activity even in the absence of external stimuli. This self-sustained activity is characterized by irregular firing of individual neurons and population oscillations with a broad frequency range. Questions that arise in this context, are: What are the mechanisms responsible for the existence of neuronal spiking activity in the cortex without external input? Do these mechanisms depend on the structural organization of the cortical connections? Do they depend on intrinsic characteristics of the cortical neurons? To approach the answers to these questions, we have used computer simulations of cortical network models. Our networks have hierarchical modular architecture and are composed of combinations of neuron models that reproduce the firing behavior of the five main cortical electrophysiological cell classes: regular spiking (RS), chattering (CH), intrinsically bursting (IB), low threshold spiking (LTS), and fast spiking (FS). The population of excitatory neurons is built of RS cells (always present) and either CH or IB cells. Inhibitory neurons belong to the same class, either LTS or FS. Long-lived self-sustained activity states in our network simulations display irregular single neuron firing and oscillatory activity similar to experimentally measured ones. The duration of self-sustained activity strongly depends on the initial conditions, suggesting a transient chaotic regime. Extensive analysis of the self-sustained activity states showed that their lifetime expectancy increases with the number of network modules and is favored when the network is composed of excitatory neurons of the RS and CH classes combined with inhibitory neurons of the LTS class. These results indicate that the existence and properties of the self-sustained cortical activity states depend on both the topology of the network and the neuronal mixture that comprises the network.

  3. Forecasting of Congestion in Traffic Neural Network Modelling Using Duffing Holmes Oscillator

    Science.gov (United States)

    Mrgole, Anamarija L.; Čelan, Marko; Mesarec, Beno

    2017-10-01

    Forecasting of congestion in traffic with Neural Network is an innovative and new process of identification and detection of chaotic features in time series analysis. With the use of Duffing Holmes Oscillator, we estimate the emergence of traffic flow congestion when the traffic load on a specific section of the road and in a specific time period is close to exceeding the capacity of the road infrastructure. The orientated model is validated in six locations with a specific requirement. The paper points out the issue of importance of traffic flow forecasting and simulations for preventing or rerouting possible short term traffic flow congestions.

  4. The central pattern generator underlying swimming in Dendronotus iris: a simple half-center network oscillator with a twist.

    Science.gov (United States)

    Sakurai, Akira; Katz, Paul S

    2016-10-01

    The nudibranch mollusc, Dendronotus iris, swims by rhythmically flexing its body from left to right. We identified a bilaterally represented interneuron, Si3, that provides strong excitatory drive to the previously identified Si2, forming a half-center oscillator, which functions as the central pattern generator (CPG) underlying swimming. As with Si2, Si3 inhibited its contralateral counterpart and exhibited rhythmic bursts in left-right alternation during the swim motor pattern. Si3 burst almost synchronously with the contralateral Si2 and was coactive with the efferent impulse activity in the contralateral body wall nerve. Perturbation of bursting in either Si3 or Si2 by current injection halted or phase-shifted the swim motor pattern, suggesting that they are both critical CPG members. Neither Si2 nor Si3 exhibited endogenous bursting properties when activated alone; activation of all four neurons was necessary to initiate and maintain the swim motor pattern. Si3 made a strong excitatory synapse onto the contralateral Si2 to which it is also electrically coupled. When Si3 was firing tonically but not exhibiting bursting, artificial enhancement of the Si3-to-Si2 synapse using dynamic clamp caused all four neurons to burst. In contrast, negation of the Si3-to-Si2 synapse by dynamic clamp blocked ongoing swim motor patterns. Together, these results suggest that the Dendronotus swim CPG is organized as a "twisted" half-center oscillator in which each "half" is composed of two excitatory-coupled neurons from both sides of the brain, each of which inhibits its contralateral counterpart. Consisting of only four neurons, this is perhaps the simplest known network oscillator for locomotion. Copyright © 2016 the American Physiological Society.

  5. Molecular Network Analysis Suggests Aberrant CREB-Mediated Gene Regulation in the Alzheimer Disease Hippocampus

    Directory of Open Access Journals (Sweden)

    Jun-ichi Satoh

    2009-01-01

    Full Text Available The pathogenesis of Alzheimer disease (AD involves the complex interaction between genetic and environmental factors affecting multiple cellular pathways. Recent advances in systems biology provide a system-level understanding of AD by elucidating the genome-wide molecular interactions. By using KeyMolnet, a bioinformatics tool for analyzing molecular interactions on the curated knowledgebase, we characterized molecular network of 2,883 all stages of AD-related genes (ADGs and 559 incipient AD-related genes (IADGs identified by global gene expression profiling of the hippocampal CA1 region of AD brains in terms of significant clinical and pathological correlations (Blalock et al., Proc Natl Acad Sci USA 101: 2173-2178, 2004. By the common upstream search, KeyMolnet identified cAMP-response element-binding protein (CREB as the principal transcription factor exhibiting the most significant relevance to molecular networks of both ADGs and IADGs. The CREB-regulated transcriptional network included upregulated and downregulated sets of ADGs and IADGs, suggesting an involvement of generalized deregulation of the CREB signaling pathway in the pathophysiology of AD, beginning at the early stage of the disease. To verify the in silico observations in vivo, we conducted immunohistochemical studies of 11 AD and 13 age-matched control brains by using anti-phoshorylated CREB (pCREB antibody. An abnormal accumulation of pCREB imunoreactivity was identified in granules of granulovacuolar degeneration (GVD in the hippocampal neurons of AD brains. These observations suggest that aberrant CREB-mediated gene regulation serves as a molecular biomarker of AD-related pathological processes, and support the hypothesis that sequestration of pCREB in GVD granules is in part responsible for deregulation of CREB-mediated gene expression in AD hippocampus.

  6. Boltzmann sampling for an XY model using a non-degenerate optical parametric oscillator network

    Science.gov (United States)

    Takeda, Y.; Tamate, S.; Yamamoto, Y.; Takesue, H.; Inagaki, T.; Utsunomiya, S.

    2018-01-01

    We present an experimental scheme of implementing multiple spins in a classical XY model using a non-degenerate optical parametric oscillator (NOPO) network. We built an NOPO network to simulate a one-dimensional XY Hamiltonian with 5000 spins and externally controllable effective temperatures. The XY spin variables in our scheme are mapped onto the phases of multiple NOPO pulses in a single ring cavity and interactions between XY spins are implemented by mutual injections between NOPOs. We show the steady-state distribution of optical phases of such NOPO pulses is equivalent to the Boltzmann distribution of the corresponding XY model. Estimated effective temperatures converged to the setting values, and the estimated temperatures and the mean energy exhibited good agreement with the numerical simulations of the Langevin dynamics of NOPO phases.

  7. Neurodynamic oscillators

    Science.gov (United States)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  8. Sustained oscillations, irregular firing and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types

    Directory of Open Access Journals (Sweden)

    Petar eTomov

    2014-09-01

    Full Text Available The cerebral cortex exhibits neural activity even in the absence of externalstimuli. This self-sustained activity is characterized by irregular firing ofindividual neurons and population oscillations with a broad frequency range.Questions that arise in this context, are: What are the mechanismsresponsible for the existence of neuronal spiking activity in the cortexwithout external input? Do these mechanisms depend on the structural organization of the cortical connections? Do they depend onintrinsic characteristics of the cortical neurons? To approach the answers to these questions, we have used computer simulations of cortical network models. Our networks have hierarchical modular architecture and are composedof combinations of neuron models that reproduce the firing behavior of the five main cortical electrophysiological cell classes: regular spiking (RS, chattering (CH, intrinsically bursting (IB, low threshold spiking (LTS and fast spiking (FS. The population of excitatory neurons is built of RS cells(always present and either CH or IB cells. Inhibitoryneurons belong to the same class, either LTS or FS. Long-lived self-sustained activity states in our networksimulations display irregular single neuron firing and oscillatoryactivity similar to experimentally measured ones. The duration of self-sustained activity strongly depends on the initial conditions,suggesting a transient chaotic regime. Extensive analysis of the self-sustainedactivity states showed that their lifetime expectancy increases with the numberof network modules and is favored when the network is composed of excitatory neurons of the RS and CH classes combined with inhibitory neurons of the LTS class. These results indicate that the existence and properties of the self-sustained cortical activity states depend on both the topology of the network and the neuronal mixture that comprises the network.

  9. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...... signal in response to the oscillation indicating signal, by processing the oscillation damping control signal in a signal processing chain. The signal processing chain includes a filter configured for passing only signals within a predetermined frequency range....

  10. Zig-zag networks of self-excited periodic oscillations in a tunnel diode and a fiber-ring laser.

    Science.gov (United States)

    Francke, Ricardo E; Pöschel, Thorsten; Gallas, Jason A C

    2013-04-01

    We report numerical evidence showing that periodic oscillations can produce unexpected and wide-ranging zig-zag parameter networks embedded in chaos in the control space of nonlinear systems. Such networks interconnect shrimplike windows of stable oscillations and are illustrated here for a tunnel diode, for an erbium-doped fiber-ring laser, and for the Hénon map, a proxy of certain CO(2) lasers. Networks in maps can be studied without the need for solving differential equations. Tuning parameters along zig-zag networks allows one to continuously modify wave patterns without changing their chaotic or periodic nature. In addition, we report convenient parameter ranges where such networks can be detected experimentally.

  11. The role of cortical oscillations in a spiking neural network model of the basal ganglia.

    Directory of Open Access Journals (Sweden)

    Zafeirios Fountas

    Full Text Available Although brain oscillations involving the basal ganglia (BG have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block information flow in the three major BG pathways. In particular, alpha (8-12Hz and beta (13-30Hz oscillations activate the direct BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the subthalamic nucleus-globus pallidus loop. In contrast, gamma (30-90Hz frequencies block the information flow from the cortex completely through activation of the indirect pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to spontaneous activity generated in the globus pallidus. Our results indicate the existence of a multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity. These two findings suggest new insights into the pathophysiology of specific BG disorders.

  12. The role of cortical oscillations in a spiking neural network model of the basal ganglia.

    Science.gov (United States)

    Fountas, Zafeirios; Shanahan, Murray

    2017-01-01

    Although brain oscillations involving the basal ganglia (BG) have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block) information flow in the three major BG pathways. In particular, alpha (8-12Hz) and beta (13-30Hz) oscillations activate the direct BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the subthalamic nucleus-globus pallidus loop. In contrast, gamma (30-90Hz) frequencies block the information flow from the cortex completely through activation of the indirect pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to spontaneous activity generated in the globus pallidus. Our results indicate the existence of a multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity. These two findings suggest new insights into the pathophysiology of specific BG disorders.

  13. Bifurcation analysis of oscillating network model of pattern recognition in the rabbit olfactory bulb

    Science.gov (United States)

    Baird, Bill

    1986-08-01

    A neural network model describing pattern recognition in the rabbit olfactory bulb is analysed to explain the changes in neural activity observed experimentally during classical Pavlovian conditioning. EEG activity recorded from an 8×8 arry of 64 electrodes directly on the surface on the bulb shows distinct spatial patterns of oscillation that correspond to the animal's recognition of different conditioned odors and change with conditioning to new odors. The model may be considered a variant of Hopfield's model of continuous analog neural dynamics. Excitatory and inhibitory cell types in the bulb and the anatomical architecture of their connection requires a nonsymmetric coupling matrix. As the mean input level rises during each breath of the animal, the system bifurcates from homogenous equilibrium to a spatially patterned oscillation. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of these unstable oscillatory modes independent of frequency. This allows a view of stored periodic attractors as fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  14. Collective Dynamics of Oscillator Networks: Why do we suffer from heavy jet lag?

    Science.gov (United States)

    Kori, Hiroshi

    The circadian rhythm of the entire body in mammals is orchestrated by a small tissue in the brain called the suprachiamatic nucleus (SCN). The SCN consists of a population of neurons, each of which exhibit circadian (i.e., approximately 24 h) gene expression. Neurons form a complex network and interact with each other using various types of neurotransmitters. The rhythmic gene expressions of individual cells in the SCN synchronize through such interaction. Jet-lag symptoms arise from temporal mismatch between the internal circadian clock orchestrated by the SCN and external solar time. It may take about one week or even longer to recover from jet lag after a long-distance trip. We recently found that recovery from jet lag is considerably accelerated in the knocked-out (KO) mice lacking the receptors of a certain neurotransmitter in the SCN. Importantly, all other properties of mice including sleep-awake rhythms and breeding seem to be intact. Only the response to the jet lag changes. It was also found that after a few days of jet lag, cells in the SCN desynchronize in the wild type (WT) mice, whereas they do not in KO mice. This desynchrony might be a main reason for heavy jet lag symptoms. To understand the mechanism underlying jet lag, we propose a simple model of the SCN, which is a network of phase oscillators. Despite its simplicity, this model can reproduce important dynamical properties of the SCN. For example, this model reproduces the desynchrony of oscillators after jet lag. Moreover, when intercellular interaction is weaker, this desynchrony is suppressed and the recover from jet lag is considerably accelerated. Our mathematical study provides a deeper understanding of jet lag and an idea how to circumvent heavy jet lag symptoms

  15. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    Science.gov (United States)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-12-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (EGABA). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (gGABA-extra) and experimentally identified, seizure-induced changes in gGABA-extra and EGABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40-100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30-40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing gGABA-extra reduced the frequency and coherence of FS-BC firing when EGABA was shunting (-74 mV), but failed to alter average FS-BC frequency when EGABA was depolarizing

  16. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    Energy Technology Data Exchange (ETDEWEB)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S. [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Santhakumar, Vijayalakshmi, E-mail: santhavi@njms.rutgers.edu [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States)

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter average

  17. Sensorimotor Oscillations Prior to Speech Onset Reflect Altered Motor Networks in Adults Who Stutter.

    Science.gov (United States)

    Mersov, Anna-Maria; Jobst, Cecilia; Cheyne, Douglas O; De Nil, Luc

    2016-01-01

    Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG). Twelve AWS and 12 age-matched controls were presented with 220 words, each word embedded in a carrier phrase. Controls were presented with the same word list as their matched AWS participant. Neural oscillatory activity was localized using minimum-variance beamforming during two time periods of interest: speech preparation (prior to speech onset) and speech execution (following speech onset). Compared to controls, AWS showed stronger beta (15-25 Hz) suppression in the speech preparation stage, followed by stronger beta synchronization in the bilateral mouth motor cortex. AWS also recruited the right mouth motor cortex significantly earlier in the speech preparation stage compared to controls. Exaggerated motor preparation is discussed in the context of reduced coordination in the speech-motor network of AWS. It is further proposed that exaggerated beta synchronization may reflect a more strongly inhibited motor system that requires a stronger beta suppression to disengage prior to speech initiation. These novel findings highlight critical differences in the speech-motor network of AWS that occur prior to speech onset and emphasize the need to investigate further the speech-motor assembly in the stuttering population.

  18. Cross-frequency synchronization connects networks of fast and slow oscillations during visual working memory maintenance

    Science.gov (United States)

    Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu

    2016-01-01

    Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha–gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions. DOI: http://dx.doi.org/10.7554/eLife.13451.001 PMID:27669146

  19. Cluster synchronization in networks of identical oscillators with α -function pulse coupling

    Science.gov (United States)

    Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato

    2017-02-01

    We study a network of N identical leaky integrate-and-fire model neurons coupled by α -function pulses, weighted by a coupling parameter K . Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K , i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N -1 ,1 ) states, which have synchronized clusters of sizes N -1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K =0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N =2 -4 . The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014), 10.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N -1 ,1 ) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ -neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.

  20. Climbing fiber burst size and olivary sub-threshold oscillations in a network setting.

    Directory of Open Access Journals (Sweden)

    Jornt R De Gruijl

    Full Text Available The inferior olivary nucleus provides one of the two main inputs to the cerebellum: the so-called climbing fibers. Activation of climbing fibers is generally believed to be related to timing of motor commands and/or motor learning. Climbing fiber spikes lead to large all-or-none action potentials in cerebellar Purkinje cells, overriding any other ongoing activity and silencing these cells for a brief period of time afterwards. Empirical evidence shows that the climbing fiber can transmit a short burst of spikes as a result of an olivary cell somatic spike, potentially increasing the information being transferred to the cerebellum per climbing fiber activation. Previously reported results from in vitro studies suggested that the information encoded in the climbing fiber burst is related to the occurrence of the spike relative to the ongoing sub-threshold membrane potential oscillation of the olivary cell, i.e. that the phase of the oscillation is reflected in the size of the climbing fiber burst. We used a detailed three-compartmental model of an inferior olivary cell to further investigate the possible factors determining the size of the climbing fiber burst. Our findings suggest that the phase-dependency of the burst size is present but limited and that charge flow between soma and dendrite is a major determinant of the climbing fiber burst. From our findings it follows that phenomena such as cell ensemble synchrony can have a big effect on the climbing fiber burst size through dendrodendritic gap-junctional coupling between olivary cells.

  1. Two distinct olfactory bulb sublaminar networks involved in gamma and beta oscillation generation: a CSD study in the anesthetized rat.

    Directory of Open Access Journals (Sweden)

    Nicolas eFourcaud-Trocmé

    2014-07-01

    Full Text Available A prominent feature of olfactory bulb (OB dynamics is the expression of characteristic local field potential (LFP rhythms, including a slow respiration-related rhythm and two fast alternating oscillatory rhythms, beta (15-30 Hz and gamma (40-90 Hz. All of these rhythms are implicated in olfactory coding. Fast oscillatory rhythms are known to involve the mitral-granule cell loops. Although the underlying mechanisms of gamma oscillation have been studied, the origin of beta oscillation remains poorly understood. Whether these two different rhythms share the same underlying mechanism is unknown. This study uses a quantitative and detailed current-source density analysis combined with multi-unit activity recordings to shed light on this question in freely breathing anesthetized rats. In particular, we show that gamma oscillation generation involves mainly upper half of the external plexiform layer (EPL and superficial areas of granule cell layer. In contrast, the generation of beta oscillation involves the lower part of the EPL and deep granule cells. This differential involvement of sublaminar networks is neither dependent on odor quality nor on the precise frequency of the fast oscillation under study. Overall, this study demonstrates a functional sublaminar organization of the rat OB, which is supported by previous anatomical findings.

  2. Climate network suggests enhanced El Ni\\~no global impacts in localized areas

    CERN Document Server

    Fan, Jingfang; Ashkenazy, Yosef; Havlin, Shlomo

    2016-01-01

    We construct directed and weighted climate networks based on near surface air temperature to investigate the global impacts of El Nino and La Nina. We find that regions which are characterized by higher positive or negative network in weighted links, are exhibiting stronger correlations with the El Nino basin and are warmer or cooler during El Nino or La Nina periods. These stronger in-weighted activities are found to be concentrated in localized areas, as compared to non-El Nino periods, whereas a large fraction of the globe is not influenced by the events. The regions of localized activity vary from one El Nino (La Nina) event to another; still some El Nino (La Nina) events are more similar to each other. We quantify this similarity using network community structure. The results and methodology reported here may be used to improve the understanding and prediction of El Nino or La Nina events and also may be applied in the investigation of other climate variables.

  3. Modeling suggests that gene circuit architecture controls phenotypic variability in a bacterial persistence network.

    Science.gov (United States)

    Koh, Rachel S; Dunlop, Mary J

    2012-05-20

    Bacterial persistence is a non-inherited bet-hedging mechanism where a subpopulation of cells enters a dormant state, allowing those cells to survive environmental stress such as treatment with antibiotics. Persister cells are not mutants; they are formed by natural stochastic variation in gene expression. Understanding how regulatory architecture influences the level of phenotypic variability can help us explain how the frequency of persistence events can be tuned. We present a model of the regulatory network controlling the HipBA toxin-antitoxin system from Escherichia coli. Using a biologically realistic model we first determine that the persistence phenotype is not the result of bistability within the network. Next, we develop a stochastic model and show that cells can enter persistence due to random fluctuations in transcription, translation, degradation, and complex formation. We then examine alternative gene circuit architectures for controlling hipBA expression and show that networks with more noise (more persisters) and less noise (fewer persisters) are straightforward to achieve. Thus, we propose that the gene circuit architecture can be used to tune the frequency of persistence, a trait that can be selected for by evolution. We develop deterministic and stochastic models describing how the regulation of toxin and antitoxin expression influences phenotypic variation within a population. Persistence events are the result of stochastic fluctuations in toxin levels that cross a threshold, and their frequency is controlled by the regulatory topology governing gene expression.

  4. Modeling suggests that gene circuit architecture controls phenotypic variability in a bacterial persistence network

    Directory of Open Access Journals (Sweden)

    Koh Rachel S

    2012-05-01

    Full Text Available Abstract Background Bacterial persistence is a non-inherited bet-hedging mechanism where a subpopulation of cells enters a dormant state, allowing those cells to survive environmental stress such as treatment with antibiotics. Persister cells are not mutants; they are formed by natural stochastic variation in gene expression. Understanding how regulatory architecture influences the level of phenotypic variability can help us explain how the frequency of persistence events can be tuned. Results We present a model of the regulatory network controlling the HipBA toxin-antitoxin system from Escherichia coli. Using a biologically realistic model we first determine that the persistence phenotype is not the result of bistability within the network. Next, we develop a stochastic model and show that cells can enter persistence due to random fluctuations in transcription, translation, degradation, and complex formation. We then examine alternative gene circuit architectures for controlling hipBA expression and show that networks with more noise (more persisters and less noise (fewer persisters are straightforward to achieve. Thus, we propose that the gene circuit architecture can be used to tune the frequency of persistence, a trait that can be selected for by evolution. Conclusions We develop deterministic and stochastic models describing how the regulation of toxin and antitoxin expression influences phenotypic variation within a population. Persistence events are the result of stochastic fluctuations in toxin levels that cross a threshold, and their frequency is controlled by the regulatory topology governing gene expression.

  5. Interictal high frequency oscillations correlating with seizure outcome in patients with widespread epileptic networks in tuberous sclerosis complex.

    Science.gov (United States)

    Okanishi, Tohru; Akiyama, Tomoyuki; Tanaka, Shin-Ichi; Mayo, Ellen; Mitsutake, Ayu; Boelman, Cyrus; Go, Cristina; Snead, O Carter; Drake, James; Rutka, James; Ochi, Ayako; Otsubo, Hiroshi

    2014-10-01

    Multiple tubers in patients with tuberous sclerosis complex (TSC) often are responsible for drug-resistant epilepsy. The complexity of the epileptic network formed by multiple tubers complicates localization of the epileptogenic zone that is needed to design a surgical treatment strategy. High frequency oscillations (HFOs) on intracranial video-electroencephalography (IVEEG) may be a valuable surrogate marker for the localization of the epileptogenic zone. The purpose of this study was to test the hypothesis that high occurrence rate (OR) of interictal HFOs can guide the localization of the epileptogenic zone. We analyzed the OR of interictal HFOs at 80-200 Hz (ripples) and >200 Hz (fast ripples, FRs). We divided OR of interictal HFOs between high and low rates by thresholding. We analyzed the correlation between seizure outcomes using Engel classification and the resection ratio of the seizure onset zone (SOZ), and high-OR HFOs using ordinal logistic regression analysis. We collected 10 patients. The seizure outcomes resulted in Engel classification I in three patients, II in four, III in one, and IV in two. High-OR ripples (5-57 [mean 29] channels, 1-4 [2.8] lobes) and high-OR FRs (9-66 [mean 27] channels, 1-4 [2.6] lobes) were widely distributed. The resection ratio of SOZ did not show statistically significant correlation with the seizure outcome. The resection ratio of high-OR ripples showed statistically significant correlation with the seizure outcome (p = 0.038). The resection ratio of high-OR FRs showed statistically significant correlation with the seizure outcome (p = 0.048). The multiple extensive zones with high-OR HFOs suggest a complex and widespread epileptic network in patients with TSC. In a subset of TSC patients with drug-resistant epilepsy, resection of cortex with both interictal high-OR FRs and ripples on IVEEG correlated with a good seizure outcome. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  6. Macroscopic self-oscillations and aging transition in a network of synaptically coupled quadratic integrate-and-fire neurons.

    Science.gov (United States)

    Ratas, Irmantas; Pyragas, Kestutis

    2016-09-01

    We analyze the dynamics of a large network of coupled quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The network is heterogeneous in that it includes both inherently spiking and excitable neurons. The coupling is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron's firing rate and the mean membrane potential, which are exact in the infinite-size limit. The bifurcation analysis of the reduced equations reveals a rich scenario of asymptotic behavior, the most interesting of which is the macroscopic limit-cycle oscillations. It is shown that the finite width of synaptic pulses is a necessary condition for the existence of such oscillations. The robustness of the oscillations against aging damage, which transforms spiking neurons into nonspiking neurons, is analyzed. The validity of the reduced equations is confirmed by comparing their solutions with the solutions of microscopic equations for the finite-size networks.

  7. Local Optogenetic Induction of Fast (20-40 Hz Pyramidal-Interneuron Network Oscillations in the In Vitro and In Vivo CA1 Hippocampus: Modulation by CRF and Enforcement of Perirhinal Theta Activity

    Directory of Open Access Journals (Sweden)

    Julien eDine

    2016-04-01

    Full Text Available The neurophysiological processes that can cause theta-to-gamma frequency range (4-80 Hz network oscillations in the rhinal cortical-hippocampal system and the potential connectivity-based interactions of such forebrain rhythms are a topic of intensive investigation. Here, using selective Channelrhodopsin-2 (ChR2 expression in mouse forebrain glutamatergic cells, we were able to locally, temporally precisely, and reliably induce fast (20-40 Hz field potential oscillations in hippocampal area CA1 in vitro (at 25°C and in vivo (i.e., slightly anaesthetized NEX-Cre-ChR2 mice. As revealed by pharmacological analyses and patch-clamp recordings from pyramidal cells and GABAergic interneurons in vitro, these light-triggered oscillations can exclusively arise from sustained suprathreshold depolarization (~200 ms or longer and feedback inhibition of CA1 pyramidal neurons, as being mandatory for prototypic pyramidal-interneuron network (P-I oscillations. Consistently, the oscillations comprised rhythmically occurring population spikes (generated by pyramidal cells and their frequency increased with increasing spectral power. We further demonstrate that the optogenetically driven CA1 oscillations, which remain stable over repeated evocations, are impaired by the stress hormone corticotropin-releasing factor (CRF, 125 nM in vitro and, even more remarkably, found that they are accompanied by concurrent states of enforced theta activity in the memory-associated perirhinal cortex (PrC in vivo. The latter phenomenon most likely derives from neurotransmission via a known, but poorly studied excitatory CA1PrC pathway. Collectively, our data provide evidence for the existence of a prototypic (CRF-sensitive P-I gamma rhythm generator in area CA1 and suggest that CA1 P-I oscillations can rapidly up-regulate theta activity strength in hippocampus-innervated rhinal networks, at least in the PrC.

  8. Suggestions for planning a migration-monitoring network based on the experience of establishing and operating the maps program

    Science.gov (United States)

    David F. DeSante

    2005-01-01

    Based on the experience of creating and implementing the Monitoring Avian Productivity and Survivorship (MAPS) program, I suggest that, to be successful, a migration-monitoring network must: (1) provide strong justification for the data it proposes to collect; (2) provide direct links between those monitoring data and both research and management goals; (3) provide...

  9. Does the social capital in networks of “fish and fire” scientists and managers suggest learning?

    Science.gov (United States)

    A. Paige Fischer; Ken Vance-Borland; Kelly M. Burnett; Susan Hummel; Janean H. Creighton; Sherri L. Johnson; Lorien. Jasny

    2014-01-01

    Patterns of social interaction influence how knowledge is generated, communicated, and applied. Theories of social capital and organizational learning suggest that interactions within disciplinary or functional groups foster communication of knowledge, whereas interactions across groups foster generation of new knowledge. We used social network analysis to examine...

  10. Active tension network model suggests an exotic mechanical state realized in epithelial tissues

    Science.gov (United States)

    Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streichan, Sebastian J.; Shraiman, Boris I.

    2017-12-01

    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behaviour remains an open problem. Here we formulate and analyse the active tension network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodelling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal--`isogonal'--deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit fly embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena.

  11. Global Asthma Network survey suggests more national asthma strategies could reduce burden of asthma.

    Science.gov (United States)

    Asher, I; Haahtela, T; Selroos, O; Ellwood, P; Ellwood, E

    Several countries or regions within countries have an effective national asthma strategy resulting in a reduction of the large burden of asthma to individuals and society. There has been no systematic appraisal of the extent of national asthma strategies in the world. The Global Asthma Network (GAN) undertook an email survey of 276 Principal Investigators of GAN centres in 120 countries, in 2013-2014. One of the questions was: "Has a national asthma strategy been developed in your country for the next five years? For children? For adults?". Investigators in 112 (93.3%) countries answered this question. Of these, 26 (23.2%) reported having a national asthma strategy for children and 24 (21.4%) for adults; 22 (19.6%) countries had a strategy for both children and adults; 28 (25%) had a strategy for at least one age group. In countries with a high prevalence of current wheeze, strategies were significantly more common than in low prevalence countries (11/13 (85%) and 7/31 (22.6%) respectively, pasthma strategy was reported. A large reduction in the global burden of asthma could be potentially achieved if more countries had an effective asthma strategy. Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  12. Fronto-parietal network oscillations reveal relationship between working memory capacity and cognitive control

    Directory of Open Access Journals (Sweden)

    Rasa eGulbinaite

    2014-09-01

    Full Text Available Executive-attention theory proposes a close relationship between working memory capacity (WMC and cognitive control abilities. However, conflicting results are documented in the literature, with some studies reporting that individual variations in WMC predict differences in cognitive control and trial-to-trial control adjustments (operationalized as the size of the congruency effect and congruency sequence effects, respectively, while others report no WMC-related differences. We hypothesized that brain network dynamics might be a more sensitive measure of WMC-related differences in cognitive control abilities. Thus, in the present study, we measured human EEG during the Simon task to characterize WMC-related differences in the neural dynamics of conflict processing and adaptation to conflict. Although high- and low-WMC individuals did not differ behaviorally, there were substantial WMC-related differences in theta (4-8 Hz and delta (1-3 Hz connectivity in fronto-parietal networks. Group differences in local theta and delta power were relatively less pronounced. These results suggest that the relationship between WMC and cognitive control abilities is more strongly reflected in large-scale oscillatory network dynamics than in spatially localized activity or in behavioral task performance.

  13. Fronto-parietal network oscillations reveal relationship between working memory capacity and cognitive control.

    Science.gov (United States)

    Gulbinaite, Rasa; van Rijn, Hedderik; Cohen, Michael X

    2014-01-01

    Executive-attention theory proposes a close relationship between working memory capacity (WMC) and cognitive control abilities. However, conflicting results are documented in the literature, with some studies reporting that individual variations in WMC predict differences in cognitive control and trial-to-trial control adjustments (operationalized as the size of the congruency effect and congruency sequence effects, respectively), while others report no WMC-related differences. We hypothesized that brain network dynamics might be a more sensitive measure of WMC-related differences in cognitive control abilities. Thus, in the present study, we measured human EEG during the Simon task to characterize WMC-related differences in the neural dynamics of conflict processing and adaptation to conflict. Although high- and low-WMC individuals did not differ behaviorally, there were substantial WMC-related differences in theta (4-8 Hz) and delta (1-3 Hz) connectivity in fronto-parietal networks. Group differences in local theta and delta power were relatively less pronounced. These results suggest that the relationship between WMC and cognitive control abilities is more strongly reflected in large-scale oscillatory network dynamics than in spatially localized activity or in behavioral task performance.

  14. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    Science.gov (United States)

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico; Jovicich, Jorge

    2015-03-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  15. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it [Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy); Center for Mind/Brain Sciences, University of Trento, Trento (Italy); Chiesa, Pietro; Tabarelli, Davide; Jovicich, Jorge [Center for Mind/Brain Sciences, University of Trento, Trento (Italy); D' Incerti, Ludovico [Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2015-03-15

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  16. Travelling Wave Pulse Coupled Oscillator (TWPCO) Using a Self-Organizing Scheme for Energy-Efficient Wireless Sensor Networks

    Science.gov (United States)

    Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs. PMID:28056020

  17. Travelling Wave Pulse Coupled Oscillator (TWPCO Using a Self-Organizing Scheme for Energy-Efficient Wireless Sensor Networks.

    Directory of Open Access Journals (Sweden)

    Zeyad Ghaleb Al-Mekhlafi

    Full Text Available Recently, Pulse Coupled Oscillator (PCO-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness, the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO. For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.

  18. Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Goutagny, Romain; Gu, Ning; Cavanagh, Chelsea; Jackson, Jesse; Chabot, Jean-Guy; Quirion, Rémi; Krantic, Slavica; Williams, Sylvain

    2013-06-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by memory impairments. Brain oscillatory activity is critical for cognitive function and is altered in AD patients. Recent evidence suggests that accumulation of soluble amyloid-beta (Aβ) induces reorganization of hippocampal networks. However, whether fine changes in network activity might be present at very early stages, before Aβ overproduction, remains to be determined. We therefore assessed whether theta and gamma oscillations and their cross-frequency coupling, which are known to be essential for normal memory function, were precociously altered in the hippocampus. Electrophysiological field potential recordings were performed using complete hippocampal preparations in vitro from young transgenic CRND8 mice, a transgenic mouse model of AD. Our results indicate that a significant proportion of 1-month-old TgCRND8 mice showed robust alterations of theta-gamma cross-frequency coupling in the principal output region of the hippocampus, the subiculum. In addition we showed that, compared to controls, these mice expressed negligible levels of Aβ. Finally, these network alterations were not due to genetic factors as 15-day-old animals did not exhibit theta-gamma coupling alterations. Thus, initial alterations in hippocampal network activity arise before Aβ accumulation and may represent an early biomarker for AD. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. SYNCHRONIZATION IN NETWORKS OF COUPLED HARMONIC OSCILLATORS WITH STOCHASTIC PERTURBATION AND TIME DELAYS

    Directory of Open Access Journals (Sweden)

    Yilun Shang

    2012-07-01

    Full Text Available In this paper, we investigate the leader-follower synchronization ofcoupled second-order linear harmonic oscillators with the presence ofrandom noises and time delays. The interaction topology is modeledby a weighted directed graph and the weights are perturbed by whitenoise. On the basis of stability theory of stochastic differential delayequations, algebraic graph theory and matrix theory, we show that thecoupled harmonic oscillators can be synchronized almost surely withrandom perturbation and time delays. Numerical examples are presentedto illustrate our theoretical results.

  20. Emergence of slow collective oscillations in neural networks with spike-timing dependent plasticity

    DEFF Research Database (Denmark)

    Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro

    2013-01-01

    The collective dynamics of excitatory pulse coupled neurons with spike timing dependent plasticity (STDP) is studied. The introduction of STDP induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain...

  1. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks

    DEFF Research Database (Denmark)

    Garrido, Jesús A.; Luque, Niceto R.; Tolu, Silvia

    2016-01-01

    The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly...... understood. Here, we have used a simple model of afferent excitatory neurons and interneurons with lateral inhibition, reproducing a network topology found in many brain areas from the cerebellum to cortical columns. When endowed with spike-timing dependent plasticity (STDP) at the excitatory input synapses...... and at the inhibitory interneuron-interneuron synapses, the interneurons rapidly learned complex input patterns. Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity...

  2. Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration.

    Directory of Open Access Journals (Sweden)

    David J Margolis

    Full Text Available Following photoreceptor degeneration, ON and OFF retinal ganglion cells (RGCs in the rd-1/rd-1 mouse receive rhythmic synaptic input that elicits bursts of action potentials at ∼ 10 Hz. To characterize the properties of this activity, RGCs were targeted for paired recording and morphological classification as either ON alpha, OFF alpha or non-alpha RGCs using two-photon imaging. Identified cell types exhibited rhythmic spike activity. Cross-correlation of spike trains recorded simultaneously from pairs of RGCs revealed that activity was correlated more strongly between alpha RGCs than between alpha and non-alpha cell pairs. Bursts of action potentials in alpha RGC pairs of the same type, i.e. two ON or two OFF cells, were in phase, while bursts in dissimilar alpha cell types, i.e. an ON and an OFF RGC, were 180 degrees out of phase. This result is consistent with RGC activity being driven by an input that provides correlated excitation to ON cells and inhibition to OFF cells. A2 amacrine cells were investigated as a candidate cellular mechanism and found to display 10 Hz oscillations in membrane voltage and current that persisted in the presence of antagonists of fast synaptic transmission and were eliminated by tetrodotoxin. Results support the conclusion that the rhythmic RGC activity originates in a presynaptic network of electrically coupled cells including A2s via a Na(+-channel dependent mechanism. Network activity drives out of phase oscillations in ON and OFF cone bipolar cells, entraining similar frequency fluctuations in RGC spike activity over an area of retina that migrates with changes in the spatial locus of the cellular oscillator.

  3. Transient synchronization of hippocampo-striato-thalamo-cortical networks during sleep spindle oscillations induces motor memory consolidation.

    Science.gov (United States)

    Boutin, Arnaud; Pinsard, Basile; Boré, Arnaud; Carrier, Julie; Fogel, Stuart M; Doyon, Julien

    2017-12-24

    Sleep benefits motor memory consolidation. This mnemonic process is thought to be mediated by thalamo-cortical spindle activity during NREM-stage2 sleep episodes as well as changes in striatal and hippocampal activity. However, direct experimental evidence supporting the contribution of such sleep-dependent physiological mechanisms to motor memory consolidation in humans is lacking. In the present study, we combined EEG and fMRI sleep recordings following practice of a motor sequence learning (MSL) task to determine whether spindle oscillations support sleep-dependent motor memory consolidation by transiently synchronizing and coordinating specialized cortical and subcortical networks. To that end, we conducted EEG source reconstruction on spindle epochs in both cortical and subcortical regions using novel deep-source localization techniques. Coherence-based metrics were adopted to estimate functional connectivity between cortical and subcortical structures over specific frequency bands. Our findings not only confirm the critical and functional role of NREM-stage2 sleep spindles in motor skill consolidation, but provide first-time evidence that spindle oscillations [11-17 Hz] may be involved in sleep-dependent motor memory consolidation by locally reactivating and functionally binding specific task-relevant cortical and subcortical regions within networks including the hippocampus, putamen, thalamus and motor-related cortical regions. Copyright © 2017. Published by Elsevier Inc.

  4. Chemical communication and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-oscillators produced by microfluidics.

    Science.gov (United States)

    Torbensen, Kristian; Rossi, Federico; Ristori, Sandra; Abou-Hassan, Ali

    2017-03-29

    Chemical communication leading to synchronization and collective behaviour of dynamic elements, such as cell colonies, is a widespread phenomenon with biological, physical and chemical importance. Such synchronization between elements proceeds via chemical communication by emmision, interdiffusion and reception of specific messenger molecules. On a lab scale, these phenomena can be modeled by encapsulating an oscillating chemical reaction, which serves as a signal (information) sender/receiver element, inside microcompartments such as droplet emulsions, liposomes and polymersomes. Droplets can thus be regarded as single units, able to generate chemical messengers that diffuse in the environment and hence can interact with other compartments. The Belousov-Zhabotinsky (BZ) reaction is a well-known chemical oscillator largely used as a model for complex nonlinear phenomena, including chemical, physical and biological examples. When the BZ-reaction is encapsulated inside microcompartments, its chemical intermediates can serve as messengers by diffusing among different microcompartments, to trigger specific reactions leading to a collective behavior between the elements. The geometry and constitution of the diffusion pathways play an important role in governing the collective behaviour of the system. In this context, microfluidics is not only a versatile tool for mastering the encapsulation process of the BZ-reaction in monodisperse microcompartments, but also for creating geometries and networks with well defined boundaries. The individual compartments can be engineered with selected properties using different surfactants in the case of simple emulsions, or with specific membrane properties in the case of liposomes. Furthermore, it enables the arrangement of these microcompartments in various geometric configurations, where the diffusive coupling pathways between individual compartments are both spatially and chemically well-defined. In this tutorial paper, we review a

  5. Alterations in resting state oscillations and connectivity in sensory and motor networks in women with interstitial cystitis/painful bladder syndrome.

    Science.gov (United States)

    Kilpatrick, Lisa A; Kutch, Jason J; Tillisch, Kirsten; Naliboff, Bruce D; Labus, Jennifer S; Jiang, Zhiguo; Farmer, Melissa A; Apkarian, A Vania; Mackey, Sean; Martucci, Katherine T; Clauw, Daniel J; Harris, Richard E; Deutsch, Georg; Ness, Timothy J; Yang, Claire C; Maravilla, Kenneth; Mullins, Chris; Mayer, Emeran A

    2014-09-01

    The pathophysiology of interstitial cystitis/painful bladder syndrome remains incompletely understood but is thought to involve central disturbance in the processing of pain and viscerosensory signals. We identified differences in brain activity and connectivity between female patients with interstitial cystitis/painful bladder syndrome and healthy controls to advance clinical phenotyping and treatment efforts for interstitial cystitis/painful bladder syndrome. We examined oscillation dynamics of intrinsic brain activity in a large sample of well phenotyped female patients with interstitial cystitis/painful bladder syndrome and female healthy controls. Data were collected during 10-minute resting functional magnetic resonance imaging as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain Research Network project. The blood oxygen level dependent signal was transformed to the frequency domain. Relative power was calculated for multiple frequency bands. Results demonstrated altered frequency distributions in viscerosensory (post insula), somatosensory (postcentral gyrus) and motor regions (anterior paracentral lobule, and medial and ventral supplementary motor areas) in patients with interstitial cystitis/painful bladder syndrome. Also, the anterior paracentral lobule, and medial and ventral supplementary motor areas showed increased functional connectivity to the midbrain (red nucleus) and cerebellum. This increased functional connectivity was greatest in patients who reported pain during bladder filling. Findings suggest that women with interstitial cystitis/painful bladder syndrome have a sensorimotor component to the pathological condition involving an alteration in intrinsic oscillations and connectivity in a cortico-cerebellar network previously associated with bladder function. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy

    Directory of Open Access Journals (Sweden)

    W.J.E.M. Zweiphenning

    2016-01-01

    Significance: ‘Baseline’ high-frequency network parameters might help intra-operative recognition of epileptogenic tissue without the need for waiting for events. These findings can increase our understanding of the ‘architecture’ of epileptogenic networks and help unravel the pathophysiology of HFOs.

  7. Multistable Attractors in a Network of Phase Oscillators with Three-Body Interactions

    Science.gov (United States)

    Tanaka, Takuma; Aoyagi, Toshio

    2011-06-01

    Three-body interactions have been found in physics, biology, and sociology. To investigate their effect on dynamical systems, as a first step, we study numerically and theoretically a system of phase oscillators with a three-body interaction. As a result, an infinite number of multistable synchronized states appear above a critical coupling strength, while a stable incoherent state always exists for any coupling strength. Owing to the infinite multistability, the degree of synchrony in an asymptotic state can vary continuously within some range depending on the initial phase pattern.

  8. The Influence of the A-Current on the Dynamics of an Oscillator-Follower Inhibitory Network

    Science.gov (United States)

    Zhang, Yu; Bose, Amitabha; Nadim, Farzan

    2009-01-01

    The transient potassium A-current is present in almost all neurons and plays an essential role in determining the timing and frequency of action potential generation. We use a three-variable mathematical model to examine the role of the A-current in a rhythmic inhibitory network, as is common in central pattern generation. We focus on a feed-forward architecture consisting of an oscillator neuron inhibiting a follower neuron. We use separation of time scales to demonstrate that the trajectory of the follower neuron within each cycle can be tracked by analyzing the dynamics on a two-dimensional slow manifold that is determined by the two slow model variables: the recovery variable and the inactivation of the A-current. The steady-state trajectory, however, requires tracking the slow variables across multiple cycles. We show that tracking the slow variables, under simplifying assumptions, leads to a one-dimensional map of the unit interval with at most a single discontinuity depending on g_A, the maximal conductance of the A-current, or other model parameters. We demonstrate that, as the value of g_A is varied, the trajectory of the follower neuron goes through a set of bifurcations to produce n:m periodic solutions, where the follower neuron becomes active m times for each n cycles of the oscillator. Using a generalized Pascal triangle, each n:m trajectory can be constructed as a combination of solutions from a higher level of the triangle.

  9. Uncertainty encountered when modelling self-excited thermoacoustic oscillations with artificial neural networks

    National Research Council Canada - National Science Library

    Jaensch, Stefan; Polifke, Wolfgang

    2017-01-01

    .... This article investigates the capability of artificial neural networks to serve as a basis for deducing nonlinear low-order models of the dynamics of a laminar flame from a Computational Fluid Dynamics (CFD) simulation...

  10. The CAN-In network: A biologically inspired model for self-sustained theta oscillations and memory maintenance in the hippocampus.

    Science.gov (United States)

    Giovannini, Francesco; Knauer, Beate; Yoshida, Motoharu; Buhry, Laure

    2017-04-01

    During working memory tasks, the hippocampus exhibits synchronous theta-band activity, which is thought to be correlated with the short-term memory maintenance of salient stimuli. Recent studies indicate that the hippocampus contains the necessary circuitry allowing it to generate and sustain theta oscillations without the need of extrinsic drive. However, the cellular and network mechanisms supporting synchronous rhythmic activity are far from being fully understood. Based on electrophysiological recordings from hippocampal pyramidal CA1 cells, we present a possible mechanism for the maintenance of such rhythmic theta-band activity in the isolated hippocampus. Our model network, based on the Hodgkin-Huxley formalism, comprising pyramidal neurons equipped with calcium-activated nonspecific cationic (CAN) ion channels, is able to generate and sustain synchronized theta oscillations (4-12 Hz), following a transient stimulation. The synchronous network activity is maintained by an intrinsic CAN current (I CAN ), in the absence of constant external input. When connecting the pyramidal-CAN network to fast-spiking inhibitory interneurons, the dynamics of the model reveal that feedback inhibition improves the robustness of fast theta oscillations, by tightening the synchronization of the pyramidal CAN neurons. The frequency and power of the theta oscillations are both modulated by the intensity of the I CAN , which allows for a wide range of oscillation rates within the theta band. This biologically plausible mechanism for the maintenance of synchronous theta oscillations in the hippocampus aims at extending the traditional models of septum-driven hippocampal rhythmic activity. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. A Novel Fault Line Selection Method Based on Improved Oscillator System of Power Distribution Network

    Directory of Open Access Journals (Sweden)

    Xiaowei Wang

    2014-01-01

    Full Text Available A novel method of fault line selection based on IOS is presented. Firstly, the IOS is established by using math model, which adopted TZSC signal to replace built-in signal of duffing chaotic oscillator by selecting appropriate parameters. Then, each line’s TZSC decomposed by db10 wavelet packet to get CFB with the maximum energy principle, and CFB was solved by IOS. Finally, maximum chaotic distance and average chaotic distance on the phase trajectory are used to judge fault line. Simulation results show that the proposed method can accurately judge fault line and healthy line in strong noisy background. Besides, the nondetection zones of proposed method are elaborated.

  12. Political structure, political-clientelist networks and electoral oscillations in Mexico City

    Directory of Open Access Journals (Sweden)

    Héctor Tejera

    2017-07-01

    Full Text Available The supremacy of the prd as the ruling party in Mexico City has led the consolidation of a po­litical elite associated to different party factions. This elite supports its influence in a political structure of control, based in patronage networks. Linking participant observation and in-depth interviews, analysis of georeferenced clusters of electoral behavior, and comparison between case studies, the article shows the effects of the action of these networks in the electoral field; dem­onstrating all the above by studying the electoral conflicts in two political delegations in the aforementioned city.

  13. Design of coupling parameters for inducing amplitude death in Cartesian product networks of delayed coupled oscillators

    Science.gov (United States)

    Sugitani, Yoshiki; Konishi, Keiji

    2017-10-01

    The present study investigates amplitude death in Cartesian product networks of two subnetworks, where each subnetwork has a different coupling delay. The property of the Cartesian product helps us to analyze the stability of amplitude death. Our analysis reveals that amplitude death can occur for long coupling delays if there is a suitable difference in the coupling delays in the two subnetworks. Furthermore, based on the edge theorem in robust control theory, we propose two design procedures of coupling parameters for inducing amplitude death in the Cartesian product networks. Our procedures do not require any information of topologies of the subnetworks. The validity of these procedures is numerically confirmed.

  14. Decoding Network Structure in On-Chip Integrated Flow Cells with Synchronization of Electrochemical Oscillators.

    Science.gov (United States)

    Jia, Yanxin; Kiss, István Z

    2017-04-07

    The analysis of network interactions among dynamical units and the impact of the coupling on self-organized structures is a challenging task with implications in many biological and engineered systems. We explore the coupling topology that arises through the potential drops in a flow channel in a lab-on-chip device that accommodates chemical reactions on electrode arrays. The networks are revealed by analysis of the synchronization patterns with the use of an oscillatory chemical reaction (nickel electrodissolution) and are further confirmed by direct decoding using phase model analysis. In dual electrode configuration, a variety coupling schemes, (uni- or bidirectional positive or negative) were identified depending on the relative placement of the reference and counter electrodes (e.g., placed at the same or the opposite ends of the flow channel). With three electrodes, the network consists of a superposition of a localized (upstream) and global (all-to-all) coupling. With six electrodes, the unique, position dependent coupling topology resulted spatially organized partial synchronization such that there was a synchrony gradient along the quasi-one-dimensional spatial coordinate. The networked, electrode potential (current) spike generating electrochemical reactions hold potential for construction of an in-situ information processing unit to be used in electrochemical devices in sensors and batteries.

  15. Decoding Network Structure in On-Chip Integrated Flow Cells with Synchronization of Electrochemical Oscillators

    Science.gov (United States)

    Jia, Yanxin; Kiss, István Z.

    2017-04-01

    The analysis of network interactions among dynamical units and the impact of the coupling on self-organized structures is a challenging task with implications in many biological and engineered systems. We explore the coupling topology that arises through the potential drops in a flow channel in a lab-on-chip device that accommodates chemical reactions on electrode arrays. The networks are revealed by analysis of the synchronization patterns with the use of an oscillatory chemical reaction (nickel electrodissolution) and are further confirmed by direct decoding using phase model analysis. In dual electrode configuration, a variety coupling schemes, (uni- or bidirectional positive or negative) were identified depending on the relative placement of the reference and counter electrodes (e.g., placed at the same or the opposite ends of the flow channel). With three electrodes, the network consists of a superposition of a localized (upstream) and global (all-to-all) coupling. With six electrodes, the unique, position dependent coupling topology resulted spatially organized partial synchronization such that there was a synchrony gradient along the quasi-one-dimensional spatial coordinate. The networked, electrode potential (current) spike generating electrochemical reactions hold potential for construction of an in-situ information processing unit to be used in electrochemical devices in sensors and batteries.

  16. The binding problem in population neurodynamics: a network model for stimulus-specific coherent oscillations.

    Science.gov (United States)

    Pavlásek, J

    1998-12-01

    A hypothesis is presented that coherent oscillatory discharges of spatially distributed neuronal groups (the supposed binding mechanism) are the result of the convergence of stimulus-dependent activity in modality-specific afferent pathways with oscillatory activity generated in unspecific sensory systems. This view is supported by simulation experiments on model networks.

  17. Modeling spike-wave discharges by a complex network of neuronal oscillators

    NARCIS (Netherlands)

    Medvedeva, T.M.; Sysoeva, M.V.; Luijtelaar, E.L.J.M. van; Sysoev, I.V.

    2018-01-01

    Purpose: The organization of neural networks and the mechanisms, which generate the highly stereotypical for absence epilepsy spike-wave discharges (SWDs) is heavily debated. Here we describe such a model which can both reproduce the characteristics of SWDs and dynamics of coupling between brain

  18. Between giant oscillations and uniform distribution of droplets: The role of varying lumen of channels in microfluidic networks.

    Science.gov (United States)

    Cybulski, Olgierd; Jakiela, Slawomir; Garstecki, Piotr

    2015-12-01

    The simplest microfluidic network (a loop) comprises two parallel channels with a common inlet and a common outlet. Recent studies that assumed a constant cross section of the channels along their length have shown that the sequence of droplets entering the left (L) or right (R) arm of the loop can present either a uniform distribution of choices (e.g., RLRLRL...) or long sequences of repeated choices (RRR...LLL), with all the intermediate permutations being dynamically equivalent and virtually equally probable to be observed. We use experiments and computer simulations to show that even small variation of the cross section along channels completely shifts the dynamics either into the strong preference for highly grouped patterns (RRR...LLL) that generate system-size oscillations in flow or just the opposite-to patterns that distribute the droplets homogeneously between the arms of the loop. We also show the importance of noise in the process of self-organization of the spatiotemporal patterns of droplets. Our results provide guidelines for rational design of systems that reproducibly produce either grouped or homogeneous sequences of droplets flowing in microfluidic networks.

  19. 10  GHz clock time-multiplexed degenerate optical parametric oscillators for a photonic Ising spin network.

    Science.gov (United States)

    Takesue, Hiroki; Inagaki, Takahiro

    2016-09-15

    A coherent Ising machine based on degenerate optical parametric oscillators (DOPOs) is drawing attention as a way to find a solution to the ground-state search problem of the Ising model. Here we report the generation of time-multiplexed DOPOs at a 10 GHz clock frequency. We successfully generated >50,000 DOPOs using dual-pump four-wave mixing in a highly nonlinear fiber that formed a 1 km cavity, and observed phase bifurcation of the DOPOs, which suggests that the DOPOs can be used as stable artificial spins. In addition, we demonstrated the generation of more than 1 million DOPOs by extending the cavity length to 21 km. We also confirmed that the binary numbers obtained from the DOPO phase-difference measurement passed the NIST random number test, which suggests that we can obtain unbiased artificial spins.

  20. Partially unstable attractors in networks of forced integrate-and-fire oscillators

    OpenAIRE

    Zou, Hai-Lin; Deng, Zi-Chen; Hu, Wei-Peng; Aihara, Kazuyuki; Lai, Ying-Cheng

    2017-01-01

    The asymptotic attractors of a nonlinear dynamical system play a key role in the long-term physically observable behaviors of the system. The study of attractors and the search for distinct types of attractor have been a central task in nonlinear dynamics. In smooth dynamical systems, an attractor is often enclosed completely in its basin of attraction with a finite distance from the basin boundary. Recent works have uncovered that, in neuronal networks, unstable attractors with a remote basi...

  1. Topographic movie of intracranial ictal high-frequency oscillations with seizure semiology: epileptic network in Jacksonian seizures.

    Science.gov (United States)

    Akiyama, Tomoyuki; Chan, Derrick W; Go, Cristina Y; Ochi, Ayako; Elliott, Irene M; Donner, Elizabeth J; Weiss, Shelly K; Snead, O Carter; Rutka, James T; Drake, James M; Otsubo, Hiroshi

    2011-01-01

    We developed a technique to produce images of dynamic changes in ictal high-frequency oscillations (HFOs) >40 Hz recorded on subdural electroencephalography (EEG) that are time-locked to the ictal EEG and ictal semiology video. We applied this technique to Jacksonian seizures to demonstrate ictal HFO propagation along the homunculus in the primary sensory-motor cortex to visualize the underlying epileptic network. We analyzed intracranial ictal EEGs from two patients with intractable Jacksonian seizures who underwent epilepsy surgery. We calculated the degrees of increase in amplitude within 40-80, 80-200, and 200-300 Hz frequency bands compared to the interictal period and converted them into topographic movies projected onto the brain surface picture. We combined these data with the ictal EEGs and video of the patient demonstrating ictal semiology. The ictal HFOs began in the sensory cortex and appeared concomitantly with the sensory aura. They then propagated to the motor cortex at the same time that focal motor symptoms evolved. As the seizure progressed, the ictal HFOs spread or reverberated in the rolandic region. However, even when the seizure became secondarily generalized, the ictal HFOs were confined to the rolandic region. In both cases, there was increased amplitude of higher frequency bands during seizure initiation compared to seizure progression. This combined movie showed the ictal HFO propagation corresponding to the ictal semiology in Jacksonian seizures and revealed the epileptic network involved in seizure initiation and progression. This method may advance understanding of neural network activities relating to clinical seizure generation and propagation. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  2. Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations

    Directory of Open Access Journals (Sweden)

    Katie A Ferguson

    2015-08-01

    Full Text Available Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens--lacunosum-moleculare (OLM interneurons and bistratified cells (BiCs, make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+ basket and axo-axonic cells (BC/AACs, PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored a number of OLM-BiC connections and connection strengths.We found that our models operate in regimes in which OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the power of network theta oscillations. Our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta

  3. Stabilization of a Network of the FitzHugh–Nagumo Oscillators by Means of a Single Capacitor Based RC Filter Feedback Technique

    Directory of Open Access Journals (Sweden)

    Elena Adomaitienė

    2017-01-01

    Full Text Available We suggest employing the first-order stable RC filters, based on a single capacitor, for control of unstable fixed points in an array of oscillators. A single capacitor is sufficient to stabilize an entire array, if the oscillators are coupled strongly enough. An array, composed of 24 to 30 mean-field coupled FitzHugh–Nagumo (FHN type asymmetric oscillators, is considered as a case study. The investigation has been performed using analytical, numerical, and experimental methods. The analytical study is based on the mean-field approach, characteristic equation for finding the eigenvalue spectrum, and the Routh–Hurwitz stability criteria using low-rank Hurwitz matrix to calculate the threshold value of the coupling coefficient. Experiments have been performed with a hardware electronic analog, imitating dynamical behavior of an array of the FHN oscillators.

  4. Gene Interaction Network Suggests Dioxin Induces a Significant Linkage between Aryl Hydrocarbon Receptor and Retinoic Acid Receptor Beta

    Science.gov (United States)

    Toyoshiba, Hiroyoshi; Yamanaka, Takeharu; Sone, Hideko; Parham, Frederick M.; Walker, Nigel J.; Martinez, Jeanelle; Portier, Christopher J.

    2004-01-01

    Gene expression arrays (gene chips) have enabled researchers to roughly quantify the level of mRNA expression for a large number of genes in a single sample. Several methods have been developed for the analysis of gene array data including clustering, outlier detection, and correlation studies. Most of these analyses are aimed at a qualitative identification of what is different between two samples and/or the relationship between two genes. We propose a quantitative, statistically sound methodology for the analysis of gene regulatory networks using gene expression data sets. The method is based on Bayesian networks for direct quantification of gene expression networks. Using the gene expression changes in HPL1A lung airway epithelial cells after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin at levels of 0.1, 1.0, and 10.0 nM for 24 hr, a gene expression network was hypothesized and analyzed. The method clearly demonstrates support for the assumed network and the hypothesis linking the usual dioxin expression changes to the retinoic acid receptor system. Simulation studies demonstrated the method works well, even for small samples. PMID:15345368

  5. SNAP-25b-deficiency increases insulin secretion and changes spatiotemporal profile of Ca2+oscillations in β cell networks.

    Science.gov (United States)

    Daraio, Teresa; Bombek, Lidija Križančić; Gosak, Marko; Valladolid-Acebes, Ismael; Klemen, Maša Skelin; Refai, Essam; Berggren, Per-Olof; Brismar, Kerstin; Rupnik, Marjan Slak; Bark, Christina

    2017-08-10

    SNAP-25 is a protein of the core SNARE complex mediating stimulus-dependent release of insulin from pancreatic β cells. The protein exists as two alternatively spliced isoforms, SNAP-25a and SNAP-25b, differing in 9 out of 206 amino acids, yet their specific roles in pancreatic β cells remain unclear. We explored the effect of SNAP-25b-deficiency on glucose-stimulated insulin release in islets and found increased secretion both in vivo and in vitro. However, slow photo-release of caged Ca 2+ in β cells within pancreatic slices showed no significant differences in Ca 2+ -sensitivity, amplitude or rate of exocytosis between SNAP-25b-deficient and wild-type littermates. Therefore, we next investigated if Ca 2+ handling was affected in glucose-stimulated β cells using intracellular Ca 2+ -imaging and found premature activation and delayed termination of [Ca 2+ ] i elevations. These findings were accompanied by less synchronized Ca 2+ -oscillations and hence more segregated functional β cell networks in SNAP-25b-deficient mice. Islet gross morphology and architecture were maintained in mutant mice, although sex specific compensatory changes were observed. Thus, our study proposes that SNAP-25b in pancreatic β cells, except for participating in the core SNARE complex, is necessary for accurate regulation of Ca 2+ -dynamics.

  6. On-off intermittency of thalamo-cortical neuronal network oscillations in the electroencephalogram of rodents with genetic predisposition to absence epilepsy

    Science.gov (United States)

    Hramov, Alexander E.; Grubov, Vadim V.; Pavlov, Alexey N.; Sitnikova, Evgenija Yu.; Koronovskii, Alexey A.; Runnova, Anastasija E.; Shurugina, Sveltlana A.; Ivanov, Alexey V.

    2013-02-01

    Spike-wave discharges are electroencephalographic hallmarks of absence epilepsy. Spike-wave discharges are known to originate from thalamo-cortical neuronal network that normally produces sleep spindle oscillations. Although both sleep spindles and spike-wave discharges are considered as thalamo-cortical oscillations, functional relationship between them is still uncertain. The present study describes temporal dynamics of spike-wave discharges and sleep spindles as determined in long-time electroencephalograms (EEG) recorded in WAG/Rij rat model of absence epilepsy. We have proposed the wavelet-based method for the automatic detection of spike-wave discharges, sleep spindles (10-15Hz) and 5-9Hz oscillations in EEG. It was found that non-linear dynamics of spike-wave discharges and sleep spindles fits well to the law of 'on-off intermittency'. Intermittency in sleep spindles and spike-wave discharges implies that (1) temporal dynamics of these oscillations are deterministic in nature, and (2) it might be controlled by a system-level mechanism responsible for circadian modulation of neuronal network activity.

  7. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network

    Science.gov (United States)

    Enric Batllori; Marc-Andre Parisien; Sean A. Parks; Max A. Moritz; Carol Miller

    2017-01-01

    Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform...

  8. Probabilistic information transmission in a network of coupled oscillators reveals speed-accuracy trade-off in responding to threats

    Science.gov (United States)

    Chicoli, Amanda; Paley, Derek A.

    2016-11-01

    Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion.

  9. The pervasiveness and plasticity of circadian oscillations: the coupled circadian-oscillators framework.

    Science.gov (United States)

    Patel, Vishal R; Ceglia, Nicholas; Zeller, Michael; Eckel-Mahan, Kristin; Sassone-Corsi, Paolo; Baldi, Pierre

    2015-10-01

    Circadian oscillations have been observed in animals, plants, fungi and cyanobacteria and play a fundamental role in coordinating the homeostasis and behavior of biological systems. Genetically encoded molecular clocks found in nearly every cell, based on negative transcription/translation feedback loops and involving only a dozen genes, play a central role in maintaining these oscillations. However, high-throughput gene expression experiments reveal that in a typical tissue, a much larger fraction ([Formula: see text]) of all transcripts oscillate with the day-night cycle and the oscillating species vary with tissue type suggesting that perhaps a much larger fraction of all transcripts, and perhaps also other molecular species, may bear the potential for circadian oscillations. To better quantify the pervasiveness and plasticity of circadian oscillations, we conduct the first large-scale analysis aggregating the results of 18 circadian transcriptomic studies and 10 circadian metabolomic studies conducted in mice using different tissues and under different conditions. We find that over half of protein coding genes in the cell can produce transcripts that are circadian in at least one set of conditions and similarly for measured metabolites. Genetic or environmental perturbations can disrupt existing oscillations by changing their amplitudes and phases, suppressing them or giving rise to novel circadian oscillations. The oscillating species and their oscillations provide a characteristic signature of the physiological state of the corresponding cell/tissue. Molecular networks comprise many oscillator loops that have been sculpted by evolution over two trillion day-night cycles to have intrinsic circadian frequency. These oscillating loops are coupled by shared nodes in a large network of coupled circadian oscillators where the clock genes form a major hub. Cells can program and re-program their circadian repertoire through epigenetic and other mechanisms. High

  10. NET.EXCEL - a European thematic network for suggesting and prioritising future joint R and D projects

    Energy Technology Data Exchange (ETDEWEB)

    Svemar, C. [Svensk Kaernbraenslehantering AB (Sweden); Brewitz, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH (Germany)

    2004-07-01

    The NET.EXCEL project concerns the forming of a network of European end users for analysing the present status and future needs in research, technical development and demonstration (RTD) for the disposal of highly radioactive waste in the three classical rock media: salt, clay/clay sediments and crystalline rock. The aim is to generate values additional to that gained by the individual participants: Svensk Kaernbraenslehantering AB (Sweden), Posiva Oy (Finland), Empresa Nacional de Residuos Radioactivos SA (Spain), Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (Germany), Agence nationale pour la gestion des dechets radioactifs (France), Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaelle (Swizerland), Organisme National des Dechets Radioactifs et des Matieres Fissiles Enrichies (Belgium) and United Kingdom Nirex Limited (UK). The practical way to carry out the needed RTD-activities and the principles behind the process to establish priorities for the necessary RTD-work is quite similar among the participants. Common ground has been analysed for the role/responsibilities of the participating organisations, for the establishment of priorities for the RTD work and for the modus operandi of the organisations to carry out the RTD. The issue of prioritising the potential RTD activities and the factors taken into account by the participating organisations have been summarised and analysed with respect to the common denominator in the project. (orig.)

  11. Integrated network-diversity analyses suggest suppressive effect of Hodgkin's lymphoma and slightly relieving effect of chemotherapy on human milk microbiome.

    Science.gov (United States)

    Ma, Zhanshan Sam; Li, Lianwei; Li, Wendy; Li, Jie; Chen, Hongju

    2016-07-08

    We aim to investigate the effects of Hodgkin's lymphoma and the chemotherapy for treating the disease on the human milk microbiome through integrated network and community diversity analyses. Our analyses suggest that Hodgkin's lymphoma seems to have a suppressing effect on the milk microbiome by lowering the milk microbial community diversity, as measured by the Hill numbers profiles. Although the diversity analysis did not reveal an effect of chemotherapy on community diversity, bacterial species interaction network analysis shows that chemotherapy may help to slightly restore the milk microbiome impacted by Hodgkin's lymphoma through its influence on the interactions among species (or OTUs). We further constructed diversity-metabolites network, which suggests that the milk microbial diversity is positively correlated with some beneficial milk metabolites such as DHA (DocosaHexaenoic Acid), and that the diversity is negatively correlated with some potentially harmful metabolites such as Butanal. We hence postulate that higher milk microbial diversity should be a signature of healthy mothers and beneficial to infants. Finally, we constructed metabolites OTU correlation networks, from which we identified some special OTUs. These OTUs deserve further investigations given their apparent involvements in regulating the levels of critical milk metabolites such as DHA, Inositol and Butanal.

  12. Integrated network-diversity analyses suggest suppressive effect of Hodgkin’s lymphoma and slightly relieving effect of chemotherapy on human milk microbiome

    Science.gov (United States)

    Ma, Zhanshan (Sam); Li, Lianwei; Li, Wendy; Li, Jie; Chen, Hongju

    2016-01-01

    We aim to investigate the effects of Hodgkin’s lymphoma and the chemotherapy for treating the disease on the human milk microbiome through integrated network and community diversity analyses. Our analyses suggest that Hodgkin’s lymphoma seems to have a suppressing effect on the milk microbiome by lowering the milk microbial community diversity, as measured by the Hill numbers profiles. Although the diversity analysis did not reveal an effect of chemotherapy on community diversity, bacterial species interaction network analysis shows that chemotherapy may help to slightly restore the milk microbiome impacted by Hodgkin’s lymphoma through its influence on the interactions among species (or OTUs). We further constructed diversity-metabolites network, which suggests that the milk microbial diversity is positively correlated with some beneficial milk metabolites such as DHA (DocosaHexaenoic Acid), and that the diversity is negatively correlated with some potentially harmful metabolites such as Butanal. We hence postulate that higher milk microbial diversity should be a signature of healthy mothers and beneficial to infants. Finally, we constructed metabolites OTU correlation networks, from which we identified some special OTUs. These OTUs deserve further investigations given their apparent involvements in regulating the levels of critical milk metabolites such as DHA, Inositol and Butanal. PMID:27386954

  13. Pharmacological analysis of intrinsic neuronal oscillations in rd10 retina.

    Directory of Open Access Journals (Sweden)

    Sonia Biswas

    Full Text Available In the widely used mouse model of retinal degeneration, rd1, the loss of photoreceptors leads to rhythmic electrical activity of around 10-16 Hz in the remaining retinal network. Recent studies suggest that this oscillation is formed within the electrically coupled network of AII amacrine cells and ON-bipolar cells. A second mouse model, rd10, displays a delayed onset and slower progression of degeneration, making this mouse strain a better model for human retinitis pigmentosa. In rd10, oscillations occur at a frequency of 3-7 Hz, raising the question whether oscillations have the same origin in the two mouse models. As rd10 is increasingly being used as a model to develop experimental therapies, it is important to understand the mechanisms underlying the spontaneous rhythmic activity. To study the properties of oscillations in rd10 retina we combined multi electrode recordings with pharmacological manipulation of the retinal network. Oscillations were abolished by blockers for ionotropic glutamate receptors and gap junctions. Frequency and amplitude of oscillations were modulated strongly by blockers of inhibitory receptors and to a lesser extent by blockers of HCN channels. In summary, although we found certain differences in the pharmacological modulation of rhythmic activity in rd10 compared to rd1, the overall pattern looked similar. This suggests that the generation of rhythmic activity may underlie similar mechanisms in rd1 and rd10 retina.

  14. Spectral linewidths of Josephson oscillators

    DEFF Research Database (Denmark)

    Salerno, M; Samuelsen, Mogens Rugholm; Yulin, AV

    2001-01-01

    We show that the linewidth of a Josephson flux-flow oscillator has the same functional dependence on temperature, static, and dynamic resistances as the ones of Josephson single-fluxon oscillators and small Josephson junctions. This suggests a universal formula for the linewidth of Josephson...... oscillators....

  15. Quantum Oscillators

    CERN Document Server

    Blaise, Paul

    2011-01-01

    An invaluable reference for an overall but simple approach to the complexity of quantum mechanics viewed through quantum oscillators Quantum oscillators play a fundamental role in many areas of physics; for instance, in chemical physics with molecular normal modes, in solid state physics with phonons, and in quantum theory of light with photons. Quantum Oscillators is a timely and visionary book which presents these intricate topics, broadly covering the properties of quantum oscillators which are usually dispersed in the literature at varying levels of detail and often combined with other p

  16. Chemical Oscillations

    Indian Academy of Sciences (India)

    processes at the cellular level like the glycolytic pathway, peroxi- dase-catalysed reaction or the biosynthesis of certain proteins. A systematic study of oscillating chemical reactions is of consider- able interest, since these oscillating reactions can be used as prototype examples of the behaviours possible in reactions gov-.

  17. Principles for efficient damping of electro-mechanical oscillations in power networks; Principer foer effektiv daempning av systemvida pendlingar i elkraftnaet

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Lars

    2000-07-01

    This master-thesis report deals with the problem of power oscillations in power networks. The purpose of the work has been to study electro-mechanical oscillations in power systems and in a methodical way analyze the system to identify interesting properties. To increase the damping of especially the inter-area modes, the use of Power System Stabilizers has been investigated. In the control with PSS, local signals such as active power and angular velocity of the generator have first been used as measuring signals. The benefits of using global measuring signals have then been examined. The global signals examined are the derivative of the bus voltage phase angle and also the generators active power. An approach to study the zeros in a control loop is presented and gives, with the use of global measuring signals, a way of choosing a measuring signal to the PSS that affects the control in a beneficial way. A model of the Brazilian south/southeast power system has been used as a test system in the report. To analyze the system, modal analysis has been used and simulations have been performed in EUROSTAG for evaluation of control designs. In use of global signals, communication of signals is needed and therefore the effects of disturbances in this communication need to be considered. The effect of delays in the different signals has been studied and also the scenario of total loss of communication.

  18. Modeling the contributions of Ca2+ flows to spontaneous Ca2+ oscillations and cortical spreading depression-triggered Ca2+ waves in astrocyte networks.

    Directory of Open Access Journals (Sweden)

    Bing Li

    Full Text Available Astrocytes participate in brain functions through Ca(2+ signals, including Ca(2+ waves and Ca(2+ oscillations. Currently the mechanisms of Ca(2+ signals in astrocytes are not fully clear. Here, we present a computational model to specify the relative contributions of different Ca(2+ flows between the extracellular space, the cytoplasm and the endoplasmic reticulum of astrocytes to the generation of spontaneous Ca(2+ oscillations (CASs and cortical spreading depression (CSD-triggered Ca(2+ waves (CSDCWs in a one-dimensional astrocyte network. This model shows that CASs depend primarily on Ca(2+ released from internal stores of astrocytes, and CSDCWs depend mainly on voltage-gated Ca(2+ influx. It predicts that voltage-gated Ca(2+ influx is able to generate Ca(2+ waves during the process of CSD even after depleting internal Ca(2+ stores. Furthermore, the model investigates the interactions between CASs and CSDCWs and shows that the pass of CSDCWs suppresses CASs, whereas CASs do not prevent the generation of CSDCWs. This work quantitatively analyzes the generation of astrocytic Ca(2+ signals and indicates different mechanisms underlying CSDCWs and non-CSDCWs. Research on the different types of Ca(2+ signals might help to understand the ways by which astrocytes participate in information processing in brain functions.

  19. Integrated Solar Disk Oscillation Measurements Using the Magneto-Optical Filter: Tests with a Two Station Network

    Science.gov (United States)

    Cacciani, Alessandro; Rosati, P.; Ricci, D.; Marquedant, R.; Smith, E.

    1988-01-01

    The magneto-optical filter (MOF) was used to get high and intermediate l-modes of solar oscillations. For very low l-modes the imaging capability of the MOF is still attractive since it allows a pixel by pixel intensity normalization. However, a crude attempt to get very low l power spectra from Dopplergrams obtained at Mt. Wilson gave noisy results. This means that a careful analysis of all the factors potentially affecting high resolution Dopplergrams should be accomplished. In order to better investigate this problem, a nonimaging channel using the lock-in amplifier technique was considered. Two systems are now operational, one at JPL and the other at University of Rome. Observations in progress are used to discuss the MOF stability, the noise level, and the possible application in asteroseismology.

  20. Oscillations in the Umbral Atmosphere

    Science.gov (United States)

    Brynildsen, N.; Maltby, P.; Foley, C. R.; Fredvik, T.; Kjeldseth-Moe, O.

    2004-06-01

    The results of simultaneous observations of oscillations in the chromosphere, transition region, and corona above nine sunspots are presented. The data are obtained through coordinated observing with the Solar and Heliospheric Observatory — SOHO and the Transition Region And Coronal Explorer — TRACE. Oscillations are detected above each umbra. The power spectra show one dominant frequency corresponding to a period close to 3 min. We show that the oscillations in the sunspot transition region can be modeled by upwardly propagating acoustic waves. In the corona the oscillations are limited to small regions that often coincide with the endpoints of sunspot coronal loops. Spectral observations show that oscillations in the corona contribute to the observed oscillations in the TRACE 171 Å channel observations. We show that a recent suggestion regarding a connection between sunspot plumes and 3-min oscillations conflicts with the observations.

  1. Fibonacci oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Arik, M. (Istanbul Technical Univ. (Turkey). Dept. of Mathematics Bogazici Univ., Istanbul (Turkey). Dept. of Physics); Demircan, E.; Turgut, T. (Texas Univ., Austin, TX (United States). Dept. of Physics); Ekinci, L.; Mungan, M. (Bogazici Univ., Istanbul (Turkey). Dept. of Physics)

    1992-07-01

    We discuss the properties of oscillators whose spectrum is given by a generalized Fibonacci sequence. The properties include: Invariance under the unitary quantum group, generalized angular momentum, coherent states and difference calculus, relativistic interpretation. (orig.).

  2. Hypnosis, suggestion, and suggestibility: an integrative model.

    Science.gov (United States)

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  3. Oscillating systems with cointegrated phase processes

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Rahbek, Anders; Ditlevsen, Susanne

    2017-01-01

    We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network that resemb...

  4. Hyperchaos in coupled Colpitts oscillators

    DEFF Research Database (Denmark)

    Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas

    2003-01-01

    The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individu...... oscillators. The spectrum of the Lyapunov exponents (LE) have been calculated versus the coefficient k. For weakly coupled oscillators there are two positive LE indicating hyperchaotic behaviour of the overall system.......The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...

  5. Relaxation time of the global order parameter on multiplex networks: The role of interlayer coupling in Kuramoto oscillators

    Science.gov (United States)

    Allen-Perkins, Alfonso; de Assis, Thiago Albuquerque; Pastor, Juan Manuel; Andrade, Roberto F. S.

    2017-10-01

    This work considers the time scales associated with the global order parameter and the interlayer synchronization of coupled Kuramoto oscillators on multiplexes. For two-layer multiplexes with an initially high degree of synchronization in each layer, the difference between the average phases in each layer is analyzed from two different perspectives: the spectral analysis and the nonlinear Kuramoto model. Both viewpoints confirm that the prior time scales are inversely proportional to the interlayer coupling strength. Thus, increasing the interlayer coupling always shortens the transient regimes of both the global order parameter and the interlayer synchronization. Surprisingly, the analytical results show that the convergence of the global order parameter is faster than the interlayer synchronization, and the latter is generally faster than the global synchronization of the multiplex. The formalism also outlines the effects of frequencies on the difference between the average phases of each layer, and it identifies the conditions for an oscillatory behavior. Computer simulations are in fairly good agreement with the analytical findings, and they reveal that the time scale of the global order parameter is half the size of the time scale of the multiplex, if not smaller.

  6. Using Jovian Oscillations to Constrain Interiors and Understanding Why They Exist

    Science.gov (United States)

    Dederick, Ethan; JIVE (Jovian Interiors Velocimetry Experiment) in NM, JOVIAL (Jovian Oscillations through radial Velocimetry ImAging observations at several Longitudes

    2017-10-01

    Planetary oscillations are excellent tools for probing unknown properties about their respective interiors, particularly quantities that pertain to formation theories such as core size. Recently, there have been very suggestive indications of detections of oscillations on Jupiter, and several have been confirmed on Saturn. Saturn is a unique case for seismic exploration as its ring structures act as a global seismograph. The seismic signatures in the rings provide information on the frequency of oscillations, which we can exploit to probe Saturn’s interior. Here we describe a comprehensive approach to detecting and utilizing oscillations to constrain the interiors of Jupiter and Saturn. The aforementioned Saturnian oscillations have already been detected via spiral density structures in the C ring as inferred from Cassini occultation data. Jovian oscillations will be detected in the upcoming years with a global network of Doppler imaging spectrometers established by the JIVE in NM (Jovian Interiors Velocimetry Experiment) and JOVIAL (Jovian Oscillations through radial Velocimetry ImAging observations at several Longitudes) groups. This network of instrumentation is optimized for observing Jovian oscillations including a high duty cycle allowing for limited temporal interruptions and thus high precision frequency data. In addition, unlike most oscillating bodies, we are unaware of the excitation mechanism behind Jovian oscillations. Therefore, we also explore mode excitation mechanisms that can excite Jupiter’s oscillations, primarily moist convection in the atmosphere. We will show under what conditions moist convection can be responsible for mode excitation and what this reveals about thunderstorm density on Jupiter. In regards to Saturn, we apply adapted helioseismic concepts to understand its fundamental mode (f-mode) oscillations and develop the framework for Jupiter for once its mode data becomes available. We will show initial inversion results for Saturn

  7. Negative versus positive allosteric modulation of metabotropic glutamate receptors (mGluR5): indices for potential pro-cognitive drug properties based on EEG network oscillations and sleep-wake organization in rats.

    Science.gov (United States)

    Ahnaou, A; Langlois, X; Steckler, T; Bartolome-Nebreda, J M; Drinkenburg, W H I M

    2015-03-01

    Evidence is emerging that positive and negative modulation of the metabotropic glutamate (mGluR5) receptors has the potential for treating cognitive deficits and neuroprotection associated with psychiatric and neurodegenerative diseases, respectively. Sleep and synchronisation of disparate neuronal networks are critically involved in neuronal plasticity, and disturbance in vigilance states and cortical network connectivity contribute significantly to cognitive deficits described in schizophrenia and Alzheimer's disease. Here, we examined the circadian changes of mGluR5 density and the functional response to modulation of mGluR5 signaling. The current study carried out in Sprague-Dawley rats quantified the density of mGluR5 across the light-dark cycle with autoradiography. The central activity of mGluR5 negative allosteric modulators (2-methyl-6-(phenylethynyl)pyridine (MPEP) and [(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and positive allosteric modulators (S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone (ADX47273) and (7S)-3-tert-butyl-7-[3-(4-fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyridine (LSN2814617) was examined on sleep-wake architecture. The functional effect of mGluR5 modulation on cortical networks communication was described in freely moving animals. The density of mGluR5 in the striatal, cortical, hippocampal and thalamic structures was unchanged across the light-dark cycle. Allosteric blockade of mGluR5 consistently consolidated deep sleep, enhanced sleep efficiency and elicited prominent functional coherent network activity in slow theta and gamma oscillations. However, allosteric activation of mGluR5 increased waking, decreased deep sleep and reduced functional network connectivity following the activation of slow alpha oscillatory activity. This functional study differentiates the pharmacology of allosteric blockade of mGluR5 from that of allosteric activation

  8. Glucose Oscillations Can Activate an Endogenous Oscillator in Pancreatic Islets.

    Directory of Open Access Journals (Sweden)

    Joseph P McKenna

    2016-10-01

    Full Text Available Pancreatic islets manage elevations in blood glucose level by secreting insulin into the bloodstream in a pulsatile manner. Pulsatile insulin secretion is governed by islet oscillations such as bursting electrical activity and periodic Ca2+ entry in β-cells. In this report, we demonstrate that although islet oscillations are lost by fixing a glucose stimulus at a high concentration, they may be recovered by subsequently converting the glucose stimulus to a sinusoidal wave. We predict with mathematical modeling that the sinusoidal glucose signal's ability to recover islet oscillations depends on its amplitude and period, and we confirm our predictions by conducting experiments with islets using a microfluidics platform. Our results suggest a mechanism whereby oscillatory blood glucose levels recruit non-oscillating islets to enhance pulsatile insulin output from the pancreas. Our results also provide support for the main hypothesis of the Dual Oscillator Model, that a glycolytic oscillator endogenous to islet β-cells drives pulsatile insulin secretion.

  9. Prominence Oscillations

    Directory of Open Access Journals (Sweden)

    Iñigo Arregui

    2012-04-01

    Full Text Available Prominences are intriguing, but poorly understood, magnetic structures of the solar corona. The dynamics of solar prominences has been the subject of a large number of studies, and of particular interest is the study of prominence oscillations. Ground- and space-based observations have confirmed the presence of oscillatory motions in prominences and they have been interpreted in terms of magnetohydrodynamic (MHD waves. This interpretation opens the door to perform prominence seismology, whose main aim is to determine physical parameters in magnetic and plasma structures (prominences that are difficult to measure by direct means. Here, we review the observational information gathered about prominence oscillations as well as the theoretical models developed to interpret small amplitude oscillations and their temporal and spatial attenuation. Finally, several prominence seismology applications are presented.

  10. Phase-frequency calibration of a sine wave oscillator using ...

    African Journals Online (AJOL)

    A method of measuring phase changes within the positive feedback loop of a sine wave oscillator without terminating the oscillations is presented. This involves the use of a reference network, outside the loop, which is an exact replica of the positive feedback network of the oscillator. Such phase changes produce new ...

  11. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  12. Chromosperic oscillations

    NARCIS (Netherlands)

    Rutten, R.J.

    1999-01-01

    This review concentrates on the quiet-Sun chromosphere. Its internetwork areas are dynamically dominated by the so-called chromospheric three-minute oscillation. They are interpretationally dominated by the so-called Ca II K 2V and H 2V grains. The main points of this review are that the one

  13. An algorithm for on-line detection of high frequency oscillations related to epilepsy.

    Science.gov (United States)

    López-Cuevas, Armando; Castillo-Toledo, Bernardino; Medina-Ceja, Laura; Ventura-Mejía, Consuelo; Pardo-Peña, Kenia

    2013-06-01

    Recent studies suggest that the appearance of signals with high frequency oscillations components in specific regions of the brain is related to the incidence of epilepsy. These oscillations are in general small in amplitude and short in duration, making them difficult to identify. The analysis of these oscillations are particularly important in epilepsy and their study could lead to the development of better medical treatments. Therefore, the development of algorithms for detection of these high frequency oscillations is of great importance. In this work, a new algorithm for automatic detection of high frequency oscillations is presented. This algorithm uses approximate entropy and artificial neural networks to extract features in order to detect and classify high frequency components in electrophysiological signals. In contrast to the existing algorithms, the one proposed here is fast and accurate, and can be implemented on-line, thus reducing the time employed to analyze the experimental electrophysiological signals. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Shallow crustal velocities and volcanism suggested from ambient noise studies using a dense broadband seismic network in the Tatun Volcano Group of Taiwan

    Science.gov (United States)

    Huang, Yu-Chih; Lin, Cheng-Horng; Kagiyama, Tsuneomi

    2017-07-01

    The Tatun Volcano Group (TVG) is situated adjacent to the Taipei metropolis and was active predominantly around 0.8-0.2 Ma (Pleistocene). Various recent lines of evidence suggest that the TVG is a potentially active volcano and that future volcanic eruptions cannot be ruled out. Geothermal activities are largely constrained to faults, but the relationship between volcanism and detailed velocity structures is not well understood. We analyzed ambient seismic noise of daily vertical components from 2014 using a dense seismic network of 40 broadband stations. We selected a 0.02° grid spacing to construct 2D and 3D shallow crustal phase velocity maps in the 0.5-3 s period band. Two S-wave velocity profiles transect Chishingshan (Mt. CS) in the shallow 3 km crust are further derived. The footwall of the Shanchiao Fault is dominated by low velocity, which may relate to Tertiary bedrock buried under andesitic lava flows dozens to hundreds of meters thick. The hanging wall of the Shanchiao Fault is the location of recent major volcanic activities. Low velocity zones in the southeast of Dayoukeng (DYK) may be interpreted as hydrothermal reservoirs or water-saturated Tertiary bedrock related to Cenozoic structures in the shallow crust. High velocities conspicuously dominate the east of the TVG, where the earliest stages of volcanism in the TVG are located, but where surface hydro-geothermal activities were absent in recent times. Between the Shanchiao Fault and Kanchiao Fault high velocities were detected, which converge below Mt. CS and may be related to early stages of magma conduits that gradually consolidated. These two faults may play a significant role with the TVG. The submarine volcanism adjacent to the Keelung coastline also requires further attention.

  15. FEL Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2003-05-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. More than 30 FEL oscillators are presently operating around the world spanning a wavelength range from the mm region to the ultraviolet using DC and rf linear accelerators and storage rings as electron sources. The characteristics that have driven the development of these sources are the desire for high peak and average power, high micropulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. Substantial user programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few.

  16. Phase patterns of coupled oscillators with application to wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.

    2008-01-02

    Here we study the plausibility of a phase oscillators dynamical model for TDMA in wireless communication networks. We show that emerging patterns of phase locking states between oscillators can eventually oscillate in a round-robin schedule, in a similar way to models of pulse coupled oscillators designed to this end. The results open the door for new communication protocols in a continuous interacting networks of wireless communication devices.

  17. A gene expression signature classifying telomerase and ALT immortalization reveals an hTERT regulatory network and suggests a mesenchymal stem cell origin for ALT

    DEFF Research Database (Denmark)

    Lafferty-Whyte, K; Cairney, C J; Will, M B

    2009-01-01

    Telomere length is maintained by two known mechanisms, the activation of telomerase or alternative lengthening of telomeres (ALT). The molecular mechanisms regulating the ALT phenotype are poorly understood and it is unknown how the decision of which pathway to activate is made at the cellular...... level. We have shown earlier that active repression of telomerase gene expression by chromatin remodelling of the promoters is one mechanism of regulation; however, other genes and signalling networks are likely to be required to regulate telomerase and maintain the ALT phenotype. Using gene expression...... this signature revealed a regulatory signalling network consistent with a model of human telomerase reverse transcriptase (hTERT) repression in ALT cell lines and liposarcomas. This network expands on our existing knowledge of hTERT regulation and provides a platform to understand differential regulation of h...

  18. Communication between Brain Areas Based on Nested Oscillations.

    Science.gov (United States)

    Bonnefond, Mathilde; Kastner, Sabine; Jensen, Ole

    2017-01-01

    Unraveling how brain regions communicate is crucial for understanding how the brain processes external and internal information. Neuronal oscillations within and across brain regions have been proposed to play a crucial role in this process. Two main hypotheses have been suggested for routing of information based on oscillations, namely communication through coherence and gating by inhibition. Here, we propose a framework unifying these two hypotheses that is based on recent empirical findings. We discuss a theory in which communication between two regions is established by phase synchronization of oscillations at lower frequencies (40 Hz). Our framework, consistent with numerous recent empirical findings, posits that cross-frequency interactions are essential for understanding how large-scale cognitive and perceptual networks operate.

  19. Microwave balanced oscillators and frequency doublers

    CERN Document Server

    Siripon, N

    2002-01-01

    The research presented in this thesis is on the application of the injection-locked oscillator technique to microwave balanced oscillators. The balanced oscillator design is primarily analysed using the extended resonance technique. A transmission line is connected between the two active devices, so that the active device resonate each other. The electrical length of the transmission line is also analysed for the balanced oscillation condition. The balanced oscillator can be viewed with the negative resistance model and the feedback model. The former model is characterised at a circuit plane where the feedback network is cut. By using both the negative-resistance oscillator model and the feedback model, the locking range of the oscillator is analysed by extending Kurokawa's theory. This analysis demonstrates the locking range of the injection phenomenon, where the injection frequency is either close to the free-running frequency, close to (1/n) x free-running frequency or close to n x the free-running frequen...

  20. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  1. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical–Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings

    Science.gov (United States)

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J.

    2015-01-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13–30 Hz) and gamma (30–90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30–90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits. PMID:25987642

  2. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings.

    Science.gov (United States)

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J

    2015-09-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006 mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13-30 Hz) and gamma (30-90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30-90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos.......In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear...

  4. Minimal size of cell assemblies coordinated by gamma oscillations.

    Directory of Open Access Journals (Sweden)

    Christoph Börgers

    2012-02-01

    Full Text Available In networks of excitatory and inhibitory neurons with mutual synaptic coupling, specific drive to sub-ensembles of cells often leads to gamma-frequency (25-100 Hz oscillations. When the number of driven cells is too small, however, the synaptic interactions may not be strong or homogeneous enough to support the mechanism underlying the rhythm. Using a combination of computational simulation and mathematical analysis, we study the breakdown of gamma rhythms as the driven ensembles become too small, or the synaptic interactions become too weak and heterogeneous. Heterogeneities in drives or synaptic strengths play an important role in the breakdown of the rhythms; nonetheless, we find that the analysis of homogeneous networks yields insight into the breakdown of rhythms in heterogeneous networks. In particular, if parameter values are such that in a homogeneous network, it takes several gamma cycles to converge to synchrony, then in a similar, but realistically heterogeneous network, synchrony breaks down altogether. This leads to the surprising conclusion that in a network with realistic heterogeneity, gamma rhythms based on the interaction of excitatory and inhibitory cell populations must arise either rapidly, or not at all. For given synaptic strengths and heterogeneities, there is a (soft lower bound on the possible number of cells in an ensemble oscillating at gamma frequency, based simply on the requirement that synaptic interactions between the two cell populations be strong enough. This observation suggests explanations for recent experimental results concerning the modulation of gamma oscillations in macaque primary visual cortex by varying spatial stimulus size or attention level, and for our own experimental results, reported here, concerning the optogenetic modulation of gamma oscillations in kainate-activated hippocampal slices. We make specific predictions about the behavior of pyramidal cells and fast-spiking interneurons in these

  5. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  6. Oscillator clustering in a resource distribution chain

    DEFF Research Database (Denmark)

    Postnov, D.; Sosnovtseva, Olga; Mosekilde, Erik

    2005-01-01

    separate the inherent dynamics of the individual oscillator from the properties of the coupling network. Illustrated by examples from microbiological population dynamics, renal physiology, and electronic oscillator theory, we show how competition for primary resources in a resource distribution chain leads...

  7. Review of Evidence Suggesting That the Fascia Network Could Be the Anatomical Basis for Acupoints and Meridians in the Human Body

    Directory of Open Access Journals (Sweden)

    Yu Bai

    2011-01-01

    Full Text Available The anatomical basis for the concept of meridians in traditional Chinese medicine (TCM has not been resolved. This paper reviews the evidence supporting a relationship between acupuncture points/meridians and fascia. The reviewed evidence supports the view that the human body's fascia network may be the physical substrate represented by the meridians of TCM. Specifically, this hypothesis is supported by anatomical observations of body scan data demonstrating that the fascia network resembles the theoretical meridian system in salient ways, as well as physiological, histological, and clinical observations. This view represents a theoretical basis and means for applying modern biomedical research to examining TCM principles and therapies, and it favors a holistic approach to diagnosis and treatment.

  8. Aging transition in systems of oscillators with global distributed-delay coupling

    Science.gov (United States)

    Rahman, B.; Blyuss, K. B.; Kyrychko, Y. N.

    2017-09-01

    We consider a globally coupled network of active (oscillatory) and inactive (nonoscillatory) oscillators with distributed-delay coupling. Conditions for aging transition, associated with suppression of oscillations, are derived for uniform and gamma delay distributions in terms of coupling parameters and the proportion of inactive oscillators. The results suggest that for the uniform distribution increasing the width of distribution for the same mean delay allows aging transition to happen for a smaller coupling strength and a smaller proportion of inactive elements. For gamma distribution with sufficiently large mean time delay, it may be possible to achieve aging transition for an arbitrary proportion of inactive oscillators, as long as the coupling strength lies in a certain range.

  9. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...... contralateral to stimulus side and additionally an unexpected 20 Hz activity was observed slightly lateralized in the frontal central region. The gamma phase locking may be a manifestation of early somatosensory feature integration. The analyses suggest that the high frequency activity consists of two distinct...

  10. State space modeling of Memristor-based Wien oscillator

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2011-12-01

    State space modeling of Memristor based Wien \\'A\\' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.

  11. The approach to investigation of the the regions of self-oscillations

    Science.gov (United States)

    Velieva, T. R.; Kulyabov, D. S.; Korolkova, A. V.; Zaryadov, I. S.

    2017-12-01

    Self-oscillating modes in control systems of computer networks quite negatively affect the characteristics of these networks. The problem of finding the areas of self-oscillations is actual and important as the study of parameters of self-oscillations. Due to the significant nonlinearity of control characteristics, the study of the self-oscillating modes presents certain difficulties. This paper describes the technique of research of self-oscillating modes.

  12. External drive to inhibitory cells induces alternating episodes of high- and low-amplitude oscillations.

    Directory of Open Access Journals (Sweden)

    Oscar J Avella Gonzalez

    Full Text Available Electrical oscillations in neuronal network activity are ubiquitous in the brain and have been associated with cognition and behavior. Intriguingly, the amplitude of ongoing oscillations, such as measured in EEG recordings, fluctuates irregularly, with episodes of high amplitude alternating with episodes of low amplitude. Despite the widespread occurrence of amplitude fluctuations in many frequency bands and brain regions, the mechanisms by which they are generated are poorly understood. Here, we show that irregular transitions between sub-second episodes of high- and low-amplitude oscillations in the alpha/beta frequency band occur in a generic neuronal network model consisting of interconnected inhibitory and excitatory cells that are externally driven by sustained cholinergic input and trains of action potentials that activate excitatory synapses. In the model, we identify the action potential drive onto inhibitory cells, which represents input from other brain areas and is shown to desynchronize network activity, to be crucial for the emergence of amplitude fluctuations. We show that the duration distributions of high-amplitude episodes in the model match those observed in rat prefrontal cortex for oscillations induced by the cholinergic agonist carbachol. Furthermore, the mean duration of high-amplitude episodes varies in a bell-shaped manner with carbachol concentration, just as in mouse hippocampus. Our results suggest that amplitude fluctuations are a general property of oscillatory neuronal networks that can arise through background input from areas external to the network.

  13. Prefrontal Function Engaging in External-Focused Attention in 5- to 6-Month-Old Infants: A Suggestion for Default Mode Network.

    Science.gov (United States)

    Xu, Mingdi; Hoshino, Eiichi; Yatabe, Kiyomi; Matsuda, Soichiro; Sato, Hiroki; Maki, Atsushi; Yoshimura, Mina; Minagawa, Yasuyo

    2016-01-01

    The present study used functional near-infrared spectroscopy (fNIRS) to measure 5- to 6-month-old infants' hemodynamic response in the prefrontal cortex (PFC) to visual stimuli differing in saliency and social value. Nineteen Japanese 5- to 6-month-old infants watched video clips of Peek-a-Boo (social signal) performed by an anime character (AC) or a human, and hand movements without social signal performed by an AC. The PFC activity of infants was measured by 22-channel fNIRS, while behaviors including looking time were recorded simultaneously. NIRS data showed that infants' hemodynamic responses in the PFC generally decreased due to these stimuli, and the decrease was most prominent in the frontopolar (FP), covering medial PFC (MPFC), when infants were viewing Peek-a-Boo performed by an AC. Moreover, the decrease was more pronounced in the dorsolateral PFC (DLPFC) when infants were viewing Peek-a-Boo performed by an AC than by a human. Accordingly, behavioral data revealed significantly longer looking times when Peek-a-Boo was performed by an AC than by a human. No significant difference between Peek-a-Boo and non-Peek-a-Boo conditions was observed in either measure. These findings indicate that infants at this age may prefer stimuli with more salient features, which may be more effective in attracting their attentions. In conjunction with our previous findings on responses to self-name calling in infants of similar age, we hypothesize that the dynamic function of the MPFC and its vicinity (as part of default mode network (DMN): enhanced by self-focused stimuli, attenuated by externally focused stimuli), which is consistently observed in adults, may have already emerged in 5- to 6-month-old infants.

  14. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σE-regulated SPI-2 gene expression

    Directory of Open Access Journals (Sweden)

    Jie eLi

    2015-02-01

    Full Text Available The extracytoplasmic functioning sigma factor σE is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σE in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σE regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression of genes involved in Salmonella pathogenesis island (SPI-1 type-three secretion system (TTSS, SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σE in at least one of the three conditions. An important finding is that σE up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σE is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between E and SPI-2 genes, combined with the global regulatory effect of σE, may account for the lethality of rpoE-deficient Salmonella in murine infection.

  15. Gene regulatory networks reused to build novel traits: co-option of an eye-related gene regulatory network in eye-like organs and red wing patches on insect wings is suggested by optix expression.

    Science.gov (United States)

    Monteiro, Antónia

    2012-03-01

    Co-option of the eye developmental gene regulatory network may have led to the appearance of novel functional traits on the wings of flies and butterflies. The first trait is a recently described wing organ in a species of extinct midge resembling the outer layers of the midge's own compound eye. The second trait is red pigment patches on Heliconius butterfly wings connected to the expression of an eye selector gene, optix. These examples, as well as others, are discussed regarding the type of empirical evidence and burden of proof that have been used to infer gene network co-option underlying the origin of novel traits. A conceptual framework describing increasing confidence in inference of network co-option is proposed. Novel research directions to facilitate inference of network co-option are also highlighted, especially in cases where the pre-existent and novel traits do not resemble each other. Copyright © 2012 WILEY Periodicals, Inc.

  16. Nonequilibrium landscape theory of neural networks

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-01-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451

  17. Decay of oscillating universes

    Science.gov (United States)

    Mithani, Audrey Todhunter

    2016-08-01

    It has been suggested by Ellis et al that the universe could be eternal in the past, without beginning. In their model, the "emergent universe'' exists forever in the past, in an "eternal'' phase before inflation begins. We will show that in general, such an "eternal'' phase is not possible, because of an instability due to quantum tunneling. One candidate model, the "simple harmonic universe'' has been shown by Graham et al to be perturbatively stable; we find that it is unstable with respect to quantum tunneling. We also investigate the stability of a distinct oscillating model in loop quantum cosmology with respect to small perturbations and to quantum collapse. We find that the model has perturbatively stable and unstable solutions, with both types of solutions occupying significant regions of the parameter space. All solutions are unstable with respect to collapse by quantum tunneling to zero size. In addition, we investigate the effect of vacuum corrections, due to the trace anomaly and the Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. Finally, we determine the decay rate of the oscillating universe. Although the wave function of the universe lacks explicit time dependence in canonical quantum cosmology, time evolution may be present implicitly through the semiclassical superspace variables, which themselves depend on time in classical dynamics. Here, we apply this approach to the simple harmonic universe, by extending the model to include a massless, minimally coupled scalar field φ which has little effect on the dynamics but can play the role of a "clock''.

  18. Role of Frontal Alpha Oscillations in Creativity

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R.; Foulser, A. Alban; Mellin, Juliann M.; Fröhlich, Flavio

    2015-01-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent EEG data suggests that cortical oscillations in the alpha frequency band (8 – 12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a fundamental role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking, a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40Hz-tACS was used in instead of 10Hz-tACS to rule out a general “electrical stimulation” effect. No significant change in the Creativity Index was found for such frontal gamma stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. PMID:25913062

  19. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....

  20. Classification of attractors for systems of identical coupled Kuramoto oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, Jan R. [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States); Mirollo, Renato [Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467 (United States)

    2014-03-15

    We present a complete classification of attractors for networks of coupled identical Kuramoto oscillators. In such networks, each oscillator is driven by the same first-order trigonometric function, with coefficients given by symmetric functions of the entire oscillator ensemble. For N≠3 oscillators, there are four possible types of attractors: completely synchronized fixed points or limit cycles, and fixed points or limit cycles where all but one of the oscillators are synchronized. The case N = 3 is exceptional; systems of three identical Kuramoto oscillators can also posses attracting fixed points or limit cycles with all three oscillators out of sync, as well as chaotic attractors. Our results rely heavily on the invariance of the flow for such systems under the action of the three-dimensional group of Möbius transformations, which preserve the unit disc, and the analysis of the possible limiting configurations for this group action.

  1. Altered oscillation and synchronization of default-mode network activity in mild Alzheimer's disease compared to mild cognitive impairment: an electrophysiological study.

    Directory of Open Access Journals (Sweden)

    Fu-Jung Hsiao

    Full Text Available Some researchers have suggested that the default mode network (DMN plays an important role in the pathological mechanisms of Alzheimer's disease (AD. To examine whether the cortical activities in DMN regions show significant difference between mild AD from mild cognitive impairment (MCI, electrophysiological responses were analyzed from 21 mild Alzheimer's disease (AD and 21 mild cognitive impairment (MCI patients during an eyes closed, resting-state condition. The spectral power and functional connectivity of the DMN were estimated using a minimum norm estimate (MNE combined with fast Fourier transform and imaginary coherence analysis. Our results indicated that source-based EEG maps of resting-state activity showed alterations of cortical spectral power in mild AD when compared to MCI. These alterations are characteristic of attenuated alpha or beta activities in the DMN, as are enhanced delta or theta activities in the medial temporal, inferior parietal, posterior cingulate cortex and precuneus. With regard to altered synchronization in AD, altered functional interconnections were observed as specific connectivity patterns of connection hubs in the precuneus, posterior cingulate cortex, anterior cingulate cortex and medial temporal regions. Moreover, posterior theta and alpha power and altered connectivity in the medial temporal lobe correlated significantly with scores obtained on the Mini-Mental State Examination (MMSE. In conclusion, EEG is a useful tool for investigating the DMN in the brain and differentiating early stage AD and MCI patients. This is a promising finding; however, further large-scale studies are needed.

  2. Altered oscillation and synchronization of default-mode network activity in mild Alzheimer's disease compared to mild cognitive impairment: an electrophysiological study.

    Science.gov (United States)

    Hsiao, Fu-Jung; Wang, Yuh-Jen; Yan, Sui-Hing; Chen, Wei-Ta; Lin, Yung-Yang

    2013-01-01

    Some researchers have suggested that the default mode network (DMN) plays an important role in the pathological mechanisms of Alzheimer's disease (AD). To examine whether the cortical activities in DMN regions show significant difference between mild AD from mild cognitive impairment (MCI), electrophysiological responses were analyzed from 21 mild Alzheimer's disease (AD) and 21 mild cognitive impairment (MCI) patients during an eyes closed, resting-state condition. The spectral power and functional connectivity of the DMN were estimated using a minimum norm estimate (MNE) combined with fast Fourier transform and imaginary coherence analysis. Our results indicated that source-based EEG maps of resting-state activity showed alterations of cortical spectral power in mild AD when compared to MCI. These alterations are characteristic of attenuated alpha or beta activities in the DMN, as are enhanced delta or theta activities in the medial temporal, inferior parietal, posterior cingulate cortex and precuneus. With regard to altered synchronization in AD, altered functional interconnections were observed as specific connectivity patterns of connection hubs in the precuneus, posterior cingulate cortex, anterior cingulate cortex and medial temporal regions. Moreover, posterior theta and alpha power and altered connectivity in the medial temporal lobe correlated significantly with scores obtained on the Mini-Mental State Examination (MMSE). In conclusion, EEG is a useful tool for investigating the DMN in the brain and differentiating early stage AD and MCI patients. This is a promising finding; however, further large-scale studies are needed.

  3. Transmural pressure during cardiogenic oscillations in rodent diaphragmatic lymphatic vessels.

    Science.gov (United States)

    Negrini, Daniela; Moriondo, Andrea; Mukenge, Sylvain

    2004-01-01

    The mechanism of initial lymphatic filling and the role of cardiogenic tissue motion in promoting lymph formation and propulsion are at present still controversial issues, in particular when considering interstitial tissues whose fluid pressure is well below atmospheric. To elucidate these aspects, the micropuncture technique was used to record interstitial (P(int)) and intralymphatic pressure (P(lymph)) simultaneously in the diaphragmatic lymphatic plexus draining the pleural cavity. The diaphragmatic lymphatic network was identified in anesthetized rabbits and rats through fluorescent dextrans injected intrapleurally. All P(lymph) and P(int) traces were pulsatile, oscillating either in-phase (33% of traces) or out-of-phase (67%) during cardiogenic swings. P(lymph) swept between -4.1 +/- 0.9 (SE) mmHg and 3.5 +/- 1.1 mmHg in rabbits, and between -5.1 +/- 1.0 mmHg and -2.7 +/- 1.1 mmHg in rats. P(int) oscillated between -0.8 +/- 0.7 mmHg and 4.9 +/- 0.7 mmHg in rabbits, and between -0.6 +/- 0.8 mmHg and 0.9 +/- 0.7 mmHg in rats. The data revealed a great functional complexity of the diaphragmatic lymphatic network and suggested that cardiogenic oscillations may play an important role in promoting lymph formation and propulsion from interstitial tissues with subatmospheric tissue pressure.

  4. Microelectronic oscillator, 2

    Science.gov (United States)

    Kleinberg, L. L.

    1969-01-01

    Microelectronic oscillator uses a bipolar transistor to circumvent the problem of developing suitable inductors for lower frequencies. The oscillator is fabricated by hybrid thin film techniques or by monolithic construction. Discrete microminiature components may also be employed.

  5. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  6. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    Abstract. The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

  7. Pattern recognition with simple oscillating circuits

    Science.gov (United States)

    Hölzel, R. W.; Krischer, K.

    2011-07-01

    Neural network devices that inherently possess parallel computing capabilities are generally difficult to construct because of the large number of neuron-neuron connections. However, there exists a theoretical approach (Hoppensteadt and Izhikevich 1999 Phys. Rev. Lett. 82 2983) that forgoes the individual connections and uses only a global coupling: systems of weakly coupled oscillators with a time-dependent global coupling are capable of performing pattern recognition in an associative manner similar to Hopfield networks. The information is stored in the phase shifts of the individual oscillators. However, to date, even the feasibility of controlling phase shifts with this kind of coupling has not yet been established experimentally. We present an experimental realization of this neural network device. It consists of eight sinusoidal electrical van der Pol oscillators that are globally coupled through a variable resistor with the electric potential as the coupling variable. We estimate an effective value of the phase coupling strength in our experiment. For that, we derive a general approach that allows one to compare different experimental realizations with each other as well as with phase equation models. We demonstrate that individual phase shifts of oscillators can be experimentally controlled by a weak global coupling. Furthermore, supplied with a distorted input image, the oscillating network can indeed recognize the correct image out of a set of predefined patterns. It can therefore be used as the processing unit of an associative memory device.

  8. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  9. Differing Patterns of Altered Slow-5 Oscillations in Healthy Aging and Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Christian eLa

    2016-04-01

    Full Text Available The ‘default-mode’ network (DMN has been investigated in the presence of various disorders, such as Alzheimer’s disease and Autism spectrum disorders. More recently, this investigation has expanded to include patients with ischemic injury. Here, we characterized the effects of ischemic injury in terms of its spectral distribution of resting-state low-frequency oscillations and further investigated whether those specific disruptions were unique to the DMN, or rather more general, affecting the global cortical system. With 43 young healthy adults, 42 older healthy adults, 14 stroke patients in their early stage (< 7 days after stroke onset, and 16 stroke patients in their later stage (between 1-6 months after stroke onset, this study showed that patterns of cortical system disruption may differ between healthy aging and following the event of an ischemic stroke. The stroke group in the later stage demonstrated a global reduction in the amplitude of the slow-5 oscillations (0.01-0.027 Hz in the DMN as well as in the primary visual and sensorimotor networks, two ‘task-positive’ networks. In comparison to the young healthy group, the older healthy subjects presented a decrease in the amplitude of the slow-5 oscillations specific to the components of the DMN, while exhibiting an increase in oscillation power in the task-positive networks. These two processes of a decrease DMN and an increase in ‘task-positive’ slow-5 oscillations may potentially be related, with a deficit in DMN inhibition, leading to an elevation of oscillations in non-DMN systems. These findings also suggest that disruptions of the slow-5 oscillations in healthy aging may be more specific to the DMN while the disruptions of those oscillations following a stroke through remote (diaschisis effects may be more widespread, highlighting a non-specificity of disruption on the DMN in stroke population. The mechanisms underlying those differing modes of network disruption need

  10. Power oscillation damping by a converter-based power generation device

    DEFF Research Database (Denmark)

    2012-01-01

    output power to the power output. The power generation park further comprises a controller being configured for receiving an oscillation indicating signal indicative of a power oscillation in the electricity network, the controller being further configured for providing a damping control signal...... in response to the oscillation indicating signal; the converter device being configured for modulating the electrical output power in response to the damping control signal so as to damp the power oscillation in the electricity network....

  11. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  12. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems

    Science.gov (United States)

    Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K. Y. Michael; Zhou, Changsong

    2016-01-01

    Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.

  13. Open to Suggestion.

    Science.gov (United States)

    Journal of Reading, 1987

    1987-01-01

    Offers (1) suggestions for improving college students' study skills; (2) a system for keeping track of parent, teacher, and community contacts; (3) suggestions for motivating students using tic tac toe; (4) suggestions for using etymology to improve word retention; (5) a word search grid; and (6) suggestions for using postcards in remedial reading…

  14. A novel interaction perturbation analysis reveals a comprehensive regulatory principle underlying various biochemical oscillators.

    Science.gov (United States)

    Kang, Jun Hyuk; Cho, Kwang-Hyun

    2017-10-10

    Biochemical oscillations play an important role in maintaining physiological and cellular homeostasis in biological systems. The frequency and amplitude of oscillations are regulated to properly adapt to environments by numerous interactions within biomolecular networks. Despite the advances in our understanding of biochemical oscillators, the relationship between the network structure of an oscillator and its regulatory function still remains unclear. To investigate such a relationship in a systematic way, we have developed a novel analysis method called interaction perturbation analysis that enables direct modulation of the strength of every interaction and evaluates its consequence on the regulatory function. We have applied this new method to the analysis of three representative types of oscillators. The results of interaction perturbation analysis showed different regulatory features according to the network structure of the oscillator: (1) both frequency and amplitude were seldom modulated in simple negative feedback oscillators; (2) frequency could be tuned in amplified negative feedback oscillators; (3) amplitude could be modulated in the incoherently amplified negative feedback oscillators. A further analysis of naturally-occurring biochemical oscillator models supported such different regulatory features according to their network structures. Our results provide a clear evidence that different network structures have different regulatory features in modulating the oscillation frequency and amplitude. Our findings may help to elucidate the fundamental regulatory roles of network structures in biochemical oscillations.

  15. Adaptive elimination of synchronization in coupled oscillator

    Science.gov (United States)

    Zhou, Shijie; Ji, Peng; Zhou, Qing; Feng, Jianfeng; Kurths, Jürgen; Lin, Wei

    2017-08-01

    We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh-Nagumo spiking oscillators and the Hindmarsh-Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy.

  16. A memristor-based third-order oscillator: beyond oscillation

    Science.gov (United States)

    Talukdar, A.; Radwan, A. G.; Salama, K. N.

    2011-09-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  17. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  18. Slow oscillations orchestrating fast oscillations and memory consolidation.

    Science.gov (United States)

    Mölle, Matthias; Born, Jan

    2011-01-01

    Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. A novel retinal oscillation mechanism in an autosomal dominant photoreceptor degeneration mouse model

    Directory of Open Access Journals (Sweden)

    Hung-Ya eTu

    2016-01-01

    Full Text Available It has been shown in rd1 and rd10 models of photoreceptor degeneration (PD that inner retinal neurons display spontaneous and rhythmic activities. Furthermore, the rhythmic activity has been shown to require the gap junction protein connexin 36, which is likely located in AII amacrine cells (AII-ACs. In the present study, an autosomal dominant PD model called rhoΔCTA, whose rods overexpress a C-terminally truncated mutant rhodopsin and degenerate with a rate similar to that of rd1, was used to investigate the generality and mechanisms of heightened inner retinal activity following PD. To fluorescently identify cholinergic starburst amacrine cells (SACs, the rhoΔCTA mouse was introduced into a combined ChAT-IRES-Cre and Ai9 background. In this mouse, we observed large amplitude excitatory postsynaptic currents (EPSCs oscillations and non-rhythmic inhibitory postsynaptic currents (IPSCs in both ON- and OFF-SACs. The IPSCs were more noticeable in OFF- than in ON-SACs. Similar to reported retinal ganglion cell (RGC oscillation in rd1 mice, EPSC oscillation was synaptically driven by glutamate and sensitive to blockade of NaV channels and gap junctions. These data suggest that akin to rd1 mice, AII-AC is a prominent oscillator in rhoΔCTA mice. Surprisingly, OFF-SAC but not ON-SAC EPSC oscillation could readily be enhanced by GABAergic blockade. More importantly, weakening the AII-AC gap junction network by activating retinal dopamine receptors abolished oscillations in ON-SACs but not in OFF-SACs. Furthermore, the latter persisted in the presence of flupirtine, an M-type potassium channel activator recently reported to dampen intrinsic AII-AC bursting. These data suggest the existence of a novel oscillation mechanism in mice with PD.

  20. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  1. Uncovering phase-coupled oscillatory networks in electrophysiological data

    NARCIS (Netherlands)

    Meij, R. van der; Jacobs, J.; Maris, E.G.G.

    2015-01-01

    Phase consistent neuronal oscillations are ubiquitous in electrophysiological recordings, and they may reflect networks of phase-coupled neuronal populations oscillating at different frequencies. Because neuronal oscillations may reflect rhythmic modulations of neuronal excitability, phase-coupled

  2. Manufacturer's Suggested Retail Prices

    NARCIS (Netherlands)

    Rosenkranz, S.|info:eu-repo/dai/nl/157222241

    2003-01-01

    Based on arguments of the `reference- dependent' theory of consumer choice we assume that a retailer's discount of a manufacturer's suggested retail price changes consumers' demand. We can show that the producer benefits from suggesting a retail price. If consumers are additionally sufficiently

  3. The Oscillator Principle of Nature

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2012-01-01

    Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...

  4. Experimental study of the robust global synchronization of Brockett oscillators

    Science.gov (United States)

    Ahmed, Hafiz; Ushirobira, Rosane; Efimov, Denis

    2017-12-01

    This article studies the experimental synchronization of a family of a recently proposed oscillator model, i.e. the Brockett oscillator [R. Brockett, Synchronization without periodicity, in Mathematical Systems Theory, A Volume in Honor of U. Helmke, edited by K. Huper, J. Trumpf (CreateSpace, Seattle, USA, 2013), pp. 65-74]. Due to its structural property, Brockett oscillator can be considered as a promising benchmark nonlinear model for investigating synchronization and the consensus phenomena. Our experimental setup consists of analog circuit realizations of a network of Brockett oscillators. Experimental results obtained in this work correspond to the prior theoretical findings.

  5. Suggestive Objects at Work

    DEFF Research Database (Denmark)

    Ratner, Helene Gad

    2009-01-01

    In Western secular societies, spiritual life is no longer limited to classical religious institutions but can also be found at workplace organizations. While spirituality is conventionally understood as a subjective and internal process, this paper proposes the concept of ‘suggestive objects’, co...... scaffolding. This has deep implications for our understanding of the sacred, including a better appreciation of the way that suggestive objects make the sacred durable, the way they organize it....

  6. Suggestive techniques in advertising

    OpenAIRE

    Sora, Olena

    2011-01-01

    In my thesis I focused on a detailed analysis of suggestive techniques that appear in contemporary advertising. The issue of the effects of advertising has existed for many years and still staying timely. On the one side there are entrepreneurs and advertising agencies that are trying to influence opinions and suggest motivation for consuming. On the other side there is a potential customer, who is trying to obtain information about the product he needs and at the same time not letting anybod...

  7. [Psychoanalysis and suggestion].

    Science.gov (United States)

    Thomä, H

    1977-01-01

    In the history of psychoanalysis the problem of suggestion has been a central one. At first it involved the necessity to establish the psychoanalytic technique as independent scientific paradigm in contrast to persuasion and hypnosis. However, it was not only the symptom-oriented suggestion that had to be given up for scientific reasons and reasons of treatment technique. Since professional and human factors as well could have influenced the psychoanalytic situation to revert to the traditional "suggestion", Freud has given some technical considerations (e.g. the mirror-analogy), that were meant to counteract the confusion of the psychoanalytic technique with the persuasive one that had to come up to late. The discovery of the transference phenomena has further complicated the problem. It became obvious that the capacity of the analyst to exert an influence and to have impact, originated in very basic human categories and their specific psychogenetic developments and distortions. This understanding contributed to the development of psychoanalytic theories of suggestibility. Until the present day the discovery of the transference phenomena has determined the discussions of psychoanalytic technique in term of the relationship between the special and general therapeutic factors (i.e. interpretation versus relationship). The departure from the therapeutic mode of persuasive suggestion and the introduction of psychoanalytic technique signaled the revolutionary paradigm of Sigmund Freud, i.e. the active participation of the patient and the process of observation. Often scientific problems related to this pradigm and suggestion are discussed concurrently.

  8. A Conspiracy of Oscillators

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2008-01-01

    We discuss nonlinear mechanical systems containing several oscillators whose frequecies are all much higher than frequencies associated with the remaining degrees of freedom. In this situation a near constant of the motion, an adiabatic invariant, exists which is the sum of all the oscillator...

  9. Hyperchaotic Oscillator with Gyrators

    DEFF Research Database (Denmark)

    Tamasevicius, A; Cenys, A; Mykolaitis, G.

    1997-01-01

    A fourth-order hyperchaotic oscillator is described. It contains a negative impedance converter, two gyratots, two capacitors and a diode. The dynamics of the oscillator is shown to be characterised by two positive Lyapunov exponents. The performance of the circuit is investigated by means...

  10. Grazing Impact Oscillations

    NARCIS (Netherlands)

    Weger, J.G.; Water, van de W.; Molenaar, J.

    2000-01-01

    An impact oscillator is a periodically driven system that hits a wall when its amplitude exceeds a critical value. We study impact oscillations where collisions with the wall are with near-zero velocity (grazing impacts). A characteristic feature of grazing impact dynamics is a geometrically

  11. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  12. Prediction of resonant oscillation

    DEFF Research Database (Denmark)

    2010-01-01

    oscillations and compare the measured oscillations using FFT analysis of signal correlations, variance analysis of signals and other comparisons. As an example, the presence of a growing peak around a frequency that doubles the roll natural frequency indicates the possibility that parametric roll is going...

  13. Magnetostatic wave oscillator frequencies

    Science.gov (United States)

    Sethares, J. C.; Stiglitz, M. R.; Weinberg, I. J.

    1981-03-01

    The frequencies of magnetostatic wave (MSW) oscillators employing three principal modes of propagation, surface (MSSW), forward (MSFVW), and backward (MSBVW) volume waves, have been investigated. Previous (MSW) oscillator papers dealt with MSSW. Oscillators were fabricated using LPE-YIG MSW delay lines in a feedback loop of a 2-4 GHz amplifier. Wide and narrow band transducers were employed. Oscillator frequency as a function of biasing field is in agreement with a theoretical analysis. The analysis predicts frequency in terms of material parameters, biasing field, and transducer geometry. With wide band transducers a comb of frequencies is generated. Narrow band transducers for MSSW and MSFVW select a single mode; and MSBVW selects two modes. Spurious modes, attributed to instrumentation, are more than 20 dB below the main response, and bandwidths are less than 0.005 percent. No other spurious modes are observed. MSW oscillators produce clean electronically tunable signals and appear attractive in frequency agile systems.

  14. Experimental observation of Rabi oscillations in photonic lattices.

    Science.gov (United States)

    Shandarova, Ksenia; Rüter, Christian E; Kip, Detlef; Makris, Konstantinos G; Christodoulides, Demetrios N; Peleg, Or; Segev, Mordechai

    2009-03-27

    We demonstrate spatial Rabi oscillations in optical waveguide arrays. Adiabatic transitions between extended Floquet-Bloch modes associated with different bands are stimulated by periodic modulation of the photonic lattice in the propagation direction. When the stimulating modulation also carries transverse momentum, the transition becomes indirect, equivalent to phonon-assisted Rabi oscillations. In solid state physics such indirect Rabi oscillations necessitate coherent phonons and hence they have never been observed. Our experiments suggest that phonon-assisted Rabi oscillations are observable also with Bose-Einstein condensates, as well as with other wave systems-where coherence can be maintained for at least one period of the Rabi oscillation.

  15. Scaling effect of spin-torque nano-oscillators

    Directory of Open Access Journals (Sweden)

    Xiaohui Chao

    2017-05-01

    Full Text Available We have investigated the impact of device size on the characteristics of spin-torque nano-oscillators by studying the frequency and linewidth of the oscillator as a function of current density utilizing micromagnetic simulations at room temperature. Upon reduction of the device size from 40 down to 10 nm, thermal noise flattens the frequency and linewidth trends with current density and lowers the threshold current density of the oscillation. The magnetization vector trajectories reveal that irregular oscillations exist in smaller devices. Our findings suggest that a 20 × 20 nm2 spin-torque oscillator could be a viable candidate for a magnetic read sensor.

  16. Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators.

    Science.gov (United States)

    Lörch, Niels; Nigg, Simon E; Nunnenkamp, Andreas; Tiwari, Rakesh P; Bruder, Christoph

    2017-06-16

    Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.

  17. Low and then high frequency oscillations of distinct right cortical networks are progressively enhanced by medium and long term Satyananda Yoga meditation practice

    Directory of Open Access Journals (Sweden)

    John eThomas

    2014-06-01

    Full Text Available Meditation proficiency is related to trait-like (learned effects on brain function, developed over time. Previous studies show increases in EEG power in lower frequency bands (theta, alpha in experienced meditators in both meditation states and baseline conditions. Higher gamma band power has been found in advanced Buddhist meditators, yet it is not known if this occurs in Yoga meditation practices. This study used eLORETA to compare differences in cortical source activity underlying scalp EEG from intermediate (mean experience 4 years and advanced (mean experience 30 years Australian meditators from the Satyananda Yoga tradition during a body-steadiness meditation, mantra meditation and non-meditation mental calculation condition. Intermediate Yoga meditators showed greater source activity in low frequencies (particularly theta and alpha1 during mental calculation, body-steadiness and mantra meditation. A similar spatial pattern of significant differences was found in all conditions but the number of significant voxels was double during body-steadiness and mantra meditation than in the non-meditation (calculation condition. These differences were greatest in right (R superior frontal and R precentral gyri and extended back to include the R parietal and occipital lobes. Advanced Yoga meditators showed greater activity in high frequencies (beta and especially gamma in all conditions but greatly expanded during meditation practice. Across all conditions (meditation and non-meditation differences were greatest in the same regions; R insula, R inferior frontal gyrus and R anterior temporal lobe. Distinct R core networks were identified in alpha1 (8-10 Hz and gamma (25-42 Hz bands respectively. The voxels recruited to these networks greatly expanded during meditation practice to include homologous regions of the left hemisphere. Functional interpretation parallels traditionally described stages of development in Yoga proficiency.

  18. Self-oscillating resonant power converter

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to resonant power converters and inverters comprising a self-oscillating feedback loop coupled from a switch output to a control input of a switching network comprising one or more semiconductor switches. The self-oscillating feedback loop sets a switching frequency...... of the power converter and comprises a first intrinsic switch capacitance coupled between a switch output and a control input of the switching network and a first inductor. The first inductor is coupled in-between a first bias voltage source and the control input of the switching network and has...... a substantially fixed inductance. The first bias voltage source is configured to generate an adjustable bias voltage applied to the first inductor. The output voltage of the power converter is controlled in a flexible and rapid manner by controlling the adjustable bias voltage....

  19. Open to Suggestion.

    Science.gov (United States)

    Journal of Reading, 1986

    1986-01-01

    Offers (1) suggestions on how to teach students the importance of regular study habits for learning to spell, (2) story ideas to help students get started with creative writing, and (3) a model of a daily record assignment book to help students organize and remember their homework assignments. (SRT)

  20. A coupled-oscillator model of olfactory bulb gamma oscillations.

    Directory of Open Access Journals (Sweden)

    Guoshi Li

    2017-11-01

    Full Text Available The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING, best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity.

  1. Phase of Spontaneous Slow Oscillations during Sleep Influences Memory-Related Processing of Auditory Cues.

    Science.gov (United States)

    Batterink, Laura J; Creery, Jessica D; Paller, Ken A

    2016-01-27

    Slow oscillations during slow-wave sleep (SWS) may facilitate memory consolidation by regulating interactions between hippocampal and cortical networks. Slow oscillations appear as high-amplitude, synchronized EEG activity, corresponding to upstates of neuronal depolarization and downstates of hyperpolarization. Memory reactivations occur spontaneously during SWS, and can also be induced by presenting learning-related cues associated with a prior learning episode during sleep. This technique, targeted memory reactivation (TMR), selectively enhances memory consolidation. Given that memory reactivation is thought to occur preferentially during the slow-oscillation upstate, we hypothesized that TMR stimulation effects would depend on the phase of the slow oscillation. Participants learned arbitrary spatial locations for objects that were each paired with a characteristic sound (eg, cat-meow). Then, during SWS periods of an afternoon nap, one-half of the sounds were presented at low intensity. When object location memory was subsequently tested, recall accuracy was significantly better for those objects cued during sleep. We report here for the first time that this memory benefit was predicted by slow-wave phase at the time of stimulation. For cued objects, location memories were categorized according to amount of forgetting from pre- to post-nap. Conditions of high versus low forgetting corresponded to stimulation timing at different slow-oscillation phases, suggesting that learning-related stimuli were more likely to be processed and trigger memory reactivation when they occurred at the optimal phase of a slow oscillation. These findings provide insight into mechanisms of memory reactivation during sleep, supporting the idea that reactivation is most likely during cortical upstates. Slow-wave sleep (SWS) is characterized by synchronized neural activity alternating between active upstates and quiet downstates. The slow-oscillation upstates are thought to provide a

  2. Neutrino Oscillation Physics

    CERN Document Server

    Kayser, Boris

    2014-04-10

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  3. Classical oscillator driven by an oscillating chirped force

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2006-01-01

    The motion of a classical (harmonic) oscillator is studied in the case where the oscillator is driven by a pulsed oscillating force with a frequency varying in time (frequency chirp). The amplitude and phase of the oscillations left after the pulsed force in dependence on the profile and strength of

  4. Reactivity of sensorimotor oscillations is altered in children with hemiplegic cerebral palsy: A magnetoencephalographic study.

    Science.gov (United States)

    Pihko, Elina; Nevalainen, Päivi; Vaalto, Selja; Laaksonen, Kristina; Mäenpää, Helena; Valanne, Leena; Lauronen, Leena

    2014-08-01

    Cerebral palsy (CP) is characterized by difficulty in control of movement and posture due to brain damage during early development. In addition, tactile discrimination deficits are prevalent in CP. To study the function of somatosensory and motor systems in CP, we compared the reactivity of sensorimotor cortical oscillations to median nerve stimulation in 12 hemiplegic CP children vs. 12 typically developing children using magnetoencephalography. We also determined the primary cortical somatosensory and motor representation areas of the affected hand in the CP children using somatosensory-evoked magnetic fields and navigated transcranial magnetic stimulation, respectively. We hypothesized that the reactivity of the sensorimotor oscillations in alpha (10 Hz) and beta (20 Hz) bands would be altered in CP and that the beta-band reactivity would depend on the individual pattern of motor representation. Accordingly, in children with CP, suppression and rebound of both oscillations after stimulation of the contralateral hand were smaller in the lesioned than intact hemisphere. Furthermore, in two of the three children with CP having ipsilateral motor representation, the beta- but not alpha-band modulations were absent in both hemispheres after affected hand stimulation suggesting abnormal sensorimotor network interactions in these individuals. The results are consistent with widespread alterations in information processing in the sensorimotor system and complement current understanding of sensorimotor network development after early brain insults. Precise knowledge of the functional sensorimotor network organization may be useful in tailoring individual rehabilitation for people with CP. Copyright © 2014 Wiley Periodicals, Inc.

  5. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  6. Neutrino anomalies without oscillations

    Indian Academy of Sciences (India)

    conventional' neutrino oscillations induced by mass-mixing. Several of these require non-zero neutrino masses as well. Author Affiliations. Sandip Pakvasa1. Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA ...

  7. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  8. solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    The sMA region and a large part of the vacuum oscillation region are seen to have been washed away with the inclusion of the sK spectrum data. In the left panel of figure 4 we show the dependence of the probabilities on energy. In the sMA and the VO oscillation regions the probability has a non- monotonic dependence ...

  9. Distributed Bandpass Filtering and Signal Demodulation in Cortical Network Models

    Science.gov (United States)

    McDonnell, Mark D.

    Experimental recordings of cortical activity often exhibit narrowband oscillations, at various center frequencies ranging in the order of 1-200 Hz. Many neuronal mechanisms are known to give rise to oscillations, but here we focus on a population effect known as sparsely synchronised oscillations. In this effect, individual neurons in a cortical network fire irregularly at slow average spike rates (1-10 Hz), but the population spike rate oscillates at gamma frequencies (greater than 40 Hz) in response to spike bombardment from the thalamus. These cortical networks form recurrent (feedback) synapses. Here we describe a model of sparsely synchronized population oscillations using the language of feedback control engineering, where we treat spiking as noisy feedback. We show, using a biologically realistic model of synaptic current that includes a delayed response to inputs, that the collective behavior of the neurons in the network is like a distributed bandpass filter acting on the network inputs. Consequently, the population response has the character of narrowband random noise, and therefore has an envelope and instantaneous frequency with lowpass characteristics. Given that there exist biologically plausible neuronal mechanisms for demodulating the envelope and instantaneous frequency, we suggest there is potential for similar effects to be exploited in nanoscale electronics implementations of engineered communications receivers.

  10. Self-oscillation

    CERN Document Server

    Jenkins, Alejandro

    2011-01-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain linear systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy from the environment into the vibration: no external rate needs to be tuned to the resonant frequency. A paper from 1830 by G. B. Airy gives us the opening to introduce self-oscillation as a sort of "perpetual motion" responsible for the human voice. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the more recent swaying of the London Millenium Footbridge. Clocks are self-oscillators, as are bowed and wind musical instruments, and the heartbeat. We review the criterion that determines whether an arbitrary line...

  11. Optimal Thyristor Control Series Capacitor Neuro-Controller for Damping Oscillations

    OpenAIRE

    M. Magaji; M. W. Mustafa

    2009-01-01

    This study applies a neural-network-based optimal TCSC controller for damping oscillations. Optimal neural network controller is related to model-reference adaptive control, the network controller is developed based on the recursive “pseudo-linear regression. Problem statement: The optimal NN controller is designed to damp out the low frequency local and inter-area oscillations of the large power system. Approach: Two multilayer-perceptron neural networks are used in the design-the iden...

  12. Human gamma oscillations during slow wave sleep.

    Directory of Open Access Journals (Sweden)

    Mario Valderrama

    Full Text Available Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS. At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz and high (60-120 Hz frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern, confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern. This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.

  13. Retinal oscillations carry visual information to cortex

    Directory of Open Access Journals (Sweden)

    Kilian Koepsell

    2009-04-01

    Full Text Available Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs and thalamic outputs (spikes and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz, is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40-80 Hz and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene.

  14. The functional role of neural oscillations in non-verbal emotional communication

    Directory of Open Access Journals (Sweden)

    Ashley E Symons

    2016-05-01

    Full Text Available Effective interpersonal communication depends on the ability to perceive and interpret nonverbal emotional expressions from multiple sensory modalities. Current theoretical models propose that visual and auditory emotion perception involves a network of brain regions including the primary sensory cortices, the superior temporal sulcus (STS, and orbitofrontal cortex (OFC. However, relatively little is known about how the dynamic interplay between these regions gives rise to the perception of emotions. In recent years, there has been increasing recognition of the importance of neural oscillations in mediating neural communication within and between functional neural networks. Here we review studies investigating changes in oscillatory activity during the perception of visual, auditory, and audiovisual emotional expressions, and aim to characterise the functional role of neural oscillations in nonverbal emotion perception. Findings from the reviewed literature suggest that theta band oscillations most consistently differentiate between emotional and neutral expressions. While early theta synchronisation appears to reflect the initial encoding of emotionally salient sensory information, later fronto-central theta synchronisation may reflect the further integration of sensory information with internal representations. Additionally, gamma synchronisation reflects facilitated sensory binding of emotional expressions within regions such as the OFC, STS, and, potentially, the amygdala. However, the evidence is more ambiguous when it comes to the role of oscillations within the alpha and beta frequencies, which vary as a function of modality (or modalities, presence or absence of predictive information, and attentional or task demands. Thus, the synchronisation of neural oscillations within specific frequency bands mediates the rapid detection, integration, and evaluation of emotional expressions. Moreover, the functional coupling of oscillatory activity

  15. Making space for harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, Leo; /Fermilab

    2004-11-01

    If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.

  16. Partially synchronized states in an ensemble of chemo-mechanical oscillators

    Science.gov (United States)

    Kumar, Pawan; Verma, Dinesh Kumar; Parmananda, P.

    2017-08-01

    Partially synchronized (clustered) states are defined as coexisting coherent (synchronized) and incoherent (unsynchronized) domains in an ensemble of interacting oscillators. We report these clustered states in experiments involving an ensemble of sixteen mercury beating heart (MBH) oscillators. These oscillators interact via resistors and are subjected to two different network schemes: 1) All to all and 2) Nonlocal. For the all to all network, the coupling strengths were inhomogeneously distributed, whereas for the nonlocal network scenario, each oscillator was coupled, with an identical coupling strength, with four of its nearest neighbors in either direction. For both of these network schemes, partially synchronized states results into grouping of these oscillators, wherein some oscillators are synchronized and rest are unsynchronized. For all to all network, the partially synchronized states are observed, for the intermediate inhomogeneities, when subjected to the power law and the 'U' shape profiles of coupling strengths. Irrespective of the coupling profile chosen, low inhomogeneities in the coupling strengths leaves all the oscillators in a single coherent state whereas for the high inhomogeneities scenarios oscillators are located in the incoherent domain. In comparison, for the nonlocal network partially synchronized states emerge when the coupling constant is appropriately chosen. The experimental results for both these network scenarios have been analyzed using the redox time series (chemical activity) and the time evolution of the normalized areas for the mercury drop (mechanical activity). The existence of partially synchronized states in the experiments was verified using different diagnostic tools such as time series plot, space-time plot and average frequency.

  17. Hourglass Model for a Protein-Based Circadian Oscillator

    Science.gov (United States)

    Emberly, Eldon; Wingreen, Ned S.

    2006-01-01

    Many organisms possess internal biochemical clocks, known as circadian oscillators, which allow them to regulate their biological activity with a 24-hour period. It was recently discovered that the circadian oscillator of photosynthetic cyanobacteria is able to function in a test tube with only three proteins, KaiA, KaiB, and KaiC, and ATP. Biochemical events are intrinsically stochastic, and this tends to desynchronize oscillating protein populations. We propose that stability of the Kai-protein oscillator relies on active synchronization by (i) monomer exchange between KaiC hexamers during the day, and (ii) formation of clusters of KaiC hexamers at night. Our results highlight the importance of collective assembly or disassembly of proteins in biochemical networks, and may help guide design of novel protein-based oscillators.

  18. Inferring network connectivity by delayed feedback control.

    Directory of Open Access Journals (Sweden)

    Dongchuan Yu

    Full Text Available We suggest a control based approach to topology estimation of networks with N elements. This method first drives the network to steady states by a delayed feedback control; then performs structural perturbations for shifting the steady states M times; and finally infers the connection topology from the steady states' shifts by matrix inverse algorithm (M = N or l(1-norm convex optimization strategy applicable to estimate the topology of sparse networks from M << N perturbations. We discuss as well some aspects important for applications, such as the topology reconstruction quality and error sources, advantages and disadvantages of the suggested method, and the influence of (control perturbations, inhomegenity, sparsity, coupling functions, and measurement noise. Some examples of networks with Chua's oscillators are presented to illustrate the reliability of the suggested technique.

  19. Network-based differential gene expression analysis suggests cell cycle related genes regulated by E2F1 underlie the molecular difference between smoker and non-smoker lung adenocarcinoma

    Science.gov (United States)

    2013-01-01

    Background Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each gene independently without considering interactions between them. Top-ranked differentially regulated genes prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases. Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression strength and corresponding expression level changes so that both types of information can be leveraged optimally. Results In this paper, we develop a gene module based method for differential gene expression analysis, named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets. When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular differences between smoker and non-smoker lung adenocarcinoma. Conclusions In this paper, we develop nDGE to prioritize

  20. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators...... residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice...... and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes...

  1. Non-linear oscillations

    CERN Document Server

    Hagedorn, Peter

    1982-01-01

    Thoroughly revised and updated, the second edition of this concise text provides an engineer's view of non-linear oscillations, explaining the most important phenomena and solution methods. Non-linear descriptions are important because under certain conditions there occur large deviations from the behaviors predicted by linear differential equations. In some cases, completely new phenomena arise that are not possible in purely linear systems. The theory of non-linear oscillations thus has important applications in classical mechanics, electronics, communications, biology, and many other branches of science. In addition to many other changes, this edition has a new section on bifurcation theory, including Hopf's theorem.

  2. Brownian parametric oscillators

    Science.gov (United States)

    Zerbe, Christine; Jung, Peter; Hänggi, Peter

    1994-05-01

    We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).

  3. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  4. Robustness of synthetic oscillators in growing and dividing cells

    Science.gov (United States)

    Paijmans, Joris; Lubensky, David K.; Rein ten Wolde, Pieter

    2017-05-01

    Synthetic biology sets out to implement new functions in cells, and to develop a deeper understanding of biological design principles. Elowitz and Leibler [Nature (London) 403, 335 (2000), 10.1038/35002125] showed that by rational design of the reaction network, and using existing biological components, they could create a network that exhibits periodic gene expression, dubbed the repressilator. More recently, Stricker et al. [Nature (London) 456, 516 (2008), 10.1038/nature07389] presented another synthetic oscillator, called the dual-feedback oscillator, which is more stable. Detailed studies have been carried out to determine how the stability of these oscillators is affected by the intrinsic noise of the interactions between the components and the stochastic expression of their genes. However, as all biological oscillators reside in growing and dividing cells, an important question is how these oscillators are perturbed by the cell cycle. In previous work we showed that the periodic doubling of the gene copy numbers due to DNA replication can couple not only natural, circadian oscillators to the cell cycle [Paijmans et al., Proc. Natl. Acad. Sci. (USA) 113, 4063 (2016), 10.1073/pnas.1507291113], but also these synthetic oscillators. Here we expand this study. We find that the strength of the locking between oscillators depends not only on the positions of the genes on the chromosome, but also on the noise in the timing of gene replication: noise tends to weaken the coupling. Yet, even in the limit of high levels of noise in the replication times of the genes, both synthetic oscillators show clear signatures of locking to the cell cycle. This work enhances our understanding of the design of robust biological oscillators inside growing and diving cells.

  5. Synchronization of laser oscillators, associative memory, and optical neurocomputing

    Science.gov (United States)

    Hoppensteadt; Izhikevich

    2000-09-01

    We investigate here possible neurocomputational features of networks of laser oscillators. Our approach is similar to classical optical neurocomputing where artificial neurons are lasers and connection matrices are holographic media. However, we consider oscillatory neurons communicating via phases rather than amplitudes. Memorized patterns correspond to synchronized states where the neurons oscillate with equal frequencies and with prescribed phase relations. The mechanism of recognition is related to phase locking.

  6. FEM effective suggestion of guitar construction

    Directory of Open Access Journals (Sweden)

    Vladimír Dániel

    2006-01-01

    Full Text Available Modal analysis of the whole guitar construction was performed. The results of eigenfrequencies were obtained. Stress in strings affects not only static loading of material, but also shift of eigenfrequencies. From obtained natural frequencies for solved spectrum such frequencies were used which coincides with assumed ribs new positions of ribs were suggested. Other ribs which do not carry out the mechanical function were removed. Also static reaction was evaluated and new position of ribs was adjusted. For final model new eigenfrequencies were computed and compared with previous ones. Significant changes were revealed in low frequencies (bellow 400 Hz where fewer amounts of natural shapes were obtained. Approximately 50% were lost by adding of ribs. For chosen frequencies of equal temperament the harmonic analysis was performed. The analysis proved ability of oscillation for frequencies far of natural frequencies. The final model satisfies the requirement of minimization of static stress in material due to strings and allows very effective oscillation of top the guitar resonance board. In comparison with literature good agreement in amplitude size of front board and amount of modes in appropriate frequencies were achieved. Suggested model even offers higher amount of natural shapes in comparison with literature, namely in high frequencies. From additional comparison of eigenfrequencies and natural shapes the influence of ribs position on natural shapes was approved.

  7. Synchronization of networks

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... We study the synchronization of coupled dynamical systems on networks. The dynamics is governed by a local nonlinear oscillator for each node of the network and interactions connecting different nodes via the links of the network. We consider existence and stability conditions for both single- and ...

  8. Acute effects on cardiovascular oscillations during controlled slow yogic breathing

    Directory of Open Access Journals (Sweden)

    Om Lata Bhagat

    2017-01-01

    Interpretation & conclusions: Significant increase in cardiovascular oscillations and baroreflex recruitments during-ANB suggested a dynamic interaction between respiratory and cardiovascular system. Enhanced phasic relationship with some delay indicated the complexity of the system. It indicated that respiratory and cardiovascular oscillations were coupled through multiple regulatory mechanisms, such as mechanical coupling, baroreflex and central cardiovascular control.

  9. Collective Dynamics in Physical and Social Networks

    Science.gov (United States)

    Isakov, Alexander

    We study four systems where individual units come together to display a range of collective behavior. First, we consider a physical system of phase oscillators on a network that expands the Kuramoto model to include oscillator-network interactions and the presence of noise: using a Hebbian-like learning rule, oscillators that synchronize in turn strengthen their connections to each other. We find that the average degree of connectivity strongly affects rates of flipping between aligned and anti-aligned states, and that this result persists to the case of complex networks. Turning to a fully multi-player, multi-strategy evolutionary dynamics model of cooperating bacteria that change who they give resources to and take resources from, we find several regimes that give rise to high levels of collective structure in the resulting networks. In this setting, we also explore the conditions in which an intervention that affects cooperation itself (e.g. "seeding the network with defectors") can lead to wiping out an infection. We find a non-monotonic connection between the percent of disabled cooperation and cure rate, suggesting that in some regimes a limited perturbation can lead to total population collapse. At a larger scale, we study how the locomotor system recovers after amputation in fruit flies. Through experiment and a theoretical model of multi-legged motion controlled by neural oscillators, we find that proprioception plays a role in the ability of flies to control leg forces appropriately to recover from a large initial turning bias induced by the injury. Finally, at the human scale, we consider a social network in a traditional society in Africa to understand how social ties lead to group formation for collective action (stealth raids). We identify critical and distinct roles for both leadership (important for catalyzing a group) and friendship (important for final composition). We conclude with prospects for future work.

  10. A simple violin oscillator

    Science.gov (United States)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  11. Oscillators and operational amplifiers

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation...

  12. Phenomenology of neutrino oscillations

    CERN Document Server

    Kobzarev, I Yu; Okun, Lev Borisovich; Shchepkin, M G

    1980-01-01

    A complete phenomenological description of neutrino oscillations is given. The most general form of the mass matrix of N types of neutrino and of the matrix of neutrino mixing in the left charged current is analyzed. Measuring the parameters of the charged current matrix in oscillatory experiments and in the experimental studies of the beta -decay electron spectra, is discussed. (20 refs).

  13. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  14. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, Sidse M; Hansen, Lars Kai; Parnas, Josef

    2007-01-01

    to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  15. PDF receptor expression reveals direct interactions between circadian oscillators in Drosophila.

    Science.gov (United States)

    Im, Seol Hee; Taghert, Paul H

    2010-06-01

    Daily rhythms of behavior are controlled by a circuit of circadian pacemaking neurons. In Drosophila, 150 pacemakers participate in this network, and recent observations suggest that the network is divisible into M and E oscillators, which normally interact and synchronize. Sixteen oscillator neurons (the small and large lateral neurons [LNvs]) express a neuropeptide called pigment-dispersing factor (PDF) whose signaling is often equated with M oscillator output. Given the significance of PDF signaling to numerous aspects of behavioral and molecular rhythms, determining precisely where and how signaling via the PDF receptor (PDFR) occurs is now a central question in the field. Here we show that GAL4-mediated rescue of pdfr phenotypes using a UAS-PDFR transgene is insufficient to provide complete behavioral rescue. In contrast, we describe a approximately 70-kB PDF receptor (pdfr) transgene that does rescue the entire pdfr circadian behavioral phenotype. The transgene is widely but heterogeneously expressed among pacemakers, and also among a limited number of non-pacemakers. Our results support an important hypothesis: the small LNv cells directly target a subset of the other crucial pacemaker neurons cells. Furthermore, expression of the transgene confirms an autocrine feedback signaling by PDF back to PDF-expressing cells. Finally, the results present an unexpected PDF receptor site: the large LNv cells appear to target a population of non-neuronal cells that resides at the base of the eye. (c) 2009 Wiley-Liss, Inc.

  16. Oscillations of the Sun's chromosphere. VI. K grains, resonances, and gravity waves

    Science.gov (United States)

    Kneer, F.; von Uexkull, M.

    1993-07-01

    We present observations of simultaneous filtergram time sequences in Mg b2, Ca K and Hα obtained from quiet Sun disc centre with the Vacuum Tower Telescope at Observatorio del Teide, Tenerife. Fourier analyses are performed to obtain power, coherence and phase spectra in the k-ω plane. There, the dominant features are the wellknown ridges of the 5 min resonant modes. Yet in the chromosphere the ridges extend to high wavenumbers (wavelengths ≍ 1.3 Mm) and to high frequencies (periods ≍ 105 s). Neither the famous chromospheric "3 min" oscillations nor an oscillation at the acoustic cutoff frequency (period 210 s) appear exceptionally pronounced. The signature of gravity waves is indicated from phase relations. We distinguish between the behaviour in the interior of the chromospheric network and on the boundary. The network boundary behaves less oscillatory than the interior. In snapshots of chromospheric intensities the K grains (Beckers 1964), or, synonymously the bright cell points, appear in the cell interior. They represent the phases of high temperature of a wave field with partly resonant and coherent properties. (We take intensity fluctuations as proxies for temperature fluctuations.) The waves are only partly upward propagating p-modes with a multitude of eigenvalues in frequency and wavenumber, like the subphotospheric p-modes. We suggest that an excitation mechanism acts within the chromosphere itself to drive the waves. This could explain the phase relations between intensity and velocity oscillations.

  17. Photonic local oscillator development

    Science.gov (United States)

    Kimberk, Robert; Tong, Edward; Hunter, Todd R.; Christensen, Robert; Blundell, Ray

    2006-12-01

    In the receiver lab, we have developed a 200 GHz to 230 GHz local oscillator constructed from mostly commercially available 1550 nm laser communication components. Theoretical and experimental work show that the laser adds negligible phase noise to this photonic local oscillator system and that spectral purity and phase stability are similar to Gunn oscillator based local oscillator output. The optical path consists of a single 1550 nm diode laser, a lithium niobate optical phase modulator, a Mach Zehnder interferometer (MZI) with a free spectral range of 75 GHz, and a 160 GHz to 260 GHz photomixer whose output is connected to a horn antenna. All of the optical devices and connections are polarization maintaining, and the photomixer was designed and fabricated at the CCLRC Rutherford Appleton Laboratory. The electrical path consists of a YIG synthesizer, operating in the frequency range 14-20 GHz, a frequency doubler, and a power amplifier connected to the RF port of the phase modulator. At the SMA on Mauna Kea, we incorporated the photonic LO into one element (Antenna 6) of a five antenna array for test observations of CO J=2-1 made towards the ultracompact HII region G138.295+1.555. Spectral features of comparable width occur on baselines with and without antenna 6, and noise increases with baseline length independent of antenna number. Continuum observations were also made toward the quasar 3c454.3 for a period of about one hour. In summary, the SMA has proven that the photonic local oscillator operates with adequate phase and frequency stability for radio-interferometry.

  18. Identifying neuronal oscillations using rhythmicity

    NARCIS (Netherlands)

    Fransen, A.M.M.; Ede, F.L. van; Maris, E.G.G.

    2015-01-01

    Neuronal oscillations are a characteristic feature of neuronal activity and are typically investigated through measures of power and coherence. However, neither of these measures directly reflects the distinctive feature of oscillations: their rhythmicity. Rhythmicity is the extent to which future

  19. Mode Selection in Compressible Active Flow Networks

    Science.gov (United States)

    Forrow, Aden; Woodhouse, Francis G.; Dunkel, Jörn

    2017-07-01

    Coherent, large-scale dynamics in many nonequilibrium physical, biological, or information transport networks are driven by small-scale local energy input. Here, we introduce and explore an analytically tractable nonlinear model for compressible active flow networks. In contrast to thermally driven systems, we find that active friction selects discrete states with a limited number of oscillation modes activated at distinct fixed amplitudes. Using perturbation theory, we systematically predict the stationary states of noisy networks and find good agreement with a Bayesian state estimation based on a hidden Markov model applied to simulated time series data. Our results suggest that the macroscopic response of active network structures, from actomyosin force networks to cytoplasmic flows, can be dominated by a significantly reduced number of modes, in contrast to energy equipartition in thermal equilibrium. The model is also well suited to study topological sound modes and spectral band gaps in active matter.

  20. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular...

  1. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.

    Directory of Open Access Journals (Sweden)

    Richard Andersson

    suggests that converging deficits on fast-spiking interneurons may lead to decreased network function and thus aberrant gamma oscillations and cognitive decline in schizophrenia.

  2. Doppler Shift Oscillations from a Hot Line Observed by IRIS

    Science.gov (United States)

    Li, D.; Ning, Z. J.; Huang, Y.; Chen, N.-H.; Zhang, Q. M.; Su, Y. N.; Su, W.

    2017-11-01

    We present a detailed investigation of the Doppler shift oscillations in a hot loop during an M7.1 flare on 2014 October 27 observed by the Interface Region Imaging Spectrograph. The periodic oscillations are observed in the Doppler shift of Fe xxi 1354.09 Å (log T˜ 7.05), and the dominant period is about 3.1 minutes. However, such 3.1 minute oscillations are not found in the line-integrated intensity of Fe xxi 1354.09 Å, AIA EUV fluxes, or microwave emissions. Solar Dynamics Observatory/AIA and Hinode/XRT imaging observations indicate that the Doppler shift oscillations locate at the hot loop-top region (≥11 MK). Moreover, the differential emission measure results show that the temperature is increasing rapidly when the Doppler shift oscillates, but the number density does not exhibit the corresponding increases nor oscillations, implying that the flare loop is likely to oscillate in an incompressible mode. All of these facts suggest that the Doppler shift oscillations at the shorter period are most likely the standing kink oscillations in a flare loop. Meanwhile, a longer period of about 10 minutes is identified in the time series of Doppler shift and line-integrated intensity, GOES SXR fluxes, and AIA EUV light curves, indicating the periodic energy release in this flare, which may be caused by a slow mode wave.

  3. The stabilization system of primary oscillation for a micromechanical gyroscope

    Science.gov (United States)

    Baranov, Pavel; Nesterenko, Tamara; Tsimbalist, Edvard; Vtorushin, Sergey

    2017-06-01

    The mode of primary oscillations of a micromechanical gyroscope (MMG) sensor is provided by an electrostatic comb-drive actuator in which the interaction between the micromechanical structures and electronics occurs by means of a single or differential capacitive sensor. Two pairs of capacitive sensors are traditionally used for frequency stabilization of MMG primary oscillations. The first pair of capacitive sensors excites primary oscillations, while the second measures the amplitude of primary oscillations. The stabilization system provides a continuous frequency tuning of primary oscillations that increases the duration of transition processes, the time of operational readiness, and the instability of the output signal from the secondary oscillation channel of the MMGs. This paper presents a new approach to the primary oscillation control system of the two-component MMG. The method of calculating the natural resonant frequency is based on measurements of the total current passing through the comb-driver actuator capacitances, and a lock-in detection is suggested. This paper consists of the results of the numerical analysis, the description of the proposed approach to the frequency control of the primary MMG oscillations, and the Simulink model of the behaviour of the MMG stabilization system, depending on its mechanical-and-physical properties with regard to a 2% shift of the natural resonant frequency. The frequency control of the primary oscillations at 2% frequency detuning is performed within 0.11 s.

  4. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  5. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  6. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  7. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    of stars. For stars like the sun, energy transport in the outer layers occurs mainly through turbulent convection. Here, pressure mode oscillations are essentially propagating sound waves, whose properties can be altered by interaction with the turbulent motion of the gas. This has always been a problem...... for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...

  8. Neutrino Masses and Oscillations

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  9. Oscillating stagnation point flow

    Science.gov (United States)

    Grosch, C. E.; Salwen, H.

    1982-01-01

    A solution of the Navier-Stokes equations is given for an incompressible stagnation point flow whose magnitude oscillates in time about a constant, non-zero, value (an unsteady Hiemenz flow). Analytic approximations to the solution in the low and high frequency limits are given and compared with the results of numerical integrations. The application of these results to one aspect of the boundary layer receptivity problem is also discussed.

  10. Noise Exposure in TKA Surgery; Oscillating Tip Saw Systems vs Oscillating Blade Saw Systems.

    Science.gov (United States)

    Peters, Michiel P; Feczko, Peter Z; Tsang, Karel; van Rietbergen, Bert; Arts, Jacobus J; Emans, Peter J

    2016-12-01

    Historically it has been suggested that noise-induced hearing loss (NIHL) affects approximately 50% of the orthopedic surgery personnel. This noise may be partially caused by the use of powered saw systems that are used to make the bone cuts. The first goal was to quantify and compare the noise emission of these different saw systems during total knee arthroplasty (TKA) surgery. A second goal was to estimate the occupational NIHL risk for the orthopedic surgery personnel in TKA surgery by quantifying the total daily noise emission spectrum during TKA surgery and to compare this to the Dutch Occupational Health Organization guidelines. A conventional sagittal oscillating blade system with a full oscillating blade and 2 newer oscillating tip saw systems (handpiece and blade) were compared. Noise level measurements during TKA surgery were performed during cutting and hammering, additionally surgery noise profiles were made. The noise level was significantly lower for the oscillating tip saw systems compared to the conventional saw system, but all were in a range that can cause NIHL. The conventional system handpiece produced a considerable higher noise level compared to oscillating tip handpiece. NIHL is an underestimated problem in the orthopedic surgery. Solutions for decreasing the risk of hearing loss should be considered. The use of oscillating tip saw systems have a reduced noise emission in comparison with the conventional saw system. The use of these newer systems might be a first step in decreasing hearing loss among the orthopedic surgery personnel. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Large-amplitude Longitudinal Oscillations in a Solar Filament

    Science.gov (United States)

    Zhang, Q. M.; Li, T.; Zheng, R. S.; Su, Y. N.; Ji, H. S.

    2017-06-01

    In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based Hα telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°-36° with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100-4400 s) have a spatial dependence, implying that the curvature radii (R) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4-133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s-1. Interestingly, the filament experienced mass drainage southward at a speed of ˜27 km s-1. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between -9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.

  12. Relaxation damping in oscillating contacts.

    Science.gov (United States)

    Popov, M; Popov, V L; Pohrt, R

    2015-11-09

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect "relaxation damping". The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed.

  13. Neuronal Network Pharmacodynamics of GABAergic Modulation in the Human Cortex Determined Using Pharmaco-Magnetoencephalography

    NARCIS (Netherlands)

    Hall, S.D.; Barnes, G.R.; Furlong, P.L.; Seri, S.; Hillebrand, A.

    2010-01-01

    Neuronal network oscillations are a unifying phenomenon in neuroscience research, with comparable measurements across scales and species. Cortical oscillations are of central importance in the characterization of neuronal network function in health and disease and are influential in effective drug

  14. Active Emulsions: Synchronization of Chemical Oscillators

    Science.gov (United States)

    Fraden, Seth

    2012-02-01

    We explore the dynamical behavior of emulsions consisting of nanoliter volume droplets of the oscillatory Belousov-Zhabotinsky (BZ) reaction separated by a continuous oil phase. Some of the aqueous BZ reactants partition into the oil leading to chemical coupling of the drops. We use microfluidics to vary the size, composition and topology of the drops in 1D and 2D. Addition of a light sensitive catalyst to the drops and illumination with a computer projector allows each drop to be individually perturbed. A variety of synchronous regimes are found that systematically vary with the coupling strength and whether coupling is dominated by activatory or inhibitory species. In 1D we observe in- and anti-phase oscillations, stationary Turing patterns in which drops stop oscillating, but form spatially periodic patterns of drops in the oxidized and reduced states, and more complex combinations of stationary and oscillatory drops. In 2D, the attractors are more complex and vary with network topology and coupling strength. For hexagonal lattices as a function of increasing coupling strength we observe right and left handed rotating oscillations, mixed oscillatory and Turing states and finally full Turing states. Reaction -- diffusion models based on a simplified description of the BZ chemistry and diffusion of messenger species reproduce a number of the experimental results. For a range of parameters, a simplified phase oscillator model provides an intuitive understanding of the complex synchronization patterns. [4pt] ``Coupled oscillations in a 1D emulsion of Belousov--Zhabotinsky droplets,'' Jorge Delgado, Ning Li, Marcin Leda, Hector O. Gonzalez-Ochoa, Seth Fraden and Irving R. Epstein, Soft Matter, 7, 3155 (2011).

  15. Synchronization of spin torque nano-oscillators

    Science.gov (United States)

    Turtle, James; Buono, Pietro-Luciano; Palacios, Antonio; Dabrowski, Christine; In, Visarath; Longhini, Patrick

    2017-04-01

    Synchronization of spin torque nano-oscillators (STNOs) has been a subject of extensive research as various groups try to harness the collective power of STNOs to produce a strong enough microwave signal at the nanoscale. Achieving synchronization has proven to be, however, rather difficult for even small arrays while in larger ones the task of synchronization has eluded theorists and experimentalists altogether. In this work we solve the synchronization problem, analytically and computationally, for networks of STNOs connected in series. The procedure is valid for networks of arbitrary size and it is readily extendable to other network topologies. These results should help guide future experiments and, eventually, lead to the design and fabrication of a nanoscale microwave signal generator.

  16. Abnormal cross-frequency coupling in the tinnitus network.

    Directory of Open Access Journals (Sweden)

    Ilya eAdamchic

    2014-09-01

    Full Text Available Neuroimaging studies have identified networks of brain areas and oscillations associated with tinnitus perception. However, how these regions relate to perceptual characteristics of tinnitus, and how oscillations in various frequency bands are associated with communications within the tinnitus network is still incompletely understood. Recent evidence suggests that apart from changes of the tinnitus severity the changes of tinnitus dominant pitch also have modulating effect on the neuronal activity in a number of brain areas within the tinnitus network. Therefore, in a re-analysis of an existing dataset, we sought to determine how the oscillations in the tinnitus network in the various frequency bands interact. We also investigate how changes of tinnitus loudness, annoyance and pitch affect cross-frequency interaction both within and between nodes of the tinnitus network. Results of this study provide evidence that in tinnitus patients, aside from the previously described changes of oscillatory activity, there are also changes of cross-frequency coupling (CFC; phase-amplitude CFC was increased in tinnitus patients within the auditory cortex and the dorsolateral prefrontal regions between the phase of delta-theta and the amplitude of gamma oscillations (Modulation Index [MI] 0.17 in tinnitus patients vs. 0.08 in tinnitus free controls. Moreover, theta phase in the anterior cingulate region modulated gamma in the auditory (MI 0.1 and dorsolateral prefrontal regions (MI 0.19. Reduction of tinnitus severity after acoustic coordinated reset therapy led to a partial normalization of abnormal CFC. Also treatment induced changes in tinnitus pitch significantly modulated changes in CFC. Thus, tinnitus perception is associated with a more pronounced CFC within and between nodes of the tinnitus network. Cross-frequency coupling can coordinate tinnitus-relevant activity in the tinnitus network providing a mechanism for effective communication between nodes

  17. Expected quality factor of a simple tuned oscillator.

    Science.gov (United States)

    Tan, Kia Hock

    2011-05-01

    A positive feedback system oscillating under self-sustained mode is shown to have an extremely high gain. Modeled as one port, the expected Q is much higher than the loaded Q-factor of the resonator. With just thermal noise present, random phase/frequency deviation is linear. Centered about the oscillator frequency omega/(0), noise frequency on both sides is more amplified with decreasing separation distance. Ultimately, frequency pulling may result in synchronous locking with hysteresis, which occurs because a real oscillator displays a truncated limiting curve. Once locked onto a signal, smaller levels are ignored. A new approach to the design and characterization of a simple tuned oscillator is offered: According to the phenomenon of injection locking, there exists an expected quality factor relating the shape of the truncated limiting curve to an ideal curve. In this paper, synthesis and innovative analytical methods of academic interest are revealed: 1) application of the transducer loss method is revised to establish a new method for oscillator characterization; 2) a transparent method of normalizing a two-port network in the presence of white noise is developed; and 3) in quartz crystal controlled oscillators, characterization of the noise originating from an equivalent noise-resistance determined from parameter of the quartz crystal is proposed. It is shown that the two-port model can also be approximated on a one-port basis. In conclusion, a sample of closed-form estimation of expected Q-factor order of magnitude of piezoelectric resonator oscillators is calculated.

  18. Simple robot suggests physical interlimb communication is essential for quadruped walking.

    Science.gov (United States)

    Owaki, Dai; Kano, Takeshi; Nagasawa, Ko; Tero, Atsushi; Ishiguro, Akio

    2013-01-06

    Quadrupeds have versatile gait patterns, depending on the locomotion speed, environmental conditions and animal species. These locomotor patterns are generated via the coordination between limbs and are partly controlled by an intraspinal neural network called the central pattern generator (CPG). Although this forms the basis for current control paradigms of interlimb coordination, the mechanism responsible for interlimb coordination remains elusive. By using a minimalistic approach, we have developed a simple-structured quadruped robot, with the help of which we propose an unconventional CPG model that consists of four decoupled oscillators with only local force feedback in each leg. Our robot exhibits good adaptability to changes in weight distribution and walking speed simply by responding to local feedback, and it can mimic the walking patterns of actual quadrupeds. Our proposed CPG-based control method suggests that physical interaction between legs during movements is essential for interlimb coordination in quadruped walking.

  19. Abnormal Synchronizing Path of Delay-coupled Chaotic Oscillators on the Edge of Stability

    CERN Document Server

    Zhuo, Zhao; Fu, Zhong-Qian

    2015-01-01

    In this paper, the transition of synchronizing path of delay-coupled chaotic oscillators in a scale-free network is highlighted. Mainly, through the critical transmission delay makes chaotic oscillators be coupled on the edge of stability, we find that the transition of synchronizing path is \\emph{abnormal}, which is characterized by the following evidences: (a) synchronization process starts with low-degree rather than high-degree ones; (b) the high-degree nodes don't undertake the role of hub; (c) the synchronized subnetworks show a poor small-world property as a result of hubs absence; (d) the clustering synchronization behavior emerges even community structure is absent in the scale-free network. This abnormal synchronizing path suggests that the diverse synchronization behaviors occur in the same topology, which implies that the relationship between dynamics and structure of network is much more complicated than the common sense that the structure is the foundation of dynamics. Moreover, it also reveals ...

  20. Network cosmology.

    Science.gov (United States)

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  1. Network Cosmology

    Science.gov (United States)

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688

  2. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow...... diffusive coupling that gives rise to wave dynamics and via fast changes in membrane potential that propagate almost instantly over significant distances. The model reproduces the basic calcium dynamics of the vascular smooth muscle cell: calcium waves which upon increased activity of cGMP-sensitive calcium...

  3. Oscillations in nonlinear systems

    CERN Document Server

    Hale, Jack K

    2015-01-01

    By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa

  4. RC Oscillators with Two Operational Amplifiers with Precision Phase Shift between Two Outputs

    OpenAIRE

    Horsky, P.

    1996-01-01

    In some instruments oscillator with precision 90° phase shift of output signals is needed. In this article a new type of RC oscillators with precision 90° phase shift between two low impedance output signals is described. This phase shift does not depend on tolerances of RC networks used.

  5. Human scalp recorded sigma activity is modulated by slow EEG oscillations during deep sleep.

    NARCIS (Netherlands)

    Fell, J.; Elfadil, H.; Roschke, J.; Burr, W.; Klaver, P.; Elger, C.E.; Fernandez, G.S.E.

    2002-01-01

    The EEG during deep sleep exhibits a distinct cortically generated slow oscillation of around and below 1 Hz which can be distinguished from other delta (0.5-3.5 Hz) activity. Intracranial studies showed that this slow oscillation triggers and groups cortical network firing. In the present study, we

  6. Solar Dynamo Driven by Periodic Flow Oscillation

    Science.gov (United States)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  7. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  8. Linearization of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E; Pascual, I [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-03-11

    A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for the complete range of oscillation amplitudes. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of the technique.

  9. Network-induced oscillatory behavior in material flow networks and irregular business cycles.

    Science.gov (United States)

    Helbing, Dirk; Lämmer, Stefen; Witt, Ulrich; Brenner, Thomas

    2004-11-01

    Network theory is rapidly changing our understanding of complex systems, but the relevance of topological features for the dynamic behavior of metabolic networks, food webs, production systems, information networks, or cascade failures of power grids remains to be explored. Based on a simple model of supply networks, we offer an interpretation of instabilities and oscillations observed in biological, ecological, economic, and engineering systems. We find that most supply networks display damped oscillations, even when their units--and linear chains of these units--behave in a nonoscillatory way. Moreover, networks of damped oscillators tend to produce growing oscillations. This surprising behavior offers, for example, a different interpretation of business cycles and of oscillating or pulsating processes. The network structure of material flows itself turns out to be a source of instability, and cyclical variations are an inherent feature of decentralized adjustments.

  10. Functional role of frontal alpha oscillations in creativity.

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R; Foulser, A Alban; Mellin, Juliann M; Fröhlich, Flavio

    2015-06-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent electroencephalography (EEG) data suggests that cortical oscillations in the alpha frequency band (8-12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a functional role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10 Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking (TTCT), a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40 Hz-tACS was used instead of 10 Hz-tACS to rule out a general "electrical stimulation" effect. No significant change in the Creativity Index was found for such frontal 40 Hz stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A Matterwave Transistor Oscillator

    CERN Document Server

    Caliga, Seth C; Zozulya, Alex A; Anderson, Dana Z

    2012-01-01

    A triple-well atomtronic transistor combined with forced RF evaporation is used to realize a driven matterwave oscillator circuit. The transistor is implemented using a metalized compound glass and silicon substrate. On-chip and external currents produce a cigar-shaped magnetic trap, which is divided into transistor source, gate, and drain regions by a pair of blue-detuned optical barriers projected onto the magnetic trap through a chip window. A resonant laser beam illuminating the drain portion of the atomtronic transistor couples atoms emitted by the gate to the vacuum. The circuit operates by loading the source with cold atoms and utilizing forced evaporation as a power supply that produces a positive chemical potential in the source, which subsequently drives oscillation. High-resolution in-trap absorption imagery reveals gate atoms that have tunneled from the source and establishes that the circuit emits a nominally mono-energetic matterwave with a frequency of 23.5(1.0) kHz by tunneling from the gate, ...

  12. Heat exchanger with oscillating flow

    Science.gov (United States)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  13. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  14. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  15. The predictive roles of neural oscillations in speech motor adaptability.

    Science.gov (United States)

    Sengupta, Ranit; Nasir, Sazzad M

    2016-06-01

    The human speech system exhibits a remarkable flexibility by adapting to alterations in speaking environments. While it is believed that speech motor adaptation under altered sensory feedback involves rapid reorganization of speech motor networks, the mechanisms by which different brain regions communicate and coordinate their activity to mediate adaptation remain unknown, and explanations of outcome differences in adaption remain largely elusive. In this study, under the paradigm of altered auditory feedback with continuous EEG recordings, the differential roles of oscillatory neural processes in motor speech adaptability were investigated. The predictive capacities of different EEG frequency bands were assessed, and it was found that theta-, beta-, and gamma-band activities during speech planning and production contained significant and reliable information about motor speech adaptability. It was further observed that these bands do not work independently but interact with each other suggesting an underlying brain network operating across hierarchically organized frequency bands to support motor speech adaptation. These results provide novel insights into both learning and disorders of speech using time frequency analysis of neural oscillations. Copyright © 2016 the American Physiological Society.

  16. A common oscillator for perceptual rivalries?

    Science.gov (United States)

    Carter, Olivia L; Pettigrew, John D

    2003-01-01

    Perceptual rivalry is an oscillation of conscious experience that takes place despite univarying. if ambiguous, sensory input. Much current interest is focused on the controversy over the neural site of binocular rivalry, a variety of perceptual rivalry for which a number of different cortical regions have been implicated. Debate continues over the relative role of higher levels of processing compared with primary visual cortex and the suggestion that different forms of rivalry involve different cortical areas. Here we show that the temporal pattern of disappearance and reappearance in motion-induced blindness (MIB) (Bonneh et al, 2001 Nature 411 798-801) is highly correlated with the pattern of oscillation reported during binocular rivalry in the same individual. This correlation holds over a wide range of inter-individual variation. Temporal similarity in the two phenomena was strikingly confirmed by the effects of the hallucinogen LSD, which produced the same, extraordinary, pattern of increased rhythmicity in both kinds of perceptual oscillation. Furthermore. MIB demonstrates the two properties previously considered characteristic of binocular rivalry. Namely the distribution of dominance periods can be approximated by a gamma distribution and, in line with Levelt's second proposition of binocular rivalry, predominance of one perceptual phase can be increased through a reduction in the predominance time of the opposing phase. We conclude that (i) MIB is a form of perceptual rivalry, and (ii) there may be a common oscillator responsible for timing aspects of all forms of perceptual rivalry.

  17. Electron beam modification of vanadium dioxide oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, Maksim; Velichko, Andrey; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander [Petrozavodsk State University, Petrozavodsk (Russian Federation)

    2017-03-15

    The paper presents the results of a study of electron-beam modification (EBM) of VO{sub 2}-switch I-V curve threshold parameters and the self-oscillation frequency of a circuit containing such a switching device. EBM in vacuum is reversible and the parameters are restored when exposed to air at pressure of 150 Pa. At EBM with a dose of 3 C cm{sup -2}, the voltages of switching-on (V{sub th}) and off (V{sub h}), as well as the OFF-state resistance R{sub off}, decrease down to 50% of the initial values, and the oscillation frequency increases by 30% at a dose of 0.7 C cm{sup -2}. Features of physics of EBM of an oscillator are outlined considering the contribution of the metal and semiconductor phases of the switching channel. Controlled modification allows EBM forming of switches with preset parameters. Also, it might be used in artificial oscillatory neural networks for pattern recognition based on frequency shift keying. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Optical mapping of the dominant frequency of brain signal oscillations in motor systems

    National Research Council Canada - National Science Library

    Feng-Mei Lu; Yi-Feng Wang; Juan Zhang; Hua-Fu Chen; Zhen Yuan

    2017-01-01

    Recent neuroimaging studies revealed that the dominant frequency of neural oscillations is brain-region-specific and can vary with frequency-specific reorganization of brain networks during cognition...

  19. Phase synchronization between alpha and beta oscillations in the human electroencephalogram.

    Science.gov (United States)

    Nikulin, V V; Brismar, T

    2006-01-01

    Coordination of neuronal oscillations generated at different frequencies has been hypothesized to be an important feature of integrative brain functions. The present study aimed at the evaluation of the cross-frequency phase synchronization between electroencephalographic alpha and beta oscillations. The amplitude and phase information were extracted from electroencephalograms recorded in 176 healthy human subjects using an analytic signal approach based on the Hilbert transform. The results reliably demonstrated the presence of phase synchronization between alpha and beta oscillations, with a maximum in the occipito-parietal areas. The phase difference between alpha and beta oscillations showed characteristic peaks at about 2 and -1 radians, which were common for many subjects and electrodes. A specific phase difference might reflect similarity in the organization and interconnections of the networks generating alpha and beta oscillations across the entire cortex. Beta oscillations, which are phase-locked to alpha oscillations--alpha-synchronous beta oscillations--were largest in the occipito-parietal area with a second smaller maximum in the frontal area, thus demonstrating a topography, which was different from the conventional alpha and beta oscillations. The strength of the alpha-synchronous beta oscillations was not exclusively defined by the amplitude of the alpha rhythm indicating that they represent a distinct feature of the spontaneous electroencephalogram, which allows for a refined discrimination of the dynamics of beta oscillations.

  20. The Krüppel-like factor 9 (KLF9 network in HEC-1-A endometrial carcinoma cells suggests the carcinogenic potential of dys-regulated KLF9 expression

    Directory of Open Access Journals (Sweden)

    Zeng Zhaoyang

    2008-09-01

    Full Text Available Abstract Background Krüppel-like factor 9 (KLF9 is a transcriptional regulator of uterine endometrial cell proliferation, adhesion and differentiation; processes essential for pregnancy success and which are subverted during tumorigenesis. The network of endometrial genes controlled by KLF9 is largely unknown. Over-expression of KLF9 in the human endometrial cancer cell line HEC-1-A alters cell morphology, proliferative indices, and differentiation, when compared to KLF9 under-expressing HEC-1-A cells. This cell line provides a unique model for identifying KLF9 downstream gene targets and signaling pathways. Methods HEC-1-A sub-lines differing in relative levels of KLF9 were subjected to microarray analysis to identify differentially-regulated RNAs. Results KLF9 under-expression induced twenty four genes. The KLF9-suppressed mRNAs encode protein participants in: aldehyde metabolism (AKR7A2, ALDH1A1; regulation of the actin cytoskeleton and cell motility (e.g., ANK3, ITGB8; cellular detoxification (SULT1A1, ABCC4; cellular signaling (e.g., ACBD3, FZD5, RAB25, CALB1; and transcriptional regulation (PAX2, STAT1. Sixty mRNAs were more abundant in KLF9 over-expressing sub-lines. The KLF9-induced mRNAs encode proteins which participate in: regulation and function of the actin cytoskeleton (COTL1, FSCN1, FXYD5, MYO10; cell adhesion, extracellular matrix and basement membrane formation (e.g., AMIGO2, COL4A1, COL4A2, LAMC2, NID2; transport (CLIC4; cellular signaling (e.g., BCAR3, MAPKAPK3; transcriptional regulation [e.g., KLF4, NR3C1 (glucocorticoid receptor, RXRα], growth factor/cytokine actions (SLPI, BDNF; and membrane-associated proteins and receptors (e.g., CXCR4, PTCH1. In addition, the abundance of mRNAs that encode hypothetical proteins (KLF9-inhibited: C12orf29 and C1orf186; KLF9-induced: C10orf38 and C9orf167 were altered by KLF9 expression. Human endometrial tumors of high tumor grade had decreased KLF9 mRNA abundance. Conclusion KLF9

  1. Monomer exchange and the hourglass model of protein-based oscillators

    Science.gov (United States)

    Emberly, Eldon

    2008-03-01

    Circadian rhythms in photosynthetic cyanobacteria are under the control of a three protein biochemical network that generates oscillations in the phosphorylation level of one of the proteins. This oscillatory signal has a period of roughly 24 hours and regulates many biological processes in the bacteria to the day and night cycle. The molecular view of the phosphorylation process is that one of the proteins forms a hexameric complex whose phosphorylation levels rise and fall based on the activity of the other two proteins. Each hexameric complex thus functions as an independent molecular clock. However the bacteria contains many such clocks and so how do they interact to generate a coherent oscillating signal? In this talk I will discuss a model that suggests that monomer exchange between hexamers helps to synchronize the population of clocks during the daylight portion of the oscillation. Other synchronizing mechanisms will be highlighted for the other portion of the cycle. Recent experiments will be discussed in light of the exchange model.

  2. Synaptic organizations and dynamical properties of weakly connected neural oscillators. I. Analysis of a canonical model.

    Science.gov (United States)

    Hoppensteadt, F C; Izhikevich, E M

    1996-08-01

    We study weakly connected networks of neural oscillators near multiple Andronov-Hopf bifurcation points. We analyze relationships between synaptic organizations (anatomy) of the networks and their dynamical properties (function). Our principal assumptions are: (1) Each neural oscillator comprises two populations of neurons; excitatory and inhibitory ones; (2) activity of each population of neurons is described by a scalar (one-dimensional) variable; (3) each neural oscillator is near a nondegenerate supercritical Andronov-Hopf bifurcation point; (4) the synaptic connections between the neural oscillators are weak. All neural networks satisfying these hypotheses are governed by the same dynamical system, which we call the canonical model. Studying the canonical model shows that: (1) A neural oscillator can communicate only with those oscillators which have roughly the same natural frequency. That is, synaptic connections between a pair of oscillators having different natural frequencies are functionally insignificant. (2) Two neural oscillators having the same natural frequencies might not communicate if the connections between them are from among a class of pathological synaptic configurations. In both cases the anatomical presence of synaptic connections between neural oscillators does not necessarily guarantee that the connections are functionally significant. (3) There can be substantial phase differences (time delays) between the neural oscillators, which result from the synaptic organization of the network, not from the transmission delays. Using the canonical model we can illustrate self-ignition and autonomous quiescence (oscillator death) phenomena. That is, a network of passive elements can exhibit active properties and vice versa. We also study how Dale's principle affects dynamics of the networks, in particular, the phase differences that the network can reproduce. We present a complete classification of all possible synaptic organizations from this

  3. Associative memory in phasing neuron networks

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Niketh S [ORNL; Bochove, Erik J. [United States Air Force Research Laboratory, Kirtland Air Force Base; Braiman, Yehuda [ORNL

    2014-01-01

    We studied pattern formation in a network of coupled Hindmarsh-Rose model neurons and introduced a new model for associative memory retrieval using networks of Kuramoto oscillators. Hindmarsh-Rose Neural Networks can exhibit a rich set of collective dynamics that can be controlled by their connectivity. Specifically, we showed an instance of Hebb's rule where spiking was correlated with network topology. Based on this, we presented a simple model of associative memory in coupled phase oscillators.

  4. Structure Shapes Dynamics and Directionality in Diverse Brain Networks: Mathematical Principles and Empirical Confirmation in Three Species

    Science.gov (United States)

    Moon, Joon-Young; Kim, Junhyeok; Ko, Tae-Wook; Kim, Minkyung; Iturria-Medina, Yasser; Choi, Jee-Hyun; Lee, Joseph; Mashour, George A.; Lee, Uncheol

    2017-04-01

    Identifying how spatially distributed information becomes integrated in the brain is essential to understanding higher cognitive functions. Previous computational and empirical studies suggest a significant influence of brain network structure on brain network function. However, there have been few analytical approaches to explain the role of network structure in shaping regional activities and directionality patterns. In this study, analytical methods are applied to a coupled oscillator model implemented in inhomogeneous networks. We first derive a mathematical principle that explains the emergence of directionality from the underlying brain network structure. We then apply the analytical methods to the anatomical brain networks of human, macaque, and mouse, successfully predicting simulation and empirical electroencephalographic data. The results demonstrate that the global directionality patterns in resting state brain networks can be predicted solely by their unique network structures. This study forms a foundation for a more comprehensive understanding of how neural information is directed and integrated in complex brain networks.

  5. Solar cell as a self-oscillating heat engine

    Science.gov (United States)

    Alicki, Robert; Gelbwaser-Klimovsky, David; Szczygielski, Krzysztof

    2016-01-01

    Solar cells are engines converting energy supplied by the photon flux into work. All known types of macroscopic engines and turbines are also self-oscillating systems which yield a periodic motion at the expense of a usually non-periodic source of energy. The very definition of work in the formalism of quantum open systems suggests the hypothesis that the oscillating ‘piston’ is a necessary ingredient of the work extraction process. This aspect of solar cell operation is absent in the existing descriptions and the main goal of this paper is to show that plasma oscillations provide the physical implementation of a piston.

  6. Network features of the mammalian circadian clock.

    Directory of Open Access Journals (Sweden)

    Julie E Baggs

    2009-03-01

    Full Text Available The mammalian circadian clock is a cell-autonomous system that drives oscillations in behavior and physiology in anticipation of daily environmental change. To assess the robustness of a human molecular clock, we systematically depleted known clock components and observed that circadian oscillations are maintained over a wide range of disruptions. We developed a novel strategy termed Gene Dosage Network Analysis (GDNA in which small interfering RNA (siRNA-induced dose-dependent changes in gene expression were used to build gene association networks consistent with known biochemical constraints. The use of multiple doses powered the analysis to uncover several novel network features of the circadian clock, including proportional responses and signal propagation through interacting genetic modules. We also observed several examples where a gene is up-regulated following knockdown of its paralog, suggesting the clock network utilizes active compensatory mechanisms rather than simple redundancy to confer robustness and maintain function. We propose that these network features act in concert as a genetic buffering system to maintain clock function in the face of genetic and environmental perturbation.

  7. Dopamine, Cognitive Function, and Gamma Oscillations: Role of D4 Receptors

    Directory of Open Access Journals (Sweden)

    Katrina Eileen Furth

    2013-07-01

    Full Text Available Cognitive deficits in individuals with schizophrenia and close relatives are considered core symptoms of this disorder, and can manifest at the prodromal stage. Antipsychotics ameliorate positive symptoms but only modestly improve cognitive symptoms. The lack of treatments that improve cognitive abilities currently represents a major obstacle in developing more effective therapeutic strategies for this debilitating disorder. While D4 receptor-specific antagonists are ineffective in the treatment of positive symptoms, animal studies suggest that D4 receptor drugs can improve cognitive deficits. Moreover, recent work from our group suggests that D4 receptors synergize with the neuregulin/ErbB4 signaling pathway, genetically identified as risk factors for schizophrenia, in parvalbumin-expressing interneurons to modulate gamma oscillations. These high-frequency network oscillations correlate with attention and increase during cognitive tasks in healthy subjects but to a much lesser extent in affected individuals. This finding, along with other observations indicating impaired GABAergic function, has lead to the idea that abnormal neural activity in the prefrontal cortex in individuals with schizophrenia reflects a perturbation in excitation/inhibition balance. Here we review the current state of knowledge of D4 receptor functions in the prefrontal cortex and hippocampus, two major brain areas implicated in schizophrenia. Special emphasis is given to studies focusing on the potential role of D4 receptors in modulating GABAergic transmission and to an emerging concept of a close synergistic relationship between dopamine/D4R and neuregulin/ErbB4 signaling pathways that tunes the activity of PV interneurons to regulate gamma frequency network oscillations and potentially cognitive processes.

  8. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  9. Hyperchaotic system with unstable oscillators

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; Mykolaitis, G.

    2000-01-01

    A simple electronic system exhibiting hyperchaotic behaviour is described. The system includes two nonlinearly coupled 2nd order unstable oscillators, each composed of an LC resonance loop and an amplifier. The system is investigated by means of numerical integration of appropriate differential...... equations, PSPICE simulations and hardware experiments. The Lyapunov exponents are presented to confirm hyperchaotic mode of the oscillations....

  10. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  11. Energy Conservative Limit Cycle Oscillations

    NARCIS (Netherlands)

    Stramigioli, Stefano; van Dijk, Michel

    This paper shows how globally attractive limit cycle oscillations can be induced in a system with a nonlinear feedback element. Based on the same principle as the Van der Pol oscillator, the feedback behaves as a negative damping for low velocities but as an ordinary damper for high velocities. This

  12. Mechanical Parametric Oscillations and Waves

    Science.gov (United States)

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  13. Augmenting cognition by neuronal oscillations

    NARCIS (Netherlands)

    Horschig, J.M.; Zumer, J.; Bahramisharif, A.

    2014-01-01

    Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both

  14. Tomography on f-oscillators

    Science.gov (United States)

    Dudinets, I. V.; Man’ko, V. I.; Marmo, G.; Zaccaria, F.

    2017-11-01

    Symplectic tomographies of classical and quantum states are shortly reviewed. The concept of nonlinear f-oscillators and their properties are recalled. The tomographic probability representations of oscillator coherent states and the problem of entanglement are then discussed. The entanglement of even and odd f-coherent states is evaluated by the linear entropy.

  15. Quasi Periodic Oscillations in Blazars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 35; Issue 3. Quasi Periodic Oscillations in Blazars ... Here we report our recent discoveries of Quasi-Periodic Oscillations (QPOs) in blazars time series data in X-ray and optical electromagnetic bands. Any such detection can give important ...

  16. Synchronization of moving oscillators in three dimensional space

    Science.gov (United States)

    Majhi, Soumen; Ghosh, Dibakar

    2017-05-01

    We investigate the macroscopic behavior of a dynamical network consisting of a time-evolving wiring of interactions among a group of random walkers. We assume that each walker (agent) has an oscillator and show that depending upon the nature of interaction, synchronization arises where each of the individual oscillators are allowed to move in such a random walk manner in a finite region of three dimensional space. Here, the vision range of each oscillator decides the number of oscillators with which it interacts. The live interaction between the oscillators is of intermediate type (i.e., not local as well as not global) and may or may not be bidirectional. We analytically derive the density dependent threshold of coupling strength for synchronization using linear stability analysis and numerically verify the obtained analytical results. Additionally, we explore the concept of basin stability, a nonlinear measure based on volumes of basin of attractions, to investigate how stable the synchronous state is under large perturbations. The synchronization phenomenon is analyzed taking limit cycle and chaotic oscillators for wide ranges of parameters like interaction strength k between the walkers, speed of movement v, and vision range r.

  17. Prospects for Neutrino Oscillation Physics

    Directory of Open Access Journals (Sweden)

    Silvia Pascoli

    2013-01-01

    Full Text Available Recently the last unknown lepton mixing angle θ 13 has been determined to be relatively large, not too far from its previous upper bound. This opens exciting possibilities for upcoming neutrino oscillation experiments towards addressing fundamental questions, among them the type of the neutrino mass hierarchy and the search for CP violation in the lepton sector. In this paper we review the phenomenology of neutrino oscillations, focusing on subleading effects, which will be the key towards these goals. Starting from a discussion of the present determination of three-flavour oscillation parameters, we give an outlook on the potential of near-term oscillation physics as well as on the long-term program towards possible future precision oscillation facilities. We discuss accelerator-driven long-baseline experiments as well as nonaccelerator possibilities from atmospheric and reactor neutrinos.

  18. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  19. Deepening sleep by hypnotic suggestion.

    Science.gov (United States)

    Cordi, Maren J; Schlarb, Angelika A; Rasch, Björn

    2014-06-01

    Slow wave sleep (SWS) plays a critical role in body restoration and promotes brain plasticity; however, it markedly declines across the lifespan. Despite its importance, effective tools to increase SWS are rare. Here we tested whether a hypnotic suggestion to "sleep deeper" extends the amount of SWS. Within-subject, placebo-controlled crossover design. Sleep laboratory at the University of Zurich, Switzerland. Seventy healthy females 23.27 ± 3.17 y. Participants listened to an auditory text with hypnotic suggestions or a control tape before napping for 90 min while high-density electroencephalography was recorded. After participants listened to the hypnotic suggestion to "sleep deeper" subsequent SWS was increased by 81% and time spent awake was reduced by 67% (with the amount of SWS or wake in the control condition set to 100%). Other sleep stages remained unaffected. Additionally, slow wave activity was significantly enhanced after hypnotic suggestions. During the hypnotic tape, parietal theta power increases predicted the hypnosis-induced extension of SWS. Additional experiments confirmed that the beneficial effect of hypnotic suggestions on SWS was specific to the hypnotic suggestion and did not occur in low suggestible participants. Our results demonstrate the effectiveness of hypnotic suggestions to specifically increase the amount and duration of slow wave sleep (SWS) in a midday nap using objective measures of sleep in young, healthy, suggestible females. Hypnotic suggestions might be a successful tool with a lower risk of adverse side effects than pharmacological treatments to extend SWS also in clinical and elderly populations.

  20. Self-generated theta oscillations in the hippocampus.

    Science.gov (United States)

    Goutagny, Romain; Jackson, Jesse; Williams, Sylvain

    2009-12-01

    Hippocampal theta rhythm is crucial for spatial memory and is thought to be generated by extrinsic inputs. In contrast, using a complete rat hippocampus in vitro, we found several intrinsic, atropine-resistant theta generators in CA1. These oscillators were organized along the septotemporal axis and arose independently from CA3. Our results suggest that CA1 theta rhythm can emerge from the coupling of multiple autonomous hippocampal theta oscillators.

  1. Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment

    Science.gov (United States)

    Zou, Wei; Sebek, Michael; Kiss, István Z.; Kurths, Jürgen

    2017-06-01

    Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations. Using a rigorous analysis, the effectiveness of this self-feedback delay in revoking AD is theoretically proved to be valid in an arbitrary network of coupled Stuart-Landau oscillators with generally distributed propagation delays. Moreover, the role of self-feedback delay in reviving oscillations from AD is experimentally verified in two delay-coupled electrochemical reactions.

  2. Thalamocortical Oscillations in the Sleeping and Aroused Brain

    Science.gov (United States)

    Steriade, Mircea; McCormick, David A.; Sejnowski, Terrence J.

    1993-10-01

    Sleep is characterized by synchronized events in billions of synaptically coupled neurons in thalamocortical systems. The activation of a series of neuromodulatory transmitter systems during awakening blocks low-frequency oscillations, induces fast rhythms, and allows the brain to recover full responsiveness. Analysis of cortical and thalamic networks at many levels, from molecules to single neurons to large neuronal assemblies, with a variety of techniques, ranging from intracellular recordings in vivo and in vitro to computer simulations, is beginning to yield insights into the mechanisms of the generation, modulation, and function of brain oscillations.

  3. Very High Frequency Interleaved Self-Oscillating Resonant SEPIC Converter

    DEFF Research Database (Denmark)

    Kovacevic, Milovan; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper describes analysis and design procedure of an interleaved, self-oscillating resonant SEPIC converter, suitable for operation at very high frequencies (VHF) ranging from 30 MHz to 300 MHz. The presented circuit consists of two resonant SEPIC DC-DC converters, and a capacitive...... interconnection network between the switches which provides self-oscillating and interleaved operation. A design approach to ensure zero voltage switching (ZVS) condition of the MOSFET devices is provided. To verify the proposed method, an 11 W, 50 MHz prototype was built using low-cost VDMOS devices...

  4. Deepening Sleep by Hypnotic Suggestion

    Science.gov (United States)

    Cordi, Maren J.; Schlarb, Angelika A.; Rasch, Björn

    2014-01-01

    Study Objectives: Slow wave sleep (SWS) plays a critical role in body restoration and promotes brain plasticity; however, it markedly declines across the lifespan. Despite its importance, effective tools to increase SWS are rare. Here we tested whether a hypnotic suggestion to “sleep deeper” extends the amount of SWS. Design: Within-subject, placebo-controlled crossover design. Setting: Sleep laboratory at the University of Zurich, Switzerland. Participants: Seventy healthy females 23.27 ± 3.17 y. Intervention: Participants listened to an auditory text with hypnotic suggestions or a control tape before napping for 90 min while high-density electroencephalography was recorded. Measurements and Results: After participants listened to the hypnotic suggestion to “sleep deeper” subsequent SWS was increased by 81% and time spent awake was reduced by 67% (with the amount of SWS or wake in the control condition set to 100%). Other sleep stages remained unaffected. Additionally, slow wave activity was significantly enhanced after hypnotic suggestions. During the hypnotic tape, parietal theta power increases predicted the hypnosis-induced extension of SWS. Additional experiments confirmed that the beneficial effect of hypnotic suggestions on SWS was specific to the hypnotic suggestion and did not occur in low suggestible participants. Conclusions: Our results demonstrate the effectiveness of hypnotic suggestions to specifically increase the amount and duration of slow wave sleep (SWS) in a midday nap using objective measures of sleep in young, healthy, suggestible females. Hypnotic suggestions might be a successful tool with a lower risk of adverse side effects than pharmacological treatments to extend SWS also in clinical and elderly populations. Citation: Cordi MJ, Schlarb AA, Rasch B. Deepening sleep by hypnotic suggestion. SLEEP 2014;37(6):1143-1152. PMID:24882909

  5. Optogenetically evoked gamma oscillations are disturbed by cocaine administration

    Directory of Open Access Journals (Sweden)

    Jonathan E Dilgen

    2013-11-01

    Full Text Available Drugs of abuse have enormous societal impact by degrading the cognitive abilities, emotional state and social behavior of addicted individuals. Among other events involved in the addiction cycle, the study of a single exposure to cocaine, and the contribution of the effects of that event to the continuous and further use of drugs of abuse are fundamental. Gamma oscillations are thought to be important neural correlates of cognitive processing in the prefrontal cortex (PFC which include decision making, set shifting and working memory. It follows that cocaine exposure might modulate gamma oscillations, which could result in reduced cognitive ability. Parvalbumin-positive fast-spiking interneurons play an orchestrating role in gamma oscillation induction and it has been shown recently that gamma oscillations can be induced in an anesthetized animal using optogenetic techniques. We use a knock-in mouse model together with optogenetics and in vivo electrophysiology to study the effects of acute cocaine on PFC gamma oscillation as a step toward understanding the cortical changes that may underlie continuous use of stimulants. Our results show that acute cocaine administration increases entrainment of the gamma oscillation to the optogentically induced driving frequency. Our results also suggest that this modulation of gamma oscillations is driven trough activation of DAD1 receptors. The acute cocaine-mediated changes in mPFC may underlie the enhancement of attention and awareness commonly reported by cocaine users and may contribute to the further use and abuse of psychostimulants.

  6. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-12-31

    Although eastward propagation is usually regarded as an essential feature of the low-frequency ``Madden-Julian oscillation`` observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  7. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-01-01

    Although eastward propagation is usually regarded as an essential feature of the low-frequency Madden-Julian oscillation'' observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  8. ERK Oscillation-Dependent Gene Expression Patterns and Deregulation by Stress-Response

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Cummings, Brian S.; Shankaran, Harish; Scholpa, Natalie E.; Weber, Thomas J.

    2014-09-15

    Studies were undertaken to determine whether ERK oscillations regulate a unique subset of genes in human keratinocytes and subsequently, whether the p38 stress response inhibits ERK oscillations. A DNA microarray identified many genes that were unique to ERK oscillations, and network reconstruction predicted an important role for the mediator complex subunit 1 (MED1) node in mediating ERK oscillation-dependent gene expression. Increased ERK-dependent phosphorylation of MED1 was observed in oscillating cells compared to non-oscillating counterparts as validation. Treatment of keratinocytes with a p38 inhibitor (SB203580) increased ERK oscillation amplitudes and MED1 and phospho-MED1 protein levels. Bromate is a probable human carcinogen that activates p38. Bromate inhibited ERK oscillations in human keratinocytes and JB6 cells and induced an increase in phospho-p38 and decrease in phospho-MED1 protein levels. Treatment of normal rat kidney cells and primary salivary gland epithelial cells with bromate decreased phospho-MED1 levels in a reversible fashion upon treatment with p38 inhibitors (SB202190; SB203580). Our results indicate that oscillatory behavior in the ERK pathway alters homeostatic gene regulation patterns and that the cellular response to perturbation may manifest differently in oscillating vs non-oscillating cells.

  9. Time course of EEG oscillations during repeated listening of a well-known aria

    Directory of Open Access Journals (Sweden)

    Lutz eJäncke

    2015-07-01

    Full Text Available While previous studies have analyzed mean neurophysiological responses to musical stimuli, the current study aimed to identify specific time courses of EEG oscillations, which are associated with dynamic changes in the acoustic features of the musical stimulus. In addition, we were interested in whether these time courses change during a repeated presentation of the same musical piece. A total of 16 subjects repeatedly listened to the well-known aria Nessun dorma, sung by Paul Potts, while continuous 128-channel EEG and heart rate (HR, as well as electrodermal (EDA responses, were recorded. The time courses for the EEG oscillations were calculated using a time resolution of 1 second for several frequency bands, on the basis of individual alpha-peak frequencies (theta, low alpha-1, low alpha-2, upper alpha, and beta. For all frequency bands, we identified a more or less continuous increase in power relative to a baseline period, indicating strong event-related synchronization (ERS during music listening. The ERS time courses, however, did not correlate strongly with the time courses of the acoustic features of the aria. In addition, we did not observe changes in EEG oscillations after repeated presentation of the same musical piece. Aside from this distinctive feature, we identified a remarkable variability in EEG oscillations, both within and between the repeated presentations of the aria. We interpret the continuous increase in ERS observed in all frequency bands during music listening as an indicator of a particular neurophysiological and psychological state evoked by music listening. We suggest that this state is characterized by increased internal attention (accompanied by reduced external attention, increased inhibition of brain networks not involved in the generation of this internal state, the maintenance of a particular level of general alertness, and a type of brain state that can be described as mind wandering. The overall state can be

  10. Oscillations, Timing, Plasticity, and Learning in the Cerebellum.

    Science.gov (United States)

    Cheron, G; Márquez-Ruiz, J; Dan, B

    2016-04-01

    The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás's theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito-Marr-Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.

  11. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A N; Mosekilde, E

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular...... feedback. We investigate the intra- and internephron entrainment of the two time scales. In addition to full synchronization, both wavelet analyses of experimental data and numerical simulations reveal a partial entrainment in which neighboring nephrons attain a state of chaotic synchronization...

  12. Collective oscillations in a plasma

    CERN Document Server

    Akhiezer, A I; Polovin, R V; ter Haar, D

    2013-01-01

    International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of

  13. Model of stochastic self-oscillation in Gunn diode oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Bocharov, E.P.; Korostelev, G.N.; Khripunov, M.V.

    1987-07-01

    The applicability of the two-mode nonlinear model of decay stochasticity for explanation of the transition from monochromatic self-oscillation to developed stochasticity in the Gunn diode oscillator is demonstrated. Numerical realizations of the basic regimes corresponding to various cases of consideration of the weak nonlinearity of the falling portion of the current-voltage characteristic are presented. A comparative analysis of calculation results of time realizations and experimentally observed oscillograms of stochastic regimes is performed.

  14. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  15. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.

    Science.gov (United States)

    Schalow, G; Blanc, Y; Jeltsch, W; Zäch, G A

    1996-08-01

    A patient with a strongly lesioned spinal cord, sub C5, relearned running, besides improving other movements, by an oscillator formation training (rhythmic, dynamic, stereotyped exercise). After 45 days of jumping on a springboard and other rhythm trainings, the patient was able to run 90 m in 41 s (7.9 km/h) (even 9.3 km/h 3 years after the lesion) besides marching (5.7 km/h), cycling, playing tennis and skiing. FF-type (alpha 1) (f = 8.3-11.4 Hz) and FR-type (alpha 2) (f = 6.7 Hz) motor unit firings were identified by electromyography (EMG) with surface electrodes by their oscillatory firing patterns in this patient. In EMG literature, the alpha 2-oscillatory firing is called "myokymic discharging". Alternating long and short oscillation periods were measured in FF-type motor units, with changing focus (change from long/short to short/long oscillation periods). The alternating mean period durations differed by approximately 10 ms. Transient synchronization of oscillatory firing FF-type motor units was observed with up to two phase relations per oscillation cycle. In recumbent position, the phase change in synchronization of two oscillatory firing motor units in the soleus muscle of one leg correlated with the change from alternating to symmetrical oscillatory firing of a third motor unit in the soleus muscle of the other leg. This measurement indicates that the alternating oscillatory firing of premotor neuronal networks is correlated with synchronization of oscillatory firing neuronal subnetworks, i.e., with coupling changes of oscillators, and is not due to reciprocal inhibition of half-centre oscillators as suggested by the change from alternating to symmetrical oscillatory firing. Coupling changes of oscillatory firing subnetworks to generate macroscopic (integrative) network functions are therefore a general organization form of the central nervous system (CNS), and are not related to rhythmic movements like walking or running only. It is proposed that

  16. Signal Processing in Periodically Forced Gradient Frequency Neural Networks.

    Science.gov (United States)

    Kim, Ji Chul; Large, Edward W

    2015-01-01

    Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing.

  17. Modified Legendre Wavelets Technique for Fractional Oscillation Equations

    Directory of Open Access Journals (Sweden)

    Syed Tauseef Mohyud-Din

    2015-10-01

    Full Text Available Physical Phenomena’s located around us are primarily nonlinear in nature and their solutions are of highest significance for scientists and engineers. In order to have a better representation of these physical models, fractional calculus is used. Fractional order oscillation equations are included among these nonlinear phenomena’s. To tackle with the nonlinearity arising, in these phenomena’s we recommend a new method. In the proposed method, Picard’s iteration is used to convert the nonlinear fractional order oscillation equation into a fractional order recurrence relation and then Legendre wavelets method is applied on the converted problem. In order to check the efficiency and accuracy of the suggested modification, we have considered three problems namely: fractional order force-free Duffing–van der Pol oscillator, forced Duffing–van der Pol oscillator and higher order fractional Duffing equations. The obtained results are compared with the results obtained via other techniques.

  18. Suggestions for establishing a network of landbird migration monitoring sites

    Science.gov (United States)

    Jonathan Bart; C. John Ralph

    2005-01-01

    Landbird migration monitoring stations, primarily using constant-effort mist netting and sometimes specialized censuses, are valuable because: (1) many of the species captured, especially northern-nesting ones, are not well surveyed by other methods; (2) demographic and other vital information for management and conservation can readily be collected; and (3) such...

  19. Effects of nicotine stimulation on spikes, theta frequency oscillations, and spike-theta oscillation relationship in rat medial septum diagonal band Broca slices

    Science.gov (United States)

    Wen, Dong; Peng, Ce; Ou-yang, Gao-xiang; Henderson, Zainab; Li, Xiao-li; Lu, Cheng-biao

    2013-01-01

    Aim: Spiking activities and neuronal network oscillations in the theta frequency range have been found in many cortical areas during information processing. The aim of this study is to determine whether nicotinic acetylcholine receptors (nAChRs) mediate neuronal network activity in rat medial septum diagonal band Broca (MSDB) slices. Methods: Extracellular field potentials were recorded in the slices using an Axoprobe 1A amplifier. Data analysis was performed off-line. Spike sorting and local field potential (LFP) analyses were performed using Spike2 software. The role of spiking activity in the generation of LFP oscillations in the slices was determined by analyzing the phase-time relationship between the spikes and LFP oscillations. Circular statistic analysis based on the Rayleigh test was used to determine the significance of phase relationships between the spikes and LFP oscillations. The timing relationship was examined by quantifying the spike-field coherence (SFC). Results: Application of nicotine (250 nmol/L) induced prominent LFP oscillations in the theta frequency band and both small- and large-amplitude population spiking activity in the slices. These spikes were phase-locked to theta oscillations at specific phases. The Rayleigh test showed a statistically significant relationship in phase-locking between the spikes and theta oscillations. Larger changes in the SFC were observed for large-amplitude spikes, indicating an accurate timing relationship between this type of spike and LFP oscillations. The nicotine-induced spiking activity (large-amplitude population spikes) was suppressed by the nAChR antagonist dihydro-β-erythroidine (0.3 μmol/L). Conclusion: The results demonstrate that large-amplitude spikes are phase-locked to theta oscillations and have a high spike-timing accuracy, which are likely a main contributor to the theta oscillations generated in MSDB during nicotine receptor activation. PMID:23474704

  20. Strong nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2017-01-01

    This book outlines an analytical solution procedure of the pure nonlinear oscillator system, offering a solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter. Includes exercises.

  1. Long period oscillations in sunspots

    Science.gov (United States)

    Chorley, N.; Hnat, B.; Nakariakov, V. M.; Inglis, A. R.; Bakunina, I. A.

    2010-04-01

    Long period oscillations of the gyroresonant emission from sunspot atmospheres are studied. Time series data generated from the sequences of images obtained by the Nobeyama Radioheliograph operating at a frequency of 17 GHz for three sunspots have been analysed and are found to contain significant periods in the range of several tens of minutes. Wavelet analysis shows that these periods are persistent throughout the observation periods. The presence of the oscillations is confirmed by several methods (periodogram, wavelets, Fisher randomisation and empirical mode decomposition). Spatial analysis using the techniques of period, power, correlation and time lag mapping reveals regions of enhanced oscillatory power in the umbral regions. Also seen are two regions of coherent oscillation of about 25 pixels in size, that oscillate in anti-phase with each other. Possible interpretation of the observed periodicities is discussed, in terms of the shallow sunspot model and the leakage of the solar g-modes.

  2. Hypnotic suggestion and cognitive neuroscience.

    Science.gov (United States)

    Oakley, David A; Halligan, Peter W

    2009-06-01

    The growing acceptance of consciousness as a legitimate field of enquiry and the availability of functional imaging has rekindled research interest in the use of hypnosis and suggestion to manipulate subjective experience and to gain insights into healthy and pathological cognitive functioning. Current research forms two strands. The first comprises studies exploring the cognitive and neural nature of hypnosis itself. The second employs hypnosis to explore known psychological processes using specifically targeted suggestions. An extension of this second approach involves using hypnotic suggestion to create clinically informed analogues of established structural and functional neuropsychological disorders. With functional imaging, this type of experimental neuropsychopathology offers a productive means of investigating brain activity involved in many symptom-based disorders and their related phenomenology.

  3. On the Relation between Chemical Oscillations and Self-Replication.

    Science.gov (United States)

    Bigan, Erwan; Plateau, Pierre

    2017-01-01

    One proposed scenario for the emergence of biochemical oscillations is that they may have provided the basic mechanism behind cellular self-replication by growth and division. However, alternative scenarios not requiring any chemical oscillation have also been proposed. Each of the various protocell models proposed to support one or another scenario comes with its own set of specific assumptions, which makes it difficult to ascertain whether chemical oscillations are required or not for cellular self-replication. This article compares these two cases within a single whole-cell model framework. This model relies upon a membrane embedding a chemical reaction network (CRN) synthesizing all the cellular constituents, including the membrane, by feeding from an external nutrient. Assuming the osmolarity is kept constant, the system dynamics are governed by a set of nonlinear differential equations coupling the chemical concentrations and the surface-area-to-volume ratio. The resulting asymptotic trajectories are used to determine the cellular shape by minimizing the membrane bending energy (within an approximate predefined family of shapes). While the stationary case can be handled quite generally, the oscillatory one is investigated using a simple oscillating CRN example, which is used to identify features that are expected to hold for any network. It is found that cellular self-replication can be reached with or without chemical oscillations, and that a requirement common to both stationary and oscillatory cases is that a minimum spontaneous curvature of the membrane is required for the cell to divide once its area and volume are both doubled. The oscillatory case can result in a greater variety of cellular shape trajectories but raises additional constraints for cellular division and self-replication: (i) the ratio of doubling time to oscillation period should be an integer, and (ii) if the oscillation amplitude is sufficiently high, then the spontaneous curvature

  4. Building a Synthetic Transcriptional Oscillator.

    Science.gov (United States)

    Schwarz-Schilling, Matthaeus; Kim, Jongmin; Cuba, Christian; Weitz, Maximilian; Franco, Elisa; Simmel, Friedrich C

    2016-01-01

    Reaction circuits mimicking genetic oscillators can be realized with synthetic, switchable DNA genes (so-called genelets), and two enzymes only, an RNA polymerase and a ribonuclease. The oscillatory behavior of the genelets is driven by the periodic production and degradation of RNA effector molecules. Here, we describe the preparation, assembly, and testing of a synthetic, transcriptional two-node negative-feedback oscillator, whose dynamics can be followed in real-time by fluorescence read-out.

  5. An Oscillating Magnet Watt Balance

    OpenAIRE

    Ahmedov, H.

    2015-01-01

    We establish the principles for a new generation of simplified and accurate watt balances in which an oscillating magnet generates Faraday's voltage in a stationary coil. A force measuring system and a mechanism providing vertical movements of the magnet are completely independent in an oscillating magnet watt balance. This remarkable feature allows to establish the link between the Planck constant and a macroscopic mass by a one single experiment. Weak dependence on variations of environment...

  6. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  7. Seasonal predictability of the North Atlantic Oscillation

    Science.gov (United States)

    Vellinga, Michael; Scaife, Adam

    2015-04-01

    Until recently, long-range forecast systems showed only modest levels of skill in predicting surface winter climate around the Atlantic Basin and associated fluctuations in the North Atlantic Oscillation at seasonal lead times. Here we use a new forecast system to assess seasonal predictability of winter North Atlantic climate. We demonstrate that key aspects of European and North American winter climate and the surface North Atlantic Oscillation are highly predictable months ahead. We demonstrate high levels of prediction skill in retrospective forecasts of the surface North Atlantic Oscillation, winter storminess, near-surface temperature, and wind speed, all of which have high value for planning and adaptation to extreme winter conditions. Analysis of forecast ensembles suggests that while useful levels of seasonal forecast skill have now been achieved, key sources of predictability are still only partially represented and there is further untapped predictability. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.

  8. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  9. Dynamics of microcapsules in oscillating shear flow

    Science.gov (United States)

    Zhao, Mengye; Bagchi, Prosenjit

    2011-11-01

    We present a three-dimensional numerical study on the dynamics of deformable capsules in sinusoidally oscillating shear flow. We consider capsules of spherical and oblate spheroid resting shapes. For spherical resting shapes, we find an identical deformation response during positive and negative vorticities. However, the deformation response becomes unequal and shows complex behavior for nonspherical resting shapes. The average elongation is higher in the retarding phase of the shear flow than in the accelerating phase. Primarily two types of dynamics are observed for nonspherical shapes: a clockwise/counter-clockwise swinging motion in response to the altering flow direction that occurs at both high and low values of shear rate amplitudes, and a continuous/unidirectional tumbling motion that occurs at intermediate values. The unidirectional tumbling motion occurs despite the fact that the time-average vorticity is zero. Such a tumbling motion is accompanied by a continuous tank-treading motion of the membrane in the opposite direction. We obtain phase diagram that shows existence of two critical shear rates and two oscillation frequencies. The unidirectional tumbling motion occurs in the intermediate range, and the clockwise/counter-clockwise swinging motion occurs otherwise. We also find that the dynamics is highly sensitive to the initial condition. A swinging is generally observed when the capsule is released aligned with the extensional or compressional axis of the shear flow, and a tumbling is observed otherwise. These results suggest the possibility of chaotic behavior of cells in time-dependent flows. We provide explanations of such complex dynamics by analyzing the coupling between the shape and angular oscillation and the imposed flow oscillation.

  10. Intrinsic oscillatory activity arising within the electrically coupled AII amacrine–ON cone bipolar cell network is driven by voltage-gated Na+ channels

    Science.gov (United States)

    Trenholm, Stuart; Borowska, Joanna; Zhang, Jiawei; Hoggarth, Alex; Johnson, Kyle; Barnes, Steven; Lewis, Timothy J; Awatramani, Gautam B

    2012-01-01

    In the rd1 mouse model for retinal degeneration, the loss of photoreceptors results in oscillatory activity (∼10–20 Hz) within the remnant electrically coupled network of retinal ON cone bipolar and AII amacrine cells. We tested the role of hyperpolarization-activated currents (Ih), voltage-gated Na+ channels and gap junctions in mediating such oscillatory activity. Blocking Ih (1 mm Cs+) hyperpolarized the network and augmented activity, while antagonizing voltage-dependent Na+ channels (1 μm TTX) abolished oscillatory activity in the AII amacrine–ON cone bipolar cell network. Voltage-gated Na+ channels were only observed in AII amacrine cells, implicating these cells as major drivers of activity. Pharmacologically uncoupling the network (200 μm meclofenamic acid (MFA)) blocked oscillations in all cells indicating that Na+ channels exert their influence over multiple cell types within the network. In wt retina, occluding photoreceptor inputs to bipolar cells (10 μm NBQX and 50 μm l-AP4) resulted in a mild (∼10 mV) hyperpolarization and the induction of oscillatory activity within the AII amacrine–ON cone bipolar cell network. These oscillations had similar properties to those observed in rd1 retina, suggesting that no major degeneration-induced network rewiring is required to trigger spontaneous oscillations. Finally, we constructed a simplified computational model that exhibited Na+ channel-dependent network oscillations. In this model, mild heterogeneities in channel densities between individual neurons reproduced our experimental findings. These results indicate that TTX-sensitive Na+ channels in AII amacrine cells trigger degeneration-induced network oscillations, which provide a persistent synaptic drive to downstream remnant neurons, thus appearing to replace photoreceptors as the principal drivers of retinal activity. PMID:22393249

  11. Intrinsic oscillatory activity arising within the electrically coupled AII amacrine-ON cone bipolar cell network is driven by voltage-gated Na+ channels.

    Science.gov (United States)

    Trenholm, Stuart; Borowska, Joanna; Zhang, Jiawei; Hoggarth, Alex; Johnson, Kyle; Barnes, Steven; Lewis, Timothy J; Awatramani, Gautam B

    2012-05-15

    In the rd1 mouse model for retinal degeneration, the loss of photoreceptors results in oscillatory activity (∼10–20 Hz) within the remnant electrically coupled network of retinal ON cone bipolar and AII amacrine cells. We tested the role of hyperpolarization-activated currents (I(h)), voltage-gated Na(+) channels and gap junctions in mediating such oscillatory activity. Blocking I(h) (1 mm Cs(+)) hyperpolarized the network and augmented activity, while antagonizing voltage-dependent Na(+) channels (1 μm TTX) abolished oscillatory activity in the AII amacrine-ON cone bipolar cell network. Voltage-gated Na(+) channels were only observed in AII amacrine cells, implicating these cells as major drivers of activity. Pharmacologically uncoupling the network (200 μm meclofenamic acid (MFA)) blocked oscillations in all cells indicating that Na(+) channels exert their influence over multiple cell types within the network. In wt retina, occluding photoreceptor inputs to bipolar cells (10 μm NBQX and 50 μm l-AP4) resulted in a mild (∼10 mV) hyperpolarization and the induction of oscillatory activity within the AII amacrine-ON cone bipolar cell network. These oscillations had similar properties to those observed in rd1 retina, suggesting that no major degeneration-induced network rewiring is required to trigger spontaneous oscillations. Finally, we constructed a simplified computational model that exhibited Na(+) channel-dependent network oscillations. In this model, mild heterogeneities in channel densities between individual neurons reproduced our experimental findings. These results indicate that TTX-sensitive Na(+) channels in AII amacrine cells trigger degeneration-induced network oscillations, which provide a persistent synaptic drive to downstream remnant neurons, thus appearing to replace photoreceptors as the principal drivers of retinal activity.

  12. Exploring the genetic control of glycolytic oscillations in Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Williamson Thomas

    2012-08-01

    AMP pathway responsible for negative feedback regulation of PKA, are required for glycolytic oscillations, suggesting an enticing link between these cAMP pathway components and the glycolysis pathway enzymes shown to have the greatest role in glycolytic oscillation. This study suggests that a systematic genetic approach combined with mathematical modelling can advance the study of oscillatory phenomena.

  13. Exploring the genetic control of glycolytic oscillations in Saccharomyces cerevisiae.

    Science.gov (United States)

    Williamson, Thomas; Adiamah, Delali; Schwartz, Jean-Marc; Stateva, Lubomira

    2012-08-24

    PKA, are required for glycolytic oscillations, suggesting an enticing link between these cAMP pathway components and the glycolysis pathway enzymes shown to have the greatest role in glycolytic oscillation. This study suggests that a systematic genetic approach combined with mathematical modelling can advance the study of oscillatory phenomena.

  14. Sensorimotor Processing in the Basal Ganglia Leads to Transient Beta Oscillations during Behavior.

    Science.gov (United States)

    Mirzaei, Amin; Kumar, Arvind; Leventhal, Daniel; Mallet, Nicolas; Aertsen, Ad; Berke, Joshua; Schmidt, Robert

    2017-11-15

    Brief epochs of beta oscillations have been implicated in sensorimotor control in the basal ganglia of task-performing healthy animals. However, which neural processes underlie their generation and how they are affected by sensorimotor processing remains unclear. To determine the mechanisms underlying transient beta oscillations in the LFP, we combined computational modeling of the subthalamo-pallidal network for the generation of beta oscillations with realistic stimulation patterns derived from single-unit data recorded from different basal ganglia subregions in rats performing a cued choice task. In the recordings, we found distinct firing patterns in the striatum, globus pallidus, and subthalamic nucleus related to sensory and motor events during the behavioral task. Using these firing patterns to generate realistic inputs to our network model led to transient beta oscillations with the same time course as the rat LFP data. In addition, our model can account for further nonintuitive aspects of beta modulation, including beta phase resets after sensory cues and correlations with reaction time. Overall, our model can explain how the combination of temporally regulated sensory responses of the subthalamic nucleus, ramping activity of the subthalamic nucleus, and movement-related activity of the globus pallidus leads to transient beta oscillations during behavior.SIGNIFICANCE STATEMENT Transient beta oscillations emerge in the normal functioning cortico-basal ganglia loop during behavior. Here, we used a unique approach connecting a computational model closely with experimental data. In this way, we achieved a simulation environment for our model that mimics natural input patterns in awake, behaving animals. We demonstrate that a computational model for beta oscillations in Parkinson's disease (PD) can also account for complex patterns of transient beta oscillations in healthy animals. Therefore, we propose that transient beta oscillations in healthy animals share

  15. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality.

    Directory of Open Access Journals (Sweden)

    Diego Lozano-Soldevilla

    2016-08-01

    Full Text Available Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in animals and humans have found that the amplitude of fast oscillations (> 40 Hz occur non-uniformly within the phase of slower oscillations, forming the so-called cross-frequency coupling (CFC. However, the CFC patterns be influenced by features in the signal that do not relate to underlying physiological interactions. For example, CFC estimates may be sensitive to spectral correlations due to non-sinusoidal properties of the alpha band wave morphology. To investigate this issue, we performed CFC analysis using experimental and synthetic data. The former consisted in a double-blind magnetoencephalography pharmacological study in which participants received either placebo, 0.5 mg or 1.5 mg of lorazepam (LZP; GABAergic enhancer in different experimental sessions. By recording oscillatory brain activity with during rest and working memory (WM, we were able to demonstrate that posterior alpha (8 – 12 Hz phase was coupled to beta-low gamma band (20 – 45 Hz amplitude envelope during all sessions. Importantly, bicoherence values around the harmonics of the alpha frequency were similar both in magnitude and topographic distribution to the cross-frequency coherence (CFCoh values observed in the alpha-phase to beta-low gamma coupling. In addition, despite the large CFCoh we found no significant cross-frequency directionality (CFD. Critically, simulations demonstrated that a sizable part of our empirical CFCoh between alpha and beta-low gamma coupling and the lack of CFD could be explained by two-three harmonics aligned in zero phase-lag produced by the physiologically characteristic alpha asymmetry in the amplitude of the peaks relative to the troughs

  16. Deepening sleep by hypnotic suggestion.

    OpenAIRE

    Cordi, Maren J.; Schlarb, Angelika A; Rasch, Björn

    2014-01-01

    STUDY OBJECTIVES Slow wave sleep (SWS) plays a critical role in body restoration and promotes brain plasticity; however it markedly declines across the lifespan. Despite its importance effective tools to increase SWS are rare. Here we tested whether a hypnotic suggestion to "sleep deeper" extends the amount of SWS. DESIGN Within subject placebo controlled crossover design. SETTING Sleep laboratory at the University of Zurich Switzerland. PARTICIPANTS Seventy healthy females 23.27 ± 3.17 y. IN...

  17. Intensity and Velocity Oscillations in Magnetic Flux Concentrations (P9)

    Science.gov (United States)

    Bharti, L.; Rimmele, Thomas

    2006-11-01

    We analyzed intensity and velocity oscillations in magnetic network using high-resolution 2D spectral scan images from Interferometric Bi- dimensional Spectrometer (IBIS). In photosphere, oscillations in intensity and velocity in 2-5.2 mHz band shows reduced amplitude while at higher frequencies 5.2-7.0 mHz and 7.3-25.8 mHz band oscillations amplitude enhance in line core intensity and shows reduced amplitude in line core velocity however in chromosphere the oscillations have different character, we found higher power in 2-5.2 mHz, 5.2-7.0 mHz and 7.3-25.8 mHz band in core velocity compared to core intensity. Amplitude variation with height is also inferred from our analysis. These findings are manifestation of high frequencies halos around strong flux concentrations (pores) in intermediate field strength network and mode conversion of solar p-modes in magnetic fields.

  18. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact cal...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.......Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch...

  19. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical......We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...

  20. Universal, computer facilitated, steady state oscillator, closed loop analysis theory and some applications to precision oscillators

    Science.gov (United States)

    Parzen, Benjamin

    1992-01-01

    The theory of oscillator analysis in the immittance domain should be read in conjunction with the additional theory presented here. The combined theory enables the computer simulation of the steady state oscillator. The simulation makes the calculation of the oscillator total steady state performance practical, including noise at all oscillator locations. Some specific precision oscillators are analyzed.

  1. Dysfunction of sensory oscillations in Autism Spectrum Disorder

    Science.gov (United States)

    Simon, David M.; Wallace, Mark T.

    2016-01-01

    Autism Spectrum Disorder (ASD) is a highly prevalent developmental disability characterized by deficits in social communication and interaction, restricted interests, and repetitive behaviors. Recently, anomalous sensory and perceptual function has gained an increased level of recognition as an important feature of ASD. A specific impairment in the ability to integrate information across brain networks has been proposed to contribute to these disruptions. A crucial mechanism for these integrative processes is the rhythmic synchronization of neuronal excitability across neural populations; collectively known as oscillations. In ASD there is believed to be a deficit in the ability to efficiently couple functional neural networks using these oscillations. This review discusses evidence for disruptions in oscillatory synchronization in ASD, and how disturbance of this neural mechanism contributes to alterations in sensory and perceptual function. The review also frames oscillatory data from the perspective of prevailing neurobiologically-inspired theories of ASD. PMID:27451342

  2. Dysfunction of sensory oscillations in Autism Spectrum Disorder.

    Science.gov (United States)

    Simon, David M; Wallace, Mark T

    2016-09-01

    Autism Spectrum Disorder (ASD) is a highly prevalent developmental disability characterized by deficits in social communication and interaction, restricted interests, and repetitive behaviors. Recently, anomalous sensory and perceptual function has gained an increased level of recognition as an important feature of ASD. A specific impairment in the ability to integrate information across brain networks has been proposed to contribute to these disruptions. A crucial mechanism for these integrative processes is the rhythmic synchronization of neuronal excitability across neural populations; collectively known as oscillations. In ASD there is believed to be a deficit in the ability to efficiently couple functional neural networks using these oscillations. This review discusses evidence for disruptions in oscillatory synchronization in ASD, and how disturbance of this neural mechanism contributes to alterations in sensory and perceptual function. The review also frames oscillatory data from the perspective of prevailing neurobiologically-inspired theories of ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Generation of higher harmonic internal waves by oscillating spheroids

    Science.gov (United States)

    Shmakova, Natalia; Ermanyuk, Evgeny; Flór, Jan-Bert

    2017-11-01

    Oscillating bodies in stratified fluids may emit higher harmonics in addition to fundamental waves. In the present experimental study, we consider higher harmonics of an internal wave field generated by a horizontally oscillating spheroid in a linearly stratified fluid for moderate to high oscillation amplitudes, i.e., scaled oscillation amplitude A /a ≥0.5 , with a the minor radius of the spheroid. Three different spheroid shapes are tested. The results are discussed in the context of the different theories on the generation of higher harmonics. Higher harmonics are observed at the intersections of fundamental wave beams, and at the critical points of the topography where the topographic slope equals the wave slope. The velocity amplitudes of the fundamental, second, and third harmonic waves grow respectively linearly, quadratically, and with the third power of the scaled oscillation amplitude A /a . Though these amplitudes are generally higher when the object's slope is larger, the increase in amplitude above and below the axisymmetric oscillating objects is found to be due to the effect of focusing. In order to discern the relative importance of the harmonics to the fundamental wave, the horizontal structure of the wave amplitude is measured. The results suggest that the n th harmonic of the internal wave field is associated with a radiation diagram corresponding to a multipole of order 2n, with 2 n directions of propagation.

  4. Gain-modulated plasmonic Rabi oscillations of coupled nanocomplex

    Science.gov (United States)

    Yang, Da-Jie; Pan, Gui-Ming; Ding, Si-Jing; Hao, Zhong-Hua; Zhou, Li; Wang, Qu-Quan

    2017-11-01

    Strong coupling in nanostructures can bring intriguing optical phenomena such as ultrafast Rabi oscillation-periodical energy exchange phenomenon between two modes. Rabi splitting appears in the frequency-domain spectra for strong coupling system. However, in metallic nanosystems the time-domain Rabi oscillations are hard to be observed because the plasmon lifetime is limited by the heavy ohmic losses. Here we report a theoretical investigation of surface plasmon coupling behaviour of two gold nanorods with one being a core-shell rod filled with a gain material and find the periodic energy exchange phenomenon which recalls the concept of Rabi oscillation. The gain material-cored gold-shell structure dipolar mode hybridizes with the solid gold rod quadrupolar mode to form the Fano resonances. Energy exchange between the two rods happens through the near field coupling. Two approaches, to prolong plasmon lifetime by increasing the gain efficiency and to increase Rabi oscillation frequency by increasing the coupling strength, are suggested to increase the Rabi oscillation cycles. Our results offer a way to achieve unique control of light at the nanoscale and further to explore plasmonic Rabi oscillation phenomena in plasmonic nanosystems.

  5. Force oscillations simulating breathing maneuvers do not prevent force adaptation.

    Science.gov (United States)

    Pascoe, Chris; Jiao, Yuekan; Seow, Chun Y; Paré, Peter D; Bossé, Ynuk

    2012-07-01

    Airway inflammation in patients with asthma exposes the airway smooth muscle (ASM) to a variety of spasmogens. These spasmogens increase ASM tone, which can lead to force adaptation. Length oscillations of ASM, which occur in vivo due to breathing maneuvers, can attenuate force adaptation. However, in the presence of tone, the force oscillations required to achieve these length oscillations may be unphysiologic (i.e., magnitude greater than the ones achieved due to the swings in transpulmonary pressure required for breathing). In the present study, we applied force oscillations simulating the tension oscillations experienced by the wall of a fourth-generation airway during tidal breathing with or without deep inspirations (DI) to ASM. The goal was to investigate whether force adaptation occurs in conditions mimicking breathing maneuvers. Tone was induced by carbachol (average, 20 nM), and the force-generating capacity of the ASM was assessed at 5-minute intervals before and after carbachol administration using electrical field stimulations (EFS). The results show that force oscillations applied before the introduction of tone had a small effect on the force produced by EFS (declined to 96.8% [P > 0.05] and 92.3% [P breathing oscillations (25%). These force oscillations did not prevent force adaptation (gain of force of 11.2 ± 2.2 versus 13.5 ± 2.7 and 11.2 ± 3.0% in static versus dynamic conditions with or without DI, respectively). The lack of effect of simulated breathing maneuvers on force adaptation suggests that this gain in ASM force may occur in vivo and could contribute to the development of airway hyperresponsiveness.

  6. An Explanation For Large-amplitude Longitudinal Oscillations In Prominences

    Science.gov (United States)

    Karpen, Judith T.; Luna Bennasar, M.

    2012-05-01

    Large amplitude longitudinal (LAL) oscillations, consisting of periodic motions of prominence material along a filament axis, are rare but quite dramatic. The oscillations appear to be triggered by an energetic event, such as a microflare, subflare, or small C-class flare, close to a filament. Observations reveal speeds of several tens to 100 km/s, periods of order 1 hr, damping in a few periods, and displacements that are a significant fraction of the prominence length. We have developed the first self-consistent model for these oscillations that explains the restoring force and damping mechanism. We investigated the oscillations of multiple threads in our recent simulation (Luna et al. 2012), in which they form in long, dipped flux tubes through the thermal nonequilibrium process. The oscillation properties predicted by our simulations agree with the observed LAL behavior. In addition, our analytic model for the oscillations demonstrates that the restoring force is the projected gravity in the tube. Although the period is independent of the tube length and the constantly growing mass, the motions are strongly damped by the steady accretion of mass onto the threads. These suggest that a nearby impulsive event drives the existing prominence threads along their supporting tubes, away from the heating deposition site, without destroying them. As is also the case for newly formed condensations, the subsequent oscillations occur because the displaced threads reside in magnetic concavities with large radii of curvature. Our model yields a powerful seismological method for constraining the coronal magnetic field and radius of curvature of dips. Furthermore, these results indicate that the magnetic structure is most consistent with the sheared-arcade model for filament channels. We conclude that the LAL movements represent a collective oscillation of a large number of cool, dense threads moving along dipped flux tubes, triggered by a small, nearby energetic event.

  7. Classical Trajectories from Coherent Quantum Oscillations

    Science.gov (United States)

    Kadin, Alan

    2013-03-01

    In the conventional Copenhagen interpretation of quantum mechanics, classical behavior arises from microscopic coherent quantum systems only in the presence of decoherence on the macroscopic scale. On the contrary, we derive classical Hamiltonian trajectories for a confined quantum wave directly from coherent phase evolution on the microscopic scale, without decoherence or wavefunction collapse (see also). This suggests that the basis for classical macroscopic physics, including relativity, lies in the microscopic behavior of coherently oscillating quantum fields. An outline of such a theory will be presented, which resolves longstanding paradoxes involving wave-particle duality, quantum entanglement, and the quantum-to-classical transition.

  8. Burst Oscillation Studies with NICER

    Science.gov (United States)

    Mahmoodifar, Simin; Strohmayer, Tod E.

    2017-08-01

    Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars in Low Mass X-ray Binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. Here we present the results of our computations of the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. For the cooling phase of the burst we use two simple phenomenological models. The first considers asymmetric cooling that can achieve high amplitudes in the tail. The second considers a sustained temperature pattern on the stellar surface that is produced by r-modes propagating in the surface fluid ocean of the star. We will present some simulated burst light curves/spectra using these models and NICER response files, and will show the capabilities of NICER to detect and study burst oscillations. NICER will enable us to study burst oscillations in the energy band below ~3 keV, where there has been no previous measurements of these phenomena.

  9. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    discovered that the subcellular distribution of a tagged version of ALG-2 could be directed by physiological external stimuli (including ATP, EGF, prostaglandin, histamine), which provoke intracellular Ca2+ oscillations. Cellular stimulation led to a redistribution of ALG-2 from the cytosol to a punctate...... localization in an oscillatory fashion unitemporally with Ca2+ oscillations, whereas a Ca2+-binding deficient mutant of ALG-2 did not redistribute. Using tagged ALG-2 as bait we identified its novel target protein Sec31A and based on the partial colocalization of endogenous ALG-2 and Sec31A we propose that ALG...

  10. Adaptive dynamical networks

    Science.gov (United States)

    Maslennikov, O. V.; Nekorkin, V. I.

    2017-10-01

    Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.

  11. Oscillation mode analysis considering the interaction between a DFIG-based wind turbine and the grid

    Science.gov (United States)

    Wu, Wangping; Xie, Da; Lu, Yupu; Zhao, Zuyi; Yu, Songtao

    2017-01-01

    Sub-synchronous interactions between wind farms and transmission networks with series compensation have drawn great attention. As most large wind farms in Europe and Asia employ doubly fed induction generator turbines, there has recently been a growing interest in studying this phenomenon. To study the stability of wind turbine with doubly fed induction generator after a small disturbance, a complete small signal system is built in this paper. By using eigenvalue and participation factor analysis, the relation between the modes and state variables can be discovered. Thereafter, the oscillation modes are classified into electrical resonance, sub-synchronous resonance, sub-synchronous oscillation, sub-synchronous control interaction, and low frequency oscillation. To verify the oscillation frequency of each oscillation mode, time-domain simulation based on MATLAB/Simulink is presented. The simulation results justify the effectiveness of the small-signal models.

  12. Equatorial Oscillations in Jupiter's and Saturn's Atmospheres

    Science.gov (United States)

    Flasar, F. Michael; Guerlet, S.; Fouchet, T.; Schinder, P. J.

    2011-01-01

    Equatorial oscillations in the zonal-mean temperatures and zonal winds have been well documented in Earth's middle atmosphere. A growing body of evidence from ground-based and Cassini spacecraft observations indicates that such phenomena also occur in the stratospheres of Jupiter and Saturn. Earth-based midinfrared measurements spanning several decades have established that the equatorial stratospheric temperatures on Jupiter vary with a cycle of 4-5 years and on Saturn with a cycle of approximately 15 years. Spectra obtained by the Composite Infrared Spectrometer (CIRS) during the Cassini swingby at the end of 2000, with much better vertical resolution than the ground-based data, indicated a series of vertically stacked warm and cold anomalics at Jupiter's equator; a similar structurc was seen at Saturn's equator in CIRS limb measurements made in 2005, in the early phase of Cassini's orbital tour. The thermal wind equation implied similar patterns of mean zonal winds increasing and decreasing with altitude. On Saturn the peak-to-pcak amplitude of this variation was nearly 200 meters per second. The alternating vertical pattern of wanner and colder cquatorial tcmperatures and easterly and westerly tendencies of the zonal winds is seen in Earth's equatorial oscillations, where the pattern descends with time, The Cassini Jupiter and early Saturn observations were snapshots within a limited time interval, and they did not show the temporal evolution of the spatial patterns. However, more recent Saturn observations by CIRS (2010) and Cassini radio-occultation soundings (2009-2010) have provided an opportunity to follow the change of the temperature-zonal wind pattern, and they suggest there is descent, at a rate of roughly one scale height over four years. On Earth, the observed descent in the zonal-mean structure is associated with the absorption of a combination of vertically propagating waves with easlerly and westerly phase velocities. The peak-to-peak zonal wind

  13. Investigation of Transverse Oscillation Method

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2006-01-01

    oscillation and an axial oscillation in the pulse echo field. The theory behind the creation of the double oscillation pulse echo field is explained as well as the theory behind the estimation of the vector velocity. A parameter study of the method is performed, using the ultrasound simulation program Field...... II. A virtual linear array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit...... focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal to noise ratio, and type of echo canceling filter used. Using the experimental scanner RASMUS, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic...

  14. Prediction of pilot induced oscillations

    Directory of Open Access Journals (Sweden)

    Valentin PANĂ

    2011-03-01

    Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.

  15. Storing quantum states in bosonic dissipative networks

    Energy Technology Data Exchange (ETDEWEB)

    De Ponte, M A; Mizrahi, S S [Departamento de Fisica, Universidade Federal de Sao Carlos, Caixa Postal 676, Sao Carlos, 13565-905, Sao Paulo (Brazil); Moussa, M H Y [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 369, 13560-590 Sao Carlos, SP (Brazil)

    2008-11-14

    By considering a network of dissipative quantum harmonic oscillators, we deduce and analyse the optimum topologies which are able to store quantum superposition states, protecting them from decoherence, for the longest period of time. The storage is made dynamically, in that the states to be protected evolve through the network before being retrieved back in the oscillator where they were prepared. The decoherence time during the dynamic storage process is computed and we demonstrate that it is proportional to the number of oscillators in the network for a particular regime of parameters.

  16. Hidden symmetries of deformed oscillators

    Directory of Open Access Journals (Sweden)

    Sergey Krivonos

    2017-11-01

    Full Text Available We associate with each simple Lie algebra a system of second-order differential equations invariant under a non-compact real form of the corresponding Lie group. In the limit of a contraction to a Schrödinger algebra, these equations reduce to a system of ordinary harmonic oscillators. We provide two clarifying examples of such deformed oscillators: one system invariant under SO(2,3 transformations, and another system featuring G2(2 symmetry. The construction of invariant actions requires adding semi-dynamical degrees of freedom; we illustrate the algorithm with the two examples mentioned.

  17. Oscillating-Coolant Heat Exchanger

    Science.gov (United States)

    Scotti, Stephen J.; Blosser, Max L.; Camarda, Charles J.

    1992-01-01

    Devices useful in situations in which heat pipes inadequate. Conceptual oscillating-coolant heat exchanger (OCHEX) transports heat from its hotter portions to cooler portions. Heat transported by oscillation of single-phase fluid, called primary coolant, in coolant passages. No time-averaged flow in tubes, so either heat removed from end reservoirs on every cycle or heat removed indirectly by cooling sides of channels with another coolant. Devices include leading-edge cooling devices in hypersonic aircraft and "frost-free" heat exchangers. Also used in any situation in which heat pipe used and in other situations in which heat pipes not usable.

  18. Ladder operators for isospectral oscillators

    Science.gov (United States)

    Seshadri, S.; Balakrishnan, V.; Lakshmibala, S.

    1998-02-01

    We present, for the isospectral family of oscillator Hamiltonians, a systematic procedure for constructing raising and lowering operators satisfying any prescribed "distorted" Heisenberg algebra (including the q-generalization). This is done by means of an operator transformation implemented by a shift operator. The latter is obtained by solving an appropriate partial isometry condition in the Hilbert space. Formal representations of the nonlocal operators concerned are given in terms of pseudo-differential operators. Using the new annihilation operators, new classes of coherent states are constructed for isospectral oscillator Hamiltonians. The corresponding Fock-Bargmann representations are also considered, with specific reference to the order of the entire function family in each case.

  19. Oscillator strengths for Be I

    Energy Technology Data Exchange (ETDEWEB)

    Ates, Sule, E-mail: suleates@selcuk.edu.tr; Oezarslan, Selma; Celik, Gueltekin; Taser, Mehmet

    2012-07-15

    The electric dipole oscillator strengths for lines between some singlet and triplet levels have been calculated using the weakest bound electron potential model theory and the quantum defect orbital theory for Be I. In the calculations both multiplet and fine structure transitions are studied. We employed both the numerical Coulomb approximation method and numerical non-relativistic Hartree-Fock wavefunctions for expectation values of radii. The necessary energy values have been taken from experimental energy data in the literature. The calculated oscillator strengths have been compared with available theoretical results. A good agreement with the results in the literature has been obtained.

  20. The non-local oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, A. [Istituto Tecnico `G. Cardano`, Monterotondo, Rome (Italy)

    1996-08-01

    The most important characteristics of the non-local oscillator, an oscillator subjected to an additional non-local force, are extensively studied by means of a new asymptotic perturbation method that is able to furnish an approximate solution of weakly non-linear differential equations. The resulting motion is doubly periodic, because a second little frequency appears, in addition to the fundamental harmonic frequency. Comparison with the numerical solution obtained by the Runge-Kitta method confirms the validity of the asymptotic perturbation method and its importance for the study of non-linear dynamical systems.

  1. Sleep Behavior and EEG Oscillations in Aged Dp(16)1Yey/+ Mice: A Down Syndrome Model.

    Science.gov (United States)

    Levenga, J; Peterson, D J; Cain, P; Hoeffer, C A

    2018-02-16

    Down syndrome (DS) results from the triplication of genes located on human chromosome 21 (Hsa21). Though many cognitive and behavioral impairments are associated with DS, sleep disturbances remain poorly understood despite being a reported phenotype in approximately 60% of individuals diagnosed with DS. In this study, sleep and electroencephalography (EEG) oscillations were recorded from aged (12-14 mos.) Dp(16)1Yey/+ mice (Dp16), a mouse model of DS. We observed disrupted sleep demonstrated by increased activity during the dark phase and increased time awake at the expense of NREM sleep compared to wild-type mice. In addition, we found that Dp16 mice display significant differences in relative EEG power distribution among oscillation frequencies in both sleep and awake states. These results in Dp16 mice are consistent with sleep disturbances found in individuals with DS, and the abnormal EEG oscillations in aged Dp16 mice suggest a potential role for GABAergic activity in these sleep and EEG abnormalities. These sleep and EEG data reflect underlying differences in neuronal activity at the network level and thus are causative agents rather than merely symptoms of DS. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Investigating the roles of odor-evoked oscillations in information processing in the turtle olfactory bulb

    Science.gov (United States)

    Kim, Soyoun

    It has been earlier established that presentation of an odorant stimulus to the turtle evokes specific spatio-temporal responses in the olfactory bulb. This response includes three distinct oscillatory patterns (rostral, middle and caudal) that have different spatial (locations and scopes) and temporal (frequencies and delay from the odorant onset) properties. In this thesis we investigate, using modeling and experimental approaches; the mechanisms of formation and the role of the oscillatory patterning in the turtle olfactory bulb. We have built a computational model that incorporates the basic anatomy and neurophysiology of the olfactory bulb to investigate how the observed patterns relate to activity of individual neurons and what roles they could play in olfactory information processing. We show that three basic anatomical/physiological properties of the olfactory network underlie formation of a temporal sequence of simultaneous activations of glomerular modules: fast synaptic inhibition between populations of excitatory and inhibitory cells, slow self-inhibition observed on excitatory cells; and input strength. The model suggests that the role of oscillations is to organize the neural activity in a temporal sequence which groups the activation of glomerular modules based on the input strength similarity. We show that this type of code explains particularly well the experimental findings reported also by other groups, showing that temporal patterning may mediate discrimination of similar odorants. Furthermore, we showed that within our model, feedback from cortical regions of the brain could modulate oscillatory patterning and provide mechanisms to generate experimentally observed period doubling in one of the oscillations. This requires the cortical processing to act as a type of coincidence modulator and provide functional coupling between excitatory modules that is absent in the bulbar network. This hypothesis is partially supported by our experiments that

  3. TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis

    2007-01-01

    A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...

  4. Multiple-Parameter Hamiltonian Approach for Higher Accurate Approximations of a Nonlinear Oscillator with Discontinuity

    Directory of Open Access Journals (Sweden)

    Najeeb Alam Khan

    2011-01-01

    Full Text Available We applied a new approach to obtain natural frequency of the nonlinear oscillator with discontinuity. He's Hamiltonian approach is modified for nonlinear oscillator with discontinuity for which the elastic force term is proportional to sgn(u. We employed this method for higher-order approximate solution of the nonlinear oscillator equation. This property is used to obtain approximate frequency-amplitude relationship of a nonlinear oscillator with high accuracy. Many numerical results are given to prove the efficiency of the suggested technique.

  5. Overview of Solar Seismology: Oscillations as Probes of Internal Structure and Dynamics in the Sun

    Science.gov (United States)

    Toomre, J.

    1984-01-01

    The physical nature of solar oscillations is reviewed. The nomenclature of the subject and the techniques used to interpret the oscillations are discussed. Many of the acoustic and gravity waves that can be observed in the atmosphere of the Sun are actually resonant or standing modes of the interior; precise measurements of the frequencies of such modes allow deductions of the internal structure and dynamics of this star. The scientific objectives of such studies of solar seismic disturbances, or of solar seismology, are outlined. The reasons why it would be very beneficial to carry out further observations of solar oscillations both from ground based networks and from space will be discussed.

  6. Vasovagal oscillations and vasovagal responses produced by the Vestibulo-Sympathetic Reflex in the rat

    Directory of Open Access Journals (Sweden)

    Sergei B. Yakushin

    2014-04-01

    Full Text Available Sinusoidal galvanic vestibular stimulation (sGVS induces oscillations in blood pressure (BP and heart rate (HR i.e., vasovagal oscillations, and decreases in BP and HR i.e., vasovagal responses, in isoflurane-anesthetized rats. We determined the characteristics of the vasovagal oscillations, assessed their role in the generation of vasovagal responses and determined whether they could be induced by monaural as well as by binaural sGVS and by oscillation in pitch. Wavelet analyses were used to determine the power distributions of the waveforms. Monaural and binaural sGVS and pitch generated vasovagal oscillations at the frequency and at twice the frequency of stimulation. Vasovagal oscillations and vasovagal responses were maximally induced at low stimulus frequencies (0.025-0.05 Hz. The oscillations were attenuated and the responses were rarely induced at higher stimulus frequencies. Vasovagal oscillations could occur without induction of vasovagal responses, but vasovagal responses were always associated with a vasovagal oscillation. We posit that the vasovagal oscillations originate in a low frequency band that, when appropriately activated by strong sympathetic stimulation, can generate vasovagal oscillations as a precursor for vasovagal responses and syncope. We further suggest that the activity responsible for the vasovagal oscillations arises in low frequency, otolith neurons with orientation vectors close to the vertical axis of the head. These neurons are likely to provide critical input to the Vestibulo-Sympathetic Reflex to increase BP and HR upon changes in head position relative to gravity, and to contribute to the production of vasovagal oscillations and vasovagal responses and syncope when the baroreflex is inactivated.

  7. Identical synchronization of nonidentical oscillators: when only birds of different feathers flock together

    Science.gov (United States)

    Zhang, Yuanzhao; Motter, Adilson E.

    2018-01-01

    An outstanding problem in the study of networks of heterogeneous dynamical units concerns the development of rigorous methods to probe the stability of synchronous states when the differences between the units are not small. Here, we address this problem by presenting a generalization of the master stability formalism that can be applied to heterogeneous oscillators with large mismatches. Our approach is based on the simultaneous block diagonalization of the matrix terms in the variational equation, and it leads to dimension reduction that simplifies the original equation significantly. This new formalism allows the systematic investigation of scenarios in which the oscillators need to be nonidentical in order to reach an identical state, where all oscillators are completely synchronized. In the case of networks of identically coupled oscillators, this corresponds to breaking the symmetry of the system as a means to preserve the symmetry of the dynamical state— a recently discovered effect termed asymmetry-induced synchronization (AISync). Our framework enables us to identify communication delay as a new and potentially common mechanism giving rise to AISync, which we demonstrate using networks of delay-coupled Stuart–Landau oscillators. The results also have potential implications for control, as they reveal oscillator heterogeneity as an attribute that may be manipulated to enhance the stability of synchronous states.

  8. Excitation of coherent oscillations in underdoped cuprate superconductors by intense THz pulses

    Science.gov (United States)

    Hoffmann, Matthias C.; Lee, Wei-Sheng; Dakovski, Georgi L.; Turner, Joshua J.; Gerber, Simon M.; Bonn, Doug; Hardy, Walter; Liang, Ruixing; Salluzzo, Marco

    2016-05-01

    We use intense broadband THz pulses to excite the cuprate superconductors YBCO and NBCO in their underdoped phase, where superconducting and charge density wave ground states compete. We observe pronounced coherent oscillations at attributed to renormalized low-energy phonon modes. These oscillation features are much more prominent than those observed in all-optical pump-probe measurements, suggesting a different excitation mechanism.

  9. Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets

    DEFF Research Database (Denmark)

    Luciani, Dan Seriano; Misler, S.; Polonsky, K.S.

    2006-01-01

    Exposure of pancreatic islets of Langerhans to physiological concentrations of glucose leads to secretion of insulin in an oscillatory pattern. The oscillations in insulin secretion are associated with oscillations in cytosolic Ca2+ concentration ([Ca2+](c)). Evidence suggests that the oscillatio...

  10. B0s Oscillation Results

    CERN Document Server

    Willocq, S

    2002-01-01

    We review new studies of the time dependence of B0s - B0s-bar mixing by the ALEPH, DELPHI and SLD Collaborations, with an emphasis on the different analysis methods used. Combining all available results yields a preliminary lower limit on the oscillation frequency of dms > 14.4 ps-1 at the 95% C.L.

  11. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    Abstract. Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable- coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota's bilinear method. The bilinear forms and analytic soliton solutions are derived, and the ...

  12. Chemical Oscillations-Mathematical Modelling

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 7. Chemical Oscillations - Mathematical Modelling ... Protein Science and Engineering Unit Institute of Microbial Technology Sector 39A Chandigarh 160 036; Department of Chemistry and Centre for Advanced Studies in Chemistry Punjab ...

  13. Cubication of Conservative Nonlinear Oscillators

    Science.gov (United States)

    Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…

  14. Linearization of Conservative Nonlinear Oscillators

    Science.gov (United States)

    Belendez, A.; Alvarez, M. L.; Fernandez, E.; Pascual, I.

    2009-01-01

    A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for…

  15. Sum rules for neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Kobzarev, I.Yu.; Nartem' yanov, B.V.; Okun, L.B.; Shchepkin, M.G. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental' noj Fiziki)

    1982-05-01

    Sum rules for neutrino oscillations have been obtained. The effects due to the neutrino masses are taken into account, msub(..nu..) being not assumed to be a small parameter. Study of the ''binary'' lsub(i)sup(-) ..-->.. ..nu.. ..-->.. lsub(k)sup(+-) process permits to accurately take into account neutrino masses and to obtain expressions for the cross sections oscillating as functions of distance L between the points of neutrino production and absorption. In the case of Dirac or left Majoran masses obtained is the sum rule according to which the cross section sigma(lsub(i)sup(-) ..-->.. lsub(k)sup(-)) summarized with the weight 1/vsub(k) by aromas of final lepton remains constant (exactly, decrease as 1/L/sup 2/) and it does not oscillate. In the case of left Majoran masses there is admixture of antineutrino due to which the lsub(i)sup(-) ..-->.. lsub(k)sup(+) process is possible. In this case both components (neutrino with antineutrino admixture) oscillates independently and there exists analogous sum rule for the sigma(lsub(i)sup(-) ..-->.. lsub(k)sup(+)) cross section.

  16. Discovery of atmospheric neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Tokyo Univ., Inst. for Cosmic Ray Research, Kashiwa, Chiba (Japan)

    2003-05-01

    Cosmic ray particles entering the atmosphere interact with the air nuclei produce neutrinos. These neutrinos are called atmospheric neutrinos. The atmospheric neutrino anomaly observed in Kamiokande is now understood as due to neutrino oscillations by high statistics measurements of the atmospheric neutrinos in Super-Kamiokande. The studies of the atmospheric neutrinos have matured into detailed studies of neutrino masses and mixings. (author)

  17. Sustained oscillations in living cells

    Science.gov (United States)

    Danø, Sune; Sørensen, Preben Graae; Hynne, Finn

    1999-11-01

    Glycolytic oscillations in yeast have been studied for many years simply by adding a glucose pulse to a suspension of cells and measuring the resulting transient oscillations of NADH. Here we show, using a suspension of yeast cells, that living cells can be kept in a well defined oscillating state indefinitely when starved cells, glucose and cyanide are pumped into a cuvette with outflow of surplus liquid. Our results show that the transitions between stationary and oscillatory behaviour are uniquely described mathematically by the Hopf bifurcation. This result characterizes the dynamical properties close to the transition point. Our perturbation experiments show that the cells remain strongly coupled very close to the transition. Therefore, the transition takes place in each of the cells and is not a desynchronization phenomenon. With these two observations, a study of the kinetic details of glycolysis, as it actually takes place in a living cell, is possible using experiments designed in the framework of nonlinear dynamics. Acetaldehyde is known to synchronize the oscillations. Our results show that glucose is another messenger substance, as long as the glucose transporter is not saturated.

  18. Sound oscillation of dropwise cluster

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A.V., E-mail: shavlov@ikz.ru [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation); Dzhumandzhi, V.A.; Romanyuk, S.N. [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation)

    2012-06-04

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10{sup 2}–10{sup 3} units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  19. Locking of correlated neural activity to ongoing oscillations.

    Directory of Open Access Journals (Sweden)

    Tobias Kühn

    2017-06-01

    Full Text Available Population-wide oscillations are ubiquitously observed in mesoscopic signals of cortical activity. In these network states a global oscillatory cycle modulates the propensity of neurons to fire. Synchronous activation of neurons has been hypothesized to be a separate channel of signal processing information in the brain. A salient question is therefore if and how oscillations interact with spike synchrony and in how far these channels can be considered separate. Experiments indeed showed that correlated spiking co-modulates with the static firing rate and is also tightly locked to the phase of beta-oscillations. While the dependence of correlations on the mean rate is well understood in feed-forward networks, it remains unclear why and by which mechanisms correlations tightly lock to an oscillatory cycle. We here demonstrate that such correlated activation of pairs of neurons is qualitatively explained by periodically-driven random networks. We identify the mechanisms by which covariances depend on a driving periodic stimulus. Mean-field theory combined with linear response theory yields closed-form expressions for the cyclostationary mean activities and pairwise zero-time-lag covariances of binary recurrent random networks. Two distinct mechanisms cause time-dependent covariances: the modulation of the susceptibility of single neurons (via the external input and network feedback and the time-varying variances of single unit activities. For some parameters, the effectively inhibitory recurrent feedback leads to resonant covariances even if mean activities show non-resonant behavior. Our analytical results open the question of time-modulated synchronous activity to a quantitative analysis.

  20. Selective control of vortex polarities by microwave field in two robustly synchronized spin-torque nano-oscillators

    Science.gov (United States)

    Li, Yi; de Milly, Xavier; Klein, Olivier; Cros, Vincent; Grollier, Julie; de Loubens, Grégoire

    2018-01-01

    Manipulating operation states of coupled spin-torque nano-oscillators (STNOs), including their synchronization, is essential for applications such as complex oscillator networks. In this work, we experimentally demonstrate selective control of two coupled vortex STNOs through microwave-assisted switching of their vortex core polarities. First, the two oscillators are shown to synchronize due to the dipolar interaction in a broad frequency range tuned by an external biasing field. Coherent output is demonstrated along with strong linewidth reduction. Then, we show individual vortex polarity control of each oscillator, which leads to synchronization/desynchronization due to accompanied frequency shift. Our methods can be easily extended to multiple-element coupled oscillator networks.

  1. Nanomotor dynamics in a chemically oscillating medium

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Bryan, E-mail: bryan.robertson@mail.utoronto.ca; Kapral, Raymond, E-mail: rkapral@chem.utoronto.ca [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)

    2015-04-21

    Synthetic nanomotors powered by chemical reactions have potential uses as cargo transport vehicles in both in vivo and in vitro applications. In many situations, motors will have to operate in out-of-equilibrium complex chemically reacting media, which supply fuel to the motors and remove the products they produce. Using molecular simulation and mean-field theory, this paper describes some of the new features that arise when a chemically powered nanomotor, operating through a diffusiophoretic mechanism, moves in an environment that supports an oscillatory chemical reaction network. It is shown how oscillations in the concentrations in chemical species in the environment give rise to oscillatory motor dynamics. More importantly, since the catalytic reactions on the motor that are responsible for its propulsion couple to the bulk phase reaction network, the motor can change its local environment. This process can give rise to distinctive spatiotemporal structures in reaction-diffusion media that occur as a result of active motor motion. Such locally induced nonequilibrium structure will play an important role in applications that involve motor dynamics in complex chemical media.

  2. Nanomotor dynamics in a chemically oscillating medium.

    Science.gov (United States)

    Robertson, Bryan; Kapral, Raymond

    2015-04-21

    Synthetic nanomotors powered by chemical reactions have potential uses as cargo transport vehicles in both in vivo and in vitro applications. In many situations, motors will have to operate in out-of-equilibrium complex chemically reacting media, which supply fuel to the motors and remove the products they produce. Using molecular simulation and mean-field theory, this paper describes some of the new features that arise when a chemically powered nanomotor, operating through a diffusiophoretic mechanism, moves in an environment that supports an oscillatory chemical reaction network. It is shown how oscillations in the concentrations in chemical species in the environment give rise to oscillatory motor dynamics. More importantly, since the catalytic reactions on the motor that are responsible for its propulsion couple to the bulk phase reaction network, the motor can change its local environment. This process can give rise to distinctive spatiotemporal structures in reaction-diffusion media that occur as a result of active motor motion. Such locally induced nonequilibrium structure will play an important role in applications that involve motor dynamics in complex chemical media.

  3. Adjusting neural additional stabilizers for damping interarea oscillations; Ajuste de estabilizadores suplementares neurais para amortecimento de oscilacoes interareas

    Energy Technology Data Exchange (ETDEWEB)

    Furini, M.A.; Araujo, P.B. de; Pereira, A.L.S. [Universidade Estadual Paulista (FEIS/UNESP), Ilha Solteira, SP (Brazil). Fac. de Engenharia. Dept. Engenharia Eletrica], Emails: mafurini@aluno.feis.unesp.br, percival@dee.feis.unesp.br, andspa@gmail.com

    2009-07-01

    This paper aims at analyzing the main operation and design of operationally robust controllers in order to damp the electromechanics oscillations type inter area. For this we used an intelligent control technique based on artificial neural networks, where a multilayer perceptron it was implemented. We used a symmetrical test system of four generators, ten bars and nine transmission lines to verify the performance of the power system stabilizers and power oscillation damping (POD) for the FACTS devices, unified power flow controller (UPFC), designed for neural networks. The results show the superiority in the operation and control of oscillations in power systems using UPFC equipped with the POD.

  4. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it [Center for Mind/Brain Science, University of Trento, 38123 Mattarello TN, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2015-12-15

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a “mixing” stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

  5. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators.

    Science.gov (United States)

    Minati, Ludovico

    2015-12-01

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a "mixing" stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

  6. Analytic Neutrino Oscillation Probabilities in Matter: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J. [Fermilab; Denton, Peter B. [Copenhagen U.; Minakata, Hisakazu [Madrid, IFT

    2018-01-02

    We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.

  7. Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations

    Directory of Open Access Journals (Sweden)

    Massihullah Hamidi

    2009-06-01

    Full Text Available A governing assumption about repetitive transcranial magnetic stimulation (rTMS has been that it interferes with task-related neuronal activity – in effect, by “injecting noise” into the brain – and thereby disrupts behavior. Recent reports of rTMS-produced behavioral enhancement, however, call this assumption into question. We investigated the neurophysiological effects of rTMS delivered during the delay period of a visual working memory task by simultaneously recording brain activity with electroencephalography (EEG. Subjects performed visual working memory for locations or for shapes, and in half the trials a 10-Hz train of rTMS was delivered to the superior parietal lobule or a control brain area. The wide range of individual differences in the effects of rTMS on task accuracy, from improvement to impairment, was predicted by individual differences in the effect of rTMS on power in the alpha-band of the EEG (~ 10 Hz: a decrease in alpha-band power corresponded to improved performance, whereas an increase in alpha-band power corresponded to the opposite. The EEG effect was localized to cortical sources encompassing the frontal eye fields and the intraparietal sulcus, and was specific to task (location, but not object memory and to rTMS target (superior parietal lobule, not control area. Furthermore, for the same task condition, rTMS-induced changes in cross-frequency phase synchrony between alpha- and gamma-band (> 40 Hz oscillations predicted changes in behavior. These results suggest that alpha-band oscillations play an active role cognitive processes and do not simply reflect absence of processing. Furthermore, this study shows that the complex effects of rTMS on behavior can result from biasing endogenous patterns of network-level oscillations.

  8. Inferring long memory processes in the climate network via ordinal pattern analysis

    CERN Document Server

    Barreiro, Marcelo; Masoller, Cristina

    2010-01-01

    We use ordinal patterns and symbolic analysis to construct global climate networks and uncover long and short term memory processes. The data analyzed is the monthly averaged surface air temperature (SAT field) and the results suggest that the time variability of the SAT field is determined by patterns of oscillatory behavior that repeat from time to time, with a periodicity related to intraseasonal oscillations and to El Ni\\~{n}o on seasonal-to-interannual time scales.

  9. GABA level, gamma oscillation, and working memory performance in schizophrenia

    Directory of Open Access Journals (Sweden)

    Chi-Ming A. Chen

    2014-01-01

    Full Text Available A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24 compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC, and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7 had significantly lower amplitudes in gamma oscillations than controls (n = 9. However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16 significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  10. A note on multicyclic control by swashplate oscillation

    Science.gov (United States)

    Biggers, J. C.; Mccloud, J. L., III

    1978-01-01

    It was shown that for two, three, or four bladed rotors, simple oscillation of the nonrotating swashplate controls can produce prescribed blade pitch schedules of the sort which were suggested for vibration alleviation. Equations were given which relate the swashplate motions to the resulting blade pitch schedules.

  11. Synchronisation of glycolytic oscillations in a suspension of human neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Poulsen, Allan K.; Olsen, Lars Folke

    Neutrophils are known to be able to synchronize their production of superoxide. We show that glycolysis is also synchronized in human neutrophils being in suspension and suggest that oscillations in glycolysis are driving the pulsatile production of superoxide. The synchronising agent remains so...... far unknown, however, much evident points to that it might be hydrogen peroxide or an intermediate in glycolysis....

  12. Quantum oscillations in the chiral magnetic conductivity

    Science.gov (United States)

    Kaushik, Sahal; Kharzeev, Dmitri E.

    2017-06-01

    In strong magnetic field, the longitudinal magnetoconductivity in three-dimensional chiral materials is shown to exhibit a new type of quantum oscillations arising from the chiral magnetic effect (CME). These quantum CME oscillations are predicted to dominate over the Shubnikov-de Haas (SdH) ones in chiral materials with an approximately conserved chirality of quasiparticles at strong magnetic fields. The phase of quantum CME oscillations differs from the phase of the conventional SdH oscillations by π /2 .

  13. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-06-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  14. Characteristic Roots of a Class of Fractional Oscillators

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available The fundamental theorem of algebra determines the number of characteristic roots of an ordinary differential equation of integer order. This may cease to be true for a differential equation of fractional order. The results given in this paper suggest that the number of the characteristic roots of a class of oscillators of fractional order may in general be infinitely great. Further, we infer that it may also be the case for the characteristic roots of a differential equation of fractional order greater than 1. The relationship between the range of the fractional order and the locations of characteristic roots of oscillators in the complex plane is considered.

  15. Assessing the quality of stochastic oscillations

    Indian Academy of Sciences (India)

    Population dynamics; stochastic oscillations. ... We propose a quantification of the oscillatory appearance of the fluctuating populations, and show that good stochastic oscillations are present if a parameter of the macroscopic model is small, and that no microscopic model will show oscillations if that parameter is large.

  16. Internal dynamics of long Josephson junction oscillators

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Lomdahl, P. S.; Scott, Alwyn C.

    1981-01-01

    Numerical computations on a sine-Gordon model of the Josephson junction fluxon oscillator are compared with experimental measurements. Good agreement is found for the voltage current characteristic, oscillator power output, and range of current bias over which oscillation is observed. Our numerical...

  17. Comparison of Methods for Oscillation Detection

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Trangbæk, Klaus

    2006-01-01

    This paper compares a selection of methods for detecting oscillations in control loops. The methods are tested on measurement data from a coal-fired power plant, where some oscillations are occurring. Emphasis is put on being able to detect oscillations without having a system model and without...

  18. Scleronomic Holonomic Constraints and Conservative Nonlinear Oscillators

    Science.gov (United States)

    Munoz, R.; Gonzalez-Garcia, G.; Izquierdo-De La Cruz, E.; Fernandez-Anaya, G.

    2011-01-01

    A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present…

  19. Coherent states for the Legendre oscillator

    OpenAIRE

    Borzov, V. V.; Damaskinsky, E. V.

    2003-01-01

    A new oscillator-like system called by the Legendre oscillator is introduced in this note. The two families of coherent states (coherent states as eigenvectors of the annihilation operator and the Klauder-Gazeau temporally stable coherent states) are defined and investigated for this oscillator.

  20. Noise and robustness in the cyanobacterial circadian oscillator

    Science.gov (United States)

    Lubensky, David

    2010-03-01

    Like humans and most higher animals, photosynthetic cyanobacteria possess an autonomous 24-hour circadian clock that allows them to anticipate daily changes in their environment. This oscillator is known to be extremely stable, with a correlation time on the order of 100 days in a single, isolated cell, even in the absence of any entraining signals from the environment. The origin of such remarkable robustness, however, remains mysterious. Here, we present a stochastic model of the biochemical circuitry underlying the clock, including both transcriptional feedback and the post-translational phosphorylation cycle that is thought to be the core oscillator. We find that the phosphorylation oscillator in isolation is highly resistant to the intrinsic noise associated with molecular discreteness, but that a growing, dividing cell is a considerably more challenging environment in which to sustain stable oscillations. We suggest that coupling the phosphorylation cycle to a clock based on delayed negative transcriptional feedback may substantially increase the robustness of both oscillators and detail how this enhancement comes about.

  1. Three People Can Synchronize as Coupled Oscillators during Sports Activities

    Science.gov (United States)

    Yokoyama, Keiko; Yamamoto, Yuji

    2011-01-01

    We experimentally investigated the synchronized patterns of three people during sports activities and found that the activity corresponded to spatiotemporal patterns in rings of coupled biological oscillators derived from symmetric Hopf bifurcation theory, which is based on group theory. This theory can provide catalogs of possible generic spatiotemporal patterns irrespective of their internal models. Instead, they are simply based on the geometrical symmetries of the systems. We predicted the synchronization patterns of rings of three coupled oscillators as trajectories on the phase plane. The interactions among three people during a 3 vs. 1 ball possession task were plotted on the phase plane. We then demonstrated that two patterns conformed to two of the three patterns predicted by the theory. One of these patterns was a rotation pattern (R) in which phase differences between adjacent oscillators were almost 2π/3. The other was a partial anti-phase pattern (PA) in which the two oscillators were anti-phase and the third oscillator frequency was dead. These results suggested that symmetric Hopf bifurcation theory could be used to understand synchronization phenomena among three people who communicate via perceptual information, not just physically connected systems such as slime molds, chemical reactions, and animal gaits. In addition, the skill level in human synchronization may play the role of the bifurcation parameter. PMID:21998570

  2. Entrainment of Human Alpha Oscillations Selectively Enhances Visual Conjunction Search.

    Directory of Open Access Journals (Sweden)

    Notger G Müller

    Full Text Available The functional role of the alpha-rhythm which dominates the human electroencephalogram (EEG is unclear. It has been related to visual processing, attentional selection and object coherence, respectively. Here we tested the interaction of alpha oscillations of the human brain with visual search tasks that differed in their attentional demands (pre-attentive vs. attentive and also in the necessity to establish object coherence (conjunction vs. single feature. Between pre- and post-assessment elderly subjects received 20 min/d of repetitive transcranial alternating current stimulation (tACS over the occipital cortex adjusted to their individual alpha frequency over five consecutive days. Compared to sham the entrained alpha oscillations led to a selective, set size independent improvement in the conjunction search task performance but not in the easy or in the hard feature search task. These findings suggest that cortical alpha oscillations play a specific role in establishing object coherence through suppression of distracting objects.

  3. Solar Influence on the North Atlantic Oscillation - Initial Results

    CERN Document Server

    Dacie, Sally

    2015-01-01

    Some initial investigations into various atmospheric phenomena and the influence of the solar cycle on weather have been made. Strongly negative North Atlantic Oscillation (NAO) indices, which cause cold and dry winter weather in North West Europe, rarely occur during periods of high solar activity. Coupling between the troposphere and stratosphere is discussed, particularly in the context of Polar-night jet oscillation events (defined by Hitchcock et al., 2013) and the Quasi-Biennial Oscillation. The energy of North Atlantic hurricanes (as indicated by the Accumulated Cyclone Energy Index, ACE) is also linked to solar activity, via UV heating at the tropopause (Elsner et al., 2010), and is suggested as a possible mechanism through which solar activity could influence the NAO. Finally the lack of solar influence on the NAO before $\\sim$ 1950 is addressed, with a possible cause being the smaller solar cycle amplitudes. This short report contains several ideas, which may be worth pursuing further.

  4. Damping of prominence longitudinal oscillations due to mass accretion

    Science.gov (United States)

    Ruderman, Michael S.; Luna, Manuel

    2016-06-01

    We study the damping of longitudinal oscillations of a prominence thread caused by the mass accretion. We suggested a simple model describing this phenomenon. In this model we considered a thin curved magnetic tube filled with the plasma. The prominence thread is in the central part of the tube and it consists of dense cold plasma. The parts of the tube at the two sides of the thread are filled with hot rarefied plasma. We assume that there are flows of rarefied plasma toward the thread caused by the plasma evaporation at the magnetic tube footpoints. Our main assumption is that the hot plasma is instantaneously accommodated by the thread when it arrives at the thread, and its temperature and density become equal to those of the thread. Then we derive the system of ordinary differential equations describing the thread dynamics. We solve this system of ordinary differential equations in two particular cases. In the first case we assume that the magnetic tube is composed of an arc of a circle with two straight lines attached to its ends such that the whole curve is smooth. A very important property of this model is that the equations describing the thread oscillations are linear for any oscillation amplitude. We obtain the analytical solution of the governing equations. Then we obtain the analytical expressions for the oscillation damping time and periods. We find that the damping time is inversely proportional to the accretion rate. The oscillation periods increase with time. We conclude that the oscillations can damp in a few periods if the inclination angle is sufficiently small, not larger that 10°, and the flow speed is sufficiently large, not less that 30 km s-1. In the second model we consider the tube with the shape of an arc of a circle. The thread oscillates with the pendulum frequency dependent exclusively on the radius of curvature of the arc. The damping depends on the mass accretion rate and the initial mass of the threads, that is the mass of the

  5. Measuring neutrino oscillation parameters using $\

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0

  6. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.

  7. Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach

    Science.gov (United States)

    Pinto, Rafael S.; Saa, Alberto

    2015-12-01

    A recently proposed dimensional reduction approach for studying synchronization in the Kuramoto model is employed to build optimal network topologies to favor or to suppress synchronization. The approach is based in the introduction of a collective coordinate for the time evolution of the phase locked oscillators, in the spirit of the Ott-Antonsen ansatz. We show that the optimal synchronization of a Kuramoto network demands the maximization of the quadratic function ωTL ω , where ω stands for the vector of the natural frequencies of the oscillators and L for the network Laplacian matrix. Many recently obtained numerical results can be reobtained analytically and in a simpler way from our maximization condition. A computationally efficient hill climb rewiring algorithm is proposed to generate networks with optimal synchronization properties. Our approach can be easily adapted to the case of the Kuramoto models with both attractive and repulsive interactions, and again many recent numerical results can be rederived in a simpler and clearer analytical manner.

  8. A feedback quenched oscillator produces turing patterning with one diffuser.

    Directory of Open Access Journals (Sweden)

    Justin Hsia

    2012-01-01

    Full Text Available Efforts to engineer synthetic gene networks that spontaneously produce patterning in multicellular ensembles have focused on Turing's original model and the "activator-inhibitor" models of Meinhardt and Gierer. Systems based on this model are notoriously difficult to engineer. We present the first demonstration that Turing pattern formation can arise in a new family of oscillator-driven gene network topologies, specifically when a second feedback loop is introduced which quenches oscillations and incorporates a diffusible molecule. We provide an analysis of the system that predicts the range of kinetic parameters over which patterning should emerge and demonstrate the system's viability using stochastic simulations of a field of cells using realistic parameters. The primary goal of this paper is to provide a circuit architecture which can be implemented with relative ease by practitioners and which could serve as a model system for pattern generation in synthetic multicellular systems. Given the wide range of oscillatory circuits in natural systems, our system supports the tantalizing possibility that Turing pattern formation in natural multicellular systems can arise from oscillator-driven mechanisms.

  9. Neutrino Oscillations and Non-standard Interactions

    Directory of Open Access Journals (Sweden)

    Yasaman Farzan

    2018-02-01

    Full Text Available Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant neutrino oscillation effects that can in principle give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase in the PMNS mixing matrix, the neutrino mass ordering and the octant of θ23. Determining the exact values of neutrino mass and mixing parameters is crucial to test various neutrino models and flavor symmetries that are designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar neutrino experiments and the atmospheric neutrino data from Super-Kamiokande, IceCube, and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO, and Double Chooz as well as the long baseline neutrino data from MINOS, T2K, and NOνA. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC NSI and Neutral Current (NC NSI. Our focus will be mainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1 gauge symmetry with a gauge boson of mass ≲ 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged

  10. Nonlinear oscillations of TM-mode gyrotrons

    Science.gov (United States)

    Chang, Tsun-Hsu; Yao, Hsin-Yu; Su, Bo-Yuan; Huang, Wei-Chen; Wei, Bo-Yuan

    2017-12-01

    This study investigates the interaction between the relativistic electrons and the waves in cavities with fixed field profiles. Both the transverse electric (TE) and the transverse magnetic (TM) cavity modes are examined, including three first-axial modes, TE011, TM011, and TM111, and two zero-axial modes, TM010 and TM110. The first-axial modes have the same resonant frequency, so a direct comparison can be made. By sweeping the electron pitch factor (α) and the electron transit angle (Θ), the optimal converting efficiency of TM modes occurs at α = 1.5 and Θ = 1.5π, unlike the TE mode of α = 2.0 and Θ = 1.0π. The converting efficiencies of both the first-axial TM modes are much lower than that of TE011 mode. The starting currents of TM011 and TM111 modes are four times higher than that of TE011 mode, indicating that these two TM modes are very difficult to oscillate. This evidences that under the traditional operating conditions, the TM-mode gyrotrons are insignificant. However, the two unique, zero-axial TM modes have relatively high converting efficiency. The highest converting efficiency of TM110 is 27.4%, the same value as that of TE011 mode. The starting currents of TM110 mode and TE011 mode are at the same level. The results suggest that some TM-mode gyrotron oscillators are feasible and deserve further theoretical and experimental studies.

  11. Fractional Dynamics of Globally Slow Transcription and Its Impact on Deterministic Genetic Oscillation

    Science.gov (United States)

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models – the Goodwin oscillator and the Rössler oscillator. By constructing a “dual memory” oscillator – the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically. PMID:22679500

  12. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    Directory of Open Access Journals (Sweden)

    Kun Wei

    Full Text Available In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE. Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  13. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    Science.gov (United States)

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  14. Communities recognition in the Chesapeake Bay ecosystem by dynamical clustering algorithms based on different oscillators systems

    CERN Document Server

    Pluchino, Alessandro; Latora, Vito

    2008-01-01

    We have recently introduced an efficient method for the detection and identification of modules in complex networks, based on the de-synchronization properties (dynamical clustering) of phase oscillators. In this paper we apply the dynamical clustering tecnique to the identification of communities of marine organisms living in the Chesapeake Bay food web. We show that our algorithm is able to perform a very reliable classification of the real communities existing in this ecosystem by using different kinds of dynamical oscillators. We compare also our results with those of other methods for the detection of community structures in complex networks.

  15. Memorizing and recalling spatial-temporal patterns in an oscillator model of the hippocampus.

    Science.gov (United States)

    Borisyuk, R M; Hoppensteadt, F C

    1998-01-01

    We describe the model of the hippocampus consisting of interactive oscillators with input from the entorhinal cortex (modulating the main information flow by a theta rhythm) and the septum (a theta rhythm generator). When interconnections between oscillators are allowed to strengthen in an adaptive way, the network can be trained using a series of lessons. This results in a connection matrix that memorizes the temporal sequence of inputs. Presenting one of the lessons to the trained network results in reproduction of the remainder of the sequence. In this paper, we create such a connection matrix, derive from it an appropriate Markov chain and simulate the chain to illustrate its dynamics.

  16. Two-electron Rabi oscillations in real-time time-dependent density-functional theory.

    Science.gov (United States)

    Habenicht, Bradley F; Tani, Noriyuki P; Provorse, Makenzie R; Isborn, Christine M

    2014-11-14

    We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S0 state and the doubly-excited S2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation.

  17. Multifrequency Oscillator-Type Active Printed Antenna Using Chaotic Colpitts Oscillator

    OpenAIRE

    Bibha Kumari; Nisha Gupta

    2014-01-01

    This paper presents a new concept to realize a multifrequency Oscillator-type active printed monopole antenna. The concept of period doubling route to chaos is exploited to generate the multiple frequencies. The chaotic Colpitts oscillator is integrated with the printed monopole antenna (PMA) on the same side of the substrate to realize an Oscillator-type active antenna where the PMA acts as a load and radiator to the chaotic oscillator. By changing the bias voltage of the oscillator, the ant...

  18. Experimental studies of neutrino oscillations

    CERN Document Server

    Kajita, Takaaki

    2016-01-01

    The 2015 Nobel Prize in physics has been awarded to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita of Tokyo University is a Japanese physicist, known for neutrino experiments at the Kamiokande and its successor, Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into as well as a record of the rise and the role of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the 3 families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible foot-print in the history of big and better science.

  19. Cubication of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, Augusto; Alvarez, Mariela L [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, Elena; Pascual, Inmaculada [Departamento de Optica, FarmacologIa y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-09-15

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  20. Quantum transduction with mechanical oscillators

    Science.gov (United States)

    Lehnert, Konrad

    In modern information technology, micromechanical oscillators are ubiquitous signal processing elements. Because the speed of sound is so slow compared to the speed of light, mechanical structures create superb compact filters and clocks. Moreover they convert force and acceleration signals into more easily processed electrical signals. Although these humble devices appear manifestly classical, they can exhibit quantum behavior when their vibrations are strongly coupled to optical light or to microwave electricity. I will describe our progress in using this recent result to develop quantum information processing elements. First, we are developing a device that uses a mechanical oscillator to transfer information noiselessly between electrical and optical domains. Second, we prepare propagating microwave fields in superpositions of 0 and 1 photon, and use an electromechanical device to store and amplify these fragile quantum bits. Work supported by AFOSR MURI:FA9550-15-1-0015, NSF under Grant Number 1125844, and the Gordon and Betty Moore Foundation.

  1. Memristor-based reactance-less oscillator

    KAUST Repository

    Zidan, Mohammed A.

    2012-10-02

    The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.

  2. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here...... for ~66% of total cyanide removal. Simulations of our updated computational model show that intracellular cyanide reactions increase the amplitude of oscillations and that cyanide addition lowers [ACA] instantaneously. We conclude that cyanide provides the following means of inducing global oscillations......: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus....

  3. Encoding and retrieval along the long axis of the hippocampus and their relationships with dorsal attention and default mode networks: The HERNET model.

    Science.gov (United States)

    Kim, Hongkeun

    2015-04-01

    The encoding of sensory input is intertwined with external attention, whereas retrieval is intrinsically related to internal attention. This study proposes a model in which the encoding of sensory input involves mainly the anterior hippocampus and the external attention network, whereas retrieval, the posterior hippocampus and the internal attention network. This model is referred to as the HERNET (hippocampal encoding/retrieval and network) model. Functional neuroimaging studies have identified two intrinsic large-scale networks closely associated with external and internal attention, respectively. The dorsal attention network activates during any externally oriented mental activity, whereas the default mode network shows increased activity during internally oriented mental activity. Therefore, the HERNET model may predict the activation of the anterior hippocampus and the dorsal attention network during the encoding and activation of the posterior hippocampus and the default mode network during retrieval. To test this prediction, this study provides a meta-analysis of three memory-imaging paradigms: subsequent memory, laboratory-based recollection, and autobiographical memory retrieval. The meta-analysis included 167 individual studies and 2,856 participants. The results provide support for the HERNET model and suggest that the anterior-posterior gradient of encoding and retrieval includes amygdala regions. More broadly, humans continuously oscillate between external and internal attention and thus between encoding and retrieval processes. These oscillations may involve repetitive and spontaneous activity switching between the anterior hippocampus/dorsal attention network and the posterior hippocampus/default mode network. © 2014 Wiley Periodicals, Inc.

  4. Multipartite entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.

  5. Oscillations and Waves in Sunspots

    Directory of Open Access Journals (Sweden)

    Elena Khomenko

    2015-11-01

    Full Text Available A magnetic field modifies the properties of waves in a complex way. Significant advances have been made recently in our understanding of the physics of sunspot waves with the help of high-resolution observations, analytical theories, as well as numerical simulations. We review the current ideas in the field, providing the most coherent picture of sunspot oscillations as by present understanding.

  6. Renormalization for free harmonic oscillators

    OpenAIRE

    Sonoda, H.

    2013-01-01

    We introduce a model of free harmonic oscillators that requires renormalization. The model is similar to but simpler than the soluble Lee model. We introduce two concrete examples: the first, resembling the three dimensional $\\phi^4$ theory, needs only mass renormalization, and the second, resembling the four dimensional $\\phi^4$ theory and the Lee model, needs additional renormalization of a coupling and a wave function.

  7. Oscillations of a polarizable vacuum

    Directory of Open Access Journals (Sweden)

    James G. Gilson

    1991-01-01

    Full Text Available A classical basis for one-dimensional Schrödinger quantum theory is constructed from simple vacuum polarization harmonic oscillators within standard stochastic theory. The model is constructed on a two-dimensional phase configuration surface with phase velocity vectors that have a speed of light zitterbewegung behaviour character. The system supplies a natural Hermitian scalar product describing probability density which is derived from angular momentum considerations. The generality of the model which is extensive is discussed.

  8. Fuel rod under power oscillations; calculations with the ENIGMA code

    Energy Technology Data Exchange (ETDEWEB)

    Ranta-Puska, Kari

    1999-05-15

    Power oscillations in a BWR may result from a series of events starting from a re-circulation pump trip or can be initiated during start-up at low-flow conditions by other perturbations. Whole core and regional oscillations have been observed. Severe consequences may be anticipated if the instability diverges and the reactor protection system fails (no scram) in all phases of the incident (ATWS). Power peaks higher than ten times of the pre-transient power level have been speculated to appear. Low-magnitude oscillations have been observed at the TVO plant, Olkiluoto 1987, and at the Lasalle-2 plant, 1988, and in other BWRs world-wide. Typically, a boiling water reactor has an unstable operational point at low flow and high power conditions. The physical phenomenon behind the instability is density wave oscillations leading to boiling boundary oscillations and void fraction fluctuations across the heated channel. These in turn, make the fission power vary. The typical frequency of the oscillations seems to be of the order of 0.5 Hz, and thus the power peak for a fuel rod is considerably wider than a RIA-pulse, for instance. Large oscillations can result in elevated fuel temperatures, accelerated fission gas release and additional internal loads on the cladding. These effects may be more severe for a high burnup rod with a large fission gas inventory and a closed gap. Therefore, an experiment has been proposed to be conducted at Halden reactor for simulating the fuel rod response under power oscillations. As there is lack of knowledge also on the relevant boundary conditions, pre-calculations with various input options have been performed and are further suggested. Calculations with FRAPTRAN code have shown the importance of the cladding-coolant heat transfer to the fuel temperature. The applicability of the ENIGMA code to this kind of transients was confirmed. To support the planning of the proposed Halden test, estimates on fuel and cladding temperatures as well as

  9. Automatic oscillator frequency control system

    Science.gov (United States)

    Smith, S. F. (Inventor)

    1985-01-01

    A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.

  10. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  11. Noisy Oscillations in the Actin Cytoskeleton of Chemotactic Amoeba

    Science.gov (United States)

    Negrete, Jose; Pumir, Alain; Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Beta, Carsten; Bodenschatz, Eberhard

    2016-09-01

    Biological systems with their complex biochemical networks are known to be intrinsically noisy. Here we investigate the dynamics of actin polymerization of amoeboid cells, which are close to the onset of oscillations. We show that the large phenotypic variability in the polymerization dynamics can be accurately captured by a generic nonlinear oscillator model in the presence of noise. We determine the relative role of the noise with a single dimensionless, experimentally accessible parameter, thus providing a quantitative description of the variability in a population of cells. Our approach, which rests on a generic description of a system close to a Hopf bifurcation and includes the effect of noise, can characterize the dynamics of a large class of noisy systems close to an oscillatory instability.

  12. Capacitive coupling synchronizes autonomous microfluidic oscillators.

    Science.gov (United States)

    Lesher-Perez, Sasha Cai; Zhang, Chao; Takayama, Shuichi

    2018-01-31

    Even identically-designed autonomous microfluidic oscillators have device-to-device oscillation variability that arises due to inconsistencies in fabrication, materials, and operation conditions. This work demonstrates, experimentally and theoretically, that with appropriate capacitive coupling these microfluidic oscillators can be synchronized. The size and characteristics of the capacitive coupling needed and the range of input flow rate differences that can be synchronized are also characterized. In addition to device-to-device variability, there is also within-device oscillation noise that arises. An additional advantage of coupling multiple fluidic oscillators together is that the oscillation noise decreases. The ability to synchronize multiple autonomous oscillators is also a first step towards enhancing their usefulness as tools for biochemical research applications where multiplicate experiments with identical temporal-stimulation conditions are required. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Evidence of 1122 Hz X-ray burst oscillations from the neutron star X-ray transient XTE J1739-285

    DEFF Research Database (Denmark)

    Kaaret, P.; Prieskorn, Z.; in 't Zand, J.J.M.

    2007-01-01

    , the detection is significant at the 99.96% confidence level. If the oscillations are confirmed, the oscillation frequency would suggest that XTE J1739-285 contains the fastest rotating neutron star yet found. We also found millisecond quasi-periodic oscillations in the persistent emission with frequencies...

  14. The Red Queen and the persistence of linkage-disequilibrium oscillations in finite and infinite populations.

    Science.gov (United States)

    Kouyos, Roger D; Salathé, Marcel; Bonhoeffer, Sebastian

    2007-11-06

    The Red Queen Hypothesis (RQH) suggests that the coevolutionary dynamics of host-parasite systems can generate selection for increased host recombination. Since host-parasite interactions often have a strong genetic basis, recombination between different hosts can increase the fraction of novel and potentially resistant offspring genotypes. A prerequisite for this mechanism is that host-parasite interactions generate persistent oscillations of linkage disequilibria (LD). We use deterministic and stochastic models to investigate the persistence of LD oscillations and its impact on the RQH. The standard models of the Red Queen dynamics exhibit persistent LD oscillations under most circumstances. Here, we show that altering the standard model from discrete to continuous time or from simultaneous to sequential updating results in damped LD oscillations. This suggests that LD oscillations are structurally not robust. We then show that in a stochastic regime, drift can counteract this dampening and maintain the oscillations. In addition, we show that the amplitude of the oscillations and therefore the strength of the resulting selection for or against recombination are inversely proportional to the size of the (host) population. We find that host parasite-interactions cannot generally maintain oscillations in the absence of drift. As a consequence, the RQH can strongly depend on population size and should therefore not be interpreted as a purely deterministic hypothesis.

  15. The Red Queen and the persistence of linkage-disequilibrium oscillations in finite and infinite populations

    Directory of Open Access Journals (Sweden)

    Bonhoeffer Sebastian

    2007-11-01

    Full Text Available Abstract Background The Red Queen Hypothesis (RQH suggests that the coevolutionary dynamics of host-parasite systems can generate selection for increased host recombination. Since host-parasite interactions often have a strong genetic basis, recombination between different hosts can increase the fraction of novel and potentially resistant offspring genotypes. A prerequisite for this mechanism is that host-parasite interactions generate persistent oscillations of linkage disequilibria (LD. Results We use deterministic and stochastic models to investigate the persistence of LD oscillations and its impact on the RQH. The standard models of the Red Queen dynamics exhibit persistent LD oscillations under most circumstances. Here, we show that altering the standard model from discrete to continuous time or from simultaneous to sequential updating results in damped LD oscillations. This suggests that LD oscillations are structurally not robust. We then show that in a stochastic regime, drift can counteract this dampening and maintain the oscillations. In addition, we show that the amplitude of the oscillations and therefore the strength of the resulting selection for or against recombination are inversely proportional to the size of the (host population. Conclusion We find that host parasite-interactions cannot generally maintain oscillations in the absence of drift. As a consequence, the RQH can strongly depend on population size and should therefore not be interpreted as a purely deterministic hypothesis.

  16. Emergence of noise-induced oscillations in the central circadian pacemaker.

    Directory of Open Access Journals (Sweden)

    Caroline H Ko

    2010-10-01

    Full Text Available Bmal1 is an essential transcriptional activator within the mammalian circadian clock. We report here that the suprachiasmatic nucleus (SCN of Bmal1-null mutant mice, unexpectedly, generates stochastic oscillations with periods that overlap the circadian range. Dissociated SCN neurons expressed fluctuating levels of PER2 detected by bioluminescence imaging but could not generate circadian oscillations intrinsically. Inhibition of intercellular communication or cyclic-AMP signaling in SCN slices, which provide a positive feed-forward signal to drive the intracellular negative feedback loop, abolished the stochastic oscillations. Propagation of this feed-forward signal between SCN neurons then promotes quasi-circadian oscillations that arise as an emergent property of the SCN network. Experimental analysis and mathematical modeling argue that both intercellular coupling and molecular noise are required for the stochastic rhythms, providing a novel biological example of noise-induced oscillations. The emergence of stochastic circadian oscillations from the SCN network in the absence of cell-autonomous circadian oscillatory function highlights a previously unrecognized level of circadian organization.

  17. Patterns of patterns of synchronization: Noise induced attractor switching in rings of coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Emenheiser, Jeffrey [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Physics, University of California, Davis, California 95616 (United States); Chapman, Airlie; Mesbahi, Mehran [William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States); Pósfai, Márton [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Crutchfield, James P. [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Physics, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Santa Fe Institute, Santa Fe, New Mexico 87501 (United States); D' Souza, Raissa M. [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Santa Fe Institute, Santa Fe, New Mexico 87501 (United States); Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States)

    2016-09-15

    Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems via the architecture of their attractors and basins, we investigate the patterns of switching between distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is simple and connects directly to experimental realizations. We seek to understand how the multiple stable synchronized states connect to each other in state space by applying Gaussian white noise to each of the oscillators' phases. To do this, we first analytically identify a set of locally stable limit cycles at any given coupling strength. For each of these attracting states, we analyze the effect of weak noise via the covariance matrix of deviations around those attractors. We then explore the noise-induced attractor switching behavior via numerical investigations. For a ring of three oscillators, we find that an attractor-switching event is always accompanied by the crossing of two adjacent oscillators' phases. For larger numbers of oscillators, we find that the distribution of times required to stochastically leave a given state falls off exponentially, and we build an attractor switching network out of the destination states as a coarse-grained description of the high-dimensional attractor-basin architecture.

  18. Unified thalamic model generates multiple distinct oscillations with state-dependent entrainment by stimulation.

    Science.gov (United States)

    Li, Guoshi; Henriquez, Craig S; Fröhlich, Flavio

    2017-10-01

    The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh) and norepinephrine (NE) and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations) that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed.

  19. Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation

    Science.gov (United States)

    Ognjanovski, Nicolette; Schaeffer, Samantha; Wu, Jiaxing; Mofakham, Sima; Maruyama, Daniel; Zochowski, Michal; Aton, Sara J.

    2017-04-01

    Activity in hippocampal area CA1 is essential for consolidating episodic memories, but it is unclear how CA1 activity patterns drive memory formation. We find that in the hours following single-trial contextual fear conditioning (CFC), fast-spiking interneurons (which typically express parvalbumin (PV)) show greater firing coherence with CA1 network oscillations. Post-CFC inhibition of PV+ interneurons blocks fear memory consolidation. This effect is associated with loss of two network changes associated with normal consolidation: (1) augmented sleep-associated delta (0.5-4 Hz), theta (4-12 Hz) and ripple (150-250 Hz) oscillations; and (2) stabilization of CA1 neurons' functional connectivity patterns. Rhythmic activation of PV+ interneurons increases CA1 network coherence and leads to a sustained increase in the strength and stability of functional connections between neurons. Our results suggest that immediately following learning, PV+ interneurons drive CA1 oscillations and reactivation of CA1 ensembles, which directly promotes network plasticity and long-term memory formation.

  20. Wave speed in excitable random networks with spatially constrained connections.

    Directory of Open Access Journals (Sweden)

    Nikita Vladimirov

    Full Text Available Very fast oscillations (VFO in neocortex are widely observed before epileptic seizures, and there is growing evidence that they are caused by networks of pyramidal neurons connected by gap junctions between their axons. We are motivated by the spatio-temporal waves of activity recorded using electrocorticography (ECoG, and study the speed of activity propagation through a network of neurons axonally coupled by gap junctions. We simulate wave propagation by excitable cellular automata (CA on random (Erdös-Rényi networks of special type, with spatially constrained connections. From the cellular automaton model, we derive a mean field theory to predict wave propagation. The governing equation resolved by the Fisher-Kolmogorov PDE fails to describe wave speed. A new (hyperbolic PDE is suggested, which provides adequate wave speed v( that saturates with network degree , in agreement with intuitive expectations and CA simulations. We further show that the maximum length of connection is a much better predictor of the wave speed than the mean length. When tested in networks with various degree distributions, wave speeds are found to strongly depend on the ratio of network moments / rather than on mean degree , which is explained by general network theory. The wave speeds are strikingly similar in a diverse set of networks, including regular, Poisson, exponential and power law distributions, supporting our theory for various network topologies. Our results suggest practical predictions for networks of electrically coupled neurons, and our mean field method can be readily applied for a wide class of similar problems, such as spread of epidemics through spatial networks.

  1. Networked Identities

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Larsen, Malene Charlotte

    2008-01-01

    In this article we take up a critique of the concept of Communities of Practice (CoP) voiced by several authors, who suggest that networks may provide a better metaphor to understand social forms of organisation and learning. Through a discussion of the notion of networked learning and the critique...... of CoPs we shall argue that the metaphor or theory of networked learning is itself confronted with some central tensions and challenges that need to be addressed. We then explore these theoretical and analytic challenges to the network metaphor, through an analysis of a Danish social networking site. We...... argue that understanding meaning-making and ‘networked identities’ may be relevant analytic entry points in navigating the challenges....

  2. Synconset waves and chains: spiking onsets in synchronous populations predict and are predicted by network structure.

    Directory of Open Access Journals (Sweden)

    Mohan Raghavan

    Full Text Available Synfire waves are propagating spike packets in synfire chains, which are feedforward chains embedded in random networks. Although synfire waves have proved to be effective quantification for network activity with clear relations to network structure, their utilities are largely limited to feedforward networks with low background activity. To overcome these shortcomings, we describe a novel generalisation of synfire waves, and define 'synconset wave' as a cascade of first spikes within a synchronisation event. Synconset waves would occur in 'synconset chains', which are feedforward chains embedded in possibly heavily recurrent networks with heavy background activity. We probed the utility of synconset waves using simulation of single compartment neuron network models with biophysically realistic conductances, and demonstrated that the spread of synconset waves directly follows from the network connectivity matrix and is modulated by top-down inputs and the resultant oscillations. Such synconset profiles lend intuitive insights into network organisation in terms of connection probabilities between various network regions rather than an adjacency matrix. To test this intuition, we develop a Bayesian likelihood function that quantifies the probability that an observed synfire wave was caused by a given network. Further, we demonstrate it's utility in the inverse problem of identifying the network that caused a given synfire wave. This method was effective even in highly subsampled networks where only a small subset of neurons were accessible, thus showing it's utility in experimental estimation of connectomes in real neuronal-networks. Together, we propose synconset chains/waves as an effective framework for understanding the impact of network structure on function, and as a step towards developing physiology-driven network identification methods. Finally, as synconset chains extend the utilities of synfire chains to arbitrary networks, we suggest

  3. Human scalp recorded sigma activity is modulated by slow EEG oscillations during deep sleep.

    Science.gov (United States)

    Fell, Jürgen; Elfadil, Hakim; Röschke, Joachim; Burr, Wieland; Klaver, Peter; Elger, Christian E; Fernández, Guillén

    2002-07-01

    The EEG during deep sleep exhibits a distinct cortically generated slow oscillation of around and below 1 Hz which can be distinguished from other delta (0.5-3.5 Hz) activity. Intracranial studies showed that this slow oscillation triggers and groups cortical network firing. In the present study, we examined whether the phases of the slow oscillation during sleep stage 4 are correlated with the magnitude of sigma (12-16 Hz) and gamma (> 20 Hz) scalp activity. For this purpose, 10-min segments of uninterrupted stage 4 sleep EEG from 9 subjects were analyzed by applying wavelet techniques. We found that scalp recorded sigma, but not gamma, activity is modulated by the phases of the slow oscillation during deep sleep. Enhancement of sigma activity was observed to be triggered by the peak of the surface positive slow wave component, whereas reduction of sigma activity started around the peak of the negative component.

  4. Circuit simulation and physical implementation for a memristor-based colpitts oscillator

    Directory of Open Access Journals (Sweden)

    Hongmin Deng

    2017-03-01

    Full Text Available This paper implements two kinds of memristor-based colpitts oscillators, namely, the circuit where the memristor is added into the feedback network of the oscillator in parallel and series, respectively. First, a MULTISIM simulation circuit for the memristive colpitts oscillator is built, where an emulator constructed by some off-the-shelf components is utilized to replace the memristor. Then the physical system is implemented in terms of the MULTISIM simulation circuit. Circuit simulation and experimental study show that this memristive colpitts oscillator can exhibit periodic, quasi-periodic, and chaotic behaviors with certain parameter’s variances. Besides, in a sense, the circuit is robust with circuit parameters and device types.

  5. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  6. Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus.

    Directory of Open Access Journals (Sweden)

    Samuel Bernard

    2007-04-01

    Full Text Available The suprachiasmatic nuclei (SCN host a robust, self-sustained circadian pacemaker that coordinates physiological rhythms with the daily changes in the environment. Neuronal clocks within the SCN form a heterogeneous network that must synchronize to maintain timekeeping activity. Coherent circadian output of the SCN tissue is established by intercellular signaling factors, such as vasointestinal polypeptide. It was recently shown that besides coordinating cells, the synchronization factors play a crucial role in the sustenance of intrinsic cellular rhythmicity. Disruption of intercellular signaling abolishes sustained rhythmicity in a majority of neurons and desynchronizes the remaining rhythmic neurons. Based on these observations, the authors propose a model for the synchronization of circadian oscillators that combines intracellular and intercellular dynamics at the single-cell level. The model is a heterogeneous network of circadian neuronal oscillators where individual oscillators are damped rather than self-sustained. The authors simulated different experimental conditions and found that: (1 in normal, constant conditions, coupled circadian oscillators quickly synchronize and produce a coherent output; (2 in large populations, such oscillators either synchronize or gradually lose rhythmicity, but do not run out of phase, demonstrating that rhythmicity and synchrony are codependent; (3 the number of oscillators and connectivity are important for these synchronization properties; (4 slow oscillators have a higher impact on the period in mixed populations; and (5 coupled circadian oscillators can be efficiently entrained by light-dark cycles. Based on these results, it is predicted that: (1 a majority of SCN neurons needs periodic synchronization signal to be rhythmic; (2 a small number of neurons or a low connectivity results in desynchrony; and (3 amplitudes and phases of neurons are negatively correlated. The authors conclude that to

  7. Various Oscillation Patterns of Serum Fibroblast Growth Factor 21 Concentrations in Healthy Volunteers

    Directory of Open Access Journals (Sweden)

    Sang Ah Lee

    2012-02-01

    Full Text Available BackgroundFibroblast growth factor 21 (FGF21 was originally identified as a paroxysm proliferator activated receptor-α target gene product and is a hormone involved in metabolic regulation. The purpose of this study was to investigate the diurnal variation of serum FGF21 concentration in obese and non-obese healthy volunteers.MethodsBlood samples were collected from five non-obese (body mass index [BMI] ≤23 kg/m2 and five obese (BMI ≥25 kg/m2 healthy young men every 30 to 60 minutes over 24 hours. Serum FGF21 concentrations were determined by radioimmunoassay. Anthropometric parameters, glucose, free fatty acid, insulin, leptin, and cortisol concentrations were also measured.ResultsThe serum FGF21 concentrations displayed various individual oscillation patterns. The oscillation frequency ranged between 6 and 12 times per day. The average duration of oscillation was 2.52 hours (range, 1.9 to 3.0 hours. The peaks and troughs of FGF21 oscillation showed no circadian rhythm. However, the oscillation frequency had a diurnal variation and was lower during the light-off period than during the light-on period (2.4 vs. 7.3 times, P<0.001. There was no difference in the total frequency or duration of oscillations between non-obese and obese subjects, but obese individuals had increased numbers of larger oscillations (amplitude ≥0.19 ng/mL.ConclusionVarious oscillation patterns in serum FGF21 concentration were observed, and reduced oscillation frequencies were seen during sleep. The oscillation patterns of serum FGF21 concentration suggest that FGF21 may be secreted into systemic circulation in a pulsatile manner. Obesity appeared to affect the amplitude of oscillations of serum FGF21.

  8. Decoupling light and matter: permanent dipole moment induced collapse of Rabi oscillations

    CERN Document Server

    Baranov, Denis G; Krasnok, Alexander E

    2016-01-01

    Rabi oscillations is a key phenomenon among the variety of quantum optical effects that manifests itself in the periodic oscillations of a two-level system between the ground and excited states when interacting with electromagnetic field. Commonly, the rate of these oscillations scales proportionally with the magnitude of the electric field probed by the two-level system. Here, we investigate the interaction of light with a two-level quantum emitter possessing permanent dipole moments. The semi-classical approach to this problem predicts slowing down and even full suppression of Rabi oscillations due to asymmetry in diagonal components of the dipole moment operator of the two-level system. We consider behavior of the system in the fully quantized picture and establish the analytical condition of Rabi oscillations collapse. These results for the first time emphasize the behavior of two-level systems with permanent dipole moments in the few photon regime, and suggest observation of novel quantum optical effects...

  9. Democracy-Independence Trade-Off in Oscillating Dendrites and Its Implications for Grid Cells

    Science.gov (United States)

    Remme, Michiel W.H.; Lengyel, Máté; Gutkin, Boris S.

    2010-01-01

    Summary Dendritic democracy and independence have been characterized for near-instantaneous processing of synaptic inputs. However, a wide class of neuronal computations requires input integration on long timescales. As a paradigmatic example, entorhinal grid fields have been thought to be generated by the democratic summation of independent dendritic oscillations performing direction-selective path integration. We analyzed how multiple dendritic oscillators embedded in the same neuron integrate inputs separately and determine somatic membrane voltage jointly. We found that the interaction of dendritic oscillations leads to phase locking, which sets an upper limit on the timescale for independent input integration. Factors that increase this timescale also decrease the influence that the dendritic oscillations exert on somatic voltage. In entorhinal stellate cells, interdendritic coupling dominates and causes these cells to act as single oscillators. Our results suggest a fundamental trade-off between local and global processing in dendritic trees integrating ongoing signals. PMID:20471355

  10. The contribution of electrical synapses to field potential oscillations in the hippocampal formation

    Directory of Open Access Journals (Sweden)

    Anna ePosłuszny

    2014-04-01

    Full Text Available Electrical synapses are a type of cellular membrane junction referred to as gap junctions (GJs. GJs have been regarded as an important component within the neuronal networks that underlie synchronous neuronal activity and field potential oscillations. Initially, GJs appeared to play a particularly key role in the generation of high frequency oscillatory patterns in field potentials. In order to assess the scale of neuronal GJs contribution to field potential oscillations in the hippocampal formation, in vivo and in vitro studies are reviewed here. These investigations have shown that blocking the main neuronal GJs, those containing connexin 36 (Cx36-GJs, or knocking out the Cx36 gene affect field potential oscillatory patterns related to awake active behavior (gamma and theta rhythm but have no effect on high frequency oscillations occurring during silent wake and sleep. Precisely how Cx36-GJs influence population activity of neurons is more complex than previously thought. Analysis of studies on the properties of transmission through GJ channels as well as Cx36-GJs functioning in pairs of coupled neurons provides some explanations of the specific influence of Cx36-GJs on field potential oscillations. It is proposed here that GJ transmission is strongly modulated by the level of neuronal network activity and changing behavioral states. Therefore, contribution of GJs to field potential oscillatory patterns depends on the behavioral state. I propose here a model, based on large body of experimental data gathered in this field by several authors, in which Cx36-GJ transmission especially contributes to oscillations related to active behavior, where it plays a role in filtering and enhancing coherent signals in the network under high-noise conditions. In contrast, oscillations related to silent wake or sleep, especially high frequency oscillations, do not require transmission by neuronal GJs.

  11. Waves and Oscillations in Plasmas

    CERN Document Server

    Pecseli, Hans L

    2012-01-01

    The result of more than 15 years of lectures in plasma sciences presented at universities in Denmark, Norway, and the United States, Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences. The book covers fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping. Offering a clear separation of linear and nonlinear models, the book can be tailored for readers of varying levels of expertise.Designed to provide basic training in linear as well as nonlinear plasma dynamics, and practical in areas as d

  12. Pair creation and plasma oscillations.

    Energy Technology Data Exchange (ETDEWEB)

    Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.

    2000-12-15

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses.

  13. Wave Physics Oscillations - Solitons - Chaos

    CERN Document Server

    Nettel, Stephen

    2009-01-01

    This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.

  14. Neutrino Oscillation Studies with Reactors

    CERN Document Server

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  15. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator.

    Science.gov (United States)

    Weitz, Maximilian; Kim, Jongmin; Kapsner, Korbinian; Winfree, Erik; Franco, Elisa; Simmel, Friedrich C

    2014-04-01

    In vitro compartmentalization of biochemical reaction networks is a crucial step towards engineering artificial cell-scale devices and systems. At this scale the dynamics of molecular systems becomes stochastic, which introduces several engineering challenges and opportunities. Here we study a programmable transcriptional oscillator system that is compartmentalized into microemulsion droplets with volumes between 33 fl and 16 pl. Simultaneous measurement of large populations of droplets reveals major variations in the amplitude, frequency and damping of the oscillations. Variability increases for smaller droplets and depends on the operating point of the oscillator. Rather than reflecting the stochastic kinetics of the chemical reaction network itself, the variability can be attributed to the statistical variation of reactant concentrations created during their partitioning into droplets. We anticipate that robustness to partitioning variability will be a critical challenge for engineering cell-scale systems, and that highly parallel time-series acquisition from microemulsion droplets will become a key tool for characterization of stochastic circuit function.

  16. Flicker regularity is crucial for entrainment of alpha oscillations

    Directory of Open Access Journals (Sweden)

    Annika Notbohm

    2016-10-01

    are compared to those presented during the maximum.In the second experiment stimulation with higher light intensity during both rhythmic and arrhythmic stimulation lead to an increased behavioral modulation depth, supposedly as a consequence of stronger entrainment during rhythmic stimulation.Altogether, our results reveal evidence for rhythmic and arrhythmic visual stimulation to induce fundamentally different processes in the brain: we suggest that rhythmic but not arrhythmic stimulation interacts with ongoing alpha oscillations

  17. Phase noise and frequency stability in oscillators

    CERN Document Server

    Rubiola, Enrico

    2009-01-01

    Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...

  18. Elements of biological oscillations in time and space.

    Science.gov (United States)

    Cao, Yangxiaolu; Lopatkin, Allison; You, Lingchong

    2016-12-06

    Oscillations in time and space are ubiquitous in nature and play critical roles in dynamic cellular processes. Although the molecular mechanisms underlying the generation of the dynamics are diverse, several distinct regulatory elements have been recognized as being critical in producing and modulating oscillatory dynamics. These include negative and positive feedback, time delay, nonlinearity in regulation, and random fluctuations ('noise'). Here we discuss the specific roles of these five elements in promoting or attenuating oscillatory dynamics, by drawing on insights from quantitative analyses of natural or synthetic biological networks.

  19. Game of life on phyllosilicates: Gliders, oscillators and still life

    Energy Technology Data Exchange (ETDEWEB)

    Adamatzky, Andrew, E-mail: andrew.adamatzky@uwea.ac.uk

    2013-10-01

    A phyllosilicate is a sheet of silicate tetrahedra bound by basal oxygens. A phyllosilicate automaton is a regular network of finite state machines — silicon nodes and oxygen nodes — which mimics structure of the phyllosilicate. A node takes states 0 and 1. Each node updates its state in discrete time depending on a sum of states of its three (silicon) or six (oxygen) neighbours. Phyllosilicate automata exhibit localisations attributed to Conway's Game of Life: gliders, oscillators, still lifes, and a glider gun. Configurations and behaviour of typical localisations, and interactions between the localisations are illustrated.

  20. Abnormal head oscillations in neuro-ophthalmology and neuro-otology

    Science.gov (United States)

    Shaikh, Aasef G.

    2016-01-01

    Purpose This paper describes the clinical phenomenology and contemporary pathophysiology of concurrent oscillations of the eyes and the head that are present in neurological conditions with diverse etiologies. Recent findings One classic example is spasmus nutans in which the eye oscillations are the primary pathology while head nodding is thought to be an operant conditional response that suppresses the eye oscillations to facilitate clear vision. The second example is a combination of head tremor and inadequate compensatory eye movements due to vestibular hypofunction leading to the illusion of pendular nystagmus – hence the condition is called pseudonystagmus. Cerebellar degeneration in ataxia-telangiectasia or synchronized spontaneous discharge from the inferior olive and cerebellum in the syndrome of ocular palatal tremor with dystonia are examples of eye and head oscillations due to the impairment in cerebellar outflow. Infantile nystagmus syndrome also presents with eye and head oscillations, but here the relationship between the two types of oscillations differs among patients and is still unclear. Summary The clinical features and putative pathophysiology of diverse disorders of the eyes and head that produce unwanted oscillations are reviewed and some analogies between eye and head oscillations are suggested. Key clinical pearls that are essential to separate these disorders at the bedside are also emphasized. PMID:26641814