WorldWideScience

Sample records for network optimization system

  1. Distributed Robust Optimization in Networked System.

    Science.gov (United States)

    Wang, Shengnan; Li, Chunguang

    2016-10-11

    In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of local objective functions. The global constraints contain some uncertain parameters which are partially known, and can be characterized by some inequality constraints. After problem transformation, we adopt the Lagrangian primal-dual method to solve this problem. We prove that the primal and dual optimal solutions of the problem are restricted in some specific sets, and we give a method to construct these sets. Then, we propose a DRO algorithm to find the primal-dual optimal solutions of the Lagrangian function, which consists of a subgradient step, a projection step, and a diffusion step, and in the projection step of the algorithm, the optimized variables are projected onto the specific sets to guarantee the boundedness of the subgradients. Convergence analysis and numerical simulations verifying the performance of the proposed algorithm are then provided. Further, for nonconvex DRO problem, the corresponding approach and algorithm framework are also provided.

  2. Neural Network for Optimization of Existing Control Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1995-01-01

    The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....

  3. Stochastic network optimization with application to communication and queueing systems

    CERN Document Server

    Neely, Michael

    2010-01-01

    This text presents a modern theory of analysis, control, and optimization for dynamic networks. Mathematical techniques of Lyapunov drift and Lyapunov optimization are developed and shown to enable constrained optimization of time averages in general stochastic systems. The focus is on communication and queueing systems, including wireless networks with time-varying channels, mobility, and randomly arriving traffic. A simple drift-plus-penalty framework is used to optimize time averages such as throughput, throughput-utility, power, and distortion. Explicit performance-delay tradeoffs are prov

  4. Accelerator optimization using a network control and acquisition system

    International Nuclear Information System (INIS)

    Geddes, Cameron G.R.; Catravas, P.E.; Faure, Jerome; Toth, Csaba; Tilborg, J. van; Leemans, Wim P.

    2002-01-01

    Accelerator optimization requires detailed study of many parameters, indicating the need for remote control and automated data acquisition systems. A control and data acquisition system based on a network of commodity PCs and applications with standards based inter-application communication is being built for the l'OASIS accelerator facility. This system allows synchronous acquisition of data at high (> 1 Hz) rates and remote control of the accelerator at low cost, allowing detailed study of the acceleration process

  5. Optimal Operation of Interdependent Power Systems and Electrified Transportation Networks

    Directory of Open Access Journals (Sweden)

    M. Hadi Amini

    2018-01-01

    Full Text Available Electrified transportation and power systems are mutually coupled networks. In this paper, a novel framework is developed for interdependent power and transportation networks. Our approach constitutes solving an iterative least cost vehicle routing process, which utilizes the communication of electrified vehicles (EVs with competing charging stations, to exchange data such as electricity price, energy demand, and time of arrival. The EV routing problem is solved to minimize the total cost of travel using the Dijkstra algorithm with the input from EVs battery management system, electricity price from charging stations, powertrain component efficiencies and transportation network traffic conditions. Through the bidirectional communication of EVs with competing charging stations, EVs’ charging demand estimation is done much more accurately. Then the optimal power flow problem is solved for the power system, to find the locational marginal price at load buses where charging stations are connected. Finally, the electricity prices were communicated from the charging stations to the EVs, and the loop is closed. Locational electricity price acts as the shared parameter between the two optimization problems, i.e., optimal power flow and optimal routing problem. Electricity price depends on the power demand, which is affected by the charging of EVs. On the other hand, location of EV charging stations and their different pricing strategies might affect the routing decisions of the EVs. Our novel approach that combines the electrified transportation with power system operation, holds tremendous potential for solving electrified transportation issues and reducing energy costs. The effectiveness of the proposed approach is demonstrated using Shanghai transportation network and IEEE 9-bus test system. The results verify the cost-savings for both power system and transportation networks.

  6. Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems

    CERN Document Server

    Patan, Maciej

    2012-01-01

    Sensor networks have recently come into prominence because they hold the potential to revolutionize a wide spectrum of both civilian and military applications. An ingenious characteristic of sensor networks is the distributed nature of data acquisition. Therefore they seem to be ideally prepared for the task of monitoring processes with spatio-temporal dynamics which constitute one of most general and important classes of systems in modelling of the real-world phenomena. It is clear that careful deployment and activation of sensor nodes are critical for collecting the most valuable information from the observed environment. Optimal Sensor Network Scheduling in Identification of Distributed Parameter Systems discusses the characteristic features of the sensor scheduling problem, analyzes classical and recent approaches, and proposes a wide range of original solutions, especially dedicated for networks with mobile and scanning nodes. Both researchers and practitioners will find the case studies, the proposed al...

  7. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural...... stationary numerical system model was used and process integration techniques for optimizing the heat exchanger network for the reforming unit are proposed. Objective is to minimize the system cost. Keywords: Fuel cells; Steam Reforming; Heat Exchanger Network (HEN) Synthesis; MINLP....... gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...

  8. Control and Optimization of Network in Networked Control System

    Directory of Open Access Journals (Sweden)

    Wang Zhiwen

    2014-01-01

    Full Text Available In order to avoid quality of performance (QoP degradation resulting from quality of service (QoS, the solution to network congestion from the point of control theory, which marks departure of our results from the existing methods, is proposed in this paper. The congestion and bandwidth are regarded as state and control variables, respectively; then, the linear time-invariant (LTI model between congestion state and bandwidth of network is established. Consequently, linear quadratic method is used to eliminate the network congestion by allocating bandwidth dynamically. At last, numerical simulation results are given to illustrate the effectiveness of this modeling approach.

  9. Optimizing Markovian modeling of chaotic systems with recurrent neural networks

    International Nuclear Information System (INIS)

    Cechin, Adelmo L.; Pechmann, Denise R.; Oliveira, Luiz P.L. de

    2008-01-01

    In this paper, we propose a methodology for optimizing the modeling of an one-dimensional chaotic time series with a Markov Chain. The model is extracted from a recurrent neural network trained for the attractor reconstructed from the data set. Each state of the obtained Markov Chain is a region of the reconstructed state space where the dynamics is approximated by a specific piecewise linear map, obtained from the network. The Markov Chain represents the dynamics of the time series in its statistical essence. An application to a time series resulted from Lorenz system is included

  10. Service network design of bike sharing systems analysis and optimization

    CERN Document Server

    Vogel, Patrick

    2016-01-01

    This monograph presents a tactical planning approach for service network design in metropolitan areas. Designing the service network requires the suitable aggregation of demand data as well as the anticipation of operational relocation decisions. To this end, an integrated approach of data analysis and mathematical optimization is introduced. The book also includes a case study based on real-world data to demonstrate the benefit of the proposed service network design approach. The target audience comprises primarily research experts in the field of traffic engineering, but the book may also be beneficial for graduate students.

  11. A visual analytics system for optimizing the performance of large-scale networks in supercomputing systems

    Directory of Open Access Journals (Sweden)

    Takanori Fujiwara

    2018-03-01

    Full Text Available The overall efficiency of an extreme-scale supercomputer largely relies on the performance of its network interconnects. Several of the state of the art supercomputers use networks based on the increasingly popular Dragonfly topology. It is crucial to study the behavior and performance of different parallel applications running on Dragonfly networks in order to make optimal system configurations and design choices, such as job scheduling and routing strategies. However, in order to study these temporal network behavior, we would need a tool to analyze and correlate numerous sets of multivariate time-series data collected from the Dragonfly’s multi-level hierarchies. This paper presents such a tool–a visual analytics system–that uses the Dragonfly network to investigate the temporal behavior and optimize the communication performance of a supercomputer. We coupled interactive visualization with time-series analysis methods to help reveal hidden patterns in the network behavior with respect to different parallel applications and system configurations. Our system also provides multiple coordinated views for connecting behaviors observed at different levels of the network hierarchies, which effectively helps visual analysis tasks. We demonstrate the effectiveness of the system with a set of case studies. Our system and findings can not only help improve the communication performance of supercomputing applications, but also the network performance of next-generation supercomputers. Keywords: Supercomputing, Parallel communication network, Dragonfly networks, Time-series data, Performance analysis, Visual analytics

  12. Optimal Power Allocation Algorithm for Radar Network Systems Based on Low Probability of Intercept Optimization(in English

    Directory of Open Access Journals (Sweden)

    Shi Chen-guang

    2014-08-01

    Full Text Available A novel optimal power allocation algorithm for radar network systems is proposed for Low Probability of Intercept (LPI technology in modern electronic warfare. The algorithm is based on the LPI optimization. First, the Schleher intercept factor for a radar network is derived, and then the Schleher intercept factor is minimized by optimizing the transmission power allocation among netted radars in the network to guarantee target-tracking performance. Furthermore, the Nonlinear Programming Genetic Algorithm (NPGA is used to solve the resulting nonconvex, nonlinear, and constrained optimization problem. Numerical simulation results show the effectiveness of the proposed algorithm.

  13. Resource Optimization of Mobile Intelligent System with heart MPLS network

    Directory of Open Access Journals (Sweden)

    Mohammed Elkoutbi

    2009-10-01

    Full Text Available In this paper, we introduce the original Mobile Intelligent System (MIS in embeded FPGA architecture. This node will allow the construction of autonomous mobile network units which can move in unknowns, inaccessible or hostile environnement for human being, in order to collect data by various sensors and transmits them by routing to a unit of distant process. In the sake of improving the performance of transmission, we propose a global schema of QoS management using DiffServ/MPLS backbones. We provide an evaluation of several scenarios for combining QoS IP networks with MIS access network. We conclude with a study on interoperability between QoS patterns in access and backbone networks.

  14. Toward Optimal Transport Networks

    Science.gov (United States)

    Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.

    2008-01-01

    Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.

  15. Optimization of stochastic discrete systems and control on complex networks computational networks

    CERN Document Server

    Lozovanu, Dmitrii

    2014-01-01

    This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic con...

  16. Optimal Network-Topology Design

    Science.gov (United States)

    Li, Victor O. K.; Yuen, Joseph H.; Hou, Ting-Chao; Lam, Yuen Fung

    1987-01-01

    Candidate network designs tested for acceptability and cost. Optimal Network Topology Design computer program developed as part of study on topology design and analysis of performance of Space Station Information System (SSIS) network. Uses efficient algorithm to generate candidate network designs consisting of subsets of set of all network components, in increasing order of total costs and checks each design to see whether it forms acceptable network. Technique gives true cost-optimal network and particularly useful when network has many constraints and not too many components. Program written in PASCAL.

  17. Optimal Formation of Multirobot Systems Based on a Recurrent Neural Network.

    Science.gov (United States)

    Wang, Yunpeng; Cheng, Long; Hou, Zeng-Guang; Yu, Junzhi; Tan, Min

    2016-02-01

    The optimal formation problem of multirobot systems is solved by a recurrent neural network in this paper. The desired formation is described by the shape theory. This theory can generate a set of feasible formations that share the same relative relation among robots. An optimal formation means that finding one formation from the feasible formation set, which has the minimum distance to the initial formation of the multirobot system. Then, the formation problem is transformed into an optimization problem. In addition, the orientation, scale, and admissible range of the formation can also be considered as the constraints in the optimization problem. Furthermore, if all robots are identical, their positions in the system are exchangeable. Then, each robot does not necessarily move to one specific position in the formation. In this case, the optimal formation problem becomes a combinational optimization problem, whose optimal solution is very hard to obtain. Inspired by the penalty method, this combinational optimization problem can be approximately transformed into a convex optimization problem. Due to the involvement of the Euclidean norm in the distance, the objective function of these optimization problems are nonsmooth. To solve these nonsmooth optimization problems efficiently, a recurrent neural network approach is employed, owing to its parallel computation ability. Finally, some simulations and experiments are given to validate the effectiveness and efficiency of the proposed optimal formation approach.

  18. OPTIMAL NETWORK TOPOLOGY DESIGN

    Science.gov (United States)

    Yuen, J. H.

    1994-01-01

    This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.

  19. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    Science.gov (United States)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  20. Urban Traffic Signal System Control Structural Optimization Based on Network Analysis

    Directory of Open Access Journals (Sweden)

    Li Wang

    2013-01-01

    Full Text Available Advanced urban traffic signal control systems such as SCOOT and SCATS normally coordinate traffic network using multilevel hierarchical control mechanism. In this mechanism, several key intersections will be selected from traffic signal network and the network will be divided into different control subareas. Traditionally, key intersection selection and control subareas division are executed according to dynamic traffic counts and link length between intersections, which largely rely on traffic engineers’ experience. However, it omits important inherent characteristics of traffic network topology. In this paper, we will apply network analysis approach into these two aspects for traffic system control structure optimization. Firstly, the modified C-means clustering algorithm will be proposed to assess the importance of intersections in traffic network and furthermore determine the key intersections based on three indexes instead of merely on traffic counts in traditional methods. Secondly, the improved network community discovery method will be used to give more reasonable evidence in traffic control subarea division. Finally, to test the effectiveness of network analysis approach, a hardware-in-loop simulation environment composed of regional traffic control system, microsimulation software and signal controller hardware, will be built. Both traditional method and proposed approach will be implemented on simulation test bed to evaluate traffic operation performance indexes, for example, travel time, stop times, delay and average vehicle speed. Simulation results show that the proposed network analysis approach can improve the traffic control system operation performance effectively.

  1. Impacts of optimal energy storage deployment and network reconfiguration on renewable integration level in distribution systems

    International Nuclear Information System (INIS)

    Santos, Sérgio F.; Fitiwi, Desta Z.; Cruz, Marco R.M.; Cabrita, Carlos M.P.; Catalão, João P.S.

    2017-01-01

    Highlights: • A dynamic and multi-objective stochastic mixed integer linear programming model is developed. • A new mechanism to quantify the impacts of network flexibility and ESS deployments on RES integration is presented. • Optimal integration of ESSs dramatically increases the level and the optimal exploitation of renewable DGs. • As high as 90% of RES integration level may be possible in distribution network systems. • Joint DG and ESS installations along with optimal network reconfiguration greatly contribute to voltage stability. - Abstract: Nowadays, there is a wide consensus about integrating more renewable energy sources-RESs to solve a multitude of global concerns such as meeting an increasing demand for electricity, reducing energy security and heavy dependence on fossil fuels for energy production, and reducing the overall carbon footprint of power production. Framed in this context, the coordination of RES integration with energy storage systems (ESSs), along with the network’s switching capability and/or reinforcement, is expected to significantly improve system flexibility, thereby increasing the capability of the system in accommodating large-scale RES power. Hence, this paper presents a novel mechanism to quantify the impacts of network switching and/or reinforcement as well as deployment of ESSs on the level of renewable power integrated in the system. To carry out this analysis, a dynamic and multi-objective stochastic mixed integer linear programming (S-MILP) model is developed, which jointly takes the optimal deployment of RES-based DGs and ESSs into account in coordination with distribution network reinforcement and/or reconfiguration. The IEEE 119-bus test system is used as a case study. Numerical results clearly show the capability of ESS deployment in dramatically increasing the level of renewable DGs integrated in the system. Although case-dependent, the impact of network reconfiguration on RES power integration is not

  2. A Method of Dynamic Extended Reactive Power Optimization in Distribution Network Containing Photovoltaic-Storage System

    Science.gov (United States)

    Wang, Wu; Huang, Wei; Zhang, Yongjun

    2018-03-01

    The grid-integration of Photovoltaic-Storage System brings some undefined factors to the network. In order to make full use of the adjusting ability of Photovoltaic-Storage System (PSS), this paper puts forward a reactive power optimization model, which are used to construct the objective function based on power loss and the device adjusting cost, including energy storage adjusting cost. By using Cataclysmic Genetic Algorithm to solve this optimization problem, and comparing with other optimization method, the result proved that: the method of dynamic extended reactive power optimization this article puts forward, can enhance the effect of reactive power optimization, including reducing power loss and device adjusting cost, meanwhile, it gives consideration to the safety of voltage.

  3. Optimal design of a gas transmission network: A case study of the Turkish natural gas pipeline network system

    Science.gov (United States)

    Gunes, Ersin Fatih

    Turkey is located between Europe, which has increasing demand for natural gas and the geographies of Middle East, Asia and Russia, which have rich and strong natural gas supply. Because of the geographical location, Turkey has strategic importance according to energy sources. To supply this demand, a pipeline network configuration with the optimal and efficient lengths, pressures, diameters and number of compressor stations is extremely needed. Because, Turkey has a currently working and constructed network topology, obtaining an optimal configuration of the pipelines, including an optimal number of compressor stations with optimal locations, is the focus of this study. Identifying a network design with lowest costs is important because of the high maintenance and set-up costs. The quantity of compressor stations, the pipeline segments' lengths, the diameter sizes and pressures at compressor stations, are considered to be decision variables in this study. Two existing optimization models were selected and applied to the case study of Turkey. Because of the fixed cost of investment, both models are formulated as mixed integer nonlinear programs, which require branch and bound combined with the nonlinear programming solution methods. The differences between these two models are related to some factors that can affect the network system of natural gas such as wall thickness, material balance compressor isentropic head and amount of gas to be delivered. The results obtained by these two techniques are compared with each other and with the current system. Major differences between results are costs, pressures and flow rates. These solution techniques are able to find a solution with minimum cost for each model both of which are less than the current cost of the system while satisfying all the constraints on diameter, length, flow rate and pressure. These results give the big picture of an ideal configuration for the future state network for the country of Turkey.

  4. Application of artificial neural network to predict the optimal start time for heating system in building

    International Nuclear Information System (INIS)

    Yang, In-Ho; Yeo, Myoung-Souk; Kim, Kwang-Woo

    2003-01-01

    The artificial neural network (ANN) approach is a generic technique for mapping non-linear relationships between inputs and outputs without knowing the details of these relationships. This paper presents an application of the ANN in a building control system. The objective of this study is to develop an optimized ANN model to determine the optimal start time for a heating system in a building. For this, programs for predicting the room air temperature and the learning of the ANN model based on back propagation learning were developed, and learning data for various building conditions were collected through program simulation for predicting the room air temperature using systems of experimental design. Then, the optimized ANN model was presented through learning of the ANN, and its performance to determine the optimal start time was evaluated

  5. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    Science.gov (United States)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  6. Using Agent Base Models to Optimize Large Scale Network for Large System Inventories

    Science.gov (United States)

    Shameldin, Ramez Ahmed; Bowling, Shannon R.

    2010-01-01

    The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.

  7. Optimization of distribution piping network in district cooling system using genetic algorithm with local search

    International Nuclear Information System (INIS)

    Chan, Apple L.S.; Hanby, Vic I.; Chow, T.T.

    2007-01-01

    A district cooling system is a sustainable means of distribution of cooling energy through mass production. A cooling medium like chilled water is generated at a central refrigeration plant and supplied to serve a group of consumer buildings through a piping network. Because of the substantial capital investment involved, an optimal design of the distribution piping configuration is one of the crucial factors for successful implementation of the district cooling scheme. In the present study, genetic algorithm (GA) incorporated with local search techniques was developed to find the optimal/near optimal configuration of the piping network in a hypothetical site. The effect of local search, mutation rate and frequency of local search on the performance of the GA in terms of both solution quality and computation time were investigated and presented in this paper

  8. Efficiency Enhancement for an Inductive Wireless Power Transfer System by Optimizing the Impedance Matching Networks.

    Science.gov (United States)

    Miao, Zhidong; Liu, Dake; Gong, Chen

    2017-10-01

    Inductive wireless power transfer (IWPT) is a promising power technology for implantable biomedical devices, where the power consumption is low and the efficiency is the most important consideration. In this paper, we propose an optimization method of impedance matching networks (IMN) to maximize the IWPT efficiency. The IMN at the load side is designed to achieve the optimal load, and the IMN at the source side is designed to deliver the required amount of power (no-more-no-less) from the power source to the load. The theoretical analyses and design procedure are given. An IWPT system for an implantable glaucoma therapeutic prototype is designed as an example. Compared with the efficiency of the resonant IWPT system, the efficiency of our optimized system increases with a factor of 1.73. Besides, the efficiency of our optimized IWPT system is 1.97 times higher than that of the IWPT system optimized by the traditional maximum power transfer method. All the discussions indicate that the optimization method proposed in this paper could achieve a high efficiency and long working time when the system is powered by a battery.

  9. Cooperative Convex Optimization in Networked Systems: Augmented Lagrangian Algorithms With Directed Gossip Communication

    Science.gov (United States)

    Jakovetic, Dusan; Xavier, João; Moura, José M. F.

    2011-08-01

    We study distributed optimization in networked systems, where nodes cooperate to find the optimal quantity of common interest, x=x^\\star. The objective function of the corresponding optimization problem is the sum of private (known only by a node,) convex, nodes' objectives and each node imposes a private convex constraint on the allowed values of x. We solve this problem for generic connected network topologies with asymmetric random link failures with a novel distributed, decentralized algorithm. We refer to this algorithm as AL-G (augmented Lagrangian gossiping,) and to its variants as AL-MG (augmented Lagrangian multi neighbor gossiping) and AL-BG (augmented Lagrangian broadcast gossiping.) The AL-G algorithm is based on the augmented Lagrangian dual function. Dual variables are updated by the standard method of multipliers, at a slow time scale. To update the primal variables, we propose a novel, Gauss-Seidel type, randomized algorithm, at a fast time scale. AL-G uses unidirectional gossip communication, only between immediate neighbors in the network and is resilient to random link failures. For networks with reliable communication (i.e., no failures,) the simplified, AL-BG (augmented Lagrangian broadcast gossiping) algorithm reduces communication, computation and data storage cost. We prove convergence for all proposed algorithms and demonstrate by simulations the effectiveness on two applications: l_1-regularized logistic regression for classification and cooperative spectrum sensing for cognitive radio networks.

  10. Design Optimization of Cyber-Physical Distributed Systems using IEEE Time-sensitive Networks (TSN)

    DEFF Research Database (Denmark)

    Pop, Paul; Lander Raagaard, Michael; Craciunas, Silviu S.

    2016-01-01

    to the optimization of distributed cyber-physical systems using real-time Ethernet for communication. Then, we formulate two novel optimization problems related to the scheduling and routing of TT and AVB traffic in TSN. Thus, we consider that we know the topology of the network as well as the set of TT and AVB flows......In this paper we are interested in safety-critical real-time applications implemented on distributed architectures supporting the Time-SensitiveNetworking (TSN) standard. The ongoing standardization of TSN is an IEEE effort to bring deterministic real-time capabilities into the IEEE 802.1 Ethernet...... standard supporting safety-critical systems and guaranteed Quality-of-Service. TSN will support Time-Triggered (TT) communication based on schedule tables, Audio-Video-Bridging (AVB) flows with bounded end-to-end latency as well as Best-Effort messages. We first present a survey of research related...

  11. Inverse Problem and Variation Method to Optimize Cascade Heat Exchange Network in Central Heating System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yin; WEI Zhiyuan; ZHANG Yinping; WANG Xin

    2017-01-01

    Urban heating in northern China accounts for 40% of total building energy usage.In central heating systems,heat is often transfened from heat source to users by the heat network where several heat exchangers arc installed at heat source,substations and terminals respectively.For given overall heating capacity and heat source temperarure,increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving.In this paper,the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established.Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity,the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method.The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger.It also indicates that in order to improve the thernmal performance of the whole system,more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small.This work is important for guiding the optimization design of practical cascade heating systems.

  12. Optimization of hydrometric monitoring network in urban drainage systems using information theory.

    Science.gov (United States)

    Yazdi, J

    2017-10-01

    Regular and continuous monitoring of urban runoff in both quality and quantity aspects is of great importance for controlling and managing surface runoff. Due to the considerable costs of establishing new gauges, optimization of the monitoring network is essential. This research proposes an approach for site selection of new discharge stations in urban areas, based on entropy theory in conjunction with multi-objective optimization tools and numerical models. The modeling framework provides an optimal trade-off between the maximum possible information content and the minimum shared information among stations. This approach was applied to the main surface-water collection system in Tehran to determine new optimal monitoring points under the cost considerations. Experimental results on this drainage network show that the obtained cost-effective designs noticeably outperform the consulting engineers' proposal in terms of both information contents and shared information. The research also determined the highly frequent sites at the Pareto front which might be important for decision makers to give a priority for gauge installation on those locations of the network.

  13. Optimization of Indoor Thermal Comfort Parameters with the Adaptive Network-Based Fuzzy Inference System and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-01-01

    Full Text Available The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS model and improved particle swarm optimization (PSO algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output “metamodels” for the subsequent optimization. With the improved PSO algorithm and the stratified sequence method, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.

  14. Artificial neural network to support thermohydraulic design optimization for an advanced nuclear heat removal system

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira; Linda, Ondrej; Manic, Milos

    2009-01-01

    The U.S. Department of Energy (DOE) is leading a number of initiatives, including one known as the Next Generation Nuclear Plant (NGNP) project. One of the NGNP nuclear system concepts is the Very High Temperature (gas-cooled) Reactor (VHTR) that may be coupled to a hydrogen generating plant to support the anticipated hydrogen economy. For the NGNP, an efficient power conversion system using an Intermediate Heat Exchanger (IHX) is key to electricity and/or process heat generation (hydrogen production). Ideally, it's desirable for the IHX to be compact and thermally efficient. However, traditional heat exchanger design practices do not assure that the design parameters are optimized. As part of NGNP heat exchanger design and optimization project, this research paper thus proposes developing a recurrent-type Artificial Neural Network (ANN), the Hopfield Network (HN) model, in which the activation function is modified, as a design optimization approach to support a NGNP thermal system candidate, the Printed Circuit Heat Exchanger (PCHE). Four quadratic functions, available in literature, were used to test the presented methodology. The results computed by an artificially intelligent approach were compared to another approach, the Genetic Algorithm (GA). The results show that the HN results are close to GA in optimization of multi-variable second-order equations. (author)

  15. Bandwidth Optimization On Design Of Visual Display Information System Based Networking At Politeknik Negeri Bali

    Science.gov (United States)

    Sudiartha, IKG; Catur Bawa, IGNB

    2018-01-01

    Information can not be separated from the social life of the community, especially in the world of education. One of the information fields is academic calendar information, activity agenda, announcement and campus activity news. In line with technological developments, text-based information is becoming obsolete. For that need creativity to present information more quickly, accurately and interesting by exploiting the development of digital technology and internet. In this paper will be developed applications for the provision of information in the form of visual display, applied to computer network system with multimedia applications. Network-based applications provide ease in updating data through internet services, attractive presentations with multimedia support. The application “Networking Visual Display Information Unit” can be used as a medium that provides information services for students and academic employee more interesting and ease in updating information than the bulletin board. The information presented in the form of Running Text, Latest Information, Agenda, Academic Calendar and Video provide an interesting presentation and in line with technological developments at the Politeknik Negeri Bali. Through this research is expected to create software “Networking Visual Display Information Unit” with optimal bandwidth usage by combining local data sources and data through the network. This research produces visual display design with optimal bandwidth usage and application in the form of supporting software.

  16. Towards Optimal Transport Networks

    Directory of Open Access Journals (Sweden)

    Erik P. Vargo

    2010-08-01

    Full Text Available Our ultimate goal is to design transportation net- works whose dynamic performance metrics (e.g. pas- senger throughput, passenger delay, and insensitivity to weather disturbances are optimized. Here the fo- cus is on optimizing static features of the network that are known to directly affect the network dynamics. First, we present simulation results which support a connection between maximizing the first non-trivial eigenvalue of a network's Laplacian and superior air- port network performance. Then, we explore the ef- fectiveness of a tabu search heuristic for optimizing this metric by comparing experimental results to the- oretical upper bounds. We also consider generating upper bounds on a network's algebraic connectivity via the solution of semidefinite programming (SDP relaxations. A modification of an existing subgraph extraction algorithm is implemented to explore the underlying regional structures in the U.S. airport net- work, with the hope that the resulting localized struc- tures can be optimized independently and reconnected via a "backbone" network to achieve superior network performance.

  17. Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks.

    Science.gov (United States)

    Modares, Hamidreza; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher

    2013-10-01

    This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example.

  18. NETWORK CENTRISM OPTIMIZATION OF EXPEDITIOUS SERVICE OF ELEMENTS OF THE POWER SUPPLY SYSTEM

    Directory of Open Access Journals (Sweden)

    Ye.I. Sokol

    2016-06-01

    Full Text Available Purpose. Development of precision selection criteria of options of technical realization of effective active and adaptive system of expeditious service of elements of a power supply system in the conditions of network-centric management. Methodology. In development of power supply systems their evolution from the elementary forms using elementary network technologies and models of interactions in power to more irregular shapes within the concept of Smart Grid with elements of network-centric character is observed. This direction is based on Internet-technologies of the last generation, and realize models of power activity which couldn't be realized before. Results. The number of possible options of active and adaptive system of expeditious service of elements of a power supply system is usually rather big and it is difficult to choose the acceptable option by direct search. Elimination of admissible options of the technical realization constructed on the principles of a network centrism means application of the theory of multicriteria optimization from a position of discrete programming. The basis of procedure of elimination is made by algorithm of an assessment of system by criterion of accuracy. Originality. The case of an assessment of the precision characteristic of system at restrictions for the set accuracy is connected with need of decomposition of requirements of all system in general and on separate subsystems. For such decomposition the ratios connecting the accuracy of functioning of a separate subsystem with variations of parameters of all system, and also with precision characteristics of subsystems of the lower levels influencing this subsystem are received. Practical value. In the conditions of the network-centric organization of management of expeditious service of elements of a power supply system elimination of options of subsystems when using precision criterion allows to receive the maximum number of essentially possible

  19. Optimization and modeling of a photovoltaic solar integrated system by neural networks

    International Nuclear Information System (INIS)

    Ashhab, Moh'd Sami S.

    2008-01-01

    A photovoltaic solar integrated system is modeled with artificial neural networks (ANN's). Data relevant to the system performance was collected on April, 4th 1993 and every 15 min during the day. This input-output data is used to train the ANN. The ANN approximates the data well and therefore can be relied on in predicting the system performance, namely, system efficiencies. The solar system consists of a solar trainer which contains a photovoltaic panel, a DC centrifugal pump, flat plate collectors, storage tank, a flowmeter for measuring the water mass flow rate, pipes, pyranometer for measuring the solar intensity, thermocouples for measuring various system temperatures and wind speed meter. The complex method constrained optimization is applied to the solar system ANN model to find the operating conditions of the system that will produce the maximum system efficiencies. This information will be very hard to obtain by just looking at the available historical input-output data

  20. Optimization and modeling of a photovoltaic solar integrated system by neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, Moh' d Sami S. [Department of Mechanical Engineering, The Hashemite University, Zarqa 13115 (Jordan)

    2008-11-15

    A photovoltaic solar integrated system is modeled with artificial neural networks (ANN's). Data relevant to the system performance was collected on April, 4th 1993 and every 15 min during the day. This input-output data is used to train the ANN. The ANN approximates the data well and therefore can be relied on in predicting the system performance, namely, system efficiencies. The solar system consists of a solar trainer which contains a photovoltaic panel, a DC centrifugal pump, flat plate collectors, storage tank, a flowmeter for measuring the water mass flow rate, pipes, pyranometer for measuring the solar intensity, thermocouples for measuring various system temperatures and wind speed meter. The complex method constrained optimization is applied to the solar system ANN model to find the operating conditions of the system that will produce the maximum system efficiencies. This information will be very hard to obtain by just looking at the available historical input-output data. (author)

  1. [Health system sustainability from a network perspective: a proposal to optimize healthy habits and social support].

    Science.gov (United States)

    Marqués Sánchez, Pilar; Fernández Peña, Rosario; Cabrera León, Andrés; Muñoz Doyague, María F; Llopis Cañameras, Jaime; Arias Ramos, Natalia

    2013-01-01

    The search of new health management formulas focused to give wide services is one of the priorities of our present health policies. Those formulas examine the optimization of the links between the main actors involved in public health, ie, users, professionals, local socio-political and corporate agents. This paper is aimed to introduce the Social Network Analysis as a method for analyzing, measuring and interpreting those connections. The knowledge of people's relationships (what is called social networks) in the field of public health is becoming increasingly important at an international level. In fact, countries such as UK, Netherlands, Italy, Australia and U.S. are looking formulas to apply this knowledge to their health departments. With this work we show the utility of the ARS on topics related to sustainability of the health system, particularly those related with health habits and social support, topics included in the 2020 health strategies that underline the importance of the collaborative aspects in networks.

  2. Application of geographical information systems for the optimal location of a commercial network

    Directory of Open Access Journals (Sweden)

    Vicente Rodríguez

    2017-07-01

    Full Text Available Purpose - The purpose of this paper is to study the optimization of the geographical location of a network of points of sale, so that each retailer can have access to a potential geographic market. In addition, the authors study the importance of the distance variable in the commercial viability of a point of sale and a network of points of sale, analysing if the best location for each point (local optimum is always the best location for the whole (global optimum. Design/methodology/approach - Location-allocation models are applied using p-median algorithms and spatial competition maximization to analyse the actual journeys of 64,740 car buyers in 1240 postal codes using a geographic information system (GIS and geomarketing techniques. Findings - The models show that the pursuit of individual objectives by each concessionaire over the collective provides poorer results for the whole network of points of sale when compared to coordinated competition. The solutions provided by the models considering geographic and marketing criteria permit a reduction in the length of journeys made by the buyers. GIS allows the optimal control of market demand coverage through the collaborative strategies of the supplying retailers, in this case, car dealerships. Originality/value - The paper contributes to the joint research of geography and marketing from a theoretical and practical point of view. The main contribution is the use of information on actual buyer journeys for the optimal location of a network of points of sale. This research also contributes to the analysis of the correlation between the optimum local and optimum global locations of a commercial network and is a pioneering work in the application of these models to the automotive sector in the territorial area of the study.

  3. Optimization of Pipe Networks

    DEFF Research Database (Denmark)

    Hansen, C. T.; Madsen, Kaj; Nielsen, Hans Bruun

    1991-01-01

    algorithm using successive linear programming is presented. The performance of the algorithm is illustrated by optimizing a network with 201 pipes and 172 nodes. It is concluded that the new algorithm seems to be very efficient and stable, and that it always finds a solution with a cost near the best...

  4. Quantized hopfield networks for reliability optimization

    International Nuclear Information System (INIS)

    Nourelfath, Mustapha; Nahas, Nabil

    2003-01-01

    The use of neural networks in the reliability optimization field is rare. This paper presents an application of a recent kind of neural networks in a reliability optimization problem for a series system with multiple-choice constraints incorporated at each subsystem, to maximize the system reliability subject to the system budget. The problem is formulated as a nonlinear binary integer programming problem and characterized as an NP-hard problem. Our design of neural network to solve efficiently this problem is based on a quantized Hopfield network. This network allows us to obtain optimal design solutions very frequently and much more quickly than others Hopfield networks

  5. Secure estimation, control and optimization of uncertain cyber-physical systems with applications to power networks

    Science.gov (United States)

    Taha, Ahmad Fayez

    Transportation networks, wearable devices, energy systems, and the book you are reading now are all ubiquitous cyber-physical systems (CPS). These inherently uncertain systems combine physical phenomena with communication, data processing, control and optimization. Many CPSs are controlled and monitored by real-time control systems that use communication networks to transmit and receive data from systems modeled by physical processes. Existing studies have addressed a breadth of challenges related to the design of CPSs. However, there is a lack of studies on uncertain CPSs subject to dynamic unknown inputs and cyber-attacks---an artifact of the insertion of communication networks and the growing complexity of CPSs. The objective of this dissertation is to create secure, computational foundations for uncertain CPSs by establishing a framework to control, estimate and optimize the operation of these systems. With major emphasis on power networks, the dissertation deals with the design of secure computational methods for uncertain CPSs, focusing on three crucial issues---(1) cyber-security and risk-mitigation, (2) network-induced time-delays and perturbations and (3) the encompassed extreme time-scales. The dissertation consists of four parts. In the first part, we investigate dynamic state estimation (DSE) methods and rigorously examine the strengths and weaknesses of the proposed routines under dynamic attack-vectors and unknown inputs. In the second part, and utilizing high-frequency measurements in smart grids and the developed DSE methods in the first part, we present a risk mitigation strategy that minimizes the encountered threat levels, while ensuring the continual observability of the system through available, safe measurements. The developed methods in the first two parts rely on the assumption that the uncertain CPS is not experiencing time-delays, an assumption that might fail under certain conditions. To overcome this challenge, networked unknown input

  6. Planning Optimization of the Distributed Antenna System in High-Speed Railway Communication Network Based on Improved Cuckoo Search

    Directory of Open Access Journals (Sweden)

    Zhaoyu Chen

    2018-01-01

    Full Text Available The network planning is a key factor that directly affects the performance of the wireless networks. Distributed antenna system (DAS is an effective strategy for the network planning. This paper investigates the antenna deployment in a DAS for the high-speed railway communication networks and formulates an optimization problem which is NP-hard for achieving the optimal deployment of the antennas in the DAS. To solve this problem, a scheme based on an improved cuckoo search based on dimension cells (ICSDC algorithm is proposed. ICSDC introduces the dimension cell mechanism to avoid the internal dimension interferences in order to improve the performance of the algorithm. Simulation results show that the proposed ICSDC-based scheme obtains a lower network cost compared with the uniform network planning method. Moreover, ICSDC algorithm has better performance in terms of the convergence rate and accuracy compared with the conventional cuckoo search algorithm, the particle swarm optimization, and the firefly algorithm.

  7. Function-Oriented Networking and On-Demand Routing System in Network Using Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Young-Bo Sim

    2017-11-01

    Full Text Available In this paper, we proposed and developed Function-Oriented Networking (FON, a platform for network users. It has a different philosophy as opposed to technologies for network managers of Software-Defined Networking technology, OpenFlow. It is a technology that can immediately reflect the demands of the network users in the network, unlike the existing OpenFlow and Network Functions Virtualization (NFV, which do not reflect directly the needs of the network users. It allows the network user to determine the policy of the direct network, so it can be applied more precisely than the policy applied by the network manager. This is expected to increase the satisfaction of the service users when the network users try to provide new services. We developed FON function that performs on-demand routing for Low-Delay Required service. We analyzed the characteristics of the Ant Colony Optimization (ACO algorithm and found that the algorithm is suitable for low-delay required services. It was also the first in the world to implement the routing software using ACO Algorithm in the real Ethernet network. In order to improve the routing performance, several algorithms of the ACO Algorithm have been developed to enable faster path search-routing and path recovery. The relationship between the network performance index and the ACO routing parameters is derived, and the results are compared and analyzed. Through this, it was possible to develop the ACO algorithm.

  8. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay.

    Science.gov (United States)

    Pan, Indranil; Das, Saptarshi; Gupta, Amitava

    2011-01-01

    An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Delay-Dependent Exponential Optimal Synchronization for Nonidentical Chaotic Systems via Neural-Network-Based Approach

    Directory of Open Access Journals (Sweden)

    Feng-Hsiag Hsiao

    2013-01-01

    Full Text Available A novel approach is presented to realize the optimal exponential synchronization of nonidentical multiple time-delay chaotic (MTDC systems via fuzzy control scheme. A neural-network (NN model is first constructed for the MTDC system. Then, a linear differential inclusion (LDI state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, a delay-dependent exponential stability criterion of the error system derived in terms of Lyapunov's direct method is proposed to guarantee that the trajectories of the slave system can approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI. According to the LMI, a fuzzy controller is synthesized not only to realize the exponential synchronization but also to achieve the optimal performance by minimizing the disturbance attenuation level at the same time. Finally, a numerical example with simulations is given to demonstrate the effectiveness of our approach.

  10. SCADA System for the Modeling and Optimization of Oil Collecting Pipeline Network: A Case Study of Hassi Messaoud Oilfield

    OpenAIRE

    M. Aouadj; F. Naceri; M. Touileb; D. Sellami; M. Boukhatem

    2015-01-01

    This study aims are data acquisition, control and online modeling of an oil collection pipeline network using a SCADA «Supervisory Control and Data Acquisition» system, allowing the optimization of this network in real time by creating more exact models of onsite facilities. Indeed, fast development of computing systems makes obsolete usage of old systems for which maintenance became more and more expensive and their performances don’t comply any more with modern company operations. SCADA sys...

  11. Neural network for optimal capacitor placement and its impact on power quality in electric distribution systems

    International Nuclear Information System (INIS)

    Mohamed, A.A.E.S.

    2013-01-01

    Capacitors are widely installed in distribution systems for reactive power compensation to achieve power and energy loss reduction, voltage regulation and system capacity release. The extent of these benefits depends greatly on how the capacitors are placed on the system. The problem of how to place capacitors on the system such that these benefits are achieved and maximized against the cost associated with the capacitor placement is termed the general capacitor placement problem. The capacitor placement problem has been formulated as the maximization of the savings resulted from reduction in both peak power and energy losses considering capacitor installation cost and maintaining the buses voltage within acceptable limits. After an appropriate analysis, the optimization problem was formulated in a quadratic form. For solving capacitor placement a new combinatorial heuristic and quadratic programming technique has been presented and applied in the MATLAB software. The proposed strategy was applied on two different radial distribution feeders. The results have been compared with previous works. The comparison showed the validity and the effectiveness of this strategy. Secondly, two artificial intelligence techniques for predicting the capacitor switching state in radial distribution feeders have been investigated; one is based on basis Radial Basis Neural Network (RBNN) and the other is based on Adaptive Neuro-Fuzzy Inference System (ANFIS). The ANFIS technique gives better results with a minimum total error compared to RBNN. The learning duration of ANFIS was very short than the neural network case. It implied that ANFIS reaches to the target faster than neural network. Thirdly, an artificial intelligence (RBNN) approach for estimation of transient overvoltage during capacitor switching has been studied. The artificial intelligence approach estimated the transient overvoltages with a minimum error in a short computational time. Finally, a capacitor switching

  12. Design of the smart home system based on the optimal routing algorithm and ZigBee network.

    Directory of Open Access Journals (Sweden)

    Dengying Jiang

    Full Text Available To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.

  13. Design of the smart home system based on the optimal routing algorithm and ZigBee network.

    Science.gov (United States)

    Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng

    2017-01-01

    To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.

  14. A complex systems approach to planning, optimization and decision making for energy networks

    International Nuclear Information System (INIS)

    Beck, Jessica; Kempener, Ruud; Cohen, Brett; Petrie, Jim

    2008-01-01

    This paper explores a new approach to planning and optimization of energy networks, using a mix of global optimization and agent-based modeling tools. This approach takes account of techno-economic, environmental and social criteria, and engages explicitly with inherent network complexity in terms of the autonomous decision-making capability of individual agents within the network, who may choose not to act as economic rationalists. This is an important consideration from the standpoint of meeting sustainable development goals. The approach attempts to set targets for energy planning, by determining preferred network development pathways through multi-objective optimization. The viability of such plans is then explored through agent-based models. The combined approach is demonstrated for a case study of regional electricity generation in South Africa, with biomass as feedstock

  15. Algorithmic Optimal Management of a Potable Water Distribution System: Application to the Primary Network of Bonaberi (Douala, Cameroon

    Directory of Open Access Journals (Sweden)

    Zineb Simeu-Abazi

    2009-11-01

    Full Text Available The optimal management of a potable water distribution system requires the control of the reference (standard data, the control points, control of the drainage parameters (pressure, flow, etc. and maintenance parameters. The control of the mentioned data defines the network learning process [1]. Besides classic IT functions of acquisition, storage and data processing, a geographical information system (GIS can be used as the basis for an alarm system, allowing one to identify and to localize the presence of water leaks in the network [2]. In this article we propose an algorithm coupling the various drainage parameters for the management of the network. The algorithm leads to an optimal management of leaks. An application is in progress on the primary network in the region of Bonaberi in Douala, the largest city of Cameroon.

  16. A New Software for Management, Scheduling, and Optimization for the Light Hydrocarbon Pipeline Network System of Daqing Oilfield

    Directory of Open Access Journals (Sweden)

    Yongtu Liang

    2014-01-01

    Full Text Available This paper presents the new software which specifically developed based on Visual Studio 2010 for Daqing Oilfield China includes the most complex light hydrocarbon pipeline network system in Asia, has become a powerful auxiliary tool to manage field data, makes scheduling plans for batching operation, and optimizes pumping plans. Firstly, DMM for recording and managing field data is summarized. Then, the batch scheduling simulation module called SSM for the difficult batch-scheduling issues of the multiple-source pipeline network system is introduced. Finally, SOM, that is Scheduling Optimization Module, is indicated for solving the problem of the pumps being started up/shut-down frequently.

  17. Using Metaheuristic and Fuzzy System for the Optimization of Material Pull in a Push-Pull Flow Logistics Network

    Directory of Open Access Journals (Sweden)

    Afshin Mehrsai

    2013-01-01

    Full Text Available Alternative material flow strategies in logistics networks have crucial influences on the overall performance of the networks. Material flows can follow push, pull, or hybrid systems. To get the advantages of both push and pull flows in networks, the decoupling-point strategy is used as coordination mean. At this point, material pull has to get optimized concerning customer orders against pushed replenishment-rates. To compensate the ambiguity and uncertainty of both dynamic flows, fuzzy set theory can practically be applied. This paper has conceptual and mathematical parts to explain the performance of the push-pull flow strategy in a supply network and to give a novel solution for optimizing the pull side employing Conwip system. Alternative numbers of pallets and their lot-sizes circulating in the assembly system are getting optimized in accordance with a multi-objective problem; employing a hybrid approach out of meta-heuristics (genetic algorithm and simulated annealing and fuzzy system. Two main fuzzy sets as triangular and trapezoidal are applied in this technique for estimating ill-defined waiting times. The configured technique leads to smoother flows between push and pull sides in complex networks. A discrete-event simulation model is developed to analyze this thesis in an exemplary logistics network with dynamics.

  18. A single network adaptive critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems.

    Science.gov (United States)

    Padhi, Radhakant; Unnikrishnan, Nishant; Wang, Xiaohua; Balakrishnan, S N

    2006-12-01

    Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)" is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.

  19. A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system

    International Nuclear Information System (INIS)

    Zhang, Jianyun; Liu, Pei; Zhou, Zhe; Ma, Linwei; Li, Zheng; Ni, Weidou

    2014-01-01

    Highlights: • Integration of heat streams with HRSG in a polygeneration system is studied. • A mixed-integer nonlinear programming model is proposed to optimize heat network. • Operating parameters and heat network configuration are optimized simultaneously. • The optimized heat network highly depends on the HRSG type and model specification. - Abstract: A large number of heat flows at various temperature and pressure levels exist in a polygeneration plant which co-produces electricity and chemical products. Integration of these external heat flows in a heat recovery steam generator (HRSG) has great potential to further enhance energy efficiency of such a plant; however, it is a challenging problem arising from the large design space of heat exchanger network. In this paper, a mixed-integer nonlinear programming model is developed for the design optimization of a HRSG with consideration of all alternative matches between the HRSG and external heat flows. This model is applied to four polygeneration cases with different HRSG types, and results indicate that the optimized heat network mainly depends on the HRSG type and the model specification

  20. Optimal and robust control of a class of nonlinear systems using dynamically re-optimised single network adaptive critic design

    Science.gov (United States)

    Tiwari, Shivendra N.; Padhi, Radhakant

    2018-01-01

    Following the philosophy of adaptive optimal control, a neural network-based state feedback optimal control synthesis approach is presented in this paper. First, accounting for a nominal system model, a single network adaptive critic (SNAC) based multi-layered neural network (called as NN1) is synthesised offline. However, another linear-in-weight neural network (called as NN2) is trained online and augmented to NN1 in such a manner that their combined output represent the desired optimal costate for the actual plant. To do this, the nominal model needs to be updated online to adapt to the actual plant, which is done by synthesising yet another linear-in-weight neural network (called as NN3) online. Training of NN3 is done by utilising the error information between the nominal and actual states and carrying out the necessary Lyapunov stability analysis using a Sobolev norm based Lyapunov function. This helps in training NN2 successfully to capture the required optimal relationship. The overall architecture is named as 'Dynamically Re-optimised single network adaptive critic (DR-SNAC)'. Numerical results for two motivating illustrative problems are presented, including comparison studies with closed form solution for one problem, which clearly demonstrate the effectiveness and benefit of the proposed approach.

  1. On synthesis and optimization of steam system networks. 3. Pressure drop consideration

    CSIR Research Space (South Africa)

    Price, T

    2010-08-01

    Full Text Available Heat exchanger networks in steam systems are traditionally designed to operate in parallel. Coetzee and Majozi (Ind. Eng. Chem. Res. 2008, 47, 4405-4413) found that by reusing steam condensate within the network the steam flow rate could be reduced...

  2. Optimal topologies for maximizing network transmission capacity

    Science.gov (United States)

    Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.

    2018-04-01

    It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.

  3. Railway optimal network simulation for the development of regional transport-logistics system

    Directory of Open Access Journals (Sweden)

    Mikhail Borisovich Petrov

    2013-12-01

    Full Text Available The dependence of logistics on mineral fuel is a stable tendency of regions development, though when making strategic plans of logistics in the regions, it is necessary to provide the alternative possibilities of power-supply sources change together with population density, transport infrastructure peculiarities, and demographic changes forecast. On the example of timber processing complex of the Sverdlovsk region, the authors suggest the algorithm of decision of the optimal logistics infrastructure allocation. The problem of regional railway network organization at the stage of slow transition from the prolonged stagnation to the new development is carried out. The transport networks’ configurations of countries on the Pacific Rim, which successfully developed nowadays, are analyzed. The authors offer some results of regional transport network simulation on the basis of artificial intelligence method. These methods let to solve the task with incomplete data. The ways of the transport network improvement in the Sverdlovsk region are offered.

  4. A Distributed Flow Rate Control Algorithm for Networked Agent System with Multiple Coding Rates to Optimize Multimedia Data Transmission

    Directory of Open Access Journals (Sweden)

    Shuai Zeng

    2013-01-01

    Full Text Available With the development of wireless technologies, mobile communication applies more and more extensively in the various walks of life. The social network of both fixed and mobile users can be seen as networked agent system. At present, kinds of devices and access network technology are widely used. Different users in this networked agent system may need different coding rates multimedia data due to their heterogeneous demand. This paper proposes a distributed flow rate control algorithm to optimize multimedia data transmission of the networked agent system with the coexisting various coding rates. In this proposed algorithm, transmission path and upload bandwidth of different coding rate data between source node, fixed and mobile nodes are appropriately arranged and controlled. On the one hand, this algorithm can provide user nodes with differentiated coding rate data and corresponding flow rate. On the other hand, it makes the different coding rate data and user nodes networked, which realizes the sharing of upload bandwidth of user nodes which require different coding rate data. The study conducts mathematical modeling on the proposed algorithm and compares the system that adopts the proposed algorithm with the existing system based on the simulation experiment and mathematical analysis. The results show that the system that adopts the proposed algorithm achieves higher upload bandwidth utilization of user nodes and lower upload bandwidth consumption of source node.

  5. Airborne Network Optimization with Dynamic Network Update

    Science.gov (United States)

    2015-03-26

    source si and a target ti . For each commodity (si, ki) the commodity specifies a non- negative demand di [5]. The objective of the multi-commodity...queue predictions, and network con- gestion [15]. The implementation of the DRQC uses the Kalman filter to predict the state of the network and optimize

  6. WiMAX network performance monitoring & optimization

    DEFF Research Database (Denmark)

    Zhang, Qi; Dam, H

    2008-01-01

    frequency reuse, capacity planning, proper network dimensioning, multi-class data services and so on. Furthermore, as a small operator we also want to reduce the demand for sophisticated technicians and man labour hours. To meet these critical demands, we design a generic integrated network performance......In this paper we present our WiMAX (worldwide interoperability for microwave access) network performance monitoring and optimization solution. As a new and small WiMAX network operator, there are many demanding issues that we have to deal with, such as limited available frequency resource, tight...... this integrated network performance monitoring and optimization system in our WiMAX networks. This integrated monitoring and optimization system has such good flexibility and scalability that individual function component can be used by other operators with special needs and more advanced function components can...

  7. Optimal Fragile Financial Networks

    NARCIS (Netherlands)

    Castiglionesi, F.; Navarro, N.

    2007-01-01

    We study a financial network characterized by the presence of depositors, banks and their shareholders. Belonging to a financial network is beneficial for both the depositors and banks' shareholders since the return to investment increases with the number of banks connected. However, the network is

  8. Optimal Design of the Feeder-Bus Network Based on the Transfer System

    Directory of Open Access Journals (Sweden)

    Lianbo Deng

    2013-01-01

    Full Text Available This paper studied the classic feeder-bus network design problem (FBNDP, which can be described as follows: for the passenger travel demand between rail stations and bus stops on a given urban transit network, it designs the optimal feeder bus routes and frequencies so as to minimize the passengers’ travel expense and the operator’s cost. We extended the demand pattern of M-to-1 in most existing researches to M-to-M. We comprehensively considered the passenger travel cost, which includes the waiting and riding cost on the bus, riding cost on rail, and transfer cost between these two transportation modes, and presented a new genetic algorithm that determines the optimal feeder-bus operating frequencies under strict constraint conditions. The numerical examples under different demand patterns have been experienced and analysed, which showed the robustness and efficiency of the presented algorithm. We also found that the distribution pattern of the travel demand has a significant influence on the feeder-bus network construction.

  9. Online Adaptive Optimal Control of Vehicle Active Suspension Systems Using Single-Network Approximate Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Fu

    2017-01-01

    Full Text Available In view of the performance requirements (e.g., ride comfort, road holding, and suspension space limitation for vehicle suspension systems, this paper proposes an adaptive optimal control method for quarter-car active suspension system by using the approximate dynamic programming approach (ADP. Online optimal control law is obtained by using a single adaptive critic NN to approximate the solution of the Hamilton-Jacobi-Bellman (HJB equation. Stability of the closed-loop system is proved by Lyapunov theory. Compared with the classic linear quadratic regulator (LQR approach, the proposed ADP-based adaptive optimal control method demonstrates improved performance in the presence of parametric uncertainties (e.g., sprung mass and unknown road displacement. Numerical simulation results of a sedan suspension system are presented to verify the effectiveness of the proposed control strategy.

  10. Energy optimization in mobile sensor networks

    Science.gov (United States)

    Yu, Shengwei

    consuming negligible amount of energy for mobility cost. For the second problem, the problem is extended to accommodate mobile robotic nodes with energy harvesting capability, which makes it a non-convex optimization problem. The non-convexity issue is tackled by using the existing sequential convex approximation method, based on which we propose a novel procedure of modified sequential convex approximation that has fast convergence speed. For the third problem, the proposed procedure is used to solve another challenging non-convex problem, which results in utilizing mobility and routing simultaneously in mobile robotic sensor networks to prolong the network lifetime. The results indicate that joint design of mobility and routing has an edge over other methods in prolonging network lifetime, which is also the justification for the use of mobility in mobile sensor networks for energy efficiency purpose. For the fourth problem, we include the dynamics of the robotic nodes in the problem by modeling the networked robotic system using hybrid systems theory. A novel distributed method for the networked hybrid system is used to solve the optimal moving trajectories for robotic nodes and optimal network links, which are not answered by previous approaches. Finally, the fact that mobility is more effective in prolonging network lifetime for a data-intensive network leads us to apply our methods to study mobile visual sensor networks, which are useful in many applications. We investigate the joint design of mobility, data routing, and encoding power to help improving the video quality while maximizing the network lifetime. This study leads to a better understanding of the role mobility can play in data-intensive surveillance sensor networks.

  11. Wireless Powered Relaying Networks Under Imperfect Channel State Information: System Performance and Optimal Policy for Instantaneous Rate

    Directory of Open Access Journals (Sweden)

    D. T. Do

    2017-09-01

    Full Text Available In this investigation, we consider wireless powered relaying systems, where energy is scavenged by a relay via radio frequency (RF signals. We explore hybrid time switching-based and power splitting-based relaying protocol (HTPSR and compare performance of Amplify-and-Forward (AF with Decode-and-Forward (DF scheme under imperfect channel state information (CSI. Most importantly, the instantaneous rate, achievable bit error rate (BER are determined in the closed-form expressions under the impact of imperfect CSI. Through numerical analysis, we evaluate system insights via different parameters such as power splitting (PS and time switching (TS ratio of the considered HTPSR which affect outage performance and BER. It is noted that DF relaying networks outperform AF relaying networks. Besides that, the numerical results are given to prove the optimization problems of PS and TS ratio to obtain optimal instantaneous rate.

  12. Optimal Sizing and Placement of Power-to-Gas Systems in Future Active Distribution Networks

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Bhattarai, Bishnu Prasad; Kouzelis, Konstantinos

    2015-01-01

    Power-to-Gas is recently attracting lots of interest as a new alternative for the regulation of renewable based power system. In cases, where the re-powering of old wind turbines threatens the normal operation of the local distribution network, this becomes especially relevant. However, the design...... -investment cost- and the technical losses in the system under study. The results obtained from the assessed test system show how such non-linear methods could help distribution system operators to obtain a fast and precise perception of what is the best way to integrate the Power-to-Gas facilities...... of medium voltage distribution networks does not normally follow a common pattern, finding a singular and very particular layouts in each case. This fact, makes the placement and dimensioning of such flexible loads a complicated task for the distribution system operator in the future. This paper describes...

  13. Combinatorial optimization networks and matroids

    CERN Document Server

    Lawler, Eugene

    2011-01-01

    Perceptively written text examines optimization problems that can be formulated in terms of networks and algebraic structures called matroids. Chapters cover shortest paths, network flows, bipartite matching, nonbipartite matching, matroids and the greedy algorithm, matroid intersections, and the matroid parity problems. A suitable text or reference for courses in combinatorial computing and concrete computational complexity in departments of computer science and mathematics.

  14. Optimal Scheduling of a Battery Energy Storage System with Electric Vehicles’ Auxiliary for a Distribution Network with Renewable Energy Integration

    Directory of Open Access Journals (Sweden)

    Yuqing Yang

    2015-09-01

    Full Text Available With global conventional energy depletion, as well as environmental pollution, utilizing renewable energy for power supply is the only way for human beings to survive. Currently, distributed generation incorporated into a distribution network has become the new trend, with the advantages of controllability, flexibility and tremendous potential. However, the fluctuation of distributed energy resources (DERs is still the main concern for accurate deployment. Thus, a battery energy storage system (BESS has to be involved to mitigate the bad effects of DERs’ integration. In this paper, optimal scheduling strategies for BESS operation have been proposed, to assist with consuming the renewable energy, reduce the active power loss, alleviate the voltage fluctuation and minimize the electricity cost. Besides, the electric vehicles (EVs considered as the auxiliary technique are also introduced to attenuate the DERs’ influence. Moreover, both day-ahead and real-time operation scheduling strategies were presented under the consideration with the constraints of BESS and the EVs’ operation, and the optimization was tackled by a fuzzy mathematical method and an improved particle swarm optimization (IPSO algorithm. Furthermore, the test system for the proposed strategies is a real distribution network with renewable energy integration. After simulation, the proposed scheduling strategies have been verified to be extremely effective for the enhancement of the distribution network characteristics.

  15. Optimization of workflow scheduling in Utility Management System with hierarchical neural network

    Directory of Open Access Journals (Sweden)

    Srdjan Vukmirovic

    2011-08-01

    Full Text Available Grid computing could be the future computing paradigm for enterprise applications, one of its benefits being that it can be used for executing large scale applications. Utility Management Systems execute very large numbers of workflows with very high resource requirements. This paper proposes architecture for a new scheduling mechanism that dynamically executes a scheduling algorithm using feedback about the current status Grid nodes. Two Artificial Neural Networks were created in order to solve the scheduling problem. A case study is created for the Meter Data Management system with measurements from the Smart Metering system for the city of Novi Sad, Serbia. Performance tests show that significant improvement of overall execution time can be achieved by Hierarchical Artificial Neural Networks.

  16. Optimizing the MAC Protocol in Localization Systems Based on IEEE 802.15.4 Networks

    Directory of Open Access Journals (Sweden)

    Juan J. Pérez-Solano

    2017-07-01

    Full Text Available Radio frequency signals are commonly used in the development of indoor localization systems. The infrastructure of these systems includes some beacons placed at known positions that exchange radio packets with users to be located. When the system is implemented using wireless sensor networks, the wireless transceivers integrated in the network motes are usually based on the IEEE 802.15.4 standard. But, the CSMA-CA, which is the basis for the medium access protocols in this category of communication systems, is not suitable when several users want to exchange bursts of radio packets with the same beacon to acquire the radio signal strength indicator (RSSI values needed in the location process. Therefore, new protocols are necessary to avoid the packet collisions that appear when multiple users try to communicate with the same beacons. On the other hand, the RSSI sampling process should be carried out very quickly because some systems cannot tolerate a large delay in the location process. This is even more important when the RSSI sampling process includes measures with different signal power levels or frequency channels. The principal objective of this work is to speed up the RSSI sampling process in indoor localization systems. To achieve this objective, the main contribution is the proposal of a new MAC protocol that eliminates the medium access contention periods and decreases the number of packet collisions to accelerate the RSSI collection process. Moreover, the protocol increases the overall network throughput taking advantage of the frequency channel diversity. The presented results show the suitability of this protocol for reducing the RSSI gathering delay and increasing the network throughput in simulated and real environments.

  17. Optimizing the MAC Protocol in Localization Systems Based on IEEE 802.15.4 Networks.

    Science.gov (United States)

    Pérez-Solano, Juan J; Claver, Jose M; Ezpeleta, Santiago

    2017-07-06

    Radio frequency signals are commonly used in the development of indoor localization systems. The infrastructure of these systems includes some beacons placed at known positions that exchange radio packets with users to be located. When the system is implemented using wireless sensor networks, the wireless transceivers integrated in the network motes are usually based on the IEEE 802.15.4 standard. But, the CSMA-CA, which is the basis for the medium access protocols in this category of communication systems, is not suitable when several users want to exchange bursts of radio packets with the same beacon to acquire the radio signal strength indicator (RSSI) values needed in the location process. Therefore, new protocols are necessary to avoid the packet collisions that appear when multiple users try to communicate with the same beacons. On the other hand, the RSSI sampling process should be carried out very quickly because some systems cannot tolerate a large delay in the location process. This is even more important when the RSSI sampling process includes measures with different signal power levels or frequency channels. The principal objective of this work is to speed up the RSSI sampling process in indoor localization systems. To achieve this objective, the main contribution is the proposal of a new MAC protocol that eliminates the medium access contention periods and decreases the number of packet collisions to accelerate the RSSI collection process. Moreover, the protocol increases the overall network throughput taking advantage of the frequency channel diversity. The presented results show the suitability of this protocol for reducing the RSSI gathering delay and increasing the network throughput in simulated and real environments.

  18. Modeling and optimization of an electric power distribution network ...

    African Journals Online (AJOL)

    Modeling and optimization of an electric power distribution network planning system using ... of the network was modelled with non-linear mathematical expressions. ... given feasible locations, re-conductoring of existing feeders in the network, ...

  19. Adaptable System Increasing the Transmission Speed and Reliability in Packet Network by Optimizing Delay

    Directory of Open Access Journals (Sweden)

    Zbynek Kocur

    2014-01-01

    Full Text Available There is a great diversity in the transmission technologies in current data networks. Individual technologies are in most cases incompatible at physical and partially also at the link layer of the reference ISO/OSI model. Network compatibility, as the ability to transmit data, is realizable through the third layer, which is able to guarantee the operation of the different devices across their technological differences. The proposed inverse packet multiplexer addresses increase of the speed and reliability of packet transmission to the third layer, and at the same time it increases the stability of the data communication by the regulation of the delay value during the transmission. This article presents implementation of a communication system and its verification in real conditions. The conclusion compares the strengths and weaknesses of the proposed control system.

  20. An Automation System for Optimizing a Supply Chain Network Design under the Influence of Demand Uncertainty

    OpenAIRE

    Polany, Rany

    2012-01-01

    This research develops and applies an integrated hierarchical framework for modeling a multi-echelon supply chain network design, under the influence of demand uncertainty. The framework is a layered integration of two levels: macro, high-level scenario planning combined with micro, low-level Monte Carlo simulation of uncertainties in demand. To facilitate rapid simulation of the effects of demand uncertainty, the integrated framework was implemented as a dashboard automation system using Mic...

  1. New optimization strategies of pavement maintenance: A case study for national road network in Indonesia using integrated road management system

    Science.gov (United States)

    Hamdi, Hadiwardoyo, Sigit P.; Correia, A. Gomes; Pereira, Paulo

    2017-06-01

    A road network requires timely maintenance to keep the road surface in good condition onward better services to improve accessibility and mobility. Strategies and maintenance techniques must be chosen in order to maximize road service level through cost-effective interventions. This approach requires an updated database, which the road network in Indonesia is supported by a manual and visual survey, also using NAASRA profiler. Furthermore, in this paper, the deterministic model of deterioration was used. This optimization model uses life cycle cost analysis (LCCA), applied in an integrated manner, using IRI indicator, and allows determining the priority of treatment, type of treatment and its relation to the cost. The purpose of this paper was focussed on the aspects of road maintenance management, i.e., maintenance optimization models for different levels of traffic and various initial of road distress conditions on the national road network in Indonesia. The implementation of Integrated Road Management System (IRMS) can provide a solution to the problem of cost constraints in the maintenance of the national road network. The results from this study found that as the lowest as agency cost, it will affect the increasing of user cost. With the achievement of the target plan scenario Pl000 with initial value IRI 2, it was found that the routine management throughout the year and in early reconstruction and periodic maintenance with a 30 mm thick overlay, will simultaneously provide a higher net benefit value and has the lowest total cost of transportation.

  2. Optimal system size for complex dynamics in random neural networks near criticality

    Energy Technology Data Exchange (ETDEWEB)

    Wainrib, Gilles, E-mail: wainrib@math.univ-paris13.fr [Laboratoire Analyse Géométrie et Applications, Université Paris XIII, Villetaneuse (France); García del Molino, Luis Carlos, E-mail: garciadelmolino@ijm.univ-paris-diderot.fr [Institute Jacques Monod, Université Paris VII, Paris (France)

    2013-12-15

    In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices.

  3. Optimal system size for complex dynamics in random neural networks near criticality

    International Nuclear Information System (INIS)

    Wainrib, Gilles; García del Molino, Luis Carlos

    2013-01-01

    In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices

  4. A novel optimization algorithm based on epsilon constraint-RBF neural network for tuning PID controller in decoupled HVAC system

    International Nuclear Information System (INIS)

    Attaran, Seyed Mohammad; Yusof, Rubiyah; Selamat, Hazlina

    2016-01-01

    Highlights: • Decoupling of a heating, ventilation, and air conditioning system is presented. • RBF models were identified by Epsilon constraint method for temperature and humidity. • Control settings derived from optimization of the decoupled model. • Epsilon constraint-RBF based on PID controller was implemented to keep thermal comfort and minimize energy. • Enhancements of controller parameters of the HVAC system are desired. - Abstract: The energy efficiency of a heating, ventilating and air conditioning (HVAC) system optimized using a radial basis function neural network (RBFNN) combined with the epsilon constraint (EC) method is reported. The new method adopts the advanced algorithm of RBFNN for the HVAC system to estimate the residual errors, increase the control signal and reduce the error results. The objective of this study is to develop and simulate the EC-RBFNN for a self tuning PID controller for a decoupled bilinear HVAC system to control the temperature and relative humidity (RH) produced by the system. A case study indicates that the EC-RBFNN algorithm has a much better accuracy than optimization PID itself and PID-RBFNN, respectively.

  5. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    selection in Wi-Fi networks and predictive handover optimization in heterogeneous wireless networks. The investigations in this work have indicated that location based network optimizations are beneficial compared to typical link measurement based approaches. Especially the knowledge of geographical...

  6. Feasibility study on rehabilitation and optimization of gas pipeline network/system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions, a survey was conducted on repairs and optimization of gas pipeline net/system in Bangladesh. In the survey, the measurement of methane gas concentration, wind direction/velocity and temperature was made for 16 stations of BC pipeline and BD pipeline including Ring Line. As a result of the measurement, the amount of methane leakage totaled 5,300 tons/year including 1,300 tons in BD pipeline, 2,500 tons in BC pipeline and 1,500 tons in Ring Line. For repairs/optimization of the pipeline net/system, the necessity of the following was pointed out: exchanges of gaskets, piping and valves; repairs of portions of the pipeline exposure; exchanges of pressure control valves and flowmeters; repair of the corrosion prevention system. In this improvement project, the reduction amount of greenhouse effect gas emissions will be 5,300 tons/year and approximately 106,000 tons in 20 years. The conservation will amount to 0.66 MMUS$/year. (NEDO)

  7. APEnet+: a 3D Torus network optimized for GPU-based HPC Systems

    International Nuclear Information System (INIS)

    Ammendola, R; Biagioni, A; Frezza, O; Lo Cicero, F; Lonardo, A; Paolucci, P S; Rossetti, D; Simula, F; Tosoratto, L; Vicini, P

    2012-01-01

    In the supercomputing arena, the strong rise of GPU-accelerated clusters is a matter of fact. Within INFN, we proposed an initiative — the QUonG project — whose aim is to deploy a high performance computing system dedicated to scientific computations leveraging on commodity multi-core processors coupled with latest generation GPUs. The inter-node interconnection system is based on a point-to-point, high performance, low latency 3D torus network which is built in the framework of the APEnet+ project. It takes the form of an FPGA-based PCIe network card exposing six full bidirectional links running at 34 Gbps each that implements the RDMA protocol. In order to enable significant access latency reduction for inter-node data transfer, a direct network-to-GPU interface was built. The specialized hardware blocks, integrated in the APEnet+ board, provide support for GPU-initiated communications using the so called PCIe peer-to-peer (P2P) transactions. This development is made in close collaboration with the GPU vendor NVIDIA. The final shape of a complete QUonG deployment is an assembly of standard 42U racks, each one capable of 80 TFLOPS/rack of peak performance, at a cost of 5 k€/T F LOPS and for an estimated power consumption of 25 kW/rack. In this paper we report on the status of final rack deployment and on the R and D activities for 2012 that will focus on performance enhancement of the APEnet+ hardware through the adoption of new generation 28 nm FPGAs allowing the implementation of PCIe Gen3 host interface and the addition of new fault tolerance-oriented capabilities.

  8. APEnet+: a 3D Torus network optimized for GPU-based HPC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R [INFN Tor Vergata (Italy); Biagioni, A; Frezza, O; Lo Cicero, F; Lonardo, A; Paolucci, P S; Rossetti, D; Simula, F; Tosoratto, L; Vicini, P [INFN Roma (Italy)

    2012-12-13

    In the supercomputing arena, the strong rise of GPU-accelerated clusters is a matter of fact. Within INFN, we proposed an initiative - the QUonG project - whose aim is to deploy a high performance computing system dedicated to scientific computations leveraging on commodity multi-core processors coupled with latest generation GPUs. The inter-node interconnection system is based on a point-to-point, high performance, low latency 3D torus network which is built in the framework of the APEnet+ project. It takes the form of an FPGA-based PCIe network card exposing six full bidirectional links running at 34 Gbps each that implements the RDMA protocol. In order to enable significant access latency reduction for inter-node data transfer, a direct network-to-GPU interface was built. The specialized hardware blocks, integrated in the APEnet+ board, provide support for GPU-initiated communications using the so called PCIe peer-to-peer (P2P) transactions. This development is made in close collaboration with the GPU vendor NVIDIA. The final shape of a complete QUonG deployment is an assembly of standard 42U racks, each one capable of 80 TFLOPS/rack of peak performance, at a cost of 5 k Euro-Sign /T F LOPS and for an estimated power consumption of 25 kW/rack. In this paper we report on the status of final rack deployment and on the R and D activities for 2012 that will focus on performance enhancement of the APEnet+ hardware through the adoption of new generation 28 nm FPGAs allowing the implementation of PCIe Gen3 host interface and the addition of new fault tolerance-oriented capabilities.

  9. Optimal management of the power distribution network. A novel network information system; Optimale Verwaltung des Versorgungsnetzes. Ein neues Netzinformationssystem

    Energy Technology Data Exchange (ETDEWEB)

    Kiesel, U. [HEW AG, Hamburg (Germany); Korri, P. [Tekla Qyj, Eschborn (Germany). Energieversorgung

    2000-12-01

    In June 200, the German electric utility Hamburgische Electricitaets-Werke AG (HEW) has bought and installed a high-performance, PC-based information system for all purposes of distribution network management tasks for their medium and low-voltage grids. The standard software Xpower of the Finnish software house Tekla Oyj has been streamlined with the requirements of the utility and is described with respect to the applications on site. (orig./CB) [German] Mit der Einfuehrung eines Netzinformationssystems (NIS) steht der Hamburgischen Electricitaets-Werke AG (HEW) seit Juni 2000 ein leistungsstarkes PC-basiertes Informationssystem zur Verfuegung, das langfristig die Projektierung und die Betriebsfuehrung der Mittel- und Niederspannungsnetze unterstuetzt und dokumentiert. Die Standardsoftware Xpower des finnischen Spezialisten Tekla Oyj wurde an die Anforderungen der HEW angepasst. (orig./CB)

  10. Multi-objective optimization for the maximization of the operating share of cogeneration system in District Heating Network

    International Nuclear Information System (INIS)

    Franco, Alessandro; Versace, Michele

    2017-01-01

    Highlights: • Combined Heat and Power plants and civil/residential energy uses. • CHP plant supported by auxiliary boilers and thermal energy storage. • Definition of optimal operational strategies for cogeneration plants for District Heating. • Optimal-sized Thermal Energy Storage and a hybrid operational strategy. • Maximization of cogeneration share and reduction of time of operation of auxiliary boilers. - Abstract: The aim of the paper is to define optimal operational strategies for Combined Heat and Power plants connected to civil/residential District Heating Networks. The role of a reduced number of design variables, including a Thermal Energy Storage system and a hybrid operational strategy dependent on the storage level, is considered. The basic principle is to reach maximum efficiency of the system operation through the utilization of an optimal-sized Thermal Energy Storage. Objective functions of both energetic and combined energetic and economic can be considered. In particular, First and Second Law Efficiency, thermal losses of the storage, number of starts and stops of the combined heat and power unit are considered. Constraints are imposed to nullify the waste of heat and to operate the unit at its maximum efficiency for the highest possible number of consecutive operating hours, until the thermal tank cannot store more energy. The methodology is applied to a detailed case study: a medium size district heating system, in an urban context in the northern Italy, powered by a combined heat and power plant supported by conventional auxiliary boilers. The issues involving this type of thermal loads are also widely investigated in the paper. An increase of Second Law Efficiency of the system of 26% (from 0.35 to 0.44) can be evidenced, while the First Law Efficiency shifts from about 0.74 to 0.84. The optimization strategy permits of combining the economic benefit of cogeneration with the idea of reducing the energy waste and exergy losses.

  11. Optimization and Control of Communication Networks

    OpenAIRE

    Chiang, Mung; Low, Steven

    2005-01-01

    Recently, there has been a surge in research activities that utilize the power of recent developments in nonlinear optimization to tackle a wide scope of work in the analysis and design of communication systems, touching every layer of the layered network architecture, and resulting in both intellectual and practical impacts significantly beyond the earlier frameworks. These research activities are driven by both new demands in the areas of communications and networking, and n...

  12. Fair Optimization and Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Wlodzimierz Ogryczak

    2014-01-01

    Full Text Available Optimization models related to designing and operating complex systems are mainly focused on some efficiency metrics such as response time, queue length, throughput, and cost. However, in systems which serve many entities there is also a need for respecting fairness: each system entity ought to be provided with an adequate share of the system’s services. Still, due to system operations-dependant constraints, fair treatment of the entities does not directly imply that each of them is assigned equal amount of the services. That leads to concepts of fair optimization expressed by the equitable models that represent inequality averse optimization rather than strict inequality minimization; a particular widely applied example of that concept is the so-called lexicographic maximin optimization (max-min fairness. The fair optimization methodology delivers a variety of techniques to generate fair and efficient solutions. This paper reviews fair optimization models and methods applied to systems that are based on some kind of network of connections and dependencies, especially, fair optimization methods for the location problems and for the resource allocation problems in communication networks.

  13. Optimization-Based Approaches to Control of Probabilistic Boolean Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2017-02-01

    Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.

  14. Optimization in a Networked Economy

    Directory of Open Access Journals (Sweden)

    Ahmet Sekreter

    2017-10-01

    Full Text Available An age of network has been living for the last decades. The information technologies have been used by hundreds of millions of users. These technologies are enabling to connect businesses and economic activities. One of the characteristics of the networked economy is the amount of data that produced due to the interlinking of firms, individuals, processes by businesses, and economic activities. Another issue with the networked economy is the complexity of the data. Extraction of the knowledge from the networked economy has challenges by the traditional approach since data is large scale, second decentralized, and third they connect many heterogeneous agents. The challenges can be overcome by the new optimization methods including human element or the social interactions with technological infrastructure.

  15. Modeling and optimization of potable water network

    Energy Technology Data Exchange (ETDEWEB)

    Djebedjian, B.; Rayan, M.A. [Mansoura Univ., El-Mansoura (Egypt); Herrick, A. [Suez Canal Authority, Ismailia (Egypt)

    2000-07-01

    Software was developed in order to optimize the design of water distribution systems and pipe networks. While satisfying all the constraints imposed such as pipe diameter and nodal pressure, it was based on a mathematical model treating looped networks. The optimum network configuration and cost are determined considering parameters like pipe diameter, flow rate, corresponding pressure and hydraulic losses. It must be understood that minimum cost is relative to the different objective functions selected. The determination of the proper objective function often depends on the operating policies of a particular company. The solution for the optimization technique was obtained by using a non-linear technique. To solve the optimal design of network, the model was derived using the sequential unconstrained minimization technique (SUMT) of Fiacco and McCormick, which decreased the number of iterations required. The pipe diameters initially assumed were successively adjusted to correspond to the existing commercial pipe diameters. The technique was then applied to a two-loop network without pumps or valves. Fed by gravity, it comprised eight pipes, 1000 m long each. The first evaluation of the method proved satisfactory. As with other methods, it failed to find the global optimum. In the future, research efforts will be directed to the optimization of networks with pumps and reservoirs. 24 refs., 3 tabs., 1 fig.

  16. Application of Spatial Neural Network Model for Optimal Operation of Urban Drainage System

    Science.gov (United States)

    KIM, B. J.; Lee, J. Y.; KIM, H. I.; Son, A. L.; Han, K. Y.

    2017-12-01

    The significance of real-time operation of drainage pump and warning system for inundation becomes recently increased in order to coping with runoff by high intensity precipitation such as localized heavy rain that frequently and suddenly happen. However existing operation of drainage pump station has been made a decision according to opinion of manager based on stage because of not expecting exact time that peak discharge occur in pump station. Therefore the scale of pump station has been excessively estimated. Although it is necessary to perform quick and accurate inundation in analysis downtown area due to huge property damage from flood and typhoon, previous studies contained risk deducting incorrect result that differs from actual result owing to the diffusion aspect of flow by effect on building and road. The purpose of this study is to develop the data driven model for the real-time operation of drainage pump station and two-dimensional inundation analysis that are improved the problems of the existing hydrology and hydrological model. Neuro-Fuzzy system for real time prediction about stage was developed by estimating the type and number of membership function. Based on forecasting stage, it was decided when pump machine begin to work and how much water scoop up by using penalizing genetic algorithm. It is practicable to forecast stage, optimize pump operation and simulate inundation analysis in real time through the methodologies suggested in this study. This study can greatly contribute to the establishment of disaster information map that prevent and mitigate inundation in urban drainage area. The applicability of the development model for the five drainage pump stations in the Mapo drainage area was verified. It is considered to be able to effectively manage urban drainage facilities in the development of these operating rules. Keywords : Urban flooding; Geo-ANFIS method; Optimal operation; Drainage system; AcknowlegementThis research was supported by a

  17. Study on the evolutionary optimization of the topology of network control systems

    DEFF Research Database (Denmark)

    Zhou, Z.; Chen, B.; Wang, H.

    2010-01-01

    Computer networks have been very popular in enterprise applications. However, optimisation of network designs that allows networks to be used more efficiently in industrial environment and enterprise applications remains an interesting research topic. This article mainly discusses the topology...... control network are considered in the optimisation process. In respect to the evolutionary algorithm design, an improved arena algorithm is proposed for the construction of the non-dominated set of the population. In addition, for the evaluation of individuals, the integrated use of the dominative...

  18. Near-optimal Downlink precoding of a MISO system for a secondary network under the SINR constraints of a primary network

    KAUST Repository

    Park, Kihong

    2013-04-01

    In this paper, we study a multiple-input single-output cognitive radio (CR) system where only the primary base station (BS) has multiple antennas. We consider a rate maximization problem of the secondary network under signal-to-interference-plus-noise-ratio constraints on the primary network in order to guarantee the quality-of-service for the latter network. While the interference due to the secondary transmission in the conventional underlay CR approach may severely degrade the performance of the primary network, we propose a primary BS-aided approach in which the primary BS helps relay the secondary users\\' signals instead of allowing them to communicate with each other via a direct path between them. In addition, an algorithm to find a near-optimal beamforming solution at the primary BS is proposed. Finally, based on some selected numerical results, we show that the proposed scheme outperforms the conventional underlay CR configuration over a wide transmit power range. © 2013 IEEE.

  19. Decoupled ARX and RBF Neural Network Modeling Using PCA and GA Optimization for Nonlinear Distributed Parameter Systems.

    Science.gov (United States)

    Zhang, Ridong; Tao, Jili; Lu, Renquan; Jin, Qibing

    2018-02-01

    Modeling of distributed parameter systems is difficult because of their nonlinearity and infinite-dimensional characteristics. Based on principal component analysis (PCA), a hybrid modeling strategy that consists of a decoupled linear autoregressive exogenous (ARX) model and a nonlinear radial basis function (RBF) neural network model are proposed. The spatial-temporal output is first divided into a few dominant spatial basis functions and finite-dimensional temporal series by PCA. Then, a decoupled ARX model is designed to model the linear dynamics of the dominant modes of the time series. The nonlinear residual part is subsequently parameterized by RBFs, where genetic algorithm is utilized to optimize their hidden layer structure and the parameters. Finally, the nonlinear spatial-temporal dynamic system is obtained after the time/space reconstruction. Simulation results of a catalytic rod and a heat conduction equation demonstrate the effectiveness of the proposed strategy compared to several other methods.

  20. Optimization of power system operation

    CERN Document Server

    Zhu, Jizhong

    2015-01-01

    This book applies the latest applications of new technologies topower system operation and analysis, including new and importantareas that are not covered in the previous edition. Optimization of Power System Operation covers both traditional andmodern technologies, including power flow analysis, steady-statesecurity region analysis, security constrained economic dispatch,multi-area system economic dispatch, unit commitment, optimal powerflow, smart grid operation, optimal load shed, optimalreconfiguration of distribution network, power system uncertaintyanalysis, power system sensitivity analysis, analytic hierarchicalprocess, neural network, fuzzy theory, genetic algorithm,evolutionary programming, and particle swarm optimization, amongothers. New topics such as the wheeling model, multi-areawheeling, the total transfer capability computation in multipleareas, are also addressed. The new edition of this book continues to provide engineers andac demics with a complete picture of the optimization of techn...

  1. WiMax network planning and optimization

    CERN Document Server

    Zhang, Yan

    2009-01-01

    This book offers a comprehensive explanation on how to dimension, plan, and optimize WiMAX networks. The first part of the text introduces WiMAX networks architecture, physical layer, standard, protocols, security mechanisms, and highly related radio access technologies. It covers system framework, topology, capacity, mobility management, handoff management, congestion control, medium access control (MAC), scheduling, Quality of Service (QoS), and WiMAX mesh networks and security. Enabling easy understanding of key concepts and technologies, the second part presents practical examples and illu

  2. On synthesis and optimization of steam system networks. 1. Sustained boiler efficiency

    CSIR Research Space (South Africa)

    Majozi, T

    2010-08-01

    Full Text Available situations. This paper presents a process integration technique for network synthesis using conceptual and mathematical analysis without compromising boiler efficiency. It was found that the steam flow rate to the HEN could be reduced while maintaining boiler...

  3. Optimization of Actuating Origami Networks

    Science.gov (United States)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard

    2015-03-01

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  4. Impact of Noise on a Dynamical System: Prediction and Uncertainties from a Swarm-Optimized Neural Network

    Directory of Open Access Journals (Sweden)

    C. H. López-Caraballo

    2015-01-01

    Full Text Available An artificial neural network (ANN based on particle swarm optimization (PSO was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term xt+6. The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level σN from 0.01 to 0.1.

  5. Phase transitions in Pareto optimal complex networks.

    Science.gov (United States)

    Seoane, Luís F; Solé, Ricard

    2015-09-01

    The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.

  6. Life Cycle Network Modeling Framework and Solution Algorithms for Systems Analysis and Optimization of the Water-Energy Nexus

    Directory of Open Access Journals (Sweden)

    Daniel J. Garcia

    2015-07-01

    Full Text Available The water footprint of energy systems must be considered, as future water scarcity has been identified as a major concern. This work presents a general life cycle network modeling and optimization framework for energy-based products and processes using a functional unit of liters of water consumed in the processing pathway. We analyze and optimize the water-energy nexus over the objectives of water footprint minimization, maximization of economic output per liter of water consumed (economic efficiency of water, and maximization of energy output per liter of water consumed (energy efficiency of water. A mixed integer, multiobjective nonlinear fractional programming (MINLFP model is formulated. A mixed integer linear programing (MILP-based branch and refine algorithm that incorporates both the parametric algorithm and nonlinear programming (NLP subproblems is developed to boost solving efficiency. A case study in bioenergy is presented, and the water footprint is considered from biomass cultivation to biofuel production, providing a novel perspective into the consumption of water throughout the value chain. The case study, optimized successively over the three aforementioned objectives, utilizes a variety of candidate biomass feedstocks to meet primary fuel products demand (ethanol, diesel, and gasoline. A minimum water footprint of 55.1 ML/year was found, economic efficiencies of water range from −$1.31/L to $0.76/L, and energy efficiencies of water ranged from 15.32 MJ/L to 27.98 MJ/L. These results show optimization provides avenues for process improvement, as reported values for the energy efficiency of bioethanol range from 0.62 MJ/L to 3.18 MJ/L. Furthermore, the proposed solution approach was shown to be an order of magnitude more efficient than directly solving the original MINLFP problem with general purpose solvers.

  7. Synthesis and optimization of steam system networks. 2. Multiple steam levels

    CSIR Research Space (South Africa)

    Price, T

    2010-08-01

    Full Text Available The use of steam in heat exchanger networks (HENs) can be reduced by the application of heat integration with the intention of debottlenecking the steam boiler and indirectly reducing the water requirement [Coetzee and Majozi. Ind. Eng. Chem. Res...

  8. System optimization for peer-to-peer multi hop video broadcasting in wireless ad hoc networks

    NARCIS (Netherlands)

    Dedeoglu, V.; Atici, C.; Salman, F.S.; Sunay, M.O.

    2008-01-01

    We consider peer-to-peer video broadcasting using cooperation among peers in an ad hoc wireless network. As opposed to the traditional single hop broadcasting, multiple hops cause an increase in broadcast video quality while creating interference and increasing transmission delay. We develop

  9. Optimizations in Heterogeneous Mobile Networks

    DEFF Research Database (Denmark)

    Popovska Avramova, Andrijana

    nodes. The independent control of the user’s transmit power at each node may cause degradation of the overall performance. In this line, a dedicated study of power distribution among the carriers is performed. An optimization of the power allocation is proposed and evaluated. The results show...... significant performance improvement to the achieved user throughput in low as well as in high loads in the cell. The flow control of the data between the nodes is another challenge for effective aggregation of the resources in case of dual connectivity. As such, this thesis discusses the challenges...... with the densification of the base stations, bring into a very complex network management and operation control for the mobile operators. Furthermore, the need to provide always best connection and service with high quality demands for a joint overall network resource management. This thesis addresses this challenge...

  10. Systems and Methods for Optimal Power Flow on a Radial Network

    OpenAIRE

    Low, Steven H.; Peng, Qiuyu

    2015-01-01

    Node controllers and power distribution networks in accordance with embodiments of the invention enable distributed power control. One embodiment includes a node controller including a distributed power control application; a plurality of node operating parameters describing the operating parameter of a node and a set of at least one node selected from the group consisting of an ancestor node and at least one child node; wherein send node operating parameters to nodes in the set of at least o...

  11. Optimization of visible-light optical wireless systems: Network-centric versus user-centric designs

    OpenAIRE

    Li, Xuan; Zhang, Rong; Hanzo, Lajos

    2018-01-01

    In order to counteract the explosive escalation of wireless tele-traffic, the communication spectrum has been gradually expanded from the conventional radio frequency (RF) band to the optical wireless (OW) domain. By integrating the classic RF band relying on diverse radio techniques and optical bands, the next-generation heterogeneous networks (HetNets) are expected to offer a potential solution for supporting the ever-increasing wireless tele-traffic. Owing to its abundant unlicensed spectr...

  12. A Hierarchical Optimal Operation Strategy of Hybrid Energy Storage System in Distribution Networks with High Photovoltaic Penetration

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2018-02-01

    Full Text Available In this paper, a hierarchical optimal operation strategy for a hybrid energy storage system (HESS is proposed, which is suitable to be utilized in distribution networks (DNs with high photovoltaic (PV penetration to achieve PV power smoothing, voltage regulation and price arbitrage. Firstly, a fuzzy-logic based variable step-size control strategy for an ultracapacitor (UC with the improvement of the lifetime of UC and tracking performance is adopted to smooth PV power fluctuations. The impact of PV forecasting errors is eliminated by adjusting the UC power in real time. Secondly, a coordinated control strategy, which includes centralized and local controls, is proposed for lithium-ion batteries. The centralized control is structured to determine the optimal battery unit for voltage regulation or price arbitrage according to lithium-ion battery performance indices. A modified lithium-ion battery aging model with better accuracy is proposed and the coupling relationship between the lifetime and the effective capacity is also considered. Additionally, the local control of the selected lithium-ion battery unit determines the charging/discharging power. A case study is used to validate the operation strategy and the results show that the lifetime equilibrium among different lithium-ion battery units can be achieved using the proposed strategy.

  13. Model reduction for the dynamics and control of large structural systems via neutral network processing direct numerical optimization

    Science.gov (United States)

    Becus, Georges A.; Chan, Alistair K.

    1993-01-01

    Three neural network processing approaches in a direct numerical optimization model reduction scheme are proposed and investigated. Large structural systems, such as large space structures, offer new challenges to both structural dynamicists and control engineers. One such challenge is that of dimensionality. Indeed these distributed parameter systems can be modeled either by infinite dimensional mathematical models (typically partial differential equations) or by high dimensional discrete models (typically finite element models) often exhibiting thousands of vibrational modes usually closely spaced and with little, if any, damping. Clearly, some form of model reduction is in order, especially for the control engineer who can actively control but a few of the modes using system identification based on a limited number of sensors. Inasmuch as the amount of 'control spillover' (in which the control inputs excite the neglected dynamics) and/or 'observation spillover' (where neglected dynamics affect system identification) is to a large extent determined by the choice of particular reduced model (RM), the way in which this model reduction is carried out is often critical.

  14. Systems and methods for optimal power flow on a radial network

    Science.gov (United States)

    Low, Steven H.; Peng, Qiuyu

    2018-04-24

    Node controllers and power distribution networks in accordance with embodiments of the invention enable distributed power control. One embodiment includes a node controller including a distributed power control application; a plurality of node operating parameters describing the operating parameter of a node and a set of at least one node selected from the group consisting of an ancestor node and at least one child node; wherein send node operating parameters to nodes in the set of at least one node; receive operating parameters from the nodes in the set of at least one node; calculate a plurality of updated node operating parameters using an iterative process to determine the updated node operating parameters using the node operating parameters that describe the operating parameters of the node and the set of at least one node, where the iterative process involves evaluation of a closed form solution; and adjust node operating parameters.

  15. MORE: mixed optimization for reverse engineering--an application to modeling biological networks response via sparse systems of nonlinear differential equations.

    Science.gov (United States)

    Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas

    2012-01-01

    Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.

  16. Information System Design Methodology Based on PERT/CPM Networking and Optimization Techniques.

    Science.gov (United States)

    Bose, Anindya

    The dissertation attempts to demonstrate that the program evaluation and review technique (PERT)/Critical Path Method (CPM) or some modified version thereof can be developed into an information system design methodology. The methodology utilizes PERT/CPM which isolates the basic functional units of a system and sets them in a dynamic time/cost…

  17. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  18. Practical synchronization on complex dynamical networks via optimal pinning control

    Science.gov (United States)

    Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu

    2015-07-01

    We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.

  19. Optimization and Implementation of Scaling-Free CORDIC-Based Direct Digital Frequency Synthesizer for Body Care Area Network Systems

    Directory of Open Access Journals (Sweden)

    Ying-Shen Juang

    2012-01-01

    Full Text Available Coordinate rotation digital computer (CORDIC is an efficient algorithm for computations of trigonometric functions. Scaling-free-CORDIC is one of the famous CORDIC implementations with advantages of speed and area. In this paper, a novel direct digital frequency synthesizer (DDFS based on scaling-free CORDIC is presented. The proposed multiplier-less architecture with small ROM and pipeline data path has advantages of high data rate, high precision, high performance, and less hardware cost. The design procedure with performance and hardware analysis for optimization has also been given. It is verified by Matlab simulations and then implemented with field programmable gate array (FPGA by Verilog. The spurious-free dynamic range (SFDR is over 86.85 dBc, and the signal-to-noise ratio (SNR is more than 81.12 dB. The scaling-free CORDIC-based architecture is suitable for VLSI implementations for the DDFS applications in terms of hardware cost, power consumption, SNR, and SFDR. The proposed DDFS is very suitable for medical instruments and body care area network systems.

  20. A study on the optimal fuel loading pattern design in pressurized water reactor using the artificial neural network and the fuzzy rule based system

    International Nuclear Information System (INIS)

    Kim, Han Gon; Chang, Soon Heung; Lee, Byung

    2004-01-01

    The Optimal Fuel Shuffling System (OFSS) is developed for optimal design of PWR fuel loading pattern. In this paper, an optimal loading pattern is defined that the local power peaking factor is lower than predetermined value during one cycle and the effective multiplication factor is maximized in order to extract maximum energy. OFSS is a hybrid system that a rule based system, a fuzzy logic, and an artificial neural network are connected each other. The rule based system classifies loading patterns into two classes using several heuristic rules and a fuzzy rule. A fuzzy rule is introduced to achieve more effective and fast searching. Its membership function is automatically updated in accordance with the prediction results. The artificial neural network predicts core parameters for the patterns generated from the rule based system. The back-propagation network is used for fast prediction of core parameters. The artificial neural network and the fuzzy logic can be used as the tool for improvement of existing algorithm's capabilities. OFSS was demonstrated and validated for cycle 1 of Kori unit 1 PWR. (author)

  1. A study on the optimal fuel loading pattern design in pressurized water reactor using the artificial neural network and the fuzzy rule based system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Gon; Chang, Soon Heung; Lee, Byung [Department of Nuclear Engineering, Korea Advanced Institute of Science and Technology, Yusong-gu, Taejon (Korea, Republic of)

    2004-07-01

    The Optimal Fuel Shuffling System (OFSS) is developed for optimal design of PWR fuel loading pattern. In this paper, an optimal loading pattern is defined that the local power peaking factor is lower than predetermined value during one cycle and the effective multiplication factor is maximized in order to extract maximum energy. OFSS is a hybrid system that a rule based system, a fuzzy logic, and an artificial neural network are connected each other. The rule based system classifies loading patterns into two classes using several heuristic rules and a fuzzy rule. A fuzzy rule is introduced to achieve more effective and fast searching. Its membership function is automatically updated in accordance with the prediction results. The artificial neural network predicts core parameters for the patterns generated from the rule based system. The back-propagation network is used for fast prediction of core parameters. The artificial neural network and the fuzzy logic can be used as the tool for improvement of existing algorithm's capabilities. OFSS was demonstrated and validated for cycle 1 of Kori unit 1 PWR. (author)

  2. Optimal Alarm Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — An optimal alarm system is simply an optimal level-crossing predictor that can be designed to elicit the fewest false alarms for a fixed detection probability. It...

  3. Implementation of system dynamic simulation method to optimize profit in supply chain network of vegetable product

    Science.gov (United States)

    Tama, I. P.; Akbar, Z.; Eunike, A.

    2018-04-01

    Vegetables are categorized as a perishable product, which is a product with short lifespan thus requires proper handling and planning to reduce losses caused by the short lifespan. In order to reduce the losses, coordination among the players in the supply chain is required. On the other hand, the decision in the supply chain of vegetables and other farming products in the traditional market of developing country is independent among the players. This research is conducted by using System Dynamic Simulation method to develop model and scenario by coordinating the supply quantity amongst players in the supply chain. The scenarios are developed based on newsboy inventory model. This study aims to compare scenarios combining tiers involved in coordination program. The result shows that coordination in supply chain increases total supply chain profit, although there will always be players who experienced decrements in profit. The scenario of coordination among the farmer, the distributor, and the wholesaler resulted in the highest increase in total supply chain profit compared to other coordination scenarios, with an increased value of 10.49%.

  4. SOCIAL NETWORK OPTIMIZATION A NEW METHAHEURISTIC FOR GENERAL OPTIMIZATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    Hassan Sherafat

    2017-12-01

    Full Text Available In the recent years metaheuristics were studied and developed as powerful technics for hard optimization problems. Some of well-known technics in this field are: Genetic Algorithms, Tabu Search, Simulated Annealing, Ant Colony Optimization, and Swarm Intelligence, which are applied successfully to many complex optimization problems. In this paper, we introduce a new metaheuristic for solving such problems based on social networks concept, named as Social Network Optimization – SNO. We show that a wide range of np-hard optimization problems may be solved by SNO.

  5. 2016 Network Games, Control, and Optimization Conference

    CERN Document Server

    Jimenez, Tania; Solan, Eilon

    2017-01-01

    This contributed volume offers a collection of papers presented at the 2016 Network Games, Control, and Optimization conference (NETGCOOP), held at the University of Avignon in France, November 23-25, 2016. These papers highlight the increasing importance of network control and optimization in many networking application domains, such as mobile and fixed access networks, computer networks, social networks, transportation networks, and, more recently, electricity grids and biological networks. Covering a wide variety of both theoretical and applied topics in the areas listed above, the authors explore several conceptual and algorithmic tools that are needed for efficient and robust control operation, performance optimization, and better understanding the relationships between entities that may be acting cooperatively or selfishly in uncertain and possibly adversarial environments. As such, this volume will be of interest to applied mathematicians, computer scientists, engineers, and researchers in other relate...

  6. System performance optimization

    International Nuclear Information System (INIS)

    Bednarz, R.J.

    1978-01-01

    The System Performance Optimization has become an important and difficult field for large scientific computer centres. Important because the centres must satisfy increasing user demands at the lowest possible cost. Difficult because the System Performance Optimization requires a deep understanding of hardware, software and workload. The optimization is a dynamic process depending on the changes in hardware configuration, current level of the operating system and user generated workload. With the increasing complication of the computer system and software, the field for the optimization manoeuvres broadens. The hardware of two manufacturers IBM and CDC is discussed. Four IBM and two CDC operating systems are described. The description concentrates on the organization of the operating systems, the job scheduling and I/O handling. The performance definitions, workload specification and tools for the system stimulation are given. The measurement tools for the System Performance Optimization are described. The results of the measurement and various methods used for the operating system tuning are discussed. (Auth.)

  7. Optimizing the next generation optical access networks

    DEFF Research Database (Denmark)

    Amaya Fernández, Ferney Orlando; Soto, Ana Cardenas; Tafur Monroy, Idelfonso

    2009-01-01

    Several issues in the design and optimization of the next generation optical access network (NG-OAN) are presented. The noise, the distortion and the fiber optic nonlinearities are considered to optimize the video distribution link in a passive optical network (PON). A discussion of the effect...

  8. Mathematical model of highways network optimization

    Science.gov (United States)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2017-12-01

    The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.

  9. Optimization of temporal networks under uncertainty

    CERN Document Server

    Wiesemann, Wolfram

    2012-01-01

    Many decision problems in Operations Research are defined on temporal networks, that is, workflows of time-consuming tasks whose processing order is constrained by precedence relations. For example, temporal networks are used to model projects, computer applications, digital circuits and production processes. Optimization problems arise in temporal networks when a decision maker wishes to determine a temporal arrangement of the tasks and/or a resource assignment that optimizes some network characteristic (e.g. the time required to complete all tasks). The parameters of these optimization probl

  10. Optimal urban networks via mass transportation

    CERN Document Server

    Buttazzo, Giuseppe; Stepanov, Eugene; Solimini, Sergio

    2009-01-01

    Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network, and the cost of constructing/maintaining it. Both the long-term optimization and the short-term, "who goes where" optimization are considered. These models can also be adapted for the optimization of other types of networks, such as telecommunications, pipeline or drainage networks. In the monograph we study the most general problem settings, namely, when neither the shape nor even the topology of the network to be constructed is known a priori.

  11. Optimal source coding, removable noise elimination, and natural coordinate system construction for general vector sources using replicator neural networks

    Science.gov (United States)

    Hecht-Nielsen, Robert

    1997-04-01

    A new universal one-chart smooth manifold model for vector information sources is introduced. Natural coordinates (a particular type of chart) for such data manifolds are then defined. Uniformly quantized natural coordinates form an optimal vector quantization code for a general vector source. Replicator neural networks (a specialized type of multilayer perceptron with three hidden layers) are the introduced. As properly configured examples of replicator networks approach minimum mean squared error (e.g., via training and architecture adjustment using randomly chosen vectors from the source), these networks automatically develop a mapping which, in the limit, produces natural coordinates for arbitrary source vectors. The new concept of removable noise (a noise model applicable to a wide variety of real-world noise processes) is then discussed. Replicator neural networks, when configured to approach minimum mean squared reconstruction error (e.g., via training and architecture adjustment on randomly chosen examples from a vector source, each with randomly chosen additive removable noise contamination), in the limit eliminate removable noise and produce natural coordinates for the data vector portions of the noise-corrupted source vectors. Consideration regarding selection of the dimension of a data manifold source model and the training/configuration of replicator neural networks are discussed.

  12. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  13. Intelligent Network Flow Optimization (INFLO) prototype acceptance test summary.

    Science.gov (United States)

    2015-05-01

    This report summarizes the results of System Acceptance Testing for the implementation of the Intelligent Network : Flow Optimization (INFLO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected : Vehicle Program. ...

  14. Optimization of a novel carbon dioxide cogeneration system using artificial neural network and multi-objective genetic algorithm

    International Nuclear Information System (INIS)

    Jamali, Arash; Ahmadi, Pouria; Mohd Jaafar, Mohammad Nazri

    2014-01-01

    In this research study, a combined cycle based on the Brayton power cycle and the ejector expansion refrigeration cycle is proposed. The proposed cycle can provide heating, cooling and power simultaneously. One of the benefits of such a system is to be driven by low temperature heat sources and using CO 2 as working fluid. In order to enhance the understanding of the current work, a comprehensive parametric study and exergy analysis are conducted to determine the effects of the thermodynamic parameters on the system performance and the exergy destruction rate in the components. The suggested cycle can save the energy around 46% in comparison with a system producing cooling, power and hot water separately. On the other hand, to optimize a system to meet the load requirement, the surface area of the heat exchangers is determined and optimized. The results of this section can be used when a compact system is also an objective function. Along with a comprehensive parametric study and exergy analysis, a complete optimization study is carried out using a multi-objective evolutionary based genetic algorithm considering two different objective functions, heat exchangers size (to be minimized) and exergy efficiency (to be maximized). The Pareto front of the optimization problem and a correlation between exergy efficiency and total heat exchangers length is presented in order to predict the trend of optimized points. The suggested system can be a promising combined system for buildings and outland regions. - Highlights: •Energy and exergy analysis of a novel CHP system are reported. •A comprehensive parametric study is conducted to enhance the understanding of the system performance. •Apply a multi-objective optimization technique based on a code developed in the Matlab software program using an evolutionary algorithm

  15. Loop optimization for tensor network renormalization

    Science.gov (United States)

    Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang

    We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.

  16. Automatic Optimization of Focal Point Position in CO2 Laser Welding with Neural Network in A Focus Control System

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    CO2 lasers are increasingly being utilized for quality welding in production. Considering the high cost of equipment, the start-up time and the set-up time should be minimized. Ideally the parameters should be set up and optimized more or less automatically. In this paper a control system...... is designed and built to automatically optimize the focal point position, one of the most important parameters in CO2 laser welding, in order to perform a desired deep/full penetration welding. The control system mainly consists of a multi-axis motion controller - PMAC, a light sensor - Photo Diode, a data...

  17. Optimal defense resource allocation in scale-free networks

    Science.gov (United States)

    Zhang, Xuejun; Xu, Guoqiang; Xia, Yongxiang

    2018-02-01

    The robustness research of networked systems has drawn widespread attention in the past decade, and one of the central topics is to protect the network from external attacks through allocating appropriate defense resource to different nodes. In this paper, we apply a specific particle swarm optimization (PSO) algorithm to optimize the defense resource allocation in scale-free networks. Results reveal that PSO based resource allocation shows a higher robustness than other resource allocation strategies such as uniform, degree-proportional, and betweenness-proportional allocation strategies. Furthermore, we find that assigning less resource to middle-degree nodes under small-scale attack while more resource to low-degree nodes under large-scale attack is conductive to improving the network robustness. Our work provides an insight into the optimal defense resource allocation pattern in scale-free networks and is helpful for designing a more robust network.

  18. BWR fuel cycle optimization using neural networks

    International Nuclear Information System (INIS)

    Ortiz-Servin, Juan Jose; Castillo, Jose Alejandro; Pelta, David Alejandro

    2011-01-01

    Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.

  19. Optimization in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Geraldo R.M. da [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia

    1994-12-31

    This paper discusses, partially, the advantages and the disadvantages of the optimal power flow. It shows some of the difficulties of implementation and proposes solutions. An analysis is made comparing the power flow, BIGPOWER/CESP, and the optimal power flow, FPO/SEL, developed by the author, when applied to the CEPEL-ELETRONORTE and CESP systems. (author) 8 refs., 5 tabs.

  20. Optimal traffic control in highway transportation networks using linear programming

    KAUST Repository

    Li, Yanning

    2014-06-01

    This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.

  1. Neural-Network-Based Robust Optimal Tracking Control for MIMO Discrete-Time Systems With Unknown Uncertainty Using Adaptive Critic Design.

    Science.gov (United States)

    Liu, Lei; Wang, Zhanshan; Zhang, Huaguang

    2018-04-01

    This paper is concerned with the robust optimal tracking control strategy for a class of nonlinear multi-input multi-output discrete-time systems with unknown uncertainty via adaptive critic design (ACD) scheme. The main purpose is to establish an adaptive actor-critic control method, so that the cost function in the procedure of dealing with uncertainty is minimum and the closed-loop system is stable. Based on the neural network approximator, an action network is applied to generate the optimal control signal and a critic network is used to approximate the cost function, respectively. In contrast to the previous methods, the main features of this paper are: 1) the ACD scheme is integrated into the controllers to cope with the uncertainty and 2) a novel cost function, which is not in quadric form, is proposed so that the total cost in the design procedure is reduced. It is proved that the optimal control signals and the tracking errors are uniformly ultimately bounded even when the uncertainty exists. Finally, a numerical simulation is developed to show the effectiveness of the present approach.

  2. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  3. Optimal Plant Growth in Smart Farm Hydroponics System using the Integration of Wireless Sensor Networks into Internet of Things

    Directory of Open Access Journals (Sweden)

    Nathaphon Boonnam

    2017-07-01

    Full Text Available Greenhouse cultivation is easy to keep up and control important factors such as light, temperature, and humidity. Using of sensors and actuators in the greenhouse to capture different values allows for the control of the equipment, it can also be optimized for growth at optimal temperature and humidity of various crops planted. We use wireless sensor networks’ system by sending results to the cloud service, monitoring values, and devices’s controlling via smart phone. The results of this study are useful for growing crops not only in technical parts, but also in physical part; it was evaluated by questionnaire using technology acceptance model.

  4. Optimal traffic control in highway transportation networks using linear programming

    KAUST Repository

    Li, Yanning; Canepa, Edward S.; Claudel, Christian G.

    2014-01-01

    of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can

  5. Optimal Control of Interdependent Epidemics in Complex Networks

    OpenAIRE

    Chen, Juntao; Zhang, Rui; Zhu, Quanyan

    2017-01-01

    Optimal control of interdependent epidemics spreading over complex networks is a critical issue. We first establish a framework to capture the coupling between two epidemics, and then analyze the system's equilibrium states by categorizing them into three classes, and deriving their stability conditions. The designed control strategy globally optimizes the trade-off between the control cost and the severity of epidemics in the network. A gradient descent algorithm based on a fixed point itera...

  6. Optimal scope of supply chain network & operations design

    NARCIS (Netherlands)

    Ma, N.

    2014-01-01

    The increasingly complex supply chain networks and operations call for the development of decision support systems and optimization techniques that take a holistic view of supply chain issues and provide support for integrated decision-making. The economic impacts of optimized supply chain are

  7. Dynamical System Approaches to Combinatorial Optimization

    DEFF Research Database (Denmark)

    Starke, Jens

    2013-01-01

    of large times as an asymptotically stable point of the dynamics. The obtained solutions are often not globally optimal but good approximations of it. Dynamical system and neural network approaches are appropriate methods for distributed and parallel processing. Because of the parallelization......Several dynamical system approaches to combinatorial optimization problems are described and compared. These include dynamical systems derived from penalty methods; the approach of Hopfield and Tank; self-organizing maps, that is, Kohonen networks; coupled selection equations; and hybrid methods...... thereof can be used as models for many industrial problems like manufacturing planning and optimization of flexible manufacturing systems. This is illustrated for an example in distributed robotic systems....

  8. Regulatory Holidays and Optimal Network Expansion

    NARCIS (Netherlands)

    Willems, Bert; Zwart, Gijsbert

    2016-01-01

    We model the optimal regulation of continuous, irreversible, capacity expansion, in a model in which the regulated network firm has private information about its capacity costs, investments need to be financed out of the firm’s cash flows from selling network access and demand is stochastic. If

  9. Power consumption optimization strategy for wireless networks

    DEFF Research Database (Denmark)

    Cornean, Horia; Kumar, Sanjay; Marchetti, Nicola

    2011-01-01

    in order to reduce the total power consumption in a multi cellular network. We present an algorithm for power optimization under no interference and in presence of interference conditions, targeting to maximize the network capacity. The convergence of the algorithm is guaranteed if the interference...

  10. Brocade: Optimal flow placement in SDN networks

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Today' network poses several challanges to network providers. These challanges fall in to a variety of areas ranging from determining efficient utilization of network bandwidth to finding out which user applications consume majority of network resources. Also, how to protect a given network from volumetric and botnet attacks. Optimal placement of flows deal with identifying network issues and addressing them in a real-time. The overall solution helps in building new services where a network is more secure and more efficient. Benefits derived as a result are increased network efficiency due to better capacity and resource planning, better security with real-time threat mitigation, and improved user experience as a result of increased service velocity.

  11. Optimal hub location in pipeline networks

    Energy Technology Data Exchange (ETDEWEB)

    Dott, D.R.; Wirasinghe, S.C.; Chakma, A. [Univ. of Calgary, Alberta (Canada)

    1996-12-31

    This paper discusses optimization strategies and techniques for the location of natural gas marketing hubs in the North American gas pipeline network. A hub is a facility at which inbound and outbound network links meet and freight is redirected towards their destinations. Common examples of hubs used in the gas pipeline industry include gas plants, interconnects and market centers. Characteristics of the gas pipeline industry which are relevant to the optimization of transportation costs using hubs are presented. Allocation techniques for solving location-allocation problems are discussed. An outline of the research in process by the authors in the field of optimal gas hub location concludes the paper.

  12. An optimal power-dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity.

    Science.gov (United States)

    Yang, Chunhua; Deconinck, G; Gui, Weihua; Li, Yonggang

    2002-01-01

    Depending on varying prices of electricity, an optimal power-dispatching system (OPDS) is developed to minimize the cost of power consumption in the electrochemical process of zinc (EPZ). Due to the complexity of the EPZ, the main factors influencing the power consumption are determined by qualitative analysis, and a series of conditional experiments is conducted to acquire sufficient data, then two backpropagation neural networks are used to describe these relationships quantitatively. An equivalent Hopfield neural network is constructed to solve the optimization problem where a penalty function is introduced into the network energy function so as to meet the equality constraints, and inequality constraints are removed by alteration of the Sigmoid function. This OPDS was put into service in a smeltery in 1998. The cost of power consumption has decreased significantly, the total electrical energy consumption is reduced, and it is also beneficial to balancing the load of the power grid. The actual results show the effectiveness of the OPDS. This paper introduces a successful industrial application and mainly presents how to utilize neural networks to solve particular problems for the real world.

  13. A study on the optimal fuel loading pattern design in pressurized water reactors using the artificial neural network and the fuzzy rule based system

    International Nuclear Information System (INIS)

    Kim, Han Gon

    1993-02-01

    In pressurized water reactors, the fuel reloading problem has significant meaning in terms of both safety and economic aspects. Therefore the general problem of incore fuel management for a PWR consists of determining the fuel reloading policy for each cycle that minimize unit energy cost under the constraints imposed on various core parameters, e.g., a local power peaking factor and an assembly burnup. This is equivalent that a cycle length is maximized for a given energy cost under the various constraints. Existing optimization methods do not ensure the global optimum solution because of the essential limitation of their searching algorithms. They only find near optimal solutions. To solve this limitation, a hybrid artificial neural network system is developed for the optimal fuel loading pattern design using a fuzzy rule based system and an artificial neural networks. This system finds the patterns that P max is lower than the predetermined value and K eff is larger than the reference value. The back-propagation networks are developed to predict PWR core parameters. Reference PWR is an 121-assembly typical PWR. The local power peaking factor and the effective multiplication factor at BOC condition are predicted. To obtain target values of these two parameters, the QCC code are used. Using this code, 1000 training patterns are obtained, randomly. Two networks are constructed, one for P max and another for K eff Both of two networks have 21 input layer neurons, 18 output layer neurons, and 120 and 393 hidden layer neurons, respectively. A new learning algorithm is proposed. This is called the advanced adaptive learning algorithm. The weight change step size of this algorithm is optimally varied inversely proportional to the average difference between an actual output value and an ideal target value. This algorithm greatly enhances the convergence speed of a BPN. In case of P max prediction, 98% of the untrained patterns are predicted within 6% error, and in case

  14. Small cell networks deployment, management, and optimization

    CERN Document Server

    Claussen, Holger; Ho, Lester; Razavi, Rouzbeh; Kucera, Stepan

    2018-01-01

    Small Cell Networks: Deployment, Management, and Optimization addresses key problems of the cellular network evolution towards HetNets. It focuses on the latest developments in heterogeneous and small cell networks, as well as their deployment, operation, and maintenance. It also covers the full spectrum of the topic, from academic, research, and business to the practice of HetNets in a coherent manner. Additionally, it provides complete and practical guidelines to vendors and operators interested in deploying small cells. The first comprehensive book written by well-known researchers and engineers from Nokia Bell Labs, Small Cell Networks begins with an introduction to the subject--offering chapters on capacity scaling and key requirements of future networks. It then moves on to sections on coverage and capacity optimization, and interference management. From there, the book covers mobility management, energy efficiency, and small cell deployment, ending with a section devoted to future trends and applicat...

  15. Optimization with PDE constraints ESF networking program 'OPTPDE'

    CERN Document Server

    2014-01-01

    This book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme ’Optimization with PDEs’ (OPTPDE).

  16. Distributed Optimization System

    Science.gov (United States)

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2004-11-30

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  17. Parallel Evolutionary Optimization for Neuromorphic Network Training

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Disney, Adam [University of Tennessee (UT); Singh, Susheela [North Carolina State University (NCSU), Raleigh; Bruer, Grant [University of Tennessee (UT); Mitchell, John Parker [University of Tennessee (UT); Klibisz, Aleksander [University of Tennessee (UT); Plank, James [University of Tennessee (UT)

    2016-01-01

    One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impact the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.

  18. Optimal interdependence enhances robustness of complex systems

    OpenAIRE

    Singh, R. K.; Sinha, Sitabhra

    2017-01-01

    While interdependent systems have usually been associated with increased fragility, we show that strengthening the interdependence between dynamical processes on different networks can make them more robust. By coupling the dynamics of networks that in isolation exhibit catastrophic collapse with extinction of nodal activity, we demonstrate system-wide persistence of activity for an optimal range of interdependence between the networks. This is related to the appearance of attractors of the g...

  19. System floorplanning optimization

    KAUST Repository

    Browning, David W.

    2012-12-01

    Notebook and Laptop Original Equipment Manufacturers (OEMs) place great emphasis on creating unique system designs to differentiate themselves in the mobile market. These systems are developed from the \\'outside in\\' with the focus on how the system is perceived by the end-user. As a consequence, very little consideration is given to the interconnections or power of the devices within the system with a mentality of \\'just make it fit\\'. In this paper we discuss the challenges of Notebook system design and the steps by which system floor-planning tools and algorithms can be used to provide an automated method to optimize this process to ensure all required components most optimally fit inside the Notebook system. © 2012 IEEE.

  20. System floorplanning optimization

    KAUST Repository

    Browning, David W.

    2013-01-10

    Notebook and Laptop Original Equipment Manufacturers (OEMs) place great emphasis on creating unique system designs to differentiate themselves in the mobile market. These systems are developed from the \\'outside in\\' with the focus on how the system is perceived by the end-user. As a consequence, very little consideration is given to the interconnections or power of the devices within the system with a mentality of \\'just make it fit\\'. In this paper we discuss the challenges of Notebook system design and the steps by which system floor-planning tools and algorithms can be used to provide an automated method to optimize this process to ensure all required components most optimally fit inside the Notebook system.

  1. Influence maximization in complex networks through optimal percolation

    Science.gov (United States)

    Morone, Flaviano; Makse, Hernán A.

    2015-08-01

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.

  2. Enhanced Multi-Objective Optimization of Groundwater Monitoring Networks

    DEFF Research Database (Denmark)

    Bode, Felix; Binning, Philip John; Nowak, Wolfgang

    Drinking-water well catchments include many sources for potential contaminations like gas stations or agriculture. Finding optimal positions of monitoring wells for such purposes is challenging because there are various parameters (and their uncertainties) that influence the reliability...... and optimality of any suggested monitoring location or monitoring network. The goal of this project is to develop and establish a concept to assess, design, and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: (1) a high...... be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, wrapped up within the framework of formal multi-objective optimization. In order to gain insight into the flow and transport physics...

  3. Optimization of Trip-end Networks and Ride Price for Express Coach Systems in the High-speed Rail Era

    Directory of Open Access Journals (Sweden)

    Zhongzhen Yang

    2017-12-01

    Full Text Available Express coach (EC lost a considerable share of passengers after high-speed rail (HSR was implemented. This paper proposes a door-to-door operation mode for the EC system and builds a model to design an EC trip-end network in the origin city with the aim of maximizing the EC’s daily operating profit. A case study is undertaken, and the results show that the operating profit of the EC system first increases and then decreases with the growth of the trip-end routes. In the HSR era, door-to-door operation can effectively guarantee the market share and operating profits of the EC.

  4. Optimal Information Processing in Biochemical Networks

    Science.gov (United States)

    Wiggins, Chris

    2012-02-01

    A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.

  5. Computer network defense system

    Science.gov (United States)

    Urias, Vincent; Stout, William M. S.; Loverro, Caleb

    2017-08-22

    A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves network connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.

  6. Spatial prisoner's dilemma optimally played in small-world networks

    International Nuclear Information System (INIS)

    Masuda, Naoki; Aihara, Kazuyuki

    2003-01-01

    Cooperation is commonly found in ecological and social systems even when it apparently seems that individuals can benefit from selfish behavior. We investigate how cooperation emerges with the spatial prisoner's dilemma played in a class of networks ranging from regular lattices to random networks. We find that, among these networks, small-world topology is the optimal structure when we take into account the speed at which cooperative behavior propagates. Our results may explain why the small-world properties are self-organized in real networks

  7. Topological Effects and Performance Optimization in Transportation Continuous Network Design

    Directory of Open Access Journals (Sweden)

    Jianjun Wu

    2014-01-01

    Full Text Available Because of the limitation of budget, in the planning of road works, increased efforts should be made on links that are more critical to the whole traffic system. Therefore, it would be helpful to model and evaluate the vulnerability and reliability of the transportation network when the network design is processing. This paper proposes a bilevel transportation network design model, in which the upper level is to minimize the performance of the network under the given budgets, while the lower level is a typical user equilibrium assignment problem. A new solution approach based on particle swarm optimization (PSO method is presented. The topological effects on the performance of transportation networks are studied with the consideration of three typical networks, regular lattice, random graph, and small-world network. Numerical examples and simulations are presented to demonstrate the proposed model.

  8. Intelligent neural network diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    Recently, artificial neural network (ANN) has made a significant mark in the domain of diagnostic applications. Neural networks are used to implement complex non-linear mappings (functions) using simple elementary units interrelated through connections with adaptive weights. The performance of the ANN is mainly depending on their topology structure and weights. Some systems have been developed using genetic algorithm (GA) to optimize the topology of the ANN. But, they suffer from some limitations. They are : (1) The computation time requires for training the ANN several time reaching for the average weight required, (2) Slowness of GA for optimization process and (3) Fitness noise appeared in the optimization of ANN. This research suggests new issues to overcome these limitations for finding optimal neural network architectures to learn particular problems. This proposed methodology is used to develop a diagnostic neural network system. It has been applied for a 600 MW turbo-generator as a case of real complex systems. The proposed system has proved its significant performance compared to two common methods used in the diagnostic applications.

  9. Optimal transport on supply-demand networks.

    Science.gov (United States)

    Chen, Yu-Han; Wang, Bing-Hong; Zhao, Li-Chao; Zhou, Changsong; Zhou, Tao

    2010-06-01

    In the literature, transport networks are usually treated as homogeneous networks, that is, every node has the same function, simultaneously providing and requiring resources. However, some real networks, such as power grids and supply chain networks, show a far different scenario in which nodes are classified into two categories: supply nodes provide some kinds of services, while demand nodes require them. In this paper, we propose a general transport model for these supply-demand networks, associated with a criterion to quantify their transport capacities. In a supply-demand network with heterogeneous degree distribution, its transport capacity strongly depends on the locations of supply nodes. We therefore design a simulated annealing algorithm to find the near optimal configuration of supply nodes, which remarkably enhances the transport capacity compared with a random configuration and outperforms the degree target algorithm, the betweenness target algorithm, and the greedy method. This work provides a start point for systematically analyzing and optimizing transport dynamics on supply-demand networks.

  10. An optimized compression algorithm for real-time ECG data transmission in wireless network of medical information systems.

    Science.gov (United States)

    Cho, Gyoun-Yon; Lee, Seo-Joon; Lee, Tae-Ro

    2015-01-01

    Recent medical information systems are striving towards real-time monitoring models to care patients anytime and anywhere through ECG signals. However, there are several limitations such as data distortion and limited bandwidth in wireless communications. In order to overcome such limitations, this research focuses on compression. Few researches have been made to develop a specialized compression algorithm for ECG data transmission in real-time monitoring wireless network. Not only that, recent researches' algorithm is not appropriate for ECG signals. Therefore this paper presents a more developed algorithm EDLZW for efficient ECG data transmission. Results actually showed that the EDLZW compression ratio was 8.66, which was a performance that was 4 times better than any other recent compression method widely used today.

  11. Method of optimization onboard communication network

    Science.gov (United States)

    Platoshin, G. A.; Selvesuk, N. I.; Semenov, M. E.; Novikov, V. M.

    2018-02-01

    In this article the optimization levels of onboard communication network (OCN) are proposed. We defined the basic parameters, which are necessary for the evaluation and comparison of modern OCN, we identified also a set of initial data for possible modeling of the OCN. We also proposed a mathematical technique for implementing the OCN optimization procedure. This technique is based on the principles and ideas of binary programming. It is shown that the binary programming technique allows to obtain an inherently optimal solution for the avionics tasks. An example of the proposed approach implementation to the problem of devices assignment in OCN is considered.

  12. Resilience-based optimal design of water distribution network

    Science.gov (United States)

    Suribabu, C. R.

    2017-11-01

    Optimal design of water distribution network is generally aimed to minimize the capital cost of the investments on tanks, pipes, pumps, and other appurtenances. Minimizing the cost of pipes is usually considered as a prime objective as its proportion in capital cost of the water distribution system project is very high. However, minimizing the capital cost of the pipeline alone may result in economical network configuration, but it may not be a promising solution in terms of resilience point of view. Resilience of the water distribution network has been considered as one of the popular surrogate measures to address ability of network to withstand failure scenarios. To improve the resiliency of the network, the pipe network optimization can be performed with two objectives, namely minimizing the capital cost as first objective and maximizing resilience measure of the configuration as secondary objective. In the present work, these two objectives are combined as single objective and optimization problem is solved by differential evolution technique. The paper illustrates the procedure for normalizing the objective functions having distinct metrics. Two of the existing resilience indices and power efficiency are considered for optimal design of water distribution network. The proposed normalized objective function is found to be efficient under weighted method of handling multi-objective water distribution design problem. The numerical results of the design indicate the importance of sizing pipe telescopically along shortest path of flow to have enhanced resiliency indices.

  13. Network inference via adaptive optimal design

    Directory of Open Access Journals (Sweden)

    Stigter Johannes D

    2012-09-01

    Full Text Available Abstract Background Current research in network reverse engineering for genetic or metabolic networks very often does not include a proper experimental and/or input design. In this paper we address this issue in more detail and suggest a method that includes an iterative design of experiments based, on the most recent data that become available. The presented approach allows a reliable reconstruction of the network and addresses an important issue, i.e., the analysis and the propagation of uncertainties as they exist in both the data and in our own knowledge. These two types of uncertainties have their immediate ramifications for the uncertainties in the parameter estimates and, hence, are taken into account from the very beginning of our experimental design. Findings The method is demonstrated for two small networks that include a genetic network for mRNA synthesis and degradation and an oscillatory network describing a molecular network underlying adenosine 3’-5’ cyclic monophosphate (cAMP as observed in populations of Dyctyostelium cells. In both cases a substantial reduction in parameter uncertainty was observed. Extension to larger scale networks is possible but needs a more rigorous parameter estimation algorithm that includes sparsity as a constraint in the optimization procedure. Conclusion We conclude that a careful experiment design very often (but not always pays off in terms of reliability in the inferred network topology. For large scale networks a better parameter estimation algorithm is required that includes sparsity as an additional constraint. These algorithms are available in the literature and can also be used in an adaptive optimal design setting as demonstrated in this paper.

  14. Optimization of deformation monitoring networks using finite element strain analysis

    Science.gov (United States)

    Alizadeh-Khameneh, M. Amin; Eshagh, Mehdi; Jensen, Anna B. O.

    2018-04-01

    An optimal design of a geodetic network can fulfill the requested precision and reliability of the network, and decrease the expenses of its execution by removing unnecessary observations. The role of an optimal design is highlighted in deformation monitoring network due to the repeatability of these networks. The core design problem is how to define precision and reliability criteria. This paper proposes a solution, where the precision criterion is defined based on the precision of deformation parameters, i. e. precision of strain and differential rotations. A strain analysis can be performed to obtain some information about the possible deformation of a deformable object. In this study, we split an area into a number of three-dimensional finite elements with the help of the Delaunay triangulation and performed the strain analysis on each element. According to the obtained precision of deformation parameters in each element, the precision criterion of displacement detection at each network point is then determined. The developed criterion is implemented to optimize the observations from the Global Positioning System (GPS) in Skåne monitoring network in Sweden. The network was established in 1989 and straddled the Tornquist zone, which is one of the most active faults in southern Sweden. The numerical results show that 17 out of all 21 possible GPS baseline observations are sufficient to detect minimum 3 mm displacement at each network point.

  15. Office lighting systems: Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Dagnino, U. (ENEL, Milan (Italy))

    1990-09-01

    Relative to office lighting systems, in particular, those making use of tubular fluorescent lamps, currently available on the international market, this paper tries to develop lighting system, design optimization criteria. The comparative assessment of the various design possibilities considers operating cost, energy consumption, and occupational comfort/safety aspects such as lighting level uniformity and equilibrium, reduction of glare and reflection, natural/artificial lighting balance, programmed switching, computerized control systems for multi-use requirements in large areas, programmed maintenance for greater efficiency and reliability.

  16. 基于低截获概率优化的雷达组网系统最优功率分配算法%Optimal Power Allocation Algorithm for Radar Network Systems Based on Low Probability of Intercept Optimization

    Institute of Scientific and Technical Information of China (English)

    时晨光; 汪飞; 周建江; 陈军

    2014-01-01

    针对现代电子战中对低截获概率(LPI)技术的需求,该文提出了一种基于LPI性能优化的最优功率分配算法。该文首先推导了雷达组网系统的Schleher截获因子。然后,以最小化系统的Schleher截获因子为目标,在满足系统跟踪性能要求的前提下,通过优化组网雷达的功率配置,提升雷达组网系统的 LPI 性能。并用基于非线性规划的遗传算法(NPGA)对此非凸、非线性约束优化问题进行了求解。仿真结果验证了所提算法的有效性。%A novel optimal power allocation algorithm for radar network systems is proposed for Low Probability of Intercept (LPI) technology in modern electronic warfare. The algorithm is based on the LPI optimization. First, the Schleher intercept factor for a radar network is derived, and then the Schleher intercept factor is minimized by optimizing the transmission power allocation among netted radars in the network to guarantee target-tracking performance. Furthermore, the Nonlinear Programming Genetic Algorithm (NPGA) is used to solve the resulting nonconvex, nonlinear, and constrained optimization problem. Numerical simulation results show the effectiveness of the proposed algorithm.

  17. Design and optimizing factors of PACS network architecture

    International Nuclear Information System (INIS)

    Tao Yonghao; Miao Jingtao

    2001-01-01

    Objective: Exploring the design and optimizing factors of picture archiving and communication system (PACS) network architecture. Methods: Based on the PACS of shanghai first hospital to performed the measurements and tests on the requirements of network bandwidth and transmitting rate for different PACS functions and procedures respectively in static and dynamic network traffic situation, utilizing the network monitoring tools which built-in workstations and provided by Windows NT. Results: No obvious difference between switch equipment and HUB when measurements and tests implemented in static situation except route which slow down the rate markedly. In dynamic environment Switch is able to provide higher bandwidth utilizing than HUB and local system scope communication achieved faster transmitting rate than global system. Conclusion: The primary optimizing factors of PACS network architecture design include concise network topology and disassemble tremendous global traffic to multiple distributed local scope network communication to reduce the traffic of network backbone. The most important issue is guarantee essential bandwidth for diagnosis procedure of medical imaging

  18. Modeling, Optimization & Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat

    2014-01-01

    . The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used......Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...

  19. SEWER NETWORK DISCHARGE OPTIMIZATION USING THE DYNAMIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Viorel MINZU

    2015-12-01

    Full Text Available It is necessary to adopt an optimal control that allows an efficient usage of the existing sewer networks, in order to avoid the building of new retention facilities. The main objective of the control action is to minimize the overflow volume of a sewer network. This paper proposes a method to apply a solution obtained by discrete dynamic programming through a realistic closed loop system.

  20. CRM System Optimization

    OpenAIRE

    Fučík, Ivan

    2015-01-01

    This thesis is focused on CRM solutions in small and medium-sized organizations with respect to the quality of their customer relationship. The main goal of this work is to design an optimal CRM solution in the environment of real organization. To achieve this goal it is necessary to understand the theoretical basis of several topics, such as organizations and their relationship with customers, CRM systems, their features and trends. On the basis of these theoretical topics it is possible to ...

  1. Optimizing online social networks for information propagation.

    Directory of Open Access Journals (Sweden)

    Duan-Bing Chen

    Full Text Available Online users nowadays are facing serious information overload problem. In recent years, recommender systems have been widely studied to help people find relevant information. Adaptive social recommendation is one of these systems in which the connections in the online social networks are optimized for the information propagation so that users can receive interesting news or stories from their leaders. Validation of such adaptive social recommendation methods in the literature assumes uniform distribution of users' activity frequency. In this paper, our empirical analysis shows that the distribution of online users' activity is actually heterogenous. Accordingly, we propose a more realistic multi-agent model in which users' activity frequency are drawn from a power-law distribution. We find that previous social recommendation methods lead to serious delay of information propagation since many users are connected to inactive leaders. To solve this problem, we design a new similarity measure which takes into account users' activity frequencies. With this similarity measure, the average delay is significantly shortened and the recommendation accuracy is largely improved.

  2. Optimizing online social networks for information propagation.

    Science.gov (United States)

    Chen, Duan-Bing; Wang, Guan-Nan; Zeng, An; Fu, Yan; Zhang, Yi-Cheng

    2014-01-01

    Online users nowadays are facing serious information overload problem. In recent years, recommender systems have been widely studied to help people find relevant information. Adaptive social recommendation is one of these systems in which the connections in the online social networks are optimized for the information propagation so that users can receive interesting news or stories from their leaders. Validation of such adaptive social recommendation methods in the literature assumes uniform distribution of users' activity frequency. In this paper, our empirical analysis shows that the distribution of online users' activity is actually heterogenous. Accordingly, we propose a more realistic multi-agent model in which users' activity frequency are drawn from a power-law distribution. We find that previous social recommendation methods lead to serious delay of information propagation since many users are connected to inactive leaders. To solve this problem, we design a new similarity measure which takes into account users' activity frequencies. With this similarity measure, the average delay is significantly shortened and the recommendation accuracy is largely improved.

  3. Power system optimization

    International Nuclear Information System (INIS)

    Bogdan, Zeljko; Cehil, Mislav

    2007-01-01

    Long-term gas purchase contracts usually determine delivery and payment for gas on the regular hourly basis, independently of demand side consumption. In order to use fuel gas in an economically viable way, optimization of gas distribution for covering consumption must be introduced. In this paper, a mathematical model of the electric utility system which is used for optimization of gas distribution over electric generators is presented. The utility system comprises installed capacity of 1500 MW of thermal power plants, 400 MW of combined heat and power plants, 330 MW of a nuclear power plant and 1600 MW of hydro power plants. Based on known demand curve the optimization model selects plants according to the prescribed criteria. Firstly it engages run-of-river hydro plants, then the public cogeneration plants, the nuclear plant and thermal power plants. Storage hydro plants are used for covering peak load consumption. In case of shortage of installed capacity, the cross-border purchase is allowed. Usage of dual fuel equipment (gas-oil), which is available in some thermal plants, is also controlled by the optimization procedure. It is shown that by using such a model it is possible to properly plan the amount of fuel gas which will be contracted. The contracted amount can easily be distributed over generators efficiently and without losses (no breaks in delivery). The model helps in optimizing of fuel gas-oil ratio for plants with combined burners and enables planning of power plants overhauls over a year in a viable and efficient way. (author)

  4. Network operating system

    Science.gov (United States)

    1985-01-01

    Long-term and short-term objectives for the development of a network operating system for the Space Station are stated. The short-term objective is to develop a prototype network operating system for a 100 megabit/second fiber optic data bus. The long-term objective is to establish guidelines for writing a detailed specification for a Space Station network operating system. Major milestones are noted. Information is given in outline form.

  5. A framework for reactive optimization in mobile ad hoc networks

    DEFF Research Database (Denmark)

    McClary, Dan; Syrotiuk, Violet; Kulahci, Murat

    2008-01-01

    We present a framework to optimize the performance of a mobile ad hoc network over a wide range of operating conditions. It includes screening experiments to quantify the parameters and interactions among parameters influential to throughput. Profile-driven regression is applied to obtain a model....... The predictive accuracy of the model is monitored and used to update the model dynamically. The results indicate the framework may be useful for the optimization of dynamic systems of high dimension....

  6. Network SCADA System

    International Nuclear Information System (INIS)

    Milivojevic, Dragan R.; Tasic, Visa; Karabasevic, Dejan

    2003-01-01

    Copper Institute, Industrial Informatics department, is developing and applying network real time process monitoring and control systems. Some of these systems are already in use. The paper presents some hardware and software general remarks and performances, with special regard to communication sub-systems and network possibilities. (Author)

  7. An Improved Method for Reconfiguring and Optimizing Electrical Active Distribution Network Using Evolutionary Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Nur Faziera Napis

    2018-05-01

    Full Text Available The presence of optimized distributed generation (DG with suitable distribution network reconfiguration (DNR in the electrical distribution network has an advantage for voltage support, power losses reduction, deferment of new transmission line and distribution structure and system stability improvement. However, installation of a DG unit at non-optimal size with non-optimal DNR may lead to higher power losses, power quality problem, voltage instability and incremental of operational cost. Thus, an appropriate DG and DNR planning are essential and are considered as an objective of this research. An effective heuristic optimization technique named as improved evolutionary particle swarm optimization (IEPSO is proposed in this research. The objective function is formulated to minimize the total power losses (TPL and to improve the voltage stability index (VSI. The voltage stability index is determined for three load demand levels namely light load, nominal load, and heavy load with proper optimal DNR and DG sizing. The performance of the proposed technique is compared with other optimization techniques, namely particle swarm optimization (PSO and iteration particle swarm optimization (IPSO. Four case studies on IEEE 33-bus and IEEE 69-bus distribution systems have been conducted to validate the effectiveness of the proposed IEPSO. The optimization results show that, the best achievement is done by IEPSO technique with power losses reduction up to 79.26%, and 58.41% improvement in the voltage stability index. Moreover, IEPSO has the fastest computational time for all load conditions as compared to other algorithms.

  8. Optimal resource allocation in downlink CDMA wireless networks

    NARCIS (Netherlands)

    Endrayanto, A.I.

    2013-01-01

    This thesis presents a full analytical characterization of the optimal joint downlink rate and power assignment for maximal total system throughput in a multi cell CDMA network. In Chapter 2, we analyze the feasibility of downlink power assignment in a linear model of two CDMA cell, under the

  9. Optimization and optimal control in automotive systems

    CERN Document Server

    Kolmanovsky, Ilya; Steinbuch, Maarten; Re, Luigi

    2014-01-01

    This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier  approaches, based on some degree of heuristics, to the use of  more and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applie...

  10. Using Artificial Intelligence to Retrieve the Optimal Parameters and Structures of Adaptive Network-Based Fuzzy Inference System for Typhoon Precipitation Forecast Modeling

    Directory of Open Access Journals (Sweden)

    Chien-Lin Huang

    2015-01-01

    Full Text Available This study aims to construct a typhoon precipitation forecast model providing forecasts one to six hours in advance using optimal model parameters and structures retrieved from a combination of the adaptive network-based fuzzy inference system (ANFIS and artificial intelligence. To enhance the accuracy of the precipitation forecast, two structures were then used to establish the precipitation forecast model for a specific lead-time: a single-model structure and a dual-model hybrid structure where the forecast models of higher and lower precipitation were integrated. In order to rapidly, automatically, and accurately retrieve the optimal parameters and structures of the ANFIS-based precipitation forecast model, a tabu search was applied to identify the adjacent radius in subtractive clustering when constructing the ANFIS structure. The coupled structure was also employed to establish a precipitation forecast model across short and long lead-times in order to improve the accuracy of long-term precipitation forecasts. The study area is the Shimen Reservoir, and the analyzed period is from 2001 to 2009. Results showed that the optimal initial ANFIS parameters selected by the tabu search, combined with the dual-model hybrid method and the coupled structure, provided the favors in computation efficiency and high-reliability predictions in typhoon precipitation forecasts regarding short to long lead-time forecasting horizons.

  11. 5G heterogeneous networks self-organizing and optimization

    CERN Document Server

    Rong, Bo; Kadoch, Michel; Sun, Songlin; Li, Wenjing

    2016-01-01

    This SpringerBrief provides state-of-the-art technical reviews on self-organizing and optimization in 5G systems. It covers the latest research results from physical-layer channel modeling to software defined network (SDN) architecture. This book focuses on the cutting-edge wireless technologies such as heterogeneous networks (HetNets), self-organizing network (SON), smart low power node (LPN), 3D-MIMO, and more. It will help researchers from both the academic and industrial worlds to better understand the technical momentum of 5G key technologies.

  12. Near-optimal Downlink precoding of a MISO system for a secondary network under the SINR constraints of a primary network

    KAUST Repository

    Park, Kihong; Alouini, Mohamed-Slim

    2013-01-01

    -to-interference-plus-noise-ratio constraints on the primary network in order to guarantee the quality-of-service for the latter network. While the interference due to the secondary transmission in the conventional underlay CR approach may severely degrade the performance of the primary

  13. Influence maximization in complex networks through optimal percolation

    Science.gov (United States)

    Morone, Flaviano; Makse, Hernan; CUNY Collaboration; CUNY Collaboration

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. Reference: F. Morone, H. A. Makse, Nature 524,65-68 (2015)

  14. Nonlinear Non-convex Optimization of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Kallesøe, Carsten; Leth, John-Josef

    2013-01-01

    Pressure management in water supply systems is an effective way to reduce the leakage in a system. In this paper, the pressure management and the reduction of power consumption of a water supply system is formulated as an optimization problem. The problem is to minimize the power consumption in p....... They can be used for a general hydraulic networks to optimize the leakage and energy consumption and to satisfy the demands at the end-users. The results in this paper show that the power consumption of the pumps is reduced.......Pressure management in water supply systems is an effective way to reduce the leakage in a system. In this paper, the pressure management and the reduction of power consumption of a water supply system is formulated as an optimization problem. The problem is to minimize the power consumption...

  15. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2006-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  16. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2002-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  17. Network optimization including gas lift and network parameters under subsurface uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Riegert, R.; Baffoe, J.; Pajonk, O. [SPT Group GmbH, Hamburg (Germany); Badalov, H.; Huseynov, S. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE; Trick, M. [SPT Group, Calgary, AB (Canada)

    2013-08-01

    Optimization of oil and gas field production systems poses a great challenge to field development due to complex and multiple interactions between various operational design parameters and subsurface uncertainties. Conventional analytical methods are capable of finding local optima based on single deterministic models. They are less applicable for efficiently generating alternative design scenarios in a multi-objective context. Practical implementations of robust optimization workflows integrate the evaluation of alternative design scenarios and multiple realizations of subsurface uncertainty descriptions. Production or economic performance indicators such as NPV (Net Present Value) are linked to a risk-weighted objective function definition to guide the optimization processes. This work focuses on an integrated workflow using a reservoir-network simulator coupled to an optimization framework. The work will investigate the impact of design parameters while considering the physics of the reservoir, wells, and surface facilities. Subsurface uncertainties are described by well parameters such as inflow performance. Experimental design methods are used to investigate parameter sensitivities and interactions. Optimization methods are used to find optimal design parameter combinations which improve key performance indicators of the production network system. The proposed workflow will be applied to a representative oil reservoir coupled to a network which is modelled by an integrated reservoir-network simulator. Gas-lift will be included as an explicit measure to improve production. An objective function will be formulated for the net present value of the integrated system including production revenue and facility costs. Facility and gas lift design parameters are tuned to maximize NPV. Well inflow performance uncertainties are introduced with an impact on gas lift performance. Resulting variances on NPV are identified as a risk measure for the optimized system design. A

  18. Medical Optimization Network for Space Telemedicine Resources

    Science.gov (United States)

    Shah, R. V.; Mulcahy, R.; Rubin, D.; Antonsen, E. L.; Kerstman, E. L.; Reyes, D.

    2017-01-01

    INTRODUCTION: Long-duration missions beyond low Earth orbit introduce new constraints to the space medical system such as the inability to evacuate to Earth, communication delays, and limitations in clinical skillsets. NASA recognizes the need to improve capabilities for autonomous care on such missions. As the medical system is developed, it is important to have an ability to evaluate the trade space of what resources will be most important. The Medical Optimization Network for Space Telemedicine Resources was developed for this reason, and is now a system to gauge the relative importance of medical resources in addressing medical conditions. METHODS: A list of medical conditions of potential concern for an exploration mission was referenced from the Integrated Medical Model, a probabilistic model designed to quantify in-flight medical risk. The diagnostic and treatment modalities required to address best and worst-case scenarios of each medical condition, at the terrestrial standard of care, were entered into a database. This list included tangible assets (e.g. medications) and intangible assets (e.g. clinical skills to perform a procedure). A team of physicians working within the Exploration Medical Capability Element of NASA's Human Research Program ranked each of the items listed according to its criticality. Data was then obtained from the IMM for the probability of occurrence of the medical conditions, including a breakdown of best case and worst case, during a Mars reference mission. The probability of occurrence information and criticality for each resource were taken into account during analytics performed using Tableau software. RESULTS: A database and weighting system to evaluate all the diagnostic and treatment modalities was created by combining the probability of condition occurrence data with the criticalities assigned by the physician team. DISCUSSION: Exploration Medical Capabilities research at NASA is focused on providing a medical system to

  19. Management and optimization of the CPCU network working

    Energy Technology Data Exchange (ETDEWEB)

    Silvain, D. (Compagnie Parisienne de Chauffage Urbain, 75 - Paris (FR))

    1991-10-01

    The CPCU steam distribution network is supplemented by a return network for the condensation water. The data system installed in 1988 provides, for the real time, management of the function of the two networks and a reduction in production costs. For the steam, data required in the network, the boiler houses and from external sources are processed by local network of five microprocessors and permit: - with time delay: technical and economic production optimizing calculations, or forecasts, for the following day, of the total required output and the procedure necessary for supplying this at the lowest cost; - in real time: on the basis of the forecasts for the previous day, creating the production instructions for the boiler houses and the instructions for the network remote control elements; - in case of an unexpected occurrence: immediate creation of new operating forecasts for the boiler houses for the establishing management data in real time. For the water, the system forecasts the volume to be returned to the boiler depending on the quantity of steam to be produced. Subsequently, an analysis is carried out in real time of pressures and outputs measured in the network for deriving valve movements and the pump stop/start procedure for guaranteeing the return of the water. The architecture, basic principles and software developed for this application can be used in other steam or water networks and, in a general manner, are adaptable for the management of any complex multi-supplier or multicustomer systems.

  20. Multi-Objective Design Of Optimal Greenhouse Gas Observation Networks

    Science.gov (United States)

    Lucas, D. D.; Bergmann, D. J.; Cameron-Smith, P. J.; Gard, E.; Guilderson, T. P.; Rotman, D.; Stolaroff, J. K.

    2010-12-01

    One of the primary scientific functions of a Greenhouse Gas Information System (GHGIS) is to infer GHG source emission rates and their uncertainties by combining measurements from an observational network with atmospheric transport modeling. Certain features of the observational networks that serve as inputs to a GHGIS --for example, sampling location and frequency-- can greatly impact the accuracy of the retrieved GHG emissions. Observation System Simulation Experiments (OSSEs) provide a framework to characterize emission uncertainties associated with a given network configuration. By minimizing these uncertainties, OSSEs can be used to determine optimal sampling strategies. Designing a real-world GHGIS observing network, however, will involve multiple, conflicting objectives; there will be trade-offs between sampling density, coverage and measurement costs. To address these issues, we have added multi-objective optimization capabilities to OSSEs. We demonstrate these capabilities by quantifying the trade-offs between retrieval error and measurement costs for a prototype GHGIS, and deriving GHG observing networks that are Pareto optimal. [LLNL-ABS-452333: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Genetic algorithm for neural networks optimization

    Science.gov (United States)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  2. Optimization and Optimal Control in Automotive Systems

    NARCIS (Netherlands)

    Waschl, H.; Kolmanovsky, I.V.; Steinbuch, M.; Re, del L.

    2014-01-01

    This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier approaches, based on some degree of heuristics, to the use of more and

  3. Triangulation positioning system network

    Directory of Open Access Journals (Sweden)

    Sfendourakis Marios

    2017-01-01

    Full Text Available This paper presents ongoing work on localization and positioning through triangulation procedure for a Fixed Sensors Network - FSN.The FSN has to work as a system.As the triangulation problem becomes high complicated in a case with large numbers of sensors and transmitters, an adequate grid topology is needed in order to tackle the detection complexity.For that reason a Network grid topology is presented and areas that are problematic and need further analysis are analyzed.The Network System in order to deal with problems of saturation and False Triangulations - FTRNs will have to find adequate methods in every sub-area of the Area Of Interest - AOI.Also, concepts like Sensor blindness and overall Network blindness, are presented. All these concepts affect the Network detection rate and its performance and ought to be considered in a way that the network overall performance won’t be degraded.Network performance should be monitored contentiously, with right algorithms and methods.It is also shown that as the number of TRNs and FTRNs is increased Detection Complexity - DC is increased.It is hoped that with further research all the characteristics of a triangulation system network for positioning will be gained and the system will be able to perform autonomously with a high detection rate.

  4. Optimal Training Systems STTR

    National Research Council Canada - National Science Library

    Best, Brad; Lovett, Marsha

    2005-01-01

    .... Using an optimal model of task performance subject to human constraints may be a more efficient way to develop models of skilled human performance for use in training, especially since optimal models...

  5. Optimization of investments in gas networks

    International Nuclear Information System (INIS)

    Andre, J.

    2010-09-01

    The natural gas networks require very important investments to cope with a still growing demand and to satisfy the new regulatory constraints. The gas market deregulation imposed to the gas network operators, first, transparency rules of a natural monopoly to justify their costs and ultimately their tariffs, and, second, market fluidity objectives in order to facilitate access for competition to the end-users. These major investments are the main reasons for the use of optimization techniques aiming at reducing the costs. Due to the discrete choices (investment location, limited choice of additional capacities, timing) crossed with physical non linear constraints (flow/pressures relations in the pipe or operating ranges of compressors), the programs to solve are Large Mixed Non Linear Programs (MINLP). As these types of programs are known to be hard to solve exactly in polynomial times (NP-hard), advanced optimization methods have to be implemented to obtain realistic results. The objectives of this thesis are threefold. First, one states several investment problems modeling of natural gas networks from industrial world motivations. Second, one identifies the most suitable methods and algorithms to the formulated problems. Third, one exposes the main advantages and drawbacks of these methods with the help of numerical applications on real cases. (author)

  6. Extending Resolution of Fault Slip With Geodetic Networks Through Optimal Network Design

    Science.gov (United States)

    Sathiakumar, Sharadha; Barbot, Sylvain Denis; Agram, Piyush

    2017-12-01

    Geodetic networks consisting of high precision and high rate Global Navigation Satellite Systems (GNSS) stations continuously monitor seismically active regions of the world. These networks measure surface displacements and the amount of geodetic strain accumulated in the region and give insight into the seismic potential. SuGar (Sumatra GPS Array) in Sumatra, GEONET (GNSS Earth Observation Network System) in Japan, and PBO (Plate Boundary Observatory) in California are some examples of established networks around the world that are constantly expanding with the addition of new stations to improve the quality of measurements. However, installing new stations to existing networks is tedious and expensive. Therefore, it is important to choose suitable locations for new stations to increase the precision obtained in measuring the geophysical parameters of interest. Here we describe a methodology to design optimal geodetic networks that augment the existing system and use it to investigate seismo-tectonics at convergent and transform boundaries considering land-based and seafloor geodesy. The proposed network design optimization would be pivotal to better understand seismic and tsunami hazards around the world. Land-based and seafloor networks can monitor fault slip around subduction zones with significant resolution, but transform faults are more challenging to monitor due to their near-vertical geometry.

  7. On Optimal Policies for Network-Coded Cooperation

    DEFF Research Database (Denmark)

    Khamfroush, Hana; Roetter, Daniel Enrique Lucani; Pahlevani, Peyman

    2015-01-01

    Network-coded cooperative communication (NC-CC) has been proposed and evaluated as a powerful technology that can provide a better quality of service in the next-generation wireless systems, e.g., D2D communications. Previous contributions have focused on performance evaluation of NC-CC scenarios...... rather than searching for optimal policies that can minimize the total cost of reliable packet transmission. We break from this trend by initially analyzing the optimal design of NC-CC for a wireless network with one source, two receivers, and half-duplex erasure channels. The problem is modeled...... as a special case of Markov decision process (MDP), which is called stochastic shortest path (SSP), and is solved for any field size, arbitrary number of packets, and arbitrary erasure probabilities of the channels. The proposed MDP solution results in an optimal transmission policy per time slot, and we use...

  8. Optimal scheduling for distribution network with redox flow battery storage

    International Nuclear Information System (INIS)

    Hosseina, Majid; Bathaee, Seyed Mohammad Taghi

    2016-01-01

    Highlights: • A novel method for optimal scheduling of storages in radial network is presented. • Peak shaving and load leveling are the main objectives. • Vanadium redox flow battery is considered as the energy storage unit. • Real data is used for simulation. - Abstract: There are many advantages to utilize storages in electric power system. Peak shaving, load leveling, load frequency control, integration of renewable, energy trading and spinning reserve are the most important of them. Batteries, especially redox flow batteries, are one of the appropriate storages for utilization in distribution network. This paper presents a novel, heuristic and practical method for optimal scheduling in distribution network with flow battery storage. This heuristic method is more suitable for scheduling and operation of distribution networks which require installation of storages. Peak shaving and load leveling is considered as the main objective in this paper. Several indices are presented in this paper for determine the place of storages and also scheduling for optimal use of energy in them. Simulations of this paper are based on real information of distribution network substation that located in Semnan, Iran.

  9. Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization

    International Nuclear Information System (INIS)

    Guerra, Fabio A.; Coelho, Leandro dos S.

    2008-01-01

    An important problem in engineering is the identification of nonlinear systems, among them radial basis function neural networks (RBF-NN) using Gaussian activation functions models, which have received particular attention due to their potential to approximate nonlinear behavior. Several design methods have been proposed for choosing the centers and spread of Gaussian functions and training the RBF-NN. The selection of RBF-NN parameters such as centers, spreads, and weights can be understood as a system identification problem. This paper presents a hybrid training approach based on clustering methods (k-means and c-means) to tune the centers of Gaussian functions used in the hidden layer of RBF-NNs. This design also uses particle swarm optimization (PSO) for centers (local clustering search method) and spread tuning, and the Penrose-Moore pseudoinverse for the adjustment of RBF-NN weight outputs. Simulations involving this RBF-NN design to identify Lorenz's chaotic system indicate that the performance of the proposed method is superior to that of the conventional RBF-NN trained for k-means and the Penrose-Moore pseudoinverse for multi-step ahead forecasting

  10. Hybrid Techniques for Optimizing Complex Systems

    Science.gov (United States)

    2009-12-01

    relay placement problem, we modeled the network as a mechanical system with springs and a viscous damper ⎯a widely used approach for solving optimization...fundamental mathematical tools in many branches of physics such as fluid and solid mechanics, and general relativity [108]. More recently, several

  11. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.

    Science.gov (United States)

    Sohn, Insoo; Liu, Huaping; Ansari, Nirwan

    2015-01-01

    An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction.

  12. The development of a practical pipe auto-routing system in a shipbuilding CAD environment using network optimization

    Directory of Open Access Journals (Sweden)

    Shin-Hyung Kim

    2013-09-01

    Full Text Available An automatic pipe routing system is proposed and implemented. Generally, the pipe routing design as a part of the shipbuilding process requires a considerable number of man hours due to the complexity which comes from physical and operational constraints and the crucial influence on outfitting construction productivity. Therefore, the automation of pipe routing design operations and processes has always been one of the most important goals for improvements in shipbuilding design. The proposed system is applied to a pipe routing design in the engine room space of a commercial ship. The effectiveness of this system is verified as a reasonable form of support for pipe routing design jobs. The automatic routing result of this system can serve as a good basis model in the initial stages of pipe routing design, allowing the designer to reduce their design lead time significantly. As a result, the design productivity overall can be improved with this automatic pipe routing system.

  13. The development of a practical pipe auto-routing system in a shipbuilding CAD environment using network optimization

    Science.gov (United States)

    Kim, Shin-Hyung; Ruy, Won-Sun; Jang, Beom Seon

    2013-09-01

    An automatic pipe routing system is proposed and implemented. Generally, the pipe routing design as a part of the shipbuilding process requires a considerable number of man hours due to the complexity which comes from physical and operational constraints and the crucial influence on outfitting construction productivity. Therefore, the automation of pipe routing design operations and processes has always been one of the most important goals for improvements in shipbuilding design. The proposed system is applied to a pipe routing design in the engine room space of a commercial ship. The effectiveness of this system is verified as a reasonable form of support for pipe routing design jobs. The automatic routing result of this system can serve as a good basis model in the initial stages of pipe routing design, allowing the designer to reduce their design lead time significantly. As a result, the design productivity overall can be improved with this automatic pipe routing system

  14. Topology optimized permanent magnet systems

    Science.gov (United States)

    Bjørk, R.; Bahl, C. R. H.; Insinga, A. R.

    2017-09-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a Λcool figure of merit of 0.472 is reached, which is an increase of 100% compared to a previous optimized design.

  15. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  16. Optimal Brain Surgeon on Artificial Neural Networks in

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Job, Jonas Hultmann; Klyver, Katrine

    2012-01-01

    It is shown how the procedure know as optimal brain surgeon can be used to trim and optimize artificial neural networks in nonlinear structural dynamics. Beside optimizing the neural network, and thereby minimizing computational cost in simulation, the surgery procedure can also serve as a quick...

  17. Optimizing the spatial pattern of networks for monitoring radioactive releases

    NARCIS (Netherlands)

    Melles, S.J.; Heuvelink, G.B.M.; Twenhofel, C.J.W.; Dijk, van A.; Hiemstra, P.H.; Baume, O.P.; Stohlker, U.

    2011-01-01

    This study presents a method to optimize the sampling design of environmental monitoring networks in a multi-objective setting. We optimize the permanent network of radiation monitoring stations in the Netherlands and parts of Germany as an example. The optimization method proposed combines

  18. Optimal Control of Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Vadim Azhmyakov

    2007-01-01

    Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.

  19. An optimization planning technique for Suez Canal Network in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Abou El-Ela, A.A.; El-Zeftawy, A.A.; Allam, S.M.; Atta, Gasir M. [Electrical Engineering Dept., Faculty of Eng., Shebin El-Kom (Egypt)

    2010-02-15

    This paper introduces a proposed optimization technique POT for predicting the peak load demand and planning of transmission line systems. Many of traditional methods have been presented for long-term load forecasting of electrical power systems. But, the results of these methods are approximated. Therefore, the artificial neural network (ANN) technique for long-term peak load forecasting is modified and discussed as a modern technique in long-term load forecasting. The modified technique is applied on the Egyptian electrical network dependent on its historical data to predict the electrical peak load demand forecasting up to year 2017. This technique is compared with extrapolation of trend curves as a traditional method. The POT is applied also to obtain the optimal planning of transmission lines for the 220 kV of Suez Canal Network (SCN) using the ANN technique. The minimization of the transmission network costs are considered as an objective function, while the transmission lines (TL) planning constraints are satisfied. Zafarana site on the Red Sea coast is considered as an optimal site for installing big wind farm (WF) units in Egypt. So, the POT is applied to plan both the peak load and the electrical transmission of SCN with and without considering WF to develop the impact of WF units on the electrical transmission system of Egypt, considering the reliability constraints which were taken as a separate model in the previous techniques. The application on SCN shows the capability and the efficiently of the proposed techniques to obtain the predicting peak load demand and the optimal planning of transmission lines of SCN up to year 2017. (author)

  20. Optimization of waste heat utilization in cold end system of thermal power station based on neural network algorithm

    Science.gov (United States)

    Du, Zenghui

    2018-04-01

    At present, the flue gas waste heat utilization projects of coal-fired boilers are often limited by low temperature corrosion problems and conventional PID control. The flue gas temperature cannot be reduced to the best efficiency temperature of wet desulphurization, resulting in the failure of heat recovery to be the maximum. Therefore, this paper analyzes, researches and solves the remaining problems of the cold end system of thermal power station, so as to provide solutions and theoretical support for energy saving and emission reduction and upgrading and the improvement of the comprehensive efficiency of the units.

  1. Optimization of operation cycles in BWRs using neural networks

    International Nuclear Information System (INIS)

    Ortiz S, J. J.; Castillo, A.; Alejandro P, D.

    2011-11-01

    The first results of a system for the optimization of operation cycles in boiling water reactors by means of a multi state recurrent neural network are present in this work. The neural network finds the best combination of fuel cells; fuel reloads and control bars patterns previously designed, according to an energy function that qualifies the performance of the three partial solutions for the solution of the whole problem. The partial solutions are designed by means of optimization systems non couple among them and that can use any optimization technique. The phase of the fuel axial design is not made and the size of the axial areas is fixed during the optimization process. The methodology was applied to design a balance cycle of 18 months for the reactors of the nuclear power station of Laguna Verde. The results show that is possible to find combinations of partial solutions that in set represent good solutions to the complete design problem of an operation cycle of a nuclear reactor. The results are compared with others obtained previously by other techniques. This system was developed in platform Li nux and programmed in Fortran 95 taking advantage of the 8 nuclei of a work station Dell Precision T7400. (Author)

  2. Global Optimization for Transport Network Expansion and Signal Setting

    OpenAIRE

    Liu, Haoxiang; Wang, David Z. W.; Yue, Hao

    2015-01-01

    This paper proposes a model to address an urban transport planning problem involving combined network design and signal setting in a saturated network. Conventional transport planning models usually deal with the network design problem and signal setting problem separately. However, the fact that network capacity design and capacity allocation determined by network signal setting combine to govern the transport network performance requires the optimal transport planning to consider the two pr...

  3. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  4. Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis

    Directory of Open Access Journals (Sweden)

    Zhongrong Zhang

    2016-01-01

    Full Text Available Wind energy has increasingly played a vital role in mitigating conventional resource shortages. Nevertheless, the stochastic nature of wind poses a great challenge when attempting to find an accurate forecasting model for wind power. Therefore, precise wind power forecasts are of primary importance to solve operational, planning and economic problems in the growing wind power scenario. Previous research has focused efforts on the deterministic forecast of wind power values, but less attention has been paid to providing information about wind energy. Based on an optimal Adaptive-Network-Based Fuzzy Inference System (ANFIS and Singular Spectrum Analysis (SSA, this paper develops a hybrid uncertainty forecasting model, IFASF (Interval Forecast-ANFIS-SSA-Firefly Alogorithm, to obtain the upper and lower bounds of daily average wind power, which is beneficial for the practical operation of both the grid company and independent power producers. To strengthen the practical ability of this developed model, this paper presents a comparison between IFASF and other benchmarks, which provides a general reference for this aspect for statistical or artificially intelligent interval forecast methods. The comparison results show that the developed model outperforms eight benchmarks and has a satisfactory forecasting effectiveness in three different wind farms with two time horizons.

  5. Synchronization-optimized networks for coupled nearly identical ...

    Indian Academy of Sciences (India)

    From the stability criteria of the MSF, we construct optimal networks ... of intense research in physical, biological, chemical, technological and social sci- ..... In figure 3a, a sample of initial network of 32 coupled nearly identical Rössler oscilla-.

  6. Topology optimized permanent magnet systems

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian; Insinga, Andrea Roberto

    2017-01-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron...... and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a ΛcoolΛcool figure of merit of 0...

  7. Networks as systems.

    Science.gov (United States)

    Best, Allan; Berland, Alex; Greenhalgh, Trisha; Bourgeault, Ivy L; Saul, Jessie E; Barker, Brittany

    2018-03-19

    Purpose The purpose of this paper is to present a case study of the World Health Organization's Global Healthcare Workforce Alliance (GHWA). Based on a commissioned evaluation of GHWA, it applies network theory and key concepts from systems thinking to explore network emergence, effectiveness, and evolution to over a ten-year period. The research was designed to provide high-level strategic guidance for further evolution of global governance in human resources for health (HRH). Design/methodology/approach Methods included a review of published literature on HRH governance and current practice in the field and an in-depth case study whose main data sources were relevant GHWA background documents and key informant interviews with GHWA leaders, staff, and stakeholders. Sampling was purposive and at a senior level, focusing on board members, executive directors, funders, and academics. Data were analyzed thematically with reference to systems theory and Shiffman's theory of network development. Findings Five key lessons emerged: effective management and leadership are critical; networks need to balance "tight" and "loose" approaches to their structure and processes; an active communication strategy is key to create and maintain support; the goals, priorities, and membership must be carefully focused; and the network needs to support shared measurement of progress on agreed-upon goals. Shiffman's middle-range network theory is a useful tool when guided by the principles of complex systems that illuminate dynamic situations and shifting interests as global alliances evolve. Research limitations/implications This study was implemented at the end of the ten-year funding cycle. A more continuous evaluation throughout the term would have provided richer understanding of issues. Experience and perspectives at the country level were not assessed. Practical implications Design and management of large, complex networks requires ongoing attention to key issues like leadership

  8. A One-Layer Recurrent Neural Network for Real-Time Portfolio Optimization With Probability Criterion.

    Science.gov (United States)

    Liu, Qingshan; Dang, Chuangyin; Huang, Tingwen

    2013-02-01

    This paper presents a decision-making model described by a recurrent neural network for dynamic portfolio optimization. The portfolio-optimization problem is first converted into a constrained fractional programming problem. Since the objective function in the programming problem is not convex, the traditional optimization techniques are no longer applicable for solving this problem. Fortunately, the objective function in the fractional programming is pseudoconvex on the feasible region. It leads to a one-layer recurrent neural network modeled by means of a discontinuous dynamic system. To ensure the optimal solutions for portfolio optimization, the convergence of the proposed neural network is analyzed and proved. In fact, the neural network guarantees to get the optimal solutions for portfolio-investment advice if some mild conditions are satisfied. A numerical example with simulation results substantiates the effectiveness and illustrates the characteristics of the proposed neural network.

  9. Optimization of the Case Based Reasoning Systems

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Intrusion Detection System (IDS) have a great importance in saving the authority of the information widely spread all over the world through the networks. Many Case Based Systems concerned on the different methods of the unauthorized users/hackers that face the developers of the IDS. The proposed system introduces a new hybrid system that uses the genetic algorithm to optimize an IDS - case based system. It can detect the new anomalies appeared through the network and use the cases in the case library to determine the suitable solution for their behavior. The suggested system can solve the problem either by using an old identical solution or adapt the optimum one till have the targeted solution. The proposed system has been applied to block unauthorized users / hackers from attach the medical images for radiotherapy of the cancer diseases during their transmission through web. The proposed system can prove its accepted performance in this manner

  10. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    2012-01-01

    of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link...... optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm...

  11. Optimizing queries in distributed systems

    Directory of Open Access Journals (Sweden)

    Ion LUNGU

    2006-01-01

    Full Text Available This research presents the main elements of query optimizations in distributed systems. First, data architecture according with system level architecture in a distributed environment is presented. Then the architecture of a distributed database management system (DDBMS is described on conceptual level followed by the presentation of the distributed query execution steps on these information systems. The research ends with presentation of some aspects of distributed database query optimization and strategies used for that.

  12. Heating networks and domestic central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamler, W; Wasilewski, W

    1976-08-01

    This is a comprehensive survey of the 26 contributions from 8 European countries submitted to the 3rd International District Heating Conference in Warsaw held on the subject 'Heating Networks and Domestic Central Heating Systems'. The contributions are grouped according to 8 groups of subjects: (1) heat carriers and their parameters; (2) system of heating networks; (3) calculation and optimization of heating networks; (4) construction of heating networks; (5) operation control and automation; (6) operational problems; (7) corrosion problems; and (8) methods of heat accounting.

  13. Designing optimal bioethanol networks with purification for integrated biorefineries

    International Nuclear Information System (INIS)

    Shenoy, Akshay U.; Shenoy, Uday V.

    2014-01-01

    Highlights: • An analytical method is devised for bioethanol network integration with purification. • Minimum fresh bioethanol flow and pinch are found by the Unified Targeting Algorithm. • Optimal bioethanol networks are then synthesized by the Nearest Neighbors Algorithm. • Continuous targets and networks are developed over the purifier inlet flowrate range. • Case study of a biorefinery producing bioethanol from wheat shows large savings. - Abstract: Bioethanol networks with purification for processing pathways in integrated biorefineries are targeted and designed in this work by an analytical approach not requiring graphical constructions. The approach is based on six fundamental equations involving eight variables: two balance equations for the stream flowrate and the bioethanol load over the total network system; one equation for the above-pinch bioethanol load being picked up by the minimum fresh resource and the purified stream; and three equations for the purification unit. A solution strategy is devised by specifying the two variables associated with the purifier inlet stream. Importantly, continuous targeting is then possible over the entire purifier inlet flowrate range on deriving elegant formulae for the remaining six variables. The Unified Targeting Algorithm (UTA) is utilized to establish the minimum fresh bioethanol resource flowrate and identify the pinch purity. The fresh bioethanol resource flowrate target is shown to decrease linearly with purifier inlet flowrate provided the pinch is held by the same point. The Nearest Neighbors Algorithm (NNA) is used to methodically synthesize optimal networks matching bioethanol demands and sources. A case study of a biorefinery producing bioethanol from wheat with arabinoxylan (AX) coproduction is presented. It illustrates the versatility of the approach in generating superior practical designs with up to nearly 94% savings for integrated bioethanol networks, both with and without process

  14. Networking of safeguards systems

    International Nuclear Information System (INIS)

    Chare, P.; Dutrannois, A.; Kloeckner, W.; Swinhoe, M.

    1995-01-01

    This paper discusses the design of a safeguards system that can be incorporated into a plant during the final phase of its construction to permit the acquisition and transmission of data during plant operation in the absence of an inspector. The system is an example of a networked data system of weighing, identity, and NDA information. It collects all of its non-surveillance data produced by safeguards equipment in a fuel fabrication plant. The data collection and transfer tasks are carried out by two software packages: NEGUS, a redundant data acquisition system designed to record neutron coincidence data, high-resolution gamma spectra, and sensor data for the NDA information and associated barcode identity information, and BRANCH, which deals with weighing and associated identity information. These processes collect data from local electronics using an ethernet network and provide information to the main review program

  15. System floorplanning optimization

    KAUST Repository

    Browning, David W.; Elansary, Ayman; Shalaby, Mohamed

    2012-01-01

    Notebook and Laptop Original Equipment Manufacturers (OEMs) place great emphasis on creating unique system designs to differentiate themselves in the mobile market. These systems are developed from the 'outside in' with the focus on how the system

  16. System floorplanning optimization

    KAUST Repository

    Browning, David W.; Ansary, Ayman M. El; Shalaby, Mohamed

    2013-01-01

    Notebook and Laptop Original Equipment Manufacturers (OEMs) place great emphasis on creating unique system designs to differentiate themselves in the mobile market. These systems are developed from the 'outside in' with the focus on how the system

  17. Optimizing Cooperative Cognitive Radio Networks with Opportunistic Access

    KAUST Repository

    Zafar, Ammar; Alouini, Mohamed-Slim; Chen, Yunfei; Radaydeh, Redha M.

    2012-01-01

    Optimal resource allocation for cooperative cognitive radio networks with opportunistic access to the licensed spectrum is studied. Resource allocation is based on minimizing the symbol error rate at the receiver. Both the cases of all-participate relaying and selective relaying are considered. The objective function is derived and the constraints are detailed for both scenarios. It is then shown that the objective functions and the constraints are nonlinear and nonconvex functions of the parameters of interest, that is, source and relay powers, symbol time, and sensing time. Therefore, it is difficult to obtain closed-form solutions for the optimal resource allocation. The optimization problem is then solved using numerical techniques. Numerical results show that the all-participate system provides better performance than its selection counterpart, at the cost of greater resources. © 2012 Ammar Zafar et al.

  18. Optimizing Cooperative Cognitive Radio Networks with Opportunistic Access

    KAUST Repository

    Zafar, Ammar

    2012-09-16

    Optimal resource allocation for cooperative cognitive radio networks with opportunistic access to the licensed spectrum is studied. Resource allocation is based on minimizing the symbol error rate at the receiver. Both the cases of all-participate relaying and selective relaying are considered. The objective function is derived and the constraints are detailed for both scenarios. It is then shown that the objective functions and the constraints are nonlinear and nonconvex functions of the parameters of interest, that is, source and relay powers, symbol time, and sensing time. Therefore, it is difficult to obtain closed-form solutions for the optimal resource allocation. The optimization problem is then solved using numerical techniques. Numerical results show that the all-participate system provides better performance than its selection counterpart, at the cost of greater resources. © 2012 Ammar Zafar et al.

  19. Optimization-based topology identification of complex networks

    International Nuclear Information System (INIS)

    Tang Sheng-Xue; Chen Li; He Yi-Gang

    2011-01-01

    In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method. (general)

  20. An Optimal Lower Eigenvalue System

    Directory of Open Access Journals (Sweden)

    Yingfan Liu

    2011-01-01

    Full Text Available An optimal lower eigenvalue system is studied, and main theorems including a series of necessary and suffcient conditions concerning existence and a Lipschitz continuity result concerning stability are obtained. As applications, solvability results to some von-Neumann-type input-output inequalities, growth, and optimal growth factors, as well as Leontief-type balanced and optimal balanced growth paths, are also gotten.

  1. Towards Optimal Event Detection and Localization in Acyclic Flow Networks

    KAUST Repository

    Agumbe Suresh, Mahima

    2012-01-03

    Acyclic flow networks, present in many infrastructures of national importance (e.g., oil & gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against these infrastructures, have been proven costly and imprecise, especially when dealing with large scale distribution systems. In this paper, to the best of our knowledge for the first time, we investigate how mobile sensor networks can be used for optimal event detection and localization in acyclic flow networks. Sensor nodes move along the edges of the network and detect events (i.e., attacks) and proximity to beacon nodes with known placement in the network. We formulate the problem of minimizing the cost of monitoring infrastructure (i.e., minimizing the number of sensor and beacon nodes deployed), while ensuring a degree of sensing coverage in a zone of interest and a required accuracy in locating events. We propose algorithms for solving these problems and demonstrate their effectiveness with results obtained from a high fidelity simulator.

  2. Software defined network inference with evolutionary optimal observation matrices

    OpenAIRE

    Malboubi, M; Gong, Y; Yang, Z; Wang, X; Chuah, CN; Sharma, P

    2017-01-01

    © 2017 Elsevier B.V. A key requirement for network management is the accurate and reliable monitoring of relevant network characteristics. In today's large-scale networks, this is a challenging task due to the scarcity of network measurement resources and the hard constraints that this imposes. This paper proposes a new framework, called SNIPER, which leverages the flexibility provided by Software-Defined Networking (SDN) to design the optimal observation or measurement matrix that can lead t...

  3. Optimization of neural network algorithm of the land market description

    Directory of Open Access Journals (Sweden)

    M. A. Karpovich

    2016-01-01

    Full Text Available The advantages of neural network technology is shown in comparison of traditional descriptions of dynamically changing systems, which include a modern land market. The basic difficulty arising in the practical implementation of neural network models of the land market and construction products is revealed It is the formation of a representative set of training and test examples. The requirements which are necessary for the correct description of the current economic situation has been determined, it consists in the fact that Train-paid-set in the feature space should not has the ranges with a low density of observations. The methods of optimization of empirical array, which allow to avoid the long-range extrapolation of data from range of concentration of the set of examples are formulated. It is shown that a radical method of optimization a set of training and test examples enclosing to collect supplemantary information, is associated with significant costs time and resources for the economic problems and the ratio of cost / efficiency is less efficient than an algorithm optimization neural network models the earth market fixed set of empirical data. Algorithm of optimization based on the transformation of arrays of information which represents the expansion of the ranges of concentration of the set of examples and compression the ranges of low density of observations is analyzed in details. The significant reduction in the relative error of land price description is demonstrated on the specific example of Voronezh region market of lands which intend for road construction, it makes the using of radical method of empirical optimization of the array costeffective with accounting the significant absolute value of the land. The high economic efficiency of the proposed algorithms is demonstrated.

  4. Optimization of municipal pressure pumping station layout and sewage pipe network design

    Science.gov (United States)

    Tian, Jiandong; Cheng, Jilin; Gong, Yi

    2018-03-01

    Accelerated urbanization places extraordinary demands on sewer networks; thus optimization research to improve the design of these systems has practical significance. In this article, a subsystem nonlinear programming model is developed to optimize pumping station layout and sewage pipe network design. The subsystem model is expanded into a large-scale complex nonlinear programming system model to find the minimum total annual cost of the pumping station and network of all pipe segments. A comparative analysis is conducted using the sewage network in Taizhou City, China, as an example. The proposed method demonstrated that significant cost savings could have been realized if the studied system had been optimized using the techniques described in this article. Therefore, the method has practical value for optimizing urban sewage projects and provides a reference for theoretical research on optimization of urban drainage pumping station layouts.

  5. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2015-08-01

    Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.

  6. Multiobjective Collaborative Optimization of Systems of Systems

    National Research Council Canada - National Science Library

    Wolf, Robert A

    2005-01-01

    ...; in other words an inefficient design of the system of systems. This thesis examines the simultaneous design of several ships using the sea base concept as an example application of a network of ships working together...

  7. Optimizing electrical distribution systems

    International Nuclear Information System (INIS)

    Scott, W.G.

    1990-01-01

    Electrical utility distribution systems are in the middle of an unprecedented technological revolution in planning, design, maintenance and operation. The prime movers of the revolution are the major economic shifts that affect decision making. The major economic influence on the revolution is the cost of losses (technical and nontechnical). The vehicle of the revolution is the computer, which enables decision makers to examine alternatives in greater depth and detail than their predecessors could. The more important elements of the technological revolution are: system planning, computers, load forecasting, analytical systems (primary systems, transformers and secondary systems), system losses and coming technology. The paper is directed towards the rather unique problems encountered by engineers of utilities in developing countries - problems that are being solved through high technology, such as the recent World Bank-financed engineering computer system for Sri Lanka. This system includes a DEC computer, digitizer, plotter and engineering software to model the distribution system via a digitizer, analyse the system and plot single-line diagrams. (author). 1 ref., 4 tabs., 6 figs

  8. Loss optimization in distribution networks with distributed generation

    DEFF Research Database (Denmark)

    Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte

    2017-01-01

    This paper presents a novel power loss minimization approach in distribution grids considering network reconfiguration, distributed generation and storage installation. Identification of optimum configuration in such scenario is one of the main challenges faced by distribution system operators...... in highly active distribution grids. This issue is tackled by formulating a hybrid loss optimization problem and solved using the Interior Point Method. Sensitivity analysis is used to identify the optimum location of storage units. Different scenarios of reconfiguration, storage and distributed generation...... penetration are created to test the proposed algorithm. It is tested in a benchmark medium voltage network to show the effectiveness and performance of the algorithm. Results obtained are found to be encouraging for radial distribution system. It shows that we can reduce the power loss by more than 30% using...

  9. Risk-based optimization of pipe inspections in large underground networks with imprecise information

    International Nuclear Information System (INIS)

    Mancuso, A.; Compare, M.; Salo, A.; Zio, E.; Laakso, T.

    2016-01-01

    In this paper, we present a novel risk-based methodology for optimizing the inspections of large underground infrastructure networks in the presence of incomplete information about the network features and parameters. The methodology employs Multi Attribute Value Theory to assess the risk of each pipe in the network, whereafter the optimal inspection campaign is built with Portfolio Decision Analysis (PDA). Specifically, Robust Portfolio Modeling (RPM) is employed to identify Pareto-optimal portfolios of pipe inspections. The proposed methodology is illustrated by reporting a real case study on the large-scale maintenance optimization of the sewerage network in Espoo, Finland. - Highlights: • Risk-based approach to optimize pipe inspections on large underground networks. • Reasonable computational effort to select efficient inspection portfolios. • Possibility to accommodate imprecise expert information. • Feasibility of the approach shown by Espoo water system case study.

  10. HVAC system optimization - in-building section

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lu; Wenjian Cai; Lihua Xie; Shujiang Li; Yeng Chai Soh [Nanyang Technological Univ., Singapore (Singapore). School of Electrical and Electronic Engineering

    2005-01-01

    This paper presents a practical method to optimize in-building section of centralized Heating, Ventilation and Air-conditioning (HVAC) systems which consist of indoor air loops and chilled water loops. First, through component characteristic analysis, mathematical models associated with cooling loads and energy consumption for heat exchangers and energy consuming devices are established. By considering variation of cooling load of each end user, adaptive neuro-fuzzy inference system (ANFIS) is employed to model duct and pipe networks and obtain optimal differential pressure (DP) set points based on limited sensor information. A mix-integer nonlinear constraint optimization of system energy is formulated and solved by a modified genetic algorithm. The main feature of our paper is a systematic approach in optimizing the overall system energy consumption rather than that of individual component. A simulation study for a typical centralized HVAC system is provided to compare the proposed optimization method with traditional ones. The results show that the proposed method indeed improves the system performance significantly. (author)

  11. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    In this paper, the configuration of a district heating network which connects from the heating plant to the end users is optimized. Each end user in the network represents a building block. The connections between the heat generation plant and the end users are represented with mixed integer...... and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...... and it is optimized in terms of the net present cost. The optimization results indicates that the optimal DH network configuration is determined by multiple factors such as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding the pressure and temperature...

  12. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  13. Self-Optimization of LTE Networks Utilizing Celnet Xplorer

    CERN Document Server

    Buvaneswari, A; Polakos, Paul; Buvaneswari, Arumugam

    2010-01-01

    In order to meet demanding performance objectives in Long Term Evolution (LTE) networks, it is mandatory to implement highly efficient, autonomic self-optimization and configuration processes. Self-optimization processes have already been studied in second generation (2G) and third generation (3G) networks, typically with the objective of improving radio coverage and channel capacity. The 3rd Generation Partnership Project (3GPP) standard for LTE self-organization of networks (SON) provides guidelines on self-configuration of physical cell ID and neighbor relation function and self-optimization for mobility robustness, load balancing, and inter-cell interference reduction. While these are very important from an optimization perspective of local phenomenon (i.e., the eNodeB's interaction with its neighbors), it is also essential to architect control algorithms to optimize the network as a whole. In this paper, we propose a Celnet Xplorer-based SON architecture that allows detailed analysis of network performan...

  14. UMTS network planning, optimization, and inter-operation with GSM

    CERN Document Server

    Rahnema, Moe

    2008-01-01

    UMTS Network Planning, Optimization, and Inter-Operation with GSM is an accessible, one-stop reference to help engineers effectively reduce the time and costs involved in UMTS deployment and optimization. Rahnema includes detailed coverage from both a theoretical and practical perspective on the planning and optimization aspects of UMTS, and a number of other new techniques to help operators get the most out of their networks. Provides an end-to-end perspective, from network design to optimizationIncorporates the hands-on experiences of numerous researchersSingle

  15. Context-Aware Local Optimization of Sensor Network Deployment

    Directory of Open Access Journals (Sweden)

    Meysam Argany

    2015-07-01

    Full Text Available Wireless sensor networks are increasingly used for tracking and monitoring dynamic phenomena in urban and natural areas. Spatial coverage is an important issue in sensor networks in order to fulfill the needs of sensing applications. Optimization methods are widely used to efficiently distribute sensor nodes in the network to achieve a desired level of coverage. Most of the existing algorithms do not consider the characteristics of the real environment in the optimization process. In this paper, we propose the integration of contextual information in optimization algorithms to improve sensor network coverage. First, we investigate the implication of contextual information in sensor networks. Then, a conceptual framework for local context-aware sensor network deployment optimization method is introduced and related algorithms are presented in detail. Finally, several experiments are carried out to evaluate the validity of the proposed method. The results obtained from these experiments show the effectiveness of our approach in different contextual situations.

  16. Adaptive stimulus optimization for sensory systems neuroscience.

    Science.gov (United States)

    DiMattina, Christopher; Zhang, Kechen

    2013-01-01

    In this paper, we review several lines of recent work aimed at developing practical methods for adaptive on-line stimulus generation for sensory neurophysiology. We consider various experimental paradigms where on-line stimulus optimization is utilized, including the classical optimal stimulus paradigm where the goal of experiments is to identify a stimulus which maximizes neural responses, the iso-response paradigm which finds sets of stimuli giving rise to constant responses, and the system identification paradigm where the experimental goal is to estimate and possibly compare sensory processing models. We discuss various theoretical and practical aspects of adaptive firing rate optimization, including optimization with stimulus space constraints, firing rate adaptation, and possible network constraints on the optimal stimulus. We consider the problem of system identification, and show how accurate estimation of non-linear models can be highly dependent on the stimulus set used to probe the network. We suggest that optimizing stimuli for accurate model estimation may make it possible to successfully identify non-linear models which are otherwise intractable, and summarize several recent studies of this type. Finally, we present a two-stage stimulus design procedure which combines the dual goals of model estimation and model comparison and may be especially useful for system identification experiments where the appropriate model is unknown beforehand. We propose that fast, on-line stimulus optimization enabled by increasing computer power can make it practical to move sensory neuroscience away from a descriptive paradigm and toward a new paradigm of real-time model estimation and comparison.

  17. LinkMind: link optimization in swarming mobile sensor networks.

    Science.gov (United States)

    Ngo, Trung Dung

    2011-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  18. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Trung Dung Ngo

    2011-08-01

    Full Text Available A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  19. Outage Analysis and Optimization of SWIPT in Network-Coded Two-Way Relay Networks

    Directory of Open Access Journals (Sweden)

    Ruihong Jiang

    2017-01-01

    Full Text Available This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT in network-coded two-way relay systems, where a relay first harvests energy from the signals transmitted by two sources and then uses the harvested energy to forward the received information to the two sources. We consider two transmission protocols, power splitting two-way relay (PS-TWR and time switching two-way relay (TS-TWR protocols. We present two explicit expressions for the system outage probability of the two protocols and further derive approximate expressions for them in high and low SNR cases. To explore the system performance limits, two optimization problems are formulated to minimize the system outage probability. Since the problems are nonconvex and have no known solution methods, a genetic algorithm- (GA- based algorithm is designed. Numerical and simulation results validate our theoretical analysis. It is shown that, by jointly optimizing the time assignment and SWIPT receiver parameters, a great performance gain can be achieved for both PS-TWR and TS-TWR. Moreover, the optimized PS-TWR always outperforms the optimized TS-TWR in terms of outage performance. Additionally, the effects of parameters including relay location and transmit powers are also discussed, which provide some insights for the SWIPT-enabled two-way relay networks.

  20. The Structural Optimization System CAOS

    DEFF Research Database (Denmark)

    Rasmussen, John

    1990-01-01

    CAOS is a system for structural shape optimization. It is closely integrated in a Computer Aided Design environment and controlled entirely from the CAD-system AutoCAD. The mathematical foundation of the system is briefly presented and a description of the CAD-integration strategy is given together...

  1. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    Science.gov (United States)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  2. Optimal Allocation of Generalized Power Sources in Distribution Network Based on Multi-Objective Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Li Ran

    2017-01-01

    Full Text Available Optimal allocation of generalized power sources in distribution network is researched. A simple index of voltage stability is put forward. Considering the investment and operation benefit, the stability of voltage and the pollution emissions of generalized power sources in distribution network, a multi-objective optimization planning model is established. A multi-objective particle swarm optimization algorithm is proposed to solve the optimal model. In order to improve the global search ability, the strategies of fast non-dominated sorting, elitism and crowding distance are adopted in this algorithm. Finally, tested the model and algorithm by IEEE-33 node system to find the best configuration of GP, the computed result shows that with the generalized power reasonable access to the active distribution network, the investment benefit and the voltage stability of the system is improved, and the proposed algorithm has better global search capability.

  3. Optimization and Control of Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, Bernard C. [Univ. of Wisconsin, Madison, WI (United States); Molzahn, Daniel K. [Univ. of Wisconsin, Madison, WI (United States)

    2014-10-17

    The analysis and optimization needs for planning and operation of the electric power system are challenging due to the scale and the form of model representations. The connected network spans the continent and the mathematical models are inherently nonlinear. Traditionally, computational limits have necessitated the use of very simplified models for grid analysis, and this has resulted in either less secure operation, or less efficient operation, or both. The research conducted in this project advances techniques for power system optimization problems that will enhance reliable and efficient operation. The results of this work appear in numerous publications and address different application problems include optimal power flow (OPF), unit commitment, demand response, reliability margins, planning, transmission expansion, as well as general tools and algorithms.

  4. Distributed optimization of a multisubchannel Ad Hoc cognitive radio network

    KAUST Repository

    Leith, Alex

    2012-05-01

    In this paper, we study the distributed-duality-based optimization of a multisubchannel ad hoc cognitive radio network (CRN) that coexists with a multicell primary radio network (PRN). For radio resource allocation in multiuser orthogonal frequency-division multiplexing (MU-OFDM) systems, the orthogonal-access-based exclusive subchannel assignment (ESA) technique has been a popular method, but it is suboptimal in ad hoc networks, because nonorthogonal access between multiple secondary-user links by using shared subchannel assignment (SSA) can bring a higher weighted sum rate. We utilize the Lagrangian dual composition tool and design low-complexity near-optimal SSA resource allocation methods, assuming practical discrete-rate modulation and that the CRN-to-PRN interference constraint has to strictly be satisfied. However, available SSA methods for CRNs are either suboptimal or involve high complexity and suffer from slow convergence. To address this problem, we design fast-convergence SSA duality schemes and introduce several novel methods to increase the speed of convergence and to satisfy various system constraints with low complexity. For practical implementation in ad hoc CRNs, we design distributed-duality schemes that involve only a small number of CRN local information exchanges for dual update. The effects of many system parameters are presented through simulation results, which show that the near-optimal SSA duality scheme can perform significantly better than the suboptimal ESA duality and SSA-iterative waterfilling schemes and that the performance loss of the distributed schemes is small, compared with their centralized counterparts. © 2012 IEEE.

  5. Proposal for optimal placement platform of bikes using queueing networks.

    Science.gov (United States)

    Mizuno, Shinya; Iwamoto, Shogo; Seki, Mutsumi; Yamaki, Naokazu

    2016-01-01

    In recent social experiments, rental motorbikes and rental bicycles have been arranged at nodes, and environments where users can ride these bikes have been improved. When people borrow bikes, they return them to nearby nodes. Some experiments have been conducted using the models of Hamachari of Yokohama, the Niigata Rental Cycle, and Bicing. However, from these experiments, the effectiveness of distributing bikes was unclear, and many models were discontinued midway. Thus, we need to consider whether these models are effectively designed to represent the distribution system. Therefore, we construct a model to arrange the nodes for distributing bikes using a queueing network. To adopt realistic values for our model, we use the Google Maps application program interface. Thus, we can easily obtain values of distance and transit time between nodes in various places in the world. Moreover, we apply the distribution of a population to a gravity model and we compute the effective transition probability for this queueing network. If the arrangement of the nodes and number of bikes at each node is known, we can precisely design the system. We illustrate our system using convenience stores as nodes and optimize the node configuration. As a result, we can optimize simultaneously the number of nodes, node places, and number of bikes for each node, and we can construct a base for a rental cycle business to use our system.

  6. Optimal placement of distributed generation in distribution networks ...

    African Journals Online (AJOL)

    This paper proposes the application of Particle Swarm Optimization (PSO) technique to find the optimal size and optimum location for the placement of DG in the radial distribution networks for active power compensation by reduction in real power losses and enhancement in voltage profile. In the first segment, the optimal ...

  7. Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    D.B. Prakash

    2017-12-01

    Full Text Available In present days, continuous effort is being made in bringing down the line losses of the electrical distribution networks. Therefore proper allocation of capacitors is of utmost importance because, it will help in reducing the line losses and maintaining the bus voltage. This in turn results in improving the stability and reliability of the system. In this paper Whale Optimization Algorithm (WOA is used to find optimal sizing and placement of capacitors for a typical radial distribution system. Multi objectives such as operating cost reduction and power loss minimization with inequality constraints on voltage limits are considered and the proposed algorithm is validated by applying it on standard radial systems: IEEE-34 bus and IEEE-85 bus radial distribution test systems. The results obtained are compared with those of existing algorithms. The results show that the proposed algorithm is more effective in bringing down the operating costs and in maintaining better voltage profile. Keywords: Whale Optimization Algorithm (WOA, Optimal allocation and sizing of capacitors, Power loss reduction and voltage stability improvement, Radial distribution system, Operating cost minimization

  8. Multivariate optimization of production systems

    International Nuclear Information System (INIS)

    Carroll, J.A.; Horne, R.N.

    1992-01-01

    This paper reports that mathematically, optimization involves finding the extreme values of a function. Given a function of several variables, Z = ∫(rvec x 1 , rvec x 2 ,rvec x 3 ,→x n ), an optimization scheme will find the combination of these variables that produces an extreme value in the function, whether it is a minimum or a maximum value. Many examples of optimization exist. For instance, if a function gives and investor's expected return on the basis of different investments, numerical optimization of the function will determine the mix of investments that will yield the maximum expected return. This is the basis of modern portfolio theory. If a function gives the difference between a set of data and a model of the data, numerical optimization of the function will produce the best fit of the model to the data. This is the basis for nonlinear parameter estimation. Similar examples can be given for network analysis, queuing theory, decision analysis, etc

  9. Role of LNG in an optimized hybrid energy network : part I. Increased operational flexibility for the future energy system by integration of decentralized LNG regasification with a CHP

    NARCIS (Netherlands)

    Montoya Cardona, Juliana; de Rooij, Marietta; Dam, Jacques

    2017-01-01

    The future energy system could benefit from the integration of the independent gas, heat and electricity infrastructures. In addition to an increase in exergy efficiency, such a Hybrid Energy Network (HEN) could support the increase of intermittent renewable energy sources by offering increased

  10. Optimal interval for major maintenance actions in electricity distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Louit, Darko; Pascual, Rodrigo [Centro de Mineria, Pontificia Universidad Catolica de Chile, Av. Vicuna MacKenna, 4860 Santiago (Chile); Banjevic, Dragan [Centre for Maintenance Optimization and Reliability Engineering, University of Toronto, 5 King' s College Rd., Toronto, Ontario (Canada)

    2009-09-15

    Many systems require the periodic undertaking of major (preventive) maintenance actions (MMAs) such as overhauls in mechanical equipment, reconditioning of train lines, resurfacing of roads, etc. In the long term, these actions contribute to achieving a lower rate of occurrence of failures, though in many cases they increase the intensity of the failure process shortly after performed, resulting in a non-monotonic trend for failure intensity. Also, in the special case of distributed assets such as communications and energy networks, pipelines, etc., it is likely that the maintenance action takes place sequentially over an extended period of time, implying that different sections of the network underwent the MMAs at different periods. This forces the development of a model based on a relative time scale (i.e. time since last major maintenance event) and the combination of data from different sections of a grid, under a normalization scheme. Additionally, extended maintenance times and sequential execution of the MMAs make it difficult to identify failures occurring before and after the preventive maintenance action. This results in the loss of important information for the characterization of the failure process. A simple model is introduced to determine the optimal MMA interval considering such restrictions. Furthermore, a case study illustrates the optimal tree trimming interval around an electricity distribution network. (author)

  11. Information spread in networks: Games, optimal control, and stabilization

    Science.gov (United States)

    Khanafer, Ali

    This thesis focuses on designing efficient mechanisms for controlling information spread in networks. We consider two models for information spread. The first one is the well-known distributed averaging dynamics. The second model is a nonlinear one that describes virus spread in computer and biological networks. We seek to design optimal, robust, and stabilizing controllers under practical constraints. For distributed averaging networks, we study the interaction between a network designer and an adversary. We consider two types of attacks on the network. In Attack-I, the adversary strategically disconnects a set of links to prevent the nodes from reaching consensus. Meanwhile, the network designer assists the nodes in reaching consensus by changing the weights of a limited number of links in the network. We formulate two problems to describe this competition where the order in which the players act is reversed in the two problems. Although the canonical equations provided by the Pontryagin's Maximum Principle (MP) seem to be intractable, we provide an alternative characterization for the optimal strategies that makes connection to potential theory. Further, we provide a sufficient condition for the existence of a saddle-point equilibrium (SPE) for the underlying zero-sum game. In Attack-II, the designer and the adversary are both capable of altering the measurements of all nodes in the network by injecting global signals. We impose two constraints on both players: a power constraint and an energy constraint. We assume that the available energy to each player is not sufficient to operate at maximum power throughout the horizon of the game. We show the existence of an SPE and derive the optimal strategies in closed form for this attack scenario. As an alternative to the "network designer vs. adversary" framework, we investigate the possibility of stabilizing unknown network diffusion processes using a distributed mechanism, where the uncertainty is due to an attack

  12. Optimization of RFID network planning using Zigbee and WSN

    Science.gov (United States)

    Hasnan, Khalid; Ahmed, Aftab; Badrul-aisham, Bakhsh, Qadir

    2015-05-01

    Everyone wants to be ease in their life. Radio frequency identification (RFID) wireless technology is used to make our life easier. RFID technology increases productivity, accuracy and convenience in delivery of service in supply chain. It is used for various applications such as preventing theft of automobiles, tolls collection without stopping, no checkout lines at grocery stores, managing traffic, hospital management, corporate campuses and airports, mobile asset tracking, warehousing, tracking library books, and to track a wealth of assets in supply chain management. Efficiency of RFID can be enhanced by integrating with wireless sensor network (WSN), zigbee mesh network and internet of things (IOT). The proposed system is used for identifying, sensing and real-time locating system (RTLS) of items in an indoor heterogeneous region. The system gives real-time richer information of object's characteristics, location and their environmental parameters like temperature, noise and humidity etc. RTLS reduce human error, optimize inventory management, increase productivity and information accuracy at indoor heterogeneous network. The power consumption and the data transmission rate of the system can be minimized by using low power hardware design.

  13. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    African Journals Online (AJOL)

    NJD

    Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous ... process by training a number of neural networks. .... Matlab® version 6.1 was employed for building principal component ... provide a fair simulation of calibration data set with some degree.

  14. Network synchronization: optimal and pessimal scale-free topologies

    Energy Technology Data Exchange (ETDEWEB)

    Donetti, Luca [Departamento de Electronica y Tecnologia de Computadores and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hurtado, Pablo I; Munoz, Miguel A [Departamento de Electromagnetismo y Fisica de la Materia and Instituto Carlos I de Fisica Teorica y Computacional Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)], E-mail: mamunoz@onsager.ugr.es

    2008-06-06

    By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.

  15. Network synchronization: optimal and pessimal scale-free topologies

    International Nuclear Information System (INIS)

    Donetti, Luca; Hurtado, Pablo I; Munoz, Miguel A

    2008-01-01

    By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability

  16. Big Data Reduction and Optimization in Sensor Monitoring Network

    Directory of Open Access Journals (Sweden)

    Bin He

    2014-01-01

    Full Text Available Wireless sensor networks (WSNs are increasingly being utilized to monitor the structural health of the underground subway tunnels, showing many promising advantages over traditional monitoring schemes. Meanwhile, with the increase of the network size, the system is incapable of dealing with big data to ensure efficient data communication, transmission, and storage. Being considered as a feasible solution to these issues, data compression can reduce the volume of data travelling between sensor nodes. In this paper, an optimization algorithm based on the spatial and temporal data compression is proposed to cope with these issues appearing in WSNs in the underground tunnel environment. The spatial and temporal correlation functions are introduced for the data compression and data recovery. It is verified that the proposed algorithm is applicable to WSNs in the underground tunnel.

  17. Truss systems and shape optimization

    Science.gov (United States)

    Pricop, Mihai Victor; Bunea, Marian; Nedelcu, Roxana

    2017-07-01

    Structure optimization is an important topic because of its benefits and wide applicability range, from civil engineering to aerospace and automotive industries, contributing to a more green industry and life. Truss finite elements are still in use in many research/industrial codesfor their simple stiffness matrixand are naturally matching the requirements for cellular materials especially considering various 3D printing technologies. Optimality Criteria combined with Solid Isotropic Material with Penalization is the optimization method of choice, particularized for truss systems. Global locked structures areobtainedusinglocally locked lattice local organization, corresponding to structured or unstructured meshes. Post processing is important for downstream application of the method, to make a faster link to the CAD systems. To export the optimal structure in CATIA, a CATScript file is automatically generated. Results, findings and conclusions are given for two and three-dimensional cases.

  18. Buncher system parameter optimization

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1981-01-01

    A least-squares algorithm is presented to calculate the RF amplitudes and cavity spacings for a series of buncher cavities each resonating at a frequency that is a multiple of a fundamental frequency of interest. The longitudinal phase-space distribution, obtained by particle tracing through the bunching system, is compared to a desired distribution function of energy and phase. The buncher cavity parameters are adjusted to minimize the difference between these two distributions. Examples are given for zero space charge. The manner in which the method can be extended to include space charge using the 3-D space-charge calculation procedure is indicated

  19. Submodularity in dynamics and control of networked systems

    CERN Document Server

    Clark, Andrew; Bushnell, Linda; Poovendran, Radha

    2016-01-01

    This book presents a framework for the control of networked systems utilizing submodular optimization techniques. The main focus is on selecting input nodes for the control of networked systems, an inherently discrete optimization problem with applications in power system stability, social influence dynamics, and the control of vehicle formations. The first part of the book is devoted to background information on submodular functions, matroids, and submodular optimization, and presents algorithms for distributed submodular optimization that are scalable to large networked systems. In turn, the second part develops a unifying submodular optimization approach to controlling networked systems based on multiple performance and controllability criteria. Techniques are introduced for selecting input nodes to ensure smooth convergence, synchronization, and robustness to environmental and adversarial noise. Submodular optimization is the first unifying approach towards guaranteeing both performance and controllabilit...

  20. Optimization theory for large systems

    CERN Document Server

    Lasdon, Leon S

    2002-01-01

    Important text examines most significant algorithms for optimizing large systems and clarifying relations between optimization procedures. Much data appear as charts and graphs and will be highly valuable to readers in selecting a method and estimating computer time and cost in problem-solving. Initial chapter on linear and nonlinear programming presents all necessary background for subjects covered in rest of book. Second chapter illustrates how large-scale mathematical programs arise from real-world problems. Appendixes. List of Symbols.

  1. A Jackson network model and threshold policy for joint optimization of energy and delay in multi-hop wireless networks

    KAUST Repository

    Xia, Li

    2014-11-20

    This paper studies the joint optimization problem of energy and delay in a multi-hop wireless network. The optimization variables are the transmission rates, which are adjustable according to the packet queueing length in the buffer. The optimization goal is to minimize the energy consumption of energy-critical nodes and the packet transmission delay throughout the network. In this paper, we aim at understanding the well-known decentralized algorithms which are threshold based from a different research angle. By using a simplified network model, we show that we can adopt the semi-open Jackson network model and study this optimization problem in closed form. This simplified network model further allows us to establish some significant optimality properties. We prove that the system performance is monotonic with respect to (w.r.t.) the transmission rate. We also prove that the threshold-type policy is optimal, i.e., when the number of packets in the buffer is larger than a threshold, transmit with the maximal rate (power); otherwise, no transmission. With these optimality properties, we develop a heuristic algorithm to iteratively find the optimal threshold. Finally, we conduct some simulation experiments to demonstrate the main idea of this paper.

  2. A Jackson network model and threshold policy for joint optimization of energy and delay in multi-hop wireless networks

    KAUST Repository

    Xia, Li; Shihada, Basem

    2014-01-01

    This paper studies the joint optimization problem of energy and delay in a multi-hop wireless network. The optimization variables are the transmission rates, which are adjustable according to the packet queueing length in the buffer. The optimization goal is to minimize the energy consumption of energy-critical nodes and the packet transmission delay throughout the network. In this paper, we aim at understanding the well-known decentralized algorithms which are threshold based from a different research angle. By using a simplified network model, we show that we can adopt the semi-open Jackson network model and study this optimization problem in closed form. This simplified network model further allows us to establish some significant optimality properties. We prove that the system performance is monotonic with respect to (w.r.t.) the transmission rate. We also prove that the threshold-type policy is optimal, i.e., when the number of packets in the buffer is larger than a threshold, transmit with the maximal rate (power); otherwise, no transmission. With these optimality properties, we develop a heuristic algorithm to iteratively find the optimal threshold. Finally, we conduct some simulation experiments to demonstrate the main idea of this paper.

  3. Cellular Neural Networks for NP-Hard Optimization

    Directory of Open Access Journals (Sweden)

    Mária Ercsey-Ravasz

    2009-02-01

    Full Text Available A cellular neural/nonlinear network (CNN is used for NP-hard optimization. We prove that a CNN in which the parameters of all cells can be separately controlled is the analog correspondent of a two-dimensional Ising-type (Edwards-Anderson spin-glass system. Using the properties of CNN, we show that one single operation (template always yields a local minimum of the spin-glass energy function. This way, a very fast optimization method, similar to simulated annealing, can be built. Estimating the simulation time needed on CNN-based computers, and comparing it with the time needed on normal digital computers using the simulated annealing algorithm, the results are astonishing. CNN computers could be faster than digital computers already at 10×10 lattice sizes. The local control of the template parameters was already partially realized on some of the hardwares, we think this study could further motivate their development in this direction.

  4. Distributed optimization system and method

    Science.gov (United States)

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2003-06-10

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  5. Optimization of Hierarchical System for Data Acquisition

    Directory of Open Access Journals (Sweden)

    V. Novotny

    2011-04-01

    Full Text Available Television broadcasting over IP networks (IPTV is one of a number of network applications that are except of media distribution also interested in data acquisition from group of information resources of variable size. IP-TV uses Real-time Transport Protocol (RTP protocol for media streaming and RTP Control Protocol (RTCP protocol for session quality feedback. Other applications, for example sensor networks, have data acquisition as the main task. Current solutions have mostly problem with scalability - how to collect and process information from large amount of end nodes quickly and effectively? The article deals with optimization of hierarchical system of data acquisition. Problem is mathematically described, delay minima are searched and results are proved by simulations.

  6. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  7. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  8. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Huang, Can

    2018-01-01

    –slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....

  9. Simultaneous optimization of water and heat exchange networks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiyou; Hou, Yanlong; Li, Xiaoduan; Wang, Jingtao [Tianjin University, Tianjin (China)

    2014-04-15

    This paper focuses on the simultaneous optimization of the heat-integrated water allocation networks. A mathematic model is established to illustrate the modified state-space representation of this problem. An easy logical method is employed to help identify the streams of hot or cold ones. In this model, the water exchange networks (WEN), heat exchange networks (HEN), and the interactions between the WEN and HEN combine together as one unity. Thus, the whole network can be solved at one time, which enhances the possibility to get a global optimal result. Examples from the literature and a PVC plant are analyzed to illustrate the accuracy and applicability of this method.

  10. Iterative free-energy optimization for recurrent neural networks (INFERNO)

    Science.gov (United States)

    2017-01-01

    The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due to spontaneous activity. As a novel framework based on the free-energy principle, we propose to see the problem of spikes’ synchrony as an optimization problem of the neurons sub-threshold activity for the generation of long neuronal chains. Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic) evaluates the quality of one input vector to move the recurrent neural network to a desired activity; depending on the error made, this input vector is strengthened to hill-climb the gradient or elicited to search for another solution. This vector can be learned then by one associative memory as a model of the basal-ganglia to control the recurrent neural network. Experiments on habit learning and on sequence retrieving demonstrate the capabilities of the dual system to generate very long and precise spatio-temporal sequences, above two hundred iterations. Its features are applied then to the sequential planning of arm movements. In line with neurobiological theories, we discuss its relevance for modeling the cortico-basal working memory to initiate flexible goal-directed neuronal chains of causation and its relation to novel architectures such as Deep Networks, Neural Turing Machines and the Free-Energy Principle. PMID:28282439

  11. A practical algorithm for optimal operation management of distribution network including fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher; Meymand, Hamed Zeinoddini; Nayeripour, Majid [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran)

    2010-08-15

    Fuel cell power plants (FCPPs) have been taken into a great deal of consideration in recent years. The continuing growth of the power demand together with environmental constraints is increasing interest to use FCPPs in power system. Since FCPPs are usually connected to distribution network, the effect of FCPPs on distribution network is more than other sections of power system. One of the most important issues in distribution networks is optimal operation management (OOM) which can be affected by FCPPs. This paper proposes a new approach for optimal operation management of distribution networks including FCCPs. In the article, we consider the total electrical energy losses, the total electrical energy cost and the total emission as the objective functions which should be minimized. Whereas the optimal operation in distribution networks has a nonlinear mixed integer optimization problem, the optimal solution could be obtained through an evolutionary method. We use a new evolutionary algorithm based on Fuzzy Adaptive Particle Swarm Optimization (FAPSO) to solve the optimal operation problem and compare this method with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization (ACO) and Tabu Search (TS) over two distribution test feeders. (author)

  12. Discrete optimization in architecture extremely modular systems

    CERN Document Server

    Zawidzki, Machi

    2017-01-01

    This book is comprised of two parts, both of which explore modular systems: Pipe-Z (PZ) and Truss-Z (TZ), respectively. It presents several methods of creating PZ and TZ structures subjected to discrete optimization. The algorithms presented employ graph-theoretic and heuristic methods. The underlying idea of both systems is to create free-form structures using the minimal number of types of modular elements. PZ is more conceptual, as it forms single-branch mathematical knots with a single type of module. Conversely, TZ is a skeletal system for creating free-form pedestrian ramps and ramp networks among any number of terminals in space. In physical space, TZ uses two types of modules that are mirror reflections of each other. The optimization criteria discussed include: the minimal number of units, maximal adherence to the given guide paths, etc.

  13. AS Migration and Optimization of the Power Integrated Data Network

    Science.gov (United States)

    Zhou, Junjie; Ke, Yue

    2018-03-01

    In the transformation process of data integration network, the impact on the business has always been the most important reference factor to measure the quality of network transformation. With the importance of the data network carrying business, we must put forward specific design proposals during the transformation, and conduct a large number of demonstration and practice to ensure that the transformation program meets the requirements of the enterprise data network. This paper mainly demonstrates the scheme of over-migrating point-to-point access equipment in the reconstruction project of power data comprehensive network to migrate the BGP autonomous domain to the specified domain defined in the industrial standard, and to smooth the intranet OSPF protocol Migration into ISIS agreement. Through the optimization design, eventually making electric power data network performance was improved on traffic forwarding, traffic forwarding path optimized, extensibility, get larger, lower risk of potential loop, the network stability was improved, and operational cost savings, etc.

  14. ENERGY OPTIMIZATION IN CLUSTER BASED WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    T. SHANKAR

    2014-04-01

    Full Text Available Wireless sensor networks (WSN are made up of sensor nodes which are usually battery-operated devices, and hence energy saving of sensor nodes is a major design issue. To prolong the networks lifetime, minimization of energy consumption should be implemented at all layers of the network protocol stack starting from the physical to the application layer including cross-layer optimization. Optimizing energy consumption is the main concern for designing and planning the operation of the WSN. Clustering technique is one of the methods utilized to extend lifetime of the network by applying data aggregation and balancing energy consumption among sensor nodes of the network. This paper proposed new version of Low Energy Adaptive Clustering Hierarchy (LEACH, protocols called Advanced Optimized Low Energy Adaptive Clustering Hierarchy (AOLEACH, Optimal Deterministic Low Energy Adaptive Clustering Hierarchy (ODLEACH, and Varying Probability Distance Low Energy Adaptive Clustering Hierarchy (VPDL combination with Shuffled Frog Leap Algorithm (SFLA that enables selecting best optimal adaptive cluster heads using improved threshold energy distribution compared to LEACH protocol and rotating cluster head position for uniform energy dissipation based on energy levels. The proposed algorithm optimizing the life time of the network by increasing the first node death (FND time and number of alive nodes, thereby increasing the life time of the network.

  15. Optimal Design of Gravitational Sewer Networks with General Cellular Automata

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Afshar

    2014-05-01

    Full Text Available In this paper, a Cellular Automata method is applied for the optimal design of sewer networks. The solution of sewer network optimization problems requires the determination of pipe diameters and average pipe cover depths, minimizing the total cost of the sewer network subject to operational constraints. In this paper, the network nodes and upstream and downstream pipe cover depths are considered as CA cells and cell states, respectively, and the links around each cell are taken into account as neighborhood. The proposed method is a general and flexible method for the optimization of sewer networks as it can be used to optimally design both gravity and pumped network due to the use of pipe nodal cover depths as the decision variables. The proposed method is tested against two  gravitational sewer networks and the  comparison of results with other methods such as  Genetic algorithm, Cellular Automata, Ant Colony Optimization Algorithm and Particle Swarm Optimization show the efficiency and effectiveness of the proposed method.

  16. Optimal power flow for distribution networks with distributed generation

    Directory of Open Access Journals (Sweden)

    Radosavljević Jordan

    2015-01-01

    Full Text Available This paper presents a genetic algorithm (GA based approach for the solution of the optimal power flow (OPF in distribution networks with distributed generation (DG units, including fuel cells, micro turbines, diesel generators, photovoltaic systems and wind turbines. The OPF is formulated as a nonlinear multi-objective optimization problem with equality and inequality constraints. Due to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties, a probabilisticalgorithm is introduced in the OPF analysis. The Weibull and normal distributions are employed to model the input random variables, namely the wind speed, solar irradiance and load power. The 2m+1 point estimate method and the Gram Charlier expansion theory are used to obtain the statistical moments and the probability density functions (PDFs of the OPF results. The proposed approach is examined and tested on a modified IEEE 34 node test feeder with integrated five different DG units. The obtained results prove the efficiency of the proposed approach to solve both deterministic and probabilistic OPF problems for different forms of the multi-objective function. As such, it can serve as a useful decision-making supporting tool for distribution network operators. [Projekat Ministarstva nauke Republike Srbije, br. TR33046

  17. Computer Networks A Systems Approach

    CERN Document Server

    Peterson, Larry L

    2011-01-01

    This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur

  18. Designing optimal greenhouse gas monitoring networks for Australia

    Science.gov (United States)

    Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.

    2016-01-01

    Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.

  19. Optimal river monitoring network using optimal partition analysis: a case study of Hun River, Northeast China.

    Science.gov (United States)

    Wang, Hui; Liu, Chunyue; Rong, Luge; Wang, Xiaoxu; Sun, Lina; Luo, Qing; Wu, Hao

    2018-01-09

    River monitoring networks play an important role in water environmental management and assessment, and it is critical to develop an appropriate method to optimize the monitoring network. In this study, an effective method was proposed based on the attainment rate of National Grade III water quality, optimal partition analysis and Euclidean distance, and Hun River was taken as a method validation case. There were 7 sampling sites in the monitoring network of the Hun River, and 17 monitoring items were analyzed once a month during January 2009 to December 2010. The results showed that the main monitoring items in the surface water of Hun River were ammonia nitrogen (NH 4 + -N), chemical oxygen demand, and biochemical oxygen demand. After optimization, the required number of monitoring sites was reduced from seven to three, and 57% of the cost was saved. In addition, there were no significant differences between non-optimized and optimized monitoring networks, and the optimized monitoring networks could correctly represent the original monitoring network. The duplicate setting degree of monitoring sites decreased after optimization, and the rationality of the monitoring network was improved. Therefore, the optimal method was identified as feasible, efficient, and economic.

  20. Optimization of Multiple Related Negotiation through Multi-Negotiation Network

    Science.gov (United States)

    Ren, Fenghui; Zhang, Minjie; Miao, Chunyan; Shen, Zhiqi

    In this paper, a Multi-Negotiation Network (MNN) and a Multi- Negotiation Influence Diagram (MNID) are proposed to optimally handle Multiple Related Negotiations (MRN) in a multi-agent system. Most popular, state-of-the-art approaches perform MRN sequentially. However, a sequential procedure may not optimally execute MRN in terms of maximizing the global outcome, and may even lead to unnecessary losses in some situations. The motivation of this research is to use a MNN to handle MRN concurrently so as to maximize the expected utility of MRN. Firstly, both the joint success rate and the joint utility by considering all related negotiations are dynamically calculated based on a MNN. Secondly, by employing a MNID, an agent's possible decision on each related negotiation is reflected by the value of expected utility. Lastly, through comparing expected utilities between all possible policies to conduct MRN, an optimal policy is generated to optimize the global outcome of MRN. The experimental results indicate that the proposed approach can improve the global outcome of MRN in a successful end scenario, and avoid unnecessary losses in an unsuccessful end scenario.

  1. Topologically determined optimal stochastic resonance responses of spatially embedded networks

    International Nuclear Information System (INIS)

    Gosak, Marko; Marhl, Marko; Korosak, Dean

    2011-01-01

    We have analyzed the stochastic resonance phenomenon on spatial networks of bistable and excitable oscillators, which are connected according to their location and the amplitude of external forcing. By smoothly altering the network topology from a scale-free (SF) network with dominating long-range connections to a network where principally only adjacent oscillators are connected, we reveal that besides an optimal noise intensity, there is also a most favorable interaction topology at which the best correlation between the response of the network and the imposed weak external forcing is achieved. For various distributions of the amplitudes of external forcing, the optimal topology is always found in the intermediate regime between the highly heterogeneous SF network and the strong geometric regime. Our findings thus indicate that a suitable number of hubs and with that an optimal ratio between short- and long-range connections is necessary in order to obtain the best global response of a spatial network. Furthermore, we link the existence of the optimal interaction topology to a critical point indicating the transition from a long-range interactions-dominated network to a more lattice-like network structure.

  2. Particle swarm optimization of a neural network model in a ...

    Indian Academy of Sciences (India)

    . Since tool life is critically affected by the tool wear, accurate prediction of this wear ... In their work, they established an improvement in the quality ... objective optimization of hard turning using neural network modelling and swarm intelligence ...

  3. Optimization of recurrent neural networks for time series modeling

    DEFF Research Database (Denmark)

    Pedersen, Morten With

    1997-01-01

    The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...... series. The overall objective s are to improve training by application of second-order methods and to improve generalization ability by architecture optimization accomplished by pruning. The major topics covered in the thesis are: 1. The problem of training recurrent networks is analyzed from a numerical...... of solution obtained as well as computation time required. 3. A theoretical definition of the generalization error for recurrent networks is provided. This definition justifies a commonly adopted approach for estimating generalization ability. 4. The viability of pruning recurrent networks by the Optimal...

  4. Optimization model for the design of distributed wastewater treatment networks

    Directory of Open Access Journals (Sweden)

    Ibrić Nidret

    2012-01-01

    Full Text Available In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The optimization model is given as a nonlinear programming (NLP problem where the objective function can be defined to minimize the total amount of wastewater treated in treatment operations or to minimize the total treatment costs. The NLP model is extended to a mixed integer nonlinear programming (MINLP problem where binary variables are used for the selection of the wastewater treatment technologies. The bounds for all flowrates and concentrations in the wastewater network are specified as general equations. The proposed models are solved using the global optimization solvers (BARON and LINDOGlobal. The application of the proposed models is illustrated on the two wastewater network problems of different complexity. First one is formulated as the NLP and the second one as the MINLP. For the second one the parametric and structural optimization is performed at the same time where optimal flowrates, concentrations as well as optimal technologies for the wastewater treatment are selected. Using the proposed model both problems are solved to global optimality.

  5. Optimized Neural Network for Fault Diagnosis and Classification

    International Nuclear Information System (INIS)

    Elaraby, S.M.

    2005-01-01

    This paper presents a developed and implemented toolbox for optimizing neural network structure of fault diagnosis and classification. Evolutionary algorithm based on hierarchical genetic algorithm structure is used for optimization. The simplest feed-forward neural network architecture is selected. Developed toolbox has friendly user interface. Multiple solutions are generated. The performance and applicability of the proposed toolbox is verified with benchmark data patterns and accident diagnosis of Egyptian Second research reactor (ETRR-2)

  6. Network speech systems technology program

    Science.gov (United States)

    Weinstein, C. J.

    1981-09-01

    This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.

  7. Robust optimal control of material flows in demand-driven supply networks

    NARCIS (Netherlands)

    Laumanns, M.; Lefeber, A.A.J.

    2006-01-01

    We develop a model based on stochastic discrete-time controlleddynamical systems in order to derive optimal policies for controllingthe material flow in supply networks. Each node in the network isdescribed as a transducer such that the dynamics of the material andinformation flows within the entire

  8. CORAL off-line: an object-oriented tool for optimal control of sewer networks

    OpenAIRE

    Figueras, J.; Cembrano, Gabriela; Puig, Vicenç; Quevedo, Joseba; Salamero Sansalvado, María; Marti Marques, Joaquim

    2002-01-01

    This paper describes a tool to aid in the analysis and design of combined sewer networks. Complex drainage systems include actuators, like flow-diversion gates and detention tanks, which should be optimally controlled in order to minimize flooding and combined sewer overflow (CSO). Through these optimisations volume to waste water treatment plants (WWTP) is maximised. CORAL is a tool able to model a combined sewer network, simulate rain events, calculate actuators optimal policies, reproduce ...

  9. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.

    Science.gov (United States)

    Kulkarni, Shruti R; Rajendran, Bipin

    2018-07-01

    We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. METHODS OF INTEGRATED OPTIMIZATION MAGLEV TRANSPORT SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. Lasher

    2013-09-01

    example, this research proved the sustainability of the proposed integrated optimization parameters of transport systems. This approach could be applied not only for MTS, but also for other transport systems. Originality. The bases of the complex optimization of transport presented are the new system of universal scientific methods and approaches that ensure high accuracy and authenticity of calculations with the simulation of transport systems and transport networks taking into account the dynamics of their development. Practical value. The development of the theoretical and technological bases of conducting the complex optimization of transport makes it possible to create the scientific tool, which ensures the fulfillment of the automated simulation and calculating of technical and economic structure and technology of the work of different objects of transport, including its infrastructure.

  11. Applying the sequential neural-network approximation and orthogonal array algorithm to optimize the axial-flow cooling system for rapid thermal processes

    International Nuclear Information System (INIS)

    Hung, Shih-Yu; Shen, Ming-Ho; Chang, Ying-Pin

    2009-01-01

    The sequential neural-network approximation and orthogonal array (SNAOA) were used to shorten the cooling time for the rapid cooling process such that the normalized maximum resolved stress in silicon wafer was always below one in this study. An orthogonal array was first conducted to obtain the initial solution set. The initial solution set was treated as the initial training sample. Next, a back-propagation sequential neural network was trained to simulate the feasible domain to obtain the optimal parameter setting. The size of the training sample was greatly reduced due to the use of the orthogonal array. In addition, a restart strategy was also incorporated into the SNAOA so that the searching process may have a better opportunity to reach a near global optimum. In this work, we considered three different cooling control schemes during the rapid thermal process: (1) downward axial gas flow cooling scheme; (2) upward axial gas flow cooling scheme; (3) dual axial gas flow cooling scheme. Based on the maximum shear stress failure criterion, the other control factors such as flow rate, inlet diameter, outlet width, chamber height and chamber diameter were also examined with respect to cooling time. The results showed that the cooling time could be significantly reduced using the SNAOA approach

  12. Finding influential nodes for integration in brain networks using optimal percolation theory.

    Science.gov (United States)

    Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A

    2018-06-11

    Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.

  13. Optimization-based Method for Automated Road Network Extraction

    International Nuclear Information System (INIS)

    Xiong, D

    2001-01-01

    Automated road information extraction has significant applicability in transportation. It provides a means for creating, maintaining, and updating transportation network databases that are needed for purposes ranging from traffic management to automated vehicle navigation and guidance. This paper is to review literature on the subject of road extraction and to describe a study of an optimization-based method for automated road network extraction

  14. Optimal Bidding Strategy for Renewable Microgrid with Active Network Management

    Directory of Open Access Journals (Sweden)

    Seung Wan Kim

    2016-01-01

    Full Text Available Active Network Management (ANM enables a microgrid to optimally dispatch the active/reactive power of its Renewable Distributed Generation (RDG and Battery Energy Storage System (BESS units in real time. Thus, a microgrid with high penetration of RDGs can handle their uncertainties and variabilities to achieve the stable operation using ANM. However, the actual power flow in the line connecting the main grid and microgrid may deviate significantly from the day-ahead bids if the bids are determined without consideration of the real-time adjustment through ANM, which will lead to a substantial imbalance cost. Therefore, this study proposes a formulation for obtaining an optimal bidding which reflects the change of power flow in the connecting line by real-time adjustment using ANM. The proposed formulation maximizes the expected profit of the microgrid considering various network and physical constraints. The effectiveness of the proposed bidding strategy is verified through the simulations with a 33-bus test microgrid. The simulation results show that the proposed bidding strategy improves the expected operating profit by reducing the imbalance cost to a greater degree compared to the basic bidding strategy without consideration of ANM.

  15. Stabilization of model-based networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Francisco [CIDMA, Universidade de Aveiro, Aveiro (Portugal); Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); Abreu, Carlos [Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); CMEMS-UMINHO, Universidade do Minho, Braga (Portugal); Mendes, Paulo M. [CMEMS-UMINHO, Universidade do Minho, Braga (Portugal)

    2016-06-08

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.

  16. Optimization of patterns of control bars using neural networks

    International Nuclear Information System (INIS)

    Mejia S, D.M.; Ortiz S, J.J.

    2005-01-01

    In this work the RENOPBC system that is based on a recurrent multi state neural network, for the optimization of patterns of control bars in a cycle of balance of a boiling water reactor (BWR for their initials in English) is presented. The design of patterns of bars is based on the execution of operation thermal limits, to maintain criticizes the reactor and that the axial profile of power is adjusted to one predetermined along several steps of burnt. The patterns of control bars proposed by the system are comparable to those proposed by human experts with many hour-man of experience. These results are compared with those proposed by other techniques as genetic algorithms, colonies of ants and tabu search for the same operation cycle. As consequence it is appreciated that the proposed patterns of control bars, have bigger operation easiness that those proposed by the other techniques. (Author)

  17. Optimal search strategies on complex networks

    OpenAIRE

    Di Patti, Francesca; Fanelli, Duccio; Piazza, Francesco

    2014-01-01

    Complex networks are ubiquitous in nature and play a role of paramount importance in many contexts. Internet and the cyberworld, which permeate our everyday life, are self-organized hierarchical graphs. Urban traffic flows on intricate road networks, which impact both transportation design and epidemic control. In the brain, neurons are cabled through heterogeneous connections, which support the propagation of electric signals. In all these cases, the true challenge is to unveil the mechanism...

  18. Optimizing transport in a homogeneous network

    OpenAIRE

    WEAIRE, DENIS LAWRENCE

    2004-01-01

    PUBLISHED Many situations in physics, biology, and engineering consist of the transport of some physical quantity through a network of narrow channels. The ability of a network to transport such a quantity in every direction can be described by the average conductivity associated with it. When the flow through each channel is conserved and derives from a potential function, we show that there exists an upper bound of the average conductivity and explicitly give the expression f...

  19. Multiobjective planning of distribution networks incorporating switches and protective devices using a memetic optimization

    International Nuclear Information System (INIS)

    Pombo, A. Vieira; Murta-Pina, João; Pires, V. Fernão

    2015-01-01

    A multi-objective planning approach for the reliability of electric distribution networks using a memetic optimization is presented. In this reliability optimization, the type of the equipment (switches or reclosers) and their location are optimized. The multiple objectives considered to find the optimal values for these planning variables are the minimization of the total equipment cost and at the same time the minimization of two distribution network reliability indexes. The reliability indexes are the system average interruption frequency index (SAIFI) and system average interruption duration index (SAIDI). To solve this problem a memetic evolutionary algorithm is proposed, which combines the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) with a local search algorithm. The obtained Pareto-optimal front contains solutions of different trade-offs with respect to the three objectives. A real distribution network is used to test the proposed algorithm. The obtained results show that this approach allows the utility to obtain the optimal type and location of the equipments to achieve the best reliability with the lower cost. - Highlights: • Reliability indexes SAIFI and SAIDI and Equipment Cost are optimized. • Optimization of equipment type, number and location on a MV network. • Memetic evolutionary algorithm with a local search algorithm is proposed. • Pareto optimal front solutions with respect to the three objective functions

  20. Integrated solar energy system optimization

    Science.gov (United States)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  1. Chaotic Hopfield Neural Network Swarm Optimization and Its Application

    Directory of Open Access Journals (Sweden)

    Yanxia Sun

    2013-01-01

    Full Text Available A new neural network based optimization algorithm is proposed. The presented model is a discrete-time, continuous-state Hopfield neural network and the states of the model are updated synchronously. The proposed algorithm combines the advantages of traditional PSO, chaos and Hopfield neural networks: particles learn from their own experience and the experiences of surrounding particles, their search behavior is ergodic, and convergence of the swarm is guaranteed. The effectiveness of the proposed approach is demonstrated using simulations and typical optimization problems.

  2. Multi-objective optimal power flow for active distribution network considering the stochastic characteristic of photovoltaic

    Science.gov (United States)

    Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming

    2017-05-01

    To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.

  3. A Generic Methodology for Superstructure Optimization of Different Processing Networks

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Frauzem, Rebecca; Zhang, Lei

    2016-01-01

    In this paper, we propose a generic computer-aided methodology for synthesis of different processing networks using superstructure optimization. The methodology can handle different network optimization problems of various application fields. It integrates databases with a common data architecture......, a generic model to represent the processing steps, and appropriate optimization tools. A special software interface has been created to automate the steps in the methodology workflow, allow the transfer of data between tools and obtain the mathematical representation of the problem as required...

  4. An optimally evolved connective ratio of neural networks that maximizes the occurrence of synchronized bursting behavior

    Science.gov (United States)

    2012-01-01

    Background Synchronized bursting activity (SBA) is a remarkable dynamical behavior in both ex vivo and in vivo neural networks. Investigations of the underlying structural characteristics associated with SBA are crucial to understanding the system-level regulatory mechanism of neural network behaviors. Results In this study, artificial pulsed neural networks were established using spike response models to capture fundamental dynamics of large scale ex vivo cortical networks. Network simulations with synaptic parameter perturbations showed the following two findings. (i) In a network with an excitatory ratio (ER) of 80-90%, its connective ratio (CR) was within a range of 10-30% when the occurrence of SBA reached the highest expectation. This result was consistent with the experimental observation in ex vivo neuronal networks, which were reported to possess a matured inhibitory synaptic ratio of 10-20% and a CR of 10-30%. (ii) No SBA occurred when a network does not contain any all-positive-interaction feedback loop (APFL) motif. In a neural network containing APFLs, the number of APFLs presented an optimal range corresponding to the maximal occurrence of SBA, which was very similar to the optimal CR. Conclusions In a neural network, the evolutionarily selected CR (10-30%) optimizes the occurrence of SBA, and APFL serves a pivotal network motif required to maximize the occurrence of SBA. PMID:22462685

  5. Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2009-01-01

    The reliability of ad-hoc networks is gaining popularity in two areas: as a topic of academic interest and as a key performance parameter for defense systems employing this type of network. The ad-hoc network is dynamic and scalable and these descriptions are what attract its users. However, these descriptions are also synonymous for undefined and unpredictable when considering the impacts to the reliability of the system. The configuration of an ad-hoc network changes continuously and this fact implies that no single mathematical expression or graphical depiction can describe the system reliability-wise. Previous research has used mobility and stochastic models to address this challenge successfully. In this paper, the authors leverage the stochastic approach and build upon it a probabilistic solution discovery (PSD) algorithm to optimize the topology for a cluster-based mobile ad-hoc wireless network (MAWN). Specifically, the membership of nodes within the back-bone network or networks will be assigned in such as way as to maximize reliability subject to a constraint on cost. The constraint may also be considered as a non-monetary cost, such as weight, volume, power, or the like. When a cost is assigned to each component, a maximum cost threshold is assigned to the network, and the method is run; the result is an optimized allocation of the radios enabling back-bone network(s) to provide the most reliable network possible without exceeding the allowable cost. The method is intended for use directly as part of the architectural design process of a cluster-based MAWN to efficiently determine an optimal or near-optimal design solution. It is capable of optimizing the topology based upon all-terminal reliability (ATR), all-operating terminal reliability (AoTR), or two-terminal reliability (2TR)

  6. PlayNCool: Opportunistic Network Coding for Local Optimization of Routing in Wireless Mesh Networks

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Pedersen, Morten Videbæk

    2013-01-01

    This paper introduces PlayNCool, an opportunistic protocol with local optimization based on network coding to increase the throughput of a wireless mesh network (WMN). PlayNCool aims to enhance current routing protocols by (i) allowing random linear network coding transmissions end-to-end, (ii) r...

  7. Genetic optimization of neural network architecture

    International Nuclear Information System (INIS)

    Harp, S.A.; Samad, T.

    1994-03-01

    Neural networks are now a popular technology for a broad variety of application domains, including the electric utility industry. Yet, as the technology continues to gain increasing acceptance, it is also increasingly apparent that the power that neural networks provide is not an unconditional blessing. Considerable care must be exercised during application development if the full benefit of the technology is to be realized. At present, no fully general theory or methodology for neural network design is available, and application development is a trial-and-error process that is time-consuming and expertise-intensive. Each application demands appropriate selections of the network input space, the network structure, and values of learning algorithm parameters-design choices that are closely coupled in ways that largely remain a mystery. This EPRI-funded exploratory research project was initiated to take the key next step in this research program: the validation of the approach on a realistic problem. We focused on the problem of modeling the thermal performance of the TVA Sequoyah nuclear power plant (units 1 and 2)

  8. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  9. Statistical process control using optimized neural networks: a case study.

    Science.gov (United States)

    Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid

    2014-09-01

    The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  10. A probabilistic computational framework for bridge network optimal maintenance scheduling

    International Nuclear Information System (INIS)

    Bocchini, Paolo; Frangopol, Dan M.

    2011-01-01

    This paper presents a probabilistic computational framework for the Pareto optimization of the preventive maintenance applications to bridges of a highway transportation network. The bridge characteristics are represented by their uncertain reliability index profiles. The in/out of service states of the bridges are simulated taking into account their correlation structure. Multi-objective Genetic Algorithms have been chosen as numerical tool for the solution of the optimization problem. The design variables of the optimization are the preventive maintenance schedules of all the bridges of the network. The two conflicting objectives are the minimization of the total present maintenance cost and the maximization of the network performance indicator. The final result is the Pareto front of optimal solutions among which the managers should chose, depending on engineering and economical factors. A numerical example illustrates the application of the proposed approach.

  11. Optimal satisfaction degree in energy harvesting cognitive radio networks

    International Nuclear Information System (INIS)

    Li Zan; Liu Bo-Yang; Si Jiang-Bo; Zhou Fu-Hui

    2015-01-01

    A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. (paper)

  12. Optimal satisfaction degree in energy harvesting cognitive radio networks

    Science.gov (United States)

    Li, Zan; Liu, Bo-Yang; Si, Jiang-Bo; Zhou, Fu-Hui

    2015-12-01

    A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education of China (Grant No. 20110203110011), and the 111 Project (Grant No. B08038).

  13. Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools.

    Science.gov (United States)

    Wöhling, Thomas; Geiges, Andreas; Nowak, Wolfgang

    2016-11-01

    Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data-worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south-western Germany, which has been established to monitor river-groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model-based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy-to-implement tools for an otherwise complex task and (2) yet to consider data-worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types. © 2016, National Ground Water Association.

  14. Optimal neural networks for protein-structure prediction

    International Nuclear Information System (INIS)

    Head-Gordon, T.; Stillinger, F.H.

    1993-01-01

    The successful application of neural-network algorithms for prediction of protein structure is stymied by three problem areas: the sparsity of the database of known protein structures, poorly devised network architectures which make the input-output mapping opaque, and a global optimization problem in the multiple-minima space of the network variables. We present a simplified polypeptide model residing in two dimensions with only two amino-acid types, A and B, which allows the determination of the global energy structure for all possible sequences of pentamer, hexamer, and heptamer lengths. This model simplicity allows us to compile a complete structural database and to devise neural networks that reproduce the tertiary structure of all sequences with absolute accuracy and with the smallest number of network variables. These optimal networks reveal that the three problem areas are convoluted, but that thoughtful network designs can actually deconvolute these detrimental traits to provide network algorithms that genuinely impact on the ability of the network to generalize or learn the desired mappings. Furthermore, the two-dimensional polypeptide model shows sufficient chemical complexity so that transfer of neural-network technology to more realistic three-dimensional proteins is evident

  15. Localization of multilayer networks by optimized single-layer rewiring.

    Science.gov (United States)

    Jalan, Sarika; Pradhan, Priodyuti

    2018-04-01

    We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.

  16. Optimal control of epidemic information dissemination over networks.

    Science.gov (United States)

    Chen, Pin-Yu; Cheng, Shin-Ming; Chen, Kwang-Cheng

    2014-12-01

    Information dissemination control is of crucial importance to facilitate reliable and efficient data delivery, especially in networks consisting of time-varying links or heterogeneous links. Since the abstraction of information dissemination much resembles the spread of epidemics, epidemic models are utilized to characterize the collective dynamics of information dissemination over networks. From a systematic point of view, we aim to explore the optimal control policy for information dissemination given that the control capability is a function of its distribution time, which is a more realistic model in many applications. The main contributions of this paper are to provide an analytically tractable model for information dissemination over networks, to solve the optimal control signal distribution time for minimizing the accumulated network cost via dynamic programming, and to establish a parametric plug-in model for information dissemination control. In particular, we evaluate its performance in mobile and generalized social networks as typical examples.

  17. System for optimizing activation measurements

    International Nuclear Information System (INIS)

    Antonov, V.A.

    1993-01-01

    Optimization procedures make it possible to perform committed activation investigations, reduce the number of experiments, make them less laborious, and increase their productivity. Separate mathematical functions were investigated for given optimization conditions, and these enable numerical optimal parameter values to be established only in the particular cases of specific techniques and mathematical computer programs. In the known mathematical models insufficient account is taken of the variety and complexity of real nuclide mixtures, the influence of background radiation, and the wide diversity of activation measurement conditions, while numerical methods for solving the optimization problem fail to reveal the laws governing the variations of the activation parameters and their functional interdependences. An optimization method was proposed in which was mainly used to estimate the time intervals for activation measurements of a mononuclide, binary or ternary nuclide mixture. However, by forming a mathematical model of activation processes it becomes possible to extend the number of nuclides in the mixture and to take account of the influence of background radiation and the diversity of the measurement alternatives. The analytical expressions and nomograms obtained can be used to determine the number of measurements, their minimum errors, their sensitivities when estimating the quantity of the tracer nuclide, the permissible quantity of interfering nuclides, the permissible background radiation intensity, and the flux of activating radiation. In the worker described herein these investigations are generalized to include spectrally resolved detection of the activation effect in the presence of the tracer and the interfering nuclides. The analytical expressions are combined into a system from which the optimal activation parameters can be found under different given conditions

  18. Singularities in minimax optimization of networks

    DEFF Research Database (Denmark)

    Madsen, Kaj; Schjær-Jacobsen, Hans

    1976-01-01

    A theoretical treatment of singularities in nonlinear minimax optimization problems, which allows for a classification in regular and singular problems, is presented. A theorem for determining a singularity that is present in a given problem is formulated. A group of problems often used in the li......A theoretical treatment of singularities in nonlinear minimax optimization problems, which allows for a classification in regular and singular problems, is presented. A theorem for determining a singularity that is present in a given problem is formulated. A group of problems often used...

  19. Optimization of robustness of interdependent network controllability by redundant design.

    Directory of Open Access Journals (Sweden)

    Zenghu Zhang

    Full Text Available Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of interdependent network controllability is of great importance in the research area of complex networks. In this paper, based on the model of interdependent networks constructed first, we determine the cascading process under different proportions of node attacks. Then, the structural controllability of interdependent networks is measured by the minimum driver nodes. Furthermore, we propose a parameter which can be obtained by the structure and minimum driver set of interdependent networks under different proportions of node attacks and analyze the robustness for interdependent network controllability. Finally, we optimize the robustness of interdependent network controllability by redundant design including node backup and redundancy edge backup and improve the redundant design by proposing different strategies according to their cost. Comparative strategies of redundant design are conducted to find the best strategy. Results shows that node backup and redundancy edge backup can indeed decrease those nodes suffering from failure and improve the robustness of controllability. Considering the cost of redundant design, we should choose BBS (betweenness-based strategy or DBS (degree based strategy for node backup and HDF(high degree first for redundancy edge backup. Above all, our proposed strategies are feasible and effective at improving the robustness of interdependent network controllability.

  20. Speed Optimization in Liner Shipping Network Design

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Karsten, Christian Vad; Pisinger, David

    In the Liner Shipping Network Design Problem (LSNDP) services sail at a given speed throughout a round trip. In reality most services operate with a speed differentiated head- and back-haul, or even individual speeds on every sailing between two ports. The speed of a service is decisive...

  1. Optimizing Key Updates in Sensor Networks

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2011-01-01

    Sensor networks offer the advantages of simple and low–resource communication. Nevertheless, security is of particular importance in many cases such as when sensitive data is communicated or tamper-resistance is required. Updating the security keys is one of the key points in security, which...

  2. [Network structures in biological systems].

    Science.gov (United States)

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  3. Optimization of multicast optical networks with genetic algorithm

    Science.gov (United States)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  4. Nuclear reactors project optimization based on neural network and genetic algorithm

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Schirru, Roberto; Martinez, Aquilino S.

    1997-01-01

    This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs

  5. An Optimal Routing Algorithm in Service Customized 5G Networks

    Directory of Open Access Journals (Sweden)

    Haipeng Yao

    2016-01-01

    Full Text Available With the widespread use of Internet, the scale of mobile data traffic grows explosively, which makes 5G networks in cellular networks become a growing concern. Recently, the ideas related to future network, for example, Software Defined Networking (SDN, Content-Centric Networking (CCN, and Big Data, have drawn more and more attention. In this paper, we propose a service-customized 5G network architecture by introducing the ideas of separation between control plane and data plane, in-network caching, and Big Data processing and analysis to resolve the problems traditional cellular radio networks face. Moreover, we design an optimal routing algorithm for this architecture, which can minimize average response hops in the network. Simulation results reveal that, by introducing the cache, the network performance can be obviously improved in different network conditions compared to the scenario without a cache. In addition, we explore the change of cache hit rate and average response hops under different cache replacement policies, cache sizes, content popularity, and network topologies, respectively.

  6. LTE-Advanced Radio and Network Optimization

    DEFF Research Database (Denmark)

    Velez, Fernando J.; Sousa, Sofia; Flores, Jessica Acevedo

    2015-01-01

    In cellular optimization, the UL and DL the values from carrier-to-noise-plus-interference ratio (CNIR) from/at the mobile station are very important parameters. From a detailed analysis of its variation with the coverage and reuse distances for different values of the Channel Quality Indicator (...

  7. Optimal Sales Schemes for Network Goods

    DEFF Research Database (Denmark)

    Parakhonyak, Alexei; Vikander, Nick

    consumers simultaneously, serve them all sequentially, or employ any intermediate scheme. We show that the optimal sales scheme is purely sequential, where each consumer observes all previous sales before choosing whether to buy himself. A sequential scheme maximizes the amount of information available...

  8. Optimal Simulations by Butterfly Networks: Extended Abstract,

    Science.gov (United States)

    1987-11-01

    Typescript , Univ. of Massachusetts; submitted for nublication. 1_2.2 Ll, - W 12. ifliU 1.8 UI1.25 . l i I 61 MICROCOPY RESOLUTION TEST CHART NATIONAL...1987): An optimal mapping of the FFT algorithm onto the tlypercube architecture. Typescript , Univ. of Massachusetts; submitted for publication. (HR I

  9. A Stochastic Multiobjective Optimization Framework for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shibo He

    2010-01-01

    Full Text Available In wireless sensor networks (WSNs, there generally exist many different objective functions to be optimized. In this paper, we propose a stochastic multiobjective optimization approach to solve such kind of problem. We first formulate a general multiobjective optimization problem. We then decompose the optimization formulation through Lagrange dual decomposition and adopt the stochastic quasigradient algorithm to solve the primal-dual problem in a distributed way. We show theoretically that our algorithm converges to the optimal solution of the primal problem by using the knowledge of stochastic programming. Furthermore, the formulation provides a general stochastic multiobjective optimization framework for WSNs. We illustrate how the general framework works by considering an example of the optimal rate allocation problem in multipath WSNs with time-varying channel. Extensive simulation results are given to demonstrate the effectiveness of our algorithm.

  10. Routing Optimization of AVB Streams in TSN Networks

    DEFF Research Database (Denmark)

    Laursen, Sune Mølgaard; Pop, Paul; Steiner, Wilfried

    2016-01-01

    In this paper we are interested in safety-critical real-time applications implemented on distributed architectures using the Time-Sensitive Networking (TSN) standard. The ongoing standardization of TSN is an IEEE effort to bring deterministic real-time capabilities into the IEEE 802.1 Ethernet...... standard supporting safety-critical systems and guaranteed Quality-of-Service. TSN will support Time-Triggered (TT) communication based on schedule tables, Audio-Video-Bridging (AVB) streams with bounded end-to-end latency as well as Best-Effort messages. We consider that we know the topology...... Procedure (GRASP)-based heuristic for this routing optimization problem. The proposed approaches has been evaluated using several test cases....

  11. Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks

    Science.gov (United States)

    Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet

    2017-01-01

    This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model. PMID:28587171

  12. Language Networks as Complex Systems

    Science.gov (United States)

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  13. Financial Network Systemic Risk Contributions

    NARCIS (Netherlands)

    Hautsch, N.; Schaumburg, J.; Schienle, M.

    2015-01-01

    We propose the realized systemic risk beta as a measure of financial companies' contribution to systemic risk, given network interdependence between firms' tail risk exposures. Conditional on statistically pre-identified network spillover effects and market and balance sheet information, we define

  14. Neural network for nonsmooth pseudoconvex optimization with general convex constraints.

    Science.gov (United States)

    Bian, Wei; Ma, Litao; Qin, Sitian; Xue, Xiaoping

    2018-05-01

    In this paper, a one-layer recurrent neural network is proposed for solving a class of nonsmooth, pseudoconvex optimization problems with general convex constraints. Based on the smoothing method, we construct a new regularization function, which does not depend on any information of the feasible region. Thanks to the special structure of the regularization function, we prove the global existence, uniqueness and "slow solution" character of the state of the proposed neural network. Moreover, the state solution of the proposed network is proved to be convergent to the feasible region in finite time and to the optimal solution set of the related optimization problem subsequently. In particular, the convergence of the state to an exact optimal solution is also considered in this paper. Numerical examples with simulation results are given to show the efficiency and good characteristics of the proposed network. In addition, some preliminary theoretical analysis and application of the proposed network for a wider class of dynamic portfolio optimization are included. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Cascade-robustness optimization of coupling preference in interconnected networks

    International Nuclear Information System (INIS)

    Zhang, Xue-Jun; Xu, Guo-Qiang; Zhu, Yan-Bo; Xia, Yong-Xiang

    2016-01-01

    Highlights: • A specific memetic algorithm was proposed to optimize coupling links. • A small toy model was investigated to examine the underlying mechanism. • The MA optimized strategy exhibits a moderate assortative pattern. • A novel coupling coefficient index was proposed to quantify coupling preference. - Abstract: Recently, the robustness of interconnected networks has attracted extensive attentions, one of which is to investigate the influence of coupling preference. In this paper, the memetic algorithm (MA) is employed to optimize the coupling links of interconnected networks. Afterwards, a comparison is made between MA optimized coupling strategy and traditional assortative, disassortative and random coupling preferences. It is found that the MA optimized coupling strategy with a moderate assortative value shows an outstanding performance against cascading failures on both synthetic scale-free interconnected networks and real-world networks. We then provide an explanation for this phenomenon from a micro-scope point of view and propose a coupling coefficient index to quantify the coupling preference. Our work is helpful for the design of robust interconnected networks.

  16. Future xenon system operational parameter optimization

    International Nuclear Information System (INIS)

    Lowrey, J.D.; Eslinger, P.W.; Miley, H.S.

    2016-01-01

    Any atmospheric monitoring network will have practical limitations in the density of its sampling stations. The classical approach to network optimization has been to have 12 or 24-h integration of air samples at the highest station density possible to improve minimum detectable concentrations. The authors present here considerations on optimizing sampler integration time to make the best use of any network and maximize the likelihood of collecting quality samples at any given location. In particular, this work makes the case that shorter duration sample integration (i.e. <12 h) enhances critical isotopic information and improves the source location capability of a radionuclide network, or even just one station. (author)

  17. Deterministic network interdiction optimization via an evolutionary approach

    International Nuclear Information System (INIS)

    Rocco S, Claudio M.; Ramirez-Marquez, Jose Emmanuel

    2009-01-01

    This paper introduces an evolutionary optimization approach that can be readily applied to solve deterministic network interdiction problems. The network interdiction problem solved considers the minimization of the maximum flow that can be transmitted between a source node and a sink node for a fixed network design when there is a limited amount of resources available to interdict network links. Furthermore, the model assumes that the nominal capacity of each network link and the cost associated with their interdiction can change from link to link. For this problem, the solution approach developed is based on three steps that use: (1) Monte Carlo simulation, to generate potential network interdiction strategies, (2) Ford-Fulkerson algorithm for maximum s-t flow, to analyze strategies' maximum source-sink flow and, (3) an evolutionary optimization technique to define, in probabilistic terms, how likely a link is to appear in the final interdiction strategy. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate the approach. In terms of computational effort, the results illustrate that solutions are obtained from a significantly restricted solution search space. Finally, the authors discuss the need for a reliability perspective to network interdiction, so that solutions developed address more realistic scenarios of such problem

  18. Optimal Control and Forecasting of Complex Dynamical Systems

    CERN Document Server

    Grigorenko, Ilya

    2006-01-01

    This important book reviews applications of optimization and optimal control theory to modern problems in physics, nano-science and finance. The theory presented here can be efficiently applied to various problems, such as the determination of the optimal shape of a laser pulse to induce certain excitations in quantum systems, the optimal design of nanostructured materials and devices, or the control of chaotic systems and minimization of the forecast error for a given forecasting model (for example, artificial neural networks). Starting from a brief review of the history of variational calcul

  19. Applying neural networks to optimize instrumentation performance

    Energy Technology Data Exchange (ETDEWEB)

    Start, S.E.; Peters, G.G.

    1995-06-01

    Well calibrated instrumentation is essential in providing meaningful information about the status of a plant. Signals from plant instrumentation frequently have inherent non-linearities, may be affected by environmental conditions and can therefore cause calibration difficulties for the people who maintain them. Two neural network approaches are described in this paper for improving the accuracy of a non-linear, temperature sensitive level probe ised in Expermental Breeder Reactor II (EBR-II) that was difficult to calibrate.

  20. Applying neural networks to optimize instrumentation performance

    International Nuclear Information System (INIS)

    Start, S.E.; Peters, G.G.

    1995-01-01

    Well calibrated instrumentation is essential in providing meaningful information about the status of a plant. Signals from plant instrumentation frequently have inherent non-linearities, may be affected by environmental conditions and can therefore cause calibration difficulties for the people who maintain them. Two neural network approaches are described in this paper for improving the accuracy of a non-linear, temperature sensitive level probe ised in Expermental Breeder Reactor II (EBR-II) that was difficult to calibrate

  1. Profile-driven regression for modeling and runtime optimization of mobile networks

    DEFF Research Database (Denmark)

    McClary, Dan; Syrotiuk, Violet; Kulahci, Murat

    2010-01-01

    Computer networks often display nonlinear behavior when examined over a wide range of operating conditions. There are few strategies available for modeling such behavior and optimizing such systems as they run. Profile-driven regression is developed and applied to modeling and runtime optimization...... of throughput in a mobile ad hoc network, a self-organizing collection of mobile wireless nodes without any fixed infrastructure. The intermediate models generated in profile-driven regression are used to fit an overall model of throughput, and are also used to optimize controllable factors at runtime. Unlike...

  2. Performance improvement of optical CDMA networks with stochastic artificial bee colony optimization technique

    Science.gov (United States)

    Panda, Satyasen

    2018-05-01

    This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.

  3. Multi-Objective Distribution Network Operation Based on Distributed Generation Optimal Placement Using New Antlion Optimizer Considering Reliability

    Directory of Open Access Journals (Sweden)

    KHANBABAZADEH Javad

    2016-10-01

    Full Text Available Distribution network designers and operators are trying to deliver electrical energy with high reliability and quality to their subscribers. Due to high losses in the distribution systems, using distributed generation can improves reliability, reduces losses and improves voltage profile of distribution network. Therefore, the choice of the location of these resources and also determining the amount of their generated power to maximize the benefits of this type of resource is an important issue which is discussed from different points of view today. In this paper, a new multi-objective optimal location and sizing of distributed generation resources is performed to maximize its benefits on the 33 bus distribution test network considering reliability and using a new Antlion Optimizer (ALO. The benefits for DG are considered as system losses reduction, system reliability improvement and benefits from the sale electricity and voltage profile improvement. For each of the mentioned benefits, the ALO algorithm is used to optimize the location and sizing of distributed generation resources. In order to verify the proposed approach, the obtained results have been analyzed and compared with the results of particle swarm optimization (PSO algorithm. The results show that the ALO has shown better performance in optimization problem solution versus PSO.

  4. Pareto Optimal Solutions for Network Defense Strategy Selection Simulator in Multi-Objective Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2018-01-01

    Full Text Available Using Pareto optimization in Multi-Objective Reinforcement Learning (MORL leads to better learning results for network defense games. This is particularly useful for network security agents, who must often balance several goals when choosing what action to take in defense of a network. If the defender knows his preferred reward distribution, the advantages of Pareto optimization can be retained by using a scalarization algorithm prior to the implementation of the MORL. In this paper, we simulate a network defense scenario by creating a multi-objective zero-sum game and using Pareto optimization and MORL to determine optimal solutions and compare those solutions to different scalarization approaches. We build a Pareto Defense Strategy Selection Simulator (PDSSS system for assisting network administrators on decision-making, specifically, on defense strategy selection, and the experiment results show that the Satisficing Trade-Off Method (STOM scalarization approach performs better than linear scalarization or GUESS method. The results of this paper can aid network security agents attempting to find an optimal defense policy for network security games.

  5. Robust Optimization of Fourth Party Logistics Network Design under Disruptions

    Directory of Open Access Journals (Sweden)

    Jia Li

    2015-01-01

    Full Text Available The Fourth Party Logistics (4PL network faces disruptions of various sorts under the dynamic and complex environment. In order to explore the robustness of the network, the 4PL network design with consideration of random disruptions is studied. The purpose of the research is to construct a 4PL network that can provide satisfactory service to customers at a lower cost when disruptions strike. Based on the definition of β-robustness, a robust optimization model of 4PL network design under disruptions is established. Based on the NP-hard characteristic of the problem, the artificial fish swarm algorithm (AFSA and the genetic algorithm (GA are developed. The effectiveness of the algorithms is tested and compared by simulation examples. By comparing the optimal solutions of the 4PL network for different robustness level, it is indicated that the robust optimization model can evade the market risks effectively and save the cost in the maximum limit when it is applied to 4PL network design.

  6. Optimal Quantum Spatial Search on Random Temporal Networks.

    Science.gov (United States)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G(n,p), where p is the probability that any two given nodes are connected: After every time interval τ, a new graph G(n,p) replaces the previous one. We prove analytically that, for any given p, there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O(sqrt[n]), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  7. Optimal Quantum Spatial Search on Random Temporal Networks

    Science.gov (United States)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  8. Cogeneration system simulation/optimization

    International Nuclear Information System (INIS)

    Puppa, B.A.; Chandrashekar, M.

    1992-01-01

    Companies are increasingly turning to computer software programs to improve and streamline the analysis o cogeneration systems. This paper introduces a computer program which originated with research at the University of Waterloo. The program can simulate and optimize any type of layout of cogeneration plant. An application of the program to a cogeneration feasibility study for a university campus is described. The Steam and Power Plant Optimization System (SAPPOS) is a PC software package which allows users to model any type of steam/power plant on a component-by-component basis. Individual energy/steam balances can be done quickly to model any scenario. A typical days per month cogeneration simulation can also be carried out to provide a detailed monthly cash flow and energy forecast. This paper reports that SAPPOS can be used for scoping, feasibility, and preliminary design work, along with financial studies, gas contract studies, and optimizing the operation of completed plants. In the feasibility study presented, SAPPOS is used to evaluate both diesel engine and gas turbine combined cycle options

  9. Networking systems design and development

    CERN Document Server

    Chao, Lee

    2009-01-01

    Effectively integrating theory and hands-on practice, Networking Systems Design and Development provides students and IT professionals with the knowledge and skills needed to design, implement, and manage fully functioning network systems using readily available Linux networking tools. Recognizing that most students are beginners in the field of networking, the text provides step-by-step instruction for setting up a virtual lab environment at home. Grounded in real-world applications, this book provides the ideal blend of conceptual instruction and lab work to give students and IT professional

  10. Optimizing Human Input in Social Network Analysis

    Science.gov (United States)

    2018-01-23

    7] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation rules,” Advances in applied mathematics , vol. 6, no. 1, pp. 4–22, 1985. [8...W. Whitt, “Heavy traffic limit theorems for queues: a survey,” in Mathematical Methods in Queueing Theory. Springer, 1974, pp. 307–350. [9] H...Regret lower bounds and optimal algorithms,” in Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer

  11. Optimal interdependence between networks for the evolution of cooperation.

    Science.gov (United States)

    Wang, Zhen; Szolnoki, Attila; Perc, Matjaž

    2013-01-01

    Recent research has identified interactions between networks as crucial for the outcome of evolutionary games taking place on them. While the consensus is that interdependence does promote cooperation by means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we here address the question just how much interdependence there should be. Intuitively, one might assume the more the better. However, we show that in fact only an intermediate density of sufficiently strong interactions between networks warrants an optimal resolution of social dilemmas. This is due to an intricate interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links between the networks, and the independent formation of cooperative patterns on each individual network. Presented results are robust to variations of the strategy updating rule, the topology of interdependent networks, and the governing social dilemma, thus suggesting a high degree of universality.

  12. Optimality principles in the regulation of metabolic networks

    NARCIS (Netherlands)

    Berkhout, J.; Bruggeman, F.J.; Teusink, B.

    2012-01-01

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks

  13. Optimal stabilization of Boolean networks through collective influence

    Science.gov (United States)

    Wang, Jiannan; Pei, Sen; Wei, Wei; Feng, Xiangnan; Zheng, Zhiming

    2018-03-01

    Boolean networks have attracted much attention due to their wide applications in describing dynamics of biological systems. During past decades, much effort has been invested in unveiling how network structure and update rules affect the stability of Boolean networks. In this paper, we aim to identify and control a minimal set of influential nodes that is capable of stabilizing an unstable Boolean network. For locally treelike Boolean networks with biased truth tables, we propose a greedy algorithm to identify influential nodes in Boolean networks by minimizing the largest eigenvalue of a modified nonbacktracking matrix. We test the performance of the proposed collective influence algorithm on four different networks. Results show that the collective influence algorithm can stabilize each network with a smaller set of nodes compared with other heuristic algorithms. Our work provides a new insight into the mechanism that determines the stability of Boolean networks, which may find applications in identifying virulence genes that lead to serious diseases.

  14. Communicating embedded systems networks applications

    CERN Document Server

    Krief, Francine

    2013-01-01

    Embedded systems become more and more complex and require having some knowledge in various disciplines such as electronics, data processing, telecommunications and networks. Without detailing all the aspects related to the design of embedded systems, this book, which was written by specialists in electronics, data processing and telecommunications and networks, gives an interesting point of view of communication techniques and problems in embedded systems. This choice is easily justified by the fact that embedded systems are today massively communicating and that telecommunications and network

  15. The APS control system network

    International Nuclear Information System (INIS)

    Sidorowicz, K.V.; McDowell, W.P.

    1995-01-01

    The APS accelerator control system is a distributed system consisting of operator interfaces, a network, and computer-controlled interfaces to hardware. This implementation of a control system has come to be called the open-quotes Standard Model.close quotes The operator interface is a UNDC-based workstation with an X-windows graphical user interface. The workstation may be located at any point on the facility network and maintain full functionality. The function of the network is to provide a generalized communication path between the host computers, operator workstations, input/output crates, and other hardware that comprise the control system. The crate or input/output controller (IOC) provides direct control and input/output interfaces for each accelerator subsystem. The network is an integral part of all modem control systems and network performance will determine many characteristics of a control system. This paper will describe the overall APS network and examine the APS control system network in detail. Metrics are provided on the performance of the system under various conditions

  16. Optical multicast system for data center networks.

    Science.gov (United States)

    Samadi, Payman; Gupta, Varun; Xu, Junjie; Wang, Howard; Zussman, Gil; Bergman, Keren

    2015-08-24

    We present the design and experimental evaluation of an Optical Multicast System for Data Center Networks, a hardware-software system architecture that uniquely integrates passive optical splitters in a hybrid network architecture for faster and simpler delivery of multicast traffic flows. An application-driven control plane manages the integrated optical and electronic switched traffic routing in the data plane layer. The control plane includes a resource allocation algorithm to optimally assign optical splitters to the flows. The hardware architecture is built on a hybrid network with both Electronic Packet Switching (EPS) and Optical Circuit Switching (OCS) networks to aggregate Top-of-Rack switches. The OCS is also the connectivity substrate of splitters to the optical network. The optical multicast system implementation requires only commodity optical components. We built a prototype and developed a simulation environment to evaluate the performance of the system for bulk multicasting. Experimental and numerical results show simultaneous delivery of multicast flows to all receivers with steady throughput. Compared to IP multicast that is the electronic counterpart, optical multicast performs with less protocol complexity and reduced energy consumption. Compared to peer-to-peer multicast methods, it achieves at minimum an order of magnitude higher throughput for flows under 250 MB with significantly less connection overheads. Furthermore, for delivering 20 TB of data containing only 15% multicast flows, it reduces the total delivery energy consumption by 50% and improves latency by 55% compared to a data center with a sole non-blocking EPS network.

  17. RECOVERY ACT - Robust Optimization for Connectivity and Flows in Dynamic Complex Networks

    Energy Technology Data Exchange (ETDEWEB)

    Balasundaram, Balabhaskar [Oklahoma State Univ., Stillwater, OK (United States); Butenko, Sergiy [Texas A & M Univ., College Station, TX (United States); Boginski, Vladimir [Univ. of Florida, Gainesville, FL (United States); Uryasev, Stan [Univ. of Florida, Gainesville, FL (United States)

    2013-12-25

    The goal of this project was to study robust connectivity and flow patterns of complex multi-scale systems modeled as networks. Networks provide effective ways to study global, system level properties, as well as local, multi-scale interactions at a component level. Numerous applications from power systems, telecommunication, transportation, biology, social science, and other areas have benefited from novel network-based models and their analysis. Modeling and optimization techniques that employ appropriate measures of risk for identifying robust clusters and resilient network designs in networks subject to uncertain failures were investigated in this collaborative multi-university project. In many practical situations one has to deal with uncertainties associated with possible failures of network components, thereby affecting the overall efficiency and performance of the system (e.g., every node/connection has a probability of partial or complete failure). Some extreme examples include power grid component failures, airline hub failures due to weather, or freeway closures due to emergencies. These are also situations in which people, materials, or other resources need to be managed efficiently. Important practical examples include rerouting flow through power grids, adjusting flight plans, and identifying routes for emergency services and supplies, in the event network elements fail unexpectedly. Solutions that are robust under uncertainty, in addition to being economically efficient, are needed. This project has led to the development of novel models and methodologies that can tackle the optimization problems arising in such situations. A number of new concepts, which have not been previously applied in this setting, were investigated in the framework of the project. The results can potentially help decision-makers to better control and identify robust or risk-averse decisions in such situations. Formulations and optimal solutions of the considered problems need

  18. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2011-01-01

    In this paper, the configuration of a district heating (DH) network which connects from the heating plant to the end users was optimized with emphasizing the network thermal performance. Each end user in the network represents a building block. The locations of the building blocks are fixed while...... the heating plant location is allowed to vary. The connection between the heat generation plant and the end users can be represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal DH distribution pipeline configuration, the genetic algorithm...... by multi factors as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding pressure and temperature limitation, as well as the corresponding network heat loss....

  19. Optimal networks of future gravitational-wave telescopes

    Science.gov (United States)

    Raffai, Péter; Gondán, László; Heng, Ik Siong; Kelecsényi, Nándor; Logue, Josh; Márka, Zsuzsa; Márka, Szabolcs

    2013-08-01

    We aim to find the optimal site locations for a hypothetical network of 1-3 triangular gravitational-wave telescopes. We define the following N-telescope figures of merit (FoMs) and construct three corresponding metrics: (a) capability of reconstructing the signal polarization; (b) accuracy in source localization; and (c) accuracy in reconstructing the parameters of a standard binary source. We also define a combined metric that takes into account the three FoMs with practically equal weight. After constructing a geomap of possible telescope sites, we give the optimal 2-telescope networks for the four FoMs separately in example cases where the location of the first telescope has been predetermined. We found that based on the combined metric, placing the first telescope to Australia provides the most options for optimal site selection when extending the network with a second instrument. We suggest geographical regions where a potential second and third telescope could be placed to get optimal network performance in terms of our FoMs. Additionally, we use a similar approach to find the optimal location and orientation for the proposed LIGO-India detector within a five-detector network with Advanced LIGO (Hanford), Advanced LIGO (Livingston), Advanced Virgo, and KAGRA. We found that the FoMs do not change greatly in sites within India, though the network can suffer a significant loss in reconstructing signal polarizations if the orientation angle of an L-shaped LIGO-India is not set to the optimal value of ˜58.2°( + k × 90°) (measured counterclockwise from East to the bisector of the arms).

  20. Optimal networks of future gravitational-wave telescopes

    International Nuclear Information System (INIS)

    Raffai, Péter; Márka, Zsuzsa; Márka, Szabolcs; Gondán, László; Kelecsényi, Nándor; Heng, Ik Siong; Logue, Josh

    2013-01-01

    We aim to find the optimal site locations for a hypothetical network of 1–3 triangular gravitational-wave telescopes. We define the following N-telescope figures of merit (FoMs) and construct three corresponding metrics: (a) capability of reconstructing the signal polarization; (b) accuracy in source localization; and (c) accuracy in reconstructing the parameters of a standard binary source. We also define a combined metric that takes into account the three FoMs with practically equal weight. After constructing a geomap of possible telescope sites, we give the optimal 2-telescope networks for the four FoMs separately in example cases where the location of the first telescope has been predetermined. We found that based on the combined metric, placing the first telescope to Australia provides the most options for optimal site selection when extending the network with a second instrument. We suggest geographical regions where a potential second and third telescope could be placed to get optimal network performance in terms of our FoMs. Additionally, we use a similar approach to find the optimal location and orientation for the proposed LIGO-India detector within a five-detector network with Advanced LIGO (Hanford), Advanced LIGO (Livingston), Advanced Virgo, and KAGRA. We found that the FoMs do not change greatly in sites within India, though the network can suffer a significant loss in reconstructing signal polarizations if the orientation angle of an L-shaped LIGO-India is not set to the optimal value of ∼58.2°( + k × 90°) (measured counterclockwise from East to the bisector of the arms). (paper)

  1. Applying self-organizing map and modified radial based neural network for clustering and routing optimal path in wireless network

    Science.gov (United States)

    Hoomod, Haider K.; Kareem Jebur, Tuka

    2018-05-01

    Mobile ad hoc networks (MANETs) play a critical role in today’s wireless ad hoc network research and consist of active nodes that can be in motion freely. Because it consider very important problem in this network, we suggested proposed method based on modified radial basis function networks RBFN and Self-Organizing Map SOM. These networks can be improved by the use of clusters because of huge congestion in the whole network. In such a system, the performance of MANET is improved by splitting the whole network into various clusters using SOM. The performance of clustering is improved by the cluster head selection and number of clusters. Modified Radial Based Neural Network is very simple, adaptable and efficient method to increase the life time of nodes, packet delivery ratio and the throughput of the network will increase and connection become more useful because the optimal path has the best parameters from other paths including the best bitrate and best life link with minimum delays. Proposed routing algorithm depends on the group of factors and parameters to select the path between two points in the wireless network. The SOM clustering average time (1-10 msec for stall nodes) and (8-75 msec for mobile nodes). While the routing time range (92-510 msec).The proposed system is faster than the Dijkstra by 150-300%, and faster from the RBFNN (without modify) by 145-180%.

  2. Delays and networked control systems

    CERN Document Server

    Hetel, Laurentiu; Daafouz, Jamal; Johansson, Karl

    2016-01-01

    This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students. .

  3. Multi-objective optimization in computer networks using metaheuristics

    CERN Document Server

    Donoso, Yezid

    2007-01-01

    Metaheuristics are widely used to solve important practical combinatorial optimization problems. Many new multicast applications emerging from the Internet-such as TV over the Internet, radio over the Internet, and multipoint video streaming-require reduced bandwidth consumption, end-to-end delay, and packet loss ratio. It is necessary to design and to provide for these kinds of applications as well as for those resources necessary for functionality. Multi-Objective Optimization in Computer Networks Using Metaheuristics provides a solution to the multi-objective problem in routing computer networks. It analyzes layer 3 (IP), layer 2 (MPLS), and layer 1 (GMPLS and wireless functions). In particular, it assesses basic optimization concepts, as well as several techniques and algorithms for the search of minimals; examines the basic multi-objective optimization concepts and the way to solve them through traditional techniques and through several metaheuristics; and demonstrates how to analytically model the compu...

  4. Cross-layer optimization of wireless multi-hop networks

    OpenAIRE

    Soldati, Pablo

    2007-01-01

    The interest in wireless communications has grown constantly for the past decades, leading to an enormous number of applications and services embraced by billions of users. In order to meet the increasing demand for mobile Internet access, several high data-rate radio networking technologies have been proposed to offer wide area high-speed wireless communications, eventually replacing fixed (wired) networks for many applications. This thesis considers cross-layer optimization of multi-hop rad...

  5. Optimizing the District Heating Primary Network from the Perspective of Economic-Specific Pressure Loss

    Directory of Open Access Journals (Sweden)

    Haichao Wang

    2017-07-01

    Full Text Available A district heating (DH system is one of the most important components of infrastructures in cold areas. Proper DH network design should balance the initial investment and the heat distribution cost of the DH network. Currently, this design is often based on a recommended value for specific pressure loss (R = ∆P/L in the main lines. This will result in a feasible network design, but probably not be optimal in most cases. The paper develops a novel optimization model to facilitate the design by considering the initial investment in the pipes and the heat distribution costs. The model will generate all possible network scenarios consisting of different series of diameters for each pipe in the flow direction of the network. Then, the annuity on the initial investment, the heat distribution cost, and the total annual cost will be calculated for each network scenario, taking into account the uncertainties of the material prices and the yearly operating time levels. The model is applied to a sample DH network and the results indicate that the model works quite well, clearly identifying the optimal network design and demonstrating that the heat distribution cost is more important than the initial investment in DH network design.

  6. Improved Differential Evolution Algorithm for Wireless Sensor Network Coverage Optimization

    Directory of Open Access Journals (Sweden)

    Xing Xu

    2014-04-01

    Full Text Available In order to serve for the ecological monitoring efficiency of Poyang Lake, an improved hybrid algorithm, mixed with differential evolution and particle swarm optimization, is proposed and applied to optimize the coverage problem of wireless sensor network. And then, the affect of the population size and the number of iterations on the coverage performance are both discussed and analyzed. The four kinds of statistical results about the coverage rate are obtained through lots of simulation experiments.

  7. Coherent Network Optimizing of Rail-Based Urban Mass Transit

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2012-01-01

    Full Text Available An efficient public transport is more than ever a crucial factor when it comes to the quality of life and competitiveness of many cities and regions in Asia. In recent years, the rail-based urban mass transit has been regarded as one of the key means to overcoming the great challenges in Chinese megacities. The purpose of this study is going to develop a coherent network optimizing for rail-based urban mass transit to find the best alternatives for the user and to demonstrate how to meet sustainable development needs and to match the enormous capacity requirements simultaneously. This paper presents an introduction to the current situation of the important lines, and transfer points in the metro system Shanghai. The insufficient aspects are analyzed and evaluated; while the optimizing ideas and measurements are developed and concreted. A group of examples are used to illustrate the approach. The whole study could be used for the latest reference for other megacities which have to be confronted with the similar situations and processes with enormous dynamic travel and transport demands.

  8. A Global Network Alignment Method Using Discrete Particle Swarm Optimization.

    Science.gov (United States)

    Huang, Jiaxiang; Gong, Maoguo; Ma, Lijia

    2016-10-19

    Molecular interactions data increase exponentially with the advance of biotechnology. This makes it possible and necessary to comparatively analyse the different data at a network level. Global network alignment is an important network comparison approach to identify conserved subnetworks and get insight into evolutionary relationship across species. Network alignment which is analogous to subgraph isomorphism is known to be an NP-hard problem. In this paper, we introduce a novel heuristic Particle-Swarm-Optimization based Network Aligner (PSONA), which optimizes a weighted global alignment model considering both protein sequence similarity and interaction conservations. The particle statuses and status updating rules are redefined in a discrete form by using permutation. A seed-and-extend strategy is employed to guide the searching for the superior alignment. The proposed initialization method "seeds" matches with high sequence similarity into the alignment, which guarantees the functional coherence of the mapping nodes. A greedy local search method is designed as the "extension" procedure to iteratively optimize the edge conservations. PSONA is compared with several state-of-art methods on ten network pairs combined by five species. The experimental results demonstrate that the proposed aligner can map the proteins with high functional coherence and can be used as a booster to effectively refine the well-studied aligners.

  9. Interorganizational Innovation in Systemic Networks

    DEFF Research Database (Denmark)

    Seemann, Janne; Dinesen, Birthe; Gustafsson, Jeppe

    2013-01-01

    patients with chronic obstructive pulmonary disease (COPD) to avoid readmission, perform self monitoring and to maintain rehabilitation in their homes. The aim of the paper is to identify, analyze and discuss innovation dynamics in the COPD network and on a preliminary basis to identify implications...... for managing innovations in systemic networks. The main argument of this paper is that innovation dynamics in systemic networks should be understood as a complex interplay of four logics: 1) Fragmented innovation, 2) Interface innovation, 3) Competing innovation, 4) Co-innovation. The findings indicate...... that linear n-stage models by reducing complexity and flux end up focusing only on the surface of the network and are thus unable to grasp important aspects of network dynamics. The paper suggests that there is a need for a more dynamic innovation model able to grasp the whole picture of dynamics in systemic...

  10. Asynchronous control for networked systems

    CERN Document Server

    Rubio, Francisco; Bencomo, Sebastián

    2015-01-01

    This book sheds light on networked control systems; it describes different techniques for asynchronous control, moving away from the periodic actions of classical control, replacing them with state-based decisions and reducing the frequency with which communication between subsystems is required. The text focuses specially on event-based control. Split into two parts, Asynchronous Control for Networked Systems begins by addressing the problems of single-loop networked control systems, laying out various solutions which include two alternative model-based control schemes (anticipatory and predictive) and the use of H2/H∞ robust control to deal with network delays and packet losses. Results on self-triggering and send-on-delta sampling are presented to reduce the need for feedback in the loop. In Part II, the authors present solutions for distributed estimation and control. They deal first with reliable networks and then extend their results to scenarios in which delays and packet losses may occur. The novel ...

  11. Ant colony optimization and neural networks applied to nuclear power plant monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gean Ribeiro dos; Andrade, Delvonei Alves de; Pereira, Iraci Martinez, E-mail: gean@usp.br, E-mail: delvonei@ipen.br, E-mail: martinez@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the ANNs created to solve this kind of problem are created by taking into account only parameters as the number of inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research reactor at IPEN. (author)

  12. Ant colony optimization and neural networks applied to nuclear power plant monitoring

    International Nuclear Information System (INIS)

    Santos, Gean Ribeiro dos; Andrade, Delvonei Alves de; Pereira, Iraci Martinez

    2015-01-01

    A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the ANNs created to solve this kind of problem are created by taking into account only parameters as the number of inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research reactor at IPEN. (author)

  13. Optimal dimensioning model of water distribution systems | Gomes ...

    African Journals Online (AJOL)

    This study is aimed at developing a pipe-sizing model for a water distribution system. The optimal solution minimises the system's total cost, which comprises the hydraulic network capital cost, plus the capitalised cost of pumping energy. The developed model, called Lenhsnet, may also be used for economical design when ...

  14. Optimal concentrations in transport systems

    Science.gov (United States)

    Jensen, Kaare H.; Kim, Wonjung; Holbrook, N. Michele; Bush, John W. M.

    2013-01-01

    Many biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of material. While the most concentrated solutions offer the greatest potential in terms of material transfer, impedance typically increases with concentration, thus making them the most difficult to transport. We develop a general framework for describing systems for which impedance increases with concentration, and consider material flow in four different natural systems: blood flow in vertebrates, sugar transport in vascular plants and two modes of nectar drinking in birds and insects. The model provides a simple method for determining the optimum concentration copt in these systems. The model further suggests that the impedance at the optimum concentration μopt may be expressed in terms of the impedance of the pure (c = 0) carrier medium μ0 as μopt∼2αμ0, where the power α is prescribed by the specific flow constraints, for example constant pressure for blood flow (α = 1) or constant work rate for certain nectar-drinking insects (α = 6). Comparing the model predictions with experimental data from more than 100 animal and plant species, we find that the simple model rationalizes the observed concentrations and impedances. The model provides a universal framework for studying flows impeded by concentration, and yields insight into optimization in engineered systems, such as traffic flow. PMID:23594815

  15. Distributed Multi-Commodity Network Flow Algorithm for Energy Optimal Routing in Wireless Sensor Networks.

    Directory of Open Access Journals (Sweden)

    J. Trdlicka

    2010-12-01

    Full Text Available This work proposes a distributed algorithm for energy optimal routing in a wireless sensor network. The routing problem is described as a mathematical problem by the minimum-cost multi-commodity network flow problem. Due to the separability of the problem, we use the duality theorem to derive the distributed algorithm. The algorithm computes the energy optimal routing in the network without any central node or knowledge of the whole network structure. Each node only needs to know the flow which is supposed to send or receive and the costs and capacities of the neighboring links. An evaluation of the presented algorithm on benchmarks for the energy optimal data flow routing in sensor networks with up to 100 nodes is presented.

  16. Towards a network operating system

    OpenAIRE

    López Álvarez, Victor; Gonzalez de Dios, Oscar; Fuentes, Beatriz; Yannuzzi, Marcelo; Fernández Palacios, Juan Pedro; Lopez, Diego

    2014-01-01

    A Network Operating System (NetOS) is a novel paradigm for developing a next-generation network management and operation platform. As we shall describe, NetOS not only goes far beyond the SDN concepts but also constitutes a fundamental enabler for NFV. © 2014 OSA.

  17. Optimizing Resource Utilization in Grid Batch Systems

    International Nuclear Information System (INIS)

    Gellrich, Andreas

    2012-01-01

    On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.

  18. An Evolutionary Optimization Framework for Neural Networks and Neuromorphic Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Plank, James [University of Tennessee (UT); Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2016-01-01

    As new neural network and neuromorphic architectures are being developed, new training methods that operate within the constraints of the new architectures are required. Evolutionary optimization (EO) is a convenient training method for new architectures. In this work, we review a spiking neural network architecture and a neuromorphic architecture, and we describe an EO training framework for these architectures. We present the results of this training framework on four classification data sets and compare those results to other neural network and neuromorphic implementations. We also discuss how this EO framework may be extended to other architectures.

  19. Inclusion of tank configurations as a variable in the cost optimization of branched piped-water networks

    Science.gov (United States)

    Hooda, Nikhil; Damani, Om

    2017-06-01

    The classic problem of the capital cost optimization of branched piped networks consists of choosing pipe diameters for each pipe in the network from a discrete set of commercially available pipe diameters. Each pipe in the network can consist of multiple segments of differing diameters. Water networks also consist of intermediate tanks that act as buffers between incoming flow from the primary source and the outgoing flow to the demand nodes. The network from the primary source to the tanks is called the primary network, and the network from the tanks to the demand nodes is called the secondary network. During the design stage, the primary and secondary networks are optimized separately, with the tanks acting as demand nodes for the primary network. Typically the choice of tank locations, their elevations, and the set of demand nodes to be served by different tanks is manually made in an ad hoc fashion before any optimization is done. It is desirable therefore to include this tank configuration choice in the cost optimization process itself. In this work, we explain why the choice of tank configuration is important to the design of a network and describe an integer linear program model that integrates the tank configuration to the standard pipe diameter selection problem. In order to aid the designers of piped-water networks, the improved cost optimization formulation is incorporated into our existing network design system called JalTantra.

  20. A Distributed Algorithm for Energy Optimization in Hydraulic Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Wisniewski, Rafal; Jensen, Tom Nørgaard

    2014-01-01

    An industrial case study in the form of a large-scale hydraulic network underlying a district heating system is considered. A distributed control is developed that minimizes the aggregated electrical energy consumption of the pumps in the network without violating the control demands. The algorithm...... a Plug & Play control system as most commissioning can be done during the manufacture of the pumps. Only information on the graph-structure of the hydraulic network is needed during installation....

  1. Identifying the optimal supply temperature in district heating networks - A modelling approach

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2014-01-01

    of this study is to develop a model for thermo-hydraulic calculation of low temperature DH system. The modelling is performed with emphasis on transient heat transfer in pipe networks. The pseudo-dynamic approach is adopted to model the District Heating Network [DHN] behaviour which estimates the temperature...... dynamically while the flow and pressure are calculated on the basis of steady state conditions. The implicit finite element method is applied to simulate the transient temperature behaviour in the network. Pipe network heat losses, pressure drop in the network and return temperature to the plant...... are calculated in the developed model. The model will serve eventually as a basis to find out the optimal supply temperature in an existing DHN in later work. The modelling results are used as decision support for existing DHN; proposing possible modifications to operate at optimal supply temperature....

  2. How does network design constrain optimal operation of intermittent water supply?

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2015-11-01

    Urban water distribution systems do not always supply water continuously or reliably. As pipes fill and empty, pressure transients may contribute to degraded infrastructure and poor water quality. To help understand and manage this undesirable side effect of intermittent water supply--a phenomenon affecting hundreds of millions of people in cities around the world--we study the relative contributions of fixed versus dynamic properties of the network. Using a dynamical model of unsteady transition pipe flow, we study how different elements of network design, such as network geometry, pipe material, and pipe slope, contribute to undesirable pressure transients. Using an optimization framework, we then investigate to what extent network operation decisions such as supply timing and inflow rate may mitigate these effects. We characterize some aspects of network design that make them more or less amenable to operational optimization.

  3. A multiobjective optimization framework for multicontaminant industrial water network design.

    Science.gov (United States)

    Boix, Marianne; Montastruc, Ludovic; Pibouleau, Luc; Azzaro-Pantel, Catherine; Domenech, Serge

    2011-07-01

    The optimal design of multicontaminant industrial water networks according to several objectives is carried out in this paper. The general formulation of the water allocation problem (WAP) is given as a set of nonlinear equations with binary variables representing the presence of interconnections in the network. For optimization purposes, three antagonist objectives are considered: F(1), the freshwater flow-rate at the network entrance, F(2), the water flow-rate at inlet of regeneration units, and F(3), the number of interconnections in the network. The multiobjective problem is solved via a lexicographic strategy, where a mixed-integer nonlinear programming (MINLP) procedure is used at each step. The approach is illustrated by a numerical example taken from the literature involving five processes, one regeneration unit and three contaminants. The set of potential network solutions is provided in the form of a Pareto front. Finally, the strategy for choosing the best network solution among those given by Pareto fronts is presented. This Multiple Criteria Decision Making (MCDM) problem is tackled by means of two approaches: a classical TOPSIS analysis is first implemented and then an innovative strategy based on the global equivalent cost (GEC) in freshwater that turns out to be more efficient for choosing a good network according to a practical point of view. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Optimizing data access in the LAMPF control system

    International Nuclear Information System (INIS)

    Schaller, S.C.; Corley, J.K.; Rose, P.A.

    1985-01-01

    The LAMPF control system data access software offers considerable power and flexibility to application programs through symbolic device naming and an emphasis on hardware independence. This paper discusses optimizations aimed at improving the performance of the data access software while retaining these capabilities. The only aspects of the optimizations visible to the application programs are ''vector devices'' and ''aggregate devices.'' A vector device accesses a set of hardware related data items through a single device name. Aggregate devices allow run-time optimization of references to groups of unrelated devices. Optimizations not visible on the application level include careful handling of: network message traffic; the sharing of global resources; and storage allocation

  5. An Optimal Balance between Efficiency and Safety of Urban Drainage Networks

    Science.gov (United States)

    Seo, Y.

    2014-12-01

    Urban drainage networks have been developed to promote the efficiency of a system in terms of drainage time so far. Typically, a drainage system is designed to drain water from developed areas promptly as much as possible during floods. In this regard, an artificial drainage system have been considered to be more efficient compared to river networks in nature. This study examined artificial drainage networks and the results indicate they can be less efficient in terms of network configuration compared with river networks, which is counter-intuitive. The case study of 20 catchments in Seoul, South Korea shows that they have wide range of efficiency in terms of network configuration and consequently, drainage time. This study also demonstrates that efficient drainage networks are more sensitive to spatial and temporal rainfall variation such as rainstorm movement. Peak flows increase more than two times greater in effective drainage networks compared with inefficient and highly sinuous drainage networks. Combining these results, this study implies that the layout of a drainage network is an important factor in terms of efficient drainage and also safety in urban catchments. Design of an optimal layout of the drainage network can be an alternative non-structural measures that mitigate potential risks and it is crucial for the sustainability of urban environments.

  6. Optimizing Soil Moisture Sampling Locations for Validation Networks for SMAP

    Science.gov (United States)

    Roshani, E.; Berg, A. A.; Lindsay, J.

    2013-12-01

    Soil Moisture Active Passive satellite (SMAP) is scheduled for launch on Oct 2014. Global efforts are underway for establishment of soil moisture monitoring networks for both the pre- and post-launch validation and calibration of the SMAP products. In 2012 the SMAP Validation Experiment, SMAPVEX12, took place near Carman Manitoba, Canada where nearly 60 fields were sampled continuously over a 6 week period for soil moisture and several other parameters simultaneous to remotely sensed images of the sampling region. The locations of these sampling sites were mainly selected on the basis of accessibility, soil texture, and vegetation cover. Although these criteria are necessary to consider during sampling site selection, they do not guarantee optimal site placement to provide the most efficient representation of the studied area. In this analysis a method for optimization of sampling locations is presented which combines the state-of-art multi-objective optimization engine (non-dominated sorting genetic algorithm, NSGA-II), with the kriging interpolation technique to minimize the number of sampling sites while simultaneously minimizing the differences between the soil moisture map resulted from the kriging interpolation and soil moisture map from radar imaging. The algorithm is implemented in Whitebox Geospatial Analysis Tools, which is a multi-platform open-source GIS. The optimization framework is subject to the following three constraints:. A) sampling sites should be accessible to the crew on the ground, B) the number of sites located in a specific soil texture should be greater than or equal to a minimum value, and finally C) the number of sampling sites with a specific vegetation cover should be greater than or equal to a minimum constraint. The first constraint is implemented into the proposed model to keep the practicality of the approach. The second and third constraints are considered to guarantee that the collected samples from each soil texture categories

  7. Practical mine ventilation optimization based on genetic algorithms for free splitting networks

    Energy Technology Data Exchange (ETDEWEB)

    Acuna, E.; Maynard, R.; Hall, S. [Laurentian Univ., Sudbury, ON (Canada). Mirarco Mining Innovation; Hardcastle, S.G.; Li, G. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories; Lowndes, I.S. [Nottingham Univ., Nottingham (United Kingdom). Process and Environmental Research Division; Tonnos, A. [Bestech, Sudbury, ON (Canada)

    2010-07-01

    The method used to optimize the design and operation of mine ventilation has generally been based on case studies and expert knowledge. It has yet to benefit from optimization techniques used and proven in other fields of engineering. Currently, optimization of mine ventilation systems is a manual based decision process performed by an experienced mine ventilation specialist assisted by commercial ventilation distribution solvers. These analysis tools are widely used in the mining industry to evaluate the practical and economic viability of alternative ventilation system configurations. The scenario which is usually selected is the one that reports the lowest energy consumption while delivering the required airflow distribution. Since most commercial solvers do not have an integrated optimization algorithm network, the process of generating a series of potential ventilation solutions using the conventional iterative design strategy can be time consuming. For that reason, a genetic algorithm (GA) optimization routine was developed in combination with a ventilation solver to determine the potential optimal solutions of a primary mine ventilation system based on a free splitting network. The optimization method was used in a small size mine ventilation network. The technique was shown to have the capacity to generate good feasible solutions and improve upon the manual results obtained by mine ventilation specialists. 9 refs., 7 tabs., 3 figs.

  8. RECOMMENDER SYSTEMS IN SOCIAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Cleomar Valois Batista Jr

    2011-12-01

    Full Text Available The continued and diversified growth of social networks has changed the way in which users interact with them. With these changes, what once was limited to social contact is now used for exchanging ideas and opinions, creating the need for new features. Users have so much information at their fingertips that they are unable to process it by themselves; hence, the need to develop new tools. Recommender systems were developed to address this need and many techniques were used for different approaches to the problem. To make relevant recommendations, these systems use large sets of data, not taking the social network of the user into consideration. Developing a recommender system that takes into account the social network of the user is another way of tackling the problem. The purpose of this project is to use the theory of six degrees of separation (Watts 2003 amongst users of a social network to enhance existing recommender systems.

  9. Discrete particle swarm optimization for identifying community structures in signed social networks.

    Science.gov (United States)

    Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng

    2014-10-01

    Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Distributed Optimization of Multi Beam Directional Communication Networks

    Science.gov (United States)

    2017-06-30

    Distributed Optimization of Multi-Beam Directional Communication Networks Theodoros Tsiligkaridis MIT Lincoln Laboratory Lexington, MA 02141, USA...based routing. I. INTRODUCTION Missions where multiple communication goals are of in- terest are becoming more prevalent in military applications...Multilayer communications may occur within a coalition; for example, a team consisting of ground vehicles and an airborne set of assets may desire to

  11. Optimization of composite panels using neural networks and genetic algorithms

    NARCIS (Netherlands)

    Ruijter, W.; Spallino, R.; Warnet, Laurent; de Boer, Andries

    2003-01-01

    The objective of this paper is to present first results of a running study on optimization of aircraft components (composite panels of a typical vertical tail plane) by using Genetic Algorithms (GA) and Neural Networks (NN). The panels considered are standardized to some extent but still there is a

  12. Optimizing Knowledge Sharing in Learning Networks through Peer Tutoring

    NARCIS (Netherlands)

    Hsiao, Amy; Brouns, Francis; Kester, Liesbeth; Sloep, Peter

    2009-01-01

    Hsiao, Y. P., Brouns, F., Kester, L., & Sloep, P. (2009). Optimizing Knowledge Sharing in Learning Networks through Peer Tutoring. Presentation at the IADIS international conference on Cognition and Exploratory in Digital Age (CELDA 2009). November, 20-22, 2009, Rome, Italy.

  13. Optimizing Knowledge Sharing In Learning Networks Through Peer Tutoring

    NARCIS (Netherlands)

    Hsiao, Amy; Brouns, Francis; Kester, Liesbeth; Sloep, Peter

    2009-01-01

    Hsiao, Y. P., Brouns, F., Kester, L., & Sloep, P. B. (2009). Optimizing Knowledge Sharing In Learning Networks Through Peer Tutoring. In D. Kinshuk, J. Sampson, J. Spector, P. Isaías, P. Barbosa & D. Ifenthaler (Eds.). Proceedings of IADIS International Conference Cognition and Exploratory Learning

  14. Optimization of Gas Flow Network using the Traveling Salesman ...

    African Journals Online (AJOL)

    The overall goal of this paper is to develop a general formulation for an optimal infrastructure layout design of gas pipeline distribution networks using algorithm developed from the application of two industrial engineering concepts: the traveling salesman problem (TSP) and the nearest neighbor (NN). The focus is on the ...

  15. On Optimal Geographical Caching in Heterogeneous Cellular Networks

    NARCIS (Netherlands)

    Serbetci, Berksan; Goseling, Jasper

    2017-01-01

    In this work we investigate optimal geographical caching in heterogeneous cellular networks where different types of base stations (BSs) have different cache capacities. Users request files from a content library according to a known probability distribution. The performance metric is the total hit

  16. Model-based dynamic control and optimization of gas networks

    Energy Technology Data Exchange (ETDEWEB)

    Hofsten, Kai

    2001-07-01

    This work contributes to the research on control, optimization and simulation of gas transmission systems to support the dispatch personnel at gas control centres for the decision makings in the daily operation of the natural gas transportation systems. Different control and optimization strategies have been studied. The focus is on the operation of long distance natural gas transportation systems. Stationary optimization in conjunction with linear model predictive control using state space models is proposed for supply security, the control of quality parameters and minimization of transportation costs for networks offering transportation services. The result from the stationary optimization together with a reformulation of a simplified fluid flow model formulates a linear dynamic optimization model. This model is used in a finite time control and state constrained linear model predictive controller. The deviation from the control and the state reference determined from the stationary optimization is penalized quadratically. Because of the time varying status of infrastructure, the control space is also generally time varying. When the average load is expected to change considerably, a new stationary optimization is performed, giving a new state and control reference together with a new dynamic model that is used for both optimization and state estimation. Another proposed control strategy is a control and output constrained nonlinear model predictive controller for the operation of gas transmission systems. Here, the objective is also the security of the supply, quality control and minimization of transportation costs. An output vector is defined, which together with a control vector are both penalized quadratically from their respective references in the objective function. The nonlinear model predictive controller can be combined with a stationary optimization. At each sampling instant, a non convex nonlinear programming problem is solved giving a local minimum

  17. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  18. Ripple-Spreading Network Model Optimization by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Hu

    2013-01-01

    Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.

  19. Optimal Intermittent Operation of Water Distribution Networks under Water Shortage

    Directory of Open Access Journals (Sweden)

    mohamad Solgi

    2017-07-01

    Full Text Available Under water shortage conditions, it is necessary to exercise water consumption management practices in water distribution networks (WDN. Intermittent supply of water is one such practice that makes it possible to supply consumption nodal demands with the required pressure via water cutoff to some consumers during certain hours of the day. One of the most important issues that must be observed in this management practice is the equitable and uniform water distribution among the consumers. In the present study, uniformity in water distribution and minimum supply of water to all consumers are defined as justice and equity, respectively. Also, an optimization model has been developed to find an optimal intermittent supply schedule that ensures maximum number of demand nodes are supplied with water while the constraints on the operation of water distribution networks are also observed. To show the efficiency of the proposed model, it has been used in the Two-Loop distribution network under several different scenarios of water shortage. The optimization model has been solved using the honey bee mating optimization algorithm (HBMO linked to the hydraulic simulator EPANET. The results obtained confirm the efficiency of the proposed model in achieving an optimal intermittent supply schedule. Moreover, the model is found capable of distributing the available water in an equitable and just manner among all the consumers even under severe water shoratges.

  20. Optimal interdependence enhances the dynamical robustness of complex systems

    Science.gov (United States)

    Singh, Rishu Kumar; Sinha, Sitabhra

    2017-08-01

    Although interdependent systems have usually been associated with increased fragility, we show that strengthening the interdependence between dynamical processes on different networks can make them more likely to survive over long times. By coupling the dynamics of networks that in isolation exhibit catastrophic collapse with extinction of nodal activity, we demonstrate system-wide persistence of activity for an optimal range of interdependence between the networks. This is related to the appearance of attractors of the global dynamics comprising disjoint sets ("islands") of stable activity.

  1. Synchrony-optimized networks of non-identical Kuramoto oscillators

    International Nuclear Information System (INIS)

    Brede, Markus

    2008-01-01

    In this Letter we discuss a method for generating synchrony-optimized coupling architectures of Kuramoto oscillators with a heterogeneous distribution of native frequencies. The method allows us to relate the properties of the coupling network to its synchronizability. These relations were previously only established from a linear stability analysis of the identical oscillator case. We further demonstrate that the heterogeneity in the oscillator population produces heterogeneity in the optimal coupling network as well. Two rules for enhancing the synchronizability of a given network by a suitable placement of oscillators are given: (i) native frequencies of adjacent oscillators must be anti-correlated and (ii) frequency magnitudes should positively correlate with the degree of the node they are placed at

  2. Network Traffic Features for Anomaly Detection in Specific Industrial Control System Network

    Directory of Open Access Journals (Sweden)

    Matti Mantere

    2013-09-01

    Full Text Available The deterministic and restricted nature of industrial control system networks sets them apart from more open networks, such as local area networks in office environments. This improves the usability of network security, monitoring approaches that would be less feasible in more open environments. One of such approaches is machine learning based anomaly detection. Without proper customization for the special requirements of the industrial control system network environment, many existing anomaly or misuse detection systems will perform sub-optimally. A machine learning based approach could reduce the amount of manual customization required for different industrial control system networks. In this paper we analyze a possible set of features to be used in a machine learning based anomaly detection system in the real world industrial control system network environment under investigation. The network under investigation is represented by architectural drawing and results derived from network trace analysis. The network trace is captured from a live running industrial process control network and includes both control data and the data flowing between the control network and the office network. We limit the investigation to the IP traffic in the traces.

  3. Optimal design of water supply networks for enhancing seismic reliability

    International Nuclear Information System (INIS)

    Yoo, Do Guen; Kang, Doosun; Kim, Joong Hoon

    2016-01-01

    The goal of the present study is to construct a reliability evaluation model of a water supply system taking seismic hazards and present techniques to enhance hydraulic reliability of the design into consideration. To maximize seismic reliability with limited budgets, an optimal design model is developed using an optimization technique called harmony search (HS). The model is applied to actual water supply systems to determine pipe diameters that can maximize seismic reliability. The reliabilities between the optimal design and existing designs were compared and analyzed. The optimal design would both enhance reliability by approximately 8.9% and have a construction cost of approximately 1.3% less than current pipe construction cost. In addition, the reinforcement of the durability of individual pipes without considering the system produced ineffective results in terms of both cost and reliability. Therefore, to increase the supply ability of the entire system, optimized pipe diameter combinations should be derived. Systems in which normal status hydraulic stability and abnormal status available demand could be maximally secured if configured through the optimal design. - Highlights: • We construct a seismic reliability evaluation model of water supply system. • We present technique to enhance hydraulic reliability in the aspect of design. • Harmony search algorithm is applied in optimal designs process. • The effects of the proposed optimal design are improved reliability about by 9%. • Optimized pipe diameter combinations should be derived indispensably.

  4. Regulation of Dynamical Systems to Optimal Solutions of Semidefinite Programs: Algorithms and Applications to AC Optimal Power Flow

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    2015-07-01

    This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the control of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.

  5. Multilevel Complex Networks and Systems

    Science.gov (United States)

    Caldarelli, Guido

    2014-03-01

    Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.

  6. An Optimal Path Computation Architecture for the Cloud-Network on Software-Defined Networking

    Directory of Open Access Journals (Sweden)

    Hyunhun Cho

    2015-05-01

    Full Text Available Legacy networks do not open the precise information of the network domain because of scalability, management and commercial reasons, and it is very hard to compute an optimal path to the destination. According to today’s ICT environment change, in order to meet the new network requirements, the concept of software-defined networking (SDN has been developed as a technological alternative to overcome the limitations of the legacy network structure and to introduce innovative concepts. The purpose of this paper is to propose the application that calculates the optimal paths for general data transmission and real-time audio/video transmission, which consist of the major services of the National Research & Education Network (NREN in the SDN environment. The proposed SDN routing computation (SRC application is designed and applied in a multi-domain network for the efficient use of resources, selection of the optimal path between the multi-domains and optimal establishment of end-to-end connections.

  7. A combined geostatistical-optimization model for the optimal design of a groundwater quality monitoring network

    Science.gov (United States)

    Kolosionis, Konstantinos; Papadopoulou, Maria P.

    2017-04-01

    Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.

  8. Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.

    Science.gov (United States)

    Nair, Govind; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2017-02-01

    Knockout strategies, particularly the concept of constrained minimal cut sets (cMCSs), are an important part of the arsenal of tools used in manipulating metabolic networks. Given a specific design, cMCSs can be calculated even in genome-scale networks. We would however like to find not only the optimal intervention strategy for a given design but the best possible design too. Our solution (PSOMCS) is to use particle swarm optimization (PSO) along with the direct calculation of cMCSs from the stoichiometric matrix to obtain optimal designs satisfying multiple objectives. To illustrate the working of PSOMCS, we apply it to a toy network. Next we show its superiority by comparing its performance against other comparable methods on a medium sized E. coli core metabolic network. PSOMCS not only finds solutions comparable to previously published results but also it is orders of magnitude faster. Finally, we use PSOMCS to predict knockouts satisfying multiple objectives in a genome-scale metabolic model of E. coli and compare it with OptKnock and RobustKnock. PSOMCS finds competitive knockout strategies and designs compared to other current methods and is in some cases significantly faster. It can be used in identifying knockouts which will force optimal desired behaviors in large and genome scale metabolic networks. It will be even more useful as larger metabolic models of industrially relevant organisms become available.

  9. A Spectrum Handoff Scheme for Optimal Network Selection in NEMO Based Cognitive Radio Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2017-01-01

    Full Text Available When a mobile network changes its point of attachments in Cognitive Radio (CR vehicular networks, the Mobile Router (MR requires spectrum handoff. Network Mobility (NEMO in CR vehicular networks is concerned with the management of this movement. In future NEMO based CR vehicular networks deployment, multiple radio access networks may coexist in the overlapping areas having different characteristics in terms of multiple attributes. The CR vehicular node may have the capability to make call for two or more types of nonsafety services such as voice, video, and best effort simultaneously. Hence, it becomes difficult for MR to select optimal network for the spectrum handoff. This can be done by performing spectrum handoff using Multiple Attributes Decision Making (MADM methods which is the objective of the paper. The MADM methods such as grey relational analysis and cost based methods are used. The application of MADM methods provides wider and optimum choice among the available networks with quality of service. Numerical results reveal that the proposed scheme is effective for spectrum handoff decision for optimal network selection with reduced complexity in NEMO based CR vehicular networks.

  10. OPTIMAL CONFIGURATION OF A COMMAND AND CONTROL NETWORK: BALANCING PERFORMANCE AND RECONFIGURATION CONSTRAINTS

    Energy Technology Data Exchange (ETDEWEB)

    L. DOWELL

    1999-08-01

    The optimization of the configuration of communications and control networks is important for assuring the reliability and performance of the networks. This paper presents techniques for determining the optimal configuration for such a network in the presence of communication and connectivity constraints. reconfiguration to restore connectivity to a data-fusion network following the failure of a network component.

  11. Optimizing the IAEA safeguards system

    International Nuclear Information System (INIS)

    Drobysz, Sonia; Sitt, Bernard

    2011-09-01

    During the 2010 Non-Proliferation Treaty Review Conference, States parties recognized that the Additional Protocol (AP) provides increased confidence about the absence of undeclared nuclear material and activities in a State as a whole. They agreed in action 28 of the final document to encourage 'all States parties that have not yet done so to conclude and bring into force an AP as soon as possible and to implement them provisionally pending their entry into force'. Today, 109 out of 189 States parties to the NPT have brought an AP in force. The remaining outliers have not yet done so for three types of reasons: they do not clearly understand what the AP entails; when they do, they refuse to accept new non-proliferation obligations either on the ground of lack of progress in the realm of disarmament, or simply because they are not ready to bear the burden of additional safeguards measures. Strong incentives are thus needed in order to facilitate universalization of the AP. While external incentives would help make the AP a de facto norm and encourage its conclusion by reducing the deplored imbalanced implementation of non-proliferation and disarmament obligations, internal incentives developed by the Agency and its member States can also play an important role. In this respect, NPT States parties recommended in action 32 of the Review Conference final document 'that IAEA safeguards should be assessed and evaluated regularly. Decisions adopted by the IAEA policy bodies aimed at further strengthening the effectiveness and improving the efficiency of IAEA safeguards should be supported and implemented'. The safeguards system should therefore be optimized: the most effective use of safeguards measures as well as safeguards human, financial and technical resources would indeed help enhance the acceptability and even attractiveness of the AP. Optimization can be attractive for States committed to a stronger verification regime independently from other claims, but still

  12. Competitive game theoretic optimal routing in optical networks

    Science.gov (United States)

    Yassine, Abdulsalam; Kabranov, Ognian; Makrakis, Dimitrios

    2002-09-01

    Optical transport service providers need control and optimization strategies for wavelength management, network provisioning, restoration and protection, allowing them to define and deploy new services and maintain competitiveness. In this paper, we investigate a game theory based model for wavelength and flow assignment in multi wavelength optical networks, consisting of several backbone long-haul optical network transport service providers (TSPs) who are offering their services -in terms of bandwidth- to Internet service providers (ISPs). The ISPs act as brokers or agents between the TSP and end user. The agent (ISP) buys services (bandwidth) from the TSP. The TSPs compete among themselves to sell their services and maintain profitability. We present a case study, demonstrating the impact of different bandwidth broker demands on the supplier's profit and the price paid by the network broker.

  13. Optimizing bulk data transfers using network measurements: A practical case

    International Nuclear Information System (INIS)

    Ciuffoletti, A; Merola, L; Palmieri, F; Russo, G; Pardi, S

    2010-01-01

    In modern Data Grid infrastructures, we increasingly face the problem of providing the running applications with fast and reliable access to large data volumes, often geographically distributed across the network. As a direct consequence, the concept of replication has been adopted by the grid community to increase data availability and maximize job throughput. To be really effective, such process has to be driven by specific optimization strategies that define when and where replicas should be created or deleted on a per-site basis, and which replicas a job should use. These strategies have to take into account the available network bandwidth as a primary resource, prior to any consideration about storage or processing power. We present a novel replica management service, integrated within the Gluedomains active network monitoring architecture, designed and implemented within the centralized collective middleware framework of the SCoPE project to provide network-aware transfer services for data intensive Grid applications.

  14. Situational Awareness of Network System Roles (SANSR)

    Energy Technology Data Exchange (ETDEWEB)

    Huffer, Kelly M [ORNL; Reed, Joel W [ORNL

    2017-01-01

    In a large enterprise it is difficult for cyber security analysts to know what services and roles every machine on the network is performing (e.g., file server, domain name server, email server). Using network flow data, already collected by most enterprises, we developed a proof-of-concept tool that discovers the roles of a system using both clustering and categorization techniques. The tool's role information would allow cyber analysts to detect consequential changes in the network, initiate incident response plans, and optimize their security posture. The results of this proof-of-concept tool proved to be quite accurate on three real data sets. We will present the algorithms used in the tool, describe the results of preliminary testing, provide visualizations of the results, and discuss areas for future work. Without this kind of situational awareness, cyber analysts cannot quickly diagnose an attack or prioritize remedial actions.

  15. Reliability and optimization of structural systems

    International Nuclear Information System (INIS)

    Thoft-Christensen, P.

    1987-01-01

    The proceedings contain 28 papers presented at the 1st working conference. The working conference was organized by the IFIP Working Group 7.5. The proceedings also include 4 papers which were submitted, but for various reasons not presented at the working conference. The working conference was attended by 50 participants from 18 countries. The conference was the first scientific meeting of the new IFIP Working Group 7.5 on 'Reliability and Optimization of Structural Systems'. The purpose of the Working Group 7.5 is to promote modern structural system optimization and reliability theory, to advance international cooperation in the field of structural system optimization and reliability theory, to stimulate research, development and application of structural system optimization and reliability theory, to further the dissemination and exchange of information on reliability and optimization of structural system optimization and reliability theory, and to encourage education in structural system optimization and reliability theory. (orig./HP)

  16. TRADING-OFF CONSTRAINTS IN THE PUMP SCHEDULING OPTIMIZATION OF WATER DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    Gencer Genço\\u011Flu

    2016-01-01

    Full Text Available Pumps are one of the essential components of water supply systems. Depending of the topography, a water supply system may completely rely on pumping. They may consume non-negligible amount of water authorities' budgets during operation. Besides their energy costs, maintaining the healthiness of pumping systems is another concern for authorities. This study represents a multi-objective optimization method for pump scheduling problem. The optimization objective contains hydraulic and operational constraints. Switching of pumps and usage of electricity tariff are assumed to be key factors for operational reliability and energy consumption and costs of pumping systems. The local optimals for systems operational reliability, energy consumptions and energy costs are investigated resulting from trading-off pump switch and electricity tariff constraints within given set of boundary conditions. In the study, a custom made program is employed that combines genetic algorithm based optimization module with hydraulic network simulation software -EPANET. Developed method is applied on the case study network; N8-3 pressure zone of the Northern Supply of Ankara (Turkey Water Distribution Network. This work offers an efficient method for water authorities aiming to optimize pumping schedules considering expenditures and operational reliability mutually.

  17. Linear quadratic optimization for positive LTI system

    Science.gov (United States)

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  18. Distributed Optimization based Dynamic Tariff for Congestion Management in Distribution Networks

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Zhao, Haoran

    2017-01-01

    This paper proposes a distributed optimization based dynamic tariff (DDT) method for congestion management in distribution networks with high penetration of electric vehicles (EVs) and heat pumps (HPs). The DDT method employs a decomposition based optimization method to have aggregators explicitly...... is able to minimize the overall energy consumption cost and line loss cost, which is different from previous decomposition-based methods such as multiagent system methods. In addition, a reconditioning method and an integral controller are introduced to improve convergence of the distributed optimization...... where challenges arise due to multiple congestion points, multiple types of flexible demands and network constraints. The case studies demonstrate the efficacy of the DDT method for congestion management in distribution networks....

  19. Interference Calculus A General Framework for Interference Management and Network Utility Optimization

    CERN Document Server

    Schubert, Martin

    2012-01-01

    This book develops a mathematical framework for modeling and optimizing interference-coupled multiuser systems. At the core of this framework is the concept of general interference functions, which provides a simple means of characterizing interdependencies between users. The entire analysis builds on the two core axioms scale-invariance and monotonicity. The proposed network calculus has its roots in power control theory and wireless communications. It adds theoretical tools for analyzing the typical behavior of interference-coupled networks. In this way it complements existing game-theoretic approaches. The framework should also be viewed in conjunction with optimization theory. There is a fruitful interplay between the theory of interference functions and convex optimization theory. By jointly exploiting the properties of interference functions, it is possible to design algorithms that outperform general-purpose techniques that only exploit convexity. The title “network calculus” refers to the fact tha...

  20. A bridge network maintenance framework for Pareto optimization of stakeholders/users costs

    International Nuclear Information System (INIS)

    Orcesi, Andre D.; Cremona, Christian F.

    2010-01-01

    For managing highway bridges, stakeholders require efficient and practical decision making techniques. In a context of limited bridge management budget, it is crucial to determine the most effective breakdown of financial resources over the different structures of a bridge network. Bridge management systems (BMSs) have been developed for such a purpose. However, they generally rely on an individual approach. The influence of the position of bridges in the transportation network, the consequences of inadequate service for the network users, due to maintenance actions or bridge failure, are not taken into consideration. Therefore, maintenance strategies obtained with current BMSs do not necessarily lead to an optimal level of service (LOS) of the bridge network for the users of the transportation network. Besides, the assessment of the structural performance of highway bridges usually requires the access to the geometrical and mechanical properties of its components. Such information might not be available for all structures in a bridge network for which managers try to schedule and prioritize maintenance strategies. On the contrary, visual inspections are performed regularly and information is generally available for all structures of the bridge network. The objective of this paper is threefold (i) propose an advanced network-level bridge management system considering the position of each bridge in the transportation network, (ii) use information obtained at visual inspections to assess the performance of bridges, and (iii) compare optimal maintenance strategies, obtained with a genetic algorithm, when considering interests of users and bridge owner either separately as conflicting criteria, or simultaneously as a common interest for the whole community. In each case, safety and serviceability aspects are taken into account in the model when determining optimal strategies. The theoretical and numerical developments are applied on a French bridge network.

  1. Energy network dispatch optimization under emergency of local energy shortage

    International Nuclear Information System (INIS)

    Cai, Tianxing; Zhao, Chuanyu; Xu, Qiang

    2012-01-01

    The consequence of short-time energy shortage under extreme conditions, such as earthquake, tsunami, and hurricane, may cause local areas to suffer from delayed rescues, widespread power outages, tremendous economic losses, and even public safety threats. In such urgent events of local energy shortage, agile energy dispatching through an effective energy transportation network, targeting the minimum energy recovery time, should be a top priority. In this paper, a novel methodology is developed for energy network dispatch optimization under emergency of local energy shortage, which includes four stages of work. First, emergency-area-centered energy network needs to be characterized, where the capacity, quantity, and availability of various energy sources are determined. Second, the energy initial situation under emergency conditions needs to be identified. Then, the energy dispatch optimization is conducted based on a developed MILP (mixed-integer linear programming) model in the third stage. Finally, the sensitivity of the minimum dispatch time with respect to uncertainty parameters is characterized by partitioning the entire space of uncertainty parameters into multiple subspaces. The efficacy of the developed methodology is demonstrated via a case study with in-depth discussions. -- Highlights: ► Address the energy network dispatch problem under emergency of local energy shortage. ► Minimize the energy restoration time for the entire energy network under emergency events. ► Develop a new MILP model and a sensitivity analysis method with respect to uncertainties.

  2. Strategies for Optimal Design of Structural Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1992-01-01

    Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...

  3. A reverse engineering approach to optimize experiments for the construction of biological regulatory networks.

    Science.gov (United States)

    Zhang, Xiaomeng; Shao, Bin; Wu, Yangle; Qi, Ouyang

    2013-01-01

    One of the major objectives in systems biology is to understand the relation between the topological structures and the dynamics of biological regulatory networks. In this context, various mathematical tools have been developed to deduct structures of regulatory networks from microarray expression data. In general, from a single data set, one cannot deduct the whole network structure; additional expression data are usually needed. Thus how to design a microarray expression experiment in order to get the most information is a practical problem in systems biology. Here we propose three methods, namely, maximum distance method, trajectory entropy method, and sampling method, to derive the optimal initial conditions for experiments. The performance of these methods is tested and evaluated in three well-known regulatory networks (budding yeast cell cycle, fission yeast cell cycle, and E. coli. SOS network). Based on the evaluation, we propose an efficient strategy for the design of microarray expression experiments.

  4. Optimality principles in the regulation of metabolic networks.

    Science.gov (United States)

    Berkhout, Jan; Bruggeman, Frank J; Teusink, Bas

    2012-08-29

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular "task" of the network-its function-should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  5. Basic Principles of Electrical Network Reliability Optimization in Liberalised Electricity Market

    Science.gov (United States)

    Oleinikova, I.; Krishans, Z.; Mutule, A.

    2008-01-01

    The authors propose to select long-term solutions to the reliability problems of electrical networks in the stage of development planning. The guide lines or basic principles of such optimization are: 1) its dynamical nature; 2) development sustainability; 3) integrated solution of the problems of network development and electricity supply reliability; 4) consideration of information uncertainty; 5) concurrent consideration of the network and generation development problems; 6) application of specialized information technologies; 7) definition of requirements for independent electricity producers. In the article, the major aspects of liberalized electricity market, its functions and tasks are reviewed, with emphasis placed on the optimization of electrical network development as a significant component of sustainable management of power systems.

  6. Fault Diagnosis of Hydraulic Servo Valve Based on Genetic Optimization RBF-BP Neural Network

    Directory of Open Access Journals (Sweden)

    Li-Ping FAN

    2014-04-01

    Full Text Available Electro-hydraulic servo valves are core components of the hydraulic servo system of rolling mills. It is necessary to adopt an effective fault diagnosis method to keep the hydraulic servo valve in a good work state. In this paper, RBF and BP neural network are integrated effectively to build a double hidden layers RBF-BP neural network for fault diagnosis. In the process of training the neural network, genetic algorithm (GA is used to initialize and optimize the connection weights and thresholds of the network. Several typical fault states are detected by the constructed GA-optimized fault diagnosis scheme. Simulation results shown that the proposed fault diagnosis scheme can give satisfactory effect.

  7. Implementing size-optimal discrete neural networks require analog circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-01

    This paper starts by overviewing results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on a constructive solution for Kolmogorov`s superpositions the authors show that implementing Boolean functions can be done using neurons having an identity transfer function. Because in this case the size of the network is minimized, it follows that size-optimal solutions for implementing Boolean functions can be obtained using analog circuitry. Conclusions and several comments on the required precision are ending the paper.

  8. Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks.

    Directory of Open Access Journals (Sweden)

    Saket Navlakha

    2015-07-01

    Full Text Available Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains.

  9. Promoting Social Network Awareness: A Social Network Monitoring System

    Science.gov (United States)

    Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin

    2010-01-01

    To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…

  10. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-04-30

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench

  11. A New Wavelength Optimization and Energy-Saving Scheme Based on Network Coding in Software-Defined WDM-PON Networks

    Science.gov (United States)

    Ren, Danping; Wu, Shanshan; Zhang, Lijing

    2016-09-01

    In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.

  12. Optimization of TTEthernet Networks to Support Best-Effort Traffic

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Pop, Paul

    2014-01-01

    This paper focuses on the optimization of the TTEthernet communication protocol, which offers three traffic classes: time-triggered (TT), sent according to static schedules, rate-constrained (RC) that has bounded end-to-end latency, and best-effort (BE), the classic Ethernet traffic, with no timing...... guarantees. In our earlier work we have proposed an optimization approach named DOTTS that performs the routing, scheduling and packing / fragmenting of TT and RC messages, such that the TT and RC traffic is schedulable. Although backwards compatibility with classic Ethernet networks is one of TTEthernet...

  13. Optimal synthesis of a heat-exchanger network

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, O A; Aly, S [University of United Arab Emirates, Al-Ain (United Arab Emirates). Faculty of Engineering

    1991-01-01

    Thermodynamic, heat transfer and economic concepts influencing the synthesis of a heat-exchanger network (HEN) coupled to a crude fractionation unit are examined. The impact of the variation of the minimum temperature approach on energy and capital targets is studied using recent developments in pinch technology. The optimal pinch approach temperature has been determined using the 'supertargeting' concept where proper trade-off between energy and capital targets is observed prior to design. A heuristic evolutionary approach has then been used for the generation of the optimal HEN. (author).

  14. Network synthesis and parameter optimization for vehicle suspension with inerter

    Directory of Open Access Journals (Sweden)

    Long Chen

    2016-12-01

    Full Text Available In order to design a comfortable-oriented vehicle suspension structure, the network synthesis method was utilized to transfer the problem into solving a timing robust control problem and determine the structure of “inerter–spring–damper” suspension. Bilinear Matrix Inequality was utilized to obtain the timing transfer function. Then, the transfer function of suspension system can be physically implemented by passive elements such as spring, damper, and inerter. By analyzing the sensitivity and quantum genetic algorithm, the optimized parameters of inerter–spring–damper suspension were determined. A quarter-car model was established. The performance of the inerter–spring–damper suspension was verified under random input. The simulation results manifested that the dynamic performance of the proposed suspension was enhanced in contrast with traditional suspension. The root mean square of vehicle body acceleration decreases by 18.9%. The inerter–spring–damper suspension can inhibit the vertical vibration within the frequency of 1–3 Hz effectively and enhance the performance of ride comfort significantly.

  15. Optimal Control and Optimization of Stochastic Supply Chain Systems

    CERN Document Server

    Song, Dong-Ping

    2013-01-01

    Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject in the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies.                 In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of ...

  16. Optimal Multi-Level Lot Sizing for Requirements Planning Systems

    OpenAIRE

    Earle Steinberg; H. Albert Napier

    1980-01-01

    The wide spread use of advanced information systems such as Material Requirements Planning (MRP) has significantly altered the practice of dependent demand inventory management. Recent research has focused on development of multi-level lot sizing heuristics for such systems. In this paper, we develop an optimal procedure for the multi-period, multi-product, multi-level lot sizing problem by modeling the system as a constrained generalized network with fixed charge arcs and side constraints. T...

  17. Hybrid Swarm Intelligence Optimization Approach for Optimal Data Storage Position Identification in Wireless Sensor Networks

    Science.gov (United States)

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182

  18. A Multiobjective Optimization Model in Automotive Supply Chain Networks

    Directory of Open Access Journals (Sweden)

    Abdolhossein Sadrnia

    2013-01-01

    Full Text Available In the new decade, green investment decisions are attracting more interest in design supply chains due to the hidden economic benefits and environmental legislative barriers. In this paper, a supply chain network design problem with both economic and environmental concerns is presented. Therefore, a multiobjective optimization model that captures the trade-off between the total logistics cost and CO2 emissions is proposed. With regard to the complexity of logistic networks, a new multiobjective swarm intelligence algorithm known as a multiobjective Gravitational search algorithm (MOGSA has been implemented for solving the proposed mathematical model. To evaluate the effectiveness of the model, a comprehensive set of numerical experiments is explained. The results obtained show that the proposed model can be applied as an effective tool in strategic planning for optimizing cost and CO2 emissions in an environmentally friendly automotive supply chain.

  19. Trajectory Based Optimal Segment Computation in Road Network Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    2013-01-01

    Finding a location for a new facility such that the facility attracts the maximal number of customers is a challenging problem. Existing studies either model customers as static sites and thus do not consider customer movement, or they focus on theoretical aspects and do not provide solutions...... that are shown empirically to be scalable. Given a road network, a set of existing facilities, and a collection of customer route traversals, an optimal segment query returns the optimal road network segment(s) for a new facility. We propose a practical framework for computing this query, where each route...... traversal is assigned a score that is distributed among the road segments covered by the route according to a score distribution model. The query returns the road segment(s) with the highest score. To achieve low latency, it is essential to prune the very large search space. We propose two algorithms...

  20. Trajectory Based Optimal Segment Computation in Road Network Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    Finding a location for a new facility such that the facility attracts the maximal number of customers is a challenging problem. Existing studies either model customers as static sites and thus do not consider customer movement, or they focus on theoretical aspects and do not provide solutions...... that are shown empirically to be scalable. Given a road network, a set of existing facilities, and a collection of customer route traversals, an optimal segment query returns the optimal road network segment(s) for a new facility. We propose a practical framework for computing this query, where each route...... traversal is assigned a score that is distributed among the road segments covered by the route according to a score distribution model. The query returns the road segment(s) with the highest score. To achieve low latency, it is essential to prune the very large search space. We propose two algorithms...

  1. 78 FR 65975 - Notice of Availability (NOA) for Strategic Network Optimization (SNO) Environmental Assessment...

    Science.gov (United States)

    2013-11-04

    ... (NOA) for Strategic Network Optimization (SNO) Environmental Assessment Finding of No Significant... Network Optimization (SNO) Environmental Assessment (EA) Finding of No Significant Impact (FONSI). SUMMARY... interpreted comprehensively to include the natural and physical environment and the relationship of people...

  2. Dynamic mobility applications policy analysis : policy and institutional issues for intelligent network flow optimization (INFLO).

    Science.gov (United States)

    2014-12-01

    The report documents policy considerations for the Intelligent Network Flow Optimization (INFLO) connected vehicle applications : bundle. INFLO aims to optimize network flow on freeways and arterials by informing motorists of existing and impen...

  3. Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.

    Science.gov (United States)

    Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric

    2018-03-01

    Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.

  4. PSO-Optimized Hopfield Neural Network-Based Multipath Routing for Mobile Ad-hoc Networks

    Directory of Open Access Journals (Sweden)

    Mansour Sheikhan

    2012-06-01

    Full Text Available Mobile ad-hoc network (MANET is a dynamic collection of mobile computers without the need for any existing infrastructure. Nodes in a MANET act as hosts and routers. Designing of robust routing algorithms for MANETs is a challenging task. Disjoint multipath routing protocols address this problem and increase the reliability, security and lifetime of network. However, selecting an optimal multipath is an NP-complete problem. In this paper, Hopfield neural network (HNN which its parameters are optimized by particle swarm optimization (PSO algorithm is proposed as multipath routing algorithm. Link expiration time (LET between each two nodes is used as the link reliability estimation metric. This approach can find either node-disjoint or link-disjoint paths in singlephase route discovery. Simulation results confirm that PSO-HNN routing algorithm has better performance as compared to backup path set selection algorithm (BPSA in terms of the path set reliability and number of paths in the set.

  5. Dependability of self-optimizing mechatronic systems

    CERN Document Server

    Rammig, Franz; Schäfer, Wilhelm; Sextro, Walter

    2014-01-01

    Intelligent technical systems, which combine mechanical, electrical and software engineering with control engineering and advanced mathematics, go far beyond the state of the art in mechatronics and open up fascinating perspectives. Among these systems are so-called self-optimizing systems, which are able to adapt their behavior autonomously and flexibly to changing operating conditions. Self-optimizing systems create high value for example in terms of energy and resource efficiency as well as reliability. The Collaborative Research Center 614 "Self-optimizing Concepts and Structures in Mechanical Engineering" pursued the long-term aim to open up the active paradigm of self-optimization for mechanical engineering and to enable others to develop self-optimizing systems. This book is directed to researchers and practitioners alike. It provides a design methodology for the development of self-optimizing systems consisting of a reference process, methods, and tools. The reference process is divided into two phase...

  6. Optimization of wireless Bluetooth sensor systems.

    Science.gov (United States)

    Lonnblad, J; Castano, J; Ekstrom, M; Linden, M; Backlund, Y

    2004-01-01

    Within this study, three different Bluetooth sensor systems, replacing cables for transmission of biomedical sensor data, have been designed and evaluated. The three sensor architectures are built on 1-, 2- and 3-chip solutions and depending on the monitoring situation and signal character, different solutions are optimal. Essential parameters for all systems have been low physical weight and small size, resistance to interference and interoperability with other technologies as global- or local networks, PC's and mobile phones. Two different biomedical input signals, ECG and PPG (photoplethysmography), have been used to evaluate the three solutions. The study shows that it is possibly to continuously transmit an analogue signal. At low sampling rates and slowly varying parameters, as monitoring the heart rate with PPG, the 1-chip solution is the most suitable, offering low power consumption and thus a longer battery lifetime or a smaller battery, minimizing the weight of the sensor system. On the other hand, when a higher sampling rate is required, as an ECG, the 3-chip architecture, with a FPGA or micro-controller, offers the best solution and performance. Our conclusion is that Bluetooth might be useful in replacing cables of medical monitoring systems.

  7. A measure theoretic approach to traffic flow optimization on networks

    OpenAIRE

    Cacace, Simone; Camilli, Fabio; De Maio, Raul; Tosin, Andrea

    2018-01-01

    We consider a class of optimal control problems for measure-valued nonlinear transport equations describing traffic flow problems on networks. The objective isto minimise/maximise macroscopic quantities, such as traffic volume or average speed,controlling few agents, for example smart traffic lights and automated cars. The measuretheoretic approach allows to study in a same setting local and nonlocal drivers interactionsand to consider the control variables as additional measures interacting ...

  8. Optimal Joint Expected Delay Forwarding in Delay Tolerant Networks

    OpenAIRE

    Jia Xu; Xin Feng; Wen Jun Yang; Ru Chuan Wang; Bing Qing Han

    2013-01-01

    Multicopy forwarding schemes have been employed in delay tolerant network (DTN) to improve the delivery delay and delivery rate. Much effort has been focused on reducing the routing cost while retaining high performance. This paper aims to provide an optimal joint expected delay forwarding (OJEDF) protocol which minimizes the expected delay while satisfying a certain constant on the number of forwardings per message. We propose a comprehensive forwarding metric called joint expected delay (JE...

  9. Optimization of a particle optical system in a mutilprocessor environment

    International Nuclear Information System (INIS)

    Wei Lei; Yin Hanchun; Wang Baoping; Tong Linsu

    2002-01-01

    In the design of a charged particle optical system, many geometrical and electric parameters have to be optimized to improve the performance characteristics. In every optimization cycle, the electromagnetic field and particle trajectories have to be calculated. Therefore, the optimization of a charged particle optical system is limited by the computer resources seriously. Apart from this, numerical errors of calculation may also influence the convergence of merit function. This article studies how to improve the optimization of charged particle optical systems. A new method is used to determine the gradient matrix. With this method, the accuracy of the Jacobian matrix can be improved. In this paper, the charged particle optical system is optimized with a Message Passing Interface (MPI). The electromagnetic field, particle trajectories and gradients of optimization variables are calculated on networks of workstations. Therefore, the speed of optimization has been increased largely. It is possible to design a complicated charged particle optical system with optimum quality on a MPI environment. Finally, an electron gun for a cathode ray tube has been optimized on a MPI environment to verify the method proposed in this paper

  10. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1993-01-01

    Reliability-based design of structural systems is considered. In particular, systems where the reliability model is a series system of parallel systems are treated. A sensitivity analysis for this class of problems is presented. Optimization problems with series systems of parallel systems...... optimization of series systems of parallel systems, but it is also efficient in reliability-based optimization of series systems in general....

  11. Data networks and open systems

    International Nuclear Information System (INIS)

    Rosner, R.A.

    1985-01-01

    Computing in the LEP era will require a variety of communications facilities, ranging from high-speed local area networks forming the backbones of distributed control systems to wide area networks connecting data analysis centres together. The ISO model for Open Systems Interconnection (OSI) offers a possible framework for the general study of communications environments, whatever their performance parameters or geographical extent. This series of lectures uses the model as the basis for discussing elements of the communications hierarchy likely to be required for LEP computing. Examples are given of the practical application of OSI principles to real communications problems. (orig.)

  12. PARTICLE SWARM OPTIMIZATION (PSO FOR TRAINING OPTIMIZATION ON CONVOLUTIONAL NEURAL NETWORK (CNN

    Directory of Open Access Journals (Sweden)

    Arie Rachmad Syulistyo

    2016-02-01

    Full Text Available Neural network attracts plenty of researchers lately. Substantial number of renowned universities have developed neural network for various both academically and industrially applications. Neural network shows considerable performance on various purposes. Nevertheless, for complex applications, neural network’s accuracy significantly deteriorates. To tackle the aforementioned drawback, lot of researches had been undertaken on the improvement of the standard neural network. One of the most promising modifications on standard neural network for complex applications is deep learning method. In this paper, we proposed the utilization of Particle Swarm Optimization (PSO in Convolutional Neural Networks (CNNs, which is one of the basic methods in deep learning. The use of PSO on the training process aims to optimize the results of the solution vectors on CNN in order to improve the recognition accuracy. The data used in this research is handwritten digit from MNIST. The experiments exhibited that the accuracy can be attained in 4 epoch is 95.08%. This result was better than the conventional CNN and DBN.  The execution time was also almost similar to the conventional CNN. Therefore, the proposed method was a promising method.

  13. Optimality Principles in the Regulation of Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Jan Berkhout

    2012-08-01

    Full Text Available One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular “task” of the network—its function—should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  14. Stochastic network interdiction optimization via capacitated network reliability modeling and probabilistic solution discovery

    International Nuclear Information System (INIS)

    Ramirez-Marquez, Jose Emmanuel; Rocco S, Claudio M.

    2009-01-01

    This paper introduces an evolutionary optimization approach that can be readily applied to solve stochastic network interdiction problems (SNIP). The network interdiction problem solved considers the minimization of the cost associated with an interdiction strategy such that the maximum flow that can be transmitted between a source node and a sink node for a fixed network design is greater than or equal to a given reliability requirement. Furthermore, the model assumes that the nominal capacity of each network link and the cost associated with their interdiction can change from link to link and that such interdiction has a probability of being successful. This version of the SNIP is for the first time modeled as a capacitated network reliability problem allowing for the implementation of computation and solution techniques previously unavailable. The solution process is based on an evolutionary algorithm that implements: (1) Monte-Carlo simulation, to generate potential network interdiction strategies, (2) capacitated network reliability techniques to analyze strategies' source-sink flow reliability and, (3) an evolutionary optimization technique to define, in probabilistic terms, how likely a link is to appear in the final interdiction strategy. Examples for different sizes of networks are used throughout the paper to illustrate the approach

  15. Network operating system focus technology

    Science.gov (United States)

    1985-01-01

    An activity structured to provide specific design requirements and specifications for the Space Station Data Management System (DMS) Network Operating System (NOS) is outlined. Examples are given of the types of supporting studies and implementation tasks presently underway to realize a DMS test bed capability to develop hands-on understanding of NOS requirements as driven by actual subsystem test beds participating in the overall Johnson Space Center test bed program. Classical operating system elements and principal NOS functions are listed.

  16. Multiobjective optimal placement of switches and protective devices in electric power distribution systems using ant colony optimization

    Energy Technology Data Exchange (ETDEWEB)

    Tippachon, Wiwat; Rerkpreedapong, Dulpichet [Department of Electrical Engineering, Kasetsart University, 50 Phaholyothin Rd., Ladyao, Jatujak, Bangkok 10900 (Thailand)

    2009-07-15

    This paper presents a multiobjective optimization methodology to optimally place switches and protective devices in electric power distribution networks. Identifying the type and location of them is a combinatorial optimization problem described by a nonlinear and nondifferential function. The multiobjective ant colony optimization (MACO) has been applied to this problem to minimize the total cost while simultaneously minimize two distribution network reliability indices including system average interruption frequency index (SAIFI) and system interruption duration index (SAIDI). Actual distribution feeders are used in the tests, and test results have shown that the algorithm can determine the set of optimal nondominated solutions. It allows the utility to obtain the optimal type and location of devices to achieve the best system reliability with the lowest cost. (author)

  17. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    JongHyup Lee

    2016-08-01

    Full Text Available For practical deployment of wireless sensor networks (WSN, WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections.

  18. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks

    Science.gov (United States)

    Lee, JongHyup; Pak, Dohyun

    2016-01-01

    For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743

  19. Fuzzy logic control and optimization system

    Science.gov (United States)

    Lou, Xinsheng [West Hartford, CT

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  20. Distributed optimization of a multisubchannel Ad Hoc cognitive radio network

    KAUST Repository

    Leith, Alex; Kim, Dongin; Alouini, Mohamed-Slim; Wu, Zhiqiang

    2012-01-01

    local information exchanges for dual update. The effects of many system parameters are presented through simulation results, which show that the near-optimal SSA duality scheme can perform significantly better than the suboptimal ESA duality and SSA

  1. Optimal residential smart appliances scheduling considering distribution network constraints

    Directory of Open Access Journals (Sweden)

    Yu-Ree Kim

    2016-01-01

    Full Text Available As smart appliances (SAs are more widely adopted within distribution networks, residential consumers can contribute to electricity market operations with demand response resources and reduce their electricity bill. However, if the schedules of demand response resources are determined only by the economic electricity rate signal, the schedule can be unfeasible due to the distribution network constraints. Furthermore, it is impossible for consumers to understand the complex physical characteristics and reflect them in their everyday behaviors. This paper introduces the concept of load coordinating retailer (LCR that deals with demand responsive appliances to reduce electrical consumption for the given distribution network constraints. The LCR can play the role of both conventional retailer and aggregated demand response provider for residential customers. It determines the optimal schedules for the aggregated neighboring SAs according to their types within each distribution feeder. The optimization algorithms are developed using Mixed Integer Linear Programming, and the distribution network is solved by the Newton–Raphson AC power flow.

  2. Optimal Operations and Resilient Investments in Steam Networks

    Energy Technology Data Exchange (ETDEWEB)

    Bungener, Stéphane L., E-mail: stephane.bungener@a3.epfl.ch [Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Van Eetvelde, Greet [Environmental and Spatial Management, Faculty of Engineering and Architecture, Ghent University, Ghent (Belgium); Maréchal, François [Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2016-01-20

    Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors) should be sized to supply the consumers at nominal operating conditions as well as peak demand. First, this paper proposes an Mixed Integer Linear Programing formulation to optimize the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero), through the introduction of load shedding. Optimization of investments based on operational and investment costs are included in the formulation. Though rare, boiler failures can have a heavy impact on steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network’s resilience. The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.

  3. Optimal Operations and Resilient Investments in Steam Networks

    International Nuclear Information System (INIS)

    Bungener, Stéphane L.; Van Eetvelde, Greet; Maréchal, François

    2016-01-01

    Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors) should be sized to supply the consumers at nominal operating conditions as well as peak demand. First, this paper proposes an Mixed Integer Linear Programing formulation to optimize the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero), through the introduction of load shedding. Optimization of investments based on operational and investment costs are included in the formulation. Though rare, boiler failures can have a heavy impact on steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network’s resilience. The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.

  4. Optimized Evaluation System to Athletic Food Safety

    OpenAIRE

    Shanshan Li

    2015-01-01

    This study presented a new method of optimizing evaluation function in athletic food safety information programming by particle swarm optimization. The process of food information evaluation function is to automatically adjust these parameters in the evaluation function by self-optimizing method accomplished through competition, which is a food information system plays against itself with different evaluation functions. The results show that the particle swarm optimization is successfully app...

  5. Network ownership and optimal tariffs for natural gas transport

    International Nuclear Information System (INIS)

    Hagen, Kaare P.; Kind, Hans Jarle; Sannarnes, Jan Gaute

    2004-11-01

    This paper addresses the issue of national optimal tariffs for transportation of natural gas in a setting where national gas production in its entirety is exported to end-user markets abroad. In a situation where the transportation network is owned altogether by a vertically integrated national gas producer, it is shown that the optimal tariff depends on the ownership structure in the integrated transportation company as well as in the non-facility based gas company. There are two reasons why it is possibly optimal with a mark-up on marginal transportation costs. First, there is a premium on public revenue if domestic taxation is distorting. Second, with incomplete national taxation of rents from the gas sector, the transportation tariffs can serve as a second best way of appropriating rents accruing to foreigners. In a situation where the network is run as a separate entity subject to a rate of return regulation, it will be optimal to discriminate the tariffs between shippers for the usual Ramseyean reasons. (Author)

  6. Robustness and Optimization of Complex Networks : Reconstructability, Algorithms and Modeling

    NARCIS (Netherlands)

    Liu, D.

    2013-01-01

    The infrastructure networks, including the Internet, telecommunication networks, electrical power grids, transportation networks (road, railway, waterway, and airway networks), gas networks and water networks, are becoming more and more complex. The complex infrastructure networks are crucial to our

  7. Using neural networks to speed up optimization algorithms

    CERN Document Server

    Bazan, M

    2000-01-01

    The paper presents the application of radial-basis-function (RBF) neural networks to speed up deterministic search algorithms used for the design and optimization of superconducting LHC magnets. The optimization of the iron yoke of the main dipoles requires a number of numerical field computations per trial solution as the field quality depends on the excitation of the magnets. This results in computation times of about 30 minutes for each objective function evaluation (on a DEC-Alpha 600/333) and only the most robust (deterministic) optimization algorithms can be applied. Using a RBF function approximator, the achieved speed-up of the search algorithm is in the order of 25% for problems with two parameters and about 18% for problems with three and five design variables. (13 refs).

  8. Pricing Resources in LTE Networks through Multiobjective Optimization

    Science.gov (United States)

    Lai, Yung-Liang; Jiang, Jehn-Ruey

    2014-01-01

    The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid “user churn,” which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution. PMID:24526889

  9. Pricing resources in LTE networks through multiobjective optimization.

    Science.gov (United States)

    Lai, Yung-Liang; Jiang, Jehn-Ruey

    2014-01-01

    The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid "user churn," which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution.

  10. Pricing Resources in LTE Networks through Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    Yung-Liang Lai

    2014-01-01

    Full Text Available The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid “user churn,” which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1 maximizing operator profit and (2 maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution.

  11. District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: A case study

    DEFF Research Database (Denmark)

    Dalla Rosa, A.; Boulter, R.; Church, K.

    2012-01-01

    better energy delivery performance than high-temperature district heating (HTDH) (Tsupply> 100 C), decreasing the heat loss by approximately 40%. The low-temperature networks (Tsupplyinvestment. The implementation...... in Canada. The paper discusses critical issues and quantifies the performance of design concepts for DH supply to low heat density areas. DH is a fundamental energy infrastructure and is part of the solution for sustainable energy planning in Canadian communities....

  12. Optimal Dispatching of Active Distribution Networks Based on Load Equilibrium

    Directory of Open Access Journals (Sweden)

    Xiao Han

    2017-12-01

    Full Text Available This paper focuses on the optimal intraday scheduling of a distribution system that includes renewable energy (RE generation, energy storage systems (ESSs, and thermostatically controlled loads (TCLs. This system also provides time-of-use pricing to customers. Unlike previous studies, this study attempts to examine how to optimize the allocation of electric energy and to improve the equilibrium of the load curve. Accordingly, we propose a concept of load equilibrium entropy to quantify the overall equilibrium of the load curve and reflect the allocation optimization of electric energy. Based on this entropy, we built a novel multi-objective optimal dispatching model to minimize the operational cost and maximize the load curve equilibrium. To aggregate TCLs into the optimization objective, we introduced the concept of a virtual power plant (VPP and proposed a calculation method for VPP operating characteristics based on the equivalent thermal parameter model and the state-queue control method. The Particle Swarm Optimization algorithm was employed to solve the optimization problems. The simulation results illustrated that the proposed dispatching model can achieve cost reductions of system operations, peak load curtailment, and efficiency improvements, and also verified that the load equilibrium entropy can be used as a novel index of load characteristics.

  13. Modeling of District Heating Networks for the Purpose of Operational Optimization with Thermal Energy Storage

    Science.gov (United States)

    Leśko, Michał; Bujalski, Wojciech

    2017-12-01

    The aim of this document is to present the topic of modeling district heating systems in order to enable optimization of their operation, with special focus on thermal energy storage in the pipelines. Two mathematical models for simulation of transient behavior of district heating networks have been described, and their results have been compared in a case study. The operational optimization in a DH system, especially if this system is supplied from a combined heat and power plant, is a difficult and complicated task. Finding a global financial optimum requires considering long periods of time and including thermal energy storage possibilities into consideration. One of the most interesting options for thermal energy storage is utilization of thermal inertia of the network itself. This approach requires no additional investment, while providing significant possibilities for heat load shifting. It is not feasible to use full topological models of the networks, comprising thousands of substations and network sections, for the purpose of operational optimization with thermal energy storage, because such models require long calculation times. In order to optimize planned thermal energy storage actions, it is necessary to model the transient behavior of the network in a very simple way - allowing for fast and reliable calculations. Two approaches to building such models have been presented. Both have been tested by comparing the results of simulation of the behavior of the same network. The characteristic features, advantages and disadvantages of both kinds of models have been identified. The results can prove useful for district heating system operators in the near future.

  14. Networked control of microgrid system of systems

    Science.gov (United States)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  15. An Improved Ensemble of Random Vector Functional Link Networks Based on Particle Swarm Optimization with Double Optimization Strategy.

    Science.gov (United States)

    Ling, Qing-Hua; Song, Yu-Qing; Han, Fei; Yang, Dan; Huang, De-Shuang

    2016-01-01

    For ensemble learning, how to select and combine the candidate classifiers are two key issues which influence the performance of the ensemble system dramatically. Random vector functional link networks (RVFL) without direct input-to-output links is one of suitable base-classifiers for ensemble systems because of its fast learning speed, simple structure and good generalization performance. In this paper, to obtain a more compact ensemble system with improved convergence performance, an improved ensemble of RVFL based on attractive and repulsive particle swarm optimization (ARPSO) with double optimization strategy is proposed. In the proposed method, ARPSO is applied to select and combine the candidate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both the convergence accuracy on the validation data and the diversity of the candidate ensemble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble weights corresponding to the base RVFL are initialized by the minimum norm least-square method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned, and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoretical analysis and justification on how to prune the base classifiers on classification problem is presented, and a simple and practically feasible strategy for pruning redundant base classifiers on both classification and regression problems is proposed. Since the double optimization is performed on the basis of the single optimization, the ensemble of RVFL built by the proposed method outperforms that built by some single optimization methods. Experiment results on function approximation and classification problems verify that the proposed method could improve its convergence accuracy as well as reduce the complexity of the ensemble system.

  16. State estimation in networked systems

    NARCIS (Netherlands)

    Sijs, J.

    2012-01-01

    This thesis considers state estimation strategies for networked systems. State estimation refers to a method for computing the unknown state of a dynamic process by combining sensor measurements with predictions from a process model. The most well known method for state estimation is the Kalman

  17. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization.

    Science.gov (United States)

    Liu, Qingshan; Guo, Zhishan; Wang, Jun

    2012-02-01

    In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks.

    Science.gov (United States)

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-04-19

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.

  19. Efficient Bayesian network modeling of systems

    International Nuclear Information System (INIS)

    Bensi, Michelle; Kiureghian, Armen Der; Straub, Daniel

    2013-01-01

    The Bayesian network (BN) is a convenient tool for probabilistic modeling of system performance, particularly when it is of interest to update the reliability of the system or its components in light of observed information. In this paper, BN structures for modeling the performance of systems that are defined in terms of their minimum link or cut sets are investigated. Standard BN structures that define the system node as a child of its constituent components or its minimum link/cut sets lead to converging structures, which are computationally disadvantageous and could severely hamper application of the BN to real systems. A systematic approach to defining an alternative formulation is developed that creates chain-like BN structures that are orders of magnitude more efficient, particularly in terms of computational memory demand. The formulation uses an integer optimization algorithm to identify the most efficient BN structure. Example applications demonstrate the proposed methodology and quantify the gained computational advantage

  20. A network security situation prediction model based on wavelet neural network with optimized parameters

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2016-08-01

    Full Text Available The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN with optimized parameters by the Improved Niche Genetic Algorithm (INGA. The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN, Genetic Algorithm-Back Propagation Neural Network (GA-BPNN and WNN.