SOCIAL NETWORK OPTIMIZATION A NEW METHAHEURISTIC FOR GENERAL OPTIMIZATION PROBLEMS
Directory of Open Access Journals (Sweden)
Hassan Sherafat
2017-12-01
Full Text Available In the recent years metaheuristics were studied and developed as powerful technics for hard optimization problems. Some of well-known technics in this field are: Genetic Algorithms, Tabu Search, Simulated Annealing, Ant Colony Optimization, and Swarm Intelligence, which are applied successfully to many complex optimization problems. In this paper, we introduce a new metaheuristic for solving such problems based on social networks concept, named as Social Network Optimization – SNO. We show that a wide range of np-hard optimization problems may be solved by SNO.
Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints
Kmet', Tibor; Kmet'ová, Mária
2009-09-01
A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
Computation of optimal transport and related hedging problems via penalization and neural networks
Eckstein, Stephan; Kupper, Michael
2018-01-01
This paper presents a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, martingale optimal transport, portfolio optimization under uncertainty and generative adversa...
Qin, Sitian; Yang, Xiudong; Xue, Xiaoping; Song, Jiahui
2017-10-01
Pseudoconvex optimization problem, as an important nonconvex optimization problem, plays an important role in scientific and engineering applications. In this paper, a recurrent one-layer neural network is proposed for solving the pseudoconvex optimization problem with equality and inequality constraints. It is proved that from any initial state, the state of the proposed neural network reaches the feasible region in finite time and stays there thereafter. It is also proved that the state of the proposed neural network is convergent to an optimal solution of the related problem. Compared with the related existing recurrent neural networks for the pseudoconvex optimization problems, the proposed neural network in this paper does not need the penalty parameters and has a better convergence. Meanwhile, the proposed neural network is used to solve three nonsmooth optimization problems, and we make some detailed comparisons with the known related conclusions. In the end, some numerical examples are provided to illustrate the effectiveness of the performance of the proposed neural network.
Directory of Open Access Journals (Sweden)
M. A. Karakuts
2015-01-01
Full Text Available The basic problems of route network and aircraft fleet optimization and its role in airline strategic planning are considered. Measures to improve the methods of its implementation are proposed.
A non-penalty recurrent neural network for solving a class of constrained optimization problems.
Hosseini, Alireza
2016-01-01
In this paper, we explain a methodology to analyze convergence of some differential inclusion-based neural networks for solving nonsmooth optimization problems. For a general differential inclusion, we show that if its right hand-side set valued map satisfies some conditions, then solution trajectory of the differential inclusion converges to optimal solution set of its corresponding in optimization problem. Based on the obtained methodology, we introduce a new recurrent neural network for solving nonsmooth optimization problems. Objective function does not need to be convex on R(n) nor does the new neural network model require any penalty parameter. We compare our new method with some penalty-based and non-penalty based models. Moreover for differentiable cases, we implement circuit diagram of the new neural network. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cheng, Long; Hou, Zeng-Guang; Lin, Yingzi; Tan, Min; Zhang, Wenjun Chris; Wu, Fang-Xiang
2011-05-01
A recurrent neural network is proposed for solving the non-smooth convex optimization problem with the convex inequality and linear equality constraints. Since the objective function and inequality constraints may not be smooth, the Clarke's generalized gradients of the objective function and inequality constraints are employed to describe the dynamics of the proposed neural network. It is proved that the equilibrium point set of the proposed neural network is equivalent to the optimal solution of the original optimization problem by using the Lagrangian saddle-point theorem. Under weak conditions, the proposed neural network is proved to be stable, and the state of the neural network is convergent to one of its equilibrium points. Compared with the existing neural network models for non-smooth optimization problems, the proposed neural network can deal with a larger class of constraints and is not based on the penalty method. Finally, the proposed neural network is used to solve the identification problem of genetic regulatory networks, which can be transformed into a non-smooth convex optimization problem. The simulation results show the satisfactory identification accuracy, which demonstrates the effectiveness and efficiency of the proposed approach.
An L∞/L1-Constrained Quadratic Optimization Problem with Applications to Neural Networks
International Nuclear Information System (INIS)
Leizarowitz, Arie; Rubinstein, Jacob
2003-01-01
Pattern formation in associative neural networks is related to a quadratic optimization problem. Biological considerations imply that the functional is constrained in the L ∞ norm and in the L 1 norm. We consider such optimization problems. We derive the Euler-Lagrange equations, and construct basic properties of the maximizers. We study in some detail the case where the kernel of the quadratic functional is finite-dimensional. In this case the optimization problem can be fully characterized by the geometry of a certain convex and compact finite-dimensional set
A two-layer recurrent neural network for nonsmooth convex optimization problems.
Qin, Sitian; Xue, Xiaoping
2015-06-01
In this paper, a two-layer recurrent neural network is proposed to solve the nonsmooth convex optimization problem subject to convex inequality and linear equality constraints. Compared with existing neural network models, the proposed neural network has a low model complexity and avoids penalty parameters. It is proved that from any initial point, the state of the proposed neural network reaches the equality feasible region in finite time and stays there thereafter. Moreover, the state is unique if the initial point lies in the equality feasible region. The equilibrium point set of the proposed neural network is proved to be equivalent to the Karush-Kuhn-Tucker optimality set of the original optimization problem. It is further proved that the equilibrium point of the proposed neural network is stable in the sense of Lyapunov. Moreover, from any initial point, the state is proved to be convergent to an equilibrium point of the proposed neural network. Finally, as applications, the proposed neural network is used to solve nonlinear convex programming with linear constraints and L1 -norm minimization problems.
Bi and tri-objective optimization in the deterministic network interdiction problem
International Nuclear Information System (INIS)
Rocco S, Claudio M.; Emmanuel Ramirez-Marquez, Jose; Salazar A, Daniel E.
2010-01-01
Solution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to limited amount of resources available to interdict network links. These approaches work under the assumption that: (1) nominal capacity of each link is completely reduced when interdicted and (2) there is a single criterion to optimize. This paper presents a newly developed evolutionary algorithm that for the first time allows solving multi-objective optimization models for the design of network interdiction strategies that take into account a variety of figures-of-merit. The algorithm provides an approximation to the optimal Pareto frontier using: (a) techniques in Monte Carlo simulation to generate potential network interdiction strategies, (b) graph theory to analyze strategies' maximum source-sink flow and (c) an evolutionary search that is driven by the probability that a link will belong to the optimal Pareto set. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate and validate the approach.
An Improved Routing Optimization Algorithm Based on Travelling Salesman Problem for Social Networks
Directory of Open Access Journals (Sweden)
Naixue Xiong
2017-06-01
Full Text Available A social network is a social structure, which is organized by the relationships or interactions between individuals or groups. Humans link the physical network with social network, and the services in the social world are based on data and analysis, which directly influence decision making in the physical network. In this paper, we focus on a routing optimization algorithm, which solves a well-known and popular problem. Ant colony algorithm is proposed to solve this problem effectively, but random selection strategy of the traditional algorithm causes evolution speed to be slow. Meanwhile, positive feedback and distributed computing model make the algorithm quickly converge. Therefore, how to improve convergence speed and search ability of algorithm is the focus of the current research. The paper proposes the improved scheme. Considering the difficulty about searching for next better city, new parameters are introduced to improve probability of selection, and delay convergence speed of algorithm. To avoid the shortest path being submerged, and improve sensitive speed of finding the shortest path, it updates pheromone regulation formula. The results show that the improved algorithm can effectively improve convergence speed and search ability for achieving higher accuracy and optimal results.
Institute of Scientific and Technical Information of China (English)
ZHANG Yin; WEI Zhiyuan; ZHANG Yinping; WANG Xin
2017-01-01
Urban heating in northern China accounts for 40％ of total building energy usage.In central heating systems,heat is often transfened from heat source to users by the heat network where several heat exchangers arc installed at heat source,substations and terminals respectively.For given overall heating capacity and heat source temperarure,increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving.In this paper,the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established.Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity,the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method.The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger.It also indicates that in order to improve the thernmal performance of the whole system,more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small.This work is important for guiding the optimization design of practical cascade heating systems.
Directory of Open Access Journals (Sweden)
R. Rajakumar
2017-01-01
Full Text Available Seyedali Mirjalili et al. (2014 introduced a completely unique metaheuristic technique particularly grey wolf optimization (GWO. This algorithm mimics the social behavior of grey wolves whereas it follows the leadership hierarchy and attacking strategy. The rising issue in wireless sensor network (WSN is localization problem. The objective of this problem is to search out the geographical position of unknown nodes with the help of anchor nodes in WSN. In this work, GWO algorithm is incorporated to spot the correct position of unknown nodes, so as to handle the node localization problem. The proposed work is implemented using MATLAB 8.2 whereas nodes are deployed in a random location within the desired network area. The parameters like computation time, percentage of localized node, and minimum localization error measures are utilized to analyse the potency of GWO rule with other variants of metaheuristics algorithms such as particle swarm optimization (PSO and modified bat algorithm (MBA. The observed results convey that the GWO provides promising results compared to the PSO and MBA in terms of the quick convergence rate and success rate.
Directory of Open Access Journals (Sweden)
Wahyudi Sutopo
2016-12-01
Full Text Available In recent years, the rising competitive environment with shorter product life cycles and high customization forces industries to increase their flexibility, speed up their response, and enhance concurrent engineering designs. To integrate these prospects, supply chain collaboration becomes a pertinent strategy for industries to strengthen their competitiveness. The network design problem is used to implement supply chain collaboration. In the buying and selling process, sharing information between buyer and supplier are important to obtain a transaction decision. The optimimum supply chain profit can be identified by mathematical model of network design problem. The Mathematical Model takes into consideration the uncertainity in negotiation of supply chain, transportation problems, and locationallocation of products from supplier to buyer in the planning based on the time value of money. The results show that the model can be used to optimize the supply chain profit. The supplier gets a profit because income were received in the initial contract, while the buyer profit comes from lower pay.
Shorikov, A. F.; Butsenko, E. V.
2017-10-01
This paper discusses the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. On the basis of network modeling proposed a new economic and mathematical model and a method for solving the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. Network economic and mathematical modeling allows you to determine the optimal time and calendar schedule for the implementation of the investment project and serves as an instrument to increase the economic potential and competitiveness of the enterprise. On a meaningful practical example, the processes of forming network models are shown, including the definition of the sequence of actions of a particular investment projecting process, the network-based work schedules are constructed. The calculation of the parameters of network models is carried out. Optimal (critical) paths have been formed and the optimal time for implementing the chosen technologies of the investment project has been calculated. It also shows the selection of the optimal technology from a set of possible technologies for project implementation, taking into account the time and cost of the work. The proposed model and method for solving the problem of managing investment projects can serve as a basis for the development, creation and application of appropriate computer information systems to support the adoption of managerial decisions by business people.
Nourifar, Raheleh; Mahdavi, Iraj; Mahdavi-Amiri, Nezam; Paydar, Mohammad Mahdi
2017-09-01
Decentralized supply chain management is found to be significantly relevant in today's competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final product is appropriated with stochastic and fuzzy numbers. We provide mathematical formulation of the problem as a bi-level mixed integer linear programming model. Due to problem's convolution, a structure to solve is developed that incorporates a novel heuristic algorithm based on Kth-best algorithm, fuzzy approach and chance constraint approach. Ultimately, a numerical example is constructed and worked through to demonstrate applicability of the optimization model. A sensitivity analysis is also made.
Toward Optimal Transport Networks
Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.
2008-01-01
Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.
International Nuclear Information System (INIS)
Onomi, T; Nakajima, K
2014-01-01
We have proposed a superconducting Hopfield-type neural network for solving the N-Queens problem which is one of combinatorial optimization problems. The sigmoid-shape function of a neuron output is represented by the output of coupled SQUIDs gate consisting of a single-junction and a double-junction SQUIDs. One of the important factors for an improvement of the network performance is an improvement of a threshold characteristic of a neuron circuit. In this paper, we report an improved design of coupled SQUID gates for a superconducting neural network. A step-like function with a steep threshold at a rising edge is desirable for a neuron circuit to solve a combinatorial optimization problem. A neuron circuit is composed of two coupled SQUIDs gates with a cascade connection in order to obtain such characteristics. The designed neuron circuit is fabricated by a 2.5 kA/cm 2 Nb/AlOx/Nb process. The operation of a fabricated neuron circuit is experimentally demonstrated. Moreover, we discuss about the performance of the neural network using the improved neuron circuits and delayed negative self-connections.
Directory of Open Access Journals (Sweden)
M. I. Fursanov
2014-01-01
Full Text Available This article reflects algorithmization of search methods of effective replacement of consumer transformers in distributed electrical networks. As any electrical equipment of power systems, power transformers have their own limited service duration, which is determined by natural processes of materials degradation and also by unexpected wear under different conditions of overload and overvoltage. According to the standards, adapted by in the Republic of Belarus, rated service life of power transformers is 25 years. But it can be situations that transformers should be better changed till this time – economically efficient. The possibility of such replacement is considered in order to increase efficiency of electrical network operation connected with its physical wear and aging.In this article the faults of early developed mathematical models of transformers replacement were discussed. Early such worked out transformers were not used. But in practice they can be replaced in one substation but they can be successfully used in other substations .Especially if there are limits of financial resources and the replacement needs more detail technical and economical basis.During the research the authors developed the efficient algorithm for determining of optimal location of transformers at substations of distributed electrical networks, based on search of the best solution from all sets of displacement in oriented graph. Suggested algorithm allows considerably reduce design time of optimal placement of transformers using a set of simplifications. The result of algorithm’s work is series displacement of transformers in networks, which allow obtain a great economic effect in comparison with replacement of single transformer.
Box, Simon
2014-12-01
Optimal switching of traffic lights on a network of junctions is a computationally intractable problem. In this research, road traffic networks containing signallized junctions are simulated. A computer game interface is used to enable a human 'player' to control the traffic light settings on the junctions within the simulation. A supervised learning approach, based on simple neural network classifiers can be used to capture human player's strategies in the game and thus develop a human-trained machine control (HuTMaC) system that approaches human levels of performance. Experiments conducted within the simulation compare the performance of HuTMaC to two well-established traffic-responsive control systems that are widely deployed in the developed world and also to a temporal difference learning-based control method. In all experiments, HuTMaC outperforms the other control methods in terms of average delay and variance over delay. The conclusion is that these results add weight to the suggestion that HuTMaC may be a viable alternative, or supplemental method, to approximate optimization for some practical engineering control problems where the optimal strategy is computationally intractable.
Combinatorial optimization networks and matroids
Lawler, Eugene
2011-01-01
Perceptively written text examines optimization problems that can be formulated in terms of networks and algebraic structures called matroids. Chapters cover shortest paths, network flows, bipartite matching, nonbipartite matching, matroids and the greedy algorithm, matroid intersections, and the matroid parity problems. A suitable text or reference for courses in combinatorial computing and concrete computational complexity in departments of computer science and mathematics.
Quantized hopfield networks for reliability optimization
International Nuclear Information System (INIS)
Nourelfath, Mustapha; Nahas, Nabil
2003-01-01
The use of neural networks in the reliability optimization field is rare. This paper presents an application of a recent kind of neural networks in a reliability optimization problem for a series system with multiple-choice constraints incorporated at each subsystem, to maximize the system reliability subject to the system budget. The problem is formulated as a nonlinear binary integer programming problem and characterized as an NP-hard problem. Our design of neural network to solve efficiently this problem is based on a quantized Hopfield network. This network allows us to obtain optimal design solutions very frequently and much more quickly than others Hopfield networks
Czech Academy of Sciences Publication Activity Database
Müller, Stefan; Regensburger, G.; Steuer, Ralf
2014-01-01
Roč. 347, APR 2014 (2014), s. 182-190 ISSN 0022-5193 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : metabolic optimization * enzyme kinetics * oriented matroid * elementary vector * conformal sum Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.116, year: 2014
Problems of radiation protection optimization
International Nuclear Information System (INIS)
Morkunas, G.
2003-01-01
One of the basic principles - optimization of radiation protection - is rather well understood by everybody engaged in protection of humans from ionizing radiation. However, the practical application of this principle is very problematic. This fact can be explained by vagueness of concept of dose constraints, possible legal consequences of any decision based on this principle, traditions of prescriptive system of radiation protection requirements in some countries, insufficiency of qualified expertise. The examples of optimization problems are the different attention given to different kinds of practices, not optimized application of remedial measures, strict requirements for radioactive contamination of imported products, uncertainties in optimization in medical applications of ionizing radiation. Such tools as international co-operation including regional networks of information exchange, training of qualified experts, identification of measurable indicators used for judging about the level of optimization may be the helpful practical means in solving of these problems. It is evident that the principle of optimization can not be replaced by any other alternative despite its complexity. The means for its practical implementation shall be searched for. (author)
Sta?ková, K.; Olsder, J.J.; Bliemer, M.C.J.
2009-01-01
In this paper, the dynamic optimal toll design problem is considered as a one leader-many followers hierarchical non-cooperative game. On a given network the road authority as the leader tolls some links in order to reach its objective, while travelers as followers minimize their perceived travel
Towards Optimal Transport Networks
Directory of Open Access Journals (Sweden)
Erik P. Vargo
2010-08-01
Full Text Available Our ultimate goal is to design transportation net- works whose dynamic performance metrics (e.g. pas- senger throughput, passenger delay, and insensitivity to weather disturbances are optimized. Here the fo- cus is on optimizing static features of the network that are known to directly aﬀect the network dynamics. First, we present simulation results which support a connection between maximizing the ﬁrst non-trivial eigenvalue of a network's Laplacian and superior air- port network performance. Then, we explore the ef- fectiveness of a tabu search heuristic for optimizing this metric by comparing experimental results to the- oretical upper bounds. We also consider generating upper bounds on a network's algebraic connectivity via the solution of semideﬁnite programming (SDP relaxations. A modiﬁcation of an existing subgraph extraction algorithm is implemented to explore the underlying regional structures in the U.S. airport net- work, with the hope that the resulting localized struc- tures can be optimized independently and reconnected via a "backbone" network to achieve superior network performance.
Class and Home Problems: Optimization Problems
Anderson, Brian J.; Hissam, Robin S.; Shaeiwitz, Joseph A.; Turton, Richard
2011-01-01
Optimization problems suitable for all levels of chemical engineering students are available. These problems do not require advanced mathematical techniques, since they can be solved using typical software used by students and practitioners. The method used to solve these problems forces students to understand the trends for the different terms…
Energy Technology Data Exchange (ETDEWEB)
Ohori, T.; Yamamoto, H.; Setsu, Nenso; Watanabe, K. (Hokkaido Inst. of Technology, Hokkaido (Japan))
1994-04-20
The accelerated approximate solution of combinatorial optimization problems by symmetry integrating hopfield neural network (NN) has been applied to many combinatorial problems such as the traveling salesman problem, the network planning problem, etc. However, the hopfield NN converges to local minimum solutions very slowly. In this paper, a general inclination model composed by introducing an accelerated parameter to the hopfield model is proposed, and it has been shown that the acceleration parameter can make the model converge to the local minima more quickly. Moreover, simulation experiments for random quadratic combinatorial problems with two and twenty-five variables were carried out. The results show that the acceleration of convergence makes the attraction region of the local minimum change and the accuracy of solution worse. If an initial point is selected around the center of unit hyper cube, solutions with high accuracy not affected by the acceleration parameter can be obtained. 9 refs., 8 figs., 3 tabs.
Solving Dynamic Battlespace Movement Problems Using Dynamic Distributed Computer Networks
National Research Council Canada - National Science Library
Bradford, Robert
2000-01-01
.... The thesis designs a system using this architecture that invokes operations research network optimization algorithms to solve problems involving movement of people and equipment over dynamic road networks...
DEFF Research Database (Denmark)
Hansen, C. T.; Madsen, Kaj; Nielsen, Hans Bruun
1991-01-01
algorithm using successive linear programming is presented. The performance of the algorithm is illustrated by optimizing a network with 201 pipes and 172 nodes. It is concluded that the new algorithm seems to be very efficient and stable, and that it always finds a solution with a cost near the best...
Optimization of temporal networks under uncertainty
Wiesemann, Wolfram
2012-01-01
Many decision problems in Operations Research are defined on temporal networks, that is, workflows of time-consuming tasks whose processing order is constrained by precedence relations. For example, temporal networks are used to model projects, computer applications, digital circuits and production processes. Optimization problems arise in temporal networks when a decision maker wishes to determine a temporal arrangement of the tasks and/or a resource assignment that optimizes some network characteristic (e.g. the time required to complete all tasks). The parameters of these optimization probl
OPTIMAL NETWORK TOPOLOGY DESIGN
Yuen, J. H.
1994-01-01
This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.
Energy optimization in mobile sensor networks
Yu, Shengwei
Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while
A Problem on Optimal Transportation
Cechlarova, Katarina
2005-01-01
Mathematical optimization problems are not typical in the classical curriculum of mathematics. In this paper we show how several generalizations of an easy problem on optimal transportation were solved by gifted secondary school pupils in a correspondence mathematical seminar, how they can be used in university courses of linear programming and…
Integrated network design and scheduling problems :
Energy Technology Data Exchange (ETDEWEB)
Nurre, Sarah G.; Carlson, Jeffrey J.
2014-01-01
We consider the class of integrated network design and scheduling problems. These problems focus on selecting and scheduling operations that will change the characteristics of a network, while being speci cally concerned with the performance of the network over time. Motivating applications of INDS problems include infrastructure restoration after extreme events and building humanitarian distribution supply chains. While similar models have been proposed, no one has performed an extensive review of INDS problems from their complexity, network and scheduling characteristics, information, and solution methods. We examine INDS problems under a parallel identical machine scheduling environment where the performance of the network is evaluated by solving classic network optimization problems. We classify that all considered INDS problems as NP-Hard and propose a novel heuristic dispatching rule algorithm that selects and schedules sets of arcs based on their interactions in the network. We present computational analysis based on realistic data sets representing the infrastructures of coastal New Hanover County, North Carolina, lower Manhattan, New York, and a realistic arti cial community CLARC County. These tests demonstrate the importance of a dispatching rule to arrive at near-optimal solutions during real-time decision making activities. We extend INDS problems to incorporate release dates which represent the earliest an operation can be performed and exible release dates through the introduction of specialized machine(s) that can perform work to move the release date earlier in time. An online optimization setting is explored where the release date of a component is not known.
Optimal Network-Topology Design
Li, Victor O. K.; Yuen, Joseph H.; Hou, Ting-Chao; Lam, Yuen Fung
1987-01-01
Candidate network designs tested for acceptability and cost. Optimal Network Topology Design computer program developed as part of study on topology design and analysis of performance of Space Station Information System (SSIS) network. Uses efficient algorithm to generate candidate network designs consisting of subsets of set of all network components, in increasing order of total costs and checks each design to see whether it forms acceptable network. Technique gives true cost-optimal network and particularly useful when network has many constraints and not too many components. Program written in PASCAL.
Optimization-Based Approaches to Control of Probabilistic Boolean Networks
Directory of Open Access Journals (Sweden)
Koichi Kobayashi
2017-02-01
Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.
Topology Optimization for Convection Problems
DEFF Research Database (Denmark)
Alexandersen, Joe
2011-01-01
This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...
The optimal graph partitioning problem
DEFF Research Database (Denmark)
Sørensen, Michael Malmros; Holm, Søren
1993-01-01
. This problem can be formulated as a MILP, which turns out to be completely symmetrical with respect to the p classes, and the gap between the relaxed LP solution and the optimal solution is the largest one possible. These two properties make it very difficult to solve even smaller problems. In this paper...
Optimal urban networks via mass transportation
Buttazzo, Giuseppe; Stepanov, Eugene; Solimini, Sergio
2009-01-01
Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network, and the cost of constructing/maintaining it. Both the long-term optimization and the short-term, "who goes where" optimization are considered. These models can also be adapted for the optimization of other types of networks, such as telecommunications, pipeline or drainage networks. In the monograph we study the most general problem settings, namely, when neither the shape nor even the topology of the network to be constructed is known a priori.
Behrens, J
2000-03-01
The key reason for physicians networking in managed care is to get a better coping with uncertainty on action (treatment) decisions. The second reason for networking in managed care are financial benefits grounds. But this reason is very ambivalent. Three different action problems (role conflicts) in managed care network are to solved, which was also in single practices. In the lecture the decision strategies and decision resources has been compared. Observations are done using expert interviews, patient interviews and analysis of documents in USA, Germany and Switzerland. The first problem is the choosing of a cost reduction strategy which is not reducing the effectiveness. Such "ugly" solution strategies like exclusion of "expensive" patients and a rationing of necessary medical services in a kind of McDonalds network of physicians will fail the target. The optimost way is a saving of all unnecessary medical even injourious performances. The chosen cost reduction strategy is not real visible from outside but in fact limited cognizable and controllable. Evidence based health care can be a resource of treatment decisions and could train such decisions but it will not substitute these decisions. The second problem is the making of real family practitioners as gatekeepers. Knowledge about the care system is still not making a real family practitioner, even if this is the minimum condition of their work. Also contractual relationships between insurance and doctor as a gatekeeper or financial incentives for patients are still making not a real family practitioner as a gatekpeeper. Only throughout the trust of patients supported by second opinions is making the real family practitioner as a gatekeeper. "Doctor hopping" could be the reaction by scarcity of trustworthy family practitioners as gatekeepers. The third problem is the choosing of the optimal scale of a network due to the very different optimal size of networks regarding the requirement of risk spreeds, of the
Topology optimization of flow problems
DEFF Research Database (Denmark)
Gersborg, Allan Roulund
2007-01-01
This thesis investigates how to apply topology optimization using the material distribution technique to steady-state viscous incompressible flow problems. The target design applications are fluid devices that are optimized with respect to minimizing the energy loss, characteristic properties...... transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the thesis gives a proof-of-concept for the application of the method within fluid dynamic problems and it remains of interest for the design of microfluidic devices. Furthermore, the thesis contributes...... at the Technical University of Denmark. Large topology optimization problems with 2D and 3D Stokes flow modeling are solved with direct and iterative strategies employing the parallelized Sun Performance Library and the OpenMP parallelization technique, respectively....
About an Optimal Visiting Problem
Energy Technology Data Exchange (ETDEWEB)
Bagagiolo, Fabio, E-mail: bagagiol@science.unitn.it; Benetton, Michela [Unversita di Trento, Dipartimento di Matematica (Italy)
2012-02-15
In this paper we are concerned with the optimal control problem consisting in minimizing the time for reaching (visiting) a fixed number of target sets, in particular more than one target. Such a problem is of course reminiscent of the famous 'Traveling Salesman Problem' and brings all its computational difficulties. Our aim is to apply the dynamic programming technique in order to characterize the value function of the problem as the unique viscosity solution of a suitable Hamilton-Jacobi equation. We introduce some 'external' variables, one per target, which keep in memory whether the corresponding target is already visited or not, and we transform the visiting problem in a suitable Mayer problem. This fact allows us to overcome the lacking of the Dynamic Programming Principle for the originary problem. The external variables evolve with a hysteresis law and the Hamilton-Jacobi equation turns out to be discontinuous.
Well-posed optimization problems
Dontchev, Asen L
1993-01-01
This book presents in a unified way the mathematical theory of well-posedness in optimization. The basic concepts of well-posedness and the links among them are studied, in particular Hadamard and Tykhonov well-posedness. Abstract optimization problems as well as applications to optimal control, calculus of variations and mathematical programming are considered. Both the pure and applied side of these topics are presented. The main subject is often introduced by heuristics, particular cases and examples. Complete proofs are provided. The expected knowledge of the reader does not extend beyond textbook (real and functional) analysis, some topology and differential equations and basic optimization. References are provided for more advanced topics. The book is addressed to mathematicians interested in optimization and related topics, and also to engineers, control theorists, economists and applied scientists who can find here a mathematical justification of practical procedures they encounter.
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui
1994-01-01
The paper studies the problem of determining the number and dimensions of sizes of apparel so as to maximize profits. It develops a simple one-variable bisection search algorithm that gives the optimal solution. An example is solved interactively using a Macintosh LC and Math CAD, a mathematical...
Path optimization method for the sign problem
Directory of Open Access Journals (Sweden)
Ohnishi Akira
2018-01-01
Full Text Available We propose a path optimization method (POM to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t(f ϵ R and by optimizing f(t to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.
Global Optimization for Transport Network Expansion and Signal Setting
Liu, Haoxiang; Wang, David Z. W.; Yue, Hao
2015-01-01
This paper proposes a model to address an urban transport planning problem involving combined network design and signal setting in a saturated network. Conventional transport planning models usually deal with the network design problem and signal setting problem separately. However, the fact that network capacity design and capacity allocation determined by network signal setting combine to govern the transport network performance requires the optimal transport planning to consider the two pr...
vhv supply networks, problems of network structure
Energy Technology Data Exchange (ETDEWEB)
Raimbault, J
1966-04-01
The present and future power requirements of the Paris area and the structure of the existing networks are discussed. The various limitations that will have to be allowed for to lay down the structure of a regional transmission network leading in the power of the large national transmission network to within the Paris built up area are described. The theoretical solution that has been adopted, and the features of its final achievement, which is planned for about the year 2000, and the intermediate stages are given. The problem of the structure of the National Power Transmission network which is to supply the regional network was studied. To solve this problem, a 730 kV voltage network will have to be introduced.
Airborne Network Optimization with Dynamic Network Update
2015-03-26
source si and a target ti . For each commodity (si, ki) the commodity specifies a non- negative demand di [5]. The objective of the multi-commodity...queue predictions, and network con- gestion [15]. The implementation of the DRQC uses the Kalman filter to predict the state of the network and optimize
Optimal Fragile Financial Networks
Castiglionesi, F.; Navarro, N.
2007-01-01
We study a financial network characterized by the presence of depositors, banks and their shareholders. Belonging to a financial network is beneficial for both the depositors and banks' shareholders since the return to investment increases with the number of banks connected. However, the network is
Solving inversion problems with neural networks
Kamgar-Parsi, Behzad; Gualtieri, J. A.
1990-01-01
A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.
Optimal hub location in pipeline networks
Energy Technology Data Exchange (ETDEWEB)
Dott, D.R.; Wirasinghe, S.C.; Chakma, A. [Univ. of Calgary, Alberta (Canada)
1996-12-31
This paper discusses optimization strategies and techniques for the location of natural gas marketing hubs in the North American gas pipeline network. A hub is a facility at which inbound and outbound network links meet and freight is redirected towards their destinations. Common examples of hubs used in the gas pipeline industry include gas plants, interconnects and market centers. Characteristics of the gas pipeline industry which are relevant to the optimization of transportation costs using hubs are presented. Allocation techniques for solving location-allocation problems are discussed. An outline of the research in process by the authors in the field of optimal gas hub location concludes the paper.
Hub location problems in transportation networks
DEFF Research Database (Denmark)
Gelareh, Shahin; Nickel, Stefan
2011-01-01
In this paper we propose a 4-index formulation for the uncapacitated multiple allocation hub location problem tailored for urban transport and liner shipping network design. This formulation is very tight and most of the tractable instances for MIP solvers are optimally solvable at the root node....... also introduce fixed cost values for Australian Post (AP) dataset....
Networks in social policy problems
Scotti, marco
2012-01-01
Network science is the key to managing social communities, designing the structure of efficient organizations and planning for sustainable development. This book applies network science to contemporary social policy problems. In the first part, tools of diffusion and team design are deployed to challenges in adoption of ideas and the management of creativity. Ideas, unlike information, are generated and adopted in networks of personal ties. Chapters in the second part tackle problems of power and malfeasance in political and business organizations, where mechanisms in accessing and controlling informal networks often outweigh formal processes. The third part uses ideas from biology and physics to understand global economic and financial crises, ecological depletion and challenges to energy security. Ideal for researchers and policy makers involved in social network analysis, business strategy and economic policy, it deals with issues ranging from what makes public advisories effective to how networks influenc...
Small cell networks deployment, management, and optimization
Claussen, Holger; Ho, Lester; Razavi, Rouzbeh; Kucera, Stepan
2018-01-01
Small Cell Networks: Deployment, Management, and Optimization addresses key problems of the cellular network evolution towards HetNets. It focuses on the latest developments in heterogeneous and small cell networks, as well as their deployment, operation, and maintenance. It also covers the full spectrum of the topic, from academic, research, and business to the practice of HetNets in a coherent manner. Additionally, it provides complete and practical guidelines to vendors and operators interested in deploying small cells. The first comprehensive book written by well-known researchers and engineers from Nokia Bell Labs, Small Cell Networks begins with an introduction to the subject--offering chapters on capacity scaling and key requirements of future networks. It then moves on to sections on coverage and capacity optimization, and interference management. From there, the book covers mobility management, energy efficiency, and small cell deployment, ending with a section devoted to future trends and applicat...
Generalized network improvement and packing problems
Holzhauser, Michael
2016-01-01
Michael Holzhauser discusses generalizations of well-known network flow and packing problems by additional or modified side constraints. By exploiting the inherent connection between the two problem classes, the author investigates the complexity and approximability of several novel network flow and packing problems and presents combinatorial solution and approximation algorithms. Contents Fractional Packing and Parametric Search Frameworks Budget-Constrained Minimum Cost Flows: The Continuous Case Budget-Constrained Minimum Cost Flows: The Discrete Case Generalized Processing Networks Convex Generalized Flows Target Groups Researchers and students in the fields of mathematics, computer science, and economics Practitioners in operations research and logistics The Author Dr. Michael Holzhauser studied computer science at the University of Kaiserslautern and is now a research fellow in the Optimization Research Group at the Department of Mathematics of the University of Kaiserslautern.
Method of optimization onboard communication network
Platoshin, G. A.; Selvesuk, N. I.; Semenov, M. E.; Novikov, V. M.
2018-02-01
In this article the optimization levels of onboard communication network (OCN) are proposed. We defined the basic parameters, which are necessary for the evaluation and comparison of modern OCN, we identified also a set of initial data for possible modeling of the OCN. We also proposed a mathematical technique for implementing the OCN optimization procedure. This technique is based on the principles and ideas of binary programming. It is shown that the binary programming technique allows to obtain an inherently optimal solution for the avionics tasks. An example of the proposed approach implementation to the problem of devices assignment in OCN is considered.
Location based Network Optimizations for Mobile Wireless Networks
DEFF Research Database (Denmark)
Nielsen, Jimmy Jessen
selection in Wi-Fi networks and predictive handover optimization in heterogeneous wireless networks. The investigations in this work have indicated that location based network optimizations are beneficial compared to typical link measurement based approaches. Especially the knowledge of geographical...
Fair Optimization and Networks: A Survey
Directory of Open Access Journals (Sweden)
Wlodzimierz Ogryczak
2014-01-01
Full Text Available Optimization models related to designing and operating complex systems are mainly focused on some efficiency metrics such as response time, queue length, throughput, and cost. However, in systems which serve many entities there is also a need for respecting fairness: each system entity ought to be provided with an adequate share of the system’s services. Still, due to system operations-dependant constraints, fair treatment of the entities does not directly imply that each of them is assigned equal amount of the services. That leads to concepts of fair optimization expressed by the equitable models that represent inequality averse optimization rather than strict inequality minimization; a particular widely applied example of that concept is the so-called lexicographic maximin optimization (max-min fairness. The fair optimization methodology delivers a variety of techniques to generate fair and efficient solutions. This paper reviews fair optimization models and methods applied to systems that are based on some kind of network of connections and dependencies, especially, fair optimization methods for the location problems and for the resource allocation problems in communication networks.
Optimal transportation networks models and theory
Bernot, Marc; Morel, Jean-Michel
2009-01-01
The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.
Solving network design problems via decomposition, aggregation and approximation
Bärmann, Andreas
2016-01-01
Andreas Bärmann develops novel approaches for the solution of network design problems as they arise in various contexts of applied optimization. At the example of an optimal expansion of the German railway network until 2030, the author derives a tailor-made decomposition technique for multi-period network design problems. Next, he develops a general framework for the solution of network design problems via aggregation of the underlying graph structure. This approach is shown to save much computation time as compared to standard techniques. Finally, the author devises a modelling framework for the approximation of the robust counterpart under ellipsoidal uncertainty, an often-studied case in the literature. Each of these three approaches opens up a fascinating branch of research which promises a better theoretical understanding of the problem and an increasing range of solvable application settings at the same time. Contents Decomposition for Multi-Period Network Design Solving Network Design Problems via Ag...
Optimization in a Networked Economy
Directory of Open Access Journals (Sweden)
Ahmet Sekreter
2017-10-01
Full Text Available An age of network has been living for the last decades. The information technologies have been used by hundreds of millions of users. These technologies are enabling to connect businesses and economic activities. One of the characteristics of the networked economy is the amount of data that produced due to the interlinking of firms, individuals, processes by businesses, and economic activities. Another issue with the networked economy is the complexity of the data. Extraction of the knowledge from the networked economy has challenges by the traditional approach since data is large scale, second decentralized, and third they connect many heterogeneous agents. The challenges can be overcome by the new optimization methods including human element or the social interactions with technological infrastructure.
Optimization-based topology identification of complex networks
International Nuclear Information System (INIS)
Tang Sheng-Xue; Chen Li; He Yi-Gang
2011-01-01
In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method. (general)
Optimization problem in quantum cryptography
International Nuclear Information System (INIS)
Brandt, Howard E
2003-01-01
A complete optimization was recently performed, yielding the maximum information gain by a general unitary entangling probe in the four-state protocol of quantum cryptography. A larger set of optimum probe parameters was found than was known previously from an incomplete optimization. In the present work, a detailed comparison is made between the complete and incomplete optimizations. Also, a new set of optimum probe parameters is identified for the four-state protocol
An Optimal Linear Coding for Index Coding Problem
Pezeshkpour, Pouya
2015-01-01
An optimal linear coding solution for index coding problem is established. Instead of network coding approach by focus on graph theoric and algebraic methods a linear coding program for solving both unicast and groupcast index coding problem is presented. The coding is proved to be the optimal solution from the linear perspective and can be easily utilize for any number of messages. The importance of this work is lying mostly on the usage of the presented coding in the groupcast index coding ...
Wireless Sensor Network Optimization: Multi-Objective Paradigm.
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-07-20
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.
Wireless Sensor Network Optimization: Multi-Objective Paradigm
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-01-01
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271
Distributed Robust Optimization in Networked System.
Wang, Shengnan; Li, Chunguang
2016-10-11
In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of local objective functions. The global constraints contain some uncertain parameters which are partially known, and can be characterized by some inequality constraints. After problem transformation, we adopt the Lagrangian primal-dual method to solve this problem. We prove that the primal and dual optimal solutions of the problem are restricted in some specific sets, and we give a method to construct these sets. Then, we propose a DRO algorithm to find the primal-dual optimal solutions of the Lagrangian function, which consists of a subgradient step, a projection step, and a diffusion step, and in the projection step of the algorithm, the optimized variables are projected onto the specific sets to guarantee the boundedness of the subgradients. Convergence analysis and numerical simulations verifying the performance of the proposed algorithm are then provided. Further, for nonconvex DRO problem, the corresponding approach and algorithm framework are also provided.
Optimization of Actuating Origami Networks
Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard
2015-03-01
Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.
An Algorithm for the Mixed Transportation Network Design Problem.
Liu, Xinyu; Chen, Qun
2016-01-01
This paper proposes an optimization algorithm, the dimension-down iterative algorithm (DDIA), for solving a mixed transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraint (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of the existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) problem. The idea of the proposed solution algorithm (DDIA) is to reduce the dimensions of the problem. A group of variables (discrete/continuous) is fixed to optimize another group of variables (continuous/discrete) alternately; then, the problem is transformed into solving a series of CNDPs (continuous network design problems) and DNDPs (discrete network design problems) repeatedly until the problem converges to the optimal solution. The advantage of the proposed algorithm is that its solution process is very simple and easy to apply. Numerical examples show that for the MNDP without budget constraint, the optimal solution can be found within a few iterations with DDIA. For the MNDP with budget constraint, however, the result depends on the selection of initial values, which leads to different optimal solutions (i.e., different local optimal solutions). Some thoughts are given on how to derive meaningful initial values, such as by considering the budgets of new and reconstruction projects separately.
An Algorithm for the Mixed Transportation Network Design Problem.
Directory of Open Access Journals (Sweden)
Xinyu Liu
Full Text Available This paper proposes an optimization algorithm, the dimension-down iterative algorithm (DDIA, for solving a mixed transportation network design problem (MNDP, which is generally expressed as a mathematical programming with equilibrium constraint (MPEC. The upper level of the MNDP aims to optimize the network performance via both the expansion of the existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE problem. The idea of the proposed solution algorithm (DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous is fixed to optimize another group of variables (continuous/discrete alternately; then, the problem is transformed into solving a series of CNDPs (continuous network design problems and DNDPs (discrete network design problems repeatedly until the problem converges to the optimal solution. The advantage of the proposed algorithm is that its solution process is very simple and easy to apply. Numerical examples show that for the MNDP without budget constraint, the optimal solution can be found within a few iterations with DDIA. For the MNDP with budget constraint, however, the result depends on the selection of initial values, which leads to different optimal solutions (i.e., different local optimal solutions. Some thoughts are given on how to derive meaningful initial values, such as by considering the budgets of new and reconstruction projects separately.
Topology optimization of wave-propagation problems
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2006-01-01
Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures.......Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures....
A Mathematical Optimization Problem in Bioinformatics
Heyer, Laurie J.
2008-01-01
This article describes the sequence alignment problem in bioinformatics. Through examples, we formulate sequence alignment as an optimization problem and show how to compute the optimal alignment with dynamic programming. The examples and sample exercises have been used by the author in a specialized course in bioinformatics, but could be adapted…
Generalized Benders’ Decomposition for topology optimization problems
DEFF Research Database (Denmark)
Munoz Queupumil, Eduardo Javier; Stolpe, Mathias
2011-01-01
) problems with discrete design variables to global optimality. We present the theoretical aspects of the method, including a proof of finite convergence and conditions for obtaining global optimal solutions. The method is also linked to, and compared with, an Outer-Approximation approach and a mixed 0......–1 semi definite programming formulation of the considered problem. Several ways to accelerate the method are suggested and an implementation is described. Finally, a set of truss topology optimization problems are numerically solved to global optimality.......This article considers the non-linear mixed 0–1 optimization problems that appear in topology optimization of load carrying structures. The main objective is to present a Generalized Benders’ Decomposition (GBD) method for solving single and multiple load minimum compliance (maximum stiffness...
Phase transitions in Pareto optimal complex networks.
Seoane, Luís F; Solé, Ricard
2015-09-01
The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.
Topology optimization for acoustic problems
DEFF Research Database (Denmark)
Dühring, Maria Bayard
2006-01-01
In this paper a method to control acoustic properties in a room with topology optimization is presented. It is shown how the squared sound pressure amplitude in a certain part of a room can be minimized by distribution of material in a design domain along the ceiling in 2D and 3D. Nice 0-1 designs...
Hybrid intelligent optimization methods for engineering problems
Pehlivanoglu, Yasin Volkan
quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles.
Optimization of stochastic discrete systems and control on complex networks computational networks
Lozovanu, Dmitrii
2014-01-01
This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic con...
Binary Cockroach Swarm Optimization for Combinatorial Optimization Problem
Directory of Open Access Journals (Sweden)
Ibidun Christiana Obagbuwa
2016-09-01
Full Text Available The Cockroach Swarm Optimization (CSO algorithm is inspired by cockroach social behavior. It is a simple and efficient meta-heuristic algorithm and has been applied to solve global optimization problems successfully. The original CSO algorithm and its variants operate mainly in continuous search space and cannot solve binary-coded optimization problems directly. Many optimization problems have their decision variables in binary. Binary Cockroach Swarm Optimization (BCSO is proposed in this paper to tackle such problems and was evaluated on the popular Traveling Salesman Problem (TSP, which is considered to be an NP-hard Combinatorial Optimization Problem (COP. A transfer function was employed to map a continuous search space CSO to binary search space. The performance of the proposed algorithm was tested firstly on benchmark functions through simulation studies and compared with the performance of existing binary particle swarm optimization and continuous space versions of CSO. The proposed BCSO was adapted to TSP and applied to a set of benchmark instances of symmetric TSP from the TSP library. The results of the proposed Binary Cockroach Swarm Optimization (BCSO algorithm on TSP were compared to other meta-heuristic algorithms.
Optimizations in Heterogeneous Mobile Networks
DEFF Research Database (Denmark)
Popovska Avramova, Andrijana
nodes. The independent control of the user’s transmit power at each node may cause degradation of the overall performance. In this line, a dedicated study of power distribution among the carriers is performed. An optimization of the power allocation is proposed and evaluated. The results show...... significant performance improvement to the achieved user throughput in low as well as in high loads in the cell. The flow control of the data between the nodes is another challenge for effective aggregation of the resources in case of dual connectivity. As such, this thesis discusses the challenges...... with the densification of the base stations, bring into a very complex network management and operation control for the mobile operators. Furthermore, the need to provide always best connection and service with high quality demands for a joint overall network resource management. This thesis addresses this challenge...
Optimization and inverse problems in electromagnetism
Wiak, Sławomir
2003-01-01
From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...
Optimization model for the design of distributed wastewater treatment networks
Directory of Open Access Journals (Sweden)
Ibrić Nidret
2012-01-01
Full Text Available In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The optimization model is given as a nonlinear programming (NLP problem where the objective function can be defined to minimize the total amount of wastewater treated in treatment operations or to minimize the total treatment costs. The NLP model is extended to a mixed integer nonlinear programming (MINLP problem where binary variables are used for the selection of the wastewater treatment technologies. The bounds for all flowrates and concentrations in the wastewater network are specified as general equations. The proposed models are solved using the global optimization solvers (BARON and LINDOGlobal. The application of the proposed models is illustrated on the two wastewater network problems of different complexity. First one is formulated as the NLP and the second one as the MINLP. For the second one the parametric and structural optimization is performed at the same time where optimal flowrates, concentrations as well as optimal technologies for the wastewater treatment are selected. Using the proposed model both problems are solved to global optimality.
Directory of Open Access Journals (Sweden)
MANAR Y. KASHMOLA
2012-06-01
Full Text Available The development of hybrid algorithms for solving complex optimization problems focuses on enhancing the strengths and compensating for the weakness of two or more complementary approaches. The goal is to intelligently combine the key elements of these approaches to find superior solutions to solve optimization problems. Optimal routing in communication network is considering a complex optimization problem. In this paper we propose a hybrid Hopfield Neural Network (HNN and Tabu Search (TS algorithm, this algorithm called hybrid HNN-TS algorithm. The paradigm of this hybridization is embedded. We embed the short-term memory and tabu restriction features from TS algorithm in the HNN model. The short-term memory and tabu restriction control the neuron selection process in the HNN model in order to get around the local minima problem and find an optimal solution using the HNN model to solve complex optimization problem. The proposed algorithm is intended to find the optimal path for packet transmission in the network which is fills in the field of routing problem. The optimal path that will be selected is depending on 4-tuples (delay, cost, reliability and capacity. Test results show that the propose algorithm can find path with optimal cost and a reasonable number of iterations. It also shows that the complexity of the network model won’t be a problem since the neuron selection is done heuristically.
A Stochastic Multiobjective Optimization Framework for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Shibo He
2010-01-01
Full Text Available In wireless sensor networks (WSNs, there generally exist many different objective functions to be optimized. In this paper, we propose a stochastic multiobjective optimization approach to solve such kind of problem. We first formulate a general multiobjective optimization problem. We then decompose the optimization formulation through Lagrange dual decomposition and adopt the stochastic quasigradient algorithm to solve the primal-dual problem in a distributed way. We show theoretically that our algorithm converges to the optimal solution of the primal problem by using the knowledge of stochastic programming. Furthermore, the formulation provides a general stochastic multiobjective optimization framework for WSNs. We illustrate how the general framework works by considering an example of the optimal rate allocation problem in multipath WSNs with time-varying channel. Extensive simulation results are given to demonstrate the effectiveness of our algorithm.
Optimization of investments in gas networks
International Nuclear Information System (INIS)
Andre, J.
2010-09-01
The natural gas networks require very important investments to cope with a still growing demand and to satisfy the new regulatory constraints. The gas market deregulation imposed to the gas network operators, first, transparency rules of a natural monopoly to justify their costs and ultimately their tariffs, and, second, market fluidity objectives in order to facilitate access for competition to the end-users. These major investments are the main reasons for the use of optimization techniques aiming at reducing the costs. Due to the discrete choices (investment location, limited choice of additional capacities, timing) crossed with physical non linear constraints (flow/pressures relations in the pipe or operating ranges of compressors), the programs to solve are Large Mixed Non Linear Programs (MINLP). As these types of programs are known to be hard to solve exactly in polynomial times (NP-hard), advanced optimization methods have to be implemented to obtain realistic results. The objectives of this thesis are threefold. First, one states several investment problems modeling of natural gas networks from industrial world motivations. Second, one identifies the most suitable methods and algorithms to the formulated problems. Third, one exposes the main advantages and drawbacks of these methods with the help of numerical applications on real cases. (author)
ON PROBLEM OF REGIONAL WAREHOUSE AND TRANSPORT INFRASTRUCTURE OPTIMIZATION
Directory of Open Access Journals (Sweden)
I. Yu. Miretskiy
2017-01-01
Full Text Available The article suggests an approach of solving the problem of warehouse and transport infrastructure optimization in a region. The task is to determine the optimal capacity and location of the support network of warehouses in the region, as well as power, composition and location of motor fleets. Optimization is carried out using mathematical models of a regional warehouse network and a network of motor fleets. These models are presented as mathematical programming problems with separable functions. The process of finding the optimal solution of problems is complicated due to high dimensionality, non-linearity of functions, and the fact that a part of variables are constrained to integer, and some variables can take values only from a discrete set. Given the mentioned above complications search for an exact solution was rejected. The article suggests an approximate approach to solving problems. This approach employs effective computational schemes for solving multidimensional optimization problems. We use the continuous relaxation of the original problem to obtain its approximate solution. An approximately optimal solution of continuous relaxation is taken as an approximate solution of the original problem. The suggested solution method implies linearization of the obtained continuous relaxation and use of the separable programming scheme and the scheme of branches and bounds. We describe the use of the simplex method for solving the linearized continuous relaxation of the original problem and the specific moments of the branches and bounds method implementation. The paper shows the finiteness of the algorithm and recommends how to accelerate process of finding a solution.
Optimal satisfaction degree in energy harvesting cognitive radio networks
International Nuclear Information System (INIS)
Li Zan; Liu Bo-Yang; Si Jiang-Bo; Zhou Fu-Hui
2015-01-01
A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. (paper)
Optimal satisfaction degree in energy harvesting cognitive radio networks
Li, Zan; Liu, Bo-Yang; Si, Jiang-Bo; Zhou, Fu-Hui
2015-12-01
A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education of China (Grant No. 20110203110011), and the 111 Project (Grant No. B08038).
District Heating Network Design and Configuration Optimization with Genetic Algorithm
DEFF Research Database (Denmark)
Li, Hongwei; Svendsen, Svend
2013-01-01
In this paper, the configuration of a district heating network which connects from the heating plant to the end users is optimized. Each end user in the network represents a building block. The connections between the heat generation plant and the end users are represented with mixed integer...... and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...... and it is optimized in terms of the net present cost. The optimization results indicates that the optimal DH network configuration is determined by multiple factors such as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding the pressure and temperature...
GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE
Directory of Open Access Journals (Sweden)
Ashish Jain
2012-07-01
Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.
FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS
Directory of Open Access Journals (Sweden)
Evans BAIDOO
2017-03-01
Full Text Available Modern real world science and engineering problems can be classified as multi-objective optimisation problems which demand for expedient and efficient stochastic algorithms to respond to the optimization needs. This paper presents an object-oriented software application that implements a firework optimization algorithm for function optimization problems. The algorithm, a kind of parallel diffuse optimization algorithm is based on the explosive phenomenon of fireworks. The algorithm presented promising results when compared to other population or iterative based meta-heuristic algorithm after it was experimented on five standard benchmark problems. The software application was implemented in Java with interactive interface which allow for easy modification and extended experimentation. Additionally, this paper validates the effect of runtime on the algorithm performance.
Approximative solutions of stochastic optimization problem
Czech Academy of Sciences Publication Activity Database
Lachout, Petr
2010-01-01
Roč. 46, č. 3 (2010), s. 513-523 ISSN 0023-5954 R&D Projects: GA ČR GA201/08/0539 Institutional research plan: CEZ:AV0Z10750506 Keywords : Stochastic optimization problem * sensitivity * approximative solution Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/lachout-approximative solutions of stochastic optimization problem.pdf
Problem of detecting inclusions by topological optimization
Directory of Open Access Journals (Sweden)
I. Faye
2014-01-01
Full Text Available In this paper we propose a new method to detect inclusions. The proposed method is based on shape and topological optimization tools. In fact after presenting the problem, we use topologication optimization tools to detect inclusions in the domain. Numerical results are presented.
Influence maximization in complex networks through optimal percolation
Morone, Flaviano; Makse, Hernán A.
2015-08-01
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.
Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.
2014-01-01
This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860
Optimization with PDE constraints ESF networking program 'OPTPDE'
2014-01-01
This book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme ’Optimization with PDEs’ (OPTPDE).
Stochastic global optimization as a filtering problem
International Nuclear Information System (INIS)
Stinis, Panos
2012-01-01
We present a reformulation of stochastic global optimization as a filtering problem. The motivation behind this reformulation comes from the fact that for many optimization problems we cannot evaluate exactly the objective function to be optimized. Similarly, we may not be able to evaluate exactly the functions involved in iterative optimization algorithms. For example, we may only have access to noisy measurements of the functions or statistical estimates provided through Monte Carlo sampling. This makes iterative optimization algorithms behave like stochastic maps. Naive global optimization amounts to evolving a collection of realizations of this stochastic map and picking the realization with the best properties. This motivates the use of filtering techniques to allow focusing on realizations that are more promising than others. In particular, we present a filtering reformulation of global optimization in terms of a special case of sequential importance sampling methods called particle filters. The increasing popularity of particle filters is based on the simplicity of their implementation and their flexibility. We utilize the flexibility of particle filters to construct a stochastic global optimization algorithm which can converge to the optimal solution appreciably faster than naive global optimization. Several examples of parametric exponential density estimation are provided to demonstrate the efficiency of the approach.
Optimal traffic control in highway transportation networks using linear programming
Li, Yanning; Canepa, Edward S.; Claudel, Christian G.
2014-01-01
of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can
Directory of Open Access Journals (Sweden)
J. Trdlicka
2010-12-01
Full Text Available This work proposes a distributed algorithm for energy optimal routing in a wireless sensor network. The routing problem is described as a mathematical problem by the minimum-cost multi-commodity network flow problem. Due to the separability of the problem, we use the duality theorem to derive the distributed algorithm. The algorithm computes the energy optimal routing in the network without any central node or knowledge of the whole network structure. Each node only needs to know the flow which is supposed to send or receive and the costs and capacities of the neighboring links. An evaluation of the presented algorithm on benchmarks for the energy optimal data flow routing in sensor networks with up to 100 nodes is presented.
Topology optimization for transient heat transfer problems
DEFF Research Database (Denmark)
Zeidan, Said; Sigmund, Ole; Lazarov, Boyan Stefanov
The focus of this work is on passive control of transient heat transfer problems using the topology optimization (TopOpt) method [1]. The goal is to find distributions of a limited amount of phase change material (PCM), within a given design domain, which optimizes the heat energy storage [2]. Our......, TopOpt has later been extended to transient problems in mechanics and photonics (e.g. [5], [6] and [7]). In the presented approach, the optimization is gradient-based, where in each iteration the non-steady heat conduction equation is solved,using the finite element method and an appropriate time......-stepping scheme. A PCM can efficiently absorb heat while keeping its temperature nearly unchanged [8]. The use of PCM ine.g. electronics [9] and mechanics [10], yields improved performance and lower costs depending on a.o., the spatial distribution of PCM.The considered problem consists in optimizing...
A neural network approach to the orienteering problem
Energy Technology Data Exchange (ETDEWEB)
Golden, B.; Wang, Q.; Sun, X.; Jia, J.
1994-12-31
In the orienteering problem, we are given a transportation network in which a start point and an end point are specified. Other points have associated scores. Given a fixed amount of time, the goal is to determine a path from start to end through a subset of locations in order to maximize the total path score. This problem has received a considerable amount of attention in the last ten years. The TSP is a variant of the orienteering problem. This paper applies a modified, continuous Hopfield neural network to attack this NP-hard optimization problem. In it, we design an effective energy function and learning algorithm. Unlike some applications of neural networks to optimization problems, this approach is shown to perform quite well.
Belief Propagation Algorithm for Portfolio Optimization Problems.
Shinzato, Takashi; Yasuda, Muneki
2015-01-01
The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.
Belief Propagation Algorithm for Portfolio Optimization Problems.
Directory of Open Access Journals (Sweden)
Takashi Shinzato
Full Text Available The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.
A Generic Methodology for Superstructure Optimization of Different Processing Networks
DEFF Research Database (Denmark)
Bertran, Maria-Ona; Frauzem, Rebecca; Zhang, Lei
2016-01-01
In this paper, we propose a generic computer-aided methodology for synthesis of different processing networks using superstructure optimization. The methodology can handle different network optimization problems of various application fields. It integrates databases with a common data architecture......, a generic model to represent the processing steps, and appropriate optimization tools. A special software interface has been created to automate the steps in the methodology workflow, allow the transfer of data between tools and obtain the mathematical representation of the problem as required...
Sensitivity analysis in optimization and reliability problems
International Nuclear Information System (INIS)
Castillo, Enrique; Minguez, Roberto; Castillo, Carmen
2008-01-01
The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods
Sensitivity analysis in optimization and reliability problems
Energy Technology Data Exchange (ETDEWEB)
Castillo, Enrique [Department of Applied Mathematics and Computational Sciences, University of Cantabria, Avda. Castros s/n., 39005 Santander (Spain)], E-mail: castie@unican.es; Minguez, Roberto [Department of Applied Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: roberto.minguez@uclm.es; Castillo, Carmen [Department of Civil Engineering, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: mariacarmen.castillo@uclm.es
2008-12-15
The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods.
Stochastic Linear Quadratic Optimal Control Problems
International Nuclear Information System (INIS)
Chen, S.; Yong, J.
2001-01-01
This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well
Topology optimization of Channel flow problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan; Sigmund, Ole; Haber, R. B.
2005-01-01
function which measures either some local aspect of the velocity field or a global quantity, such as the rate of energy dissipation. We use the finite element method to model the flow, and we solve the optimization problem with a gradient-based math-programming algorithm that is driven by analytical......This paper describes a topology design method for simple two-dimensional flow problems. We consider steady, incompressible laminar viscous flows at low to moderate Reynolds numbers. This makes the flow problem non-linear and hence a non-trivial extension of the work of [Borrvall&Petersson 2002......]. Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity--driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost...
Simultaneous optimization of water and heat exchange networks
Energy Technology Data Exchange (ETDEWEB)
Chen, Zhiyou; Hou, Yanlong; Li, Xiaoduan; Wang, Jingtao [Tianjin University, Tianjin (China)
2014-04-15
This paper focuses on the simultaneous optimization of the heat-integrated water allocation networks. A mathematic model is established to illustrate the modified state-space representation of this problem. An easy logical method is employed to help identify the streams of hot or cold ones. In this model, the water exchange networks (WEN), heat exchange networks (HEN), and the interactions between the WEN and HEN combine together as one unity. Thus, the whole network can be solved at one time, which enhances the possibility to get a global optimal result. Examples from the literature and a PVC plant are analyzed to illustrate the accuracy and applicability of this method.
Optimal Control Problems for Partial Differential Equations on Reticulated Domains
Kogut, Peter I
2011-01-01
In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for gradu
A coherent Ising machine for 2000-node optimization problems
Inagaki, Takahiro; Haribara, Yoshitaka; Igarashi, Koji; Sonobe, Tomohiro; Tamate, Shuhei; Honjo, Toshimori; Marandi, Alireza; McMahon, Peter L.; Umeki, Takeshi; Enbutsu, Koji; Tadanaga, Osamu; Takenouchi, Hirokazu; Aihara, Kazuyuki; Kawarabayashi, Ken-ichi; Inoue, Kyo; Utsunomiya, Shoko; Takesue, Hiroki
2016-11-01
The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.
2016 Network Games, Control, and Optimization Conference
Jimenez, Tania; Solan, Eilon
2017-01-01
This contributed volume offers a collection of papers presented at the 2016 Network Games, Control, and Optimization conference (NETGCOOP), held at the University of Avignon in France, November 23-25, 2016. These papers highlight the increasing importance of network control and optimization in many networking application domains, such as mobile and fixed access networks, computer networks, social networks, transportation networks, and, more recently, electricity grids and biological networks. Covering a wide variety of both theoretical and applied topics in the areas listed above, the authors explore several conceptual and algorithmic tools that are needed for efficient and robust control operation, performance optimization, and better understanding the relationships between entities that may be acting cooperatively or selfishly in uncertain and possibly adversarial environments. As such, this volume will be of interest to applied mathematicians, computer scientists, engineers, and researchers in other relate...
Optimal topologies for maximizing network transmission capacity
Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.
2018-04-01
It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.
BWR fuel cycle optimization using neural networks
International Nuclear Information System (INIS)
Ortiz-Servin, Juan Jose; Castillo, Jose Alejandro; Pelta, David Alejandro
2011-01-01
Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.
Topology optimization of fluid mechanics problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan
While topology optimization for solid continuum structures have been studied for about 20 years and for the special case of trusses for many more years, topology optimization of fluid mechanics problems is more recent. Borrvall and Petersson [1] is the seminal reference for topology optimization......D Navier-Stokes equation as well as an example with convection dominated transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the present work gives a proof-of-concept for the application of the method within fluid mechanics problems and it remains...... processing tool. Prior to design manufacturing this allows the engineer to quantify the performance of the computed topology design using standard, credible analysis tools with a body-fitted mesh. [1] Borrvall and Petersson (2003) "Topology optimization of fluids in Stokes flow", Int. J. Num. Meth. Fluids...
Topology Optimization for Transient Wave Propagation Problems
DEFF Research Database (Denmark)
Matzen, René
The study of elastic and optical waves together with intensive material research has revolutionized everyday as well as cutting edge technology in very tangible ways within the last century. Therefore it is important to continue the investigative work towards improving existing as well as innovate...... new technology, by designing new materials and their layout. The thesis presents a general framework for applying topology optimization in the design of material layouts for transient wave propagation problems. In contrast to the high level of modeling in the frequency domain, time domain topology...... optimization is still in its infancy. A generic optimization problem is formulated with an objective function that can be field, velocity, and acceleration dependent, as well as it can accommodate the dependency of filtered signals essential in signal shape optimization [P3]. The analytical design gradients...
Optimizing the next generation optical access networks
DEFF Research Database (Denmark)
Amaya Fernández, Ferney Orlando; Soto, Ana Cardenas; Tafur Monroy, Idelfonso
2009-01-01
Several issues in the design and optimization of the next generation optical access network (NG-OAN) are presented. The noise, the distortion and the fiber optic nonlinearities are considered to optimize the video distribution link in a passive optical network (PON). A discussion of the effect...
Mathematical model of highways network optimization
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.
A joint routing and speed optimization problem
Fukasawa, Ricardo; He, Qie; Santos, Fernando; Song, Yongjia
2016-01-01
Fuel cost contributes to a significant portion of operating cost in cargo transportation. Though classic routing models usually treat fuel cost as input data, fuel consumption heavily depends on the travel speed, which has led to the study of optimizing speeds over a given fixed route. In this paper, we propose a joint routing and speed optimization problem to minimize the total cost, which includes the fuel consumption cost. The only assumption made on the dependence between the fuel cost an...
Optimal consumption problem in the Vasicek model
Directory of Open Access Journals (Sweden)
Jakub Trybuła
2015-01-01
Full Text Available We consider the problem of an optimal consumption strategy on the infinite time horizon based on the hyperbolic absolute risk aversion utility when the interest rate is an Ornstein-Uhlenbeck process. Using the method of subsolution and supersolution we obtain the existence of solutions of the dynamic programming equation. We illustrate the paper with a numerical example of the optimal consumption strategy and the value function.
Networks in Social Policy Problems
Vedres, Balázs; Scotti, Marco
2012-08-01
1. Introduction M. Scotti and B. Vedres; Part I. Information, Collaboration, Innovation: The Creative Power of Networks: 2. Dissemination of health information within social networks C. Dhanjal, S. Blanchemanche, S. Clemençon, A. Rona-Tas and F. Rossi; 3. Scientific teams and networks change the face of knowledge creation S. Wuchty, J. Spiro, B. F. Jones and B. Uzzi; 4. Structural folds: the innovative potential of overlapping groups B. Vedres and D. Stark; 5. Team formation and performance on nanoHub: a network selection challenge in scientific communities D. Margolin, K. Ognyanova, M. Huang, Y. Huang and N. Contractor; Part II. Influence, Capture, Corruption: Networks Perspectives on Policy Institutions: 6. Modes of coordination of collective action: what actors in policy making? M. Diani; 7. Why skewed distributions of pay for executives is the cause of much grief: puzzles and few answers so far B. Kogut and J.-S. Yang; 8. Networks of institutional capture: a case of business in the State apparatus E. Lazega and L. Mounier; 9. The social and institutional structure of corruption: some typical network configurations of corruption transactions in Hungary Z. Szántó, I. J. Tóth and S. Varga; Part III. Crisis, Extinction, World System Change: Network Dynamics on a Large Scale: 10. How creative elements help the recovery of networks after crisis: lessons from biology A. Mihalik, A. S. Kaposi, I. A. Kovács, T. Nánási, R. Palotai, Á. Rák, M. S. Szalay-Beko and P. Csermely; 11. Networks and globalization policies D. R. White; 12. Network science in ecology: the structure of ecological communities and the biodiversity question A. Bodini, S. Allesina and C. Bondavalli; 13. Supply security in the European natural gas pipeline network M. Scotti and B. Vedres; 14. Conclusions and outlook A.-L. Barabási; Index.
Multiparameter Optimization for Electromagnetic Inversion Problem
Directory of Open Access Journals (Sweden)
M. Elkattan
2017-10-01
Full Text Available Electromagnetic (EM methods have been extensively used in geophysical investigations such as mineral and hydrocarbon exploration as well as in geological mapping and structural studies. In this paper, we developed an inversion methodology for Electromagnetic data to determine physical parameters of a set of horizontal layers. We conducted Forward model using transmission line method. In the inversion part, we solved multi parameter optimization problem where, the parameters are conductivity, dielectric constant, and permeability of each layer. The optimization problem was solved by simulated annealing approach. The inversion methodology was tested using a set of models representing common geological formations.
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Supply network configuration—A benchmarking problem
Brandenburg, Marcus
2018-03-01
Managing supply networks is a highly relevant task that strongly influences the competitiveness of firms from various industries. Designing supply networks is a strategic process that considerably affects the structure of the whole network. In contrast, supply networks for new products are configured without major adaptations of the existing structure, but the network has to be configured before the new product is actually launched in the marketplace. Due to dynamics and uncertainties, the resulting planning problem is highly complex. However, formal models and solution approaches that support supply network configuration decisions for new products are scant. The paper at hand aims at stimulating related model-based research. To formulate mathematical models and solution procedures, a benchmarking problem is introduced which is derived from a case study of a cosmetics manufacturer. Tasks, objectives, and constraints of the problem are described in great detail and numerical values and ranges of all problem parameters are given. In addition, several directions for future research are suggested.
Solving global optimization problems on GPU cluster
Energy Technology Data Exchange (ETDEWEB)
Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya [Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue 23, 603950 Nizhni Novgorod (Russian Federation)
2016-06-08
The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.
Heuristic versus statistical physics approach to optimization problems
International Nuclear Information System (INIS)
Jedrzejek, C.; Cieplinski, L.
1995-01-01
Optimization is a crucial ingredient of many calculation schemes in science and engineering. In this paper we assess several classes of methods: heuristic algorithms, methods directly relying on statistical physics such as the mean-field method and simulated annealing; and Hopfield-type neural networks and genetic algorithms partly related to statistical physics. We perform the analysis for three types of problems: (1) the Travelling Salesman Problem, (2) vector quantization, and (3) traffic control problem in multistage interconnection network. In general, heuristic algorithms perform better (except for genetic algorithms) and much faster but have to be specific for every problem. The key to improving the performance could be to include heuristic features into general purpose statistical physics methods. (author)
Deterministic network interdiction optimization via an evolutionary approach
International Nuclear Information System (INIS)
Rocco S, Claudio M.; Ramirez-Marquez, Jose Emmanuel
2009-01-01
This paper introduces an evolutionary optimization approach that can be readily applied to solve deterministic network interdiction problems. The network interdiction problem solved considers the minimization of the maximum flow that can be transmitted between a source node and a sink node for a fixed network design when there is a limited amount of resources available to interdict network links. Furthermore, the model assumes that the nominal capacity of each network link and the cost associated with their interdiction can change from link to link. For this problem, the solution approach developed is based on three steps that use: (1) Monte Carlo simulation, to generate potential network interdiction strategies, (2) Ford-Fulkerson algorithm for maximum s-t flow, to analyze strategies' maximum source-sink flow and, (3) an evolutionary optimization technique to define, in probabilistic terms, how likely a link is to appear in the final interdiction strategy. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate the approach. In terms of computational effort, the results illustrate that solutions are obtained from a significantly restricted solution search space. Finally, the authors discuss the need for a reliability perspective to network interdiction, so that solutions developed address more realistic scenarios of such problem
Optimal neural networks for protein-structure prediction
International Nuclear Information System (INIS)
Head-Gordon, T.; Stillinger, F.H.
1993-01-01
The successful application of neural-network algorithms for prediction of protein structure is stymied by three problem areas: the sparsity of the database of known protein structures, poorly devised network architectures which make the input-output mapping opaque, and a global optimization problem in the multiple-minima space of the network variables. We present a simplified polypeptide model residing in two dimensions with only two amino-acid types, A and B, which allows the determination of the global energy structure for all possible sequences of pentamer, hexamer, and heptamer lengths. This model simplicity allows us to compile a complete structural database and to devise neural networks that reproduce the tertiary structure of all sequences with absolute accuracy and with the smallest number of network variables. These optimal networks reveal that the three problem areas are convoluted, but that thoughtful network designs can actually deconvolute these detrimental traits to provide network algorithms that genuinely impact on the ability of the network to generalize or learn the desired mappings. Furthermore, the two-dimensional polypeptide model shows sufficient chemical complexity so that transfer of neural-network technology to more realistic three-dimensional proteins is evident
Optimization of recurrent neural networks for time series modeling
DEFF Research Database (Denmark)
Pedersen, Morten With
1997-01-01
The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...... series. The overall objective s are to improve training by application of second-order methods and to improve generalization ability by architecture optimization accomplished by pruning. The major topics covered in the thesis are: 1. The problem of training recurrent networks is analyzed from a numerical...... of solution obtained as well as computation time required. 3. A theoretical definition of the generalization error for recurrent networks is provided. This definition justifies a commonly adopted approach for estimating generalization ability. 4. The viability of pruning recurrent networks by the Optimal...
Optimal traffic control in highway transportation networks using linear programming
Li, Yanning
2014-06-01
This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.
Singularities in minimax optimization of networks
DEFF Research Database (Denmark)
Madsen, Kaj; Schjær-Jacobsen, Hans
1976-01-01
A theoretical treatment of singularities in nonlinear minimax optimization problems, which allows for a classification in regular and singular problems, is presented. A theorem for determining a singularity that is present in a given problem is formulated. A group of problems often used in the li......A theoretical treatment of singularities in nonlinear minimax optimization problems, which allows for a classification in regular and singular problems, is presented. A theorem for determining a singularity that is present in a given problem is formulated. A group of problems often used...
Optimizing Distribution Problems using WinQSB Software
Directory of Open Access Journals (Sweden)
Daniel Mihai Amariei
2015-07-01
Full Text Available In the present paper we are presenting a problem of distribution using the Network Modeling Module of the WinQSB software, were we have 5 athletes which we must assign the optimal sample, function of the obtained time, so as to obtain the maximum output of the athletes. Also we analyzed the case of an accident of 2 athletes, the coupling of 3 athletes with 5 various athletic events causing the maximum coupling, done using the Hungarian algorithm.
Problems of the power plant shield optimization
International Nuclear Information System (INIS)
Abagyan, A.A.; Dubinin, A.A.; Zhuravlev, V.I.; Kurachenko, Yu.A.; Petrov, Eh.E.
1981-01-01
General approaches to the solution of problems on the nuclear power plant radiation shield optimization are considered. The requirements to the shield parameters are formulated in a form of restrictions on a number of functionals, determined by the solution of γ quantum and neutron transport equations or dimensional and weight characteristics of shield components. Functional determined by weight-dimensional parameters (shield cost, mass and thickness) and functionals, determined by radiation fields (equivalent dose rate, produced by neutrons and γ quanta, activation functional, radiation functional, heat flux, integral heat flux in a particular part of the shield volume, total energy flux through a particular shield surface are considered. The following methods of numerical solution of simplified optimization problems are discussed: semiempirical methods using radiation transport physical leaks, numerical solution of approximate transport equations, numerical solution of transport equations for the simplest configurations making possible to decrease essentially a number of variables in the problem. The conclusion is drawn that the attained level of investigations on the problem of nuclear power plant shield optimization gives the possibility to pass on at present to the solution of problems with a more detailed account of the real shield operating conditions (shield temperature field account, its strength and other characteristics) [ru
Chaotic Hopfield Neural Network Swarm Optimization and Its Application
Directory of Open Access Journals (Sweden)
Yanxia Sun
2013-01-01
Full Text Available A new neural network based optimization algorithm is proposed. The presented model is a discrete-time, continuous-state Hopfield neural network and the states of the model are updated synchronously. The proposed algorithm combines the advantages of traditional PSO, chaos and Hopfield neural networks: particles learn from their own experience and the experiences of surrounding particles, their search behavior is ergodic, and convergence of the swarm is guaranteed. The effectiveness of the proposed approach is demonstrated using simulations and typical optimization problems.
Optimal Design of Gravitational Sewer Networks with General Cellular Automata
Directory of Open Access Journals (Sweden)
Mohammad Hadi Afshar
2014-05-01
Full Text Available In this paper, a Cellular Automata method is applied for the optimal design of sewer networks. The solution of sewer network optimization problems requires the determination of pipe diameters and average pipe cover depths, minimizing the total cost of the sewer network subject to operational constraints. In this paper, the network nodes and upstream and downstream pipe cover depths are considered as CA cells and cell states, respectively, and the links around each cell are taken into account as neighborhood. The proposed method is a general and flexible method for the optimization of sewer networks as it can be used to optimally design both gravity and pumped network due to the use of pipe nodal cover depths as the decision variables. The proposed method is tested against two gravitational sewer networks and the comparison of results with other methods such as Genetic algorithm, Cellular Automata, Ant Colony Optimization Algorithm and Particle Swarm Optimization show the efficiency and effectiveness of the proposed method.
WiMAX network performance monitoring & optimization
DEFF Research Database (Denmark)
Zhang, Qi; Dam, H
2008-01-01
frequency reuse, capacity planning, proper network dimensioning, multi-class data services and so on. Furthermore, as a small operator we also want to reduce the demand for sophisticated technicians and man labour hours. To meet these critical demands, we design a generic integrated network performance......In this paper we present our WiMAX (worldwide interoperability for microwave access) network performance monitoring and optimization solution. As a new and small WiMAX network operator, there are many demanding issues that we have to deal with, such as limited available frequency resource, tight...... this integrated network performance monitoring and optimization system in our WiMAX networks. This integrated monitoring and optimization system has such good flexibility and scalability that individual function component can be used by other operators with special needs and more advanced function components can...
Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Admed S. [University of Minnesota; Sidiropoulos, Nicholas D. [University of Minnesota; Taylor, Josh A. [University of Toronto
2018-01-12
This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successive convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.
Liu, Qingshan; Guo, Zhishan; Wang, Jun
2012-02-01
In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Solving Constraint Satisfaction Problems with Networks of Spiking Neurons.
Jonke, Zeno; Habenschuss, Stefan; Maass, Wolfgang
2016-01-01
Network of neurons in the brain apply-unlike processors in our current generation of computer hardware-an event-based processing strategy, where short pulses (spikes) are emitted sparsely by neurons to signal the occurrence of an event at a particular point in time. Such spike-based computations promise to be substantially more power-efficient than traditional clocked processing schemes. However, it turns out to be surprisingly difficult to design networks of spiking neurons that can solve difficult computational problems on the level of single spikes, rather than rates of spikes. We present here a new method for designing networks of spiking neurons via an energy function. Furthermore, we show how the energy function of a network of stochastically firing neurons can be shaped in a transparent manner by composing the networks of simple stereotypical network motifs. We show that this design approach enables networks of spiking neurons to produce approximate solutions to difficult (NP-hard) constraint satisfaction problems from the domains of planning/optimization and verification/logical inference. The resulting networks employ noise as a computational resource. Nevertheless, the timing of spikes plays an essential role in their computations. Furthermore, networks of spiking neurons carry out for the Traveling Salesman Problem a more efficient stochastic search for good solutions compared with stochastic artificial neural networks (Boltzmann machines) and Gibbs sampling.
Statistical physics of hard optimization problems
International Nuclear Information System (INIS)
Zdeborova, L.
2009-01-01
Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial (NP)-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this article is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfy ability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named ”locked” constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfy ability.
Statistical physics of hard optimization problems
International Nuclear Information System (INIS)
Zdeborova, L.
2009-01-01
Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an non-deterministic polynomial-complete problem the practically arising instances might, in fact, be easy to solve. The principal the question we address in the article is: How to recognize if an non-deterministic polynomial-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named 'locked' constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability (Authors)
Statistical physics of hard optimization problems
Zdeborová, Lenka
2009-06-01
Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial (NP)-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this article is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named "locked" constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability.
Resilience-based optimal design of water distribution network
Suribabu, C. R.
2017-11-01
Optimal design of water distribution network is generally aimed to minimize the capital cost of the investments on tanks, pipes, pumps, and other appurtenances. Minimizing the cost of pipes is usually considered as a prime objective as its proportion in capital cost of the water distribution system project is very high. However, minimizing the capital cost of the pipeline alone may result in economical network configuration, but it may not be a promising solution in terms of resilience point of view. Resilience of the water distribution network has been considered as one of the popular surrogate measures to address ability of network to withstand failure scenarios. To improve the resiliency of the network, the pipe network optimization can be performed with two objectives, namely minimizing the capital cost as first objective and maximizing resilience measure of the configuration as secondary objective. In the present work, these two objectives are combined as single objective and optimization problem is solved by differential evolution technique. The paper illustrates the procedure for normalizing the objective functions having distinct metrics. Two of the existing resilience indices and power efficiency are considered for optimal design of water distribution network. The proposed normalized objective function is found to be efficient under weighted method of handling multi-objective water distribution design problem. The numerical results of the design indicate the importance of sizing pipe telescopically along shortest path of flow to have enhanced resiliency indices.
Ahmet Demir; Utku Kose
2016-01-01
ABSTRACT In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Sc...
Ahmet Demir; Utku kose
2017-01-01
In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an...
Optimization of multicast optical networks with genetic algorithm
Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng
2007-11-01
In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Finite Optimal Stopping Problems: The Seller's Perspective
Hemmati, Mehdi; Smith, J. Cole
2011-01-01
We consider a version of an optimal stopping problem, in which a customer is presented with a finite set of items, one by one. The customer is aware of the number of items in the finite set and the minimum and maximum possible value of each item, and must purchase exactly one item. When an item is presented to the customer, she or he observes its…
A probabilistic computational framework for bridge network optimal maintenance scheduling
International Nuclear Information System (INIS)
Bocchini, Paolo; Frangopol, Dan M.
2011-01-01
This paper presents a probabilistic computational framework for the Pareto optimization of the preventive maintenance applications to bridges of a highway transportation network. The bridge characteristics are represented by their uncertain reliability index profiles. The in/out of service states of the bridges are simulated taking into account their correlation structure. Multi-objective Genetic Algorithms have been chosen as numerical tool for the solution of the optimization problem. The design variables of the optimization are the preventive maintenance schedules of all the bridges of the network. The two conflicting objectives are the minimization of the total present maintenance cost and the maximization of the network performance indicator. The final result is the Pareto front of optimal solutions among which the managers should chose, depending on engineering and economical factors. A numerical example illustrates the application of the proposed approach.
Solving Hub Network Problem Using Genetic Algorithm
Directory of Open Access Journals (Sweden)
Mursyid Hasan Basri
2012-01-01
Full Text Available This paper addresses a network problem that described as follows. There are n ports that interact, and p of those will be designated as hubs. All hubs are fully interconnected. Each spoke will be allocated to only one of available hubs. Direct connection between two spokes is allowed only if they are allocated to the same hub. The latter is a distinct characteristic that differs it from pure hub-and-spoke system. In case of pure hub-and-spoke system, direct connection between two spokes is not allowed. The problem is where to locate hub ports and to which hub a spoke should be allocated so that total transportation cost is minimum. In the first model, there are some additional aspects are taken into consideration in order to achieve a better representation of the problem. The first, weekly service should be accomplished. Secondly, various vessel types should be considered. The last, a concept of inter-hub discount factor is introduced. Regarding the last aspect, it represents cost reduction factor at hub ports due to economies of scale. In practice, it is common that the cost rate for inter-hub movement is less than the cost rate for movement between hub and origin/destination. In this first model, inter-hub discount factor is assumed independent with amount of flows on inter-hub links (denoted as flow-independent discount policy. The results indicated that the patterns of enlargement of container ship size, to some degree, are similar with those in Kurokawa study. However, with regard to hub locations, the results have not represented the real practice. In the proposed model, unsatisfactory result on hub locations is addressed. One aspect that could possibly be improved to find better hub locations is inter-hub discount factor. Then inter-hub discount factor is assumed to depend on amount of inter-hub flows (denoted as flow-dependent discount policy. There are two discount functions examined in this paper. Both functions are characterized by
Multi-objective optimization in computer networks using metaheuristics
Donoso, Yezid
2007-01-01
Metaheuristics are widely used to solve important practical combinatorial optimization problems. Many new multicast applications emerging from the Internet-such as TV over the Internet, radio over the Internet, and multipoint video streaming-require reduced bandwidth consumption, end-to-end delay, and packet loss ratio. It is necessary to design and to provide for these kinds of applications as well as for those resources necessary for functionality. Multi-Objective Optimization in Computer Networks Using Metaheuristics provides a solution to the multi-objective problem in routing computer networks. It analyzes layer 3 (IP), layer 2 (MPLS), and layer 1 (GMPLS and wireless functions). In particular, it assesses basic optimization concepts, as well as several techniques and algorithms for the search of minimals; examines the basic multi-objective optimization concepts and the way to solve them through traditional techniques and through several metaheuristics; and demonstrates how to analytically model the compu...
Regulatory Holidays and Optimal Network Expansion
Willems, Bert; Zwart, Gijsbert
2016-01-01
We model the optimal regulation of continuous, irreversible, capacity expansion, in a model in which the regulated network firm has private information about its capacity costs, investments need to be financed out of the firm’s cash flows from selling network access and demand is stochastic. If
Power consumption optimization strategy for wireless networks
DEFF Research Database (Denmark)
Cornean, Horia; Kumar, Sanjay; Marchetti, Nicola
2011-01-01
in order to reduce the total power consumption in a multi cellular network. We present an algorithm for power optimization under no interference and in presence of interference conditions, targeting to maximize the network capacity. The convergence of the algorithm is guaranteed if the interference...
Brocade: Optimal flow placement in SDN networks
CERN. Geneva
2015-01-01
Today' network poses several challanges to network providers. These challanges fall in to a variety of areas ranging from determining efficient utilization of network bandwidth to finding out which user applications consume majority of network resources. Also, how to protect a given network from volumetric and botnet attacks. Optimal placement of flows deal with identifying network issues and addressing them in a real-time. The overall solution helps in building new services where a network is more secure and more efficient. Benefits derived as a result are increased network efficiency due to better capacity and resource planning, better security with real-time threat mitigation, and improved user experience as a result of increased service velocity.
Optimal control problem for the extended Fisher–Kolmogorov equation
Indian Academy of Sciences (India)
In this paper, the optimal control problem for the extended Fisher–Kolmogorov equation is studied. The optimal control under boundary condition is given, the existence of optimal solution to the equation is proved and the optimality system is established.
Topological Effects and Performance Optimization in Transportation Continuous Network Design
Directory of Open Access Journals (Sweden)
Jianjun Wu
2014-01-01
Full Text Available Because of the limitation of budget, in the planning of road works, increased efforts should be made on links that are more critical to the whole traffic system. Therefore, it would be helpful to model and evaluate the vulnerability and reliability of the transportation network when the network design is processing. This paper proposes a bilevel transportation network design model, in which the upper level is to minimize the performance of the network under the given budgets, while the lower level is a typical user equilibrium assignment problem. A new solution approach based on particle swarm optimization (PSO method is presented. The topological effects on the performance of transportation networks are studied with the consideration of three typical networks, regular lattice, random graph, and small-world network. Numerical examples and simulations are presented to demonstrate the proposed model.
Neural network for nonsmooth pseudoconvex optimization with general convex constraints.
Bian, Wei; Ma, Litao; Qin, Sitian; Xue, Xiaoping
2018-05-01
In this paper, a one-layer recurrent neural network is proposed for solving a class of nonsmooth, pseudoconvex optimization problems with general convex constraints. Based on the smoothing method, we construct a new regularization function, which does not depend on any information of the feasible region. Thanks to the special structure of the regularization function, we prove the global existence, uniqueness and "slow solution" character of the state of the proposed neural network. Moreover, the state solution of the proposed network is proved to be convergent to the feasible region in finite time and to the optimal solution set of the related optimization problem subsequently. In particular, the convergence of the state to an exact optimal solution is also considered in this paper. Numerical examples with simulation results are given to show the efficiency and good characteristics of the proposed network. In addition, some preliminary theoretical analysis and application of the proposed network for a wider class of dynamic portfolio optimization are included. Copyright © 2018 Elsevier Ltd. All rights reserved.
Improved Differential Evolution Algorithm for Wireless Sensor Network Coverage Optimization
Directory of Open Access Journals (Sweden)
Xing Xu
2014-04-01
Full Text Available In order to serve for the ecological monitoring efficiency of Poyang Lake, an improved hybrid algorithm, mixed with differential evolution and particle swarm optimization, is proposed and applied to optimize the coverage problem of wireless sensor network. And then, the affect of the population size and the number of iterations on the coverage performance are both discussed and analyzed. The four kinds of statistical results about the coverage rate are obtained through lots of simulation experiments.
Optimization of Gas Flow Network using the Traveling Salesman ...
African Journals Online (AJOL)
The overall goal of this paper is to develop a general formulation for an optimal infrastructure layout design of gas pipeline distribution networks using algorithm developed from the application of two industrial engineering concepts: the traveling salesman problem (TSP) and the nearest neighbor (NN). The focus is on the ...
Directory of Open Access Journals (Sweden)
Ahmet Demir
2017-01-01
Full Text Available In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an important role on providing software related techniques to improve the associated literature. Today, intelligent optimization techniques based on Artificial Intelligence are widely used for optimization problems. The objective of this paper is to provide a comparative study on the employment of classical optimization solutions and Artificial Intelligence solutions for enabling readers to have idea about the potential of intelligent optimization techniques. At this point, two recently developed intelligent optimization algorithms, Vortex Optimization Algorithm (VOA and Cognitive Development Optimization Algorithm (CoDOA, have been used to solve some multidisciplinary optimization problems provided in the source book Thomas' Calculus 11th Edition and the obtained results have compared with classical optimization solutions.
Sensitivity analysis of linear programming problem through a recurrent neural network
Das, Raja
2017-11-01
In this paper we study the recurrent neural network for solving linear programming problems. To achieve optimality in accuracy and also in computational effort, an algorithm is presented. We investigate the sensitivity analysis of linear programming problem through the neural network. A detailed example is also presented to demonstrate the performance of the recurrent neural network.
Algorithms for finding optimal paths in network games with p players
Directory of Open Access Journals (Sweden)
R. Boliac
1997-08-01
Full Text Available We study the problem of finding optimal paths in network games with p players. Some polynomial-time algorithms for finding optimal paths and optimal by Nash strategies of the players in network games with p players are proposed.
Optimizing online social networks for information propagation.
Directory of Open Access Journals (Sweden)
Duan-Bing Chen
Full Text Available Online users nowadays are facing serious information overload problem. In recent years, recommender systems have been widely studied to help people find relevant information. Adaptive social recommendation is one of these systems in which the connections in the online social networks are optimized for the information propagation so that users can receive interesting news or stories from their leaders. Validation of such adaptive social recommendation methods in the literature assumes uniform distribution of users' activity frequency. In this paper, our empirical analysis shows that the distribution of online users' activity is actually heterogenous. Accordingly, we propose a more realistic multi-agent model in which users' activity frequency are drawn from a power-law distribution. We find that previous social recommendation methods lead to serious delay of information propagation since many users are connected to inactive leaders. To solve this problem, we design a new similarity measure which takes into account users' activity frequencies. With this similarity measure, the average delay is significantly shortened and the recommendation accuracy is largely improved.
Optimizing online social networks for information propagation.
Chen, Duan-Bing; Wang, Guan-Nan; Zeng, An; Fu, Yan; Zhang, Yi-Cheng
2014-01-01
Online users nowadays are facing serious information overload problem. In recent years, recommender systems have been widely studied to help people find relevant information. Adaptive social recommendation is one of these systems in which the connections in the online social networks are optimized for the information propagation so that users can receive interesting news or stories from their leaders. Validation of such adaptive social recommendation methods in the literature assumes uniform distribution of users' activity frequency. In this paper, our empirical analysis shows that the distribution of online users' activity is actually heterogenous. Accordingly, we propose a more realistic multi-agent model in which users' activity frequency are drawn from a power-law distribution. We find that previous social recommendation methods lead to serious delay of information propagation since many users are connected to inactive leaders. To solve this problem, we design a new similarity measure which takes into account users' activity frequencies. With this similarity measure, the average delay is significantly shortened and the recommendation accuracy is largely improved.
Directory of Open Access Journals (Sweden)
Weixing Su
2017-03-01
Full Text Available There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell’s pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.
Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei
2017-03-01
There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.
A multiobjective optimization framework for multicontaminant industrial water network design.
Boix, Marianne; Montastruc, Ludovic; Pibouleau, Luc; Azzaro-Pantel, Catherine; Domenech, Serge
2011-07-01
The optimal design of multicontaminant industrial water networks according to several objectives is carried out in this paper. The general formulation of the water allocation problem (WAP) is given as a set of nonlinear equations with binary variables representing the presence of interconnections in the network. For optimization purposes, three antagonist objectives are considered: F(1), the freshwater flow-rate at the network entrance, F(2), the water flow-rate at inlet of regeneration units, and F(3), the number of interconnections in the network. The multiobjective problem is solved via a lexicographic strategy, where a mixed-integer nonlinear programming (MINLP) procedure is used at each step. The approach is illustrated by a numerical example taken from the literature involving five processes, one regeneration unit and three contaminants. The set of potential network solutions is provided in the form of a Pareto front. Finally, the strategy for choosing the best network solution among those given by Pareto fronts is presented. This Multiple Criteria Decision Making (MCDM) problem is tackled by means of two approaches: a classical TOPSIS analysis is first implemented and then an innovative strategy based on the global equivalent cost (GEC) in freshwater that turns out to be more efficient for choosing a good network according to a practical point of view. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Qingshan; Dang, Chuangyin; Huang, Tingwen
2013-02-01
This paper presents a decision-making model described by a recurrent neural network for dynamic portfolio optimization. The portfolio-optimization problem is first converted into a constrained fractional programming problem. Since the objective function in the programming problem is not convex, the traditional optimization techniques are no longer applicable for solving this problem. Fortunately, the objective function in the fractional programming is pseudoconvex on the feasible region. It leads to a one-layer recurrent neural network modeled by means of a discontinuous dynamic system. To ensure the optimal solutions for portfolio optimization, the convergence of the proposed neural network is analyzed and proved. In fact, the neural network guarantees to get the optimal solutions for portfolio-investment advice if some mild conditions are satisfied. A numerical example with simulation results substantiates the effectiveness and illustrates the characteristics of the proposed neural network.
A study of optimization problem for amplify-and-forward relaying over weibull fading channels
Ikki, Salama Said; Aissa, Sonia
2010-01-01
This paper addresses the power allocation and relay positioning problems in amplify-and-forward cooperative networks operating in Weibull fading environments. We study adaptive power allocation (PA) with fixed relay location, optimal relay location
A measure theoretic approach to traffic flow optimization on networks
Cacace, Simone; Camilli, Fabio; De Maio, Raul; Tosin, Andrea
2018-01-01
We consider a class of optimal control problems for measure-valued nonlinear transport equations describing traffic flow problems on networks. The objective isto minimise/maximise macroscopic quantities, such as traffic volume or average speed,controlling few agents, for example smart traffic lights and automated cars. The measuretheoretic approach allows to study in a same setting local and nonlocal drivers interactionsand to consider the control variables as additional measures interacting ...
A matheuristic for the liner shipping network design problem
DEFF Research Database (Denmark)
Brouer, Berit Dangaard; Desaulniers, Guy; Pisinger, David
We present a matheuristic, an integer programming based heuristic, for the liner shipping network design problem. This problem consists of finding a set of container shipping routes defining a capacitated network for cargo transport. The objective is to maximize the revenue of cargo transport...... the available fleet of container vessels. The cargo transports make extensive use of transshipments between routes and the number of transshipments of the cargo flow is decisive for network profitability. Computational results are reported for the benchmark suite LINER-LIB 2012 following the industry standard...... of weekly departures on every schedule. The heuristic shows overall good performance and is able to find high quality solutions within competitive execution times. The matheuristic can also be applied as a decision support tool to improve an existing network by optimizing on a designated subset...
Neural network for solving convex quadratic bilevel programming problems.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie
2014-03-01
In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.
Linux software for large topology optimization problems
DEFF Research Database (Denmark)
evolving product, which allows a parallel solution of the PDE, it lacks the important feature that the matrix-generation part of the computations is localized to each processor. This is well-known to be critical for obtaining a useful speedup on a Linux cluster and it motivates the search for a COMSOL......-like package for large topology optimization problems. One candidate for such software is developed for Linux by Sandia Nat’l Lab in the USA being the Sundance system. Sundance also uses a symbolic representation of the PDE and a scalable numerical solution is achieved by employing the underlying Trilinos...
Optimization of deformation monitoring networks using finite element strain analysis
Alizadeh-Khameneh, M. Amin; Eshagh, Mehdi; Jensen, Anna B. O.
2018-04-01
An optimal design of a geodetic network can fulfill the requested precision and reliability of the network, and decrease the expenses of its execution by removing unnecessary observations. The role of an optimal design is highlighted in deformation monitoring network due to the repeatability of these networks. The core design problem is how to define precision and reliability criteria. This paper proposes a solution, where the precision criterion is defined based on the precision of deformation parameters, i. e. precision of strain and differential rotations. A strain analysis can be performed to obtain some information about the possible deformation of a deformable object. In this study, we split an area into a number of three-dimensional finite elements with the help of the Delaunay triangulation and performed the strain analysis on each element. According to the obtained precision of deformation parameters in each element, the precision criterion of displacement detection at each network point is then determined. The developed criterion is implemented to optimize the observations from the Global Positioning System (GPS) in Skåne monitoring network in Sweden. The network was established in 1989 and straddled the Tornquist zone, which is one of the most active faults in southern Sweden. The numerical results show that 17 out of all 21 possible GPS baseline observations are sufficient to detect minimum 3 mm displacement at each network point.
Modeling and optimization of potable water network
Energy Technology Data Exchange (ETDEWEB)
Djebedjian, B.; Rayan, M.A. [Mansoura Univ., El-Mansoura (Egypt); Herrick, A. [Suez Canal Authority, Ismailia (Egypt)
2000-07-01
Software was developed in order to optimize the design of water distribution systems and pipe networks. While satisfying all the constraints imposed such as pipe diameter and nodal pressure, it was based on a mathematical model treating looped networks. The optimum network configuration and cost are determined considering parameters like pipe diameter, flow rate, corresponding pressure and hydraulic losses. It must be understood that minimum cost is relative to the different objective functions selected. The determination of the proper objective function often depends on the operating policies of a particular company. The solution for the optimization technique was obtained by using a non-linear technique. To solve the optimal design of network, the model was derived using the sequential unconstrained minimization technique (SUMT) of Fiacco and McCormick, which decreased the number of iterations required. The pipe diameters initially assumed were successively adjusted to correspond to the existing commercial pipe diameters. The technique was then applied to a two-loop network without pumps or valves. Fed by gravity, it comprised eight pipes, 1000 m long each. The first evaluation of the method proved satisfactory. As with other methods, it failed to find the global optimum. In the future, research efforts will be directed to the optimization of networks with pumps and reservoirs. 24 refs., 3 tabs., 1 fig.
Influence maximization in complex networks through optimal percolation
Morone, Flaviano; Makse, Hernan; CUNY Collaboration; CUNY Collaboration
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. Reference: F. Morone, H. A. Makse, Nature 524,65-68 (2015)
Directory of Open Access Journals (Sweden)
Mohammad-Reza Askari
2015-07-01
Full Text Available Abstract This paper introduces a new stochastic optimization framework based bat algorithm BA to solve the optimal distribution feeder reconfiguration DFR as well as the shunt capacitor placement and sizing in the distribution systems. The objective functions to be investigated are minimization of the active power losses and minimization of the total network costs an. In order to consider the uncertainties of the active and reactive loads in the problem point estimate method PEM with 2m scheme is employed as the stochastic tool. The feasibility and good performance of the proposed method are examined on the IEEE 69-bus test system.
Relaxations to Sparse Optimization Problems and Applications
Skau, Erik West
Parsimony is a fundamental property that is applied to many characteristics in a variety of fields. Of particular interest are optimization problems that apply rank, dimensionality, or support in a parsimonious manner. In this thesis we study some optimization problems and their relaxations, and focus on properties and qualities of the solutions of these problems. The Gramian tensor decomposition problem attempts to decompose a symmetric tensor as a sum of rank one tensors.We approach the Gramian tensor decomposition problem with a relaxation to a semidefinite program. We study conditions which ensure that the solution of the relaxed semidefinite problem gives the minimal Gramian rank decomposition. Sparse representations with learned dictionaries are one of the leading image modeling techniques for image restoration. When learning these dictionaries from a set of training images, the sparsity parameter of the dictionary learning algorithm strongly influences the content of the dictionary atoms.We describe geometrically the content of trained dictionaries and how it changes with the sparsity parameter.We use statistical analysis to characterize how the different content is used in sparse representations. Finally, a method to control the structure of the dictionaries is demonstrated, allowing us to learn a dictionary which can later be tailored for specific applications. Variations of dictionary learning can be broadly applied to a variety of applications.We explore a pansharpening problem with a triple factorization variant of coupled dictionary learning. Another application of dictionary learning is computer vision. Computer vision relies heavily on object detection, which we explore with a hierarchical convolutional dictionary learning model. Data fusion of disparate modalities is a growing topic of interest.We do a case study to demonstrate the benefit of using social media data with satellite imagery to estimate hazard extents. In this case study analysis we
Nonlinear Non-convex Optimization of Hydraulic Networks
DEFF Research Database (Denmark)
Tahavori, Maryamsadat; Kallesøe, Carsten; Leth, John-Josef
2013-01-01
Pressure management in water supply systems is an effective way to reduce the leakage in a system. In this paper, the pressure management and the reduction of power consumption of a water supply system is formulated as an optimization problem. The problem is to minimize the power consumption in p....... They can be used for a general hydraulic networks to optimize the leakage and energy consumption and to satisfy the demands at the end-users. The results in this paper show that the power consumption of the pumps is reduced.......Pressure management in water supply systems is an effective way to reduce the leakage in a system. In this paper, the pressure management and the reduction of power consumption of a water supply system is formulated as an optimization problem. The problem is to minimize the power consumption...
An Optimal Routing Algorithm in Service Customized 5G Networks
Directory of Open Access Journals (Sweden)
Haipeng Yao
2016-01-01
Full Text Available With the widespread use of Internet, the scale of mobile data traffic grows explosively, which makes 5G networks in cellular networks become a growing concern. Recently, the ideas related to future network, for example, Software Defined Networking (SDN, Content-Centric Networking (CCN, and Big Data, have drawn more and more attention. In this paper, we propose a service-customized 5G network architecture by introducing the ideas of separation between control plane and data plane, in-network caching, and Big Data processing and analysis to resolve the problems traditional cellular radio networks face. Moreover, we design an optimal routing algorithm for this architecture, which can minimize average response hops in the network. Simulation results reveal that, by introducing the cache, the network performance can be obviously improved in different network conditions compared to the scenario without a cache. In addition, we explore the change of cache hit rate and average response hops under different cache replacement policies, cache sizes, content popularity, and network topologies, respectively.
Shahriari, Mohammadreza
2016-06-01
The time-cost tradeoff problem is one of the most important and applicable problems in project scheduling area. There are many factors that force the mangers to crash the time. This factor could be early utilization, early commissioning and operation, improving the project cash flow, avoiding unfavorable weather conditions, compensating the delays, and so on. Since there is a need to allocate extra resources to short the finishing time of project and the project managers are intended to spend the lowest possible amount of money and achieve the maximum crashing time, as a result, both direct and indirect costs will be influenced in the project, and here, we are facing into the time value of money. It means that when we crash the starting activities in a project, the extra investment will be tied in until the end date of the project; however, when we crash the final activities, the extra investment will be tied in for a much shorter period. This study is presenting a two-objective mathematical model for balancing compressing the project time with activities delay to prepare a suitable tool for decision makers caught in available facilities and due to the time of projects. Also drawing the scheduling problem to real world conditions by considering nonlinear objective function and the time value of money are considered. The presented problem was solved using NSGA-II, and the effect of time compressing reports on the non-dominant set.
Optimal Information Processing in Biochemical Networks
Wiggins, Chris
2012-02-01
A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.
Pricing and Capacity Planning Problems in Energy Transmission Networks
DEFF Research Database (Denmark)
Villumsen, Jonas Christoffer
strategy. In the Nordic electricity system a market with zonal prices is adopted. We consider the problem of designing zones in an optimal way explicitly considering uncertainty. Finally, we formulate the integrated problem of pipeline capacity expansion planning and transmission pricing in natural gas...... necessitates a radical change in the way we plan and operate energy systems. Another paradigm change which began in the 1990’s for electricity systems is that of deregulation. This has led to a variety of different market structures implemented across the world. In this thesis we discuss capacity planning...... and transmission pricing problems in energy transmission networks. Although the modelling framework applies to energy networks in general, most of the applications discussed concern the transmission of electricity. A number of the problems presented involves transmission switching, which allows the operator...
Directory of Open Access Journals (Sweden)
Yan Sun
2015-09-01
Full Text Available Purpose: The purpose of study is to solve the multi-modal transportation routing planning problem that aims to select an optimal route to move a consignment of goods from its origin to its destination through the multi-modal transportation network. And the optimization is from two viewpoints including cost and time. Design/methodology/approach: In this study, a bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. Minimizing the total transportation cost and the total transportation time are set as the optimization objectives of the model. In order to balance the benefit between the two objectives, Pareto optimality is utilized to solve the model by gaining its Pareto frontier. The Pareto frontier of the model can provide the multi-modal transportation operator (MTO and customers with better decision support and it is gained by the normalized normal constraint method. Then, an experimental case study is designed to verify the feasibility of the model and Pareto optimality by using the mathematical programming software Lingo. Finally, the sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case. Findings: The calculation results indicate that the proposed model and Pareto optimality have good performance in dealing with the bi-objective optimization. The sensitivity analysis also shows the influence of the variation of the demand and supply on the multi-modal transportation organization clearly. Therefore, this method can be further promoted to the practice. Originality/value: A bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. The Pareto frontier based sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case.
Optimization and Control of Communication Networks
Chiang, Mung; Low, Steven
2005-01-01
Recently, there has been a surge in research activities that utilize the power of recent developments in nonlinear optimization to tackle a wide scope of work in the analysis and design of communication systems, touching every layer of the layered network architecture, and resulting in both intellectual and practical impacts significantly beyond the earlier frameworks. These research activities are driven by both new demands in the areas of communications and networking, and n...
On the MSE Performance and Optimization of Regularized Problems
Alrashdi, Ayed
2016-11-01
The amount of data that has been measured, transmitted/received, and stored in the recent years has dramatically increased. So, today, we are in the world of big data. Fortunately, in many applications, we can take advantages of possible structures and patterns in the data to overcome the curse of dimensionality. The most well known structures include sparsity, low-rankness, block sparsity. This includes a wide range of applications such as machine learning, medical imaging, signal processing, social networks and computer vision. This also led to a specific interest in recovering signals from noisy compressed measurements (Compressed Sensing (CS) problem). Such problems are generally ill-posed unless the signal is structured. The structure can be captured by a regularizer function. This gives rise to a potential interest in regularized inverse problems, where the process of reconstructing the structured signal can be modeled as a regularized problem. This thesis particularly focuses on finding the optimal regularization parameter for such problems, such as ridge regression, LASSO, square-root LASSO and low-rank Generalized LASSO. Our goal is to optimally tune the regularizer to minimize the mean-squared error (MSE) of the solution when the noise variance or structure parameters are unknown. The analysis is based on the framework of the Convex Gaussian Min-max Theorem (CGMT) that has been used recently to precisely predict performance errors.
Robust Optimization of Fourth Party Logistics Network Design under Disruptions
Directory of Open Access Journals (Sweden)
Jia Li
2015-01-01
Full Text Available The Fourth Party Logistics (4PL network faces disruptions of various sorts under the dynamic and complex environment. In order to explore the robustness of the network, the 4PL network design with consideration of random disruptions is studied. The purpose of the research is to construct a 4PL network that can provide satisfactory service to customers at a lower cost when disruptions strike. Based on the definition of β-robustness, a robust optimization model of 4PL network design under disruptions is established. Based on the NP-hard characteristic of the problem, the artificial fish swarm algorithm (AFSA and the genetic algorithm (GA are developed. The effectiveness of the algorithms is tested and compared by simulation examples. By comparing the optimal solutions of the 4PL network for different robustness level, it is indicated that the robust optimization model can evade the market risks effectively and save the cost in the maximum limit when it is applied to 4PL network design.
A hybrid iterative scheme for optimal control problems governed by ...
African Journals Online (AJOL)
MRT
KEY WORDS: Optimal control problem; Fredholm integral equation; ... control problems governed by Fredholm integral and integro-differential equations is given in (Brunner and Yan, ..... The exact optimal trajectory and control functions are. 2.
Particle Swarm Optimization for Structural Design Problems
Directory of Open Access Journals (Sweden)
Hamit SARUHAN
2010-02-01
Full Text Available The aim of this paper is to employ the Particle Swarm Optimization (PSO technique to a mechanical engineering design problem which is minimizing the volume of a cantilevered beam subject to bending strength constraints. Mechanical engineering design problems are complex activities which are computing capability are more and more required. The most of these problems are solved by conventional mathematical programming techniques that require gradient information. These techniques have several drawbacks from which the main one is becoming trapped in local optima. As an alternative to gradient-based techniques, the PSO does not require the evaluation of gradients of the objective function. The PSO algorithm employs the generation of guided random positions when they search for the global optimum point. The PSO which is a nature inspired heuristics search technique imitates the social behavior of bird flocking. The results obtained by the PSO are compared with Mathematical Programming (MP. It is demonstrated that the PSO performed and obtained better convergence reliability on the global optimum point than the MP. Using the MP, the volume of 2961000 mm3 was obtained while the beam volume of 2945345 mm3 was obtained by the PSO.
PSO-Optimized Hopfield Neural Network-Based Multipath Routing for Mobile Ad-hoc Networks
Directory of Open Access Journals (Sweden)
Mansour Sheikhan
2012-06-01
Full Text Available Mobile ad-hoc network (MANET is a dynamic collection of mobile computers without the need for any existing infrastructure. Nodes in a MANET act as hosts and routers. Designing of robust routing algorithms for MANETs is a challenging task. Disjoint multipath routing protocols address this problem and increase the reliability, security and lifetime of network. However, selecting an optimal multipath is an NP-complete problem. In this paper, Hopfield neural network (HNN which its parameters are optimized by particle swarm optimization (PSO algorithm is proposed as multipath routing algorithm. Link expiration time (LET between each two nodes is used as the link reliability estimation metric. This approach can find either node-disjoint or link-disjoint paths in singlephase route discovery. Simulation results confirm that PSO-HNN routing algorithm has better performance as compared to backup path set selection algorithm (BPSA in terms of the path set reliability and number of paths in the set.
System and economic optimization problems of NPPs and its ideology
International Nuclear Information System (INIS)
Klimenko, A.V.; Mironovich, V.L.
2016-01-01
The iterative circuit design of optimization of system of links of nuclear fuel and energy complex (NFEC) is presented in the paper. Problems of system optimization of links NFEC as functional of NPP optimization are indicated and investigated [ru
WiMax network planning and optimization
Zhang, Yan
2009-01-01
This book offers a comprehensive explanation on how to dimension, plan, and optimize WiMAX networks. The first part of the text introduces WiMAX networks architecture, physical layer, standard, protocols, security mechanisms, and highly related radio access technologies. It covers system framework, topology, capacity, mobility management, handoff management, congestion control, medium access control (MAC), scheduling, Quality of Service (QoS), and WiMAX mesh networks and security. Enabling easy understanding of key concepts and technologies, the second part presents practical examples and illu
Optimal transport on supply-demand networks.
Chen, Yu-Han; Wang, Bing-Hong; Zhao, Li-Chao; Zhou, Changsong; Zhou, Tao
2010-06-01
In the literature, transport networks are usually treated as homogeneous networks, that is, every node has the same function, simultaneously providing and requiring resources. However, some real networks, such as power grids and supply chain networks, show a far different scenario in which nodes are classified into two categories: supply nodes provide some kinds of services, while demand nodes require them. In this paper, we propose a general transport model for these supply-demand networks, associated with a criterion to quantify their transport capacities. In a supply-demand network with heterogeneous degree distribution, its transport capacity strongly depends on the locations of supply nodes. We therefore design a simulated annealing algorithm to find the near optimal configuration of supply nodes, which remarkably enhances the transport capacity compared with a random configuration and outperforms the degree target algorithm, the betweenness target algorithm, and the greedy method. This work provides a start point for systematically analyzing and optimizing transport dynamics on supply-demand networks.
International Nuclear Information System (INIS)
Ramirez-Marquez, Jose Emmanuel; Rocco S, Claudio M.
2009-01-01
This paper introduces an evolutionary optimization approach that can be readily applied to solve stochastic network interdiction problems (SNIP). The network interdiction problem solved considers the minimization of the cost associated with an interdiction strategy such that the maximum flow that can be transmitted between a source node and a sink node for a fixed network design is greater than or equal to a given reliability requirement. Furthermore, the model assumes that the nominal capacity of each network link and the cost associated with their interdiction can change from link to link and that such interdiction has a probability of being successful. This version of the SNIP is for the first time modeled as a capacitated network reliability problem allowing for the implementation of computation and solution techniques previously unavailable. The solution process is based on an evolutionary algorithm that implements: (1) Monte-Carlo simulation, to generate potential network interdiction strategies, (2) capacitated network reliability techniques to analyze strategies' source-sink flow reliability and, (3) an evolutionary optimization technique to define, in probabilistic terms, how likely a link is to appear in the final interdiction strategy. Examples for different sizes of networks are used throughout the paper to illustrate the approach
Finite Volumes Discretization of Topology Optimization Problems
DEFF Research Database (Denmark)
Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter
, FVMs represent a standard method of discretization within engineering communities dealing with computational uid dy- namics, transport, and convection-reaction problems. Among various avours of FVMs, cell based approaches, where all variables are associated only with cell centers, are particularly...... computations is done using nite element methods (FEMs). Despite some limited recent eorts [1, 2], we have only started to develop our understanding of the interplay between the control in the coecients and FVMs. Recent advances in discrete functional analysis allow us to analyze convergence of FVM...... of the induced parametrization of the design space that allows optimization algorithms to eciently explore it, and the ease of integration with existing computational codes in a variety of application areas, the simplicity and eciency of sensitivity analyses|all stemming from the use of the same grid throughout...
Optimal Operation of Interdependent Power Systems and Electrified Transportation Networks
Directory of Open Access Journals (Sweden)
M. Hadi Amini
2018-01-01
Full Text Available Electrified transportation and power systems are mutually coupled networks. In this paper, a novel framework is developed for interdependent power and transportation networks. Our approach constitutes solving an iterative least cost vehicle routing process, which utilizes the communication of electrified vehicles (EVs with competing charging stations, to exchange data such as electricity price, energy demand, and time of arrival. The EV routing problem is solved to minimize the total cost of travel using the Dijkstra algorithm with the input from EVs battery management system, electricity price from charging stations, powertrain component efficiencies and transportation network traffic conditions. Through the bidirectional communication of EVs with competing charging stations, EVs’ charging demand estimation is done much more accurately. Then the optimal power flow problem is solved for the power system, to find the locational marginal price at load buses where charging stations are connected. Finally, the electricity prices were communicated from the charging stations to the EVs, and the loop is closed. Locational electricity price acts as the shared parameter between the two optimization problems, i.e., optimal power flow and optimal routing problem. Electricity price depends on the power demand, which is affected by the charging of EVs. On the other hand, location of EV charging stations and their different pricing strategies might affect the routing decisions of the EVs. Our novel approach that combines the electrified transportation with power system operation, holds tremendous potential for solving electrified transportation issues and reducing energy costs. The effectiveness of the proposed approach is demonstrated using Shanghai transportation network and IEEE 9-bus test system. The results verify the cost-savings for both power system and transportation networks.
Pricing Resources in LTE Networks through Multiobjective Optimization
Lai, Yung-Liang; Jiang, Jehn-Ruey
2014-01-01
The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid “user churn,” which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution. PMID:24526889
Pricing resources in LTE networks through multiobjective optimization.
Lai, Yung-Liang; Jiang, Jehn-Ruey
2014-01-01
The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid "user churn," which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution.
Pricing Resources in LTE Networks through Multiobjective Optimization
Directory of Open Access Journals (Sweden)
Yung-Liang Lai
2014-01-01
Full Text Available The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid “user churn,” which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1 maximizing operator profit and (2 maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution.
Network inference via adaptive optimal design
Directory of Open Access Journals (Sweden)
Stigter Johannes D
2012-09-01
Full Text Available Abstract Background Current research in network reverse engineering for genetic or metabolic networks very often does not include a proper experimental and/or input design. In this paper we address this issue in more detail and suggest a method that includes an iterative design of experiments based, on the most recent data that become available. The presented approach allows a reliable reconstruction of the network and addresses an important issue, i.e., the analysis and the propagation of uncertainties as they exist in both the data and in our own knowledge. These two types of uncertainties have their immediate ramifications for the uncertainties in the parameter estimates and, hence, are taken into account from the very beginning of our experimental design. Findings The method is demonstrated for two small networks that include a genetic network for mRNA synthesis and degradation and an oscillatory network describing a molecular network underlying adenosine 3’-5’ cyclic monophosphate (cAMP as observed in populations of Dyctyostelium cells. In both cases a substantial reduction in parameter uncertainty was observed. Extension to larger scale networks is possible but needs a more rigorous parameter estimation algorithm that includes sparsity as a constraint in the optimization procedure. Conclusion We conclude that a careful experiment design very often (but not always pays off in terms of reliability in the inferred network topology. For large scale networks a better parameter estimation algorithm is required that includes sparsity as an additional constraint. These algorithms are available in the literature and can also be used in an adaptive optimal design setting as demonstrated in this paper.
Optimization methods for activities selection problems
Mahad, Nor Faradilah; Alias, Suriana; Yaakop, Siti Zulaika; Arshad, Norul Amanina Mohd; Mazni, Elis Sofia
2017-08-01
Co-curriculum activities must be joined by every student in Malaysia and these activities bring a lot of benefits to the students. By joining these activities, the students can learn about the time management and they can developing many useful skills. This project focuses on the selection of co-curriculum activities in secondary school using the optimization methods which are the Analytic Hierarchy Process (AHP) and Zero-One Goal Programming (ZOGP). A secondary school in Negeri Sembilan, Malaysia was chosen as a case study. A set of questionnaires were distributed randomly to calculate the weighted for each activity based on the 3 chosen criteria which are soft skills, interesting activities and performances. The weighted was calculated by using AHP and the results showed that the most important criteria is soft skills. Then, the ZOGP model will be analyzed by using LINGO Software version 15.0. There are two priorities to be considered. The first priority which is to minimize the budget for the activities is achieved since the total budget can be reduced by RM233.00. Therefore, the total budget to implement the selected activities is RM11,195.00. The second priority which is to select the co-curriculum activities is also achieved. The results showed that 9 out of 15 activities were selected. Thus, it can concluded that AHP and ZOGP approach can be used as the optimization methods for activities selection problem.
Directory of Open Access Journals (Sweden)
Shi Chen-guang
2014-08-01
Full Text Available A novel optimal power allocation algorithm for radar network systems is proposed for Low Probability of Intercept (LPI technology in modern electronic warfare. The algorithm is based on the LPI optimization. First, the Schleher intercept factor for a radar network is derived, and then the Schleher intercept factor is minimized by optimizing the transmission power allocation among netted radars in the network to guarantee target-tracking performance. Furthermore, the Nonlinear Programming Genetic Algorithm (NPGA is used to solve the resulting nonconvex, nonlinear, and constrained optimization problem. Numerical simulation results show the effectiveness of the proposed algorithm.
Directory of Open Access Journals (Sweden)
Nur Faziera Napis
2018-05-01
Full Text Available The presence of optimized distributed generation (DG with suitable distribution network reconfiguration (DNR in the electrical distribution network has an advantage for voltage support, power losses reduction, deferment of new transmission line and distribution structure and system stability improvement. However, installation of a DG unit at non-optimal size with non-optimal DNR may lead to higher power losses, power quality problem, voltage instability and incremental of operational cost. Thus, an appropriate DG and DNR planning are essential and are considered as an objective of this research. An effective heuristic optimization technique named as improved evolutionary particle swarm optimization (IEPSO is proposed in this research. The objective function is formulated to minimize the total power losses (TPL and to improve the voltage stability index (VSI. The voltage stability index is determined for three load demand levels namely light load, nominal load, and heavy load with proper optimal DNR and DG sizing. The performance of the proposed technique is compared with other optimization techniques, namely particle swarm optimization (PSO and iteration particle swarm optimization (IPSO. Four case studies on IEEE 33-bus and IEEE 69-bus distribution systems have been conducted to validate the effectiveness of the proposed IEPSO. The optimization results show that, the best achievement is done by IEPSO technique with power losses reduction up to 79.26%, and 58.41% improvement in the voltage stability index. Moreover, IEPSO has the fastest computational time for all load conditions as compared to other algorithms.
Network capacity auctions: promise and problems
International Nuclear Information System (INIS)
Newbery, David M.
2003-01-01
Well-designed auctions work favorably for allocating idiosyncratic properties efficiently. Auctions are used to allocate entry capacity for United Kingdom gas and inter-connector capacity for electricity in several European Union countries and can work well for allocating existing capacity, though careful auction design is needed to mitigate potential market power. Using auction prices to guide investment decisions in networks is problematic if bidders fear that sub-optimal investment will be compensated by regulatory fiat, lowering future capacity values. (Author)
Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.
Sohn, Insoo; Liu, Huaping; Ansari, Nirwan
2015-01-01
An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction.
Algorithms for Scheduling and Network Problems
1991-09-01
time. We already know, by Lemma 2.2.1, that WOPT = O(log( mpU )), so if we could solve this integer program optimally we would be done. However, the...Folydirat, 15:177-191, 1982. [6] I.S. Belov and Ya. N. Stolin. An algorithm in a single path operations scheduling problem. In Mathematical Economics and
A Global Network Alignment Method Using Discrete Particle Swarm Optimization.
Huang, Jiaxiang; Gong, Maoguo; Ma, Lijia
2016-10-19
Molecular interactions data increase exponentially with the advance of biotechnology. This makes it possible and necessary to comparatively analyse the different data at a network level. Global network alignment is an important network comparison approach to identify conserved subnetworks and get insight into evolutionary relationship across species. Network alignment which is analogous to subgraph isomorphism is known to be an NP-hard problem. In this paper, we introduce a novel heuristic Particle-Swarm-Optimization based Network Aligner (PSONA), which optimizes a weighted global alignment model considering both protein sequence similarity and interaction conservations. The particle statuses and status updating rules are redefined in a discrete form by using permutation. A seed-and-extend strategy is employed to guide the searching for the superior alignment. The proposed initialization method "seeds" matches with high sequence similarity into the alignment, which guarantees the functional coherence of the mapping nodes. A greedy local search method is designed as the "extension" procedure to iteratively optimize the edge conservations. PSONA is compared with several state-of-art methods on ten network pairs combined by five species. The experimental results demonstrate that the proposed aligner can map the proteins with high functional coherence and can be used as a booster to effectively refine the well-studied aligners.
Optimal Formation of Multirobot Systems Based on a Recurrent Neural Network.
Wang, Yunpeng; Cheng, Long; Hou, Zeng-Guang; Yu, Junzhi; Tan, Min
2016-02-01
The optimal formation problem of multirobot systems is solved by a recurrent neural network in this paper. The desired formation is described by the shape theory. This theory can generate a set of feasible formations that share the same relative relation among robots. An optimal formation means that finding one formation from the feasible formation set, which has the minimum distance to the initial formation of the multirobot system. Then, the formation problem is transformed into an optimization problem. In addition, the orientation, scale, and admissible range of the formation can also be considered as the constraints in the optimization problem. Furthermore, if all robots are identical, their positions in the system are exchangeable. Then, each robot does not necessarily move to one specific position in the formation. In this case, the optimal formation problem becomes a combinational optimization problem, whose optimal solution is very hard to obtain. Inspired by the penalty method, this combinational optimization problem can be approximately transformed into a convex optimization problem. Due to the involvement of the Euclidean norm in the distance, the objective function of these optimization problems are nonsmooth. To solve these nonsmooth optimization problems efficiently, a recurrent neural network approach is employed, owing to its parallel computation ability. Finally, some simulations and experiments are given to validate the effectiveness and efficiency of the proposed optimal formation approach.
On Optimal Policies for Network-Coded Cooperation
DEFF Research Database (Denmark)
Khamfroush, Hana; Roetter, Daniel Enrique Lucani; Pahlevani, Peyman
2015-01-01
Network-coded cooperative communication (NC-CC) has been proposed and evaluated as a powerful technology that can provide a better quality of service in the next-generation wireless systems, e.g., D2D communications. Previous contributions have focused on performance evaluation of NC-CC scenarios...... rather than searching for optimal policies that can minimize the total cost of reliable packet transmission. We break from this trend by initially analyzing the optimal design of NC-CC for a wireless network with one source, two receivers, and half-duplex erasure channels. The problem is modeled...... as a special case of Markov decision process (MDP), which is called stochastic shortest path (SSP), and is solved for any field size, arbitrary number of packets, and arbitrary erasure probabilities of the channels. The proposed MDP solution results in an optimal transmission policy per time slot, and we use...
Firefly Mating Algorithm for Continuous Optimization Problems
Directory of Open Access Journals (Sweden)
Amarita Ritthipakdee
2017-01-01
Full Text Available This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA, for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i the mutual attraction between males and females causes them to mate and (ii fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.
Song, Chen; Zhong-Cheng, Wu; Hong, Lv
2018-03-01
Building Energy forecasting plays an important role in energy management and plan. Using mind evolutionary algorithm to find the optimal network weights and threshold, to optimize the BP neural network, can overcome the problem of the BP neural network into a local minimum point. The optimized network is used for time series prediction, and the same month forecast, to get two predictive values. Then two kinds of predictive values are put into neural network, to get the final forecast value. The effectiveness of the method was verified by experiment with the energy value of three buildings in Hefei.
Speed Optimization in Liner Shipping Network Design
DEFF Research Database (Denmark)
Brouer, Berit Dangaard; Karsten, Christian Vad; Pisinger, David
In the Liner Shipping Network Design Problem (LSNDP) services sail at a given speed throughout a round trip. In reality most services operate with a speed differentiated head- and back-haul, or even individual speeds on every sailing between two ports. The speed of a service is decisive...
Using neural networks to speed up optimization algorithms
Bazan, M
2000-01-01
The paper presents the application of radial-basis-function (RBF) neural networks to speed up deterministic search algorithms used for the design and optimization of superconducting LHC magnets. The optimization of the iron yoke of the main dipoles requires a number of numerical field computations per trial solution as the field quality depends on the excitation of the magnets. This results in computation times of about 30 minutes for each objective function evaluation (on a DEC-Alpha 600/333) and only the most robust (deterministic) optimization algorithms can be applied. Using a RBF function approximator, the achieved speed-up of the search algorithm is in the order of 25% for problems with two parameters and about 18% for problems with three and five design variables. (13 refs).
Optimal management with hybrid dynamics : The shallow lake problem
Reddy, P.V.; Schumacher, Hans; Engwerda, Jacob; Camlibel, M.K.; Julius, A.A.; Pasumarthy, R.
2015-01-01
In this article we analyze an optimal management problem that arises in ecological economics using hybrid systems modeling. First, we introduce a discounted autonomous infinite horizon hybrid optimal control problem and develop few tools to analyze the necessary conditions for optimality. Next,
On a Highly Nonlinear Self-Obstacle Optimal Control Problem
Energy Technology Data Exchange (ETDEWEB)
Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)
2015-10-15
We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.
A note on the depth function of combinatorial optimization problems
Woeginger, G.J.
2001-01-01
In a recent paper [Discrete Appl. Math. 43 (1993) 115–129], Kern formulates two conjectures on the relationship between the computational complexity of computing the depth function of a discrete optimization problem and the computational complexity of solving this optimization problem to optimality.
Optimal experiment design in a filtering context with application to sampled network data
Singhal, Harsh; Michailidis, George
2010-01-01
We examine the problem of optimal design in the context of filtering multiple random walks. Specifically, we define the steady state E-optimal design criterion and show that the underlying optimization problem leads to a second order cone program. The developed methodology is applied to tracking network flow volumes using sampled data, where the design variable corresponds to controlling the sampling rate. The optimal design is numerically compared to a myopic and a naive strategy. Finally, w...
Optimizing bulk data transfers using network measurements: A practical case
International Nuclear Information System (INIS)
Ciuffoletti, A; Merola, L; Palmieri, F; Russo, G; Pardi, S
2010-01-01
In modern Data Grid infrastructures, we increasingly face the problem of providing the running applications with fast and reliable access to large data volumes, often geographically distributed across the network. As a direct consequence, the concept of replication has been adopted by the grid community to increase data availability and maximize job throughput. To be really effective, such process has to be driven by specific optimization strategies that define when and where replicas should be created or deleted on a per-site basis, and which replicas a job should use. These strategies have to take into account the available network bandwidth as a primary resource, prior to any consideration about storage or processing power. We present a novel replica management service, integrated within the Gluedomains active network monitoring architecture, designed and implemented within the centralized collective middleware framework of the SCoPE project to provide network-aware transfer services for data intensive Grid applications.
Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems
Patan, Maciej
2012-01-01
Sensor networks have recently come into prominence because they hold the potential to revolutionize a wide spectrum of both civilian and military applications. An ingenious characteristic of sensor networks is the distributed nature of data acquisition. Therefore they seem to be ideally prepared for the task of monitoring processes with spatio-temporal dynamics which constitute one of most general and important classes of systems in modelling of the real-world phenomena. It is clear that careful deployment and activation of sensor nodes are critical for collecting the most valuable information from the observed environment. Optimal Sensor Network Scheduling in Identification of Distributed Parameter Systems discusses the characteristic features of the sensor scheduling problem, analyzes classical and recent approaches, and proposes a wide range of original solutions, especially dedicated for networks with mobile and scanning nodes. Both researchers and practitioners will find the case studies, the proposed al...
Augmented neural networks and problem structure-based heuristics for the bin-packing problem
Kasap, Nihat; Agarwal, Anurag
2012-08-01
In this article, we report on a research project where we applied augmented-neural-networks (AugNNs) approach for solving the classical bin-packing problem (BPP). AugNN is a metaheuristic that combines a priority rule heuristic with the iterative search approach of neural networks to generate good solutions fast. This is the first time this approach has been applied to the BPP. We also propose a decomposition approach for solving harder BPP, in which subproblems are solved using a combination of AugNN approach and heuristics that exploit the problem structure. We discuss the characteristics of problems on which such problem structure-based heuristics could be applied. We empirically show the effectiveness of the AugNN and the decomposition approach on many benchmark problems in the literature. For the 1210 benchmark problems tested, 917 problems were solved to optimality and the average gap between the obtained solution and the upper bound for all the problems was reduced to under 0.66% and computation time averaged below 33 s per problem. We also discuss the computational complexity of our approach.
Optimization of the Critical Diameter and Average Path Length of Social Networks
Directory of Open Access Journals (Sweden)
Haifeng Du
2017-01-01
Full Text Available Optimizing average path length (APL by adding shortcut edges has been widely discussed in connection with social networks, but the relationship between network diameter and APL is generally ignored in the dynamic optimization of APL. In this paper, we analyze this relationship and transform the problem of optimizing APL into the problem of decreasing diameter to 2. We propose a mathematic model based on a memetic algorithm. Experimental results show that our algorithm can efficiently solve this problem as well as optimize APL.
Modeling and optimization of cloud-ready and content-oriented networks
Walkowiak, Krzysztof
2016-01-01
This book focuses on modeling and optimization of cloud-ready and content-oriented networks in the context of different layers and accounts for specific constraints following from protocols and technologies used in a particular layer. It addresses a wide range of additional constraints important in contemporary networks, including various types of network flows, survivability issues, multi-layer networking, and resource location. The book presents recent existing and new results in a comprehensive and cohesive way. The contents of the book are organized in five chapters, which are mostly self-contained. Chapter 1 briefly presents information on cloud computing and content-oriented services, and introduces basic notions and concepts of network modeling and optimization. Chapter 2 covers various optimization problems that arise in the context of connection-oriented networks. Chapter 3 focuses on modeling and optimization of Elastic Optical Networks. Chapter 4 is devoted to overlay networks. The book concludes w...
A simulated annealing approach for redesigning a warehouse network problem
Khairuddin, Rozieana; Marlizawati Zainuddin, Zaitul; Jiun, Gan Jia
2017-09-01
Now a day, several companies consider downsizing their distribution networks in ways that involve consolidation or phase-out of some of their current warehousing facilities due to the increasing competition, mounting cost pressure and taking advantage on the economies of scale. Consequently, the changes on economic situation after a certain period of time require an adjustment on the network model in order to get the optimal cost under the current economic conditions. This paper aimed to develop a mixed-integer linear programming model for a two-echelon warehouse network redesign problem with capacitated plant and uncapacitated warehouses. The main contribution of this study is considering capacity constraint for existing warehouses. A Simulated Annealing algorithm is proposed to tackle with the proposed model. The numerical solution showed the model and method of solution proposed was practical.
Directory of Open Access Journals (Sweden)
Haibo Zhang
2016-08-01
Full Text Available The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN with optimized parameters by the Improved Niche Genetic Algorithm (INGA. The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN, Genetic Algorithm-Back Propagation Neural Network (GA-BPNN and WNN.
Genetic optimization of neural network architecture
International Nuclear Information System (INIS)
Harp, S.A.; Samad, T.
1994-03-01
Neural networks are now a popular technology for a broad variety of application domains, including the electric utility industry. Yet, as the technology continues to gain increasing acceptance, it is also increasingly apparent that the power that neural networks provide is not an unconditional blessing. Considerable care must be exercised during application development if the full benefit of the technology is to be realized. At present, no fully general theory or methodology for neural network design is available, and application development is a trial-and-error process that is time-consuming and expertise-intensive. Each application demands appropriate selections of the network input space, the network structure, and values of learning algorithm parameters-design choices that are closely coupled in ways that largely remain a mystery. This EPRI-funded exploratory research project was initiated to take the key next step in this research program: the validation of the approach on a realistic problem. We focused on the problem of modeling the thermal performance of the TVA Sequoyah nuclear power plant (units 1 and 2)
A one-layer recurrent neural network for constrained nonsmooth optimization.
Liu, Qingshan; Wang, Jun
2011-10-01
This paper presents a novel one-layer recurrent neural network modeled by means of a differential inclusion for solving nonsmooth optimization problems, in which the number of neurons in the proposed neural network is the same as the number of decision variables of optimization problems. Compared with existing neural networks for nonsmooth optimization problems, the global convexity condition on the objective functions and constraints is relaxed, which allows the objective functions and constraints to be nonconvex. It is proven that the state variables of the proposed neural network are convergent to optimal solutions if a single design parameter in the model is larger than a derived lower bound. Numerical examples with simulation results substantiate the effectiveness and illustrate the characteristics of the proposed neural network.
Optimized Charging Scheduling with Single Mobile Charger for Wireless Rechargeable Sensor Networks
Directory of Open Access Journals (Sweden)
Qihua Wang
2017-11-01
Full Text Available Due to the rapid development of wireless charging technology, the recharging issue in wireless rechargeable sensor network (WRSN has been a popular research problem in the past few years. The weakness of previous work is that charging route planning is not reasonable. In this work, a dynamic optimal scheduling scheme aiming to maximize the vacation time ratio of a single mobile changer for WRSN is proposed. In the proposed scheme, the wireless sensor network is divided into several sub-networks according to the initial topology of deployed sensor networks. After comprehensive analysis of energy states, working state and constraints for different sensor nodes in WRSN, we transform the optimized charging path problem of the whole network into the local optimization problem of the sub networks. The optimized charging path with respect to dynamic network topology in each sub-network is obtained by solving an optimization problem, and the lifetime of the deployed wireless sensor network can be prolonged. Simulation results show that the proposed scheme has good and reliable performance for a small wireless rechargeable sensor network.
Enhanced ant colony optimization for inventory routing problem
Wong, Lily; Moin, Noor Hasnah
2015-10-01
The inventory routing problem (IRP) integrates and coordinates two important components of supply chain management which are transportation and inventory management. We consider a one-to-many IRP network for a finite planning horizon. The demand for each product is deterministic and time varying as well as a fleet of capacitated homogeneous vehicles, housed at a depot/warehouse, delivers the products from the warehouse to meet the demand specified by the customers in each period. The inventory holding cost is product specific and is incurred at the customer sites. The objective is to determine the amount of inventory and to construct a delivery routing that minimizes both the total transportation and inventory holding cost while ensuring each customer's demand is met over the planning horizon. The problem is formulated as a mixed integer programming problem and is solved using CPLEX 12.4 to get the lower and upper bound (best integer) for each instance considered. We propose an enhanced ant colony optimization (ACO) to solve the problem and the built route is improved by using local search. The computational experiments demonstrating the effectiveness of our approach is presented.
Modeling and optimization of an electric power distribution network ...
African Journals Online (AJOL)
Modeling and optimization of an electric power distribution network planning system using ... of the network was modelled with non-linear mathematical expressions. ... given feasible locations, re-conductoring of existing feeders in the network, ...
Replica analysis for the duality of the portfolio optimization problem.
Shinzato, Takashi
2016-11-01
In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.
Replica analysis for the duality of the portfolio optimization problem
Shinzato, Takashi
2016-11-01
In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.
Toward solving the sign problem with path optimization method
Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira
2017-12-01
We propose a new approach to circumvent the sign problem in which the integration path is optimized to control the sign problem. We give a trial function specifying the integration path in the complex plane and tune it to optimize the cost function which represents the seriousness of the sign problem. We call it the path optimization method. In this method, we do not need to solve the gradient flow required in the Lefschetz-thimble method and then the construction of the integration-path contour arrives at the optimization problem where several efficient methods can be applied. In a simple model with a serious sign problem, the path optimization method is demonstrated to work well; the residual sign problem is resolved and precise results can be obtained even in the region where the global sign problem is serious.
An optimal design problem in wave propagation
DEFF Research Database (Denmark)
Bellido, J.C.; Donoso, Alberto
2007-01-01
of finding the best distributions of the two initial materials in a rod in order to minimize the vibration energy in the structure under periodic loading of driving frequency Omega. We comment on relaxation and optimality conditions, and perform numerical simulations of the optimal configurations. We prove...... also the existence of classical solutions in certain cases....
Identification and optimization problems in plasma physics
International Nuclear Information System (INIS)
Gilbert, J.C.
1986-06-01
Parameter identification of the current in a tokamak plasma is studied. Plasma equilibrium in a vacuum container with a diaphragm is analyzed. A variable metric method with reduced optimization with nonlinear equality constraints; and a quasi-Newton reduced optimization method with constraints giving priority to restoration are presented [fr
Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem
Rahmalia, Dinita
2017-08-01
Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.
Near-Optimal Resource Allocation in Cooperative Cellular Networks Using Genetic Algorithms
Luo, Zihan; Armour, Simon; McGeehan, Joe
2015-01-01
This paper shows how a genetic algorithm can be used as a method of obtaining the near-optimal solution of the resource block scheduling problem in a cooperative cellular network. An exhaustive search is initially implementedto guarantee that the optimal result, in terms of maximizing the bandwidth efficiency of the overall network, is found, and then the genetic algorithm with the properly selected termination conditions is used in the same network. The simulation results show that the genet...
Optimal solutions for routing problems with profits
Archetti, C.; Bianchessi, N.; Speranza, M. G.
2013-01-01
In this paper, we present a branch-and-price algorithm to solve two well-known vehicle routing problems with profits, the Capacitated Team Orienteering Problem and the Capacitated Profitable Tour Problem. A restricted master heuristic is applied at each node of the branch-and-bound tree in order to
ISOGEOMETRIC SHAPE OPTIMIZATION FOR ELECTROMAGNETIC SCATTERING PROBLEMS
DEFF Research Database (Denmark)
Nguyen, D. M.; Evgrafov, Anton; Gravesen, Jens
2012-01-01
We consider the benchmark problem of magnetic energy density enhancement in a small spatial region by varying the shape of two symmetric conducting scatterers. We view this problem as a prototype for a wide variety of geometric design problems in electromagnetic applications. Our approach...
A Multiobjective Optimization Model in Automotive Supply Chain Networks
Directory of Open Access Journals (Sweden)
Abdolhossein Sadrnia
2013-01-01
Full Text Available In the new decade, green investment decisions are attracting more interest in design supply chains due to the hidden economic benefits and environmental legislative barriers. In this paper, a supply chain network design problem with both economic and environmental concerns is presented. Therefore, a multiobjective optimization model that captures the trade-off between the total logistics cost and CO2 emissions is proposed. With regard to the complexity of logistic networks, a new multiobjective swarm intelligence algorithm known as a multiobjective Gravitational search algorithm (MOGSA has been implemented for solving the proposed mathematical model. To evaluate the effectiveness of the model, a comprehensive set of numerical experiments is explained. The results obtained show that the proposed model can be applied as an effective tool in strategic planning for optimizing cost and CO2 emissions in an environmentally friendly automotive supply chain.
Trajectory Based Optimal Segment Computation in Road Network Databases
DEFF Research Database (Denmark)
Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.
2013-01-01
Finding a location for a new facility such that the facility attracts the maximal number of customers is a challenging problem. Existing studies either model customers as static sites and thus do not consider customer movement, or they focus on theoretical aspects and do not provide solutions...... that are shown empirically to be scalable. Given a road network, a set of existing facilities, and a collection of customer route traversals, an optimal segment query returns the optimal road network segment(s) for a new facility. We propose a practical framework for computing this query, where each route...... traversal is assigned a score that is distributed among the road segments covered by the route according to a score distribution model. The query returns the road segment(s) with the highest score. To achieve low latency, it is essential to prune the very large search space. We propose two algorithms...
Trajectory Based Optimal Segment Computation in Road Network Databases
DEFF Research Database (Denmark)
Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.
Finding a location for a new facility such that the facility attracts the maximal number of customers is a challenging problem. Existing studies either model customers as static sites and thus do not consider customer movement, or they focus on theoretical aspects and do not provide solutions...... that are shown empirically to be scalable. Given a road network, a set of existing facilities, and a collection of customer route traversals, an optimal segment query returns the optimal road network segment(s) for a new facility. We propose a practical framework for computing this query, where each route...... traversal is assigned a score that is distributed among the road segments covered by the route according to a score distribution model. The query returns the road segment(s) with the highest score. To achieve low latency, it is essential to prune the very large search space. We propose two algorithms...
Optimization of operation cycles in BWRs using neural networks
International Nuclear Information System (INIS)
Ortiz S, J. J.; Castillo, A.; Alejandro P, D.
2011-11-01
The first results of a system for the optimization of operation cycles in boiling water reactors by means of a multi state recurrent neural network are present in this work. The neural network finds the best combination of fuel cells; fuel reloads and control bars patterns previously designed, according to an energy function that qualifies the performance of the three partial solutions for the solution of the whole problem. The partial solutions are designed by means of optimization systems non couple among them and that can use any optimization technique. The phase of the fuel axial design is not made and the size of the axial areas is fixed during the optimization process. The methodology was applied to design a balance cycle of 18 months for the reactors of the nuclear power station of Laguna Verde. The results show that is possible to find combinations of partial solutions that in set represent good solutions to the complete design problem of an operation cycle of a nuclear reactor. The results are compared with others obtained previously by other techniques. This system was developed in platform Li nux and programmed in Fortran 95 taking advantage of the 8 nuclei of a work station Dell Precision T7400. (Author)
Improved Artificial Fish Algorithm for Parameters Optimization of PID Neural Network
Jing Wang; Yourui Huang
2013-01-01
In order to solve problems such as initial weights are difficult to be determined, training results are easy to trap in local minima in optimization process of PID neural network parameters by traditional BP algorithm, this paper proposed a new method based on improved artificial fish algorithm for parameters optimization of PID neural network. This improved artificial fish algorithm uses a composite adaptive artificial fish algorithm based on optimal artificial fish and nearest artificial fi...
Advances in bio-inspired computing for combinatorial optimization problems
Pintea, Camelia-Mihaela
2013-01-01
Advances in Bio-inspired Combinatorial Optimization Problems' illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems.Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed.Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive a
A Linearized Relaxing Algorithm for the Specific Nonlinear Optimization Problem
Directory of Open Access Journals (Sweden)
Mio Horai
2016-01-01
Full Text Available We propose a new method for the specific nonlinear and nonconvex global optimization problem by using a linear relaxation technique. To simplify the specific nonlinear and nonconvex optimization problem, we transform the problem to the lower linear relaxation form, and we solve the linear relaxation optimization problem by the Branch and Bound Algorithm. Under some reasonable assumptions, the global convergence of the algorithm is certified for the problem. Numerical results show that this method is more efficient than the previous methods.
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182
Energy network dispatch optimization under emergency of local energy shortage
International Nuclear Information System (INIS)
Cai, Tianxing; Zhao, Chuanyu; Xu, Qiang
2012-01-01
The consequence of short-time energy shortage under extreme conditions, such as earthquake, tsunami, and hurricane, may cause local areas to suffer from delayed rescues, widespread power outages, tremendous economic losses, and even public safety threats. In such urgent events of local energy shortage, agile energy dispatching through an effective energy transportation network, targeting the minimum energy recovery time, should be a top priority. In this paper, a novel methodology is developed for energy network dispatch optimization under emergency of local energy shortage, which includes four stages of work. First, emergency-area-centered energy network needs to be characterized, where the capacity, quantity, and availability of various energy sources are determined. Second, the energy initial situation under emergency conditions needs to be identified. Then, the energy dispatch optimization is conducted based on a developed MILP (mixed-integer linear programming) model in the third stage. Finally, the sensitivity of the minimum dispatch time with respect to uncertainty parameters is characterized by partitioning the entire space of uncertainty parameters into multiple subspaces. The efficacy of the developed methodology is demonstrated via a case study with in-depth discussions. -- Highlights: ► Address the energy network dispatch problem under emergency of local energy shortage. ► Minimize the energy restoration time for the entire energy network under emergency events. ► Develop a new MILP model and a sensitivity analysis method with respect to uncertainties.
A recurrent neural network for solving bilevel linear programming problem.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian
2014-04-01
In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.
A Linear Programming Reformulation of the Standard Quadratic Optimization Problem
de Klerk, E.; Pasechnik, D.V.
2005-01-01
The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO).It is NPhard, and contains the maximum stable set problem in graphs as a special case.In this note we show that the SQO problem may be reformulated as an (exponentially
Loop optimization for tensor network renormalization
Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang
We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.
Towards Optimal Event Detection and Localization in Acyclic Flow Networks
Agumbe Suresh, Mahima
2012-01-03
Acyclic flow networks, present in many infrastructures of national importance (e.g., oil & gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against these infrastructures, have been proven costly and imprecise, especially when dealing with large scale distribution systems. In this paper, to the best of our knowledge for the first time, we investigate how mobile sensor networks can be used for optimal event detection and localization in acyclic flow networks. Sensor nodes move along the edges of the network and detect events (i.e., attacks) and proximity to beacon nodes with known placement in the network. We formulate the problem of minimizing the cost of monitoring infrastructure (i.e., minimizing the number of sensor and beacon nodes deployed), while ensuring a degree of sensing coverage in a zone of interest and a required accuracy in locating events. We propose algorithms for solving these problems and demonstrate their effectiveness with results obtained from a high fidelity simulator.
Optimizing Cooperative Cognitive Radio Networks with Opportunistic Access
Zafar, Ammar; Alouini, Mohamed-Slim; Chen, Yunfei; Radaydeh, Redha M.
2012-01-01
Optimal resource allocation for cooperative cognitive radio networks with opportunistic access to the licensed spectrum is studied. Resource allocation is based on minimizing the symbol error rate at the receiver. Both the cases of all-participate relaying and selective relaying are considered. The objective function is derived and the constraints are detailed for both scenarios. It is then shown that the objective functions and the constraints are nonlinear and nonconvex functions of the parameters of interest, that is, source and relay powers, symbol time, and sensing time. Therefore, it is difficult to obtain closed-form solutions for the optimal resource allocation. The optimization problem is then solved using numerical techniques. Numerical results show that the all-participate system provides better performance than its selection counterpart, at the cost of greater resources. © 2012 Ammar Zafar et al.
Optimizing Cooperative Cognitive Radio Networks with Opportunistic Access
Zafar, Ammar
2012-09-16
Optimal resource allocation for cooperative cognitive radio networks with opportunistic access to the licensed spectrum is studied. Resource allocation is based on minimizing the symbol error rate at the receiver. Both the cases of all-participate relaying and selective relaying are considered. The objective function is derived and the constraints are detailed for both scenarios. It is then shown that the objective functions and the constraints are nonlinear and nonconvex functions of the parameters of interest, that is, source and relay powers, symbol time, and sensing time. Therefore, it is difficult to obtain closed-form solutions for the optimal resource allocation. The optimization problem is then solved using numerical techniques. Numerical results show that the all-participate system provides better performance than its selection counterpart, at the cost of greater resources. © 2012 Ammar Zafar et al.
Frequency response as a surrogate eigenvalue problem in topology optimization
DEFF Research Database (Denmark)
Andreassen, Erik; Ferrari, Federico; Sigmund, Ole
2018-01-01
This article discusses the use of frequency response surrogates for eigenvalue optimization problems in topology optimization that may be used to avoid solving the eigenvalue problem. The motivation is to avoid complications that arise from multiple eigenvalues and the computational complexity as...
Ant Colony Optimization and the Minimum Cut Problem
DEFF Research Database (Denmark)
Kötzing, Timo; Lehre, Per Kristian; Neumann, Frank
2010-01-01
Ant Colony Optimization (ACO) is a powerful metaheuristic for solving combinatorial optimization problems. With this paper we contribute to the theoretical understanding of this kind of algorithm by investigating the classical minimum cut problem. An ACO algorithm similar to the one that was prov...
Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem
Chen, Wei
2015-07-01
In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.
Sufficient conditions for Lagrange, Mayer, and Bolza optimization problems
Directory of Open Access Journals (Sweden)
Boltyanski V.
2001-01-01
Full Text Available The Maximum Principle [2,13] is a well known necessary condition for optimality. This condition, generally, is not sufficient. In [3], the author proved that if there exists regular synthesis of trajectories, the Maximum Principle also is a sufficient condition for time-optimality. In this article, we generalize this result for Lagrange, Mayer, and Bolza optimization problems.
Optimal Control Problems for Nonlinear Variational Evolution Inequalities
Directory of Open Access Journals (Sweden)
Eun-Young Ju
2013-01-01
Full Text Available We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux differentiability of solution mapping on control variables.
Mathematical programming methods for large-scale topology optimization problems
DEFF Research Database (Denmark)
Rojas Labanda, Susana
for mechanical problems, but has rapidly extended to many other disciplines, such as fluid dynamics and biomechanical problems. However, the novelty and improvements of optimization methods has been very limited. It is, indeed, necessary to develop of new optimization methods to improve the final designs......, and at the same time, reduce the number of function evaluations. Nonlinear optimization methods, such as sequential quadratic programming and interior point solvers, have almost not been embraced by the topology optimization community. Thus, this work is focused on the introduction of this kind of second...... for the classical minimum compliance problem. Two of the state-of-the-art optimization algorithms are investigated and implemented for this structural topology optimization problem. A Sequential Quadratic Programming (TopSQP) and an interior point method (TopIP) are developed exploiting the specific mathematical...
Hierarchical Winner-Take-All Particle Swarm Optimization Social Network for Neural Model Fitting
Coventry, Brandon S.; Parthasarathy, Aravindakshan; Sommer, Alexandra L.; Bartlett, Edward L.
2016-01-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models. PMID:27726048
DRO: domain-based route optimization scheme for nested mobile networks
Directory of Open Access Journals (Sweden)
Chuang Ming-Chin
2011-01-01
Full Text Available Abstract The network mobility (NEMO basic support protocol is designed to support NEMO management, and to ensure communication continuity between nodes in mobile networks. However, in nested mobile networks, NEMO suffers from the pinball routing problem, which results in long packet transmission delays. To solve the problem, we propose a domain-based route optimization (DRO scheme that incorporates a domain-based network architecture and ad hoc routing protocols for route optimization. DRO also improves the intra-domain handoff performance, reduces the convergence time during route optimization, and avoids the out-of-sequence packet problem. A detailed performance analysis and simulations were conducted to evaluate the scheme. The results demonstrate that DRO outperforms existing mechanisms in terms of packet transmission delay (i.e., better route-optimization, intra-domain handoff latency, convergence time, and packet tunneling overhead.
A one-layer recurrent neural network for constrained nonconvex optimization.
Li, Guocheng; Yan, Zheng; Wang, Jun
2015-01-01
In this paper, a one-layer recurrent neural network is proposed for solving nonconvex optimization problems subject to general inequality constraints, designed based on an exact penalty function method. It is proved herein that any neuron state of the proposed neural network is convergent to the feasible region in finite time and stays there thereafter, provided that the penalty parameter is sufficiently large. The lower bounds of the penalty parameter and convergence time are also estimated. In addition, any neural state of the proposed neural network is convergent to its equilibrium point set which satisfies the Karush-Kuhn-Tucker conditions of the optimization problem. Moreover, the equilibrium point set is equivalent to the optimal solution to the nonconvex optimization problem if the objective function and constraints satisfy given conditions. Four numerical examples are provided to illustrate the performances of the proposed neural network.
Hierarchical winner-take-all particle swarm optimization social network for neural model fitting.
Coventry, Brandon S; Parthasarathy, Aravindakshan; Sommer, Alexandra L; Bartlett, Edward L
2017-02-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models.
International Nuclear Information System (INIS)
Guo, Chunxiang; Liu, Xiaoli; Jin, Maozhu; Lv, Zhihan
2016-01-01
Considering the uncertainty of the macroeconomic environment, the robust optimization method is studied for constructing and designing the automotive supply chain network, and based on the definition of robust solution a robust optimization model is built for integrated supply chain network design that consists of supplier selection problem and facility location–distribution problem. The tabu search algorithm is proposed for supply chain node configuration, analyzing the influence of the level of uncertainty on robust results, and by comparing the performance of supply chain network design through the stochastic programming model and robustness optimize model, on this basis, determining the rational layout of supply chain network under macroeconomic fluctuations. At last the contrastive test result validates that the performance of tabu search algorithm is outstanding on convergence and computational time. Meanwhile it is indicated that the robust optimization model can reduce investment risks effectively when it is applied to supply chain network design.
Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization
Directory of Open Access Journals (Sweden)
Lianbo Ma
2014-01-01
Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.
Hierarchical artificial bee colony algorithm for RFID network planning optimization.
Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong
2014-01-01
This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.
Xie, Rui; Wan, Xianrong; Hong, Sheng; Yi, Jianxin
2017-06-14
The performance of a passive radar network can be greatly improved by an optimal radar network structure. Generally, radar network structure optimization consists of two aspects, namely the placement of receivers in suitable places and selection of appropriate illuminators. The present study investigates issues concerning the joint optimization of receiver placement and illuminator selection for a passive radar network. Firstly, the required radar cross section (RCS) for target detection is chosen as the performance metric, and the joint optimization model boils down to the partition p -center problem (PPCP). The PPCP is then solved by a proposed bisection algorithm. The key of the bisection algorithm lies in solving the partition set covering problem (PSCP), which can be solved by a hybrid algorithm developed by coupling the convex optimization with the greedy dropping algorithm. In the end, the performance of the proposed algorithm is validated via numerical simulations.
3D Topology optimization of Stokes flow problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan; Dammann, Bernd
of energy efficient devices for 2D Stokes flow. Creeping flow problems are described by the Stokes equations which model very viscous fluids at macro scales or ordinary fluids at very small scales. The latter gives the motivation for topology optimization problems based on the Stokes equations being a model......The present talk is concerned with the application of topology optimization to creeping flow problems in 3D. This research is driven by the fact that topology optimization has proven very successful as a tool in academic and industrial design problems. Success stories are reported from such diverse...
Applications of functional analysis to optimal control problems
International Nuclear Information System (INIS)
Mizukami, K.
1976-01-01
Some basic concepts in functional analysis, a general norm, the Hoelder inequality, functionals and the Hahn-Banach theorem are described; a mathematical formulation of two optimal control problems is introduced by the method of functional analysis. The problem of time-optimal control systems with both norm constraints on control inputs and on state variables at discrete intermediate times is formulated as an L-problem in the theory of moments. The simplex method is used for solving a non-linear minimizing problem inherent in the functional analysis solution to this problem. Numerical results are presented for a train operation. The second problem is that of optimal control of discrete linear systems with quadratic cost functionals. The problem is concerned with the case of unconstrained control and fixed endpoints. This problem is formulated in terms of norms of functionals on suitable Banach spaces. (author)
Optimization Problems in Supply Chain Management
D. Romero Morales (Dolores)
2000-01-01
textabstractMaria Dolores Romero Morales was born on Augustus 5th, 1971, in Sevilla (Spain). She studied Mathematics at University of Sevilla from 1989 to 1994 and specialized in Statistics and Operations Research. She wrote her Master's thesis on Global Optimization in Location Theory under the
Optimal File-Distribution in Heterogeneous and Asymmetric Storage Networks
Langner, Tobias; Schindelhauer, Christian; Souza, Alexander
We consider an optimisation problem which is motivated from storage virtualisation in the Internet. While storage networks make use of dedicated hardware to provide homogeneous bandwidth between servers and clients, in the Internet, connections between storage servers and clients are heterogeneous and often asymmetric with respect to upload and download. Thus, for a large file, the question arises how it should be fragmented and distributed among the servers to grant "optimal" access to the contents. We concentrate on the transfer time of a file, which is the time needed for one upload and a sequence of n downloads, using a set of m servers with heterogeneous bandwidths. We assume that fragments of the file can be transferred in parallel to and from multiple servers. This model yields a distribution problem that examines the question of how these fragments should be distributed onto those servers in order to minimise the transfer time. We present an algorithm, called FlowScaling, that finds an optimal solution within running time {O}(m log m). We formulate the distribution problem as a maximum flow problem, which involves a function that states whether a solution with a given transfer time bound exists. This function is then used with a scaling argument to determine an optimal solution within the claimed time complexity.
Brands, Ties; van Berkum, Eric C.
2014-01-01
The optimization of infrastructure planning in a multimodal network is defined as a multi-objective network design problem, with accessibility, use of urban space by parking, operating deficit and climate impact as objectives. Decision variables are the location of park and ride facilities, train
Improved Ant Colony Optimization for Seafood Product Delivery Routing Problem
Directory of Open Access Journals (Sweden)
Baozhen Yao
2014-02-01
Full Text Available This paper deals with a real-life vehicle delivery routing problem, which is a seafood product delivery routing problem. Considering the features of the seafood product delivery routing problem, this paper formulated this problem as a multi-depot open vehicle routing problem. Since the multi-depot open vehicle routing problem is a very complex problem, a method is used to reduce the complexity of the problem by changing the multi-depot open vehicle routing problem into an open vehicle routing problem with a dummy central depot in this paper. Then, ant colony optimization is used to solve the problem. To improve the performance of the algorithm, crossover operation and some adaptive strategies are used. Finally, the computational results for the benchmark problems of the multi-depot vehicle routing problem indicate that the proposed ant colony optimization is an effective method to solve the multi-depot vehicle routing problem. Furthermore, the computation results of the seafood product delivery problem from Dalian, China also suggest that the proposed ant colony optimization is feasible to solve the seafood product delivery routing problem.
Optimal allocation of resources for suppressing epidemic spreading on networks
Chen, Hanshuang; Li, Guofeng; Zhang, Haifeng; Hou, Zhonghuai
2017-07-01
Efficient allocation of limited medical resources is crucial for controlling epidemic spreading on networks. Based on the susceptible-infected-susceptible model, we solve the optimization problem of how best to allocate the limited resources so as to minimize prevalence, providing that the curing rate of each node is positively correlated to its medical resource. By quenched mean-field theory and heterogeneous mean-field (HMF) theory, we prove that an epidemic outbreak will be suppressed to the greatest extent if the curing rate of each node is directly proportional to its degree, under which the effective infection rate λ has a maximal threshold λcopt=1 / , where is the average degree of the underlying network. For a weak infection region (λ ≳λcopt ), we combine perturbation theory with the Lagrange multiplier method (LMM) to derive the analytical expression of optimal allocation of the curing rates and the corresponding minimized prevalence. For a general infection region (λ >λcopt ), the high-dimensional optimization problem is converted into numerically solving low-dimensional nonlinear equations by the HMF theory and LMM. Counterintuitively, in the strong infection region the low-degree nodes should be allocated more medical resources than the high-degree nodes to minimize prevalence. Finally, we use simulated annealing to validate the theoretical results.
Topology optimization of fluid-structure-interaction problems in poroelasticity
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe; Sigmund, Ole
2013-01-01
This paper presents a method for applying topology optimization to fluid-structure interaction problems in saturated poroelastic media. The method relies on a multiple-scale method applied to periodic media. The resulting model couples the Stokes flow in the pores of the structure with the deform...... by topology optimization in order to optimize the performance of a shock absorber and test the pressure loading capabilities and optimization of an internally pressurized lid. © 2013 Published by Elsevier B.V....
Some Optimization Problems for p-Laplacian Type Equations
International Nuclear Information System (INIS)
Del Pezzo, L. M.; Fernandez Bonder, J.
2009-01-01
In this paper we study some optimization problems for nonlinear elastic membranes. More precisely, we consider the problem of optimizing the cost functional over some admissible class of loads f where u is the (unique) solution to the problem -Δ p u+ vertical bar u vertical bar p-2 u=0 in Ω with vertical bar ∇u vertical bar p-2 u ν =f on ∂Ω
A Global Optimization Algorithm for Sum of Linear Ratios Problem
Yuelin Gao; Siqiao Jin
2013-01-01
We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the c...
Xia, Li
2014-11-20
This paper studies the joint optimization problem of energy and delay in a multi-hop wireless network. The optimization variables are the transmission rates, which are adjustable according to the packet queueing length in the buffer. The optimization goal is to minimize the energy consumption of energy-critical nodes and the packet transmission delay throughout the network. In this paper, we aim at understanding the well-known decentralized algorithms which are threshold based from a different research angle. By using a simplified network model, we show that we can adopt the semi-open Jackson network model and study this optimization problem in closed form. This simplified network model further allows us to establish some significant optimality properties. We prove that the system performance is monotonic with respect to (w.r.t.) the transmission rate. We also prove that the threshold-type policy is optimal, i.e., when the number of packets in the buffer is larger than a threshold, transmit with the maximal rate (power); otherwise, no transmission. With these optimality properties, we develop a heuristic algorithm to iteratively find the optimal threshold. Finally, we conduct some simulation experiments to demonstrate the main idea of this paper.
Xia, Li; Shihada, Basem
2014-01-01
This paper studies the joint optimization problem of energy and delay in a multi-hop wireless network. The optimization variables are the transmission rates, which are adjustable according to the packet queueing length in the buffer. The optimization goal is to minimize the energy consumption of energy-critical nodes and the packet transmission delay throughout the network. In this paper, we aim at understanding the well-known decentralized algorithms which are threshold based from a different research angle. By using a simplified network model, we show that we can adopt the semi-open Jackson network model and study this optimization problem in closed form. This simplified network model further allows us to establish some significant optimality properties. We prove that the system performance is monotonic with respect to (w.r.t.) the transmission rate. We also prove that the threshold-type policy is optimal, i.e., when the number of packets in the buffer is larger than a threshold, transmit with the maximal rate (power); otherwise, no transmission. With these optimality properties, we develop a heuristic algorithm to iteratively find the optimal threshold. Finally, we conduct some simulation experiments to demonstrate the main idea of this paper.
Constraint interface preconditioning for topology optimization problems
Czech Academy of Sciences Publication Activity Database
Kočvara, Michal; Loghin, D.; Turner, J.
2016-01-01
Roč. 38, č. 1 (2016), A128-A145 ISSN 1064-8275 R&D Projects: GA AV ČR IAA100750802 Grant - others:European Commission - EC(XE) 313781 Institutional support: RVO:67985556 Keywords : topology optimization * domain decomposition * Newton-Krylov Subject RIV: BA - General Mathematics Impact factor: 2.195, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0460325.pdf
Optimal Brain Surgeon on Artificial Neural Networks in
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye; Job, Jonas Hultmann; Klyver, Katrine
2012-01-01
It is shown how the procedure know as optimal brain surgeon can be used to trim and optimize artificial neural networks in nonlinear structural dynamics. Beside optimizing the neural network, and thereby minimizing computational cost in simulation, the surgery procedure can also serve as a quick...
Optimizing the spatial pattern of networks for monitoring radioactive releases
Melles, S.J.; Heuvelink, G.B.M.; Twenhofel, C.J.W.; Dijk, van A.; Hiemstra, P.H.; Baume, O.P.; Stohlker, U.
2011-01-01
This study presents a method to optimize the sampling design of environmental monitoring networks in a multi-objective setting. We optimize the permanent network of radiation monitoring stations in the Netherlands and parts of Germany as an example. The optimization method proposed combines
Portfolio optimization and the random magnet problem
Rosenow, B.; Plerou, V.; Gopikrishnan, P.; Stanley, H. E.
2002-08-01
Diversification of an investment into independently fluctuating assets reduces its risk. In reality, movements of assets are mutually correlated and therefore knowledge of cross-correlations among asset price movements are of great importance. Our results support the possibility that the problem of finding an investment in stocks which exposes invested funds to a minimum level of risk is analogous to the problem of finding the magnetization of a random magnet. The interactions for this "random magnet problem" are given by the cross-correlation matrix C of stock returns. We find that random matrix theory allows us to make an estimate for C which outperforms the standard estimate in terms of constructing an investment which carries a minimum level of risk.
Route Selection Problem Based on Hopfield Neural Network
Directory of Open Access Journals (Sweden)
N. Kojic
2013-12-01
Full Text Available Transport network is a key factor of economic, social and every other form of development in the region and the state itself. One of the main conditions for transport network development is the construction of new routes. Often, the construction of regional roads is dominant, since the design and construction in urban areas is quite limited. The process of analysis and planning the new roads is a complex process that depends on many factors (the physical characteristics of the terrain, the economic situation, political decisions, environmental impact, etc. and can take several months. These factors directly or indirectly affect the final solution, and in combination with project limitations and requirements, sometimes can be mutually opposed. In this paper, we present one software solution that aims to find Pareto optimal path for preliminary design of the new roadway. The proposed algorithm is based on many different factors (physical and social with the ability of their increase. This solution is implemented using Hopfield's neural network, as a kind of artificial intelligence, which has shown very good results for solving complex optimization problems.
Optimal resource allocation solutions for heterogeneous cognitive radio networks
Directory of Open Access Journals (Sweden)
Babatunde Awoyemi
2017-05-01
Full Text Available Cognitive radio networks (CRN are currently gaining immense recognition as the most-likely next-generation wireless communication paradigm, because of their enticing promise of mitigating the spectrum scarcity and/or underutilisation challenge. Indisputably, for this promise to ever materialise, CRN must of necessity devise appropriate mechanisms to judiciously allocate their rather scarce or limited resources (spectrum and others among their numerous users. ‘Resource allocation (RA in CRN', which essentially describes mechanisms that can effectively and optimally carry out such allocation, so as to achieve the utmost for the network, has therefore recently become an important research focus. However, in most research works on RA in CRN, a highly significant factor that describes a more realistic and practical consideration of CRN has been ignored (or only partially explored, i.e., the aspect of the heterogeneity of CRN. To address this important aspect, in this paper, RA models that incorporate the most essential concepts of heterogeneity, as applicable to CRN, are developed and the imports of such inclusion in the overall networking are investigated. Furthermore, to fully explore the relevance and implications of the various heterogeneous classifications to the RA formulations, weights are attached to the different classes and their effects on the network performance are studied. In solving the developed complex RA problems for heterogeneous CRN, a solution approach that examines and exploits the structure of the problem in achieving a less-complex reformulation, is extensively employed. This approach, as the results presented show, makes it possible to obtain optimal solutions to the rather difficult RA problems of heterogeneous CRN.
Topology optimization problems with design-dependent sets of constraints
DEFF Research Database (Denmark)
Schou, Marie-Louise Højlund
Topology optimization is a design tool which is used in numerous fields. It can be used whenever the design is driven by weight and strength considerations. The basic concept of topology optimization is the interpretation of partial differential equation coefficients as effective material...... properties and designing through changing these coefficients. For example, consider a continuous structure. Then the basic concept is to represent this structure by small pieces of material that are coinciding with the elements of a finite element model of the structure. This thesis treats stress constrained...... structural topology optimization problems. For such problems a stress constraint for an element should only be present in the optimization problem when the structural design variable corresponding to this element has a value greater than zero. We model the stress constrained topology optimization problem...
Optimization of neural network algorithm of the land market description
Directory of Open Access Journals (Sweden)
M. A. Karpovich
2016-01-01
Full Text Available The advantages of neural network technology is shown in comparison of traditional descriptions of dynamically changing systems, which include a modern land market. The basic difficulty arising in the practical implementation of neural network models of the land market and construction products is revealed It is the formation of a representative set of training and test examples. The requirements which are necessary for the correct description of the current economic situation has been determined, it consists in the fact that Train-paid-set in the feature space should not has the ranges with a low density of observations. The methods of optimization of empirical array, which allow to avoid the long-range extrapolation of data from range of concentration of the set of examples are formulated. It is shown that a radical method of optimization a set of training and test examples enclosing to collect supplemantary information, is associated with significant costs time and resources for the economic problems and the ratio of cost / efficiency is less efficient than an algorithm optimization neural network models the earth market fixed set of empirical data. Algorithm of optimization based on the transformation of arrays of information which represents the expansion of the ranges of concentration of the set of examples and compression the ranges of low density of observations is analyzed in details. The significant reduction in the relative error of land price description is demonstrated on the specific example of Voronezh region market of lands which intend for road construction, it makes the using of radical method of empirical optimization of the array costeffective with accounting the significant absolute value of the land. The high economic efficiency of the proposed algorithms is demonstrated.
Optimal Wafer Cutting in Shuttle Layout Problems
DEFF Research Database (Denmark)
Nisted, Lasse; Pisinger, David; Altman, Avri
2011-01-01
. The shuttle layout problem is frequently solved in two phases: first, a floorplan of the shuttle is generated. Then, a cutting plan is found which minimizes the overall number of wafers needed to satisfy the demand of each die type. Since some die types require special production technologies, only compatible...
Constraint Optimization for Highly Constrained Logistic Problems
DEFF Research Database (Denmark)
Mochnacs, Maria Kinga; Tanaka, Meang Akira; Nyborg, Anders
This report investigates whether propagators combined with branch and bound algorithm are suitable for solving the storage area stowage problem within reasonable time. The approach has not been attempted before and experiments show that the implementation was not capable of solving the storage ar...
Information spread in networks: Games, optimal control, and stabilization
Khanafer, Ali
This thesis focuses on designing efficient mechanisms for controlling information spread in networks. We consider two models for information spread. The first one is the well-known distributed averaging dynamics. The second model is a nonlinear one that describes virus spread in computer and biological networks. We seek to design optimal, robust, and stabilizing controllers under practical constraints. For distributed averaging networks, we study the interaction between a network designer and an adversary. We consider two types of attacks on the network. In Attack-I, the adversary strategically disconnects a set of links to prevent the nodes from reaching consensus. Meanwhile, the network designer assists the nodes in reaching consensus by changing the weights of a limited number of links in the network. We formulate two problems to describe this competition where the order in which the players act is reversed in the two problems. Although the canonical equations provided by the Pontryagin's Maximum Principle (MP) seem to be intractable, we provide an alternative characterization for the optimal strategies that makes connection to potential theory. Further, we provide a sufficient condition for the existence of a saddle-point equilibrium (SPE) for the underlying zero-sum game. In Attack-II, the designer and the adversary are both capable of altering the measurements of all nodes in the network by injecting global signals. We impose two constraints on both players: a power constraint and an energy constraint. We assume that the available energy to each player is not sufficient to operate at maximum power throughout the horizon of the game. We show the existence of an SPE and derive the optimal strategies in closed form for this attack scenario. As an alternative to the "network designer vs. adversary" framework, we investigate the possibility of stabilizing unknown network diffusion processes using a distributed mechanism, where the uncertainty is due to an attack
Iterative free-energy optimization for recurrent neural networks (INFERNO)
2017-01-01
The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due to spontaneous activity. As a novel framework based on the free-energy principle, we propose to see the problem of spikes’ synchrony as an optimization problem of the neurons sub-threshold activity for the generation of long neuronal chains. Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic) evaluates the quality of one input vector to move the recurrent neural network to a desired activity; depending on the error made, this input vector is strengthened to hill-climb the gradient or elicited to search for another solution. This vector can be learned then by one associative memory as a model of the basal-ganglia to control the recurrent neural network. Experiments on habit learning and on sequence retrieving demonstrate the capabilities of the dual system to generate very long and precise spatio-temporal sequences, above two hundred iterations. Its features are applied then to the sequential planning of arm movements. In line with neurobiological theories, we discuss its relevance for modeling the cortico-basal working memory to initiate flexible goal-directed neuronal chains of causation and its relation to novel architectures such as Deep Networks, Neural Turing Machines and the Free-Energy Principle. PMID:28282439
Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm
Directory of Open Access Journals (Sweden)
Wenping Zou
2011-01-01
Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.
Optimality conditions for the numerical solution of optimization problems with PDE constraints :
Energy Technology Data Exchange (ETDEWEB)
Aguilo Valentin, Miguel Alejandro; Ridzal, Denis
2014-03-01
A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.
Present-day Problems and Methods of Optimization in Mechatronics
Directory of Open Access Journals (Sweden)
Tarnowski Wojciech
2017-06-01
Full Text Available It is justified that design is an inverse problem, and the optimization is a paradigm. Classes of design problems are proposed and typical obstacles are recognized. Peculiarities of the mechatronic designing are specified as a proof of a particle importance of optimization in the mechatronic design. Two main obstacles of optimization are discussed: a complexity of mathematical models and an uncertainty of the value system, in concrete case. Then a set of non-standard approaches and methods are presented and discussed, illustrated by examples: a fuzzy description, a constraint-based iterative optimization, AHP ranking method and a few MADM functions in Matlab.
Comments on `A discrete optimal control problem for descriptor systems'
DEFF Research Database (Denmark)
Ravn, Hans
1990-01-01
In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates that there ......In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates...
A theory of intelligence: networked problem solving in animal societies
Shour, Robert
2009-01-01
A society's single emergent, increasing intelligence arises partly from the thermodynamic advantages of networking the innate intelligence of different individuals, and partly from the accumulation of solved problems. Economic growth is proportional to the square of the network entropy of a society's population times the network entropy of the number of the society's solved problems.
Topology optimization for acoustic-structure interaction problems
DEFF Research Database (Denmark)
Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole
2006-01-01
We propose a gradient based topology optimization algorithm for acoustic-structure (vibro-acoustic) interaction problems without an explicit interfacing boundary representation. In acoustic-structure interaction problems, the pressure field and the displacement field are governed by the Helmholtz...... to subdomain interfaces evolving during the optimization process. In this paper, we propose to use a mixed finite element formulation with displacements and pressure as primary variables (u/p formulation) which eliminates the need for explicit boundary representation. In order to describe the Helmholtz......-dimensional acoustic-structure interaction problems are optimized to show the validity of the proposed method....
Synchronization-optimized networks for coupled nearly identical ...
Indian Academy of Sciences (India)
From the stability criteria of the MSF, we construct optimal networks ... of intense research in physical, biological, chemical, technological and social sci- ..... In figure 3a, a sample of initial network of 32 coupled nearly identical Rössler oscilla-.
Optimal Power Flow for resistive DC Network : A Port-Hamiltonian approach
Benedito, Ernest; del Puerto-Flores, D.; Doria-Cerezo, A.; Scherpen, Jacquelien M.A.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri
This paper studies the optimal power flow problem for resistive DC networks. The gradient method algorithm is written in a port-Hamiltonian form and the stability of the resulting dynamics is studied. Stability conditions are provided for general cyclic networks and a solution, when these conditions
Parallel Evolutionary Optimization for Neuromorphic Network Training
Energy Technology Data Exchange (ETDEWEB)
Schuman, Catherine D [ORNL; Disney, Adam [University of Tennessee (UT); Singh, Susheela [North Carolina State University (NCSU), Raleigh; Bruer, Grant [University of Tennessee (UT); Mitchell, John Parker [University of Tennessee (UT); Klibisz, Aleksander [University of Tennessee (UT); Plank, James [University of Tennessee (UT)
2016-01-01
One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impact the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.
Comparison of optimal design methods in inverse problems
International Nuclear Information System (INIS)
Banks, H T; Holm, K; Kappel, F
2011-01-01
Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst–Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667–77; De Gaetano A and Arino O 2000 J. Math. Biol. 40 136–68; Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979–90)
Comparison of optimal design methods in inverse problems
Banks, H. T.; Holm, K.; Kappel, F.
2011-07-01
Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667-77 De Gaetano A and Arino O 2000 J. Math. Biol. 40 136-68 Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979-90).
Loss optimization in distribution networks with distributed generation
DEFF Research Database (Denmark)
Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte
2017-01-01
This paper presents a novel power loss minimization approach in distribution grids considering network reconfiguration, distributed generation and storage installation. Identification of optimum configuration in such scenario is one of the main challenges faced by distribution system operators...... in highly active distribution grids. This issue is tackled by formulating a hybrid loss optimization problem and solved using the Interior Point Method. Sensitivity analysis is used to identify the optimum location of storage units. Different scenarios of reconfiguration, storage and distributed generation...... penetration are created to test the proposed algorithm. It is tested in a benchmark medium voltage network to show the effectiveness and performance of the algorithm. Results obtained are found to be encouraging for radial distribution system. It shows that we can reduce the power loss by more than 30% using...
Optimal Node Placement in Underwater Wireless Sensor Networks
Felamban, M.
2013-03-25
Wireless Sensor Networks (WSN) are expected to play a vital role in the exploration and monitoring of underwater areas which are not easily reachable by humans. However, underwater communication via acoustic waves is subject to several performance limitations that are very different from those used for terresstrial networks. In this paper, we investigate node placement for building an initial underwater WSN infrastructure. We formulate this problem as a nonlinear mathematical program with the objective of minimizing the total transmission loss under a given number of sensor nodes and targeted coverage volume. The obtained solution is the location of each node represented via a truncated octahedron to fill out the 3D space. Experiments are conducted to verify the proposed formulation, which is solved using Matlab optimization tool. Simulation is also conducted using an ns-3 simulator, and the simulation results are consistent with the obtained results from mathematical model with less than 10% error.
DEFF Research Database (Denmark)
Ding, Tao; Li, Cheng; Huang, Can
2018-01-01
–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....
LinkMind: Link Optimization in Swarming Mobile Sensor Networks
DEFF Research Database (Denmark)
Ngo, Trung Dung
2012-01-01
of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link...... optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm...
New Exact Penalty Functions for Nonlinear Constrained Optimization Problems
Directory of Open Access Journals (Sweden)
Bingzhuang Liu
2014-01-01
Full Text Available For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.
An optimal control approach to manpower planning problem
Directory of Open Access Journals (Sweden)
H. W. J. Lee
2001-01-01
Full Text Available A manpower planning problem is studied in this paper. The model includes scheduling different types of workers over different tasks, employing and terminating different types of workers, and assigning different types of workers to various trainning programmes. The aim is to find an optimal way to do all these while keeping the time-varying demand for minimum number of workers working on each different tasks satisfied. The problem is posed as an optimal discrete-valued control problem in discrete time. A novel numerical scheme is proposed to solve the problem, and an illustrative example is provided.
Topology Optimization of Large Scale Stokes Flow Problems
DEFF Research Database (Denmark)
Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan
2008-01-01
This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....
Design and optimization of all-optical networks
Xiao, Gaoxi
1999-10-01
In this thesis, we present our research results on the design and optimization of all-optical networks. We divide our results into the following four parts: 1.In the first part, we consider broadcast-and-select networks. In our research, we propose an alternative and cheaper network configuration to hide the tuning time. In addition, we derive lower bounds on the optimal schedule lengths and prove that they are tighter than the best existing bounds. 2.In the second part, we consider all-optical wide area networks. We propose a set of algorithms for allocating a given number of WCs to the nodes. We adopt a simulation-based optimization approach, in which we collect utilization statistics of WCs from computer simulation and then perform optimization to allocate the WCs. Therefore, our algorithms are widely applicable and they are not restricted to any particular model and assumption. We have conducted extensive computer simulation on regular and irregular networks under both uniform and non-uniform traffic. We see that our method can get nearly the same performance as that of full wavelength conversion by using a much smaller number of WCs. Compared with the best existing method, the results show that our algorithms can significantly reduce (1)the overall blocking probability (i.e., better mean quality of service) and (2)the maximum of the blocking probabilities experienced at all the source nodes (i.e., better fairness). Equivalently, for a given performance requirement on blocking probability, our algorithms can significantly reduce the number of WCs required. 3.In the third part, we design and optimize the physical topology of all-optical wide area networks. We show that the design problem is NP-complete and we propose a heuristic algorithm called two-stage cut saturation algorithm for this problem. Simulation results show that (1)the proposed algorithm can efficiently design networks with low cost and high utilization, and (2)if wavelength converters are
Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting
2016-01-01
Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes’ placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500
Game Theoretic Problems in Network Economics and Mechanism Design Solutions
Narahari, Y; Narayanam, Ramasuri; Prakash, Hastagiri
2009-01-01
Explores game theoretic modeling and mechanism design for problem solving in Internet and network economics. This monograph contains an exposition of representative game theoretic problems in three different network economics situations and a systematic exploration of mechanism design solutions to these problems.
Algorithm for solving multicriteria problem of appointments on the networks
Directory of Open Access Journals (Sweden)
Yu. V. Bugaeev
2017-01-01
Full Text Available To describe complex projects or various jobs that make up a set of interrelated activities, use the network schedule. Several variants of network models are used. 1. For practical use, the Gantt chart is the most widely used - it is a graphical representation of consecutive intervals of time and the use of resources. 2. The network graph is represented as a graph, where the vertices are an event (or its state at a certain point in time, and the connecting arcs (or edges are works. The graph model is used in the work. In this case, the events (the fact of the completion or the beginning of the work correspond to the vertices of the graph, and the work to the arcs, the orientation of which corresponds to the technology of this process. An important role in the project management model is played by the optimal assignment of performers to the existing list of works. With this formulation of the problem, the total implementation time or the length of the critical path on the graph can be used as a criterion. In this case, the criterion is imposed a restriction on the deadline for the execution of work (or the project as a whole. Thus, the total time spent on the project and the length of the critical path are represented by equally important characteristics of the project implementation, and they should be considered as two equivalent criteria for the multicriteria project management task. We have proposed an algorithm, in general, an approximate determination of the set of Pareto-optimal solutions of a given problem.
Optimal stability polynomials for numerical integration of initial value problems
Ketcheson, David I.; Ahmadia, Aron
2013-01-01
We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step
Infinite-horizon optimal control problems in economics
Energy Technology Data Exchange (ETDEWEB)
Aseev, Sergei M; Besov, Konstantin O; Kryazhimskii, Arkadii V
2012-04-30
This paper extends optimal control theory to a class of infinite-horizon problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of this sort the initial state is fixed, no constraints are imposed on the behaviour of the admissible trajectories at large times, and the objective functional is given by a discounted improper integral. We develop the method of finite-horizon approximations in a broad context and use it to derive complete versions of the Pontryagin maximum principle for such problems. We provide sufficient conditions for the normality of infinite-horizon optimal control problems and for the validity of the 'standard' limit transversality conditions with time going to infinity. As a meaningful example, we consider a new two-sector model of optimal economic growth subject to a random jump in prices. Bibliography: 53 titles.
An inverse optimal control problem in the electrical discharge ...
Indian Academy of Sciences (India)
Marin Gostimirovic
2018-05-10
May 10, 2018 ... Keywords. EDM process; discharge energy; heat source parameters; inverse problem; optimization. 1. Introduction .... ation, thermal modeling of the EDM process would become ..... simulation of die-sinking EDM. CIRP Ann.
Infinite-horizon optimal control problems in economics
International Nuclear Information System (INIS)
Aseev, Sergei M; Besov, Konstantin O; Kryazhimskii, Arkadii V
2012-01-01
This paper extends optimal control theory to a class of infinite-horizon problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of this sort the initial state is fixed, no constraints are imposed on the behaviour of the admissible trajectories at large times, and the objective functional is given by a discounted improper integral. We develop the method of finite-horizon approximations in a broad context and use it to derive complete versions of the Pontryagin maximum principle for such problems. We provide sufficient conditions for the normality of infinite-horizon optimal control problems and for the validity of the 'standard' limit transversality conditions with time going to infinity. As a meaningful example, we consider a new two-sector model of optimal economic growth subject to a random jump in prices. Bibliography: 53 titles.
Solving Minimum Cost Multi-Commodity Network Flow Problem ...
African Journals Online (AJOL)
ADOWIE PERE
2018-03-23
Mar 23, 2018 ... network-based modeling framework for integrated fixed and mobile ... Minimum Cost Network Flow Problem (MCNFP) and some ..... Unmanned Aerial Vehicle Routing in Traffic. Incident ... Ph.D. Thesis, Dept. of Surveying &.
Outage Analysis and Optimization of SWIPT in Network-Coded Two-Way Relay Networks
Directory of Open Access Journals (Sweden)
Ruihong Jiang
2017-01-01
Full Text Available This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT in network-coded two-way relay systems, where a relay first harvests energy from the signals transmitted by two sources and then uses the harvested energy to forward the received information to the two sources. We consider two transmission protocols, power splitting two-way relay (PS-TWR and time switching two-way relay (TS-TWR protocols. We present two explicit expressions for the system outage probability of the two protocols and further derive approximate expressions for them in high and low SNR cases. To explore the system performance limits, two optimization problems are formulated to minimize the system outage probability. Since the problems are nonconvex and have no known solution methods, a genetic algorithm- (GA- based algorithm is designed. Numerical and simulation results validate our theoretical analysis. It is shown that, by jointly optimizing the time assignment and SWIPT receiver parameters, a great performance gain can be achieved for both PS-TWR and TS-TWR. Moreover, the optimized PS-TWR always outperforms the optimized TS-TWR in terms of outage performance. Additionally, the effects of parameters including relay location and transmit powers are also discussed, which provide some insights for the SWIPT-enabled two-way relay networks.
Energy Technology Data Exchange (ETDEWEB)
Niknam, Taher; Meymand, Hamed Zeinoddini; Nayeripour, Majid [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran)
2010-08-15
Fuel cell power plants (FCPPs) have been taken into a great deal of consideration in recent years. The continuing growth of the power demand together with environmental constraints is increasing interest to use FCPPs in power system. Since FCPPs are usually connected to distribution network, the effect of FCPPs on distribution network is more than other sections of power system. One of the most important issues in distribution networks is optimal operation management (OOM) which can be affected by FCPPs. This paper proposes a new approach for optimal operation management of distribution networks including FCCPs. In the article, we consider the total electrical energy losses, the total electrical energy cost and the total emission as the objective functions which should be minimized. Whereas the optimal operation in distribution networks has a nonlinear mixed integer optimization problem, the optimal solution could be obtained through an evolutionary method. We use a new evolutionary algorithm based on Fuzzy Adaptive Particle Swarm Optimization (FAPSO) to solve the optimal operation problem and compare this method with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization (ACO) and Tabu Search (TS) over two distribution test feeders. (author)
A one-layer recurrent neural network for constrained nonsmooth invex optimization.
Li, Guocheng; Yan, Zheng; Wang, Jun
2014-02-01
Invexity is an important notion in nonconvex optimization. In this paper, a one-layer recurrent neural network is proposed for solving constrained nonsmooth invex optimization problems, designed based on an exact penalty function method. It is proved herein that any state of the proposed neural network is globally convergent to the optimal solution set of constrained invex optimization problems, with a sufficiently large penalty parameter. In addition, any neural state is globally convergent to the unique optimal solution, provided that the objective function and constraint functions are pseudoconvex. Moreover, any neural state is globally convergent to the feasible region in finite time and stays there thereafter. The lower bounds of the penalty parameter and convergence time are also estimated. Two numerical examples are provided to illustrate the performances of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.
Analysis and optimization of gas-centrifugal separation of uranium isotopes by neural networks
Directory of Open Access Journals (Sweden)
Migliavacca S.C.P.
2002-01-01
Full Text Available Neural networks are an attractive alternative for modeling complex problems with too many difficulties to be solved by a phenomenological model. A feed-forward neural network was used to model a gas-centrifugal separation of uranium isotopes. The prediction showed good agreement with the experimental data. An optimization study was carried out. The optimal operational condition was tested by a new experiment and a difference of less than 1% was found.
Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects
Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer
2013-04-01
location problem. Optimization for additional criteria (e.g., focal mechanism determination or installation costs) can be included. We consider a 3D seismic velocity model, an European ambient seismic noise model derived from high-resolution land-use data, and existing seismic stations in the vicinity of the geotechnical site. Additionally, we account for the attenuation of the seismic signal with travel time and ambient seismic noise with depth to be able to correctly deal with borehole station networks. Using this algorithm we are able to find the optimal geometry and size of the seismic monitoring network that meets the predefined application-oriented performance criteria. This talk will focus on optimal network geometries for deep geothermal projects of the EGS and hydrothermal type, and discuss the requirements for basic seismic surveillance and high-resolution reservoir monitoring and characterization.
Complicated problem solution techniques in optimal parameter searching
International Nuclear Information System (INIS)
Gergel', V.P.; Grishagin, V.A.; Rogatneva, E.A.; Strongin, R.G.; Vysotskaya, I.N.; Kukhtin, V.V.
1992-01-01
An algorithm is presented of a global search for numerical solution of multidimentional multiextremal multicriteria optimization problems with complicated constraints. A boundedness of object characteristic changes is assumed at restricted changes of its parameters (Lipschitz condition). The algorithm was realized as a computer code. The algorithm was realized as a computer code. The programme was used to solve in practice the different applied optimization problems. 10 refs.; 3 figs
Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications
2015-06-24
WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Arizona State University School of Mathematical & Statistical Sciences 901 S...SUPPLEMENTARY NOTES 14. ABSTRACT The major goals of this project were completed: the exact solution of previously unsolved challenging combinatorial optimization... combinatorial optimization problem, the Directional Sensor Problem, was solved in two ways. First, heuristically in an engineering fashion and second, exactly
Topology optimization of vibration and wave propagation problems
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2007-01-01
The method of topology optimization is a versatile method to determine optimal material layouts in mechanical structures. The method relies on, in principle, unlimited design freedom that can be used to design materials, structures and devices with significantly improved performance and sometimes...... novel functionality. This paper addresses basic issues in simulation and topology design of vibration and wave propagation problems. Steady-state and transient wave propagation problems are addressed and application examples for both cases are presented....
Optimal power flow for distribution networks with distributed generation
Directory of Open Access Journals (Sweden)
Radosavljević Jordan
2015-01-01
Full Text Available This paper presents a genetic algorithm (GA based approach for the solution of the optimal power flow (OPF in distribution networks with distributed generation (DG units, including fuel cells, micro turbines, diesel generators, photovoltaic systems and wind turbines. The OPF is formulated as a nonlinear multi-objective optimization problem with equality and inequality constraints. Due to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties, a probabilisticalgorithm is introduced in the OPF analysis. The Weibull and normal distributions are employed to model the input random variables, namely the wind speed, solar irradiance and load power. The 2m+1 point estimate method and the Gram Charlier expansion theory are used to obtain the statistical moments and the probability density functions (PDFs of the OPF results. The proposed approach is examined and tested on a modified IEEE 34 node test feeder with integrated five different DG units. The obtained results prove the efficiency of the proposed approach to solve both deterministic and probabilistic OPF problems for different forms of the multi-objective function. As such, it can serve as a useful decision-making supporting tool for distribution network operators. [Projekat Ministarstva nauke Republike Srbije, br. TR33046
Inverse kinematics problem in robotics using neural networks
Choi, Benjamin B.; Lawrence, Charles
1992-01-01
In this paper, Multilayer Feedforward Networks are applied to the robot inverse kinematic problem. The networks are trained with endeffector position and joint angles. After training, performance is measured by having the network generate joint angles for arbitrary endeffector trajectories. A 3-degree-of-freedom (DOF) spatial manipulator is used for the study. It is found that neural networks provide a simple and effective way to both model the manipulator inverse kinematics and circumvent the problems associated with algorithmic solution methods.
On some fundamental properties of structural topology optimization problems
DEFF Research Database (Denmark)
Stolpe, Mathias
2010-01-01
We study some fundamental mathematical properties of discretized structural topology optimization problems. Either compliance is minimized with an upper bound on the volume of the structure, or volume is minimized with an upper bound on the compliance. The design variables are either continuous o....... The presented examples can be used as teaching material in graduate and undergraduate courses on structural topology optimization....
STATEMENT OF THE OPTIMIZATION PROBLEM OF CARBON PRODUCTS PRODUCTION
Directory of Open Access Journals (Sweden)
O. A. Zhuchenko
2016-08-01
Full Text Available The paper formulated optimization problem formulation production of carbon products. The analysis of technical and economic parameters that can be used to optimize the production of carbonaceous products had been done by the author. To evaluate the efficiency of the energy-intensive production uses several technical and economic indicators. In particular, the specific cost, productivity, income and profitability of production. Based on a detailed analysis had been formulated optimality criterion that takes into account the technological components of profitability. The components in detail the criteria and the proposed method of calculating non-trivial, one of them - the production cost of each product. When solving the optimization problem of technological modes of production into account constraints on the variables are optimized. Thus, restrictions may be expressed on the number of each product produced. Have been formulated the method of calculating the cost per unit of product. Attention is paid to the quality indices of finished products as an additional constraint in the optimization problem. As a result have been formulated the general problem of optimizing the production of carbon products, which includes the optimality criterion and restrictions.
SolveDB: Integrating Optimization Problem Solvers Into SQL Databases
DEFF Research Database (Denmark)
Siksnys, Laurynas; Pedersen, Torben Bach
2016-01-01
for optimization problems, (2) an extensible infrastructure for integrating different solvers, and (3) query optimization techniques to achieve the best execution performance and/or result quality. Extensive experiments with the PostgreSQL-based implementation show that SolveDB is a versatile tool offering much...
Effective Teaching of Economics: A Constrained Optimization Problem?
Hultberg, Patrik T.; Calonge, David Santandreu
2017-01-01
One of the fundamental tenets of economics is that decisions are often the result of optimization problems subject to resource constraints. Consumers optimize utility, subject to constraints imposed by prices and income. As economics faculty, instructors attempt to maximize student learning while being constrained by their own and students'…
Practical synchronization on complex dynamical networks via optimal pinning control
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.
Climate Intervention as an Optimization Problem
Caldeira, Ken; Ban-Weiss, George A.
2010-05-01
Typically, climate models simulations of intentional intervention in the climate system have taken the approach of imposing a change (eg, in solar flux, aerosol concentrations, aerosol emissions) and then predicting how that imposed change might affect Earth's climate or chemistry. Computations proceed from cause to effect. However, humans often proceed from "What do I want?" to "How do I get it?" One approach to thinking about intentional intervention in the climate system ("geoengineering") is to ask "What kind of climate do we want?" and then ask "What pattern of radiative forcing would come closest to achieving that desired climate state?" This involves defining climate goals and a cost function that measures how closely those goals are attained. (An important next step is to ask "How would we go about producing these desired patterns of radiative forcing?" However, this question is beyond the scope of our present study.) We performed a variety of climate simulations in NCAR's CAM3.1 atmospheric general circulation model with a slab ocean model and thermodynamic sea ice model. We then evaluated, for a specific set of climate forcing basis functions (ie, aerosol concentration distributions), the extent to which the climate response to a linear combination of those basis functions was similar to a linear combination of the climate response to each basis function taken individually. We then developed several cost functions (eg, relative to the 1xCO2 climate, minimize rms difference in zonal and annual mean land temperature, minimize rms difference in zonal and annual mean runoff, minimize rms difference in a combination of these temperature and runoff indices) and then predicted optimal combinations of our basis functions that would minimize these cost functions. Lastly, we produced forward simulations of the predicted optimal radiative forcing patterns and compared these with our expected results. Obviously, our climate model is much simpler than reality and
Problems in determining the optimal use of road safety measures
DEFF Research Database (Denmark)
Elvik, Rune
2014-01-01
for intervention that ensures maximum safety benefits. The third problem is how to develop policy options to minimise the risk of indivisibilities and irreversible choices. The fourth problem is how to account for interaction effects between road safety measures when determining their optimal use. The fifth......This paper discusses some problems in determining the optimal use of road safety measures. The first of these problems is how best to define the baseline option, i.e. what will happen if no new safety measures are introduced. The second problem concerns choice of a method for selection of targets...... problem is how to obtain the best mix of short-term and long-term measures in a safety programme. The sixth problem is how fixed parameters for analysis, including the monetary valuation of road safety, influence the results of analyses. It is concluded that it is at present not possible to determine...
Random Matrix Approach for Primal-Dual Portfolio Optimization Problems
Tada, Daichi; Yamamoto, Hisashi; Shinzato, Takashi
2017-12-01
In this paper, we revisit the portfolio optimization problems of the minimization/maximization of investment risk under constraints of budget and investment concentration (primal problem) and the maximization/minimization of investment concentration under constraints of budget and investment risk (dual problem) for the case that the variances of the return rates of the assets are identical. We analyze both optimization problems by the Lagrange multiplier method and the random matrix approach. Thereafter, we compare the results obtained from our proposed approach with the results obtained in previous work. Moreover, we use numerical experiments to validate the results obtained from the replica approach and the random matrix approach as methods for analyzing both the primal and dual portfolio optimization problems.
Complex network problems in physics, computer science and biology
Cojocaru, Radu Ionut
There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe
Selecting Optimal Parameters of Random Linear Network Coding for Wireless Sensor Networks
DEFF Research Database (Denmark)
Heide, J; Zhang, Qi; Fitzek, F H P
2013-01-01
This work studies how to select optimal code parameters of Random Linear Network Coding (RLNC) in Wireless Sensor Networks (WSNs). With Rateless Deluge [1] the authors proposed to apply Network Coding (NC) for Over-the-Air Programming (OAP) in WSNs, and demonstrated that with NC a significant...... reduction in the number of transmitted packets can be achieved. However, NC introduces additional computations and potentially a non-negligible transmission overhead, both of which depend on the chosen coding parameters. Therefore it is necessary to consider the trade-off that these coding parameters...... present in order to obtain the lowest energy consumption per transmitted bit. This problem is analyzed and suitable coding parameters are determined for the popular Tmote Sky platform. Compared to the use of traditional RLNC, these parameters enable a reduction in the energy spent per bit which grows...
Huang, Hui; Ning, Jixian
2017-01-01
Prederivatives play an important role in the research of set optimization problems. First, we establish several existence theorems of prederivatives for γ -paraconvex set-valued mappings in Banach spaces with [Formula: see text]. Then, in terms of prederivatives, we establish both necessary and sufficient conditions for the existence of Pareto minimal solution of set optimization problems.
Directory of Open Access Journals (Sweden)
محسن نفیسی
2014-10-01
Full Text Available Lack of an efficient sewer network in urban areas threatens public health and may give rise to contagious diseases. Various optimization methods have been developed for use in designing sewers networks in response to a number of requirements such as the high costs of constructing sewer networks, financial limitations, the presence of both discrete and continuous decision variables, and the nonlinear time complexity of such design problems. In this study, the particle swarm optimization algorithm (PSO with the capability of “fly-back” mechanism equipped with the harmony search (HPSO is used for the optimization of sewers network designs. The objective function consists of minimizing the excavation and embedding costs of commercial pipes. The fly-back mechanism and the harmony memory method are used to prevent leaving out variables from the feasible space of the problem in an attempt to enhance model efficiency. Model constraints are satisfied at two levels, which leads to the desirable convergence of the PSO algorithm as compared to the conventional penalty methods in alternative evolutionary algorithms. In order to determine the admissible decision variables, the Manning equation is used as a hydraulic model. The performance of the proposed algorithm is shown by presenting two examples of sewer networks. Compared to the PSO algorithm used in sewer network optimization models, the proposed model exhibits a tangible improvement in cost reduction and a higher computational stability.
NLP model and stochastic multi-start optimization approach for heat exchanger networks
International Nuclear Information System (INIS)
Núñez-Serna, Rosa I.; Zamora, Juan M.
2016-01-01
Highlights: • An NLP model for the optimal design of heat exchanger networks is proposed. • The NLP model is developed from a stage-wise grid diagram representation. • A two-phase stochastic multi-start optimization methodology is utilized. • Improved network designs are obtained with different heat load distributions. • Structural changes and reductions in the number of heat exchangers are produced. - Abstract: Heat exchanger network synthesis methodologies frequently identify good network structures, which nevertheless, might be accompanied by suboptimal values of design variables. The objective of this work is to develop a nonlinear programming (NLP) model and an optimization approach that aim at identifying the best values for intermediate temperatures, sub-stream flow rate fractions, heat loads and areas for a given heat exchanger network topology. The NLP model that minimizes the total annual cost of the network is constructed based on a stage-wise grid diagram representation. To improve the possibilities of obtaining global optimal designs, a two-phase stochastic multi-start optimization algorithm is utilized for the solution of the developed model. The effectiveness of the proposed optimization approach is illustrated with the optimization of two network designs proposed in the literature for two well-known benchmark problems. Results show that from the addressed base network topologies it is possible to achieve improved network designs, with redistributions in exchanger heat loads that lead to reductions in total annual costs. The results also show that the optimization of a given network design sometimes leads to structural simplifications and reductions in the total number of heat exchangers of the network, thereby exposing alternative viable network topologies initially not anticipated.
Directory of Open Access Journals (Sweden)
О.С. Якушенко
2010-01-01
Full Text Available The article is devoted to the problem of gas turbine engine (GTE technical state class automatic recognition with operation parameters by neuron networks. The one of main problems for creation the neuron networks is determination of their optimal structures size (amount of layers in network and count of neurons in each layer.The method of neuron network size optimization intended for classification of GTE technical state is considered in the article. Optimization is cared out with taking into account of overlearning effect possibility when a learning network loses property of generalization and begins strictly describing educational data set. To determinate a moment when overlearning effect is appeared in learning neuron network the method of three data sets is used. The method is based on the comparison of recognition quality parameters changes which were calculated during recognition of educational and control data sets. As the moment when network overlearning effect is appeared the moment when control data set recognition quality begins deteriorating but educational data set recognition quality continues still improving is used. To determinate this moment learning process periodically is terminated and simulation of network with education and control data sets is fulfilled. The optimization of two-, three- and four-layer networks is conducted and some results of optimization are shown. Also the extended educational set is created and shown. The set describes 16 GTE technical state classes and each class is represented with 200 points (200 possible technical state class realizations instead of 20 points using in the former articles. It was done to increase representativeness of data set.In the article the algorithm of optimization is considered and some results which were obtained with it are shown. The results of experiments were analyzed to determinate most optimal neuron network structure. This structure provides most high-quality GTE
Nikelshpur, Dmitry O.
2014-01-01
Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…
ON THE OPTIMAL CONTROL OF A PROBLEM OF ENVIRONMENTAL POLLUTION
Directory of Open Access Journals (Sweden)
José Dávalos Chuquipoma
2016-06-01
Full Text Available This article is studied the optimal control of distributed parameter systems applied to an environmental pollution problem. The model consists of a differential equation partial parabolic modeling of a pollutant transport in a fluid. The model is considered the speed with which the pollutant spreads in the environment and degradation that suffers the contaminant by the presence of a factor biological inhibitor, which breaks the contaminant at a rate that is not dependent on space and time. Using the method of Lagrange multipliers is possible to prove the existence solving the problem of control and obtaining optimality conditions for optimal control.
Software defined network inference with evolutionary optimal observation matrices
Malboubi, M; Gong, Y; Yang, Z; Wang, X; Chuah, CN; Sharma, P
2017-01-01
© 2017 Elsevier B.V. A key requirement for network management is the accurate and reliable monitoring of relevant network characteristics. In today's large-scale networks, this is a challenging task due to the scarcity of network measurement resources and the hard constraints that this imposes. This paper proposes a new framework, called SNIPER, which leverages the flexibility provided by Software-Defined Networking (SDN) to design the optimal observation or measurement matrix that can lead t...
Directory of Open Access Journals (Sweden)
Henryk Josiński
2014-01-01
Full Text Available This paper introduces an expanded version of the Invasive Weed Optimization algorithm (exIWO distinguished by the hybrid strategy of the search space exploration proposed by the authors. The algorithm is evaluated by solving three well-known optimization problems: minimization of numerical functions, feature selection, and the Mona Lisa TSP Challenge as one of the instances of the traveling salesman problem. The achieved results are compared with analogous outcomes produced by other optimization methods reported in the literature.
Strong Duality and Optimality Conditions for Generalized Equilibrium Problems
Directory of Open Access Journals (Sweden)
D. H. Fang
2013-01-01
Full Text Available We consider a generalized equilibrium problem involving DC functions. By using the properties of the epigraph of the conjugate functions, some sufficient and/or necessary conditions for the weak and strong duality results and optimality conditions for generalized equilibrium problems are provided.
Optimization of the solution of the problem of scheduling theory ...
African Journals Online (AJOL)
This article describes the genetic algorithm used to solve the problem related to the scheduling theory. A large number of different methods is described in the scientific literature. The main issue that faced the problem in question is that it is necessary to search the optimal solution in a large search space for the set of ...
Global Optimization for Bus Line Timetable Setting Problem
Directory of Open Access Journals (Sweden)
Qun Chen
2014-01-01
Full Text Available This paper defines bus timetables setting problem during each time period divided in terms of passenger flow intensity; it is supposed that passengers evenly arrive and bus runs are set evenly; the problem is to determine bus runs assignment in each time period to minimize the total waiting time of passengers on platforms if the number of the total runs is known. For such a multistage decision problem, this paper designed a dynamic programming algorithm to solve it. Global optimization procedures using dynamic programming are developed. A numerical example about bus runs assignment optimization of a single line is given to demonstrate the efficiency of the proposed methodology, showing that optimizing buses’ departure time using dynamic programming can save computational time and find the global optimal solution.
An intutionistic fuzzy optimization approach to vendor selection problem
Directory of Open Access Journals (Sweden)
Prabjot Kaur
2016-09-01
Full Text Available Selecting the right vendor is an important business decision made by any organization. The decision involves multiple criteria and if the objectives vary in preference and scope, then nature of decision becomes multiobjective. In this paper, a vendor selection problem has been formulated as an intutionistic fuzzy multiobjective optimization where appropriate number of vendors is to be selected and order allocated to them. The multiobjective problem includes three objectives: minimizing the net price, maximizing the quality, and maximizing the on time deliveries subject to supplier's constraints. The objection function and the demand are treated as intutionistic fuzzy sets. An intutionistic fuzzy set has its ability to handle uncertainty with additional degrees of freedom. The Intutionistic fuzzy optimization (IFO problem is converted into a crisp linear form and solved using optimization software Tora. The advantage of IFO is that they give better results than fuzzy/crisp optimization. The proposed approach is explained by a numerical example.
Robinson, Y Harold; Rajaram, M
2015-01-01
Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique.
Neural Network for Optimization of Existing Control Systems
DEFF Research Database (Denmark)
Madsen, Per Printz
1995-01-01
The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....
Directory of Open Access Journals (Sweden)
Jay Krishna Thakur
2015-08-01
Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.
A problem of finding an acceptable variant in generalized project networks
Directory of Open Access Journals (Sweden)
David Blokh
2005-01-01
Full Text Available A project network often has some activities or groups of activities which can be performed at different stages of the project. Then, the problem of finding an optimal/acceptable time or/and optimal/acceptable order of such an activity or a group of activities arises. Such a problem emerges, in particular, in house-building management when the beginnings of some activities may vary in time or/and order. We consider a mathematical formulation of the problem, show its computational complexity, and describe an algorithm for solving the problem.
A Global Optimization Algorithm for Sum of Linear Ratios Problem
Directory of Open Access Journals (Sweden)
Yuelin Gao
2013-01-01
Full Text Available We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the convergence of the algorithm is proved. Numerical experiments are reported to show the effectiveness of the proposed algorithm.
The Global Optimal Algorithm of Reliable Path Finding Problem Based on Backtracking Method
Directory of Open Access Journals (Sweden)
Liang Shen
2017-01-01
Full Text Available There is a growing interest in finding a global optimal path in transportation networks particularly when the network suffers from unexpected disturbance. This paper studies the problem of finding a global optimal path to guarantee a given probability of arriving on time in a network with uncertainty, in which the travel time is stochastic instead of deterministic. Traditional path finding methods based on least expected travel time cannot capture the network user’s risk-taking behaviors in path finding. To overcome such limitation, the reliable path finding algorithms have been proposed but the convergence of global optimum is seldom addressed in the literature. This paper integrates the K-shortest path algorithm into Backtracking method to propose a new path finding algorithm under uncertainty. The global optimum of the proposed method can be guaranteed. Numerical examples are conducted to demonstrate the correctness and efficiency of the proposed algorithm.
Self-Optimization of LTE Networks Utilizing Celnet Xplorer
Buvaneswari, A; Polakos, Paul; Buvaneswari, Arumugam
2010-01-01
In order to meet demanding performance objectives in Long Term Evolution (LTE) networks, it is mandatory to implement highly efficient, autonomic self-optimization and configuration processes. Self-optimization processes have already been studied in second generation (2G) and third generation (3G) networks, typically with the objective of improving radio coverage and channel capacity. The 3rd Generation Partnership Project (3GPP) standard for LTE self-organization of networks (SON) provides guidelines on self-configuration of physical cell ID and neighbor relation function and self-optimization for mobility robustness, load balancing, and inter-cell interference reduction. While these are very important from an optimization perspective of local phenomenon (i.e., the eNodeB's interaction with its neighbors), it is also essential to architect control algorithms to optimize the network as a whole. In this paper, we propose a Celnet Xplorer-based SON architecture that allows detailed analysis of network performan...
UMTS network planning, optimization, and inter-operation with GSM
Rahnema, Moe
2008-01-01
UMTS Network Planning, Optimization, and Inter-Operation with GSM is an accessible, one-stop reference to help engineers effectively reduce the time and costs involved in UMTS deployment and optimization. Rahnema includes detailed coverage from both a theoretical and practical perspective on the planning and optimization aspects of UMTS, and a number of other new techniques to help operators get the most out of their networks. Provides an end-to-end perspective, from network design to optimizationIncorporates the hands-on experiences of numerous researchersSingle
Finding influential nodes for integration in brain networks using optimal percolation theory.
Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A
2018-06-11
Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.
Optimal Base Station Density of Dense Network: From the Viewpoint of Interference and Load.
Feng, Jianyuan; Feng, Zhiyong
2017-09-11
Network densification is attracting increasing attention recently due to its ability to improve network capacity by spatial reuse and relieve congestion by offloading. However, excessive densification and aggressive offloading can also cause the degradation of network performance due to problems of interference and load. In this paper, with consideration of load issues, we study the optimal base station density that maximizes the throughput of the network. The expected link rate and the utilization ratio of the contention-based channel are derived as the functions of base station density using the Poisson Point Process (PPP) and Markov Chain. They reveal the rules of deployment. Based on these results, we obtain the throughput of the network and indicate the optimal deployment density under different network conditions. Extensive simulations are conducted to validate our analysis and show the substantial performance gain obtained by the proposed deployment scheme. These results can provide guidance for the network densification.
Context-Aware Local Optimization of Sensor Network Deployment
Directory of Open Access Journals (Sweden)
Meysam Argany
2015-07-01
Full Text Available Wireless sensor networks are increasingly used for tracking and monitoring dynamic phenomena in urban and natural areas. Spatial coverage is an important issue in sensor networks in order to fulfill the needs of sensing applications. Optimization methods are widely used to efficiently distribute sensor nodes in the network to achieve a desired level of coverage. Most of the existing algorithms do not consider the characteristics of the real environment in the optimization process. In this paper, we propose the integration of contextual information in optimization algorithms to improve sensor network coverage. First, we investigate the implication of contextual information in sensor networks. Then, a conceptual framework for local context-aware sensor network deployment optimization method is introduced and related algorithms are presented in detail. Finally, several experiments are carried out to evaluate the validity of the proposed method. The results obtained from these experiments show the effectiveness of our approach in different contextual situations.
Directory of Open Access Journals (Sweden)
Ahmed R. Abdelaziz
2015-08-01
Full Text Available This paper presents an application of Chaotic differential evolution optimization approach meta-heuristics in solving transmission network expansion planning TNEP using an AC model associated with reactive power planning RPP. The reliabilityredundancy of network analysis optimization problems implicate selection of components with multiple choices and redundancy levels that produce maximum benefits can be subject to the cost weight and volume constraints is presented in this paper. Classical mathematical methods have failed in handling non-convexities and non-smoothness in optimization problems. As an alternative to the classical optimization approaches the meta-heuristics have attracted lot of attention due to their ability to find an almost global optimal solution in reliabilityredundancy optimization problems. Evolutionary algorithms EAs paradigms of evolutionary computation field are stochastic and robust meta-heuristics useful to solve reliabilityredundancy optimization problems. EAs such as genetic algorithm evolutionary programming evolution strategies and differential evolution are being used to find global or near global optimal solution. The Differential Evolution Algorithm DEA population-based algorithm is an optimal algorithm with powerful global searching capability but it is usually in low convergence speed and presents bad searching capability in the later evolution stage. A new Chaotic Differential Evolution algorithm CDE based on the cat map is recommended which combines DE and chaotic searching algorithm. Simulation results and comparisons show that the chaotic differential evolution algorithm using Cat map is competitive and stable in performance with other optimization approaches and other maps.
A review on application of neural networks and fuzzy logic to solve hydrothermal scheduling problem
International Nuclear Information System (INIS)
Haroon, S.; Malik, T.N.; Zafar, S.
2014-01-01
Electrical power system is highly complicated having hydro and thermal mix with large number of machines. To reduce power production cost, hydro and thermal resources are mixed. Hydrothermal scheduling is the optimal coordination of hydro and thermal plants to meet the system load demand at minimum possible operational cost while satisfying the system constraints. Hydrothermal scheduling is dynamic, large scale, non-linear and non-convex optimization problem. The classical techniques have failed in solving such problem. Artificial Intelligence Tools based techniques are used now a day to solve this complex optimization problem because of their no requirements on the nature of the problem. The aim of this research paper is to provide a comprehensive survey of literature related to both Artificial Neural Network (ANN) and Fuzzy Logic (FL) as effective optimization algorithms for the hydrothermal scheduling problem. The outcomes along with the merits and demerits of individual techniques are also discussed. (author)
Distributed optimization of a multisubchannel Ad Hoc cognitive radio network
Leith, Alex
2012-05-01
In this paper, we study the distributed-duality-based optimization of a multisubchannel ad hoc cognitive radio network (CRN) that coexists with a multicell primary radio network (PRN). For radio resource allocation in multiuser orthogonal frequency-division multiplexing (MU-OFDM) systems, the orthogonal-access-based exclusive subchannel assignment (ESA) technique has been a popular method, but it is suboptimal in ad hoc networks, because nonorthogonal access between multiple secondary-user links by using shared subchannel assignment (SSA) can bring a higher weighted sum rate. We utilize the Lagrangian dual composition tool and design low-complexity near-optimal SSA resource allocation methods, assuming practical discrete-rate modulation and that the CRN-to-PRN interference constraint has to strictly be satisfied. However, available SSA methods for CRNs are either suboptimal or involve high complexity and suffer from slow convergence. To address this problem, we design fast-convergence SSA duality schemes and introduce several novel methods to increase the speed of convergence and to satisfy various system constraints with low complexity. For practical implementation in ad hoc CRNs, we design distributed-duality schemes that involve only a small number of CRN local information exchanges for dual update. The effects of many system parameters are presented through simulation results, which show that the near-optimal SSA duality scheme can perform significantly better than the suboptimal ESA duality and SSA-iterative waterfilling schemes and that the performance loss of the distributed schemes is small, compared with their centralized counterparts. © 2012 IEEE.
PRIVACY PROTECTION PROBLEMS IN SOCIAL NETWORKS
OKUR, M. Cudi
2011-01-01
Protecting privacy has become a major concern for most social network users because of increased difficulties of controlling the online data. This article presents an assessment of the common privacy related risks of social networking sites. Open and hidden privacy risks of active and passive online profiles are examined and increasing share of social networking in these phenomena is discussed. Inadequacy of available legal and institutional protection is demonstrated and the effectiveness of...
Integrating packing and distribution problems and optimization through mathematical programming
Directory of Open Access Journals (Sweden)
Fabio Miguel
2016-06-01
Full Text Available This paper analyzes the integration of two combinatorial problems that frequently arise in production and distribution systems. One is the Bin Packing Problem (BPP problem, which involves finding an ordering of some objects of different volumes to be packed into the minimal number of containers of the same or different size. An optimal solution to this NP-Hard problem can be approximated by means of meta-heuristic methods. On the other hand, we consider the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW, which is a variant of the Travelling Salesman Problem (again a NP-Hard problem with extra constraints. Here we model those two problems in a single framework and use an evolutionary meta-heuristics to solve them jointly. Furthermore, we use data from a real world company as a test-bed for the method introduced here.
Ghosh, D.; Sierksma, G.
2000-01-01
Sensitivity analysis of e-optimal solutions is the problem of calculating the range within which a problem parameter may lie so that the given solution re-mains e-optimal. In this paper we study the sensitivity analysis problem for e-optimal solutions tocombinatorial optimization problems with
LinkMind: link optimization in swarming mobile sensor networks.
Ngo, Trung Dung
2011-01-01
A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.
LinkMind: Link Optimization in Swarming Mobile Sensor Networks
Directory of Open Access Journals (Sweden)
Trung Dung Ngo
2011-08-01
Full Text Available A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.
Finding Multiple Optimal Solutions to Optimal Load Distribution Problem in Hydropower Plant
Directory of Open Access Journals (Sweden)
Xinhao Jiang
2012-05-01
Full Text Available Optimal load distribution (OLD among generator units of a hydropower plant is a vital task for hydropower generation scheduling and management. Traditional optimization methods for solving this problem focus on finding a single optimal solution. However, many practical constraints on hydropower plant operation are very difficult, if not impossible, to be modeled, and the optimal solution found by those models might be of limited practical uses. This motivates us to find multiple optimal solutions to the OLD problem, which can provide more flexible choices for decision-making. Based on a special dynamic programming model, we use a modified shortest path algorithm to produce multiple solutions to the problem. It is shown that multiple optimal solutions exist for the case study of China’s Geheyan hydropower plant, and they are valuable for assessing the stability of generator units, showing the potential of reducing occurrence times of units across vibration areas.
Kulkarni, Shruti R; Rajendran, Bipin
2018-07-01
We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chiadamrong, N.; Piyathanavong, V.
2017-12-01
Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.
SOLVING ENGINEERING OPTIMIZATION PROBLEMS WITH THE SWARM INTELLIGENCE METHODS
Directory of Open Access Journals (Sweden)
V. Panteleev Andrei
2017-01-01
Full Text Available An important stage in problem solving process for aerospace and aerostructures designing is calculating their main charac- teristics optimization. The results of the four constrained optimization problems related to the design of various technical systems: such as determining the best parameters of welded beams, pressure vessel, gear, spring are presented. The purpose of each task is to minimize the cost and weight of the construction. The object functions in optimization practical problem are nonlinear functions with a lot of variables and a complex layer surface indentations. That is why using classical approach for extremum seeking is not efficient. Here comes the necessity of using such methods of optimization that allow to find a near optimal solution in acceptable amount of time with the minimum waste of computer power. Such methods include the methods of Swarm Intelligence: spiral dy- namics algorithm, stochastic diffusion search, hybrid seeker optimization algorithm. The Swarm Intelligence methods are designed in such a way that a swarm consisting of agents carries out the search for extremum. In search for the point of extremum, the parti- cles exchange information and consider their experience as well as the experience of population leader and the neighbors in some area. To solve the listed problems there has been designed a program complex, which efficiency is illustrated by the solutions of four applied problems. Each of the considered applied optimization problems is solved with all the three chosen methods. The ob- tained numerical results can be compared with the ones found in a swarm with a particle method. The author gives recommenda- tions on how to choose methods parameters and penalty function value, which consider inequality constraints.
Application of Artificial Neural Networks to Complex Groundwater Management Problems
International Nuclear Information System (INIS)
Coppola, Emery; Poulton, Mary; Charles, Emmanuel; Dustman, John; Szidarovszky, Ferenc
2003-01-01
As water quantity and quality problems become increasingly severe, accurate prediction and effective management of scarcer water resources will become critical. In this paper, the successful application of artificial neural network (ANN) technology is described for three types of groundwater prediction and management problems. In the first example, an ANN was trained with simulation data from a physically based numerical model to predict head (groundwater elevation) at locations of interest under variable pumping and climate conditions. The ANN achieved a high degree of predictive accuracy, and its derived state-transition equations were embedded into a multiobjective optimization formulation and solved to generate a trade-off curve depicting water supply in relation to contamination risk. In the second and third examples, ANNs were developed with real-world hydrologic and climate data for different hydrogeologic environments. For the second problem, an ANN was developed using data collected for a 5-year, 8-month period to predict heads in a multilayered surficial and limestone aquifer system under variable pumping, state, and climate conditions. Using weekly stress periods, the ANN substantially outperformed a well-calibrated numerical flow model for the 71-day validation period, and provided insights into the effects of climate and pumping on water levels. For the third problem, an ANN was developed with data collected automatically over a 6-week period to predict hourly heads in 11 high-capacity public supply wells tapping a semiconfined bedrock aquifer and subject to large well-interference effects. Using hourly stress periods, the ANN accurately predicted heads for 24-hour periods in all public supply wells. These test cases demonstrate that the ANN technology can solve a variety of complex groundwater management problems and overcome many of the problems and limitations associated with traditional physically based flow models
On the Update Problems for Software Defined Networks
Directory of Open Access Journals (Sweden)
V. A. Zakharov
2014-01-01
Full Text Available The designing of network update algorithms is urgent for the development of SDN control software. A particular case of Network Update Problem is that of restoring seamlessly a given network configuration after some packet forwarding rules have been disabled (say, at the expiry of their time-outs. We study this problem in the framework of a formal model of SDN, develop correct and safe network recovering algorithms, and show that in general case there is no way to restore network configuration seamlessly without referring to priorities of packet forwarding rules.
Turnpike theory of continuous-time linear optimal control problems
Zaslavski, Alexander J
2015-01-01
Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems. The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control, and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous nonconvex and nonsmooth integrands. Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integran...
Optimal stability polynomials for numerical integration of initial value problems
Ketcheson, David I.
2013-01-08
We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step size and corresponding method for a given problem when the spectrum of the initial value problem is known. The problem is expressed in terms of a general least deviation feasibility problem. Its solution is obtained by a new fast, accurate, and robust algorithm based on convex optimization techniques. Global convergence of the algorithm is proven in the case that the order of approximation is one and in the case that the spectrum encloses a starlike region. Examples demonstrate the effectiveness of the proposed algorithm even when these conditions are not satisfied.
Optimal placement of distributed generation in distribution networks ...
African Journals Online (AJOL)
This paper proposes the application of Particle Swarm Optimization (PSO) technique to find the optimal size and optimum location for the placement of DG in the radial distribution networks for active power compensation by reduction in real power losses and enhancement in voltage profile. In the first segment, the optimal ...
Secure Wireless Sensor Networks: Problems and Solutions
Directory of Open Access Journals (Sweden)
Fei Hu
2003-08-01
Full Text Available As sensor networks edge closer towards wide-spread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. This paper analyzes security challenges in wireless sensor networks and summarizes key issues that should be solved for achieving the ad hoc security. It gives an overview of the current state of solutions on such key issues as secure routing, prevention of denial-of-service and key management service. We also present some secure methods to achieve security in wireless sensor networks. Finally we present our integrated approach to securing sensor networks.
Optimal Micropatterns in 2D Transport Networks and Their Relation to Image Inpainting
Brancolini, Alessio; Rossmanith, Carolin; Wirth, Benedikt
2018-04-01
We consider two different variational models of transport networks: the so-called branched transport problem and the urban planning problem. Based on a novel relation to Mumford-Shah image inpainting and techniques developed in that field, we show for a two-dimensional situation that both highly non-convex network optimization tasks can be transformed into a convex variational problem, which may be very useful from analytical and numerical perspectives. As applications of the convex formulation, we use it to perform numerical simulations (to our knowledge this is the first numerical treatment of urban planning), and we prove a lower bound for the network cost that matches a known upper bound (in terms of how the cost scales in the model parameters) which helps better understand optimal networks and their minimal costs.
DEFF Research Database (Denmark)
Chen, Xiaoshuang; Lin, Jin; Wan, Can
2016-01-01
State estimation (SE) in distribution networks is not as accurate as that in transmission networks. Traditionally, distribution networks (DNs) are lack of direct measurements due to the limitations of investments and the difficulties of maintenance. Therefore, it is critical to improve the accuracy...... of SE in distribution networks by placing additional physical meters. For state-of-the-art SE models, it is difficult to clearly quantify measurements' influences on SE errors, so the problems of optimal meter placement for reducing SE errors are mostly solved by heuristic or suboptimal algorithms....... Under this background, this paper proposes a circuit representation model to represent SE errors. Based on the matrix formulation of the circuit representation model, the problem of optimal meter placement can be transformed to a mixed integer linear programming problem (MILP) via the disjunctive model...
Basic Principles of Electrical Network Reliability Optimization in Liberalised Electricity Market
Oleinikova, I.; Krishans, Z.; Mutule, A.
2008-01-01
The authors propose to select long-term solutions to the reliability problems of electrical networks in the stage of development planning. The guide lines or basic principles of such optimization are: 1) its dynamical nature; 2) development sustainability; 3) integrated solution of the problems of network development and electricity supply reliability; 4) consideration of information uncertainty; 5) concurrent consideration of the network and generation development problems; 6) application of specialized information technologies; 7) definition of requirements for independent electricity producers. In the article, the major aspects of liberalized electricity market, its functions and tasks are reviewed, with emphasis placed on the optimization of electrical network development as a significant component of sustainable management of power systems.
A mathematical model for optimization of an integrated network logistic design
Directory of Open Access Journals (Sweden)
Lida Tafaghodi
2011-10-01
Full Text Available In this study, the integrated forward/reverse logistics network is investigated, and a capacitated multi-stage, multi-product logistics network design is proposed by formulating a generalized logistics network problem into a mixed-integer nonlinear programming model (MINLP for minimizing the total cost of the closed-loop supply chain network. Moreover, the proposed model is solved by using optimization solver, which provides the decisions related to the facility location problem, optimum quantity of shipped product, and facility capacity. Numerical results show the power of the proposed MINLP model to avoid th sub-optimality caused by separate design of forward and reverse logistics networks and to handle various transportation modes and periodic demand.
Optimal recombination in genetic algorithms for combinatorial optimization problems: Part I
Directory of Open Access Journals (Sweden)
Eremeev Anton V.
2014-01-01
Full Text Available This paper surveys results on complexity of the optimal recombination problem (ORP, which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We consider efficient reductions of the ORPs, allowing to establish polynomial solvability or NP-hardness of the ORPs, as well as direct proofs of hardness results. Part I presents the basic principles of optimal recombination with a survey of results on Boolean Linear Programming Problems. Part II (to appear in a subsequent issue is devoted to the ORPs for problems which are naturally formulated in terms of search for an optimal permutation.
Particle swarm as optimization tool in complex nuclear engineering problems
International Nuclear Information System (INIS)
Medeiros, Jose Antonio Carlos Canedo
2005-06-01
Due to its low computational cost, gradient-based search techniques associated to linear programming techniques are being used as optimization tools. These techniques, however, when applied to multimodal search spaces, can lead to local optima. When finding solutions for complex multimodal domains, random search techniques are being used with great efficacy. In this work we exploit the swarm optimization algorithm search power capacity as an optimization tool for the solution of complex high dimension and multimodal search spaces of nuclear problems. Due to its easy and natural representation of high dimension domains, the particle swarm optimization was applied with success for the solution of complex nuclear problems showing its efficacy in the search of solutions in high dimension and complex multimodal spaces. In one of these applications it enabled a natural and trivial solution in a way not obtained with other methods confirming the validity of its application. (author)
Galerkin approximations of nonlinear optimal control problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Mickael D. Chekroun
2017-07-01
Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.
A matheuristic for the liner shipping network design problem
DEFF Research Database (Denmark)
Brouer, Berit Dangaard; Desaulniers, Guy
2012-01-01
for revenue and transshipment of cargo along with in/decrease of vessel- and operational cost for the current solution. The evaluation functions may be used by heuristics in general to evaluate changes to a network design without solving a large scale multicommodity flow problem.......We present a matheuristic, an integer programming based heuristic, for the Liner Shipping Network Design Problem. The heuristic applies a greedy construction heuristic based on an interpretation of the liner shipping network design problem as a multiple quadratic knapsack problem. The construction...
Network Monitoring as a Streaming Analytics Problem
Gupta, Arpit
2016-11-02
Programmable switches make it easier to perform flexible network monitoring queries at line rate, and scalable stream processors make it possible to fuse data streams to answer more sophisticated queries about the network in real-time. Unfortunately, processing such network monitoring queries at high traffic rates requires both the switches and the stream processors to filter the traffic iteratively and adaptively so as to extract only that traffic that is of interest to the query at hand. Others have network monitoring in the context of streaming; yet, previous work has not closed the loop in a way that allows network operators to perform streaming analytics for network monitoring applications at scale. To achieve this objective, Sonata allows operators to express a network monitoring query by considering each packet as a tuple and efficiently partitioning each query between the switches and the stream processor through iterative refinement. Sonata extracts only the traffic that pertains to each query, ensuring that the stream processor can scale traffic rates of several terabits per second. We show with a simple example query involving DNS reflection attacks and traffic traces from one of the world\\'s largest IXPs that Sonata can capture 95% of all traffic pertaining to the query, while reducing the overall data rate by a factor of about 400 and the number of required counters by four orders of magnitude. Copyright 2016 ACM.
Genetic Algorithm Optimized Neural Networks Ensemble as ...
African Journals Online (AJOL)
NJD
Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous ... process by training a number of neural networks. .... Matlab® version 6.1 was employed for building principal component ... provide a fair simulation of calibration data set with some degree.
Network synchronization: optimal and pessimal scale-free topologies
Energy Technology Data Exchange (ETDEWEB)
Donetti, Luca [Departamento de Electronica y Tecnologia de Computadores and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hurtado, Pablo I; Munoz, Miguel A [Departamento de Electromagnetismo y Fisica de la Materia and Instituto Carlos I de Fisica Teorica y Computacional Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)], E-mail: mamunoz@onsager.ugr.es
2008-06-06
By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.
Network synchronization: optimal and pessimal scale-free topologies
International Nuclear Information System (INIS)
Donetti, Luca; Hurtado, Pablo I; Munoz, Miguel A
2008-01-01
By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability
Parallel and Cooperative Particle Swarm Optimizer for Multimodal Problems
Directory of Open Access Journals (Sweden)
Geng Zhang
2015-01-01
Full Text Available Although the original particle swarm optimizer (PSO method and its related variant methods show some effectiveness for solving optimization problems, it may easily get trapped into local optimum especially when solving complex multimodal problems. Aiming to solve this issue, this paper puts forward a novel method called parallel and cooperative particle swarm optimizer (PCPSO. In case that the interacting of the elements in D-dimensional function vector X=[x1,x2,…,xd,…,xD] is independent, cooperative particle swarm optimizer (CPSO is used. Based on this, the PCPSO is presented to solve real problems. Since the dimension cannot be split into several lower dimensional search spaces in real problems because of the interacting of the elements, PCPSO exploits the cooperation of two parallel CPSO algorithms by orthogonal experimental design (OED learning. Firstly, the CPSO algorithm is used to generate two locally optimal vectors separately; then the OED is used to learn the merits of these two vectors and creates a better combination of them to generate further search. Experimental studies on a set of test functions show that PCPSO exhibits better robustness and converges much closer to the global optimum than several other peer algorithms.
Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem
Directory of Open Access Journals (Sweden)
S Sarathambekai
2017-03-01
Full Text Available Discrete particle swarm optimization is one of the most recently developed population-based meta-heuristic optimization algorithm in swarm intelligence that can be used in any discrete optimization problems. This article presents a discrete particle swarm optimization algorithm to efficiently schedule the tasks in the heterogeneous multiprocessor systems. All the optimization algorithms share a common algorithmic step, namely population initialization. It plays a significant role because it can affect the convergence speed and also the quality of the final solution. The random initialization is the most commonly used method in majority of the evolutionary algorithms to generate solutions in the initial population. The initial good quality solutions can facilitate the algorithm to locate the optimal solution or else it may prevent the algorithm from finding the optimal solution. Intelligence should be incorporated to generate the initial population in order to avoid the premature convergence. This article presents a discrete particle swarm optimization algorithm, which incorporates opposition-based technique to generate initial population and greedy algorithm to balance the load of the processors. Make span, flow time, and reliability cost are three different measures used to evaluate the efficiency of the proposed discrete particle swarm optimization algorithm for scheduling independent tasks in distributed systems. Computational simulations are done based on a set of benchmark instances to assess the performance of the proposed algorithm.
Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing
2017-07-19
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.
Optimal defense resource allocation in scale-free networks
Zhang, Xuejun; Xu, Guoqiang; Xia, Yongxiang
2018-02-01
The robustness research of networked systems has drawn widespread attention in the past decade, and one of the central topics is to protect the network from external attacks through allocating appropriate defense resource to different nodes. In this paper, we apply a specific particle swarm optimization (PSO) algorithm to optimize the defense resource allocation in scale-free networks. Results reveal that PSO based resource allocation shows a higher robustness than other resource allocation strategies such as uniform, degree-proportional, and betweenness-proportional allocation strategies. Furthermore, we find that assigning less resource to middle-degree nodes under small-scale attack while more resource to low-degree nodes under large-scale attack is conductive to improving the network robustness. Our work provides an insight into the optimal defense resource allocation pattern in scale-free networks and is helpful for designing a more robust network.
Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches
Directory of Open Access Journals (Sweden)
Jui-Yu Wu
2013-01-01
Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.
Krohling, Renato A; Coelho, Leandro dos Santos
2006-12-01
In this correspondence, an approach based on coevolutionary particle swarm optimization to solve constrained optimization problems formulated as min-max problems is presented. In standard or canonical particle swarm optimization (PSO), a uniform probability distribution is used to generate random numbers for the accelerating coefficients of the local and global terms. We propose a Gaussian probability distribution to generate the accelerating coefficients of PSO. Two populations of PSO using Gaussian distribution are used on the optimization algorithm that is tested on a suite of well-known benchmark constrained optimization problems. Results have been compared with the canonical PSO (constriction factor) and with a coevolutionary genetic algorithm. Simulation results show the suitability of the proposed algorithm in terms of effectiveness and robustness.
Modeling, Optimization & Control of Hydraulic Networks
DEFF Research Database (Denmark)
Tahavori, Maryamsadat
2014-01-01
. The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used......Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.
Garro, Beatriz A; Vázquez, Roberto A
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.
Heuristic Optimization for the Discrete Virtual Power Plant Dispatch Problem
DEFF Research Database (Denmark)
Petersen, Mette Kirschmeyer; Hansen, Lars Henrik; Bendtsen, Jan Dimon
2014-01-01
We consider a Virtual Power Plant, which is given the task of dispatching a fluctuating power supply to a portfolio of flexible consumers. The flexible consumers are modeled as discrete batch processes, and the associated optimization problem is denoted the Discrete Virtual Power Plant Dispatch...... Problem. First NP-completeness of the Discrete Virtual Power Plant Dispatch Problem is proved formally. We then proceed to develop tailored versions of the meta-heuristic algorithms Hill Climber and Greedy Randomized Adaptive Search Procedure (GRASP). The algorithms are tuned and tested on portfolios...... of varying sizes. We find that all the tailored algorithms perform satisfactorily in the sense that they are able to find sub-optimal, but usable, solutions to very large problems (on the order of 10 5 units) at computation times on the scale of just 10 seconds, which is far beyond the capabilities...
Solving optimization problems by the public goods game
Javarone, Marco Alberto
2017-09-01
We introduce a method based on the Public Goods Game for solving optimization tasks. In particular, we focus on the Traveling Salesman Problem, i.e. a NP-hard problem whose search space exponentially grows increasing the number of cities. The proposed method considers a population whose agents are provided with a random solution to the given problem. In doing so, agents interact by playing the Public Goods Game using the fitness of their solution as currency of the game. Notably, agents with better solutions provide higher contributions, while those with lower ones tend to imitate the solution of richer agents for increasing their fitness. Numerical simulations show that the proposed method allows to compute exact solutions, and suboptimal ones, in the considered search spaces. As result, beyond to propose a new heuristic for combinatorial optimization problems, our work aims to highlight the potentiality of evolutionary game theory beyond its current horizons.
Newton-type methods for optimization and variational problems
Izmailov, Alexey F
2014-01-01
This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will b...
Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem
Directory of Open Access Journals (Sweden)
Xiaomei Zhang
2012-01-01
Full Text Available We present some sufficient global optimality conditions for a special cubic minimization problem with box constraints or binary constraints by extending the global subdifferential approach proposed by V. Jeyakumar et al. (2006. The present conditions generalize the results developed in the work of V. Jeyakumar et al. where a quadratic minimization problem with box constraints or binary constraints was considered. In addition, a special diagonal matrix is constructed, which is used to provide a convenient method for justifying the proposed sufficient conditions. Then, the reformulation of the sufficient conditions follows. It is worth noting that this reformulation is also applicable to the quadratic minimization problem with box or binary constraints considered in the works of V. Jeyakumar et al. (2006 and Y. Wang et al. (2010. Finally some examples demonstrate that our optimality conditions can effectively be used for identifying global minimizers of the certain nonconvex cubic minimization problem.
Routing Optimization of AVB Streams in TSN Networks
DEFF Research Database (Denmark)
Laursen, Sune Mølgaard; Pop, Paul; Steiner, Wilfried
2016-01-01
In this paper we are interested in safety-critical real-time applications implemented on distributed architectures using the Time-Sensitive Networking (TSN) standard. The ongoing standardization of TSN is an IEEE effort to bring deterministic real-time capabilities into the IEEE 802.1 Ethernet...... standard supporting safety-critical systems and guaranteed Quality-of-Service. TSN will support Time-Triggered (TT) communication based on schedule tables, Audio-Video-Bridging (AVB) streams with bounded end-to-end latency as well as Best-Effort messages. We consider that we know the topology...... Procedure (GRASP)-based heuristic for this routing optimization problem. The proposed approaches has been evaluated using several test cases....
Compiling Planning into Quantum Optimization Problems: A Comparative Study
2015-06-07
to SAT, and then reduces higher order terms to quadratic terms through a series of gadgets . Our mappings allow both positive and negative preconditions...to its being specific to this type of problem) and likely benefits from an homogeneous parameter setting (Venturelli et al. 2014), as it generates a...Guzik, A. 2013. Resource efficient gadgets for compiling adiabatic quan- tum optimization problems. Annalen der Physik 525(10- 11):877–888. Blum, A
Optimal Results and Numerical Simulations for Flow Shop Scheduling Problems
Directory of Open Access Journals (Sweden)
Tao Ren
2012-01-01
Full Text Available This paper considers the m-machine flow shop problem with two objectives: makespan with release dates and total quadratic completion time, respectively. For Fm|rj|Cmax, we prove the asymptotic optimality for any dense scheduling when the problem scale is large enough. For Fm‖ΣCj2, improvement strategy with local search is presented to promote the performance of the classical SPT heuristic. At the end of the paper, simulations show the effectiveness of the improvement strategy.
Ojalehto, Vesa; Podkopaev, Dmitry; Miettinen, Kaisa
2015-01-01
We generalize the applicability of interactive methods for solving computationally demanding, that is, time-consuming, multiobjective optimization problems. For this purpose we propose a new agent assisted interactive algorithm. It employs a computationally inexpensive surrogate problem and four different agents that intelligently update the surrogate based on the preferences specified by a decision maker. In this way, we decrease the waiting times imposed on the decision maker du...
Discrete PSO algorithm based optimization of transmission lines loading in TNEP problem
International Nuclear Information System (INIS)
Shayeghi, H.; Mahdavi, M.; Bagheri, A.
2010-01-01
Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, lines adequacy rate has not been considered at the end of planning horizon, i.e. expanded network misses adequacy after some times and needs to be expanded again. In this paper, expansion planning has been implemented by merging lines loading parameter in the STNEP and inserting investment cost into the fitness function constraints using discrete particle swarm optimization (DPSO) algorithm. Expanded network will possess a maximum adequacy to provide load demand and also the transmission lines overloaded later. The proposed idea has been tested on the Garvers network and an actual transmission network of the Azerbaijan regional electric company, Iran, and the results are compared with the decimal codification genetic algorithm (DCGA) technique. The results evaluation shows that the network will possess maximum efficiency economically. Also, it is shown that precision and convergence speed of the proposed DPSO based method for the solution of the STNEP problem is superior to DCGA approach.
An optimization algorithm for a capacitated vehicle routing problem ...
Indian Academy of Sciences (India)
In this paper, vehicle routing problem (VRP) with time windows and real world constraints are considered as a real-world application on google maps. Also, tabu search is used and Hopfield neural networks is utilized. Basic constraints consist of customer demands, time windows, vehicle speed, vehicle capacity andworking ...
Solving the Weighted Constraint Satisfaction Problems Via the Neural Network Approach
Directory of Open Access Journals (Sweden)
Khalid Haddouch
2016-09-01
Full Text Available A wide variety of real world optimization problems can be modelled as Weighted Constraint Satisfaction Problems (WCSPs. In this paper, we model this problem in terms of in original 0-1 quadratic programming subject to leaner constraints. View it performance, we use the continuous Hopfield network to solve the obtained model basing on original energy function. To validate our model, we solve several instance of benchmarking WCSP. In this regard, our approach recognizes the optimal solution of the said instances.
Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Haitao Xu
2018-01-01
Full Text Available As we all know, there are a great number of optimization problems in the world. One of the relatively complicated and high-level problems is the vehicle routing problem (VRP. Dynamic vehicle routing problem (DVRP is a major variant of VRP, and it is closer to real logistic scene. In DVRP, the customers’ demands appear with time, and the unserved customers’ points must be updated and rearranged while carrying out the programming paths. Owing to the complexity and significance of the problem, DVRP applications have grabbed the attention of researchers in the past two decades. In this paper, we have two main contributions to solving DVRP. Firstly, DVRP is solved with enhanced Ant Colony Optimization (E-ACO, which is the traditional Ant Colony Optimization (ACO fusing improved K-means and crossover operation. K-means can divide the region with the most reasonable distance, while ACO using crossover is applied to extend search space and avoid falling into local optimum prematurely. Secondly, several new evaluation benchmarks are proposed, which can objectively and comprehensively estimate the proposed method. In the experiment, the results for different scale problems are compared to those of previously published papers. Experimental results show that the algorithm is feasible and efficient.
Hooda, Nikhil; Damani, Om
2017-06-01
The classic problem of the capital cost optimization of branched piped networks consists of choosing pipe diameters for each pipe in the network from a discrete set of commercially available pipe diameters. Each pipe in the network can consist of multiple segments of differing diameters. Water networks also consist of intermediate tanks that act as buffers between incoming flow from the primary source and the outgoing flow to the demand nodes. The network from the primary source to the tanks is called the primary network, and the network from the tanks to the demand nodes is called the secondary network. During the design stage, the primary and secondary networks are optimized separately, with the tanks acting as demand nodes for the primary network. Typically the choice of tank locations, their elevations, and the set of demand nodes to be served by different tanks is manually made in an ad hoc fashion before any optimization is done. It is desirable therefore to include this tank configuration choice in the cost optimization process itself. In this work, we explain why the choice of tank configuration is important to the design of a network and describe an integer linear program model that integrates the tank configuration to the standard pipe diameter selection problem. In order to aid the designers of piped-water networks, the improved cost optimization formulation is incorporated into our existing network design system called JalTantra.
Groenwold, A.A.; Etman, L.F.P.
2008-01-01
We study the classical topology optimization problem, in which minimum compliance is sought, subject to linear constraints. Using a dual statement, we propose two separable and strictly convex subproblems for use in sequential approximate optimization (SAO) algorithms.Respectively, the subproblems
Optimal recombination in genetic algorithms for combinatorial optimization problems: Part II
Directory of Open Access Journals (Sweden)
Eremeev Anton V.
2014-01-01
Full Text Available This paper surveys results on complexity of the optimal recombination problem (ORP, which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. In Part II, we consider the computational complexity of ORPs arising in genetic algorithms for problems on permutations: the Travelling Salesman Problem, the Shortest Hamilton Path Problem and the Makespan Minimization on Single Machine and some other related problems. The analysis indicates that the corresponding ORPs are NP-hard, but solvable by faster algorithms, compared to the problems they are derived from.
RECOVERY ACT - Robust Optimization for Connectivity and Flows in Dynamic Complex Networks
Energy Technology Data Exchange (ETDEWEB)
Balasundaram, Balabhaskar [Oklahoma State Univ., Stillwater, OK (United States); Butenko, Sergiy [Texas A & M Univ., College Station, TX (United States); Boginski, Vladimir [Univ. of Florida, Gainesville, FL (United States); Uryasev, Stan [Univ. of Florida, Gainesville, FL (United States)
2013-12-25
The goal of this project was to study robust connectivity and flow patterns of complex multi-scale systems modeled as networks. Networks provide effective ways to study global, system level properties, as well as local, multi-scale interactions at a component level. Numerous applications from power systems, telecommunication, transportation, biology, social science, and other areas have benefited from novel network-based models and their analysis. Modeling and optimization techniques that employ appropriate measures of risk for identifying robust clusters and resilient network designs in networks subject to uncertain failures were investigated in this collaborative multi-university project. In many practical situations one has to deal with uncertainties associated with possible failures of network components, thereby affecting the overall efficiency and performance of the system (e.g., every node/connection has a probability of partial or complete failure). Some extreme examples include power grid component failures, airline hub failures due to weather, or freeway closures due to emergencies. These are also situations in which people, materials, or other resources need to be managed efficiently. Important practical examples include rerouting flow through power grids, adjusting flight plans, and identifying routes for emergency services and supplies, in the event network elements fail unexpectedly. Solutions that are robust under uncertainty, in addition to being economically efficient, are needed. This project has led to the development of novel models and methodologies that can tackle the optimization problems arising in such situations. A number of new concepts, which have not been previously applied in this setting, were investigated in the framework of the project. The results can potentially help decision-makers to better control and identify robust or risk-averse decisions in such situations. Formulations and optimal solutions of the considered problems need
Quadratic third-order tensor optimization problem with quadratic constraints
Directory of Open Access Journals (Sweden)
Lixing Yang
2014-05-01
Full Text Available Quadratically constrained quadratic programs (QQPs problems play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Semidenite programming (SDP relaxations often provide good approximate solutions to these hard problems. For several special cases of QQP, e.g., convex programs and trust region subproblems, SDP relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective.In this paper, we consider a certain QQP where the variable is neither vector nor matrix but a third-order tensor. This problem can be viewed as a generalization of the ordinary QQP with vector or matrix as it's variant. Under some mild conditions, we rst show that SDP relaxation provides exact optimal solutions for the original problem. Then we focus on two classes of homogeneous quadratic tensor programming problems which have no requirements on the constraints number. For one, we provide an easily implemental polynomial time algorithm to approximately solve the problem and discuss the approximation ratio. For the other, we show there is no gap between the SDP relaxation and itself.
AS Migration and Optimization of the Power Integrated Data Network
Zhou, Junjie; Ke, Yue
2018-03-01
In the transformation process of data integration network, the impact on the business has always been the most important reference factor to measure the quality of network transformation. With the importance of the data network carrying business, we must put forward specific design proposals during the transformation, and conduct a large number of demonstration and practice to ensure that the transformation program meets the requirements of the enterprise data network. This paper mainly demonstrates the scheme of over-migrating point-to-point access equipment in the reconstruction project of power data comprehensive network to migrate the BGP autonomous domain to the specified domain defined in the industrial standard, and to smooth the intranet OSPF protocol Migration into ISIS agreement. Through the optimization design, eventually making electric power data network performance was improved on traffic forwarding, traffic forwarding path optimized, extensibility, get larger, lower risk of potential loop, the network stability was improved, and operational cost savings, etc.
A trust region interior point algorithm for optimal power flow problems
Energy Technology Data Exchange (ETDEWEB)
Wang Min [Hefei University of Technology (China). Dept. of Electrical Engineering and Automation; Liu Shengsong [Jiangsu Electric Power Dispatching and Telecommunication Company (China). Dept. of Automation
2005-05-01
This paper presents a new algorithm that uses the trust region interior point method to solve nonlinear optimal power flow (OPF) problems. The OPF problem is solved by a primal/dual interior point method with multiple centrality corrections as a sequence of linearized trust region sub-problems. It is the trust region that controls the linear step size and ensures the validity of the linear model. The convergence of the algorithm is improved through the modification of the trust region sub-problem. Numerical results of standard IEEE systems and two realistic networks ranging in size from 14 to 662 buses are presented. The computational results show that the proposed algorithm is very effective to optimal power flow applications, and favors the successive linear programming (SLP) method. Comparison with the predictor/corrector primal/dual interior point (PCPDIP) method is also made to demonstrate the superiority of the multiple centrality corrections technique. (author)
[SIAM conference on optimization
Energy Technology Data Exchange (ETDEWEB)
1992-05-10
Abstracts are presented of 63 papers on the following topics: large-scale optimization, interior-point methods, algorithms for optimization, problems in control, network optimization methods, and parallel algorithms for optimization problems.
ENERGY OPTIMIZATION IN CLUSTER BASED WIRELESS SENSOR NETWORKS
Directory of Open Access Journals (Sweden)
T. SHANKAR
2014-04-01
Full Text Available Wireless sensor networks (WSN are made up of sensor nodes which are usually battery-operated devices, and hence energy saving of sensor nodes is a major design issue. To prolong the networks lifetime, minimization of energy consumption should be implemented at all layers of the network protocol stack starting from the physical to the application layer including cross-layer optimization. Optimizing energy consumption is the main concern for designing and planning the operation of the WSN. Clustering technique is one of the methods utilized to extend lifetime of the network by applying data aggregation and balancing energy consumption among sensor nodes of the network. This paper proposed new version of Low Energy Adaptive Clustering Hierarchy (LEACH, protocols called Advanced Optimized Low Energy Adaptive Clustering Hierarchy (AOLEACH, Optimal Deterministic Low Energy Adaptive Clustering Hierarchy (ODLEACH, and Varying Probability Distance Low Energy Adaptive Clustering Hierarchy (VPDL combination with Shuffled Frog Leap Algorithm (SFLA that enables selecting best optimal adaptive cluster heads using improved threshold energy distribution compared to LEACH protocol and rotating cluster head position for uniform energy dissipation based on energy levels. The proposed algorithm optimizing the life time of the network by increasing the first node death (FND time and number of alive nodes, thereby increasing the life time of the network.
Stochastic network optimization with application to communication and queueing systems
Neely, Michael
2010-01-01
This text presents a modern theory of analysis, control, and optimization for dynamic networks. Mathematical techniques of Lyapunov drift and Lyapunov optimization are developed and shown to enable constrained optimization of time averages in general stochastic systems. The focus is on communication and queueing systems, including wireless networks with time-varying channels, mobility, and randomly arriving traffic. A simple drift-plus-penalty framework is used to optimize time averages such as throughput, throughput-utility, power, and distortion. Explicit performance-delay tradeoffs are prov
Directory of Open Access Journals (Sweden)
P.-Y. Chen
2009-01-01
Full Text Available This study proposes a neural network-family competition genetic algorithm (NN-FCGA for solving the electromagnetic (EM optimization and other general-purpose optimization problems. The NN-FCGA is a hybrid evolutionary-based algorithm, combining the good approximation performance of neural network (NN and the robust and effective optimum search ability of the family competition genetic algorithms (FCGA to accelerate the optimization process. In this study, the NN-FCGA is used to extract a set of optimal design parameters for two representative design examples: the multiple section low-pass filter and the polygonal electromagnetic absorber. Our results demonstrate that the optimal electromagnetic properties given by the NN-FCGA are comparable to those of the FCGA, but reducing a large amount of computation time and a well-trained NN model that can serve as a nonlinear approximator was developed during the optimization process of the NN-FCGA.
International Nuclear Information System (INIS)
Pombo, A. Vieira; Murta-Pina, João; Pires, V. Fernão
2015-01-01
A multi-objective planning approach for the reliability of electric distribution networks using a memetic optimization is presented. In this reliability optimization, the type of the equipment (switches or reclosers) and their location are optimized. The multiple objectives considered to find the optimal values for these planning variables are the minimization of the total equipment cost and at the same time the minimization of two distribution network reliability indexes. The reliability indexes are the system average interruption frequency index (SAIFI) and system average interruption duration index (SAIDI). To solve this problem a memetic evolutionary algorithm is proposed, which combines the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) with a local search algorithm. The obtained Pareto-optimal front contains solutions of different trade-offs with respect to the three objectives. A real distribution network is used to test the proposed algorithm. The obtained results show that this approach allows the utility to obtain the optimal type and location of the equipments to achieve the best reliability with the lower cost. - Highlights: • Reliability indexes SAIFI and SAIDI and Equipment Cost are optimized. • Optimization of equipment type, number and location on a MV network. • Memetic evolutionary algorithm with a local search algorithm is proposed. • Pareto optimal front solutions with respect to the three objective functions
Optimal assignment of multiple utilities in heat exchange networks
International Nuclear Information System (INIS)
Salama, A.I.A.
2009-01-01
used to determine the horizontal shift (bias) B between the CCs. In the overlap range, the Bs are determined at all temperatures in set T ol to generate the bias set B. The maximum value of B's in set B , B*, is used in an optimization scheme to determine the optimal assignment of multiple utilities, optimal heat- energy targets, grand composite curve (GCC), and the complement grand composite curve (CGCC) (Salama, 2009), if needed. It should be pointed out that the optimal heat-energy targets and optimal multiple utilities are needed in heat-pinch analysis. The motivations for the present work is to complement the work of Shenoy [U.V. Shenoy, A. Sinha, S. Bandyopadhyay, Multiple utilities targeting for heat exchanger networks, Trans Institution of Chemical Engineers Part A, 76 (1998) 259-272], by approaching the multiple-utility targeting not sequential but rather in a direct manner. Furthermore, the proposed technique builds on the strengths of the numerical techniques developed by Salama [A.I.A. Salama, Numerical techniques for determining heat energy targets in pinch analysis, Computers and Chemical Engineering 29 (2005)1861-1866; A.I.A. Salama, Determination of the optimal heat energy targets in heat pinch analysis using a geometry-based approach, Computers and Chemical Engineering 30 (2006) 758-764], which are different from the conventional one that starts with the problem table algorithm (PTA). The proposed technique starts with the determination of the optimally positioned CCs and then proceeds to determine the optimal heat energy targets, heat pinch-point location, grand composite curve (GCC), complement grand composite curve (CGCC) [A.I.A. Salama, Numerical construction of HEN composite curves and their attributes, Computers and Chemical Engineering, 33 (2009) 181-190], and optimal assignment of multiple utilities. Moreover, the proposed numerical technique can handle both quasi-linear CCs and CCs exhibiting discontinuities (assuming the critical lower bound
Designing optimal greenhouse gas monitoring networks for Australia
Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.
2016-01-01
Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.
Wang, Hui; Liu, Chunyue; Rong, Luge; Wang, Xiaoxu; Sun, Lina; Luo, Qing; Wu, Hao
2018-01-09
River monitoring networks play an important role in water environmental management and assessment, and it is critical to develop an appropriate method to optimize the monitoring network. In this study, an effective method was proposed based on the attainment rate of National Grade III water quality, optimal partition analysis and Euclidean distance, and Hun River was taken as a method validation case. There were 7 sampling sites in the monitoring network of the Hun River, and 17 monitoring items were analyzed once a month during January 2009 to December 2010. The results showed that the main monitoring items in the surface water of Hun River were ammonia nitrogen (NH 4 + -N), chemical oxygen demand, and biochemical oxygen demand. After optimization, the required number of monitoring sites was reduced from seven to three, and 57% of the cost was saved. In addition, there were no significant differences between non-optimized and optimized monitoring networks, and the optimized monitoring networks could correctly represent the original monitoring network. The duplicate setting degree of monitoring sites decreased after optimization, and the rationality of the monitoring network was improved. Therefore, the optimal method was identified as feasible, efficient, and economic.
Optimization problems with equilibrium constraints and their numerical solution
Czech Academy of Sciences Publication Activity Database
Kočvara, Michal; Outrata, Jiří
Roč. 101 , č. 1 (2004), s. 119-149 ISSN 0025-5610 R&D Projects: GA AV ČR IAA1075005 Grant - others:BMBF(DE) 03ZOM3ER Institutional research plan: CEZ:AV0Z1075907 Keywords : optimization problems * MPEC * MPCC Subject RIV: BA - General Mathematics Impact factor: 1.016, year: 2004
Scenario tree generation and multi-asset financial optimization problems
DEFF Research Database (Denmark)
Geyer, Alois; Hanke, Michael; Weissensteiner, Alex
2013-01-01
We compare two popular scenario tree generation methods in the context of financial optimization: moment matching and scenario reduction. Using a simple problem with a known analytic solution, moment matching-when ensuring absence of arbitrage-replicates this solution precisely. On the other hand...
Optimal portfolio selection for general provisioning and terminal wealth problems
van Weert, K.; Dhaene, J.; Goovaerts, M.
2010-01-01
In Dhaene et al. (2005), multiperiod portfolio selection problems are discussed, using an analytical approach to find optimal constant mix investment strategies in a provisioning or a savings context. In this paper we extend some of these results, investigating some specific, real-life situations.
Optimal portfolio selection for general provisioning and terminal wealth problems
van Weert, K.; Dhaene, J.; Goovaerts, M.
2009-01-01
In Dhaene et al. (2005), multiperiod portfolio selection problems are discussed, using an analytical approach to find optimal constant mix investment strategies in a provisioning or savings context. In this paper we extend some of these results, investigating some specific, real-life situations. The
New preconditioned conjugate gradient algorithms for nonlinear unconstrained optimization problems
International Nuclear Information System (INIS)
Al-Bayati, A.; Al-Asadi, N.
1997-01-01
This paper presents two new predilection conjugate gradient algorithms for nonlinear unconstrained optimization problems and examines their computational performance. Computational experience shows that the new proposed algorithms generally imp lone the efficiency of Nazareth's [13] preconditioned conjugate gradient algorithm. (authors). 16 refs., 1 tab
Proposal of Evolutionary Simplex Method for Global Optimization Problem
Shimizu, Yoshiaki
To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.
Redundant interferometric calibration as a complex optimization problem
Grobler, T. L.; Bernardi, G.; Kenyon, J. S.; Parsons, A. R.; Smirnov, O. M.
2018-05-01
Observations of the redshifted 21 cm line from the epoch of reionization have recently motivated the construction of low-frequency radio arrays with highly redundant configurations. These configurations provide an alternative calibration strategy - `redundant calibration' - and boost sensitivity on specific spatial scales. In this paper, we formulate calibration of redundant interferometric arrays as a complex optimization problem. We solve this optimization problem via the Levenberg-Marquardt algorithm. This calibration approach is more robust to initial conditions than current algorithms and, by leveraging an approximate matrix inversion, allows for further optimization and an efficient implementation (`redundant STEFCAL'). We also investigated using the preconditioned conjugate gradient method as an alternative to the approximate matrix inverse, but found that its computational performance is not competitive with respect to `redundant STEFCAL'. The efficient implementation of this new algorithm is made publicly available.
Utilizing Problem Structure in Optimization of Radiation Therapy
International Nuclear Information System (INIS)
Carlsson, Fredrik
2008-04-01
In this thesis, optimization approaches for intensity-modulated radiation therapy are developed and evaluated with focus on numerical efficiency and treatment delivery aspects. The first two papers deal with strategies for solving fluence map optimization problems efficiently while avoiding solutions with jagged fluence profiles. The last two papers concern optimization of step-and-shoot parameters with emphasis on generating treatment plans that can be delivered efficiently and accurately. In the first paper, the problem dimension of a fluence map optimization problem is reduced through a spectral decomposition of the Hessian of the objective function. The weights of the eigenvectors corresponding to the p largest eigenvalues are introduced as optimization variables, and the impact on the solution of varying p is studied. Including only a few eigenvector weights results in faster initial decrease of the objective value, but with an inferior solution, compared to optimization of the bixel weights. An approach combining eigenvector weights and bixel weights produces improved solutions, but at the expense of the pre-computational time for the spectral decomposition. So-called iterative regularization is performed on fluence map optimization problems in the second paper. The idea is to find regular solutions by utilizing an optimization method that is able to find near-optimal solutions with non-jagged fluence profiles in few iterations. The suitability of a quasi-Newton sequential quadratic programming method is demonstrated by comparing the treatment quality of deliverable step-and-shoot plans, generated through leaf sequencing with a fixed number of segments, for different number of bixel-weight iterations. A conclusion is that over-optimization of the fluence map optimization problem prior to leaf sequencing should be avoided. An approach for dynamically generating multileaf collimator segments using a column generation approach combined with optimization of
Problem statement for optimal design of steel structures
Directory of Open Access Journals (Sweden)
Ginzburg Aleksandr Vital'evich
2014-07-01
Full Text Available The presented article considers the following complex of tasks. The main stages of the life cycle of a building construction with the indication of process entrance and process exit are described. Requirements imposed on steel constructions are considered. The optimum range of application for steel designs is specified, as well as merits and demerits of a design material. The nomenclature of metal designs is listed - the block diagram is constructed. Possible optimality criteria of steel designs, offered by various authors for various types of constructions are considered. It is established that most often the criterion of a minimum of design mass is accepted as criterion of optimality; more rarely - a minimum of the given expenses, a minimum of a design cost in business. In the present article special attention is paid to a type of objective function of optimization problem. It is also established that depending on the accepted optimality criterion, the use of different types of functions is possible. This complexity of objective function depends on completeness of optimality criterion application. In the work the authors consider the following objective functions: the mass of the main element of a design; objective function by criterion of factory cost; objective function by criterion of cost in business. According to these examples it can be seen that objective functions by the criteria of labor expenses for production of designs are generally non-linear, which complicates solving the optimization problem. Another important factor influencing the problem of optimal design solution for steel designs, which is analyzed, is account for operating restrictions. In the article 8 groups of restrictions are analyzed. Attempts to completely account for the parameters of objective function optimized by particular optimality criteria, taking into account all the operating restrictions, considerably complicates the problem of designing. For solving this
Medical Optimization Network for Space Telemedicine Resources
Shah, R. V.; Mulcahy, R.; Rubin, D.; Antonsen, E. L.; Kerstman, E. L.; Reyes, D.
2017-01-01
INTRODUCTION: Long-duration missions beyond low Earth orbit introduce new constraints to the space medical system such as the inability to evacuate to Earth, communication delays, and limitations in clinical skillsets. NASA recognizes the need to improve capabilities for autonomous care on such missions. As the medical system is developed, it is important to have an ability to evaluate the trade space of what resources will be most important. The Medical Optimization Network for Space Telemedicine Resources was developed for this reason, and is now a system to gauge the relative importance of medical resources in addressing medical conditions. METHODS: A list of medical conditions of potential concern for an exploration mission was referenced from the Integrated Medical Model, a probabilistic model designed to quantify in-flight medical risk. The diagnostic and treatment modalities required to address best and worst-case scenarios of each medical condition, at the terrestrial standard of care, were entered into a database. This list included tangible assets (e.g. medications) and intangible assets (e.g. clinical skills to perform a procedure). A team of physicians working within the Exploration Medical Capability Element of NASA's Human Research Program ranked each of the items listed according to its criticality. Data was then obtained from the IMM for the probability of occurrence of the medical conditions, including a breakdown of best case and worst case, during a Mars reference mission. The probability of occurrence information and criticality for each resource were taken into account during analytics performed using Tableau software. RESULTS: A database and weighting system to evaluate all the diagnostic and treatment modalities was created by combining the probability of condition occurrence data with the criticalities assigned by the physician team. DISCUSSION: Exploration Medical Capabilities research at NASA is focused on providing a medical system to
Optimizing investment fund allocation using vehicle routing problem framework
Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita
2014-07-01
The objective of investment is to maximize total returns or minimize total risks. To determine the optimum order of investment, vehicle routing problem method is used. The method which is widely used in the field of resource distribution shares almost similar characteristics with the problem of investment fund allocation. In this paper we describe and elucidate the concept of using vehicle routing problem framework in optimizing the allocation of investment fund. To better illustrate these similarities, sectorial data from FTSE Bursa Malaysia is used. Results show that different values of utility for risk-averse investors generate the same investment routes.
Essays on variational approximation techniques for stochastic optimization problems
Deride Silva, Julio A.
This dissertation presents five essays on approximation and modeling techniques, based on variational analysis, applied to stochastic optimization problems. It is divided into two parts, where the first is devoted to equilibrium problems and maxinf optimization, and the second corresponds to two essays in statistics and uncertainty modeling. Stochastic optimization lies at the core of this research as we were interested in relevant equilibrium applications that contain an uncertain component, and the design of a solution strategy. In addition, every stochastic optimization problem relies heavily on the underlying probability distribution that models the uncertainty. We studied these distributions, in particular, their design process and theoretical properties such as their convergence. Finally, the last aspect of stochastic optimization that we covered is the scenario creation problem, in which we described a procedure based on a probabilistic model to create scenarios for the applied problem of power estimation of renewable energies. In the first part, Equilibrium problems and maxinf optimization, we considered three Walrasian equilibrium problems: from economics, we studied a stochastic general equilibrium problem in a pure exchange economy, described in Chapter 3, and a stochastic general equilibrium with financial contracts, in Chapter 4; finally from engineering, we studied an infrastructure planning problem in Chapter 5. We stated these problems as belonging to the maxinf optimization class and, in each instance, we provided an approximation scheme based on the notion of lopsided convergence and non-concave duality. This strategy is the foundation of the augmented Walrasian algorithm, whose convergence is guaranteed by lopsided convergence, that was implemented computationally, obtaining numerical results for relevant examples. The second part, Essays about statistics and uncertainty modeling, contains two essays covering a convergence problem for a sequence
Topologically determined optimal stochastic resonance responses of spatially embedded networks
International Nuclear Information System (INIS)
Gosak, Marko; Marhl, Marko; Korosak, Dean
2011-01-01
We have analyzed the stochastic resonance phenomenon on spatial networks of bistable and excitable oscillators, which are connected according to their location and the amplitude of external forcing. By smoothly altering the network topology from a scale-free (SF) network with dominating long-range connections to a network where principally only adjacent oscillators are connected, we reveal that besides an optimal noise intensity, there is also a most favorable interaction topology at which the best correlation between the response of the network and the imposed weak external forcing is achieved. For various distributions of the amplitudes of external forcing, the optimal topology is always found in the intermediate regime between the highly heterogeneous SF network and the strong geometric regime. Our findings thus indicate that a suitable number of hubs and with that an optimal ratio between short- and long-range connections is necessary in order to obtain the best global response of a spatial network. Furthermore, we link the existence of the optimal interaction topology to a critical point indicating the transition from a long-range interactions-dominated network to a more lattice-like network structure.
Optimal design of an IP/MPLS over DWDM network
Directory of Open Access Journals (Sweden)
Eduardo Canale
2014-04-01
Full Text Available Different approaches for deploying resilient optical networks of low cost constitute a traditional group of NP-Hard problems that have been widely studied. Most of them are based on the construction of low cost networks that fulfill connectivity constraints. However, recent trends to virtualize optical networks over the legacy fiber infrastructure, modified the nature of network design problems and turned inappropriate many of these models and algorithms. In this paper we study a design problem arising from the deployment of an IP/MPLS network over an existing DWDM infrastructure. Besides cost and resiliency, this problem integrates traffic and capacity constraints. We present: an integer programming formulation for the problem, theoretical results, and describe how several metaheuristics were applied in order to find good quality solutions, for a real application case of a telecommunications company.
Optimization of controllability and robustness of complex networks by edge directionality
Liang, Man; Jin, Suoqin; Wang, Dingjie; Zou, Xiufen
2016-09-01
Recently, controllability of complex networks has attracted enormous attention in various fields of science and engineering. How to optimize structural controllability has also become a significant issue. Previous studies have shown that an appropriate directional assignment can improve structural controllability; however, the evolution of the structural controllability of complex networks under attacks and cascading has always been ignored. To address this problem, this study proposes a new edge orientation method (NEOM) based on residual degree that changes the link direction while conserving topology and directionality. By comparing the results with those of previous methods in two random graph models and several realistic networks, our proposed approach is demonstrated to be an effective and competitive method for improving the structural controllability of complex networks. Moreover, numerical simulations show that our method is near-optimal in optimizing structural controllability. Strikingly, compared to the original network, our method maintains the structural controllability of the network under attacks and cascading, indicating that the NEOM can also enhance the robustness of controllability of networks. These results alter the view of the nature of controllability in complex networks, change the understanding of structural controllability and affect the design of network models to control such networks.
Theoretical properties of the global optimizer of two layer neural network
Boob, Digvijay; Lan, Guanghui
2017-01-01
In this paper, we study the problem of optimizing a two-layer artificial neural network that best fits a training dataset. We look at this problem in the setting where the number of parameters is greater than the number of sampled points. We show that for a wide class of differentiable activation functions (this class involves "almost" all functions which are not piecewise linear), we have that first-order optimal solutions satisfy global optimality provided the hidden layer is non-singular. ...
Optimization methods for the Train Unit Shunting Problem
DEFF Research Database (Denmark)
Haahr, Jørgen Thorlund; Lusby, Richard Martin; Wagenaar, Joris Camiel
2017-01-01
We consider the Train Unit Shunting Problem, an important planning problem for passenger railway operators. This problem entails assigning train units from shunting yards to scheduled train services in such a way that the resulting operations are without conflicts. The problem arises at every...... shunting yard in the railway network and involves matching train units to arriving and departing train services as well as assigning the selected matchings to appropriate shunting yard tracks. We present an extensive comparison benchmark of multiple solution approaches for this problem, some of which...... are novel. In particular, we develop a constraint programming formulation, a column generation approach, and a randomized greedy heuristic. We compare and benchmark these approaches with two existing methods, a mixed integer linear program and a two-stage heuristic. The benchmark contains multiple real...
Ordinal optimization and its application to complex deterministic problems
Yang, Mike Shang-Yu
1998-10-01
We present in this thesis a new perspective to approach a general class of optimization problems characterized by large deterministic complexities. Many problems of real-world concerns today lack analyzable structures and almost always involve high level of difficulties and complexities in the evaluation process. Advances in computer technology allow us to build computer models to simulate the evaluation process through numerical means, but the burden of high complexities remains to tax the simulation with an exorbitant computing cost for each evaluation. Such a resource requirement makes local fine-tuning of a known design difficult under most circumstances, let alone global optimization. Kolmogorov equivalence of complexity and randomness in computation theory is introduced to resolve this difficulty by converting the complex deterministic model to a stochastic pseudo-model composed of a simple deterministic component and a white-noise like stochastic term. The resulting randomness is then dealt with by a noise-robust approach called Ordinal Optimization. Ordinal Optimization utilizes Goal Softening and Ordinal Comparison to achieve an efficient and quantifiable selection of designs in the initial search process. The approach is substantiated by a case study in the turbine blade manufacturing process. The problem involves the optimization of the manufacturing process of the integrally bladed rotor in the turbine engines of U.S. Air Force fighter jets. The intertwining interactions among the material, thermomechanical, and geometrical changes makes the current FEM approach prohibitively uneconomical in the optimization process. The generalized OO approach to complex deterministic problems is applied here with great success. Empirical results indicate a saving of nearly 95% in the computing cost.
Problem solving for wireless sensor networks
Garcia-Hernando, Ana-Belen; Lopez-Navarro, Juan-Manuel; Prayati, Aggeliki; Redondo-Lopez, Luis
2008-01-01
Wireless Sensor Networks (WSN) is an area of huge research interest, attracting substantial attention from industry and academia for its enormous potential and its inherent challenges. This reader-friendly text delivers a comprehensive review of the developments related to the important technological issues in WSN.
Network Monitoring as a Streaming Analytics Problem
Gupta, Arpit; Birkner, Rü diger; Canini, Marco; Feamster, Nick; Mac-Stoker, Chris; Willinger, Walter
2016-01-01
, processing such network monitoring queries at high traffic rates requires both the switches and the stream processors to filter the traffic iteratively and adaptively so as to extract only that traffic that is of interest to the query at hand. Others have
Bidding for surplus in network allocation problems
Slikker, M.
2007-01-01
In this paper we study non-cooperative foundations of network allocation rules. We focus on three allocation rules: the Myerson value, the position value and the component-wise egalitarian solution. For any of these three rules we provide a characterization based on component efficiency and some
Unsupervised neural networks for solving Troesch's problem
International Nuclear Information System (INIS)
Raja Muhammad Asif Zahoor
2014-01-01
In this study, stochastic computational intelligence techniques are presented for the solution of Troesch's boundary value problem. The proposed stochastic solvers use the competency of a feed-forward artificial neural network for mathematical modeling of the problem in an unsupervised manner, whereas the learning of unknown parameters is made with local and global optimization methods as well as their combinations. Genetic algorithm (GA) and pattern search (PS) techniques are used as the global search methods and the interior point method (IPM) is used for an efficient local search. The combination of techniques like GA hybridized with IPM (GA-IPM) and PS hybridized with IPM (PS-IPM) are also applied to solve different forms of the equation. A comparison of the proposed results obtained from GA, PS, IPM, PS-IPM and GA-IPM has been made with the standard solutions including well known analytic techniques of the Adomian decomposition method, the variational iterational method and the homotopy perturbation method. The reliability and effectiveness of the proposed schemes, in term of accuracy and convergence, are evaluated from the results of statistical analysis based on sufficiently large independent runs. (interdisciplinary physics and related areas of science and technology)
Intelligent Network Flow Optimization (INFLO) prototype acceptance test summary.
2015-05-01
This report summarizes the results of System Acceptance Testing for the implementation of the Intelligent Network : Flow Optimization (INFLO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected : Vehicle Program. ...
Particle swarm optimization of a neural network model in a ...
Indian Academy of Sciences (India)
. Since tool life is critically affected by the tool wear, accurate prediction of this wear ... In their work, they established an improvement in the quality ... objective optimization of hard turning using neural network modelling and swarm intelligence ...
Directory of Open Access Journals (Sweden)
R. Latha
Full Text Available Nowadays, Wireless Body Area Network (WBAN is emerging very fast and so many new methods and algorithms are coming up for finding the optimal path for disseminating emergency messages. Ant Colony Optimization (ACO is one of the cultural algorithms for solving many hard problems such as Travelling Salesman Problem (TSP. ACO is a natural behaviour of ants, which work stochastically with the help of pheromone trails deposited in the shortest route to find their food. This optimization procedure involves adapting, positive feedback and inherent parallelism. Each ant will deposit certain amount of pheromone in the tour construction it makes searching for food. This type of communication is known as stigmetric communication. In addition, if a dense WBAN environment prevails, such as hospital, i.e. in the environment of overlapping WBAN, game formulation was introduced for analyzing the mixed strategy behaviour of WBAN. In this paper, the ant colony optimization approach to the travelling salesman problem was applied to the WBAN to determine the shortest route for sending emergency message to the doctor via sensor nodes; and also a static Bayesian game formulation with mixed strategy was analysed to enhance the network lifetime. Whenever the patient needs any critical care or any other medical issue arises, emergency messages will be created by the WBAN and sent to the doctor's destination. All the modes of communication were realized in a simulation environment using OMNet++. The authors investigated a balanced model of emergency message dissemination and network lifetime in WBAN using ACO and Bayesian game formulation. Keywords: Wireless body area network, Ant colony optimization, Bayesian game model, Sensor network, Message latency, Network lifetime
Panda, Satyasen
2018-05-01
This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.
Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.
Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric
2018-03-01
Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.
Optimization of heat exchanger networks using genetic algorithms
International Nuclear Information System (INIS)
Teyssedou, A.; Dipama, J.; Sorin, M.
2004-01-01
Most thermal processes encountered in the power industry (chemical, metallurgical, nuclear and thermal power stations) necessitate the transfer of large amounts of heat between fluids having different thermal potentials. A common practice applied to achieve such a requirement consists of using heat exchangers. In general, each current of fluid is conveniently cooled or heated independently from each other in the power plant. When the number of heat exchangers is large enough, however, a convenient arrangement of different flow currents may allow a considerable reduction in energy consumption to be obtained (Linnhoff and Hidmarsh, 1983). In such a case the heat exchangers form a 'Heat Exchanger Network' (HEN) that can be optimized to reduce the overall energy consumption. This type of optimization problem, involves two separates calculation procedures. First, it is necessary to optimize the topology of the HEN that will permit a reduction in energy consumption to be obtained. In a second step the power distribution across the HEN should be optimized without violating the second law of thermodynamics. The numerical treatment of this kind of problem requires the use of both discrete variables (for taking into account each heat exchanger unit) and continuous variables for handling the thermal load of each unit. It is obvious that for a large number of heat exchangers, the use of conventional calculation methods, i.e., Simplexe, becomes almost impossible. Therefore, in this paper we present a 'Genetic Algorithm' (GA), that has been implemented and successfully used to treat complex HENs, containing a large number of heat exchangers. As opposed to conventional optimization techniques that require the knowledge of the derivatives of a function, GAs start the calculation process from a large population of possible solutions of a given problem (Goldberg, 1999). Each possible solution is in turns evaluated according to a 'fitness' criterion obtained from an objective
Statistical physics of hard combinatorial optimization: Vertex cover problem
Zhao, Jin-Hua; Zhou, Hai-Jun
2014-07-01
Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of spin glasses and the associated message-passing algorithms have greatly deepened our understanding of typical-case computation complexity. In this paper, we use the vertex cover problem, a basic nondeterministic-polynomial (NP)-complete combinatorial optimization problem of wide application, as an example to introduce the statistical physical methods and algorithms. We do not go into the technical details but emphasize mainly the intuitive physical meanings of the message-passing equations. A nonfamiliar reader shall be able to understand to a large extent the physics behind the mean field approaches and to adjust the mean field methods in solving other optimization problems.
Directory of Open Access Journals (Sweden)
Chao-Chih Lin
2017-10-01
Full Text Available A new transient-based hybrid heuristic approach is developed to optimize a transient generation process and to detect leaks in pipe networks. The approach couples the ordinal optimization approach (OOA and the symbiotic organism search (SOS to solve the optimization problem by means of iterations. A pipe network analysis model (PNSOS is first used to determine steady-state head distribution and pipe flow rates. The best transient generation point and its relevant valve operation parameters are optimized by maximizing the objective function of transient energy. The transient event is created at the chosen point, and the method of characteristics (MOC is used to analyze the transient flow. The OOA is applied to sift through the candidate pipes and the initial organisms with leak information. The SOS is employed to determine the leaks by minimizing the sum of differences between simulated and computed head at the observation points. Two synthetic leaking scenarios, a simple pipe network and a water distribution network (WDN, are chosen to test the performance of leak detection ordinal symbiotic organism search (LDOSOS. Leak information can be accurately identified by the proposed approach for both of the scenarios. The presented technique makes a remarkable contribution to the success of leak detection in the pipe networks.
Optimized Neural Network for Fault Diagnosis and Classification
International Nuclear Information System (INIS)
Elaraby, S.M.
2005-01-01
This paper presents a developed and implemented toolbox for optimizing neural network structure of fault diagnosis and classification. Evolutionary algorithm based on hierarchical genetic algorithm structure is used for optimization. The simplest feed-forward neural network architecture is selected. Developed toolbox has friendly user interface. Multiple solutions are generated. The performance and applicability of the proposed toolbox is verified with benchmark data patterns and accident diagnosis of Egyptian Second research reactor (ETRR-2)
Optimal Control of Interdependent Epidemics in Complex Networks
Chen, Juntao; Zhang, Rui; Zhu, Quanyan
2017-01-01
Optimal control of interdependent epidemics spreading over complex networks is a critical issue. We first establish a framework to capture the coupling between two epidemics, and then analyze the system's equilibrium states by categorizing them into three classes, and deriving their stability conditions. The designed control strategy globally optimizes the trade-off between the control cost and the severity of epidemics in the network. A gradient descent algorithm based on a fixed point itera...
Design and Optimization of Capacitated Supply Chain Networks Including Quality Measures
Directory of Open Access Journals (Sweden)
Krystel K. Castillo-Villar
2014-01-01
Full Text Available This paper presents (1 a novel capacitated model for supply chain network design which considers manufacturing, distribution, and quality costs (named SCND-COQ model and (2 five combinatorial optimization methods, based on nonlinear optimization, heuristic, and metaheuristic approaches, which are used to solve realistic instances of practical size. The SCND-COQ model is a mixed-integer nonlinear problem which can be used at a strategic planning level to design a supply chain network that maximizes the total profit subject to meeting an overall quality level of the final product at minimum costs. The SCND-COQ model computes the quality-related costs for the whole supply chain network considering the interdependencies among business entities. The effectiveness of the proposed solution approaches is shown using numerical experiments. These methods allow solving more realistic (capacitated supply chain network design problems including quality-related costs (inspections, rework, opportunity costs, and others within a reasonable computational time.
Li, Ming; Miao, Chunyan; Leung, Cyril
2015-12-04
Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches.
Optimal Multiuser Zero Forcing with Per-Antenna Power Constraints for Network MIMO Coordination
Directory of Open Access Journals (Sweden)
Kaviani Saeed
2011-01-01
Full Text Available We consider a multicell multiple-input multiple-output (MIMO coordinated downlink transmission, also known as network MIMO, under per-antenna power constraints. We investigate a simple multiuser zero-forcing (ZF linear precoding technique known as block diagonalization (BD for network MIMO. The optimal form of BD with per-antenna power constraints is proposed. It involves a novel approach of optimizing the precoding matrices over the entire null space of other users' transmissions. An iterative gradient descent method is derived by solving the dual of the throughput maximization problem, which finds the optimal precoding matrices globally and efficiently. The comprehensive simulations illustrate several network MIMO coordination advantages when the optimal BD scheme is used. Its achievable throughput is compared with the capacity region obtained through the recently established duality concept under per-antenna power constraints.
THE OPTIMAL CONTROL IN THE MODELOF NETWORK SECURITY FROM MALICIOUS CODE
Directory of Open Access Journals (Sweden)
2016-01-01
Full Text Available The paper deals with a mathematical model of network security. The model is described in terms of the nonlinear optimal control. As a criterion of the control problem quality the price of the summary damage inflicted by the harmful codes is chosen, under additional restriction: the number of recovered nodes is maximized. The Pontryagin maximum principle for construction of the optimal decisions is formulated. The number of switching points of the optimal control is found. The explicit form of optimal control is given using the Lagrange multipliers method.
Genetic algorithm for neural networks optimization
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Latorre, Vittorio
2014-01-01
We propose to solve large instances of the non-convex optimization problems reformulated with canonical duality theory. To this aim we propose an interior point potential reduction algorithm based on the solution of the primal-dual total complementarity (Lagrange) function. We establish the global convergence result for the algorithm under mild assumptions and demonstrate the method on instances of the Sensor Network Localization problem. Our numerical results are promising and show the possi...
All roads lead to Rome - New search methods for the optimal triangulation problem
Czech Academy of Sciences Publication Activity Database
Ottosen, T. J.; Vomlel, Jiří
2012-01-01
Roč. 53, č. 9 (2012), s. 1350-1366 ISSN 0888-613X R&D Projects: GA MŠk 1M0572; GA ČR GEICC/08/E010; GA ČR GA201/09/1891 Grant - others:GA MŠk(CZ) 2C06019 Institutional support: RVO:67985556 Keywords : Bayesian networks * Optimal triangulation * Probabilistic inference * Cliques in a graph Subject RIV: BD - Theory of Information Impact factor: 1.729, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/vomlel-all roads lead to rome - new search methods for the optimal triangulation problem.pdf
Optimization-based Method for Automated Road Network Extraction
International Nuclear Information System (INIS)
Xiong, D
2001-01-01
Automated road information extraction has significant applicability in transportation. It provides a means for creating, maintaining, and updating transportation network databases that are needed for purposes ranging from traffic management to automated vehicle navigation and guidance. This paper is to review literature on the subject of road extraction and to describe a study of an optimization-based method for automated road network extraction
Particle Swarm Optimization and Uncertainty Assessment in Inverse Problems
Directory of Open Access Journals (Sweden)
José L. G. Pallero
2018-01-01
Full Text Available Most inverse problems in the industry (and particularly in geophysical exploration are highly underdetermined because the number of model parameters too high to achieve accurate data predictions and because the sampling of the data space is scarce and incomplete; it is always affected by different kinds of noise. Additionally, the physics of the forward problem is a simplification of the reality. All these facts result in that the inverse problem solution is not unique; that is, there are different inverse solutions (called equivalent, compatible with the prior information that fits the observed data within similar error bounds. In the case of nonlinear inverse problems, these equivalent models are located in disconnected flat curvilinear valleys of the cost-function topography. The uncertainty analysis consists of obtaining a representation of this complex topography via different sampling methodologies. In this paper, we focus on the use of a particle swarm optimization (PSO algorithm to sample the region of equivalence in nonlinear inverse problems. Although this methodology has a general purpose, we show its application for the uncertainty assessment of the solution of a geophysical problem concerning gravity inversion in sedimentary basins, showing that it is possible to efficiently perform this task in a sampling-while-optimizing mode. Particularly, we explain how to use and analyze the geophysical models sampled by exploratory PSO family members to infer different descriptors of nonlinear uncertainty.
Directory of Open Access Journals (Sweden)
Chenguang Shi
2014-01-01
Full Text Available Widely distributed radar network architectures can provide significant performance improvement for target detection and localization. For a fixed radar network, the achievable target detection performance may go beyond a predetermined threshold with full transmitted power allocation, which is extremely vulnerable in modern electronic warfare. In this paper, we study the problem of low probability of intercept (LPI design for radar network and propose two novel LPI optimization schemes based on information-theoretic criteria. For a predefined threshold of target detection, Schleher intercept factor is minimized by optimizing transmission power allocation among netted radars in the network. Due to the lack of analytical closed-form expression for receiver operation characteristics (ROC, we employ two information-theoretic criteria, namely, Bhattacharyya distance and J-divergence as the metrics for target detection performance. The resulting nonconvex and nonlinear LPI optimization problems associated with different information-theoretic criteria are cast under a unified framework, and the nonlinear programming based genetic algorithm (NPGA is used to tackle the optimization problems in the framework. Numerical simulations demonstrate that our proposed LPI strategies are effective in enhancing the LPI performance for radar network.
Study on network traffic forecast model of SVR optimized by GAFSA
International Nuclear Information System (INIS)
Liu, Yuan; Wang, RuiXue
2016-01-01
There are some problems, such as low precision, on existing network traffic forecast model. In accordance with these problems, this paper proposed the network traffic forecast model of support vector regression (SVR) algorithm optimized by global artificial fish swarm algorithm (GAFSA). GAFSA constitutes an improvement of artificial fish swarm algorithm, which is a swarm intelligence optimization algorithm with a significant effect of optimization. The optimum training parameters used for SVR could be calculated by optimizing chosen parameters, which would make the forecast more accurate. With the optimum training parameters searched by GAFSA algorithm, a model of network traffic forecast, which greatly solved problems of great errors in SVR improved by others intelligent algorithms, could be built with the forecast result approaching stability and the increased forecast precision. The simulation shows that, compared with other models (e.g. GA-SVR, CPSO-SVR), the forecast results of GAFSA-SVR network traffic forecast model is more stable with the precision improved to more than 89%, which plays an important role on instructing network control behavior and analyzing security situation.
Controlled neural network application in track-match problem
International Nuclear Information System (INIS)
Baginyan, S.A.; Ososkov, G.A.
1993-01-01
Track-match problem of high energy physics (HEP) data handling is formulated in terms of incidence matrices. The corresponding Hopfield neural network is developed to solve this type of constraint satisfaction problems (CSP). A special concept of the controlled neural network is proposed as a basis of an algorithm for the effective CSP solution. Results of comparable calculations show the very high performance of this algorithm against conventional search procedures. 8 refs.; 1 fig.; 1 tab
Cellular neural networks for the stereo matching problem
International Nuclear Information System (INIS)
Taraglio, S.; Zanela, A.
1997-03-01
The applicability of the Cellular Neural Network (CNN) paradigm to the problem of recovering information on the tridimensional structure of the environment is investigated. The approach proposed is the stereo matching of video images. The starting point of this work is the Zhou-Chellappa neural network implementation for the same problem. The CNN based system we present here yields the same results as the previous approach, but without the many existing drawbacks
Problems in the Deployment of Learning Networks In Small Organizations
Shankle, Dean E.; Shankle, Jeremy P.
2006-01-01
Please, cite this publication as: Shankle, D.E., & Shankle, J.P. (2006). Problems in the Deployment of Learning Networks In Small Organizations. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence Conference. March 30th-31st, Sofia, Bulgaria:
Optimal search strategies on complex networks
Di Patti, Francesca; Fanelli, Duccio; Piazza, Francesco
2014-01-01
Complex networks are ubiquitous in nature and play a role of paramount importance in many contexts. Internet and the cyberworld, which permeate our everyday life, are self-organized hierarchical graphs. Urban traffic flows on intricate road networks, which impact both transportation design and epidemic control. In the brain, neurons are cabled through heterogeneous connections, which support the propagation of electric signals. In all these cases, the true challenge is to unveil the mechanism...
Optimizing transport in a homogeneous network
WEAIRE, DENIS LAWRENCE
2004-01-01
PUBLISHED Many situations in physics, biology, and engineering consist of the transport of some physical quantity through a network of narrow channels. The ability of a network to transport such a quantity in every direction can be described by the average conductivity associated with it. When the flow through each channel is conserved and derives from a potential function, we show that there exists an upper bound of the average conductivity and explicitly give the expression f...
Optimal scope of supply chain network & operations design
Ma, N.
2014-01-01
The increasingly complex supply chain networks and operations call for the development of decision support systems and optimization techniques that take a holistic view of supply chain issues and provide support for integrated decision-making. The economic impacts of optimized supply chain are
Global Optimization of Nonlinear Blend-Scheduling Problems
Directory of Open Access Journals (Sweden)
Pedro A. Castillo Castillo
2017-04-01
Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.
Stability, Optimality and Manipulation in Matching Problems with Weighted Preferences
Directory of Open Access Journals (Sweden)
Maria Silvia Pini
2013-11-01
Full Text Available The stable matching problem (also known as the stable marriage problem is a well-known problem of matching men to women, so that no man and woman, who are not married to each other, both prefer each other. Such a problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools or, more generally, to any two-sided market. In the classical stable marriage problem, both men and women express a strict preference order over the members of the other sex, in a qualitative way. Here, we consider stable marriage problems with weighted preferences: each man (resp., woman provides a score for each woman (resp., man. Such problems are more expressive than the classical stable marriage problems. Moreover, in some real-life situations, it is more natural to express scores (to model, for example, profits or costs rather than a qualitative preference ordering. In this context, we define new notions of stability and optimality, and we provide algorithms to find marriages that are stable and/or optimal according to these notions. While expressivity greatly increases by adopting weighted preferences, we show that, in most cases, the desired solutions can be found by adapting existing algorithms for the classical stable marriage problem. We also consider the manipulability properties of the procedures that return such stable marriages. While we know that all procedures are manipulable by modifying the preference lists or by truncating them, here, we consider if manipulation can occur also by just modifying the weights while preserving the ordering and avoiding truncation. It turns out that, by adding weights, in some cases, we may increase the possibility of manipulating, and this cannot be avoided by any reasonable restriction on the weights.
Enhanced Multi-Objective Optimization of Groundwater Monitoring Networks
DEFF Research Database (Denmark)
Bode, Felix; Binning, Philip John; Nowak, Wolfgang
Drinking-water well catchments include many sources for potential contaminations like gas stations or agriculture. Finding optimal positions of monitoring wells for such purposes is challenging because there are various parameters (and their uncertainties) that influence the reliability...... and optimality of any suggested monitoring location or monitoring network. The goal of this project is to develop and establish a concept to assess, design, and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: (1) a high...... be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, wrapped up within the framework of formal multi-objective optimization. In order to gain insight into the flow and transport physics...
Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong
2018-04-19
Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm⁻neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS.
A Particle Swarm Optimization Algorithm for Neural Networks in Recognition of Maize Leaf Diseases
Directory of Open Access Journals (Sweden)
Zhiyong ZHANG
2014-03-01
Full Text Available The neural networks have significance on recognition of crops disease diagnosis? but it has disadvantage of slow convergent speed and shortcoming of local optimum. In order to identify the maize leaf diseases by using machine vision more accurately, we propose an improved particle swarm optimization algorithm for neural networks. With the algorithm, the neural network property is improved. It reasonably confirms threshold and connection weight of neural network, and improves capability of solving problems in the image recognition. At last, an example of the emulation shows that neural network model based on recognizes significantly better than without optimization. Model accuracy has been improved to a certain extent to meet the actual needs of maize leaf diseases recognition.
Optimal Node Placement in Underwater Acoustic Sensor Network
Felemban, Muhamad
2011-10-01
Almost 70% of planet Earth is covered by water. A large percentage of underwater environment is unexplored. In the past two decades, there has been an increase in the interest of exploring and monitoring underwater life among scientists and in industry. Underwater operations are extremely difficult due to the lack of cheap and efficient means. Recently, Wireless Sensor Networks have been introduced in underwater environment applications. However, underwater communication via acoustic waves is subject to several performance limitations, which makes the relevant research issues very different from those on land. In this thesis, we investigate node placement for building an initial Underwater Wireless Sensor Network infrastructure. Firstly, we formulated the problem into a nonlinear mathematic program with objectives of minimizing the total transmission loss under a given number of sensor nodes and targeted volume. We conducted experiments to verify the proposed formulation, which is solved using Matlab optimization tool. We represented each node with a truncated octahedron to fill out the 3D space. The truncated octahedrons are tiled in the 3D space with each node in the center where locations of the nodes are given using 3D coordinates. Results are supported using ns-3 simulator. Results from simulation are consistent with the obtained results from mathematical model with less than 10% error.
Solving constraint satisfaction problems with networks of spiking neurons
Directory of Open Access Journals (Sweden)
Zeno eJonke
2016-03-01
Full Text Available Network of neurons in the brain apply – unlike processors in our current generation ofcomputer hardware – an event-based processing strategy, where short pulses (spikes areemitted sparsely by neurons to signal the occurrence of an event at a particular point intime. Such spike-based computations promise to be substantially more power-efficient thantraditional clocked processing schemes. However it turned out to be surprisingly difficult todesign networks of spiking neurons that can solve difficult computational problems on the levelof single spikes (rather than rates of spikes. We present here a new method for designingnetworks of spiking neurons via an energy function. Furthermore we show how the energyfunction of a network of stochastically firing neurons can be shaped in a quite transparentmanner by composing the networks of simple stereotypical network motifs. We show that thisdesign approach enables networks of spiking neurons to produce approximate solutions todifficult (NP-hard constraint satisfaction problems from the domains of planning/optimizationand verification/logical inference. The resulting networks employ noise as a computationalresource. Nevertheless the timing of spikes (rather than just spike rates plays an essential rolein their computations. Furthermore, networks of spiking neurons carry out for the Traveling Salesman Problem a more efficient stochastic search for good solutions compared with stochastic artificial neural networks (Boltzmann machines and Gibbs sampling.
Directory of Open Access Journals (Sweden)
Emmanuel Okewu
2017-10-01
Full Text Available The role of automation in sustainable development is not in doubt. Computerization in particular has permeated every facet of human endeavour, enhancing the provision of information for decision-making that reduces cost of operation, promotes productivity and socioeconomic prosperity and cohesion. Hence, a new field called information and communication technology for development (ICT4D has emerged. Nonetheless, the need to ensure environmentally friendly computing has led to this research study with particular focus on green computing in Africa. This is against the backdrop that the continent is feared to suffer most from the vulnerability of climate change and the impact of environmental risk. Using Nigeria as a test case, this paper gauges the green computing awareness level of Africans via sample survey. It also attempts to institutionalize green computing maturity model with a view to optimizing the level of citizens awareness amid inherent uncertainties like low bandwidth, poor network and erratic power in an emerging African market. Consequently, we classified the problem as a stochastic optimization problem and applied metaheuristic search algorithm to determine the best sensitization strategy. Although there are alternative ways of promoting green computing education, the metaheuristic search we conducted indicated that an online real-time solution that not only drives but preserves timely conversations on electronic waste (e-waste management and energy saving techniques among the citizenry is cutting edge. The authors therefore reviewed literature, gathered requirements, modelled the proposed solution using Universal Modelling Language (UML and developed a prototype. The proposed solution is a web-based multi-tier e-Green computing system that educates computer users on innovative techniques of managing computers and accessories in an environmentally friendly way. We found out that such a real-time web-based interactive forum does not
Multiresolution strategies for the numerical solution of optimal control problems
Jain, Sachin
There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a
Analysing Stagecoach Network Problem Using Dynamic ...
African Journals Online (AJOL)
In this paper we present a recursive dynamic programming algorithm for solving the stagecoach problem. The algorithm is computationally more efficient than the first method as it obtains its minimum total cost using the suboptimal policies of the different stages without computing the cost of all the routes. By the dynamic ...
Control and Optimization of Network in Networked Control System
Directory of Open Access Journals (Sweden)
Wang Zhiwen
2014-01-01
Full Text Available In order to avoid quality of performance (QoP degradation resulting from quality of service (QoS, the solution to network congestion from the point of control theory, which marks departure of our results from the existing methods, is proposed in this paper. The congestion and bandwidth are regarded as state and control variables, respectively; then, the linear time-invariant (LTI model between congestion state and bandwidth of network is established. Consequently, linear quadratic method is used to eliminate the network congestion by allocating bandwidth dynamically. At last, numerical simulation results are given to illustrate the effectiveness of this modeling approach.
Data-Driven Handover Optimization in Next Generation Mobile Communication Networks
Directory of Open Access Journals (Sweden)
Po-Chiang Lin
2016-01-01
Full Text Available Network densification is regarded as one of the important ingredients to increase capacity for next generation mobile communication networks. However, it also leads to mobility problems since users are more likely to hand over to another cell in dense or even ultradense mobile communication networks. Therefore, supporting seamless and robust connectivity through such networks becomes a very important issue. In this paper, we investigate handover (HO optimization in next generation mobile communication networks. We propose a data-driven handover optimization (DHO approach, which aims to mitigate mobility problems including too-late HO, too-early HO, HO to wrong cell, ping-pong HO, and unnecessary HO. The key performance indicator (KPI is defined as the weighted average of the ratios of these mobility problems. The DHO approach collects data from the mobile communication measurement results and provides a model to estimate the relationship between the KPI and features from the collected dataset. Based on the model, the handover parameters, including the handover margin and time-to-trigger, are optimized to minimize the KPI. Simulation results show that the proposed DHO approach could effectively mitigate mobility problems.
A study of optimization problem for amplify-and-forward relaying over weibull fading channels
Ikki, Salama Said
2010-09-01
This paper addresses the power allocation and relay positioning problems in amplify-and-forward cooperative networks operating in Weibull fading environments. We study adaptive power allocation (PA) with fixed relay location, optimal relay location with fixed power allocation, and joint optimization of the PA and relay location under total transmit power constraint, in order to minimize the outage probability and average error probability at high signal-to-noise ratios (SNR). Analytical results are validated by numerical simulations and comparisons between the different optimization schemes and their performance are provided. Results show that optimum PA brings only coding gain, while optimum relay location yields, in addition to the latter, diversity gains as well. Also, joint optimization improves both, the diversity gain and coding gain. Furthermore, results illustrate that the analyzed adaptive algorithms outperform uniform schemes. ©2010 IEEE.
Optimizing Human Diet Problem Based on Price and Taste Using
Directory of Open Access Journals (Sweden)
Hossein EGHBALI
2012-07-01
Full Text Available Low price and good taste of foods are regarded as two major factors for optimal human nutrition. Due to price fluctuations and taste diversity, these two factors cannot be certainly and determinately evaluated. This problem must be viewed from another perspective because of the uncertainty about the amount of nutrients per unit of foods and also diversity of people’s daily needs to receive them.This paper discusses human diet problem in fuzzy environment. The approach deals with multi-objective fuzzy linear programming problem using a fuzzy programming technique for its solution. By prescribing a diet merely based on crisp data, some ofthe realities are neglected. For the same reason, we dealt with human diet problem through fuzzy approach. Results indicated uncertainty about factors of nutrition diet -including taste and price, amount of nutrients and their intake- would affect diet quality, making the proposed diet more realistic.
Reconstructing the Hopfield network as an inverse Ising problem
International Nuclear Information System (INIS)
Huang Haiping
2010-01-01
We test four fast mean-field-type algorithms on Hopfield networks as an inverse Ising problem. The equilibrium behavior of Hopfield networks is simulated through Glauber dynamics. In the low-temperature regime, the simulated annealing technique is adopted. Although performances of these network reconstruction algorithms on the simulated network of spiking neurons are extensively studied recently, the analysis of Hopfield networks is lacking so far. For the Hopfield network, we found that, in the retrieval phase favored when the network wants to memory one of stored patterns, all the reconstruction algorithms fail to extract interactions within a desired accuracy, and the same failure occurs in the spin-glass phase where spurious minima show up, while in the paramagnetic phase, albeit unfavored during the retrieval dynamics, the algorithms work well to reconstruct the network itself. This implies that, as an inverse problem, the paramagnetic phase is conversely useful for reconstructing the network while the retrieval phase loses all the information about interactions in the network except for the case where only one pattern is stored. The performances of algorithms are studied with respect to the system size, memory load, and temperature; sample-to-sample fluctuations are also considered.
PlayNCool: Opportunistic Network Coding for Local Optimization of Routing in Wireless Mesh Networks
DEFF Research Database (Denmark)
Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Pedersen, Morten Videbæk
2013-01-01
This paper introduces PlayNCool, an opportunistic protocol with local optimization based on network coding to increase the throughput of a wireless mesh network (WMN). PlayNCool aims to enhance current routing protocols by (i) allowing random linear network coding transmissions end-to-end, (ii) r...
RECIPES FOR BUILDING THE DUAL OF CONIC OPTIMIZATION PROBLEM
Directory of Open Access Journals (Sweden)
Diah Chaerani
2010-08-01
Full Text Available Building the dual of the primal problem of Conic Optimization (CO isa very important step to make the ¯nding optimal solution. In many cases a givenproblem does not have the simple structure of CO problem (i.e., minimizing a linearfunction over an intersection between a±ne space and convex cones but there areseveral conic constraints and sometimes also equality constraints. In this paper wedeal with the question how to form the dual problem in such cases. We discuss theanswer by considering several conic constraints with or without equality constraints.The recipes for building the dual of such cases is formed in standard matrix forms,such that it can be used easily on the numerical experiment. Special attention isgiven to dual development of special classes of CO problems, i.e., conic quadraticand semide¯nite problems. In this paper, we also brie°y present some preliminariestheory on CO as an introduction to the main topic
A concept for global optimization of topology design problems
DEFF Research Database (Denmark)
Stolpe, Mathias; Achtziger, Wolfgang; Kawamoto, Atsushi
2006-01-01
We present a concept for solving topology design problems to proven global optimality. We propose that the problems are modeled using the approach of simultaneous analysis and design with discrete design variables and solved with convergent branch and bound type methods. This concept is illustrated...... on two applications. The first application is the design of stiff truss structures where the bar areas are chosen from a finite set of available areas. The second considered application is simultaneous topology and geometry design of planar articulated mechanisms. For each application we outline...
Analytic semigroups and optimal regularity in parabolic problems
Lunardi, Alessandra
2012-01-01
The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in p
Topology optimization of coated structures and material interface problems
DEFF Research Database (Denmark)
Clausen, Anders; Aage, Niels; Sigmund, Ole
2015-01-01
This paper presents a novel method for including coated structures and prescribed material interface properties into the minimum compliance topology optimization problem. Several elements of the method are applicable to a broader range of interface problems. The approach extends the standard SIMP......-step filtering/projection approach. The modeled coating thickness is derived analytically, and the coating is shown to be accurately controlled and applied in a highly uniform manner over the structure. An alternative interpretation of the model is to perform single-material design for additive manufacturing...
An Elite Decision Making Harmony Search Algorithm for Optimization Problem
Directory of Open Access Journals (Sweden)
Lipu Zhang
2012-01-01
Full Text Available This paper describes a new variant of harmony search algorithm which is inspired by a well-known item “elite decision making.” In the new algorithm, the good information captured in the current global best and the second best solutions can be well utilized to generate new solutions, following some probability rule. The generated new solution vector replaces the worst solution in the solution set, only if its fitness is better than that of the worst solution. The generating and updating steps and repeated until the near-optimal solution vector is obtained. Extensive computational comparisons are carried out by employing various standard benchmark optimization problems, including continuous design variables and integer variables minimization problems from the literature. The computational results show that the proposed new algorithm is competitive in finding solutions with the state-of-the-art harmony search variants.
Network synthesis and parameter optimization for vehicle suspension with inerter
Directory of Open Access Journals (Sweden)
Long Chen
2016-12-01
Full Text Available In order to design a comfortable-oriented vehicle suspension structure, the network synthesis method was utilized to transfer the problem into solving a timing robust control problem and determine the structure of “inerter–spring–damper” suspension. Bilinear Matrix Inequality was utilized to obtain the timing transfer function. Then, the transfer function of suspension system can be physically implemented by passive elements such as spring, damper, and inerter. By analyzing the sensitivity and quantum genetic algorithm, the optimized parameters of inerter–spring–damper suspension were determined. A quarter-car model was established. The performance of the inerter–spring–damper suspension was verified under random input. The simulation results manifested that the dynamic performance of the proposed suspension was enhanced in contrast with traditional suspension. The root mean square of vehicle body acceleration decreases by 18.9%. The inerter–spring–damper suspension can inhibit the vertical vibration within the frequency of 1–3 Hz effectively and enhance the performance of ride comfort significantly.
Shape optimization for Stokes problem with threshold slip
Czech Academy of Sciences Publication Activity Database
Haslinger, J.; Stebel, Jan; Taoufik, S.
2014-01-01
Roč. 59, č. 6 (2014), s. 631-652 ISSN 0862-7940 R&D Projects: GA ČR GA201/09/0917; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985840 Keywords : Stokes problem * friction boundary condition * shape optimization Subject RIV: BA - General Mathematics Impact factor: 0.400, year: 2014 http://link.springer.com/article/10.1007%2Fs10492-014-0077-z
Integrals of Motion for Discrete-Time Optimal Control Problems
Torres, Delfim F. M.
2003-01-01
We obtain a discrete time analog of E. Noether's theorem in Optimal Control, asserting that integrals of motion associated to the discrete time Pontryagin Maximum Principle can be computed from the quasi-invariance properties of the discrete time Lagrangian and discrete time control system. As corollaries, results for first-order and higher-order discrete problems of the calculus of variations are obtained.
A fractional optimal control problem for maximizing advertising efficiency
Igor Bykadorov; Andrea Ellero; Stefania Funari; Elena Moretti
2007-01-01
We propose an optimal control problem to model the dynamics of the communication activity of a firm with the aim of maximizing its efficiency. We assume that the advertising effort undertaken by the firm contributes to increase the firm's goodwill and that the goodwill affects the firm's sales. The aim is to find the advertising policies in order to maximize the firm's efficiency index which is computed as the ratio between "outputs" and "inputs" properly weighted; the outputs are represented...