WorldWideScience

Sample records for network models developed

  1. Developing Personal Network Business Models

    DEFF Research Database (Denmark)

    Saugstrup, Dan; Henten, Anders

    2006-01-01

    The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports...

  2. Developed hydraulic simulation model for water pipeline networks

    Directory of Open Access Journals (Sweden)

    A. Ayad

    2013-03-01

    Full Text Available A numerical method that uses linear graph theory is presented for both steady state, and extended period simulation in a pipe network including its hydraulic components (pumps, valves, junctions, etc.. The developed model is based on the Extended Linear Graph Theory (ELGT technique. This technique is modified to include new network components such as flow control valves and tanks. The technique also expanded for extended period simulation (EPS. A newly modified method for the calculation of updated flows improving the convergence rate is being introduced. Both benchmarks, ad Actual networks are analyzed to check the reliability of the proposed method. The results reveal the finer performance of the proposed method.

  3. A Constructive Neural-Network Approach to Modeling Psychological Development

    Science.gov (United States)

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  4. Synaptic model for spontaneous activity in developing networks

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Rinzel, J.

    2005-01-01

    Spontaneous rhythmic activity occurs in many developing neural networks. The activity in these hyperexcitable networks is comprised of recurring "episodes" consisting of "cycles" of high activity that alternate with "silent phases" with little or no activity. We introduce a new model of synaptic...... dynamics that takes into account that only a fraction of the vesicles stored in a synaptic terminal is readily available for release. We show that our model can reproduce spontaneous rhythmic activity with the same general features as observed in experiments, including a positive correlation between...

  5. Project ECHO: A Telementoring Network Model for Continuing Professional Development.

    Science.gov (United States)

    Arora, Sanjeev; Kalishman, Summers G; Thornton, Karla A; Komaromy, Miriam S; Katzman, Joanna G; Struminger, Bruce B; Rayburn, William F

    2017-01-01

    A major challenge with current systems of CME is the inability to translate the explosive growth in health care knowledge into daily practice. Project ECHO (Extension for Community Healthcare Outcomes) is a telementoring network designed for continuing professional development (CPD) and improving patient outcomes. The purpose of this article was to describe how the model has complied with recommendations from several authoritative reports about redesigning and enhancing CPD. This model links primary care clinicians through a knowledge network with an interprofessional team of specialists from an academic medical center who provide telementoring and ongoing education enabling community clinicians to treat patients with a variety of complex conditions. Knowledge and skills are shared during weekly condition-specific videoconferences. The model exemplifies learning as described in the seven levels of CPD by Moore (participation, satisfaction, learning, competence, performance, patient, and community health). The model is also aligned with recommendations from four national reports intended to redesign knowledge transfer in improving health care. Efforts in learning sessions focus on information that is relevant to practice, focus on evidence, education methodology, tailoring of recommendations to individual needs and community resources, and interprofessionalism. Project ECHO serves as a telementoring network model of CPD that aligns with current best practice recommendations for CME. This transformative initiative has the potential to serve as a leading model for larger scale CPD, nationally and globally, to enhance access to care, improve quality, and reduce cost.

  6. Innovation Network Development Model in Telemedicine: A Change in Participation.

    Science.gov (United States)

    Goodarzi, Maryam; Torabi, Mashallah; Safdari, Reza; Dargahi, Hossein; Naeimi, Sara

    2015-10-01

    This paper introduces a telemedicine innovation network and reports its implementation in Tehran University of Medical Sciences. The required conditions for the development of future projects in the field of telemedicine are also discussed; such projects should be based on the common needs and opportunities in the areas of healthcare, education, and technology. The development of the telemedicine innovation network in Tehran University of Medical Sciences was carried out in two phases: identifying the beneficiaries of telemedicine, and codification of the innovation network memorandum; and brainstorming of three workgroup members, and completion and clustering ideas. The present study employed a qualitative survey by using brain storming method. Thus, the ideas of the innovation network members were gathered, and by using Freeplane software, all of them were clustered and innovation projects were defined. In the services workgroup, 87 and 25 ideas were confirmed in phase 1 and phase 2, respectively. In the education workgroup, 8 new programs in the areas of telemedicine, tele-education and teleconsultation were codified. In the technology workgroup, 101 and 11 ideas were registered in phase 1 and phase 2, respectively. Today, innovation is considered a major infrastructural element of any change or progress. Thus, the successful implementation of a telemedicine project not only needs funding, human resources, and full equipment. It also requires the use of innovation models to cover several different aspects of change and progress. The results of the study can provide a basis for the implementation of future telemedicine projects using new participatory, creative, and innovative models.

  7. Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling.

    Science.gov (United States)

    Klanchui, Amornpan; Raethong, Nachon; Prommeenate, Peerada; Vongsangnak, Wanwipa; Meechai, Asawin

    Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.

  8. Development of a cyber security risk model using Bayesian networks

    International Nuclear Information System (INIS)

    Shin, Jinsoo; Son, Hanseong; Khalil ur, Rahman; Heo, Gyunyoung

    2015-01-01

    Cyber security is an emerging safety issue in the nuclear industry, especially in the instrumentation and control (I and C) field. To address the cyber security issue systematically, a model that can be used for cyber security evaluation is required. In this work, a cyber security risk model based on a Bayesian network is suggested for evaluating cyber security for nuclear facilities in an integrated manner. The suggested model enables the evaluation of both the procedural and technical aspects of cyber security, which are related to compliance with regulatory guides and system architectures, respectively. The activity-quality analysis model was developed to evaluate how well people and/or organizations comply with the regulatory guidance associated with cyber security. The architecture analysis model was created to evaluate vulnerabilities and mitigation measures with respect to their effect on cyber security. The two models are integrated into a single model, which is called the cyber security risk model, so that cyber security can be evaluated from procedural and technical viewpoints at the same time. The model was applied to evaluate the cyber security risk of the reactor protection system (RPS) of a research reactor and to demonstrate its usefulness and feasibility. - Highlights: • We developed the cyber security risk model can be find the weak point of cyber security integrated two cyber analysis models by using Bayesian Network. • One is the activity-quality model signifies how people and/or organization comply with the cyber security regulatory guide. • Other is the architecture model represents the probability of cyber-attack on RPS architecture. • The cyber security risk model can provide evidence that is able to determine the key element for cyber security for RPS of a research reactor

  9. Modelling cheetah relocation success in southern Africa using an iterative Bayesian network development cycle

    CSIR Research Space (South Africa)

    Johnson, S

    2010-02-01

    Full Text Available metapopulations was the focus of a Bayesian Network (BN) modelling workshop in South Africa. Using a new heuristics, Iterative Bayesian Network Development Cycle (IBNDC), described in this paper, several networks were formulated to distinguish between the unique...

  10. Development of a Deterministic Optimization Model for Design of an Integrated Utility and Hydrogen Supply Network

    International Nuclear Information System (INIS)

    Hwangbo, Soonho; Lee, In-Beum; Han, Jeehoon

    2014-01-01

    Lots of networks are constructed in a large scale industrial complex. Each network meet their demands through production or transportation of materials which are needed to companies in a network. Network directly produces materials for satisfying demands in a company or purchase form outside due to demand uncertainty, financial factor, and so on. Especially utility network and hydrogen network are typical and major networks in a large scale industrial complex. Many studies have been done mainly with focusing on minimizing the total cost or optimizing the network structure. But, few research tries to make an integrated network model by connecting utility network and hydrogen network. In this study, deterministic mixed integer linear programming model is developed for integrating utility network and hydrogen network. Steam Methane Reforming process is necessary for combining two networks. After producing hydrogen from Steam-Methane Reforming process whose raw material is steam vents from utility network, produced hydrogen go into hydrogen network and fulfill own needs. Proposed model can suggest optimized case in integrated network model, optimized blueprint, and calculate optimal total cost. The capability of the proposed model is tested by applying it to Yeosu industrial complex in Korea. Yeosu industrial complex has the one of the biggest petrochemical complex and various papers are based in data of Yeosu industrial complex. From a case study, the integrated network model suggests more optimal conclusions compared with previous results obtained by individually researching utility network and hydrogen network

  11. Development of neural network model of the multiparametric ...

    African Journals Online (AJOL)

    The best structure of the model was established for identifying a complex multiparameter object, using the example of statistics for the operation of a ball mill.It was a network with three hidden layers and 50, 35 and 25 neurons in them, with activation functions, respectively by layers - hyperbolic tangent, sigmoid function in 2 ...

  12. Model-Driven Approach for Body Area Network Application Development.

    Science.gov (United States)

    Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata

    2016-05-12

    This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application.

  13. Model-Driven Approach for Body Area Network Application Development

    Science.gov (United States)

    Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata

    2016-01-01

    This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application. PMID:27187394

  14. Model-Driven Approach for Body Area Network Application Development

    Directory of Open Access Journals (Sweden)

    Algimantas Venčkauskas

    2016-05-01

    Full Text Available This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS. We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application.

  15. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y W [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Zhang, L F [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Huang, J P [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China)

    2007-07-20

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property.

  16. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    International Nuclear Information System (INIS)

    Chen, Y W; Zhang, L F; Huang, J P

    2007-01-01

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property

  17. Modelling Inter-relationships among water, governance, human development variables in developing countries with Bayesian networks.

    Science.gov (United States)

    Dondeynaz, C.; Lopez-Puga, J.; Carmona-Moreno, C.

    2012-04-01

    Improving Water and Sanitation Services (WSS), being a complex and interdisciplinary issue, passes through collaboration and coordination of different sectors (environment, health, economic activities, governance, and international cooperation). This inter-dependency has been recognised with the adoption of the "Integrated Water Resources Management" principles that push for the integration of these various dimensions involved in WSS delivery to ensure an efficient and sustainable management. The understanding of these interrelations appears as crucial for decision makers in the water sector in particular in developing countries where WSS still represent an important leverage for livelihood improvement. In this framework, the Joint Research Centre of the European Commission has developed a coherent database (WatSan4Dev database) containing 29 indicators from environmental, socio-economic, governance and financial aid flows data focusing on developing countries (Celine et al, 2011 under publication). The aim of this work is to model the WatSan4Dev dataset using probabilistic models to identify the key variables influencing or being influenced by the water supply and sanitation access levels. Bayesian Network Models are suitable to map the conditional dependencies between variables and also allows ordering variables by level of influence on the dependent variable. Separated models have been built for water supply and for sanitation because of different behaviour. The models are validated if complying with statistical criteria but either with scientific knowledge and literature. A two steps approach has been adopted to build the structure of the model; Bayesian network is first built for each thematic cluster of variables (e.g governance, agricultural pressure, or human development) keeping a detailed level for interpretation later one. A global model is then built based on significant indicators of each cluster being previously modelled. The structure of the

  18. Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation.

    Science.gov (United States)

    B.G. Marcot; J.D. Steventon; G.D. Sutherland; R.K. McCann

    2006-01-01

    We provide practical guidelines for developing, testing, and revising Bayesian belief networks (BBNs). Primary steps in this process include creating influence diagrams of the hypothesized "causal web" of key factors affecting a species or ecological outcome of interest; developing a first, alpha-level BBN model from the influence diagram; revising the model...

  19. Towards a model-based development approach for wireless sensor-actuator network protocols

    DEFF Research Database (Denmark)

    Kumar S., A. Ajith; Simonsen, Kent Inge

    2014-01-01

    Model-Driven Software Engineering (MDSE) is a promising approach for the development of applications, and has been well adopted in the embedded applications domain in recent years. Wireless Sensor Actuator Networks consisting of resource constrained hardware and platformspecific operating system...... induced due to manual translations. With the use of formal semantics in the modeling approach, we can further ensure the correctness of the source model by means of verification. Also, with the use of network simulators and formal modeling tools, we obtain a verified and validated model to be used...

  20. Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam

    Science.gov (United States)

    Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit

    2016-04-01

    Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.

  1. Innovation, Product Development, and New Business Models in Networks

    DEFF Research Database (Denmark)

    Rasmussen, Erik S.; Bergenholtz, Carsten; Jørgensen, Jacob Høj

    2007-01-01

    The aim of the paper is to build a research model, that will allow an in-depth analysis of a single case study. It is the aim of the case study method to capture and present a real-life phenomenon in the actual context, encompassing as much as the dynamics as possible. A case study raises several...

  2. A value network development model and implications for innovation and production network management

    NARCIS (Netherlands)

    Vermeulen, B.; Kok, de A.G.

    2013-01-01

    In managing their value network, firms have to balance current and future value concerns and own and network partners’ concerns. Firms generate immediate value through manufacturing and selling the current generation of products together with other firms in its production network and generate future

  3. Modelling computer networks

    International Nuclear Information System (INIS)

    Max, G

    2011-01-01

    Traffic models in computer networks can be described as a complicated system. These systems show non-linear features and to simulate behaviours of these systems are also difficult. Before implementing network equipments users wants to know capability of their computer network. They do not want the servers to be overloaded during temporary traffic peaks when more requests arrive than the server is designed for. As a starting point for our study a non-linear system model of network traffic is established to exam behaviour of the network planned. The paper presents setting up a non-linear simulation model that helps us to observe dataflow problems of the networks. This simple model captures the relationship between the competing traffic and the input and output dataflow. In this paper, we also focus on measuring the bottleneck of the network, which was defined as the difference between the link capacity and the competing traffic volume on the link that limits end-to-end throughput. We validate the model using measurements on a working network. The results show that the initial model estimates well main behaviours and critical parameters of the network. Based on this study, we propose to develop a new algorithm, which experimentally determines and predict the available parameters of the network modelled.

  4. How structure shapes dynamics: knowledge development in Wikipedia--a network multilevel modeling approach.

    Directory of Open Access Journals (Sweden)

    Iassen Halatchliyski

    Full Text Available Using a longitudinal network analysis approach, we investigate the structural development of the knowledge base of Wikipedia in order to explain the appearance of new knowledge. The data consists of the articles in two adjacent knowledge domains: psychology and education. We analyze the development of networks of knowledge consisting of interlinked articles at seven snapshots from 2006 to 2012 with an interval of one year between them. Longitudinal data on the topological position of each article in the networks is used to model the appearance of new knowledge over time. Thus, the structural dimension of knowledge is related to its dynamics. Using multilevel modeling as well as eigenvector and betweenness measures, we explain the significance of pivotal articles that are either central within one of the knowledge domains or boundary-crossing between the two domains at a given point in time for the future development of new knowledge in the knowledge base.

  5. Toward Agent-Based Models of the Development And Evolution of Business Relations and Networks

    Science.gov (United States)

    Wilkinson, Ian F.; Marks, Robert E.; Young, Louise

    Firms achieve competitive advantage in part through the development of cooperative relations with other firms and organisations. We describe a program of research designed to map and model the development of cooperative inter-firm relations, including the processes and paths by which firms may evolve from adversarial to more cooperative relations. Narrative-event-history methods will be used to develop stylised histories of the emergence of business relations in various contexts and to identify relevant causal mechanisms to be included in the agent-based models of relationship and network evolution. The relationship histories will provide the means of assuring the agent-based models developed.

  6. Challenges for modeling global gene regulatory networks during development: insights from Drosophila.

    Science.gov (United States)

    Wilczynski, Bartek; Furlong, Eileen E M

    2010-04-15

    Development is regulated by dynamic patterns of gene expression, which are orchestrated through the action of complex gene regulatory networks (GRNs). Substantial progress has been made in modeling transcriptional regulation in recent years, including qualitative "coarse-grain" models operating at the gene level to very "fine-grain" quantitative models operating at the biophysical "transcription factor-DNA level". Recent advances in genome-wide studies have revealed an enormous increase in the size and complexity or GRNs. Even relatively simple developmental processes can involve hundreds of regulatory molecules, with extensive interconnectivity and cooperative regulation. This leads to an explosion in the number of regulatory functions, effectively impeding Boolean-based qualitative modeling approaches. At the same time, the lack of information on the biophysical properties for the majority of transcription factors within a global network restricts quantitative approaches. In this review, we explore the current challenges in moving from modeling medium scale well-characterized networks to more poorly characterized global networks. We suggest to integrate coarse- and find-grain approaches to model gene regulatory networks in cis. We focus on two very well-studied examples from Drosophila, which likely represent typical developmental regulatory modules across metazoans. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  7. Development of a system dynamics model for financially sustainable management of municipal watermain networks.

    Science.gov (United States)

    Rehan, R; Knight, M A; Unger, A J A; Haas, C T

    2013-12-15

    This paper develops causal loop diagrams and a system dynamics model for financially sustainable management of urban water distribution networks. The developed causal loop diagrams are a novel contribution in that it illustrates the unique characteristics and feedback loops for financially self-sustaining water distribution networks. The system dynamics model is a mathematical realization of the developed interactions among system variables over time and is comprised of three sectors namely watermains network, consumer, and finance. This is the first known development of a water distribution network system dynamics model. The watermains network sector accounts for the unique characteristics of watermain pipes such as service life, deterioration progression, pipe breaks, and water leakage. The finance sector allows for cash reserving by the utility in addition to the pay-as-you-go and borrowing strategies. The consumer sector includes controls to model water fee growth as a function of service performance and a household's financial burden due to water fees. A series of policy levers are provided that allow the impact of various financing strategies to be evaluated in terms of financial sustainability and household affordability. The model also allows for examination of the impact of different management strategies on the water fee in terms of consistency and stability over time. The paper concludes with a discussion on how the developed system dynamics water model can be used by water utilities to achieve a variety of utility short and long-term objectives and to establish realistic and defensible water utility policies. It also discusses how the model can be used by regulatory bodies, government agencies, the financial industry, and researchers. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Development of Artificial Neural Network Model for Diesel Fuel Properties Prediction using Vibrational Spectroscopy.

    Science.gov (United States)

    Bolanča, Tomislav; Marinović, Slavica; Ukić, Sime; Jukić, Ante; Rukavina, Vinko

    2012-06-01

    This paper describes development of artificial neural network models which can be used to correlate and predict diesel fuel properties from several FTIR-ATR absorbances and Raman intensities as input variables. Multilayer feed forward and radial basis function neural networks have been used to rapid and simultaneous prediction of cetane number, cetane index, density, viscosity, distillation temperatures at 10% (T10), 50% (T50) and 90% (T90) recovery, contents of total aromatics and polycyclic aromatic hydrocarbons of commercial diesel fuels. In this study two-phase training procedures for multilayer feed forward networks were applied. While first phase training algorithm was constantly the back propagation one, two second phase training algorithms were varied and compared, namely: conjugate gradient and quasi Newton. In case of radial basis function network, radial layer was trained using K-means radial assignment algorithm and three different radial spread algorithms: explicit, isotropic and K-nearest neighbour. The number of hidden layer neurons and experimental data points used for the training set have been optimized for both neural networks in order to insure good predictive ability by reducing unnecessary experimental work. This work shows that developed artificial neural network models can determine main properties of diesel fuels simultaneously based on a single and fast IR or Raman measurement.

  9. U-tube steam generator empirical model development and validation using neural networks

    International Nuclear Information System (INIS)

    Parlos, A.G.; Chong, K.T.; Atiya, A.

    1992-01-01

    Empirical modeling techniques that use model structures motivated from neural networks research have proven effective in identifying complex process dynamics. A recurrent multilayer perception (RMLP) network was developed as a nonlinear state-space model structure along with a static learning algorithm for estimating the parameter associated with it. The methods developed were demonstrated by identifying two submodels of a U-tube steam generator (UTSG), each valid around an operating power level. A significant drawback of this approach is the long off-line training times required for the development of even a simplified model of a UTSG. Subsequently, a dynamic gradient descent-based learning algorithm was developed as an accelerated alternative to train an RMLP network for use in empirical modeling of power plants. The two main advantages of this learning algorithm are its ability to consider past error gradient information for future use and the two forward passes associated with its implementation. The enhanced learning capabilities provided by the dynamic gradient descent-based learning algorithm were demonstrated via the case study of a simple steam boiler power plant. In this paper, the dynamic gradient descent-based learning algorithm is used for the development and validation of a complete UTSG empirical model

  10. Application of artificial neural networks for response surface modelling in HPLC method development

    Directory of Open Access Journals (Sweden)

    Mohamed A. Korany

    2012-01-01

    Full Text Available This paper discusses the usefulness of artificial neural networks (ANNs for response surface modelling in HPLC method development. In this study, the combined effect of pH and mobile phase composition on the reversed-phase liquid chromatographic behaviour of a mixture of salbutamol (SAL and guaiphenesin (GUA, combination I, and a mixture of ascorbic acid (ASC, paracetamol (PAR and guaiphenesin (GUA, combination II, was investigated. The results were compared with those produced using multiple regression (REG analysis. To examine the respective predictive power of the regression model and the neural network model, experimental and predicted response factor values, mean of squares error (MSE, average error percentage (Er%, and coefficients of correlation (r were compared. It was clear that the best networks were able to predict the experimental responses more accurately than the multiple regression analysis.

  11. Collaborative networks: Reference modeling

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of

  12. Automated fault tree synthesis by semantic network modeling, rulebased development and recursive 3-value procedure

    International Nuclear Information System (INIS)

    Kumamoto, Hiromitsu; Henley, E.J.

    1995-01-01

    A concept of flow is introduced to represent any material, information, energy, activity, or phenomenon which can move or propagate along flow paths to cause events specific to the system to be analyzed. A graphical equipment library is given to represent typical types of 'generation rate' and 'aperture' controllers. The system is modeled by a semantic network with labeled arrows showing effect to cause (backward) relationships between flow and equipment nodes. A correspondence between the equipment library and the system components is established, and the semantic network is constructed by integrating network fragments in the library. Fixed and/or free boundary conditions can be specified explicitly for flow or equipment nodes. Forward-chaining event development rules locally trace the labeled arrows, while a 3-value procedure guides the FT generation by recursive rule applications. The rules are obtained from tables and equipment definitions. The 3-value logic is used to truncate FTs according to the boundary conditions. Different FTs are generated for different top events and boundary conditions, given a semantic network model. FT modules and their hierarchies can be identified by examining network theoretic properties of flow nodes. The proposed approach is demonstrated for a relay system, a hypothetical swimming pool reactor and a chemical reactor

  13. Development of an artificial neural network model integrated with constitutive and FEM models

    International Nuclear Information System (INIS)

    Kong, L.X.; Hodgson, P.D.

    2000-01-01

    Although the standard error of IPANN model developed by Kong and Hodgson is lower than the constitutive model, it is found that the prediction of reaction force and torque during rolling with FEM is less accurate for IPANN model in some deformation regions. It is the summation of the product of the strain and stress in the deformation range, which contributes most to the precise prediction. An ANN model is therefore, developed in this work by integrating both the IPANN and FEM models. It is found that the integrated IPANN and FEM model is the most accurate model. (author)

  14. Development of artificial neural network models for supercritical fluid solvency in presence of co-solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shokir, Eissa Mohamed El-Moghawry; El-Midany, Ayman Abdel-Hamid [Cairo University, Giza (Egypt); Al-Homadhi, Emad Souliman; Al-Mahdy, Osama [King Saud University, Riyadh (Saudi Arabia)

    2014-08-15

    This paper presents the application of artificial neural networks (ANN) to develop new models of liquid solvent dissolution of supercritical fluids with solutes in the presence of cosolvents. The neural network model of the liquid solvent dissolution of CO{sub 2} was built as a function of pressure, temperature, and concentrations of the solutes and cosolvents. Different experimental measurements of liquid solvent dissolution of supercritical fluids (CO{sub 2}) with solutes in the presence of cosolvents were collected. The collected data are divided into two parts. The first part was used in building the models, and the second part was used to test and validate the developed models against the Peng- Robinson equation of state. The developed ANN models showed high accuracy, within the studied variables range, in predicting the solubility of the 2-naphthol, anthracene, and aspirin in the supercritical fluid in the presence and absence of co-solvents compared to (EoS). Therefore, the developed ANN models could be considered as a good tool in predicting the solubility of tested solutes in supercritical fluid.

  15. Development of Pavement Maintenance Management System (PMMS of Urban Road Network Using HDM-4 Model

    Directory of Open Access Journals (Sweden)

    Tanuj Chopra

    2017-04-01

    Full Text Available The aim of the study is to develop Pavement Maintenance Management System (PMMS for four road sections of urban road network (Patiala, Punjab, India using Highway Development and Management (HDM-4 model. The HDM-4 provides a deterministic approach in data input and process data of existing road condition, traffic volume and pavement composition to predict road deterioration as per the urban road conditions in terms of International Roughness Index (IRI value. This study presents the use of HDM-4 model for the computation of optimum Maintenance and Rehabilitation (M&R strategy for each road section and comparative study of scheduled and condition responsive M&R strategies. The results of present study will be useful for gaining better support for decision-makers for adequate and timely fund allocations for preservation of the urban road network.

  16. Developing Mesoscale Model of Fibrin-Platelet Network Representing Blood Clotting =

    Science.gov (United States)

    Sun, Yueyi; Nikolov, Svetoslav; Bowie, Sam; Alexeev, Alexander; Lam, Wilbur; Myers, David

    Blood clotting disorders which prevent the body's natural ability to achieve hemostasis can lead to a variety of life threatening conditions such as, excessive bleeding, stroke, or heart attack. Treatment of these disorders is highly dependent on understanding the underlying physics behind the clotting process. Since clotting is a highly complex multi scale mechanism developing a fully atomistic model is currently not possible. We develop a mesoscale model based on dissipative particle dynamics (DPD) to gain fundamental understanding of the underlying principles controlling the clotting process. In our study, we examine experimental data on clot contraction using stacks of confocal microscopy images to estimate the crosslink density in the fibrin networks and platelet location. Using this data we reconstruct the platelet rich fibrin network and study how platelet-fibrin interactions affect clotting. Furthermore, we probe how different system parameters affect clot contraction. ANSF CAREER Award DMR-1255288.

  17. A Bayesian network approach to knowledge integration and representation of farm irrigation: 1. Model development

    Science.gov (United States)

    Wang, Q. J.; Robertson, D. E.; Haines, C. L.

    2009-02-01

    Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.

  18. Novel approaches to develop community-built biological network models for potential drug discovery.

    Science.gov (United States)

    Talikka, Marja; Bukharov, Natalia; Hayes, William S; Hofmann-Apitius, Martin; Alexopoulos, Leonidas; Peitsch, Manuel C; Hoeng, Julia

    2017-08-01

    Hundreds of thousands of data points are now routinely generated in clinical trials by molecular profiling and NGS technologies. A true translation of this data into knowledge is not possible without analysis and interpretation in a well-defined biology context. Currently, there are many public and commercial pathway tools and network models that can facilitate such analysis. At the same time, insights and knowledge that can be gained is highly dependent on the underlying biological content of these resources. Crowdsourcing can be employed to guarantee the accuracy and transparency of the biological content underlining the tools used to interpret rich molecular data. Areas covered: In this review, the authors describe crowdsourcing in drug discovery. The focal point is the efforts that have successfully used the crowdsourcing approach to verify and augment pathway tools and biological network models. Technologies that enable the building of biological networks with the community are also described. Expert opinion: A crowd of experts can be leveraged for the entire development process of biological network models, from ontologies to the evaluation of their mechanistic completeness. The ultimate goal is to facilitate biomarker discovery and personalized medicine by mechanistically explaining patients' differences with respect to disease prevention, diagnosis, and therapy outcome.

  19. Space Network Devices Developed

    Science.gov (United States)

    Jones, Robert E.

    2004-01-01

    The NASA Glenn Research Center through a contract with Spectrum Astro, Inc., has been developing space network hardware as an enabling technology using open systems interconnect (OSI) standards for space-based communications applications. The OSI standard is a well-recognized layered reference model that specifies how data should be sent node to node in a communications network. Because of this research and technology development, a space-qualifiable Ethernet-based network interface card (similar to the type found in a networked personal computer) and the associated four-port hub were designed and developed to flight specifications. During this research and development, there also have been many lessons learned for determining approaches for migrating existing spacecraft architectures to an OSI-network-based platform. Industry has recognized the benefits of targeting hardware developed around OSI standards such as Transmission Control Protocol/Internet Protocol (TCP/IP) or similar protocols for use in future generations of space communication systems. Some of these tangible benefits include overall reductions in mission schedule and cost and in system complexity. This development also brings us a step closer to the realization of a principal investigator on a terrestrial Internet site being able to interact with space platform assets in near real time. To develop this hardware, Spectrum Astro first conducted a technology analysis of alternatives study. For this analysis, they looked at the features of three protocol specifications: Ethernet (IEEE 802.3), Firewire (IEEE 1394), and Spacewire (IEEE 1355). A thorough analysis was performed on the basis of criteria such as current protocol performance and suitability for future space applications. Spectrum Astro also projected future influences such as cost, hardware and software availability, throughput performance, and integration procedures for current and transitive space architectures. After a thorough analysis

  20. Development of distributed topographical forecasting model for wind resource assessment using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, P.B. [Green Life Energy Solutions LLP, Secunderabad (India); Rao, S.S. [National Institute of Technology. Dept. of Mechanical Engineering, Warangal (India); Reddy, K.H. [JNT Univ.. Dept. of Mechanical Engineering, Anantapur (India)

    2012-07-01

    Economics of wind power projects largely depend on the availability of wind power density. Wind resource assessment is a study estimating wind speeds and wind power densities in the region under consideration. The accuracy and reliability of data sets comprising of wind speeds and wind power densities at different heights per topographic region characterized by elevation or mean sea level, is important for wind power projects. Indian Wind Resource Assessment program conducted in 80's consisted of wind data measured by monitoring stations at different topographies in order to measure wind power density values at 25 and 50 meters above the ground level. In this paper, an attempt has been made to assess wind resource at a given location using artificial neural networks. Existing wind resource data has been used to train the neural networks. Location topography (characterized by longitude, latitude and mean sea level), air density, mean annual wind speed (MAWS) are used as inputs to the neural network. Mean annual wind power density (MAWPD) in watt/m{sup 2} is predicted for a new topographic location. Simple back propagation based neural network has been found to be sufficient for predicting these values with suitable accuracy. This model is closely linked to the problem of wind energy forecasting considering the variations of specific atmospheric variables with time horizons. This model will help the wind farm developers to have an initial estimation of the wind energy potential at a particular topography. (Author)

  1. Modeling of frequency agile devices: development of PKI neuromodeling library based on hierarchical network structure

    Science.gov (United States)

    Sanchez, P.; Hinojosa, J.; Ruiz, R.

    2005-06-01

    Recently, neuromodeling methods of microwave devices have been developed. These methods are suitable for the model generation of novel devices. They allow fast and accurate simulations and optimizations. However, the development of libraries makes these methods to be a formidable task, since they require massive input-output data provided by an electromagnetic simulator or measurements and repeated artificial neural network (ANN) training. This paper presents a strategy reducing the cost of library development with the advantages of the neuromodeling methods: high accuracy, large range of geometrical and material parameters and reduced CPU time. The library models are developed from a set of base prior knowledge input (PKI) models, which take into account the characteristics common to all the models in the library, and high-level ANNs which give the library model outputs from base PKI models. This technique is illustrated for a microwave multiconductor tunable phase shifter using anisotropic substrates. Closed-form relationships have been developed and are presented in this paper. The results show good agreement with the expected ones.

  2. Development and testing of a compartmentalized reaction network model for redox zones in contaminated aquifers

    Science.gov (United States)

    Abrams , Robert H.; Loague, Keith; Kent, Douglas B.

    1998-01-01

    The work reported here is the first part of a larger effort focused on efficient numerical simulation of redox zone development in contaminated aquifers. The sequential use of various electron acceptors, which is governed by the energy yield of each reaction, gives rise to redox zones. The large difference in energy yields between the various redox reactions leads to systems of equations that are extremely ill-conditioned. These equations are very difficult to solve, especially in the context of coupled fluid flow, solute transport, and geochemical simulations. We have developed a general, rational method to solve such systems where we focus on the dominant reactions, compartmentalizing them in a manner that is analogous to the redox zones that are often observed in the field. The compartmentalized approach allows us to easily solve a complex geochemical system as a function of time and energy yield, laying the foundation for our ongoing work in which we couple the reaction network, for the development of redox zones, to a model of subsurface fluid flow and solute transport. Our method (1) solves the numerical system without evoking a redox parameter, (2) improves the numerical stability of redox systems by choosing which compartment and thus which reaction network to use based upon the concentration ratios of key constituents, (3) simulates the development of redox zones as a function of time without the use of inhibition factors or switching functions, and (4) can reduce the number of transport equations that need to be solved in space and time. We show through the use of various model performance evaluation statistics that the appropriate compartment choice under different geochemical conditions leads to numerical solutions without significant error. The compartmentalized approach described here facilitates the next phase of this effort where we couple the redox zone reaction network to models of fluid flow and solute transport.

  3. Development of Artificial Neural Network Model of Crude Oil Distillation Column

    Directory of Open Access Journals (Sweden)

    Ali Hussein Khalaf

    2016-02-01

    Full Text Available Artificial neural network in MATLAB simulator is used to model Baiji crude oil distillation unit based on data generated from aspen-HYSYS simulator. Thirteen inputs, six outputs and over 1487 data set are used to model the actual unit. Nonlinear autoregressive network with exogenous inputs (NARXand back propagation algorithm are used for training. Seventy percent of data are used for training the network while the remaining  thirty percent are used for testing  and validating the network to determine its prediction accuracy. One hidden layer and 34 hidden neurons are used for the proposed network with MSE of 0.25 is obtained. The number of neuron are selected based on less MSE for the network. The model founded to predict the optimal operating conditions for different objective functions within the training limit since ANN models are poor extrapolators. They are usually only reliable within the range of data that they had been trained for.

  4. Development of Artificial Neural Network Model of Crude Oil Distillation Column

    Directory of Open Access Journals (Sweden)

    Duraid F. Ahmed

    2016-02-01

    Full Text Available Artificial neural network in MATLAB simulator is used to model Baiji crude oil distillation unit based on data generated from aspen-HYSYS simulator. Thirteen inputs, six outputs and over 1487 data set are used to model the actual unit. Nonlinear autoregressive network with exogenous inputs (NARX and back propagation algorithm are used for training. Seventy percent of data are used for training the network while the remaining thirty percent are used for testing and validating the network to determine its prediction accuracy. One hidden layer and 34 hidden neurons are used for the proposed network with MSE of 0.25 is obtained. The number of neuron are selected based on less MSE for the network. The model founded to predict the optimal operating conditions for different objective functions within the training limit since ANN models are poor extrapolators. They are usually only reliable within the range of data that they had been trained for.

  5. Model development of a participatory Bayesian network for coupling ecosystem services into integrated water resources management

    Science.gov (United States)

    Xue, Jie; Gui, Dongwei; Lei, Jiaqiang; Zeng, Fanjiang; Mao, Donglei; Zhang, Zhiwei

    2017-11-01

    There is an increasing consensus on the importance of coupling ecosystem services (ES) into integrated water resource management (IWRM), due to a wide range of benefits to human from the ES. This paper proposes an ES-based IWRM framework within which a participatory Bayesian network (BN) model is developed to assist with the coupling between ES and IWRM. The framework includes three steps: identifying water-related services of ecosystems; analysis of the tradeoff and synergy among users of water; and ES-based IWRM implementation using the participatory BN model. We present the development, evaluation and application of the participatory BN model with the involvement of four participant groups (stakeholders, water manager, water management experts, and research team) in Qira oasis area, Northwest China. As a typical catchment-scale region, the Qira oasis area is facing severe water competition between the demands of human activities and natural ecosystems. Results demonstrate that the BN model developed provides effective integration of ES into a quantitative IWMR framework via public negotiation and feedback. The network results, sensitivity evaluation, and management scenarios are broadly accepted by the participant groups. The intervention scenarios from the model conclude that any water management measure remains unable to sustain the ecosystem health in water-related ES. Greater cooperation among the stakeholders is highly necessary for dealing with such water conflicts. In particular, a proportion of the agricultural water saved through improving water-use efficiency should be transferred to natural ecosystems via water trade. The BN model developed is appropriate for areas throughout the world in which there is intense competition for water between human activities and ecosystems.

  6. A dynamic network model to explain the development of excellent human performance

    Directory of Open Access Journals (Sweden)

    Ruud J.R. Den Hartigh

    2016-04-01

    Full Text Available Across different domains, from sports to science, some individuals accomplish excellent levels of performance. For over 150 years, researchers have debated the roles of specific nature and nurture components to develop excellence. In this article, we argue that the key to excellence does not reside in specific underlying components, but rather in the ongoing interactions among the components. We propose that excellence emerges out of dynamic networks consisting of idiosyncratic mixtures of interacting components such as genetic endowment, motivation, practice, and coaching. Using computer simulations we demonstrate that the dynamic network model accurately predicts typical properties of excellence reported in the literature, such as the idiosyncratic developmental trajectories leading to excellence and the highly skewed distributions of productivity present in virtually any achievement domain. Based on this novel theoretical perspective on excellent human performance, this article concludes by suggesting policy implications and directions for future research.

  7. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sitakanta ePattanaik

    2014-06-01

    Full Text Available Trichomes are specialized epidermal cells located on aerial parts of plants and are associated with a wide array of biological processes. Trichomes protect plants from adverse conditions including UV light and herbivore attack and are also an important source of a number of phytochemicals. The simple unicellular trichomes of Arabidopsis serve as an excellent model to study molecular mechanism of cell differentiation and pattern formation in plants. The emerging picture suggests that the developmental process is controlled by a transcriptional network involving three major groups of transcription factors: the R2R3 MYB, basic helix-loop-helix (bHLH and WD40 repeat (WDR protein. These regulatory proteins form a trimeric activator complex that positively regulates trichome development. The single repeat R3 MYBs act as negative regulators of trichome development. They compete with the R2R3 MYBs to bind the bHLH factor and form a repressor complex. In addition to activator-repressor mechanism, a depletion mechanism may operate in parallel during trichome development. In this mechanism, the bHLH factor traps the WDR protein which results in depletion of WDR protein in neighboring cells. Consequently, the cells with high levels of bHLH and WDR proteins are developed into trichomes. A group of C2H2 zinc finger TFs has also been implicated in trichome development. Phytohormones, including gibberellins and jasmonic acid, play significant roles in this developmental process. Recently, microRNAs have been shown to be involved in trichome development. Furthermore, it has been demonstrated that the activities of the key regulatory proteins involved in trichome development are controlled by the 26S/ubiquitin proteasome system (UPS, highlighting the complexity of the regulatory network controlling this developmental process. To complement several excellent recent relevant reviews, this review focuses on the transcriptional network and hormonal interplay

  8. Modeling of the CIGRE Low Voltage Test Distribution Network and the Development of Appropriate Controllers

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    The fluctuating nature of some of the Distributed Generation (DG) sources can cause power quality related problems like power frequency oscillations, voltage fluctuations etc. In future, the DG penetration is expected to increase and hence this requires some control actions to deal with the power...... controller. The control system is tested in the distribution test network set up by CIGRE. The new approach of the PV controller is done in such a way that it can control AC and DC voltage of the PV converter during dynamic conditions. The battery controller is also developed in such a way that it can...... quality issues. The main focus of this paper is on development of controllers for a distribution system with different DG’s and especially development of a Photovoltaic (PV) controller using a Static Compensator (STATCOM) controller and on modeling of a Battery Storage System (BSS) also based on a STATCOM...

  9. Comprehensive Influence Model of Preschool Children’s Personality Development Based on the Bayesian Network

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2014-01-01

    Full Text Available It is crucial to ascertain the comprehensive influence factors on personality for making effective cultivating plan. However, most existing literatures focus on the effect of individual factor on the personality. In order to comprehensively investigate the causal influences of preschool children’s temperament, school factors (teacher expectation and peer acceptance, and family factors (parental coparenting style, parental education value, and parental parenting style on the personality and the probability of the dependencies among these influence factors, we constructed the influencing factor model of personality development based on the Bayesian network. The models not only reflect the influence on personality development as a whole, but also obtain the probability relationships among the factors. Compared with other influence factors including family and school factors, temperament has more effect on the personality. In addition, teacher expectation also has an important influence on the personality. The experimental results show that it is a valuable exploration to construct the Bayesian network for comprehensively investigating the causal relationships between preschool children’s personality and related influence factors. Further, these results will be helpful to the cultivation of healthy personality.

  10. A social network model for the development of a 'Theory of Mind'

    Science.gov (United States)

    Harré, Michael S.

    2013-02-01

    A "Theory of Mind" is one of the most important skills we as humans have developed; It enables us to infer the mental states and intentions of others, build stable networks of relationships and it plays a central role in our psychological make-up and development. Findings published earlier this year have also shown that we as a species as well as each of us individually benefit from the enlargement of the underlying neuro-anatomical regions that support our social networks, mediated by our Theory of Mind that stabilises these networks. On the basis of such progress and that of earlier work, this paper draws together several different strands from psychology, behavioural economics and network theory in order to generate a novel theoretical representation of the development of our social-cognition and how subsequent larger social networks enables much of our cultural development but at the increased risk of mental disorders.

  11. A neighbourhood evolving network model

    International Nuclear Information System (INIS)

    Cao, Y.J.; Wang, G.Z.; Jiang, Q.Y.; Han, Z.X.

    2006-01-01

    Many social, technological, biological and economical systems are best described by evolved network models. In this short Letter, we propose and study a new evolving network model. The model is based on the new concept of neighbourhood connectivity, which exists in many physical complex networks. The statistical properties and dynamics of the proposed model is analytically studied and compared with those of Barabasi-Albert scale-free model. Numerical simulations indicate that this network model yields a transition between power-law and exponential scaling, while the Barabasi-Albert scale-free model is only one of its special (limiting) cases. Particularly, this model can be used to enhance the evolving mechanism of complex networks in the real world, such as some social networks development

  12. Modeling Network Interdiction Tasks

    Science.gov (United States)

    2015-09-17

    118 xiii Table Page 36 Computation times for weighted, 100-node random networks for GAND Approach testing in Python ...in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 38 Accuracy measures for weighted, 100-node random networks for GAND...networks [15:p. 1]. A common approach to modeling network interdiction is to formulate the problem in terms of a two-stage strategic game between two

  13. Development of surrogate models using artificial neural network for building shell energy labelling

    International Nuclear Information System (INIS)

    Melo, A.P.; Cóstola, D.; Lamberts, R.; Hensen, J.L.M.

    2014-01-01

    Surrogate models are an important part of building energy labelling programs, but these models still present low accuracy, particularly in cooling-dominated climates. The objective of this study was to evaluate the feasibility of using an artificial neural network (ANN) to improve the accuracy of surrogate models for labelling purposes. An ANN was applied to model the building stock of a city in Brazil, based on the results of extensive simulations using the high-resolution building energy simulation program EnergyPlus. Sensitivity and uncertainty analyses were carried out to evaluate the behaviour of the ANN model, and the variations in the best and worst performance for several typologies were analysed in relation to variations in the input parameters and building characteristics. The results obtained indicate that an ANN can represent the interaction between input and output data for a vast and diverse building stock. Sensitivity analysis showed that no single input parameter can be identified as the main factor responsible for the building energy performance. The uncertainty associated with several parameters plays a major role in assessing building energy performance, together with the facade area and the shell-to-floor ratio. The results of this study may have a profound impact as ANNs could be applied in the future to define regulations in many countries, with positive effects on optimizing the energy consumption. - Highlights: • We model several typologies which have variation in input parameters. • We evaluate the accuracy of surrogate models for labelling purposes. • ANN is applied to model the building stock. • Uncertainty in building plays a major role in the building energy performance. • Results show that ANN could help to develop building energy labelling systems

  14. Transportation Network Role for Central Italy Macroregion Development in a Territorial Frames Model Based

    Science.gov (United States)

    Di Ludovico, Donato; D'Ovidio, Gino

    2017-10-01

    This paper refers to an interdisciplinary planning research approach that aims to combine urban aspects related to a territorial spatial development with transport requirements connected to an efficiency and sustainable mobility. The proposed research method is based on “Territorial Frames” (TFs) model that derived from an original interpretation of the local context divided into a summation of territorial settlement fabrics characterized in terms of spatial tile, morphology and mobility axes. The TFs, with their own autonomous, different size and structure, are used as the main plot, able to assemble the settlement systems and their posturbane forms. With a view to polycentric and spatial development, the research method allows us to analyse the completeness of the TFs and their connective potential, in order to locate the missing/inefficient elements of the transportation network and planning other TFs essential to support economic and social development processes of the most isolated and disadvantaged inland areas. Finally, a case study of the Italian Median Macroregion configuration based on TFs model approach is proposed, analysed and discussed.

  15. Joint Hub Network Development

    NARCIS (Netherlands)

    Cruijssen, F.C.A.M.; Borm, P.E.M.; Dullaert, W.; Hamers, H.J.M.

    2007-01-01

    This paper introduces a framework for joint hub network development. Building a joint physical hub for transhipment of goods is expensive and therefore involves considerable risks for the cooperating companies. In a practical setting, it is unlikely that an entire network will be built at once.

  16. Development of surrogate models using artificial neural network for building shell energy labelling

    NARCIS (Netherlands)

    Melo, A.P.; Costola, D.; Lamberts, R.; Hensen, J.L.M.

    2014-01-01

    Surrogate models are an important part of building energy labelling programs, but these models still present low accuracy, particularly in cooling-dominated climates. The objective of this study was to evaluate the feasibility of using an artificial neural network (ANN) to improve the accuracy of

  17. SPECIAL LIBRARIES OF FRAGMENTS OF ALGORITHMIC NETWORKS TO AUTOMATE THE DEVELOPMENT OF ALGORITHMIC MODELS

    Directory of Open Access Journals (Sweden)

    V. E. Marley

    2015-01-01

    Full Text Available Summary. The concept of algorithmic models appeared from the algorithmic approach in which the simulated object, the phenomenon appears in the form of process, subject to strict rules of the algorithm, which placed the process of operation of the facility. Under the algorithmic model is the formalized description of the scenario subject specialist for the simulated process, the structure of which is comparable with the structure of the causal and temporal relationships between events of the process being modeled, together with all information necessary for its software implementation. To represent the structure of algorithmic models used algorithmic network. Normally, they were defined as loaded finite directed graph, the vertices which are mapped to operators and arcs are variables, bound by operators. The language of algorithmic networks has great features, the algorithms that it can display indifference the class of all random algorithms. In existing systems, automation modeling based on algorithmic nets, mainly used by operators working with real numbers. Although this reduces their ability, but enough for modeling a wide class of problems related to economy, environment, transport, technical processes. The task of modeling the execution of schedules and network diagrams is relevant and useful. There are many counting systems, network graphs, however, the monitoring process based analysis of gaps and terms of graphs, no analysis of prediction execution schedule or schedules. The library is designed to build similar predictive models. Specifying source data to obtain a set of projections from which to choose one and take it for a new plan.

  18. Artificial neural network surrogate development of equivalence models for nuclear data uncertainty propagation in scenario studies

    Directory of Open Access Journals (Sweden)

    Krivtchik Guillaume

    2017-01-01

    Full Text Available Scenario studies simulate the whole fuel cycle over a period of time, from extraction of natural resources to geological storage. Through the comparison of different reactor fleet evolutions and fuel management options, they constitute a decision-making support. Consequently uncertainty propagation studies, which are necessary to assess the robustness of the studies, are strategic. Among numerous types of physical model in scenario computation that generate uncertainty, the equivalence models, built for calculating fresh fuel enrichment (for instance plutonium content in PWR MOX so as to be representative of nominal fuel behavior, are very important. The equivalence condition is generally formulated in terms of end-of-cycle mean core reactivity. As this results from a physical computation, it is therefore associated with an uncertainty. A state-of-the-art of equivalence models is exposed and discussed. It is shown that the existing equivalent models implemented in scenario codes, such as COSI6, are not suited to uncertainty propagation computation, for the following reasons: (i existing analytical models neglect irradiation, which has a strong impact on the result and its uncertainty; (ii current black-box models are not suited to cross-section perturbations management; and (iii models based on transport and depletion codes are too time-consuming for stochastic uncertainty propagation. A new type of equivalence model based on Artificial Neural Networks (ANN has been developed, constructed with data calculated with neutron transport and depletion codes. The model inputs are the fresh fuel isotopy, the irradiation parameters (burnup, core fractionation, etc., cross-sections perturbations and the equivalence criterion (for instance the core target reactivity in pcm at the end of the irradiation cycle. The model output is the fresh fuel content such that target reactivity is reached at the end of the irradiation cycle. Those models are built and

  19. On the Development of Methodology for Planning and Cost-Modeling of a Wide Area Network

    OpenAIRE

    Ahmedi, Basri; Mitrevski, Pece

    2014-01-01

    The most important stages in designing a computer network in a wider geographical area include: definition of requirements, topological description, identification and calculation of relevant parameters (i.e. traffic matrix), determining the shortest path between nodes, quantification of the effect of various levels of technical and technological development of urban areas involved, the cost of technology, and the cost of services. These parameters differ for WAN networks in different regions...

  20. Development and Execution of the RUNSAFE Runway Safety Bayesian Belief Network Model

    Science.gov (United States)

    Green, Lawrence L.

    2015-01-01

    One focus area of the National Aeronautics and Space Administration (NASA) is to improve aviation safety. Runway safety is one such thrust of investigation and research. The two primary components of this runway safety research are in runway incursion (RI) and runway excursion (RE) events. These are adverse ground-based aviation incidents that endanger crew, passengers, aircraft and perhaps other nearby people or property. A runway incursion is the incorrect presence of an aircraft, vehicle or person on the protected area of a surface designated for the landing and take-off of aircraft; one class of RI events simultaneously involves two aircraft, such as one aircraft incorrectly landing on a runway while another aircraft is taking off from the same runway. A runway excursion is an incident involving only a single aircraft defined as a veer-off or overrun off the runway surface. Within the scope of this effort at NASA Langley Research Center (LaRC), generic RI, RE and combined (RI plus RE, or RUNSAFE) event models have each been developed and implemented as a Bayesian Belief Network (BBN). Descriptions of runway safety issues from the literature searches have been used to develop the BBN models. Numerous considerations surrounding the process of developing the event models have been documented in this report. The event models were then thoroughly reviewed by a Subject Matter Expert (SME) panel through multiple knowledge elicitation sessions. Numerous improvements to the model structure (definitions, node names, node states and the connecting link topology) were made by the SME panel. Sample executions of the final RUNSAFE model have been presented herein for baseline and worst-case scenarios. Finally, a parameter sensitivity analysis for a given scenario was performed to show the risk drivers. The NASA and LaRC research in runway safety event modeling through the use of BBN technology is important for several reasons. These include: 1) providing a means to clearly

  1. Predictions on the Development Dimensions of Provincial Tourism Discipline Based on the Artificial Neural Network BP Model

    Science.gov (United States)

    Yang, Yang; Hu, Jun; Lv, Yingchun; Zhang, Mu

    2013-01-01

    As the tourism industry has gradually become the strategic mainstay industry of the national economy, the scope of the tourism discipline has developed rigorously. This paper makes a predictive study on the development of the scope of Guangdong provincial tourism discipline based on the artificial neural network BP model in order to find out how…

  2. Complex Networks in Psychological Models

    Science.gov (United States)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  3. A reference model for the development of networked organizational communication: A communication perspective.

    NARCIS (Netherlands)

    de Vries, Sjoerd A.; Isaias, P.

    2002-01-01

    Organizational communication is increasingly based on electronic networks. The growth is seldom the result of a planned organizational development of these technologies, but mostly driven by 'rapid' technology developments and best user practices. To enable organizations to understand and to steer

  4. Development of a 3D Stream Network and Topography for Improved Large-Scale Hydraulic Modeling

    Science.gov (United States)

    Saksena, S.; Dey, S.; Merwade, V.

    2016-12-01

    Most digital elevation models (DEMs) used for hydraulic modeling do not include channel bed elevations. As a result, the DEMs are complimented with additional bathymetric data for accurate hydraulic simulations. Existing methods to acquire bathymetric information through field surveys or through conceptual models are limited to reach-scale applications. With an increasing focus on large scale hydraulic modeling of rivers, a framework to estimate and incorporate bathymetry for an entire stream network is needed. This study proposes an interpolation-based algorithm to estimate bathymetry for a stream network by modifying the reach-based empirical River Channel Morphology Model (RCMM). The effect of a 3D stream network that includes river bathymetry is then investigated by creating a 1D hydraulic model (HEC-RAS) and 2D hydrodynamic model (Integrated Channel and Pond Routing) for the Upper Wabash River Basin in Indiana, USA. Results show improved simulation of flood depths and storage in the floodplain. Similarly, the impact of river bathymetry incorporation is more significant in the 2D model as compared to the 1D model.

  5. Development of relative humidity models by using optimized neural network structures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-romero, A.; Ortega, J. F.; Juan, J. A.; Tarjuelo, J. M.; Moreno, M. A.

    2010-07-01

    Climate has always had a very important role in life on earth, as well as human activity and health. The influence of relative humidity (RH) in controlled environments (e.g. industrial processes in agro-food processing, cold storage of foods such as fruits, vegetables and meat, or controls in greenhouses) is very important. Relative humidity is a main factor in agricultural production and crop yield (due to the influence on crop water demand or the development and distribution of pests and diseases, for example). The main objective of this paper is to estimate RH [maximum (RHmax), average (RHave), and minimum (RHmin)] data in a specific area, being applied to the Region of Castilla-La Mancha (C-LM) in this case, from available data at thermo-pluviometric weather stations. In this paper Artificial neural networks (ANN) are used to generate RH considering maximum and minimum temperatures and extraterrestrial solar radiation data. Model validation and generation is based on data from the years 2000 to 2008 from 44 complete agroclimatic weather stations. Relative errors are estimated as 1) spatial errors of 11.30%, 6.80% and 10.27% and 2) temporal errors of 10.34%, 6.59% and 9.77% for RHmin, RHmax and RHave, respectively. The use of ANNs is interesting in generating climate parameters from available climate data. For determining optimal ANN structure in estimating RH values, model calibration and validation is necessary, considering spatial and temporal variability. (Author) 44 refs.

  6. Joint Hub Network Development

    OpenAIRE

    Cruijssen, F.C.A.M.; Borm, P.E.M.; Dullaert, W.; Hamers, H.J.M.

    2007-01-01

    This paper introduces a framework for joint hub network development. Building a joint physical hub for transhipment of goods is expensive and therefore involves considerable risks for the cooperating companies. In a practical setting, it is unlikely that an entire network will be built at once. Rather, the partners will have a more cautious attitude and build the hub facilities one-by-one. In the proposed framework, every time a new hub is introduced, partners will have the opportunity to dec...

  7. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  8. Modeling the citation network by network cosmology.

    Science.gov (United States)

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  9. Brain Network Modelling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther

    Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...

  10. A Review of Decision Support Models for Global Distribution Network Design and Future Model development

    DEFF Research Database (Denmark)

    Reich, Juri; Kinra, Aseem; Kotzab, Herbert

    not offer a comprehensive method that is able to solve the problem in one single decision making process considering all relevant goals and factors. Thus, we attempt to create such a model using existing methods as building blocks, namely mixedinteger linear programming and the analytical hierarchy process....

  11. The College Football Student-Athlete's Academic Experience: Network Analysis and Model Development

    Science.gov (United States)

    Young, Kyle McLendon

    2010-01-01

    A grounded theory research study employing network analysis as a means of facilitating the latter stages of the coding process was conducted at a selective university that competes at the highest level of college football. The purpose of the study was to develop a better understanding of how interactive dynamics and controlling mechanisms, such as…

  12. Florida Model Task Force on Diabetic Retinopathy: Development of an Interagency Network.

    Science.gov (United States)

    Groff, G.; And Others

    1990-01-01

    This article describes the development of a mechanism to organize a network in Florida for individuals who are at risk for diabetic retinopathy. The task force comprised representatives from governmental, academic, professional, and voluntary organizations. It worked to educate professionals, patients, and the public through brochures, resource…

  13. Modeling Epidemic Network Failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...... the SID model’s behavior and impact on the network performance, as well as the severity of the infection spreading. The simulations are carried out in OPNET Modeler. The model provides an important input to epidemic connection recovery mechanisms, and can due to its flexibility and versatility be used...... to evaluate multiple epidemic scenarios in various network types....

  14. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  15. Implications of a neural network model of early sensori-motor development for the field of developmental neurology

    NARCIS (Netherlands)

    van Heijst, JJ; Touwen, BCL; Vos, JE

    This paper reports on a neural network model for early sensori-motor development and on the possible implications of this research for our understanding and, eventually, treatment of motor disorders like cerebral palsy. We recapitulate the results we published in detail in a series of papers [1-4].

  16. Development of infill drilling recovery models for carbonates reservoirs using neural networks and multivariate statistical as a novel method

    International Nuclear Information System (INIS)

    Soto, R; Wu, Ch. H; Bubela, A M

    1999-01-01

    This work introduces a novel methodology to improve reservoir characterization models. In this methodology we integrated multivariate statistical analyses, and neural network models for forecasting the infill drilling ultimate oil recovery from reservoirs in San Andres and Clearfork carbonate formations in west Texas. Development of the oil recovery forecast models help us to understand the relative importance of dominant reservoir characteristics and operational variables, reproduce recoveries for units included in the database, forecast recoveries for possible new units in similar geological setting, and make operational (infill drilling) decisions. The variety of applications demands the creation of multiple recovery forecast models. We have developed intelligent software (Soto, 1998), oilfield intelligence (01), as an engineering tool to improve the characterization of oil and gas reservoirs. 01 integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphic design, and inference engine modules. One of the challenges in this research was to identify the dominant and the optimum number of independent variables. The variables include porosity, permeability, water saturation, depth, area, net thickness, gross thickness, formation volume factor, pressure, viscosity, API gravity, number of wells in initial water flooding, number of wells for primary recovery, number of infill wells over the initial water flooding, PRUR, IWUR, and IDUR. Multivariate principal component analysis is used to identify the dominant and the optimum number of independent variables. We compared the results from neural network models with the non-parametric approach. The advantage of the non-parametric regression is that it is easy to use. The disadvantage is that it retains a large variance of forecast results for a particular data set. We also used neural network concepts to develop recovery

  17. POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations

    Energy Technology Data Exchange (ETDEWEB)

    Auld, Joshua; Hope, Michael; Ley, Hubert; Sokolov, Vadim; Xu, Bo; Zhang, Kuilin

    2016-03-01

    This paper discusses the development of an agent-based modelling software development kit, and the implementation and validation of a model using it that integrates dynamic simulation of travel demand, network supply and network operations. A description is given of the core utilities in the kit: a parallel discrete event engine, interprocess exchange engine, and memory allocator, as well as a number of ancillary utilities: visualization library, database IO library, and scenario manager. The overall framework emphasizes the design goals of: generality, code agility, and high performance. This framework allows the modeling of several aspects of transportation system that are typically done with separate stand-alone software applications, in a high-performance and extensible manner. The issue of integrating such models as dynamic traffic assignment and disaggregate demand models has been a long standing issue for transportation modelers. The integrated approach shows a possible way to resolve this difficulty. The simulation model built from the POLARIS framework is a single, shared-memory process for handling all aspects of the integrated urban simulation. The resulting gains in computational efficiency and performance allow planning models to be extended to include previously separate aspects of the urban system, enhancing the utility of such models from the planning perspective. Initial tests with case studies involving traffic management center impacts on various network events such as accidents, congestion and weather events, show the potential of the system.

  18. Open development networked innovations in international development

    CERN Document Server

    Reilly, Katherine M A

    2014-01-01

    The emergence of open networked models made possible by digital technology has the potential to transform international development. Open network structures allow people to come together to share information, organize, and collaborate. Open development harnesses this power, to create new organizational forms and improve people's lives; it is not only an agenda for research and practice but also a statement about how to approach international development. In this volume, experts explore a variety of applications of openness, addressing challenges as well as opportunities. Open development requires new theoretical tools that focus on real world problems, consider a variety of solutions, and recognize the complexity of local contexts. After exploring the new theoretical terrain, the book describes a range of cases in which open models address such specific development issues as biotechnology research, improving education, and access to scholarly publications. Contributors then examine tensions between open model...

  19. Developing a cross-docking network design model under uncertain environment

    Science.gov (United States)

    Seyedhoseini, S. M.; Rashid, Reza; Teimoury, E.

    2015-06-01

    Cross-docking is a logistic concept, which plays an important role in supply chain management by decreasing inventory holding, order packing, transportation costs and delivery time. Paying attention to these concerns, and importance of the congestion in cross docks, we present a mixed-integer model to optimize the location and design of cross docks at the same time to minimize the total transportation and operating costs. The model combines queuing theory for design aspects, for that matter, we consider a network of cross docks and customers where two M/M/c queues have been represented to describe operations of indoor trucks and outdoor trucks in each cross dock. To prepare a perfect illustration for performance of the model, a real case also has been examined that indicated effectiveness of the proposed model.

  20. Developing a Mathematical Model for Scheduling and Determining Success Probability of Research Projects Considering Complex-Fuzzy Networks

    Directory of Open Access Journals (Sweden)

    Gholamreza Norouzi

    2015-01-01

    Full Text Available In project management context, time management is one of the most important factors affecting project success. This paper proposes a new method to solve research project scheduling problems (RPSP containing Fuzzy Graphical Evaluation and Review Technique (FGERT networks. Through the deliverables of this method, a proper estimation of project completion time (PCT and success probability can be achieved. So algorithms were developed to cover all features of the problem based on three main parameters “duration, occurrence probability, and success probability.” These developed algorithms were known as PR-FGERT (Parallel and Reversible-Fuzzy GERT networks. The main provided framework includes simplifying the network of project and taking regular steps to determine PCT and success probability. Simplifications include (1 equivalent making of parallel and series branches in fuzzy network considering the concepts of probabilistic nodes, (2 equivalent making of delay or reversible-to-itself branches and impact of changing the parameters of time and probability based on removing related branches, (3 equivalent making of simple and complex loops, and (4 an algorithm that was provided to resolve no-loop fuzzy network, after equivalent making. Finally, the performance of models was compared with existing methods. The results showed proper and real performance of models in comparison with existing methods.

  1. Development and evaluation of neural network models to estimate daily solar radiation at Córdoba, Argentina

    International Nuclear Information System (INIS)

    Bocco, M.

    2006-01-01

    The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m -2 d -1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation [pt

  2. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  3. Development of an internet based system for modeling biotin metabolism using Bayesian networks.

    Science.gov (United States)

    Zhou, Jinglei; Wang, Dong; Schlegel, Vicki; Zempleni, Janos

    2011-11-01

    Biotin is an essential water-soluble vitamin crucial for maintaining normal body functions. The importance of biotin for human health has been under-appreciated but there is plenty of opportunity for future research with great importance for human health. Currently, carrying out predictions of biotin metabolism involves tedious manual manipulations. In this paper, we report the development of BiotinNet, an internet based program that uses Bayesian networks to integrate published data on various aspects of biotin metabolism. Users can provide a combination of values on the levels of biotin related metabolites to obtain the predictions on other metabolites that are not specified. As an inherent feature of Bayesian networks, the uncertainty of the prediction is also quantified and reported to the user. This program enables convenient in silico experiments regarding biotin metabolism, which can help researchers design future experiments while new data can be continuously incorporated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. African Scientific Network: A model to enhance scientific research in developing countries

    Science.gov (United States)

    Kebede, Abebe

    2002-03-01

    Africa has over 350 higher education institutions with a variety of experiences and priorities. The primary objectives of these institutions are to produce white-collar workers, teachers, and the work force for mining, textiles, and agricultural industries. The state of higher education and scientific research in Africa have been discussed in several conferences. The proposals that are generated by these conferences advocate structural changes in higher education, North-South institutional linkages, mobilization of the African Diaspora and funding. We propose a model African Scientific Network that would facilitate and enhance international scientific partnerships between African scientists and their counterparts elsewhere. A recent article by James Lamout (Financial Times, August 2, 2001) indicates that emigration from South Africa alone costs $8.9 billion in lost human resources. The article also stated that every year 23,000 graduates leave Africa for opportunities overseas, mainly in Europe, leaving only 20,000 scientists and engineers serving over 600 million people. The International Organization for Migration states that the brain drain of highly skilled professionals from Africa is making economic growth and poverty alleviation impossible across the continent. In our model we will focus on a possible networking mechanism where the African Diaspora will play a major role in addressing the financial and human resources needs of higher education in Africa

  5. Network development plan 1995

    International Nuclear Information System (INIS)

    Anon.

    1995-11-01

    Network plan 1995 concerns several strategic problems, among others environmental policy of power transmission lines. Possibilities of restructuring aerial cable network are described. The state of the existing systems and plans for new network systems are presented. (EG)

  6. Optimisation models for decision support in the development of biomass-based industrial district-heating networks in Italy

    International Nuclear Information System (INIS)

    Chinese, Damiana; Meneghetti, Antonella

    2005-01-01

    A system optimisation approach is proposed to design biomass-based district-heating networks in the context of industrial districts, which are one of the main successful productive aspects of Italian industry. Two different perspectives are taken into account, that of utilities and of policy makers, leading to two optimisation models to be further integrated. A mixed integer linear-programming model is developed for a utility company's profit maximisation, while a linear-programming model aims at minimising the balance of greenhouse-gas emissions related to the proposed energy system and the avoided emissions due to the substitution of current fossil-fuel boilers with district-heating connections. To systematically compare their results, a sensitivity analysis is performed with respect to network size in order to identify how the optimal system configuration, in terms of selected boilers to be connected to a multiple energy-source network, may vary in the two cases and to detect possible optimal sizes. Then a factorial analysis is adopted to rank desirable client types under the two perspectives and identify proper marketing strategies. The proposed optimisation approach was applied to the design of a new district-heating network in the chair-manufacturing district of North-Eastern Italy. (Author)

  7. Networks and Mechanisms of Interdependence. Theoretical developments beyond the rational action model

    Directory of Open Access Journals (Sweden)

    González-Bailón, Sandra

    2009-12-01

    Full Text Available There is interdependence when the actions of an individual influence the decisions (and later actions of other individuals. This paper claims that social networks define the structure of that range of influence and unleash a number of mechanisms that go beyond those captured by rational action theory. Networks give access to the ideas and actions of other individuals, and this exposure determines the activation of thresholds, the timing of actions, and the emergence of contagion processes, informational cascades and epidemics. This paper sustains that rational action theory does not offer the necessary tools to model these processes if it is not inserted in a general theory of networks. This is especially the case in the context opened by new information and communication technologies, where the interdependence of individuals is acquiring greater empirical relevance.

    Existe interdependencia cuando las acciones de unos individuos influyen en las decisiones (y posteriores acciones de otros individuos. Este artículo sostiene que las redes sociales definen la estructura de ese espacio de influencia y desatan una serie de mecanismos de los que la teoría de la elección racional no puede dar cuenta. Las redes sociales abren acceso a las ideas y acciones de otros individuos, y esta exposición determina la satisfacción de umbrales, el tempo con en el que se llevan a cabo las acciones y la emergencia de procesos de contagio, cascadas de información y epidemias. Este artículo defiende que la teoría de la elección racional no ofrece las herramientas necesarias para modelizar tales procesos si no se inserta en una teoría general de redes. Éste es especialmente el caso en unos momentos en los que la interdependencia de individuos está adquiriendo, al amparo de las nuevas tecnologías, mayor relevancia empírica.

  8. Development of a transport network model for the NRC Physical Protection Project

    International Nuclear Information System (INIS)

    Anderson, G.M.; Payne, H.J.

    1977-01-01

    The assessment of the requirements for a transportation system to transport special nuclear materials, due to the complexities deriving from schedule size and flexibility, convoy components and maintenance requirements, requires a well-formulated model and an associated computer package not presently available. This report details the problem of sizing the transportation system, presents several approaches to modeling this system, and provides recommendations for development of a computerized model

  9. Combining meteorological radar and network of rain gauges data for space–time model development

    OpenAIRE

    Pastoriza, Vicente; Núñez Fernández, Adolfo; Machado, Fernando; Mariño, Perfecto; Pérez Fontán, Fernando; Fiebig, Uwe-Carsten

    2009-01-01

    Technological developments and the trend to go higher and higher in frequency give rise to the need for true space–time rain field models for testing the dynamics of fade countermeasures. There are many models that capture the spatial correlation of rain fields. Worth mentioning are those models based on cell ensembles. However, the rain rate fields created in this way need the introduction of the time variable to reproduce their dynamics. In this paper, we have concentrated on ad...

  10. A Neural Network Model of the Effects of Entrenchment and Memory Development on Grammatical Gender Learning

    Science.gov (United States)

    Monner, Derek; Vatz, Karen; Morini, Giovanna; Hwang, So-One; DeKeyser, Robert

    2013-01-01

    To investigate potential causes of L2 performance deficits that correlate with age of onset, we use a computational model to explore the individual contributions of L1 entrenchment and aspects of memory development. Since development and L1 entrenchment almost invariably coincide, studying them independently is seldom possible in humans. To avoid…

  11. Design and Development of Basic Physical Layer WiMAX Network Simulation Models

    Science.gov (United States)

    2009-01-01

    Wide Web . The third software version was developed during the period of 22 August to 4 November, 2008. The software version developed during the...researched on the Web . The mathematics of some fundamental concepts such as Fourier transforms, convolutional coding techniques were also reviewed...Mathworks Matlab users’ website. A simulation model was found, entitled Estudio y Simulacion de la capa Jisica de la norma 802.16 ( Sistema WiMAX) developed

  12. Brand Marketing Model on Social Networks

    Directory of Open Access Journals (Sweden)

    Jolita Jezukevičiūtė

    2014-04-01

    Full Text Available The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalysis of a single case study revealed a brand marketingsocial networking tools that affect consumers the most. Basedon information analysis and methodological studies, develop abrand marketing model on social networks.

  13. Development of an artificial neural network model for on-line thermal margin estimation of a nuclear reactor core

    International Nuclear Information System (INIS)

    Kim, Hyun Koon

    1992-02-01

    One of the key safety parameters related to thermal margin in a Pressurized Water Reactor (PWR) core, is Departure from Nucleate Boiling Ratio (DNBR), which is to be assessed and continuously monitored during operation via either an analog or a digital monitoring system. The digital monitoring system, in general, allows more thermal margin than the analog system through the on-line computation of DNBR using the measured parameters as inputs to a simplified, fast running computer code. The purpose of this thesis is to develop an advanced method for on-line DNBR estimation by introducing an artifactual neural network model for best-estimation of DNBR at the given reactor operating conditions. the neural network model, consisting of three layers with five operating parameters in the input layer, provides real-time prediction accuracy of DNBR by training the network against the detailed simulation results for various operating conditions. The overall training procedure is developed to learn the characteristics of DNBR behaviour in the reactor core. First, a set of random combination of input variables is generated by Latin Hypercube Sampling technique performed on a wide range of input parameters. Second, the target values of DNBR to be referenced for training are calculated using a detailed simulation code, COBRA-IV. Third, the optimized training input data are selected. Then, training is performed using an Error Back Propagation algorithm. After completion of training, the network is tested on the examining data set in order to investigate the generalization capability of the network responses for the steady state operating condition as well as for the transient situations where DNB is of a primary concern. The test results show that the values of DNBR predicted by the neural network are maintained at a high level of accuracy for the steady state condition, and are in good agreements with the transient situation, although slightly conservative as compared to those

  14. Simulation models developed for voltage control in a distribution network using energy storage systems for PV penetration

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Bindner, Henrik W.

    2013-01-01

    This paper presents the development of simulation models for DER components in a distribution network, with focus on voltage controllers using energy storage systems for PV penetration. The Vanadium Redox Battery (VRB) system model, used as an energy storage system, was implemented in MATLAB....../Simulink and DIgSILENT PowerFactory, based on the efficiency of different components-such as: cell stacks, electrolytes, pumps and power converters, whilst power losses were also taken into account. The simulation results have been validated against measurements using experimental facility of a distributed power...

  15. Network model of security system

    Directory of Open Access Journals (Sweden)

    Adamczyk Piotr

    2016-01-01

    Full Text Available The article presents the concept of building a network security model and its application in the process of risk analysis. It indicates the possibility of a new definition of the role of the network models in the safety analysis. Special attention was paid to the development of the use of an algorithm describing the process of identifying the assets, vulnerability and threats in a given context. The aim of the article is to present how this algorithm reduced the complexity of the problem by eliminating from the base model these components that have no links with others component and as a result and it was possible to build a real network model corresponding to reality.

  16. The international implications of the Chinese model of development in the Global South: Asian Consensus as a network power

    Directory of Open Access Journals (Sweden)

    Javier Vadell

    2014-01-01

    Full Text Available This paper analyzes People's Republic of China (PRC economic and political ascendance in the 21st century focusing on the evolution of the sui generis economic development model and its significances of the evolution of relationship between China and the developing countries in the peripheral "Global South." The objective of this article is to analyze the relationship between China and the Global South (Africa and South America in the 21st century, characterized as a new Center-periphery global network power based on trade and investment that we call as "Asian Consensus."

  17. Development of a neutral network model to predict the excretion of purine derivatives in the urine of cows

    International Nuclear Information System (INIS)

    Volpe, V.; Stefanon, B.; Moscardini, S.; Susmel, P.; Gruber, L.

    1999-01-01

    A Neural Network Model to predict the urinary excretion of purine derivative nitrogen (UPDN) in cows is presented. The input variables of the model are dry matter intake (DMINT), NDF intake (NDFINT), total soluble nitrogen (SP), total soluble non-protein dry matter (SNPDM), total degradable nitrogen (DCP), total degradable non-protein dry matter (DNPDM), hourly available CP in the rumen (HACP), hourly available non-protein dry matter (HANPDM), three different gross indexes of synchronization, namely SYNCA (SP/SNPDM), SYNCB (DCP/DNPDM) and SYNCK (HACP/HANPDM) and two variables describing some metabolic aspects of purine derivative excretion such as live weight of the cow (LW) and milk yield (MILKY). The Model developed uses the Multi Layer Perceptron (MLP) utility, with 13 nodes in the input layer, 8 nodes in the hidden layer and 1 node in the output layer. The Model performances have been tested over 24 observations not previously used to train the model. When compared to a linear regression approach, the Neural Network model showed better performance but under predicted the daily excretion of UPDN for values around 20 g/day. When evaluated in terms of behaviour and depicted scenario the model responded to changes of live weight (LW) and milk yield (MILKY) and to modifications of the pattern of nutrients supplied to rumen microbes. (author)

  18. Development of a neutral network model to predict the excretion of purine derivatives in the urine of cows

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, V; Stefanon, B; Moscardini, S; Susmel, P [University of Udine, Department of Animal Production Science, Pagnacco, UD (Italy); Gruber, L [Federal Research Institute for Agriculture in the Alpine Regions, Irdning (Austria)

    1999-06-01

    A Neural Network Model to predict the urinary excretion of purine derivative nitrogen (UPDN) in cows is presented. The input variables of the model are dry matter intake (DMINT), NDF intake (NDFINT), total soluble nitrogen (SP), total soluble non-protein dry matter (SNPDM), total degradable nitrogen (DCP), total degradable non-protein dry matter (DNPDM), hourly available CP in the rumen (HACP), hourly available non-protein dry matter (HANPDM), three different gross indexes of synchronization, namely SYNCA (SP/SNPDM), SYNCB (DCP/DNPDM) and SYNCK (HACP/HANPDM) and two variables describing some metabolic aspects of purine derivative excretion such as live weight of the cow (LW) and milk yield (MILKY). The Model developed uses the Multi Layer Perceptron (MLP) utility, with 13 nodes in the input layer, 8 nodes in the hidden layer and 1 node in the output layer. The Model performances have been tested over 24 observations not previously used to train the model. When compared to a linear regression approach, the Neural Network model showed better performance but under predicted the daily excretion of UPDN for values around 20 g/day. When evaluated in terms of behaviour and depicted scenario the model responded to changes of live weight (LW) and milk yield (MILKY) and to modifications of the pattern of nutrients supplied to rumen microbes. (author) 16 refs, 11 figs, 1 tab

  19. A conceptual model for the development process of confirmatory adaptive clinical trials within an emergency research network.

    Science.gov (United States)

    Mawocha, Samkeliso C; Fetters, Michael D; Legocki, Laurie J; Guetterman, Timothy C; Frederiksen, Shirley; Barsan, William G; Lewis, Roger J; Berry, Donald A; Meurer, William J

    2017-06-01

    Adaptive clinical trials use accumulating data from enrolled subjects to alter trial conduct in pre-specified ways based on quantitative decision rules. In this research, we sought to characterize the perspectives of key stakeholders during the development process of confirmatory-phase adaptive clinical trials within an emergency clinical trials network and to build a model to guide future development of adaptive clinical trials. We used an ethnographic, qualitative approach to evaluate key stakeholders' views about the adaptive clinical trial development process. Stakeholders participated in a series of multidisciplinary meetings during the development of five adaptive clinical trials and completed a Strengths-Weaknesses-Opportunities-Threats questionnaire. In the analysis, we elucidated overarching themes across the stakeholders' responses to develop a conceptual model. Four major overarching themes emerged during the analysis of stakeholders' responses to questioning: the perceived statistical complexity of adaptive clinical trials and the roles of collaboration, communication, and time during the development process. Frequent and open communication and collaboration were viewed by stakeholders as critical during the development process, as were the careful management of time and logistical issues related to the complexity of planning adaptive clinical trials. The Adaptive Design Development Model illustrates how statistical complexity, time, communication, and collaboration are moderating factors in the adaptive design development process. The intensity and iterative nature of this process underscores the need for funding mechanisms for the development of novel trial proposals in academic settings.

  20. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation.

    Science.gov (United States)

    Wang, Shuo; Zhou, Mu; Liu, Zaiyi; Liu, Zhenyu; Gu, Dongsheng; Zang, Yali; Dong, Di; Gevaert, Olivier; Tian, Jie

    2017-08-01

    Accurate lung nodule segmentation from computed tomography (CT) images is of great importance for image-driven lung cancer analysis. However, the heterogeneity of lung nodules and the presence of similar visual characteristics between nodules and their surroundings make it difficult for robust nodule segmentation. In this study, we propose a data-driven model, termed the Central Focused Convolutional Neural Networks (CF-CNN), to segment lung nodules from heterogeneous CT images. Our approach combines two key insights: 1) the proposed model captures a diverse set of nodule-sensitive features from both 3-D and 2-D CT images simultaneously; 2) when classifying an image voxel, the effects of its neighbor voxels can vary according to their spatial locations. We describe this phenomenon by proposing a novel central pooling layer retaining much information on voxel patch center, followed by a multi-scale patch learning strategy. Moreover, we design a weighted sampling to facilitate the model training, where training samples are selected according to their degree of segmentation difficulty. The proposed method has been extensively evaluated on the public LIDC dataset including 893 nodules and an independent dataset with 74 nodules from Guangdong General Hospital (GDGH). We showed that CF-CNN achieved superior segmentation performance with average dice scores of 82.15% and 80.02% for the two datasets respectively. Moreover, we compared our results with the inter-radiologists consistency on LIDC dataset, showing a difference in average dice score of only 1.98%. Copyright © 2017. Published by Elsevier B.V.

  1. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  2. Development of CANDU prototype fuel handling simulator - concept and some simulation results with physical network modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.P. [Candu Energy Inc, Mississauga, Ontario (Canada)

    2012-07-01

    This paper reviewed the need for a fuel handling(FH) simulator in training operators and maintenance personnel, in FH design enhancement based on operating experience (OPEX), and the potential application of Virtual Reality (VR) based simulation technology. Modeling and simulation of the fuelling machine (FM) magazine drive plant (one of the CANDU FH sub-systems) was described. The work established the feasibility of modeling and simulating a physical FH drive system using the physical network approach and computer software tools. The concept and approach can be applied similarly to create the other FH subsystem plant models, which are expected to be integrated with control modules to develop a master FH control model and further to create a virtual FH system. (author)

  3. Development of CANDU prototype fuel handling simulator - concept and some simulation results with physical network modeling approach

    International Nuclear Information System (INIS)

    Xu, X.P.

    2012-01-01

    This paper reviewed the need for a fuel handling(FH) simulator in training operators and maintenance personnel, in FH design enhancement based on operating experience (OPEX), and the potential application of Virtual Reality (VR) based simulation technology. Modeling and simulation of the fuelling machine (FM) magazine drive plant (one of the CANDU FH sub-systems) was described. The work established the feasibility of modeling and simulating a physical FH drive system using the physical network approach and computer software tools. The concept and approach can be applied similarly to create the other FH subsystem plant models, which are expected to be integrated with control modules to develop a master FH control model and further to create a virtual FH system. (author)

  4. Statistical Models for Social Networks

    NARCIS (Netherlands)

    Snijders, Tom A. B.; Cook, KS; Massey, DS

    2011-01-01

    Statistical models for social networks as dependent variables must represent the typical network dependencies between tie variables such as reciprocity, homophily, transitivity, etc. This review first treats models for single (cross-sectionally observed) networks and then for network dynamics. For

  5. Development of real-time core monitoring system models with accuracy-enhanced neural network and its application

    International Nuclear Information System (INIS)

    Koo, Bon Hyun

    1994-02-01

    In a complicated system like pressurized water reactor, a number of key safety parameters need to be selected to represent the reactor systems safety. It could be more effective for the reactor safety to make the key safety parameters in real-time available directly to the reactor operator. Direct representation of key safety parameters is also desirable in the view of reactor core design since it could reduce unnecessary margins for various components of uncertainties. In this thesis, real-time core monitoring system models have been developed with use of artificial neural networks for the prediction of nuclear hot channel factor (HCF) and core departure from nucleate boiling ratio (DNBR) which are known to be the fundamental core safety parameters for pressurized water reactors. Artificial neural network algorithm, has been shown to be successful for the conservative and accurate prediction of the HCF and DNBR. For the development of system models, training patterns were generated using the FLAIR and COBRAIV-i computer codes for the HCF and DNBR. The selected input variables were the core power, reactor coolant flow, temperature, pressure, power distribution, boron concentration, and rod position. The developed system models could replace the existing core monitoring systems and then afford a better efficiency by using the additional margin which otherwise needs to be reserved for various unidentified uncertainties. Several variations of the neural network technique have been proposed and compared based on numerical experiments. The neural network can be augmented by use of a functional link to improve the performance of the network model. The functional link is found to be very effective especially when the relationship between the input parameters and the output parameters is overly complicated such as in the core HCF and DNBR. For the further enhancement of DNBR accuracy, two-fold weight sets were used. The coarse weight set can provide a quick and

  6. The layered sensing operations center: a modeling and simulation approach to developing complex ISR networks

    Science.gov (United States)

    Curtis, Christopher; Lenzo, Matthew; McClure, Matthew; Preiss, Bruce

    2010-04-01

    In order to anticipate the constantly changing landscape of global warfare, the United States Air Force must acquire new capabilities in the field of Intelligence, Surveillance, and Reconnaissance (ISR). To meet this challenge, the Air Force Research Laboratory (AFRL) is developing a unifying construct of "Layered Sensing" which will provide military decision-makers at all levels with the timely, actionable, and trusted information necessary for complete battlespace awareness. Layered Sensing is characterized by the appropriate combination of sensors and platforms (including those for persistent sensing), infrastructure, and exploitation capabilities to enable this synergistic awareness. To achieve the Layered Sensing vision, AFRL is pursuing a Modeling & Simulation (M&S) strategy through the Layered Sensing Operations Center (LSOC). An experimental ISR system-of-systems test-bed, the LSOC integrates DoD standard simulation tools with commercial, off-the-shelf video game technology for rapid scenario development and visualization. These tools will help facilitate sensor management performance characterization, system development, and operator behavioral analysis. Flexible and cost-effective, the LSOC will implement a non-proprietary, open-architecture framework with well-defined interfaces. This framework will incentivize the transition of current ISR performance models to service-oriented software design for maximum re-use and consistency. This paper will present the LSOC's development and implementation thus far as well as a summary of lessons learned and future plans for the LSOC.

  7. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  8. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  9. Development of the Real Time Situation Identification Model for Adaptive Service Support in Vehicular Communication Networks Domain

    Directory of Open Access Journals (Sweden)

    Mindaugas Kurmis

    2013-01-01

    Full Text Available The article discusses analyses and assesses the key proposals how to deal with the situation identification for the heterogeneous service support in vehicular cooperation environment. This is one of the most important topics of the pervasive computing. Without the solution it is impossible to adequately respond to the user's needs and to provide needed services in the right place at the right moment and in the right way. In this work we present our developed real time situation identification model for adaptive service support in vehicular communication networks domain. Our solution is different from the others as it uses additional virtual context information source - information from other vehicles which for our knowledge is not addressed in the past. The simulation results show the promising context exchange rate between vehicles. The other vehicles provided additional context source in our developed model helps to increase situations identification level.

  10. A theoretical cost optimization model of reused flowback distribution network of regional shale gas development

    International Nuclear Information System (INIS)

    Li, Huajiao; An, Haizhong; Fang, Wei; Jiang, Meng

    2017-01-01

    The logistical issues surrounding the timing and transport of flowback generated by each shale gas well to the next is a big challenge. Due to more and more flowback being stored temporarily near the shale gas well and reused in the shale gas development, both transportation cost and storage cost are the heavy burden for the developers. This research proposed a theoretical cost optimization model to get the optimal flowback distribution solution for regional multi shale gas wells in a holistic perspective. Then, we used some empirical data of Marcellus Shale to do the empirical study. In addition, we compared the optimal flowback distribution solution by considering both the transportation cost and storage cost with the flowback distribution solution which only minimized the transportation cost or only minimized the storage cost. - Highlights: • A theoretical cost optimization model to get optimal flowback distribution solution. • An empirical study using the shale gas data in Bradford County of Marcellus Shale. • Visualization of optimal flowback distribution solutions under different scenarios. • Transportation cost is a more important factor for reducing the cost. • Help the developers to cut the storage and transportation cost of reusing flowback.

  11. Development of neural network models for the prediction of solidification mode, weld bead geometry and sensitisation in austenitic stainless steels

    International Nuclear Information System (INIS)

    Vasudevan, M.; Raj, B.; Prasad Rao, K.

    2005-01-01

    Quantitative models describing the effect of weld composition on the solidification mode, ferrite content and process parameters on the weld bead geometry are necessary in order to design composition of the welding consumable to ensure primary ferritic solidification mode, proper ferrite content and to ensure right choice of process parameters to achieve good bead geometry. A quantitative model on sensitisation behaviour of austenitic stainless steels is also necessary to optimise the composition of the austenitic stainless steel and to limit the strain on the material in order to enhance the resistance to sensitisation. The present paper discuss the development of quantitative models using artificial neural networks to correlate weld metal composition with solidification mode, process parameter with weld bead geometry and time for sensitisation with composition, strain in the material before welding and the temperature of exposure in austenitic stainless steels. (author)

  12. Development of a model for integrated simulation of the European transmission networks and electricity markets

    International Nuclear Information System (INIS)

    Rathke, Christian

    2013-01-01

    The liberalisation of electricity markets and the increase of renewable energy generation actually causes dramatic changes for the whole European power industry. The transmission system operators in particular have to meet the challenge to ensure a stable and reliable system operation in the future. Significant changes in power generation will require a substantial extension to current inadequate original transmission grids to handle increased wide area power flows. This is the only way to avoid overloading the grid and to reduce the herefrom resulting limitations for the Pan-European cross-border trade of electricity. This work describes in detail the development of a Pan-European integrated grid and an electricity market simulation tool. For this purpose an overview about the today's structure of the European electricity industry is given initially. Afterwards the configuration of the transmission grid, the used equipment and different methods for the load flow and short circuit calculation are explained. Furthermore models for the calculation of local loads and the power plant dispatch are presented in the following chapters. Following on from this a detailed model of the European electricity industry is developed and the main functions are described by means of some exemplary simulations. The simulation tool developed in this work enables the user to calculate realistic power plant schedules and the consequent resulting physical effects on the European transmission grid. It combines a time series based simulation of the electricity market with a detailed model of the transmission grid. The highly detailing of the model offers the feasibility to execute a complete AC load flow calculation using the Newton Raphson algorithm.Therefore it is possible to identify the active as well as the reactive power flows in the grid. The results of the power flow calculation are the basis for further investigations (e. g. the short circuit calculation) and to decide on

  13. Development and applications of the channel network model for simulations of flow and solute transport in fractured rock

    International Nuclear Information System (INIS)

    Gylling, B.

    1997-01-01

    The Channel Network model and its computer implementation, the code CHAN3D, for simulations of fluid flow and transport of solutes have been developed. The tool may be used for performance and safety assessments of deep lying repositories in fractured rocks for nuclear and other hazardous wastes, e.g. chemical wastes. It may also be used to simulate and interpret field experiments of flow and transport in large or small scale. Fluid flow and solute transport in fractured media are of interest in the performance assessment of a repository for hazardous waste, located at depth in crystalline rock, with potential release of solutes. Fluid flow in fractured rock is found to be very unevenly distributed due to the heterogeneity of the medium. The water will seek the easiest path, channels, under a prevailing pressure gradient. Solutes in the flowing water may be transported through preferential paths and migrate from the water in the fractures into the stagnant water in the rock matrix. There, sorbing solutes may be sorbed on the micro surfaces within the matrix. The diffusion into the matrix and the sorption process may significantly retard the transport of species and increase the time available for radionuclide decay. Channelling and matrix diffusion contribute to the dispersion of solutes in the water. Important for performance assessment is that channeling may cause a portion of the solutes to arrive much faster than the rest of the solutes. Simulations of field experiments at the Aespoe Hard Rock Laboratory using the Channel Network model have been performed. The application of the model to the site and the simulation results of the pumping and tracer tests are presented. The results show that the model is capable of describing the hydraulic gradient and of predicting flow rates and tracer transport obtained in the experiments. The data requirements for the Channel Network model have been investigated to determine which data are the most important for predictions

  14. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim

    2014-12-03

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  15. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim; Chasparis, Georgios; Shamma, Jeff S.

    2014-01-01

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  16. Modeling online social signed networks

    Science.gov (United States)

    Li, Le; Gu, Ke; Zeng, An; Fan, Ying; Di, Zengru

    2018-04-01

    People's online rating behavior can be modeled by user-object bipartite networks directly. However, few works have been devoted to reveal the hidden relations between users, especially from the perspective of signed networks. We analyze the signed monopartite networks projected by the signed user-object bipartite networks, finding that the networks are highly clustered with obvious community structure. Interestingly, the positive clustering coefficient is remarkably higher than the negative clustering coefficient. Then, a Signed Growing Network model (SGN) based on local preferential attachment is proposed to generate a user's signed network that has community structure and high positive clustering coefficient. Other structural properties of the modeled networks are also found to be similar to the empirical networks.

  17. Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems

    Science.gov (United States)

    Hunter, Jason M.; Maier, Holger R.; Gibbs, Matthew S.; Foale, Eloise R.; Grosvenor, Naomi A.; Harders, Nathan P.; Kikuchi-Miller, Tahali C.

    2018-05-01

    Salinity modelling in river systems is complicated by a number of processes, including in-stream salt transport and various mechanisms of saline accession that vary dynamically as a function of water level and flow, often at different temporal scales. Traditionally, salinity models in rivers have either been process- or data-driven. The primary problem with process-based models is that in many instances, not all of the underlying processes are fully understood or able to be represented mathematically. There are also often insufficient historical data to support model development. The major limitation of data-driven models, such as artificial neural networks (ANNs) in comparison, is that they provide limited system understanding and are generally not able to be used to inform management decisions targeting specific processes, as different processes are generally modelled implicitly. In order to overcome these limitations, a generic framework for developing hybrid process and data-driven models of salinity in river systems is introduced and applied in this paper. As part of the approach, the most suitable sub-models are developed for each sub-process affecting salinity at the location of interest based on consideration of model purpose, the degree of process understanding and data availability, which are then combined to form the hybrid model. The approach is applied to a 46 km reach of the Murray River in South Australia, which is affected by high levels of salinity. In this reach, the major processes affecting salinity include in-stream salt transport, accession of saline groundwater along the length of the reach and the flushing of three waterbodies in the floodplain during overbank flows of various magnitudes. Based on trade-offs between the degree of process understanding and data availability, a process-driven model is developed for in-stream salt transport, an ANN model is used to model saline groundwater accession and three linear regression models are used

  18. Development of hybrid genetic-algorithm-based neural networks using regression trees for modeling air quality inside a public transportation bus.

    Science.gov (United States)

    Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok

    2013-02-01

    The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic

  19. Network tomography : recent developments

    NARCIS (Netherlands)

    Castro, R.M.; Coates, M.; Liang, G.; Nowak, R.; Yu, B.

    2004-01-01

    Today’s Internet is a massive, distributed network which continues to explode in size as e-commerce and related activities grow. The heterogeneous and largely unregulated structure of the Internet renders tasks such as dynamic routing, optimized service provision, service level verification and

  20. Network interconnections: an architectural reference model

    NARCIS (Netherlands)

    Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.

    1985-01-01

    One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for

  1. Simulation Model developed for a Small-Scale PV-System in a Distribution Network

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, C.; Mihet-Popa, Lucian; Isleifsson, Fridrik Rafn

    2012-01-01

    This paper presents a PV panel simulation model using the single-diode four-parameter model based on data sheet values. The model was implemented first in MATLAB/Simulink, and the results have been compared with the data sheet values and characteristics of the PV panels in standard test condition...... and implemented in PowerFactory to study load flow, steady-state voltage stability and dynamic behavior of a distributed power system....

  2. Methodology for Developing Hydrological Models Based on an Artificial Neural Network to Establish an Early Warning System in Small Catchments

    Directory of Open Access Journals (Sweden)

    Ivana Sušanj

    2016-01-01

    Full Text Available In some situations, there is no possibility of hazard mitigation, especially if the hazard is induced by water. Thus, it is important to prevent consequences via an early warning system (EWS to announce the possible occurrence of a hazard. The aim and objective of this paper are to investigate the possibility of implementing an EWS in a small-scale catchment and to develop a methodology for developing a hydrological prediction model based on an artificial neural network (ANN as an essential part of the EWS. The methodology is implemented in the case study of the Slani Potok catchment, which is historically recognized as a hazard-prone area, by establishing continuous monitoring of meteorological and hydrological parameters to collect data for the training, validation, and evaluation of the prediction capabilities of the ANN model. The model is validated and evaluated by visual and common calculation approaches and a new evaluation for the assessment. This new evaluation is proposed based on the separation of the observed data into classes based on the mean data value and the percentages of classes above or below the mean data value as well as on the performance of the mean absolute error.

  3. Networking systems design and development

    CERN Document Server

    Chao, Lee

    2009-01-01

    Effectively integrating theory and hands-on practice, Networking Systems Design and Development provides students and IT professionals with the knowledge and skills needed to design, implement, and manage fully functioning network systems using readily available Linux networking tools. Recognizing that most students are beginners in the field of networking, the text provides step-by-step instruction for setting up a virtual lab environment at home. Grounded in real-world applications, this book provides the ideal blend of conceptual instruction and lab work to give students and IT professional

  4. Recent developments in exponential random graph (p*) models for social networks

    NARCIS (Netherlands)

    Robins, Garry; Snijders, Tom; Wang, Peng; Handcock, Mark; Pattison, Philippa

    This article reviews new specifications for exponential random graph models proposed by Snijders et al. [Snijders, T.A.B., Pattison, P., Robins, G.L., Handcock, M., 2006. New specifications for exponential random graph models. Sociological Methodology] and demonstrates their improvement over

  5. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  6. Modeling, Optimization & Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat

    2014-01-01

    . The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used......Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...

  7. Bayesian networks modelling in support to cross-cutting analysis of water supply and sanitation in developing countries

    Directory of Open Access Journals (Sweden)

    C. Dondeynaz

    2013-09-01

    Full Text Available Despite the efforts made towards the Millennium Development Goals targets during the last decade, improved access to water supply or basic sanitation still remains unavailable for millions of people across the world. This paper proposes a set of models that use 25 key variables and country profiles from the WatSan4Dev data set involving water supply and sanitation (Dondeynaz et al., 2012. This paper suggests the use of Bayesian network modelling methods because they are more easily adapted to deal with non-normal distributions, and integrate a qualitative approach for data analysis. They also offer the advantage of integrating preliminary knowledge into the probabilistic models. The statistical performance of the proposed models ranges between 20 and 5% error rates, which are very satisfactory taking into account the strong heterogeneity of variables. Probabilistic scenarios run from the models allow an assessment of the relationships between human development, external support, governance aspects, economic activities and water supply and sanitation (WSS access. According to models proposed in this paper, gaining a strong poverty reduction will require the WSS access to reach 75–76% through: (1 the management of ongoing urbanisation processes to avoid slums development; and (2 the improvement of health care, for instance for children. Improving governance, such as institutional efficiency, capacities to make and apply rules, or control of corruption is positively associated with WSS sustainable development. The first condition for an increment of the HDP (human development and poverty remains of course an improvement of the economic conditions with higher household incomes. Moreover, a significant country commitment to the environment, associated with civil society freedom of expression constitutes a favourable setting for sustainable WSS services delivery. Intensive agriculture using irrigation practises also appears as a mean for sustainable

  8. Bayesian networks modelling in support to cross-cutting analysis of water supply and sanitation in developing countries

    Science.gov (United States)

    Dondeynaz, C.; López Puga, J.; Carmona Moreno, C.

    2013-09-01

    Despite the efforts made towards the Millennium Development Goals targets during the last decade, improved access to water supply or basic sanitation still remains unavailable for millions of people across the world. This paper proposes a set of models that use 25 key variables and country profiles from the WatSan4Dev data set involving water supply and sanitation (Dondeynaz et al., 2012). This paper suggests the use of Bayesian network modelling methods because they are more easily adapted to deal with non-normal distributions, and integrate a qualitative approach for data analysis. They also offer the advantage of integrating preliminary knowledge into the probabilistic models. The statistical performance of the proposed models ranges between 20 and 5% error rates, which are very satisfactory taking into account the strong heterogeneity of variables. Probabilistic scenarios run from the models allow an assessment of the relationships between human development, external support, governance aspects, economic activities and water supply and sanitation (WSS) access. According to models proposed in this paper, gaining a strong poverty reduction will require the WSS access to reach 75-76% through: (1) the management of ongoing urbanisation processes to avoid slums development; and (2) the improvement of health care, for instance for children. Improving governance, such as institutional efficiency, capacities to make and apply rules, or control of corruption is positively associated with WSS sustainable development. The first condition for an increment of the HDP (human development and poverty) remains of course an improvement of the economic conditions with higher household incomes. Moreover, a significant country commitment to the environment, associated with civil society freedom of expression constitutes a favourable setting for sustainable WSS services delivery. Intensive agriculture using irrigation practises also appears as a mean for sustainable WSS thanks to

  9. A framework for conceptualisation of PSS solutions: On network-based development models

    DEFF Research Database (Denmark)

    Mougaard, Krestine

    of the Danish Innovation Consortium PROTEUS (PRoduct-service/system-Tools to Ensure User centred Services), was carried out at the Technical University of Denmark at the Section of Engineering Design and Product Development. The project’s aim was to investigate how to support the Danish maritime industry...... in this upheaval and change towards a new mode of business- and product development. The research presented in this thesis is based on action-research, involving all ten companies participating in the PROTEUS consortium, plus a comparative case study of MAN PrimeServ Frederikshavn and Alfa Laval Aalborg. The main...... and verified in case companies.Three new PSS tools to support PSS conceptualisation. Contributions to the PROTEUS Workbook series – communicating the results of the PROTEUS research consortium to both academics and industry practitioners....

  10. Development of a forecasting model for brucellosis spreading in the Italian cattle trade network aimed to prioritise the field interventions.

    Science.gov (United States)

    Savini, L; Candeloro, L; Conte, A; De Massis, F; Giovannini, A

    2017-01-01

    Brucellosis caused by Brucella abortus is an important zoonosis that constitutes a serious hazard to public health. Prevention of human brucellosis depends on the control of the disease in animals. Livestock movement data represent a valuable source of information to understand the pattern of contacts between holdings, which may determine the inter-herds and intra-herd spread of the disease. The manuscript addresses the use of computational epidemic models rooted in the knowledge of cattle trade network to assess the probabilities of brucellosis spread and to design control strategies. Three different spread network-based models were proposed: the DFC (Disease Flow Centrality) model based only on temporal cattle network structure and unrelated to the epidemiological disease parameters; a deterministic SIR (Susceptible-Infectious-Recovered) model; a stochastic SEIR (Susceptible-Exposed-Infectious-Recovered) model in which epidemiological and demographic within-farm aspects were also modelled. Containment strategies based on farms centrality in the cattle network were tested and discussed. All three models started from the identification of the entire sub-network originated from an infected farm, up to the fifth order of contacts. Their performances were based on data collected in Sicily in the framework of the national eradication plan of brucellosis in 2009. Results show that the proposed methods improves the efficacy and efficiency of the tracing activities in comparison to the procedure currently adopted by the veterinary services in the brucellosis control, in Italy. An overall assessment shows that the SIR model is the most suitable for the practical needs of the veterinary services, being the one with the highest sensitivity and the shortest computation time.

  11. Improved Maximum Parsimony Models for Phylogenetic Networks.

    Science.gov (United States)

    Van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2018-05-01

    Phylogenetic networks are well suited to represent evolutionary histories comprising reticulate evolution. Several methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this article, we propose a new definition of maximum parsimony for phylogenetic networks that permits to model biological scenarios that cannot be modeled by the definitions currently present in the literature (namely, the "hardwired" and "softwired" parsimony). Building on this new definition, we provide several algorithmic results that lay the foundations for new parsimony-based methods for phylogenetic network reconstruction.

  12. Bayesian networks modelling in support to cross cutting analysis of water supply and sanitation in developing countries

    Science.gov (United States)

    Dondeynaz, C.; López Puga, J.; Carmona Moreno, C.

    2013-02-01

    Despite the efforts made towards the millennium goals targets during the last decade, access to improved water supply or basic sanitation remains still not accessible for millions of people across the world. This paper proposes a set of models that use 25 key variables from the WatSan4Dev dataset and country profiles involving Water Supply and Sanitation (Dondeynaz et al., 2012). This paper proposes the use of Bayesian Network modelling methods because adapted to the management of non-normal distribution, and integrate a qualitative approach for data analysis. They also offer the advantage to integrate preliminary knowledge into the probabilistic models. The statistical performance of the proposed models ranges between 80 and 95% which is very satisfactory taking into account the strong heterogeneity of variables. Probabilistic scenarios run from the models allow a quantification of the relationships between human development, external support, governance aspects, economic activities and Water Supply and Sanitation (WSS) access. According to models proposed in this paper, a strong poverty reduction will induce an increment of the WSS access equal to 75-76% through: (1) the organisation of on-going urbanisation process to avoid slums development; and, (2) the improvement of health care for instance for children. On one side, improving governance, such as institutional efficiency, capacities to make and apply rules or control of corruption will also have a positive impact on WSS sustainable development. The first condition for an increment of the WSS access remains of course an improvement of the economic development with an increment of household income. Moreover, a significant country environmental commitment associated with civil society freedom of expression constitutes a favourable environment for sustainable WSS services delivery. Intensive agriculture through irrigation practises also appears as a mean for sustainable WSS thanks to multi-uses and

  13. Related work on reference modeling for collaborative networks

    NARCIS (Netherlands)

    Afsarmanesh, H.; Camarinha-Matos, L.M.; Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Several international research and development initiatives have led to development of models for organizations and organization interactions. These models and their approaches constitute a background for development of reference models for collaborative networks. A brief survey of work on modeling

  14. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.; Byrne, H.M.; King, J.R.; Bennett, M.J.

    2013-01-01

    methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more

  15. Synergistic effects in threshold models on networks

    Science.gov (United States)

    Juul, Jonas S.; Porter, Mason A.

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  16. A model of coauthorship networks

    Science.gov (United States)

    Zhou, Guochang; Li, Jianping; Xie, Zonglin

    2017-10-01

    A natural way of representing the coauthorship of authors is to use a generalization of graphs known as hypergraphs. A random geometric hypergraph model is proposed here to model coauthorship networks, which is generated by placing nodes on a region of Euclidean space randomly and uniformly, and connecting some nodes if the nodes satisfy particular geometric conditions. Two kinds of geometric conditions are designed to model the collaboration patterns of academic authorities and basic researches respectively. The conditions give geometric expressions of two causes of coauthorship: the authority and similarity of authors. By simulation and calculus, we show that the forepart of the degree distribution of the network generated by the model is mixture Poissonian, and the tail is power-law, which are similar to these of some coauthorship networks. Further, we show more similarities between the generated network and real coauthorship networks: the distribution of cardinalities of hyperedges, high clustering coefficient, assortativity, and small-world property

  17. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) Software Development: Applications, Infrastructure, and Middleware/Networks

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-30

    The status of and future plans for the Program for Climate Model Diagnosis and Intercomparison (PCMDI) hinge on software that PCMDI is either currently distributing or plans to distribute to the climate community in the near future. These software products include standard conventions, national and international federated infrastructures, and community analysis and visualization tools. This report also mentions other secondary software not necessarily led by or developed at PCMDI to provide a complete picture of the overarching applications, infrastructures, and middleware/networks. Much of the software described anticipates the use of future technologies envisioned over the span of next year to 10 years. These technologies, together with the software, will be the catalyst required to address extreme-scale data warehousing, scalability issues, and service-level requirements for a diverse set of well-known projects essential for predicting climate change. These tools, unlike the previous static analysis tools of the past, will support the co-existence of many users in a productive, shared virtual environment. This advanced technological world driven by extreme-scale computing and the data it generates will increase scientists’ productivity, exploit national and international relationships, and push research to new levels of understanding.

  18. Modeling Epidemics Spreading on Social Contact Networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua

    2015-09-01

    Social contact networks and the way people interact with each other are the key factors that impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR) model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact networks. The results from both simulations and real data set conclude that the epidemics are more likely to outbreak on social contact networks with higher average degree. We also present some potential immunization strategies, such as random set immunization, dominating set immunization, and high degree set immunization to further prove the conclusion.

  19. Spatial Epidemic Modelling in Social Networks

    Science.gov (United States)

    Simoes, Joana Margarida

    2005-06-01

    The spread of infectious diseases is highly influenced by the structure of the underlying social network. The target of this study is not the network of acquaintances, but the social mobility network: the daily movement of people between locations, in regions. It was already shown that this kind of network exhibits small world characteristics. The model developed is agent based (ABM) and comprehends a movement model and a infection model. In the movement model, some assumptions are made about its structure and the daily movement is decomposed into four types: neighborhood, intra region, inter region and random. The model is Geographical Information Systems (GIS) based, and uses real data to define its geometry. Because it is a vector model, some optimization techniques were used to increase its efficiency.

  20. Implementing network constraints in the EMPS model

    Energy Technology Data Exchange (ETDEWEB)

    Helseth, Arild; Warland, Geir; Mo, Birger; Fosso, Olav B.

    2010-02-15

    This report concerns the coupling of detailed market and network models for long-term hydro-thermal scheduling. Currently, the EPF model (Samlast) is the only tool available for this task for actors in the Nordic market. A new prototype for solving the coupled market and network problem has been developed. The prototype is based on the EMPS model (Samkjoeringsmodellen). Results from the market model are distributed to a detailed network model, where a DC load flow detects if there are overloads on monitored lines or intersections. In case of overloads, network constraints are generated and added to the market problem. Theoretical and implementation details for the new prototype are elaborated in this report. The performance of the prototype is tested against the EPF model on a 20-area Nordic dataset. (Author)

  1. The Development and Evaluation of a Time Based Network Model of the Industrial Engineering Technology Curriculum at the Southern Technical Institute.

    Science.gov (United States)

    Bannerman, James W.

    A practicum was conducted to develop a scientific management tool that would assist students in obtaining a systems view of their college curriculum and to coordinate planning with curriculum requirements. A modification of the critical path method was employed and the result was a time-based network model of the Industrial Engineering Technology…

  2. Telecommunications network modelling, planning and design

    CERN Document Server

    Evans, Sharon

    2003-01-01

    Telecommunication Network Modelling, Planning and Design addresses sophisticated modelling techniques from the perspective of the communications industry and covers some of the major issues facing telecommunications network engineers and managers today. Topics covered include network planning for transmission systems, modelling of SDH transport network structures and telecommunications network design and performance modelling, as well as network costs and ROI modelling and QoS in 3G networks.

  3. Campus network security model study

    Science.gov (United States)

    Zhang, Yong-ku; Song, Li-ren

    2011-12-01

    Campus network security is growing importance, Design a very effective defense hacker attacks, viruses, data theft, and internal defense system, is the focus of the study in this paper. This paper compared the firewall; IDS based on the integrated, then design of a campus network security model, and detail the specific implementation principle.

  4. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization.

    Science.gov (United States)

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method.

  5. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization

    Directory of Open Access Journals (Sweden)

    Zhongqi Wang

    2016-01-01

    Full Text Available Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method.

  6. Development of a neural network model to predict distortion during the metal forming process by line heating

    OpenAIRE

    Pinzón, César; Plazaola, Carlos; Banfield, Ilka; Fong, Amaly; Vega, Adán

    2013-01-01

    In order to achieve automation of the plate forming process by line heating, it is necessary to know in advance the deformation to be obtained under specific heating conditions. Currently, different methods exist to predict deformation, but these are limited to specific applications and most of them depend on the computational capacity so that only simple structures can be analyzed. In this paper, a neural network model that can accurately predict distortions produced during the plate forming...

  7. Developing Strategies for Networked Education.

    Science.gov (United States)

    Peregoy, Richard; Kroder, Stanley

    2000-01-01

    Assesses the strengths, weaknesses, opportunities and threats (SWOT) of the distance learning approach to education, and discusses how one institution, the University of Dallas Graduate School of Management, has developed a progressively expanding networked distance education program. Includes quotes from three students that suggest the quality of…

  8. Late rectal bleeding after 3D-CRT for prostate cancer: development of a neural-network-based predictive model

    Science.gov (United States)

    Tomatis, S.; Rancati, T.; Fiorino, C.; Vavassori, V.; Fellin, G.; Cagna, E.; Mauro, F. A.; Girelli, G.; Monti, A.; Baccolini, M.; Naldi, G.; Bianchi, C.; Menegotti, L.; Pasquino, M.; Stasi, M.; Valdagni, R.

    2012-03-01

    The aim of this study was to develop a model exploiting artificial neural networks (ANNs) to correlate dosimetric and clinical variables with late rectal bleeding in prostate cancer patients undergoing radical radiotherapy and to compare the ANN results with those of a standard logistic regression (LR) analysis. 718 men included in the AIROPROS 0102 trial were analyzed. This multicenter protocol was characterized by the prospective evaluation of rectal toxicity, with a minimum follow-up of 36 months. Radiotherapy doses were between 70 and 80 Gy. Information was recorded for comorbidity, previous abdominal surgery, use of drugs and hormonal therapy. For each patient, a rectal dose-volume histogram (DVH) of the whole treatment was recorded and the equivalent uniform dose (EUD) evaluated as an effective descriptor of the whole DVH. Late rectal bleeding of grade ≥ 2 was considered to define positive events in this study (52 of 718 patients). The overall population was split into training and verification sets, both of which were involved in model instruction, and a test set, used to evaluate the predictive power of the model with independent data. Fourfold cross-validation was also used to provide realistic results for the full dataset. The LR was performed on the same data. Five variables were selected to predict late rectal bleeding: EUD, abdominal surgery, presence of hemorrhoids, use of anticoagulants and androgen deprivation. Following a receiver operating characteristic analysis of the independent test set, the areas under the curves (AUCs) were 0.704 and 0.655 for ANN and LR, respectively. When evaluated with cross-validation, the AUC was 0.714 for ANN and 0.636 for LR, which differed at a significance level of p = 0.03. When a practical discrimination threshold was selected, ANN could classify data with sensitivity and specificity both equal to 68.0%, whereas these values were 61.5% for LR. These data provide reasonable evidence that results obtained with

  9. Generalized Network Psychometrics : Combining Network and Latent Variable Models

    NARCIS (Netherlands)

    Epskamp, S.; Rhemtulla, M.; Borsboom, D.

    2017-01-01

    We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between

  10. Innovation, Product Development, and New Business Models in Networks: How to come from case studies to a valid and operational theory

    DEFF Research Database (Denmark)

    Rasmussen, Erik Stavnsager; Jørgensen, Jacob Høj; Goduscheit, René Chester

    2007-01-01

    We have in the research project NEWGIBM (New Global ICT based Business Models) during 2005 and 2006 closely cooperated with a group of firms. The focus in the project has been development of new business models (and innovation) in close cooperation with multiple partners. These partners have been...... customers, suppliers, R&D partners, and others. The methodological problem is thus, how to come from e.g. one in-depth case study to a more formalized theory or model on how firms can develop new projects and be innovative in a network. The paper is structured so that it starts with a short presentation...... of the two key concepts in our research setting and theoretical models: Innovation and networks. It is not our intention in this paper to present a lengthy discussion of the two concepts, but a short presentation is necessary to understand the validity and interpretation discussion later in the paper. Next...

  11. Modeling of fluctuating reaction networks

    International Nuclear Information System (INIS)

    Lipshtat, A.; Biham, O.

    2004-01-01

    Full Text:Various dynamical systems are organized as reaction networks, where the population size of one component affects the populations of all its neighbors. Such networks can be found in interstellar surface chemistry, cell biology, thin film growth and other systems. I cases where the populations of reactive species are large, the network can be modeled by rate equations which provide all reaction rates within mean field approximation. However, in small systems that are partitioned into sub-micron size, these populations strongly fluctuate. Under these conditions rate equations fail and the master equation is needed for modeling these reactions. However, the number of equations in the master equation grows exponentially with the number of reactive species, severely limiting its feasibility for complex networks. Here we present a method which dramatically reduces the number of equations, thus enabling the incorporation of the master equation in complex reaction networks. The method is examplified in the context of reaction network on dust grains. Its applicability for genetic networks will be discussed. 1. Efficient simulations of gas-grain chemistry in interstellar clouds. Azi Lipshtat and Ofer Biham, Phys. Rev. Lett. 93 (2004), 170601. 2. Modeling of negative autoregulated genetic networks in single cells. Azi Lipshtat, Hagai B. Perets, Nathalie Q. Balaban and Ofer Biham, Gene: evolutionary genomics (2004), In press

  12. Learning in Networks for Sustainable Development

    NARCIS (Netherlands)

    Lansu, Angelique; Boon, Jo; Sloep, Peter; Van Dam-Mieras, Rietje

    2010-01-01

    The didactic model of remote internships described in this study provides the flexibility needed to support networked learners, i.e. to facilitate the development and subsequent assessment of their competences. The heterogeneity of the participants (students, employers, tutors) in the learning

  13. Developing a network: the PMM process.

    Science.gov (United States)

    Kamara, A

    1997-11-01

    Since 1988, the Prevention of Maternal Mortality (PMM) Network has developed, implemented and evaluated projects that focus directly on prevention of maternal deaths. The Network, which consists of 11 multidisciplinary teams in West Africa and one at Columbia University, grew from discussions between the Carnegie Corporation of New York and researchers at Columbia School of Public Health. Its goals are: to strengthen capacities in developing countries; to provide program models for preventing maternal deaths; and to inform policymakers about the importance of maternal mortality. This paper describes the development and functioning of the Network. The initial steps included identifying interested partners in Africa and encouraging them to form multidisciplinary teams. Each African team received two grants: one to perform a needs assessment and then another to develop and implement projects based on the results. The Columbia team provided technical assistance in a variety of ways, including site visits, workshops and correspondence. Teams tested program models and reported findings both to local policymakers and in international fora. Collaboration with government and community leaders helped facilitate progress at all stages. At the PMM Network Results Conference in 1996, the teams decided to continue their work by forming the Regional PMM (RPMM) Network, an entirely African entity.

  14. Cyber threat model for tactical radio networks

    Science.gov (United States)

    Kurdziel, Michael T.

    2014-05-01

    The shift to a full information-centric paradigm in the battlefield has allowed ConOps to be developed that are only possible using modern network communications systems. Securing these Tactical Networks without impacting their capabilities has been a challenge. Tactical networks with fixed infrastructure have similar vulnerabilities to their commercial counterparts (although they need to be secure against adversaries with greater capabilities, resources and motivation). However, networks with mobile infrastructure components and Mobile Ad hoc Networks (MANets) have additional unique vulnerabilities that must be considered. It is useful to examine Tactical Network based ConOps and use them to construct a threat model and baseline cyber security requirements for Tactical Networks with fixed infrastructure, mobile infrastructure and/or ad hoc modes of operation. This paper will present an introduction to threat model assessment. A definition and detailed discussion of a Tactical Network threat model is also presented. Finally, the model is used to derive baseline requirements that can be used to design or evaluate a cyber security solution that can be scaled and adapted to the needs of specific deployments.

  15. Applying an artificial neural network model for developing a severity score for patients with hereditary amyloid polyneuropathy.

    Science.gov (United States)

    Novis, Shenia; Machado, Felipe; Costa, Victor B; Foguel, Debora; Cruz, Marcia W; de Seixas, José Manoel

    2017-09-01

    Hereditary (familial) amyloid polyneuropathy (FAP) is a systemic disease that includes a sensorimotor polyneuropathy related to transthyretin (TTR) mutations. So far, a scale designed to classify the severity of this disease has not yet been validated. This work proposes the implementation of an artificial neural network (ANN) in order to develop a severity scale for monitoring the disease progression in FAP patients. In order to achieve this goal, relevant symptoms and laboratory findings were collected from 98 Brazilian patients included in THAOS - the Transthyretin Amyloidosis Outcomes Survey. Ninety-three percent of them bore Val30Met, the most prevalent variant of TTR worldwide; 63 were symptomatic and 35 were asymptomatic. These data were numerically codified for the purpose of constructing a Self-Organizing Map (SOM), which maps data onto a grid of artificial neurons. Mapped data could be clustered by similarity into five groups, based on increasing FAP severity (from Groups 1 to 5). Most symptoms were virtually absent from patients who mapped to Group 1, which also includes the asymptomatic patients. Group 2 encompasses the patients bearing symptoms considered to be initial markers of FAP, such as first signs of walking disabilities and lack of sensitivity to temperature and pain. Interestingly, the patients with cardiac symptoms, which also carry cardiac-associated mutations of the TTR gene (such as Val112Ile and Ala19Asp), were concentrated in Group 3. Symptoms such as urinary and fecal incontinence and diarrhea characterized particularly Groups 4 and 5. Renal impairment was found almost exclusively in Group 5. Model validation was accomplished by considering the symptoms from a sample with 48 additional Brazilian patients. The severity scores proposed here not only identify the current stage of a patient's disease but also offer to the physician an easy-to-read, 2D map that makes it possible to track disease progression.

  16. Modeling Network Traffic in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Sheng Ma

    2004-12-01

    Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.

  17. [Sporulation or competence development? A genetic regulatory network model of cell-fate determination in Bacillus subtilis].

    Science.gov (United States)

    Lu, Zhenghui; Zhou, Yuling; Zhang, Xiaozhou; Zhang, Guimin

    2015-11-01

    Bacillus subtilis is a generally recognized as safe (GRAS) strain that has been widely used in industries including fodder, food, and biological control. In addition, B. subtilis expression system also plays a significant role in the production of industrial enzymes. However, its application is limited by its low sporulation frequency and transformation efficiency. Immense studies have been done on interpreting the molecular mechanisms of sporulation and competence development, whereas only few of them were focused on improving sporulation frequency and transformation efficiency of B. subtilis by genetic modification. The main challenge is that sporulation and competence development, as the two major developmental events in the stationary phase of B. subtilis, are regulated by the complicated intracellular genetic regulatory systems. In addition, mutual regulatory mechanisms also exist in these two developmental events. With the development of genetic and metabolic engineering, constructing genetic regulatory networks is currently one of the most attractive research fields, together with the genetic information of cell growth, metabolism, and development, to guide the industrial application. In this review, the mechanisms of sporulation and competence development of B. subtilis, their interactions, and the genetic regulation of cell growth were interpreted. In addition, the roles of these regulatory networks in guiding basic and applied research of B. subtilis and its related species were discussed.

  18. Recent developments in Lambda networking

    Science.gov (United States)

    de Laat, C.; Grosso, P.

    About 6 years ago the first baby-steps were made on opening up dark fiber and DWDM infrastructure for direct use by ISP's after the transformation of the old style Telecom sector into a market driven business. Since then Lambda workshops, community groups like GLIF and a number of experiments have led to many implementations of hybrid national research and education networks and lightpath-based circuit exchanges as pioneered by SURFnet in GigaPort and NetherLight in collaboration with StarLight in Chicago and Canarie in Canada. This article looks back on those developments, describes some current open issues and research developments and proposes a concept of terabit networking.

  19. Network Modeling and Simulation A Practical Perspective

    CERN Document Server

    Guizani, Mohsen; Khan, Bilal

    2010-01-01

    Network Modeling and Simulation is a practical guide to using modeling and simulation to solve real-life problems. The authors give a comprehensive exposition of the core concepts in modeling and simulation, and then systematically address the many practical considerations faced by developers in modeling complex large-scale systems. The authors provide examples from computer and telecommunication networks and use these to illustrate the process of mapping generic simulation concepts to domain-specific problems in different industries and disciplines. Key features: Provides the tools and strate

  20. Thermal conductivity model for nanofiber networks

    Science.gov (United States)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  1. Thermal conductivity model for nanofiber networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA

    2018-02-28

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  2. Modeling the interdependent network based on two-mode networks

    Science.gov (United States)

    An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian

    2017-10-01

    Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.

  3. Keystone Business Models for Network Security Processors

    OpenAIRE

    Arthur Low; Steven Muegge

    2013-01-01

    Network security processors are critical components of high-performance systems built for cybersecurity. Development of a network security processor requires multi-domain experience in semiconductors and complex software security applications, and multiple iterations of both software and hardware implementations. Limited by the business models in use today, such an arduous task can be undertaken only by large incumbent companies and government organizations. Neither the “fabless semiconductor...

  4. The QKD network: model and routing scheme

    Science.gov (United States)

    Yang, Chao; Zhang, Hongqi; Su, Jinhai

    2017-11-01

    Quantum key distribution (QKD) technology can establish unconditional secure keys between two communicating parties. Although this technology has some inherent constraints, such as the distance and point-to-point mode limits, building a QKD network with multiple point-to-point QKD devices can overcome these constraints. Considering the development level of current technology, the trust relaying QKD network is the first choice to build a practical QKD network. However, the previous research didn't address a routing method on the trust relaying QKD network in detail. This paper focuses on the routing issues, builds a model of the trust relaying QKD network for easily analysing and understanding this network, and proposes a dynamical routing scheme for this network. From the viewpoint of designing a dynamical routing scheme in classical network, the proposed scheme consists of three components: a Hello protocol helping share the network topology information, a routing algorithm to select a set of suitable paths and establish the routing table and a link state update mechanism helping keep the routing table newly. Experiments and evaluation demonstrates the validity and effectiveness of the proposed routing scheme.

  5. Target-Centric Network Modeling

    DEFF Research Database (Denmark)

    Mitchell, Dr. William L.; Clark, Dr. Robert M.

    In Target-Centric Network Modeling: Case Studies in Analyzing Complex Intelligence Issues, authors Robert Clark and William Mitchell take an entirely new approach to teaching intelligence analysis. Unlike any other book on the market, it offers case study scenarios using actual intelligence...... reporting formats, along with a tested process that facilitates the production of a wide range of analytical products for civilian, military, and hybrid intelligence environments. Readers will learn how to perform the specific actions of problem definition modeling, target network modeling......, and collaborative sharing in the process of creating a high-quality, actionable intelligence product. The case studies reflect the complexity of twenty-first century intelligence issues by dealing with multi-layered target networks that cut across political, economic, social, technological, and military issues...

  6. Delay and Disruption Tolerant Networking MACHETE Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Gao, Jay L.

    2011-01-01

    To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity

  7. Artificial neural network cardiopulmonary modeling and diagnosis

    Science.gov (United States)

    Kangas, Lars J.; Keller, Paul E.

    1997-01-01

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.

  8. An evolving network model with modular growth

    International Nuclear Information System (INIS)

    Zou Zhi-Yun; Liu Peng; Lei Li; Gao Jian-Zhi

    2012-01-01

    In this paper, we propose an evolving network model growing fast in units of module, according to the analysis of the evolution characteristics in real complex networks. Each module is a small-world network containing several interconnected nodes and the nodes between the modules are linked by preferential attachment on degree of nodes. We study the modularity measure of the proposed model, which can be adjusted by changing the ratio of the number of inner-module edges and the number of inter-module edges. In view of the mean-field theory, we develop an analytical function of the degree distribution, which is verified by a numerical example and indicates that the degree distribution shows characteristics of the small-world network and the scale-free network distinctly at different segments. The clustering coefficient and the average path length of the network are simulated numerically, indicating that the network shows the small-world property and is affected little by the randomness of the new module. (interdisciplinary physics and related areas of science and technology)

  9. Fundamentals of complex networks models, structures and dynamics

    CERN Document Server

    Chen, Guanrong; Li, Xiang

    2014-01-01

    Complex networks such as the Internet, WWW, transportationnetworks, power grids, biological neural networks, and scientificcooperation networks of all kinds provide challenges for futuretechnological development. In particular, advanced societies havebecome dependent on large infrastructural networks to an extentbeyond our capability to plan (modeling) and to operate (control).The recent spate of collapses in power grids and ongoing virusattacks on the Internet illustrate the need for knowledge aboutmodeling, analysis of behaviors, optimized planning and performancecontrol in such networks. F

  10. Continuum Model for River Networks

    Science.gov (United States)

    Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.

    1995-07-01

    The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.

  11. An architectural model for network interconnection

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Vissers, C.A.; Kalin, T.

    1983-01-01

    This paper presents a technique of successive decomposition of a common users' activity to illustrate the problems of network interconnection. The criteria derived from this approach offer a structuring principle which is used to develop an architectural model that embeds heterogeneous subnetworks

  12. Computational Modeling of Complex Protein Activity Networks

    NARCIS (Netherlands)

    Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude

    2017-01-01

    Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a

  13. A Model for Telestrok Network Evaluation

    DEFF Research Database (Denmark)

    Storm, Anna; Günzel, Franziska; Theiss, Stephan

    2011-01-01

    analysis lacking, current telestroke reimbursement by third-party payers is limited to special contracts and not included in the regular billing system. Based on a systematic literature review and expert interviews with health care economists, third-party payers and neurologists, a Markov model...... was developed from the third-party payer perspective. In principle, it enables telestroke networks to conduct cost-effectiveness studies, because the majority of the required data can be extracted from health insurance companies’ databases and the telestroke network itself. The model presents a basis...

  14. Developing a Virtual Network of Research Observatories

    Science.gov (United States)

    Hooper, R. P.; Kirschtl, D.

    2008-12-01

    The hydrologic community has been discussing the concept of a network of observatories for the advancement of hydrologic science in areas of scaling processes, in testing generality of hypotheses, and in examining non-linear couplings between hydrologic, biotic, and human systems. The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is exploring the formation of a virtual network of observatories, formed from existing field studies without regard to funding source. Such a network would encourage sharing of data, metadata, field methods, and data analysis techniques to enable multidisciplinary synthesis, meta-analysis, and scientific collaboration in hydrologic and environmental science and engineering. The virtual network would strive to provide both the data and the environmental context of the data through advanced cyberinfrastructure support. The foundation for this virtual network is Water Data Services that enable the publication of time-series data collected at fixed points using a services-oriented architecture. These publication services, developed in the CUAHSI Hydrologic Information Systems project, permit the discovery of data from both academic and government sources through a single portal. Additional services under consideration are publication of geospatial data sets, immersive environments based upon site digital elevation models, and a common web portal to member sites populated with structured data about the site (such as land use history and geologic setting) to permit understanding the environmental context of the data being shared.

  15. Phenomenological network models: Lessons for epilepsy surgery.

    Science.gov (United States)

    Hebbink, Jurgen; Meijer, Hil; Huiskamp, Geertjan; van Gils, Stephan; Leijten, Frans

    2017-10-01

    The current opinion in epilepsy surgery is that successful surgery is about removing pathological cortex in the anatomic sense. This contrasts with recent developments in epilepsy research, where epilepsy is seen as a network disease. Computational models offer a framework to investigate the influence of networks, as well as local tissue properties, and to explore alternative resection strategies. Here we study, using such a model, the influence of connections on seizures and how this might change our traditional views of epilepsy surgery. We use a simple network model consisting of four interconnected neuronal populations. One of these populations can be made hyperexcitable, modeling a pathological region of cortex. Using model simulations, the effect of surgery on the seizure rate is studied. We find that removal of the hyperexcitable population is, in most cases, not the best approach to reduce the seizure rate. Removal of normal populations located at a crucial spot in the network, the "driver," is typically more effective in reducing seizure rate. This work strengthens the idea that network structure and connections may be more important than localizing the pathological node. This can explain why lesionectomy may not always be sufficient. © 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.

  16. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  17. Network modelling methods for FMRI.

    Science.gov (United States)

    Smith, Stephen M; Miller, Karla L; Salimi-Khorshidi, Gholamreza; Webster, Matthew; Beckmann, Christian F; Nichols, Thomas E; Ramsey, Joseph D; Woolrich, Mark W

    2011-01-15

    There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Agent based modeling of energy networks

    International Nuclear Information System (INIS)

    Gonzalez de Durana, José María; Barambones, Oscar; Kremers, Enrique; Varga, Liz

    2014-01-01

    Highlights: • A new approach for energy network modeling is designed and tested. • The agent-based approach is general and no technology dependent. • The models can be easily extended. • The range of applications encompasses from small to large energy infrastructures. - Abstract: Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed

  19. Technological Developments in Networking, Education and Automation

    CERN Document Server

    Elleithy, Khaled; Iskander, Magued; Kapila, Vikram; Karim, Mohammad A; Mahmood, Ausif

    2010-01-01

    "Technological Developments in Networking, Education and Automation" includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the following areas: Computer Networks: Access Technologies, Medium Access Control, Network architectures and Equipment, Optical Networks and Switching, Telecommunication Technology, and Ultra Wideband Communications. Engineering Education and Online Learning: including development of courses and systems for engineering, technical and liberal studies programs; online laboratories; intelligent

  20. Research on the model of home networking

    Science.gov (United States)

    Yun, Xiang; Feng, Xiancheng

    2007-11-01

    It is the research hotspot of current broadband network to combine voice service, data service and broadband audio-video service by IP protocol to transport various real time and mutual services to terminal users (home). Home Networking is a new kind of network and application technology which can provide various services. Home networking is called as Digital Home Network. It means that PC, home entertainment equipment, home appliances, Home wirings, security, illumination system were communicated with each other by some composing network technology, constitute a networking internal home, and connect with WAN by home gateway. It is a new network technology and application technology, and can provide many kinds of services inside home or between homes. Currently, home networking can be divided into three kinds: Information equipment, Home appliances, Communication equipment. Equipment inside home networking can exchange information with outer networking by home gateway, this information communication is bidirectional, user can get information and service which provided by public networking by using home networking internal equipment through home gateway connecting public network, meantime, also can get information and resource to control the internal equipment which provided by home networking internal equipment. Based on the general network model of home networking, there are four functional entities inside home networking: HA, HB, HC, and HD. (1) HA (Home Access) - home networking connects function entity; (2) HB (Home Bridge) Home networking bridge connects function entity; (3) HC (Home Client) - Home networking client function entity; (4) HD (Home Device) - decoder function entity. There are many physical ways to implement four function entities. Based on theses four functional entities, there are reference model of physical layer, reference model of link layer, reference model of IP layer and application reference model of high layer. In the future home network

  1. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  2. Multi-criteria decision making development of ion chromatographic method for determination of inorganic anions in oilfield waters based on artificial neural networks retention model.

    Science.gov (United States)

    Stefanović, Stefica Cerjan; Bolanča, Tomislav; Luša, Melita; Ukić, Sime; Rogošić, Marko

    2012-02-24

    This paper describes the development of ad hoc methodology for determination of inorganic anions in oilfield water, since their composition often significantly differs from the average (concentration of components and/or matrix). Therefore, fast and reliable method development has to be performed in order to ensure the monitoring of desired properties under new conditions. The method development was based on computer assisted multi-criteria decision making strategy. The used criteria were: maximal value of objective functions used, maximal robustness of the separation method, minimal analysis time, and maximal retention distance between two nearest components. Artificial neural networks were used for modeling of anion retention. The reliability of developed method was extensively tested by the validation of performance characteristics. Based on validation results, the developed method shows satisfactory performance characteristics, proving the successful application of computer assisted methodology in the described case study. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Modeling and optimization of potable water network

    Energy Technology Data Exchange (ETDEWEB)

    Djebedjian, B.; Rayan, M.A. [Mansoura Univ., El-Mansoura (Egypt); Herrick, A. [Suez Canal Authority, Ismailia (Egypt)

    2000-07-01

    Software was developed in order to optimize the design of water distribution systems and pipe networks. While satisfying all the constraints imposed such as pipe diameter and nodal pressure, it was based on a mathematical model treating looped networks. The optimum network configuration and cost are determined considering parameters like pipe diameter, flow rate, corresponding pressure and hydraulic losses. It must be understood that minimum cost is relative to the different objective functions selected. The determination of the proper objective function often depends on the operating policies of a particular company. The solution for the optimization technique was obtained by using a non-linear technique. To solve the optimal design of network, the model was derived using the sequential unconstrained minimization technique (SUMT) of Fiacco and McCormick, which decreased the number of iterations required. The pipe diameters initially assumed were successively adjusted to correspond to the existing commercial pipe diameters. The technique was then applied to a two-loop network without pumps or valves. Fed by gravity, it comprised eight pipes, 1000 m long each. The first evaluation of the method proved satisfactory. As with other methods, it failed to find the global optimum. In the future, research efforts will be directed to the optimization of networks with pumps and reservoirs. 24 refs., 3 tabs., 1 fig.

  4. Model Predictive Control of Sewer Networks

    DEFF Research Database (Denmark)

    Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik

    2016-01-01

    The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and cont...... benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control....

  5. Modeling Multistandard Wireless Networks in OPNET

    DEFF Research Database (Denmark)

    Zakrzewska, Anna; Berger, Michael Stübert; Ruepp, Sarah Renée

    2011-01-01

    Future wireless communication is emerging towards one heterogeneous platform. In this new environment wireless access will be provided by multiple radio technologies that are cooperating and complementing one another. The paper investigates the possibilities of developing such a multistandard sys...... system using OPNET Modeler. A network model consisting of LTE interworking with WLAN and WiMAX is considered from the radio resource management perspective. In particular, implementing a joint packet scheduler across multiple systems is discussed more in detail....

  6. Networks as Tools for Sustainable Urban Development

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole; Tollin, Nicola

    will be discussed through a case study of a Danish municipal network on Sustainable Development, Dogme 20001. This network has become quite successful in terms of learning and innovation, committing actors, and influencing local policies, to a larger extent than other SUD-networks the municipalities are involved in....... By applying the GREMI2-theories of “innovative milieux” (Aydalot, 1986; Camagni, 1991) to the case study, we will suggest some reasons for the benefits achieved by the Dogme-network, compared to other networks. This analysis will point to the existence of an “innovative milieu” on sustainability within......Due to the increasing number of networks related to sustainable development (SUD) the paper focuses on understanding in which way networks can be considered useful tools for sustainable urban development, taking particularly into consideration the networks potential of spreading innovative policies...

  7. Energy modelling in sensor networks

    Science.gov (United States)

    Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.

    2007-06-01

    Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  8. Social network models predict movement and connectivity in ecological landscapes

    Science.gov (United States)

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  9. Social network models predict movement and connectivity in ecological landscapes.

    Science.gov (United States)

    Fletcher, Robert J; Acevedo, Miguel A; Reichert, Brian E; Pias, Kyle E; Kitchens, Wiley M

    2011-11-29

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  10. A comprehensive Network Security Risk Model for process control networks.

    Science.gov (United States)

    Henry, Matthew H; Haimes, Yacov Y

    2009-02-01

    The risk of cyber attacks on process control networks (PCN) is receiving significant attention due to the potentially catastrophic extent to which PCN failures can damage the infrastructures and commodity flows that they support. Risk management addresses the coupled problems of (1) reducing the likelihood that cyber attacks would succeed in disrupting PCN operation and (2) reducing the severity of consequences in the event of PCN failure or manipulation. The Network Security Risk Model (NSRM) developed in this article provides a means of evaluating the efficacy of candidate risk management policies by modeling the baseline risk and assessing expectations of risk after the implementation of candidate measures. Where existing risk models fall short of providing adequate insight into the efficacy of candidate risk management policies due to shortcomings in their structure or formulation, the NSRM provides model structure and an associated modeling methodology that captures the relevant dynamics of cyber attacks on PCN for risk analysis. This article develops the NSRM in detail in the context of an illustrative example.

  11. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.

    2015-01-01

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation

  12. Open Development : Networked Innovations in International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Open Development : Networked Innovations in International Development. Couverture du livre Open Development: Networked Innovations in International Development. Directeur(s):. Matthew L. Smith et Katherine M. A. Reilly. Maison(s) d'édition: The MIT Press, CRDI. 12 décembre 2013. ISBN : 9780262525411.

  13. Development of a thermal control algorithm using artificial neural network models for improved thermal comfort and energy efficiency in accommodation buildings

    International Nuclear Information System (INIS)

    Moon, Jin Woo; Jung, Sung Kwon

    2016-01-01

    Highlights: • An ANN model for predicting optimal start moment of the cooling system was developed. • An ANN model for predicting the amount of cooling energy consumption was developed. • An optimal control algorithm was developed employing two ANN models. • The algorithm showed the advanced thermal comfort and energy efficiency. - Abstract: The aim of this study was to develop a control algorithm to demonstrate the improved thermal comfort and building energy efficiency of accommodation buildings in the cooling season. For this, two artificial neural network (ANN)-based predictive and adaptive models were developed and employed in the algorithm. One model predicted the cooling energy consumption during the unoccupied period for different setback temperatures and the other predicted the time required for restoring current indoor temperature to the normal set-point temperature. Using numerical simulation methods, the prediction accuracy of the two ANN models and the performance of the algorithm were tested. Through the test result analysis, the two ANN models showed their prediction accuracy with an acceptable error rate when applied in the control algorithm. In addition, the two ANN models based algorithm can be used to provide a more comfortable and energy efficient indoor thermal environment than the two conventional control methods, which respectively employed a fixed set-point temperature for the entire day and a setback temperature during the unoccupied period. Therefore, the operating range was 23–26 °C during the occupied period and 25–28 °C during the unoccupied period. Based on the analysis, it can be concluded that the optimal algorithm with two predictive and adaptive ANN models can be used to design a more comfortable and energy efficient indoor thermal environment for accommodation buildings in a comprehensive manner.

  14. Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-hospital Mortality.

    Science.gov (United States)

    Lee, Christine K; Hofer, Ira; Gabel, Eilon; Baldi, Pierre; Cannesson, Maxime

    2018-04-17

    The authors tested the hypothesis that deep neural networks trained on intraoperative features can predict postoperative in-hospital mortality. The data used to train and validate the algorithm consists of 59,985 patients with 87 features extracted at the end of surgery. Feed-forward networks with a logistic output were trained using stochastic gradient descent with momentum. The deep neural networks were trained on 80% of the data, with 20% reserved for testing. The authors assessed improvement of the deep neural network by adding American Society of Anesthesiologists (ASA) Physical Status Classification and robustness of the deep neural network to a reduced feature set. The networks were then compared to ASA Physical Status, logistic regression, and other published clinical scores including the Surgical Apgar, Preoperative Score to Predict Postoperative Mortality, Risk Quantification Index, and the Risk Stratification Index. In-hospital mortality in the training and test sets were 0.81% and 0.73%. The deep neural network with a reduced feature set and ASA Physical Status classification had the highest area under the receiver operating characteristics curve, 0.91 (95% CI, 0.88 to 0.93). The highest logistic regression area under the curve was found with a reduced feature set and ASA Physical Status (0.90, 95% CI, 0.87 to 0.93). The Risk Stratification Index had the highest area under the receiver operating characteristics curve, at 0.97 (95% CI, 0.94 to 0.99). Deep neural networks can predict in-hospital mortality based on automatically extractable intraoperative data, but are not (yet) superior to existing methods.

  15. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Li Chunguang; Maini, Philip K

    2005-01-01

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  16. The visual development of hand-centered receptive fields in a neural network model of the primate visual system trained with experimentally recorded human gaze changes.

    Science.gov (United States)

    Galeazzi, Juan M; Navajas, Joaquín; Mender, Bedeho M W; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M

    2016-01-01

    Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.

  17. Advances in Artificial Neural Networks – Methodological Development and Application

    Directory of Open Access Journals (Sweden)

    Yanbo Huang

    2009-08-01

    Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological

  18. Hybrid simulation models of production networks

    CERN Document Server

    Kouikoglou, Vassilis S

    2001-01-01

    This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.

  19. A novel Direct Small World network model

    Directory of Open Access Journals (Sweden)

    LIN Tao

    2016-10-01

    Full Text Available There is a certain degree of redundancy and low efficiency of existing computer networks.This paper presents a novel Direct Small World network model in order to optimize networks.In this model,several nodes construct a regular network.Then,randomly choose and replot some nodes to generate Direct Small World network iteratively.There is no change in average distance and clustering coefficient.However,the network performance,such as hops,is improved.The experiments prove that compared to traditional small world network,the degree,average of degree centrality and average of closeness centrality are lower in Direct Small World network.This illustrates that the nodes in Direct Small World networks are closer than Watts-Strogatz small world network model.The Direct Small World can be used not only in the communication of the community information,but also in the research of epidemics.

  20. Modeling the economic dependence between town development policy and increasing energy effectiveness with neural networks. Case study: The town of Zielona Góra

    International Nuclear Information System (INIS)

    Skiba, Marta; Mrówczyńska, Maria; Bazan-Krzywoszańska, Anna

    2017-01-01

    Highlights: • Artificial neural networks (AI) are suitable to estimate the distribution of potential energy savings. • Improving the energy efficiency of buildings helps to reduce energy poverty. • Improving energy efficiency requires monitoring of estates and districts of cities. - Abstract: Due to the changes in legal requirements, growth of energy consumption from different media and prices increase it is necessary to change the attitude of urban consumers. Achieving the objectives of energy policy in each country requires societies to consolidate the confidence that reducing the demand for energy will pay to each household. Creating a positive investment climate, promoting new models and the dissemination of good examples can also lead to economic growth through the use of low-carbon technologies. In many countries, including Poland, the high energy intensity of buildings is seen as a result of the use of low quality materials, low constructing awareness causing the low standard of residential buildings, which is the reason for forcing thermal renovations. This article presents the distribution of market potential of savings for energy efficient renovations in construction on the example of a medium-sized city of Zielona Gora (Poland), which may be representative of cities in the country and in the world. The potential was determined on the basis of technology and a year of a construction of the buildings, technologies used, kind of development and dominating kind of heat and power supply. The calculated potential was presented as the value of the investments necessary to reduce energy consumption by 1 kW h/m"2. Artificial neural networks, which represent a sophisticated modeling technique and are among the computational intelligence methods were used to compute a distribution of potential. The article makes use of possibilities of multi-layer artificial neural networks trained by back propagation error technique and neural networks with radial basis

  1. Multilevel method for modeling large-scale networks.

    Energy Technology Data Exchange (ETDEWEB)

    Safro, I. M. (Mathematics and Computer Science)

    2012-02-24

    Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from

  2. The Kuramoto model in complex networks

    Science.gov (United States)

    Rodrigues, Francisco A.; Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen

    2016-01-01

    Synchronization of an ensemble of oscillators is an emergent phenomenon present in several complex systems, ranging from social and physical to biological and technological systems. The most successful approach to describe how coherent behavior emerges in these complex systems is given by the paradigmatic Kuramoto model. This model has been traditionally studied in complete graphs. However, besides being intrinsically dynamical, complex systems present very heterogeneous structure, which can be represented as complex networks. This report is dedicated to review main contributions in the field of synchronization in networks of Kuramoto oscillators. In particular, we provide an overview of the impact of network patterns on the local and global dynamics of coupled phase oscillators. We cover many relevant topics, which encompass a description of the most used analytical approaches and the analysis of several numerical results. Furthermore, we discuss recent developments on variations of the Kuramoto model in networks, including the presence of noise and inertia. The rich potential for applications is discussed for special fields in engineering, neuroscience, physics and Earth science. Finally, we conclude by discussing problems that remain open after the last decade of intensive research on the Kuramoto model and point out some promising directions for future research.

  3. A Model of Mental State Transition Network

    Science.gov (United States)

    Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo

    Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.

  4. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.

  5. Brand Marketing Model on Social Networks

    OpenAIRE

    Jolita Jezukevičiūtė; Vida Davidavičienė

    2014-01-01

    The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalys...

  6. Brand marketing model on social networks

    OpenAIRE

    Jezukevičiūtė, Jolita; Davidavičienė, Vida

    2014-01-01

    Paper analyzes the brand and its marketing solutions on social networks. This analysis led to the creation of improved brand marketing model on social networks, which will contribute to the rapid and cheap organization brand recognition, increase competitive advantage and enhance consumer loyalty. Therefore, the brand and a variety of social networks are becoming a hot research area for brand marketing model on social networks. The world‘s most successful brand marketing models exploratory an...

  7. Multiple data fusion for rainfall estimation using a NARX-based recurrent neural network – the development of the REIINN model

    International Nuclear Information System (INIS)

    Ang, M R C O; Gonzalez, R M; Castro, P P M

    2014-01-01

    Rainfall, one of the important elements of the hydrologic cycle, is also the most difficult to model. Thus, accurate rainfall estimation is necessary especially in localized catchment areas where variability of rainfall is extremely high. Moreover, early warning of severe rainfall through timely and accurate estimation and forecasting could help prevent disasters from flooding. This paper presents the development of two rainfall estimation models that utilize a NARX-based neural network architecture namely: REIINN 1 and REIINN 2. These REIINN models, or Rainfall Estimation by Information Integration using Neural Networks, were trained using MTSAT cloud-top temperature (CTT) images and rainfall rates from the combined rain gauge and TMPA 3B40RT datasets. Model performance was assessed using two metrics – root mean square error (RMSE) and correlation coefficient (R). REIINN 1 yielded an RMSE of 8.1423 mm/3h and an overall R of 0.74652 while REIINN 2 yielded an RMSE of 5.2303 and an overall R of 0.90373. The results, especially that of REIINN 2, are very promising for satellite-based rainfall estimation in a catchment scale. It is believed that model performance and accuracy will greatly improve with a denser and more spatially distributed in-situ rainfall measurements to calibrate the model with. The models proved the viability of using remote sensing images, with their good spatial coverage, near real time availability, and relatively inexpensive to acquire, as an alternative source for rainfall estimation to complement existing ground-based measurements

  8. Application of historical, topographic maps and remote sensing data for reconstruction of gully network development as source of information for gully erosion modeling

    Science.gov (United States)

    Belyaev, Vladimir; Kuznetsova, Yulia

    2017-04-01

    Central parts of European Russia are characterized by relatively shorter history of intensive agriculture in comparison to the Western Europe. As a result of that, significant part of the time period of large-scale cultivation is covered by different types of historical documents. For the last about 150 years reasonably good-quality maps are available. Gully erosion history for the European Russia is more or less well-established, with known peaks of activity associated with initial cultivation (400-200 years ago for the territory of Central Russian Upland) and change of land ownership in 1861 that caused splitting large landlords-owned fields into numerous small parcels owned by individual peasant families. The latter was the most important trigger for dramatic growth of gully erosion intensity as most of such parcels were oriented downslope. It is believed that by detailed reconstructions of gully network development using all the available information sources it can be possible to obtain information suitable for gully erosion models testing. Such models can later be applied for predicting further development of the existing gully networks for several different land use and climate change scenarios. Reconstructions for the two case study areas located in different geographic and historical settings will be presented.

  9. Keystone Business Models for Network Security Processors

    Directory of Open Access Journals (Sweden)

    Arthur Low

    2013-07-01

    Full Text Available Network security processors are critical components of high-performance systems built for cybersecurity. Development of a network security processor requires multi-domain experience in semiconductors and complex software security applications, and multiple iterations of both software and hardware implementations. Limited by the business models in use today, such an arduous task can be undertaken only by large incumbent companies and government organizations. Neither the “fabless semiconductor” models nor the silicon intellectual-property licensing (“IP-licensing” models allow small technology companies to successfully compete. This article describes an alternative approach that produces an ongoing stream of novel network security processors for niche markets through continuous innovation by both large and small companies. This approach, referred to here as the "business ecosystem model for network security processors", includes a flexible and reconfigurable technology platform, a “keystone” business model for the company that maintains the platform architecture, and an extended ecosystem of companies that both contribute and share in the value created by innovation. New opportunities for business model innovation by participating companies are made possible by the ecosystem model. This ecosystem model builds on: i the lessons learned from the experience of the first author as a senior integrated circuit architect for providers of public-key cryptography solutions and as the owner of a semiconductor startup, and ii the latest scholarly research on technology entrepreneurship, business models, platforms, and business ecosystems. This article will be of interest to all technology entrepreneurs, but it will be of particular interest to owners of small companies that provide security solutions and to specialized security professionals seeking to launch their own companies.

  10. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  11. Resolving structural variability in network models and the brain.

    Directory of Open Access Journals (Sweden)

    Florian Klimm

    2014-03-01

    Full Text Available Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling--in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity do not in general simultaneously display a second (e.g., hierarchy. This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful

  12. Development and Analyses of Privacy Management Models in Online Social Networks Based on Communication Privacy Management Theory

    Science.gov (United States)

    Lee, Ki Jung

    2013-01-01

    Online social networks (OSNs), while serving as an emerging means of communication, promote various issues of privacy. Users of OSNs encounter diverse occasions that lead to invasion of their privacy, e.g., published conversation, public revelation of their personally identifiable information, and open boundary of distinct social groups within…

  13. Modeling and control of magnetorheological fluid dampers using neural networks

    Science.gov (United States)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  14. Developing security tools of WSN and WBAN networks applications

    CERN Document Server

    A M El-Bendary, Mohsen

    2015-01-01

    This book focuses on two of the most rapidly developing areas in wireless technology (WT) applications, namely, wireless sensors networks (WSNs) and wireless body area networks (WBANs). These networks can be considered smart applications of the recent WT revolutions. The book presents various security tools and scenarios for the proposed enhanced-security of WSNs, which are supplemented with numerous computer simulations. In the computer simulation section, WSN modeling is addressed using MATLAB programming language.

  15. Spatial Models and Networks of Living Systems

    DEFF Research Database (Denmark)

    Juul, Jeppe Søgaard

    When studying the dynamics of living systems, insight can often be gained by developing a mathematical model that can predict future behaviour of the system or help classify system characteristics. However, in living cells, organisms, and especially groups of interacting individuals, a large number...... variables of the system. However, this approach disregards any spatial structure of the system, which may potentially change the behaviour drastically. An alternative approach is to construct a cellular automaton with nearest neighbour interactions, or even to model the system as a complex network...... with interactions defined by network topology. In this thesis I first describe three different biological models of ageing and cancer, in which spatial structure is important for the system dynamics. I then turn to describe characteristics of ecosystems consisting of three cyclically interacting species...

  16. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  17. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Modeling of video traffic in packet networks, low rate video compression, and the development of a lossy+lossless image compression algorithm

    Science.gov (United States)

    Sayood, K.; Chen, Y. C.; Wang, X.

    1992-01-01

    During this reporting period we have worked on three somewhat different problems. These are modeling of video traffic in packet networks, low rate video compression, and the development of a lossy + lossless image compression algorithm, which might have some application in browsing algorithms. The lossy + lossless scheme is an extension of work previously done under this grant. It provides a simple technique for incorporating browsing capability. The low rate coding scheme is also a simple variation on the standard discrete cosine transform (DCT) coding approach. In spite of its simplicity, the approach provides surprisingly high quality reconstructions. The modeling approach is borrowed from the speech recognition literature, and seems to be promising in that it provides a simple way of obtaining an idea about the second order behavior of a particular coding scheme. Details about these are presented.

  19. [Development and Application of a Performance Prediction Model for Home Care Nursing Based on a Balanced Scorecard using the Bayesian Belief Network].

    Science.gov (United States)

    Noh, Wonjung; Seomun, Gyeongae

    2015-06-01

    This study was conducted to develop key performance indicators (KPIs) for home care nursing (HCN) based on a balanced scorecard, and to construct a performance prediction model of strategic objectives using the Bayesian Belief Network (BBN). This methodological study included four steps: establishment of KPIs, performance prediction modeling, development of a performance prediction model using BBN, and simulation of a suggested nursing management strategy. An HCN expert group and a staff group participated. The content validity index was analyzed using STATA 13.0, and BBN was analyzed using HUGIN 8.0. We generated a list of KPIs composed of 4 perspectives, 10 strategic objectives, and 31 KPIs. In the validity test of the performance prediction model, the factor with the greatest variance for increasing profit was maximum cost reduction of HCN services. The factor with the smallest variance for increasing profit was a minimum image improvement for HCN. During sensitivity analysis, the probability of the expert group did not affect the sensitivity. Furthermore, simulation of a 10% image improvement predicted the most effective way to increase profit. KPIs of HCN can estimate financial and non-financial performance. The performance prediction model for HCN will be useful to improve performance.

  20. Information Network on Rural Development (INRD), Bangladesh.

    Science.gov (United States)

    Wanasundra, Leelangi

    1994-01-01

    Discusses information networking in Bangladesh and describes the formation of the Information Network on Rural Development (INRD) which was initiated by the Center on Integrated Rural Development for Asia and the Pacific (CIRDAP). Organization, membership, activities, participation, and finance are examined. (four references) (LRW)

  1. Spinal Cord Injury Model System Information Network

    Science.gov (United States)

    ... the UAB-SCIMS More The UAB-SCIMS Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network as a resource to promote knowledge in the ...

  2. Eight challenges for network epidemic models

    Directory of Open Access Journals (Sweden)

    Lorenzo Pellis

    2015-03-01

    Full Text Available Networks offer a fertile framework for studying the spread of infection in human and animal populations. However, owing to the inherent high-dimensionality of networks themselves, modelling transmission through networks is mathematically and computationally challenging. Even the simplest network epidemic models present unanswered questions. Attempts to improve the practical usefulness of network models by including realistic features of contact networks and of host–pathogen biology (e.g. waning immunity have made some progress, but robust analytical results remain scarce. A more general theory is needed to understand the impact of network structure on the dynamics and control of infection. Here we identify a set of challenges that provide scope for active research in the field of network epidemic models.

  3. Entropy Characterization of Random Network Models

    Directory of Open Access Journals (Sweden)

    Pedro J. Zufiria

    2017-06-01

    Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.

  4. The model of social crypto-network

    Directory of Open Access Journals (Sweden)

    Марк Миколайович Орел

    2015-06-01

    Full Text Available The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks

  5. Introducing Synchronisation in Deterministic Network Models

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.

    2006-01-01

    The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading...... to the suggestion of suitable network models. An existing model for flow control is presented and an inherent weakness is revealed and remedied. Examples are given and numerically analysed through deterministic network modelling. Results are presented to highlight the properties of the suggested models...

  6. Discrete fracture network code development

    Energy Technology Data Exchange (ETDEWEB)

    Dershowitz, W.; Doe, T.; Shuttle, D.; Eiben, T.; Fox, A.; Emsley, S.; Ahlstrom, E. [Golder Associates Inc., Redmond, Washington (United States)

    1999-02-01

    This report presents the results of fracture flow model development and application performed by Golder Associates Inc. during the fiscal year 1998. The primary objective of the Golder Associates work scope was to provide theoretical and modelling support to the JNC performance assessment effort in fiscal year 2000. In addition, Golder Associates provided technical support to JNC for the Aespoe project. Major efforts for performance assessment support included extensive flow and transport simulations, analysis of pathway simplification, research on excavation damage zone effects, software verification and cross-verification, and analysis of confidence bounds on Monte Carlo simulations. In addition, a Fickian diffusion algorithm was implemented for Laplace Transform Galerkin solute transport. Support for the Aespoe project included predictive modelling of sorbing tracer transport in the TRUE-1 rock block, analysis of 1 km geochemical transport pathways for Task 5', and data analysis and experimental design for the TRUE Block Scale experiment. Technical information about Golder Associates support to JNC is provided in the appendices to this report. (author)

  7. The development of brain network architecture.

    Science.gov (United States)

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Bayesian Network Webserver: a comprehensive tool for biological network modeling.

    Science.gov (United States)

    Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan

    2013-11-01

    The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.

  9. Ripple-Spreading Network Model Optimization by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Hu

    2013-01-01

    Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.

  10. Entanglement effects in model polymer networks

    Science.gov (United States)

    Everaers, R.; Kremer, K.

    The influence of topological constraints on the local dynamics in cross-linked polymer melts and their contribution to the elastic properties of rubber elastic systems are a long standing problem in statistical mechanics. Polymer networks with diamond lattice connectivity (Everaers and Kremer 1995, Everaers and Kremer 1996a) are idealized model systems which isolate the effect of topology conservation from other sources of quenched disorder. We study their behavior in molecular dynamics simulations under elongational strain. In our analysis we compare the measured, purely entropic shear moduli G to the predictions of statistical mechanical models of rubber elasticity, making extensive use of the microscopic structural and topological information available in computer simulations. We find (Everaers and Kremer 1995) that the classical models of rubber elasticity underestimate the true change in entropy in a deformed network significantly, because they neglect the tension along the contour of the strands which cannot relax due to entanglements (Everaers and Kremer (in preparation)). This contribution and the fluctuations in strained systems seem to be well described by the constrained mode model (Everaers 1998) which allows to treat the crossover from classical rubber elasticity to the tube model for polymer networks with increasing strand length within one transparant formalism. While this is important for the description of the effects we try to do a first quantitative step towards their explanation by topological considerations. We show (Everaers and Kremer 1996a) that for the comparatively short strand lengths of our diamond networks the topology contribution to the shear modulus is proportional to the density of entangled mesh pairs with non-zero Gauss linking number. Moreover, the prefactor can be estimated consistently within a rather simple model developed by Vologodskii et al. and by Graessley and Pearson, which is based on the definition of an entropic

  11. Different Epidemic Models on Complex Networks

    International Nuclear Information System (INIS)

    Zhang Haifeng; Small, Michael; Fu Xinchu

    2009-01-01

    Models for diseases spreading are not just limited to SIS or SIR. For instance, for the spreading of AIDS/HIV, the susceptible individuals can be classified into different cases according to their immunity, and similarly, the infected individuals can be sorted into different classes according to their infectivity. Moreover, some diseases may develop through several stages. Many authors have shown that the individuals' relation can be viewed as a complex network. So in this paper, in order to better explain the dynamical behavior of epidemics, we consider different epidemic models on complex networks, and obtain the epidemic threshold for each case. Finally, we present numerical simulations for each case to verify our results.

  12. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural

  13. Community Health Global Network and Sustainable Development

    Directory of Open Access Journals (Sweden)

    Rebekah Young

    2016-01-01

    Full Text Available With the achievements, failures and passing of the Millennium Development Goals (MDG, the world has turned its eyes to the Sustainable Development Goals (SDG, designed to foster sustainable social, economic and environmental development over the next 15 years.(1 Community-led initiatives are increasingly being recognised as playing a key role in realising sustainable community development and in the aspirations of universal healthcare.(2 In many parts of the world, faith-based organisations are some of the main players in community-led development and health care.(3 Community Health Global Network (CHGN creates links between organisations, with the purpose being to encourage communities to recognise their assets and abilities, identify shared concerns and discover solutions together, in order to define and lead their futures in sustainable ways.(4 CHGN has facilitated the development of collaborative groups of health and development initiatives called ‘Clusters’ in several countries including India, Bangladesh, Kenya, Tanzania, Zambia and Myanmar. In March 2016 these Clusters met together in an International Forum, to share learnings, experiences, challenges, achievements and to encourage one another. Discussions held throughout the forum suggest that the CHGN model is helping to promote effective, sustainable development and health care provision on both a local and a global scale.

  14. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  15. Aeronautical telecommunications network advances, challenges, and modeling

    CERN Document Server

    Musa, Sarhan M

    2015-01-01

    Addresses the Challenges of Modern-Day Air Traffic Air traffic control (ATC) directs aircraft in the sky and on the ground to safety, while the Aeronautical Telecommunications Network (ATN) comprises all systems and phases that assist in aircraft departure and landing. The Aeronautical Telecommunications Network: Advances, Challenges, and Modeling focuses on the development of ATN and examines the role of the various systems that link aircraft with the ground. The book places special emphasis on ATC-introducing the modern ATC system from the perspective of the user and the developer-and provides a thorough understanding of the operating mechanism of the ATC system. It discusses the evolution of ATC, explaining its structure and how it works; includes design examples; and describes all subsystems of the ATC system. In addition, the book covers relevant tools, techniques, protocols, and architectures in ATN, including MIPv6, air traffic control (ATC), security of air traffic management (ATM), very-high-frequenc...

  16. Indicators for establishing SME product development networks

    NARCIS (Netherlands)

    Post, G.J.J.; Hop, L.; Aken, van J.E.

    2001-01-01

    The results of research into SME product development networks are presented. The paper provides insight to the process of establishing such networks and the use of indicators in the design and monitoring of this process. It is based on five extensive case studies and in addition on several in-depth

  17. Learning Networks for Professional Development & Lifelong Learning

    NARCIS (Netherlands)

    Brouns, Francis; Sloep, Peter

    2009-01-01

    Brouns, F., & Sloep, P. B. (2009). Learning Networks for Professional Development & Lifelong Learning. Presentation of the Learning Network Programme for a Korean delegation of Chonnam National University and Dankook University (researchers dr. Jeeheon Ryu and dr. Minjeong Kim and a Group of PhD and

  18. Developing aircraft photonic networks for airplane systems

    DEFF Research Database (Denmark)

    White, Henry J.; Brownjohn, Nick; Baptista, João

    2013-01-01

    Achieving affordable high speed fiber optic communication networks for airplane systems has proved to be challenging. In this paper we describe a summary of the EU Framework 7 project DAPHNE (Developing Aircraft Photonic Networks). DAPHNE aimed to exploit photonic technology from terrestrial...

  19. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  20. Model checking mobile ad hoc networks

    NARCIS (Netherlands)

    Ghassemi, Fatemeh; Fokkink, Wan

    2016-01-01

    Modeling arbitrary connectivity changes within mobile ad hoc networks (MANETs) makes application of automated formal verification challenging. We use constrained labeled transition systems as a semantic model to represent mobility. To model check MANET protocols with respect to the underlying

  1. Compartmentalization analysis using discrete fracture network models

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  2. An Analysis of Audio Features to Develop a Human Activity Recognition Model Using Genetic Algorithms, Random Forests, and Neural Networks

    Directory of Open Access Journals (Sweden)

    Carlos E. Galván-Tejada

    2016-01-01

    Full Text Available This work presents a human activity recognition (HAR model based on audio features. The use of sound as an information source for HAR models represents a challenge because sound wave analyses generate very large amounts of data. However, feature selection techniques may reduce the amount of data required to represent an audio signal sample. Some of the audio features that were analyzed include Mel-frequency cepstral coefficients (MFCC. Although MFCC are commonly used in voice and instrument recognition, their utility within HAR models is yet to be confirmed, and this work validates their usefulness. Additionally, statistical features were extracted from the audio samples to generate the proposed HAR model. The size of the information is necessary to conform a HAR model impact directly on the accuracy of the model. This problem also was tackled in the present work; our results indicate that we are capable of recognizing a human activity with an accuracy of 85% using the HAR model proposed. This means that minimum computational costs are needed, thus allowing portable devices to identify human activities using audio as an information source.

  3. Systems and methods for modeling and analyzing networks

    Science.gov (United States)

    Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W

    2013-10-29

    The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.

  4. Developing networks to support science teachers work

    DEFF Research Database (Denmark)

    Sillasen, Martin Krabbe; Valero, Paola

    2012-01-01

    In educational research literature constructing networks among practitioners has been suggested as a strategy to support teachers’ professional development (Huberman, 1995; Jackson & Temperley, 2007; Van Driel, Beijaard, & Verloop, 2001). The purpose of this paper is to report on a study about how...... networks provide opportunities for teachers from different schools to collaborate on improving the quality of their own science teaching practices. These networks exist at the meso-level of the educational system between the micro-realities of teachers’ individual practice and the macro-level, where...... to develop collaborative activities in primary science teacher communities in schools to improve individual teachers practice and in networks between teachers from different schools in each municipality. Each network was organized and moderated by a municipal science coordinator....

  5. Development of two artificial neural network models to support the diagnosis of pulmonary tuberculosis in hospitalized patients in Rio de Janeiro, Brazil.

    Science.gov (United States)

    Aguiar, Fábio S; Torres, Rodrigo C; Pinto, João V F; Kritski, Afrânio L; Seixas, José M; Mello, Fernanda C Q

    2016-11-01

    Pulmonary tuberculosis (PTB) remains a worldwide public health problem. Diagnostic algorithms to identify the best combination of diagnostic tests for PTB in each setting are needed for resource optimization. We developed one artificial neural network model for classification (multilayer perceptron-MLP) and another risk group assignment (self-organizing map-SOM) for PTB in hospitalized patients in a high complexity hospital in Rio de Janeiro City, using clinical and radiologic data collected from 315 presumed PTB cases admitted to isolation rooms from March 2003 to December 2004 (TB prevalence = 21.5 %). The MLP model included 7 variables-radiologic classification, age, gender, cough, night sweats, weight loss and anorexia. The sensitivity of the MLP model was 96.0 % (95 % CI ±2.0), the specificity was 89.0 % (95 % CI ±2.0), the positive predictive value was 72.5 % (95 % CI ±3.5) and the negative predictive value was 98.5 % (95 % CI ±0.5). The variable with the highest discriminative power was the radiologic classification. The high negative predictive value found in the MLP model suggests that the use of this model at the moment of hospital admission is safe. SOM model was able to correctly assign high-, medium- and low-risk groups to patients. If prospective validation in other series is confirmed, these models can become a tool for decision-making in tertiary health facilities in countries with limited resources.

  6. Nonparametric Bayesian Modeling of Complex Networks

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Mørup, Morten

    2013-01-01

    an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...

  7. Development of the self-learning machine for creating models of microprocessor of single-phase earth fault protection devices in networks with isolated neutral voltage above 1000 V

    Science.gov (United States)

    Utegulov, B. B.; Utegulov, A. B.; Meiramova, S.

    2018-02-01

    The paper proposes the development of a self-learning machine for creating models of microprocessor-based single-phase ground fault protection devices in networks with an isolated neutral voltage higher than 1000 V. Development of a self-learning machine for creating models of microprocessor-based single-phase earth fault protection devices in networks with an isolated neutral voltage higher than 1000 V. allows to effectively implement mathematical models of automatic change of protection settings. Single-phase earth fault protection devices.

  8. Learning Networks for Professional Development & Lifelong Learning

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    Sloep, P. B. (2009). Learning Networks for Professional Development & Lifelong Learning. Presentation at a NeLLL seminar with Etienne Wenger held at the Open Universiteit Nederland. September, 10, 2009, Heerlen, The Netherlands.

  9. Development of the Global Measles Laboratory Network.

    Science.gov (United States)

    Featherstone, David; Brown, David; Sanders, Ray

    2003-05-15

    The routine reporting of suspected measles cases and laboratory testing of samples from these cases is the backbone of measles surveillance. The Global Measles Laboratory Network (GMLN) has developed standards for laboratory confirmation of measles and provides training resources for staff of network laboratories, reference materials and expertise for the development and quality control of testing procedures, and accurate information for the Measles Mortality Reduction and Regional Elimination Initiative. The GMLN was developed along the lines of the successful Global Polio Laboratory Network, and much of the polio laboratory infrastructure was utilized for measles. The GMLN has developed as countries focus on measles control activities following successful eradication of polio. Currently more than 100 laboratories are part of the global network and follow standardized testing and reporting procedures. A comprehensive laboratory accreditation process will be introduced in 2002 with six quality assurance and performance indicators.

  10. The European Network for Lifelong Competence Development

    NARCIS (Netherlands)

    Burgos, Daniel

    2006-01-01

    Burgos, D. (2006). The European Network for Lifelong Competence Development. Presentation at the Professional Training Facts 2006 conference. November 15th, Stuttgart, Germany: TENCompetence. Retrieved November 20th, 2006, from http://dspace.learningnetworks.org

  11. Spatial equity analysis on expressway network development in Japan: Empirical approach using the spatial computable general equilibrium model RAEM-light

    NARCIS (Netherlands)

    Koike, A.; Tavasszy, L.; Sato, K.

    2009-01-01

    The authors apply the RAEM-Light model to analyze the distribution of social benefits from expressway network projects from the viewpoint of spatial equity. The RAEM-Light model has some innovative features. The spatial behavior of producers and consumers is explicitly described and is endogenously

  12. Network structure exploration via Bayesian nonparametric models

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z

    2015-01-01

    Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)

  13. Modelling the impact of social network on energy savings

    International Nuclear Information System (INIS)

    Du, Feng; Zhang, Jiangfeng; Li, Hailong; Yan, Jinyue; Galloway, Stuart; Lo, Kwok L.

    2016-01-01

    Highlights: • Energy saving propagation along a social network is modelled. • This model consists of a time evolving weighted directed network. • Network weights and information decay are applied in savings calculation. - Abstract: It is noted that human behaviour changes can have a significant impact on energy consumption, however, qualitative study on such an impact is still very limited, and it is necessary to develop the corresponding mathematical models to describe how much energy savings can be achieved through human engagement. In this paper a mathematical model of human behavioural dynamic interactions on a social network is derived to calculate energy savings. This model consists of a weighted directed network with time evolving information on each node. Energy savings from the whole network is expressed as mathematical expectation from probability theory. This expected energy savings model includes both direct and indirect energy savings of individuals in the network. The savings model is obtained by network weights and modified by the decay of information. Expected energy savings are calculated for cases where individuals in the social network are treated as a single information source or multiple sources. This model is tested on a social network consisting of 40 people. The results show that the strength of relations between individuals is more important to information diffusion than the number of connections individuals have. The expected energy savings of optimally chosen node can be 25.32% more than randomly chosen nodes at the end of the second month for the case of single information source in the network, and 16.96% more than random nodes for the case of multiple information sources. This illustrates that the model presented in this paper can be used to determine which individuals will have the most influence on the social network, which in turn provides a useful guide to identify targeted customers in energy efficiency technology rollout

  14. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  15. Building functional networks of spiking model neurons.

    Science.gov (United States)

    Abbott, L F; DePasquale, Brian; Memmesheimer, Raoul-Martin

    2016-03-01

    Most of the networks used by computer scientists and many of those studied by modelers in neuroscience represent unit activities as continuous variables. Neurons, however, communicate primarily through discontinuous spiking. We review methods for transferring our ability to construct interesting networks that perform relevant tasks from the artificial continuous domain to more realistic spiking network models. These methods raise a number of issues that warrant further theoretical and experimental study.

  16. Dynamic Pathloss Model for Future Mobile Communication Networks

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena Dimitrova; Prasad, Ramjee

    2016-01-01

    that are essentially static. Therefore, once the signal level drops beyond the predicted values due to any variance in the environmental conditions, very crowded areas may not be catered well enough by the deployed network that had been designed with the static path loss model. This paper proposes an approach......— Future mobile communication networks (MCNs) are expected to be more intelligent and proactive based on new capabilities that increase agility and performance. However, for any successful mobile network service, the dexterity in network deployment is a key factor. The efficiency of the network...... planning depends on how congruent the chosen path loss model and real propagation are. Various path loss models have been developed that predict the signal propagation in various morphological and climatic environments; however they consider only those physical parameters of the network environment...

  17. Dynamic Pathloss Model for Place and Time Itinerant Networks

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena; Prasad, Ramjee

    2018-01-01

    that are essentially static. Therefore, once the signal level drops beyond the predicted values due to any variance in the environmental conditions, very crowded areas may not be catered well enough by the deployed network that had been designed with the static path loss model. This paper proposes an approach......t Future mobile communication networks are expected to be more intelligent and proactive based on new capabilities that increase agility and performance. However, for any successful mobile network service, the dexterity in network deployment is a key factor. The efficiency of the network planning...... depends on how congruent the chosen path loss model and real propagation are. Various path loss models have been developed that predict the signal propagation in various morphological and climatic environments; however they consider only those physical parameters of the network environment...

  18. A Mathematical Model to Improve the Performance of Logistics Network

    Directory of Open Access Journals (Sweden)

    Muhammad Izman Herdiansyah

    2012-01-01

    Full Text Available The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimization

  19. A Network Contention Model for the Extreme-scale Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, Christian [ORNL; Naughton III, Thomas J [ORNL

    2015-01-01

    The Extreme-scale Simulator (xSim) is a performance investigation toolkit for high-performance computing (HPC) hardware/software co-design. It permits running a HPC application with millions of concurrent execution threads, while observing its performance in a simulated extreme-scale system. This paper details a newly developed network modeling feature for xSim, eliminating the shortcomings of the existing network modeling capabilities. The approach takes a different path for implementing network contention and bandwidth capacity modeling using a less synchronous and accurate enough model design. With the new network modeling feature, xSim is able to simulate on-chip and on-node networks with reasonable accuracy and overheads.

  20. SU-E-T-23: A Developing Australian Network for Datamining and Modelling Routine Radiotherapy Clinical Data and Radiomics Information for Rapid Learning and Clinical Decision Support

    Energy Technology Data Exchange (ETDEWEB)

    Thwaites, D [University of Sydney, Camperdown, Sydney (Australia); Holloway, L [Ingham Institute, Sydney, NSW (Australia); Bailey, M; Carolan, M; Miller, A [Illawarra Cancer Care Centre, Wollongong, NSW (Australia); Barakat, S; Field, M [University of Sydney, Sydney, NSW (Australia); Delaney, G; Vinod, S [Liverpool Hospital, Liverpool, NSW (Australia); Dekker, A [Maastro Clinic, Maastricht (Netherlands); Lustberg, T; Soest, J van; Walsh, S [MAASTRO Clinic, Maastricht (Netherlands)

    2015-06-15

    Purpose: Large amounts of routine radiotherapy (RT) data are available, which can potentially add clinical evidence to support better decisions. A developing collaborative Australian network, with a leading European partner, aims to validate, implement and extend European predictive models (PMs) for Australian practice and assess their impact on future patient decisions. Wider objectives include: developing multi-institutional rapid learning, using distributed learning approaches; and assessing and incorporating radiomics information into PMs. Methods: Two initial standalone pilots were conducted; one on NSCLC, the other on larynx, patient datasets in two different centres. Open-source rapid learning systems were installed, for data extraction and mining to collect relevant clinical parameters from the centres’ databases. The European DSSs were learned (“training cohort”) and validated against local data sets (“clinical cohort”). Further NSCLC studies are underway in three more centres to pilot a wider distributed learning network. Initial radiomics work is underway. Results: For the NSCLC pilot, 159/419 patient datasets were identified meeting the PM criteria, and hence eligible for inclusion in the curative clinical cohort (for the larynx pilot, 109/125). Some missing data were imputed using Bayesian methods. For both, the European PMs successfully predicted prognosis groups, but with some differences in practice reflected. For example, the PM-predicted good prognosis NSCLC group was differentiated from a combined medium/poor prognosis group (2YOS 69% vs. 27%, p<0.001). Stage was less discriminatory in identifying prognostic groups. In the good prognosis group two-year overall survival was 65% in curatively and 18% in palliatively treated patients. Conclusion: The technical infrastructure and basic European PMs support prognosis prediction for these Australian patient groups, showing promise for supporting future personalized treatment decisions

  1. SU-E-T-23: A Developing Australian Network for Datamining and Modelling Routine Radiotherapy Clinical Data and Radiomics Information for Rapid Learning and Clinical Decision Support

    International Nuclear Information System (INIS)

    Thwaites, D; Holloway, L; Bailey, M; Carolan, M; Miller, A; Barakat, S; Field, M; Delaney, G; Vinod, S; Dekker, A; Lustberg, T; Soest, J van; Walsh, S

    2015-01-01

    Purpose: Large amounts of routine radiotherapy (RT) data are available, which can potentially add clinical evidence to support better decisions. A developing collaborative Australian network, with a leading European partner, aims to validate, implement and extend European predictive models (PMs) for Australian practice and assess their impact on future patient decisions. Wider objectives include: developing multi-institutional rapid learning, using distributed learning approaches; and assessing and incorporating radiomics information into PMs. Methods: Two initial standalone pilots were conducted; one on NSCLC, the other on larynx, patient datasets in two different centres. Open-source rapid learning systems were installed, for data extraction and mining to collect relevant clinical parameters from the centres’ databases. The European DSSs were learned (“training cohort”) and validated against local data sets (“clinical cohort”). Further NSCLC studies are underway in three more centres to pilot a wider distributed learning network. Initial radiomics work is underway. Results: For the NSCLC pilot, 159/419 patient datasets were identified meeting the PM criteria, and hence eligible for inclusion in the curative clinical cohort (for the larynx pilot, 109/125). Some missing data were imputed using Bayesian methods. For both, the European PMs successfully predicted prognosis groups, but with some differences in practice reflected. For example, the PM-predicted good prognosis NSCLC group was differentiated from a combined medium/poor prognosis group (2YOS 69% vs. 27%, p<0.001). Stage was less discriminatory in identifying prognostic groups. In the good prognosis group two-year overall survival was 65% in curatively and 18% in palliatively treated patients. Conclusion: The technical infrastructure and basic European PMs support prognosis prediction for these Australian patient groups, showing promise for supporting future personalized treatment decisions

  2. Quantum neural networks: Current status and prospects for development

    Science.gov (United States)

    Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.

    2014-11-01

    The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.

  3. Model of community emergence in weighted social networks

    Science.gov (United States)

    Kumpula, J. M.; Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K.

    2009-04-01

    Over the years network theory has proven to be rapidly expanding methodology to investigate various complex systems and it has turned out to give quite unparalleled insight to their structure, function, and response through data analysis, modeling, and simulation. For social systems in particular the network approach has empirically revealed a modular structure due to interplay between the network topology and link weights between network nodes or individuals. This inspired us to develop a simple network model that could catch some salient features of mesoscopic community and macroscopic topology formation during network evolution. Our model is based on two fundamental mechanisms of network sociology for individuals to find new friends, namely cyclic closure and focal closure, which are mimicked by local search-link-reinforcement and random global attachment mechanisms, respectively. In addition we included to the model a node deletion mechanism by removing all its links simultaneously, which corresponds for an individual to depart from the network. Here we describe in detail the implementation of our model algorithm, which was found to be computationally efficient and produce many empirically observed features of large-scale social networks. Thus this model opens a new perspective for studying such collective social phenomena as spreading, structure formation, and evolutionary processes.

  4. Port Hamiltonian modeling of Power Networks

    NARCIS (Netherlands)

    van Schaik, F.; van der Schaft, Abraham; Scherpen, Jacquelien M.A.; Zonetti, Daniele; Ortega, R

    2012-01-01

    In this talk a full nonlinear model for the power network in port–Hamiltonian framework is derived to study its stability properties. For this we use the modularity approach i.e., we first derive the models of individual components in power network as port-Hamiltonian systems and then we combine all

  5. Modelling traffic congestion using queuing networks

    Indian Academy of Sciences (India)

    Flow-density curves; uninterrupted traffic; Jackson networks. ... ness - also suffer from a big handicap vis-a-vis the Indian scenario: most of these models do .... more well-known queuing network models and onsite data, a more exact Road Cell ...

  6. Settings in Social Networks : a Measurement Model

    NARCIS (Netherlands)

    Schweinberger, Michael; Snijders, Tom A.B.

    2003-01-01

    A class of statistical models is proposed that aims to recover latent settings structures in social networks. Settings may be regarded as clusters of vertices. The measurement model is based on two assumptions. (1) The observed network is generated by hierarchically nested latent transitive

  7. Oxygen diffusion in a network model of the myocardial microcirculation

    NARCIS (Netherlands)

    Wieringa, P. A.; Stassen, H. G.; van Kan, J. J.; Spaan, J. A.

    1993-01-01

    Oxygen supply was studied in a three-dimensional capillary network model of the myocardial microcirculation. Capillary networks were generated using one common strategy to locate the capillary branchings and segments, arterioles and venules. Flow paths developed with different capillary flow

  8. Towards a Social Networks Model for Online Learning & Performance

    Science.gov (United States)

    Chung, Kon Shing Kenneth; Paredes, Walter Christian

    2015-01-01

    In this study, we develop a theoretical model to investigate the association between social network properties, "content richness" (CR) in academic learning discourse, and performance. CR is the extent to which one contributes content that is meaningful, insightful and constructive to aid learning and by social network properties we…

  9. Performance modeling of network data services

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.A.; Pierson, L.G.

    1997-01-01

    Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.

  10. Adaptive Networks Theory, Models and Applications

    CERN Document Server

    Gross, Thilo

    2009-01-01

    With adaptive, complex networks, the evolution of the network topology and the dynamical processes on the network are equally important and often fundamentally entangled. Recent research has shown that such networks can exhibit a plethora of new phenomena which are ultimately required to describe many real-world networks. Some of those phenomena include robust self-organization towards dynamical criticality, formation of complex global topologies based on simple, local rules, and the spontaneous division of "labor" in which an initially homogenous population of network nodes self-organizes into functionally distinct classes. These are just a few. This book is a state-of-the-art survey of those unique networks. In it, leading researchers set out to define the future scope and direction of some of the most advanced developments in the vast field of complex network science and its applications.

  11. Continuum Modeling of Biological Network Formation

    KAUST Repository

    Albi, Giacomo; Burger, Martin; Haskovec, Jan; Markowich, Peter A.; Schlottbom, Matthias

    2017-01-01

    We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes

  12. Network models in economics and finance

    CERN Document Server

    Pardalos, Panos; Rassias, Themistocles

    2014-01-01

    Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis  that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.

  13. 78 FR 17418 - Rural Health Information Technology Network Development Grant

    Science.gov (United States)

    2013-03-21

    ... Information Technology Network Development Grant AGENCY: Health Resources and Services Administration (HRSA...-competitive replacement award under the Rural Health Information Technology Network Development Grant (RHITND... relinquishing its fiduciary responsibilities for the Rural Health Information Technology Network Development...

  14. Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network.

    Science.gov (United States)

    Rau, Hsiao-Hsien; Hsu, Chien-Yeh; Lin, Yu-An; Atique, Suleman; Fuad, Anis; Wei, Li-Ming; Hsu, Ming-Huei

    2016-03-01

    Diabetes mellitus is associated with an increased risk of liver cancer, and these two diseases are among the most common and important causes of morbidity and mortality in Taiwan. To use data mining techniques to develop a model for predicting the development of liver cancer within 6 years of diagnosis with type II diabetes. Data were obtained from the National Health Insurance Research Database (NHIRD) of Taiwan, which covers approximately 22 million people. In this study, we selected patients who were newly diagnosed with type II diabetes during the 2000-2003 periods, with no prior cancer diagnosis. We then used encrypted personal ID to perform data linkage with the cancer registry database to identify whether these patients were diagnosed with liver cancer. Finally, we identified 2060 cases and assigned them to a case group (patients diagnosed with liver cancer after diabetes) and a control group (patients with diabetes but no liver cancer). The risk factors were identified from the literature review and physicians' suggestion, then, chi-square test was conducted on each independent variable (or potential risk factor) for a comparison between patients with liver cancer and those without, those found to be significant were selected as the factors. We subsequently performed data training and testing to construct artificial neural network (ANN) and logistic regression (LR) prediction models. The dataset was randomly divided into 2 groups: a training group and a test group. The training group consisted of 1442 cases (70% of the entire dataset), and the prediction model was developed on the basis of the training group. The remaining 30% (618 cases) were assigned to the test group for model validation. The following 10 variables were used to develop the ANN and LR models: sex, age, alcoholic cirrhosis, nonalcoholic cirrhosis, alcoholic hepatitis, viral hepatitis, other types of chronic hepatitis, alcoholic fatty liver disease, other types of fatty liver disease, and

  15. Gossip spread in social network Models

    Science.gov (United States)

    Johansson, Tobias

    2017-04-01

    Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.

  16. Evaluation of EOR Processes Using Network Models

    DEFF Research Database (Denmark)

    Winter, Anatol; Larsen, Jens Kjell; Krogsbøll, Anette

    1998-01-01

    The report consists of the following parts: 1) Studies of wetting properties of model fluids and fluid mixtures aimed at an optimal selection of candidates for micromodel experiments. 2) Experimental studies of multiphase transport properties using physical models of porous networks (micromodels......) including estimation of their "petrophysical" properties (e.g. absolute permeability). 3) Mathematical modelling and computer studies of multiphase transport through pore space using mathematical network models. 4) Investigation of link between pore-scale and macroscopic recovery mechanisms....

  17. Development of a hybrid system of artificial neural networks and ...

    African Journals Online (AJOL)

    Development of a hybrid system of artificial neural networks and artificial bee colony algorithm for prediction and modeling of customer choice in the market. ... attempted to present a new method for the modeling and prediction of customer choice in the market using the combination of artificial intelligence and data mining.

  18. Modeling geomagnetic induced currents in Australian power networks

    Science.gov (United States)

    Marshall, R. A.; Kelly, A.; Van Der Walt, T.; Honecker, A.; Ong, C.; Mikkelsen, D.; Spierings, A.; Ivanovich, G.; Yoshikawa, A.

    2017-07-01

    Geomagnetic induced currents (GICs) have been considered an issue for high-latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a "geoelectric field" determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29-31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29-31 October 2003 exceed 40 A with the larger GICs occurring in the south-east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east-west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania.

  19. Bayesian Networks for Modeling Dredging Decisions

    Science.gov (United States)

    2011-10-01

    years, that algorithms have been developed to solve these problems efficiently. Most modern Bayesian network software uses junction tree (a.k.a. join... software was used to develop the network . This is by no means an exhaustive list of Bayesian network applications, but it is representative of recent...characteristic node (SCN), state- defining node ( SDN ), effect node (EFN), or value node. The five types of nodes can be described as follows: ERDC/EL TR-11

  20. Bayesian Recurrent Neural Network for Language Modeling.

    Science.gov (United States)

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  1. Towards reproducible descriptions of neuronal network models.

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2009-08-01

    Full Text Available Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing--and thinking about--complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain.

  2. Conceptual and methodological biases in network models.

    Science.gov (United States)

    Lamm, Ehud

    2009-10-01

    Many natural and biological phenomena can be depicted as networks. Theoretical and empirical analyses of networks have become prevalent. I discuss theoretical biases involved in the delineation of biological networks. The network perspective is shown to dissolve the distinction between regulatory architecture and regulatory state, consistent with the theoretical impossibility of distinguishing a priori between "program" and "data." The evolutionary significance of the dynamics of trans-generational and interorganism regulatory networks is explored and implications are presented for understanding the evolution of the biological categories development-heredity, plasticity-evolvability, and epigenetic-genetic.

  3. Modeling, robust and distributed model predictive control for freeway networks

    NARCIS (Netherlands)

    Liu, S.

    2016-01-01

    In Model Predictive Control (MPC) for traffic networks, traffic models are crucial since they are used as prediction models for determining the optimal control actions. In order to reduce the computational complexity of MPC for traffic networks, macroscopic traffic models are often used instead of

  4. Networking in gendered regional development

    OpenAIRE

    Mona Hedfeldt; Gun Hedlund

    2011-01-01

    The present Swedish regionalization process creates a lack of institutionalisation called the "regional mess" (Stegmann McCallion 2008:587). According to a state investigation, Sweden has a "fragmented growth- and development policy as well as a weak and unclear regional organisation of society" (SOU 2007:10:18). Old and new structures are intertwined and the question emerges if this situation may create a space for women regarding regional development (Hedfeldt & Hedlund 2009). A multi-level...

  5. Agent Based Modeling on Organizational Dynamics of Terrorist Network

    Directory of Open Access Journals (Sweden)

    Bo Li

    2015-01-01

    Full Text Available Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model are developed for modeling the hybrid relational structure and complex operational processes, respectively. To intuitively elucidate this method, the agent based modeling is used to simulate the terrorist network and test the performance in diverse scenarios. Based on the experimental results, we show how the changes of operational environments affect the development of terrorist organization in terms of its recovery and capacity to perform future tasks. The potential strategies are also discussed, which can be used to restrain the activities of terrorists.

  6. SPLAI: Computational Finite Element Model for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ruzana Ishak

    2006-01-01

    Full Text Available Wireless sensor network refers to a group of sensors, linked by a wireless medium to perform distributed sensing task. The primary interest is their capability in monitoring the physical environment through the deployment of numerous tiny, intelligent, wireless networked sensor nodes. Our interest consists of a sensor network, which includes a few specialized nodes called processing elements that can perform some limited computational capabilities. In this paper, we propose a model called SPLAI that allows the network to compute a finite element problem where the processing elements are modeled as the nodes in the linear triangular approximation problem. Our model also considers the case of some failures of the sensors. A simulation model to visualize this network has been developed using C++ on the Windows environment.

  7. Networks: Innovation, Growth and Sustainable Development

    Directory of Open Access Journals (Sweden)

    Peter Johnston

    2013-05-01

    Full Text Available The emergence of the Internet as a measureable manifestation of our social and economic relationships changed the domination of networks in our lives. From about 2000, the internet has allowed us to study and understand the type of networks in which we live, and to model their behaviour. The Internet has fundamentally changed the distribution of wealth. The rich became richer simply because of the larger scale of the trading network and stretched national wealth distributions. Network effects are therefore likely to be responsible for much of the perceived increases in inequalities in the last 20-30 years, and policies to tackle poverty must therefore address the extent to which the poor can engage with society's networks of wealth creation. The greatest challenge to continued growth and prosperity, and therefore to peace and justice, is climate change. The potential cost of inaction on climate change could be as high. Our self-organising social networks have structured our societies and economies, and are now reflected in our technology networks. We can now replicate their evolution in computer simulations and can therefore better assess how to deal with the greatest challenges facing us in the next few decades.

  8. Tool wear modeling using abductive networks

    Science.gov (United States)

    Masory, Oren

    1992-09-01

    A tool wear model based on Abductive Networks, which consists of a network of `polynomial' nodes, is described. The model relates the cutting parameters, components of the cutting force, and machining time to flank wear. Thus real time measurements of the cutting force can be used to monitor the machining process. The model is obtained by a training process in which the connectivity between the network's nodes and the polynomial coefficients of each node are determined by optimizing a performance criteria. Actual wear measurements of coated and uncoated carbide inserts were used for training and evaluating the established model.

  9. Satellite ATM Networks: Architectures and Guidelines Developed

    Science.gov (United States)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  10. Stability of U(VI) and Tc(VII) Reducing Microbial Communities to Environmental Perturbation: Development and Testing of a Thermodynamic Network Model

    International Nuclear Information System (INIS)

    McKinley, James P.; Istok, Jonathan

    2005-01-01

    Previously published research from in situ field experiments at the NABIR Field Research Center have shown that cooperative metabolism of denitrifiers and Fe(III)/sulfate reducers is essential for creating subsurface conditions favorable for U(VI) and Tc(VII) bioreduction (Istok et al., 2004). The overall goal of this project is to develop and test a thermodynamic network model for predicting the effects of substrate additions and environmental perturbations on the composition and functional stability of subsurface microbial communities. The overall scientific hypothesis is that a thermodynamic analysis of the energy-yielding reactions performed by broadly defined groups of microorganisms can be used to make quantitative and testable predictions of the change in microbial community composition that will occur when a substrate is added to the subsurface or when environmental conditions change. An interactive computer program was developed to calculate the overall growth equation and free energy yield for microorganisms that grow by coupling selected combinations of electron acceptor and electron donor half-reactions. Each group performs a specific function (e.g. oxidation of acetate coupled to reduction of nitrate); collectively the groups provide a theoretical description of the entire natural microbial community. The microbial growth data are combined with an existing thermodynamic data base for associated geochemical reactions and used to simulate the coupled microbial-geochemical response of a complex natural system to substrate addition or any other environmental perturbations

  11. Self-organized criticality in developing neuronal networks.

    Directory of Open Access Journals (Sweden)

    Christian Tetzlaff

    Full Text Available Recently evidence has accumulated that many neural networks exhibit self-organized criticality. In this state, activity is similar across temporal scales and this is beneficial with respect to information flow. If subcritical, activity can die out, if supercritical epileptiform patterns may occur. Little is known about how developing networks will reach and stabilize criticality. Here we monitor the development between 13 and 95 days in vitro (DIV of cortical cell cultures (n = 20 and find four different phases, related to their morphological maturation: An initial low-activity state (≈19 DIV is followed by a supercritical (≈20 DIV and then a subcritical one (≈36 DIV until the network finally reaches stable criticality (≈58 DIV. Using network modeling and mathematical analysis we describe the dynamics of the emergent connectivity in such developing systems. Based on physiological observations, the synaptic development in the model is determined by the drive of the neurons to adjust their connectivity for reaching on average firing rate homeostasis. We predict a specific time course for the maturation of inhibition, with strong onset and delayed pruning, and that total synaptic connectivity should be strongly linked to the relative levels of excitation and inhibition. These results demonstrate that the interplay between activity and connectivity guides developing networks into criticality suggesting that this may be a generic and stable state of many networks in vivo and in vitro.

  12. On the rationality of network development : the case of the Belgian highway network

    OpenAIRE

    Vanoutrive, Thomas; Damme, Van, Ilja; De Block, Greet

    2016-01-01

    Abstract: The development of transport networks has been explained, predicted and planned using a variety of methodological approaches. These range from narrative historical accounts to the application of models borrowed from the natural sciences, the latter being predominant in the field of transport economics. Probably the most remarkable example is the mimicking of highway networks by slime mould in Petri dishes. The aim of this paper is to examine and compare methods used to hypothesise o...

  13. Modelling of virtual production networks

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available Nowadays many companies, especially small and medium-sized enterprises (SMEs, specialize in a limited field of production. It requires forming virtual production networks of cooperating enterprises to manufacture better, faster and cheaper. Apart from that, some production orders cannot be realized, because there is not a company of sufficient production potential. In this case the virtual production networks of cooperating companies can realize these production orders. These networks have larger production capacity and many different resources. Therefore it can realize many more production orders together than each of them separately. Such organization allows for executing high quality product. The maintenance costs of production capacity and used resources are not so high. In this paper a methodology of rapid prototyping of virtual production networks is proposed. It allows to execute production orders on time considered existing logistic constraints.

  14. A Network Disruption Modeling Tool

    National Research Council Canada - National Science Library

    Leinart, James

    1998-01-01

    Given that network disruption has been identified as a military objective and C2-attack has been identified as the mechanism to accomplish this objective, a target set must be acquired and priorities...

  15. Exact model reduction of combinatorial reaction networks

    Directory of Open Access Journals (Sweden)

    Fey Dirk

    2008-08-01

    Full Text Available Abstract Background Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models. Results We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs to a model with 87 ODEs. Conclusion The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks.

  16. Role models for complex networks

    Science.gov (United States)

    Reichardt, J.; White, D. R.

    2007-11-01

    We present a framework for automatically decomposing (“block-modeling”) the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph (“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy.

  17. Cross-platform wireless sensor network development

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Kusy, Branislav

    Design and development of wireless sensor network applications adds an additional layer of complexity to traditional computer systems. The developer needs to be an expert in resource constrained embedded devices as well as traditional desktop computers. We propose Tinylnventor, an open...

  18. The development of brain network architecture

    NARCIS (Netherlands)

    Wierenga, Lara M.; van den Heuvel, Martijn P.; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A.; Durston, Sarah

    2016-01-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes

  19. Latent variable models are network models.

    Science.gov (United States)

    Molenaar, Peter C M

    2010-06-01

    Cramer et al. present an original and interesting network perspective on comorbidity and contrast this perspective with a more traditional interpretation of comorbidity in terms of latent variable theory. My commentary focuses on the relationship between the two perspectives; that is, it aims to qualify the presumed contrast between interpretations in terms of networks and latent variables.

  20. Homophyly/Kinship Model: Naturally Evolving Networks

    Science.gov (United States)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  1. Modified network simulation model with token method of bus access

    Directory of Open Access Journals (Sweden)

    L.V. Stribulevich

    2013-08-01

    Full Text Available Purpose. To study the characteristics of the local network with the marker method of access to the bus its modified simulation model was developed. Methodology. Defining characteristics of the network is carried out on the developed simulation model, which is based on the state diagram-layer network station with the mechanism of processing priorities, both in steady state and in the performance of control procedures: the initiation of a logical ring, the entrance and exit of the station network with a logical ring. Findings. A simulation model, on the basis of which can be obtained the dependencies of the application the maximum waiting time in the queue for different classes of access, and the reaction time usable bandwidth on the data rate, the number of network stations, the generation rate applications, the number of frames transmitted per token holding time, frame length was developed. Originality. The technique of network simulation reflecting its work in the steady condition and during the control procedures, the mechanism of priority ranking and handling was proposed. Practical value. Defining network characteristics in the real-time systems on railway transport based on the developed simulation model.

  2. Development of rubber mixing process mathematical model and synthesis of control correction algorithm by process temperature mode using an artificial neural network

    Directory of Open Access Journals (Sweden)

    V. S. Kudryashov

    2016-01-01

    Full Text Available The article is devoted to the development of a correction control algorithm by temperature mode of a periodic rubber mixing process for JSC "Voronezh tire plant". The algorithm is designed to perform in the main controller a section of rubber mixing Siemens S7 CPU319F-3 PN/DP, which forms tasks for the local temperature controllers HESCH HE086 and Jumo dTRON304, operating by tempering stations. To compile the algorithm was performed a systematic analysis of rubber mixing process as an object of control and was developed a mathematical model of the process based on the heat balance equations describing the processes of heat transfer through the walls of technological devices, the change of coolant temperature and the temperature of the rubber compound mixing until discharge from the mixer chamber. Due to the complexity and nonlinearity of the control object – Rubber mixers and the availability of methods and a wide experience of this device control in an industrial environment, a correction algorithm is implemented on the basis of an artificial single-layer neural network and it provides the correction of tasks for local controllers on the cooling water temperature and air temperature in the workshop, which may vary considerably depending on the time of the year, and during prolonged operation of the equipment or its downtime. Tempering stations control is carried out by changing the flow of cold water from the cooler and on/off control of the heating elements. The analysis of the model experiments results and practical research at the main controller programming in the STEP 7 environment at the enterprise showed a decrease in the mixing time for different types of rubbers by reducing of heat transfer process control error.

  3. Mathematics of epidemics on networks from exact to approximate models

    CERN Document Server

    Kiss, István Z; Simon, Péter L

    2017-01-01

    This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate...

  4. An Effect of the Co-Operative Network Model for Students' Quality in Thai Primary Schools

    Science.gov (United States)

    Khanthaphum, Udomsin; Tesaputa, Kowat; Weangsamoot, Visoot

    2016-01-01

    This research aimed: 1) to study the current and desirable states of the co-operative network in developing the learners' quality in Thai primary schools, 2) to develop a model of the co-operative network in developing the learners' quality, and 3) to examine the results of implementation of the co-operative network model in the primary school.…

  5. Phase-synchronisation in continuous flow models of production networks

    Science.gov (United States)

    Scholz-Reiter, Bernd; Tervo, Jan Topi; Freitag, Michael

    2006-04-01

    To improve their position at the market, many companies concentrate on their core competences and hence cooperate with suppliers and distributors. Thus, between many independent companies strong linkages develop and production and logistics networks emerge. These networks are characterised by permanently increasing complexity, and are nowadays forced to adapt to dynamically changing markets. This factor complicates an enterprise-spreading production planning and control enormously. Therefore, a continuous flow model for production networks will be derived regarding these special logistic problems. Furthermore, phase-synchronisation effects will be presented and their dependencies to the set of network parameters will be investigated.

  6. Neural network tagging in a toy model

    International Nuclear Information System (INIS)

    Milek, Marko; Patel, Popat

    1999-01-01

    The purpose of this study is a comparison of Artificial Neural Network approach to HEP analysis against the traditional methods. A toy model used in this analysis consists of two types of particles defined by four generic properties. A number of 'events' was created according to the model using standard Monte Carlo techniques. Several fully connected, feed forward multi layered Artificial Neural Networks were trained to tag the model events. The performance of each network was compared to the standard analysis mechanisms and significant improvement was observed

  7. An endogenous model of the credit network

    Science.gov (United States)

    He, Jianmin; Sui, Xin; Li, Shouwei

    2016-01-01

    In this paper, an endogenous credit network model of firm-bank agents is constructed. The model describes the endogenous formation of firm-firm, firm-bank and bank-bank credit relationships. By means of simulations, the model is capable of showing some obvious similarities with empirical evidence found by other scholars: the upper-tail of firm size distribution can be well fitted with a power-law; the bank size distribution can be lognormally distributed with a power-law tail; the bank in-degrees of the interbank credit network as well as the firm-bank credit network fall into two-power-law distributions.

  8. Modelling and designing electric energy networks

    International Nuclear Information System (INIS)

    Retiere, N.

    2003-11-01

    The author gives an overview of his research works in the field of electric network modelling. After a brief overview of technological evolutions from the telegraph to the all-electric fly-by-wire aircraft, he reports and describes various works dealing with a simplified modelling of electric systems and with fractal simulation. Then, he outlines the challenges for the design of electric networks, proposes a design process, gives an overview of various design models, methods and tools, and reports an application in the design of electric networks for future jumbo jets

  9. Neural network modeling for near wall turbulent flow

    International Nuclear Information System (INIS)

    Milano, Michele; Koumoutsakos, Petros

    2002-01-01

    A neural network methodology is developed in order to reconstruct the near wall field in a turbulent flow by exploiting flow fields provided by direct numerical simulations. The results obtained from the neural network methodology are compared with the results obtained from prediction and reconstruction using proper orthogonal decomposition (POD). Using the property that the POD is equivalent to a specific linear neural network, a nonlinear neural network extension is presented. It is shown that for a relatively small additional computational cost nonlinear neural networks provide us with improved reconstruction and prediction capabilities for the near wall velocity fields. Based on these results advantages and drawbacks of both approaches are discussed with an outlook toward the development of near wall models for turbulence modeling and control

  10. Technology development in market networks

    International Nuclear Information System (INIS)

    Olerup, B.

    2001-01-01

    Technology procurement is used as an environmental control means in Sweden to promote the manufacturing and sale of energy-efficient technologies. The public authority in charge makes use of the market mechanism in alternating co-operative and competitive elements. The fragmented market, with its standardised products for many small customers, is brought together to specify desired product developments. These demands also include other qualities besides energy efficiency. A contest is announced in which a possible future market is indicated to manufacturers. Efforts are made to enlarge the market to motivate their investment and to keep down the unit cost. Each side in the deal is thus given an incentive to act in the desired direction. (author)

  11. Neural Network Based Models for Fusion Applications

    Science.gov (United States)

    Meneghini, Orso; Tema Biwole, Arsene; Luda, Teobaldo; Zywicki, Bailey; Rea, Cristina; Smith, Sterling; Snyder, Phil; Belli, Emily; Staebler, Gary; Canty, Jeff

    2017-10-01

    Whole device modeling, engineering design, experimental planning and control applications demand models that are simultaneously physically accurate and fast. This poster reports on the ongoing effort towards the development and validation of a series of models that leverage neural-­network (NN) multidimensional regression techniques to accelerate some of the most mission critical first principle models for the fusion community, such as: the EPED workflow for prediction of the H-Mode and Super H-Mode pedestal structure the TGLF and NEO models for the prediction of the turbulent and neoclassical particle, energy and momentum fluxes; and the NEO model for the drift-kinetic solution of the bootstrap current. We also applied NNs on DIII-D experimental data for disruption prediction and quantifying the effect of RMPs on the pedestal and ELMs. All of these projects were supported by the infrastructure provided by the OMFIT integrated modeling framework. Work supported by US DOE under DE-SC0012656, DE-FG02-95ER54309, DE-FC02-04ER54698.

  12. Queueing Models for Mobile Ad Hoc Networks

    NARCIS (Netherlands)

    de Haan, Roland

    2009-01-01

    This thesis presents models for the performance analysis of a recent communication paradigm: \\emph{mobile ad hoc networking}. The objective of mobile ad hoc networking is to provide wireless connectivity between stations in a highly dynamic environment. These dynamics are driven by the mobility of

  13. Modeling GMPLS and Optical MPLS Networks

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann; Wessing, Henrik

    2003-01-01

    . The MPLS concept is attractive because it can work as a unifying control structure. covering all technologies. This paper describes how a novel scheme for optical MPLS and circuit switched GMPLS based networks can incorporated in such multi-domain, MPLS-based scenarios and how it could be modeled. Network...

  14. Modeling documents with Generative Adversarial Networks

    OpenAIRE

    Glover, John

    2016-01-01

    This paper describes a method for using Generative Adversarial Networks to learn distributed representations of natural language documents. We propose a model that is based on the recently proposed Energy-Based GAN, but instead uses a Denoising Autoencoder as the discriminator network. Document representations are extracted from the hidden layer of the discriminator and evaluated both quantitatively and qualitatively.

  15. Designing Network-based Business Model Ontology

    DEFF Research Database (Denmark)

    Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz

    2015-01-01

    Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....

  16. Exponential random graph models for networks with community structure.

    Science.gov (United States)

    Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian

    2013-09-01

    Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.

  17. Modelling the dependability in Network Function Virtualisation

    OpenAIRE

    Lin, Wenqi

    2017-01-01

    Network Function Virtualization has been brought up to allow the TSPs to have more possibilities and flexibilities to provision services with better load optimizing, energy utilizing and dynamic scaling. Network functions will be decoupled from the underlying dedicated hardware into software instances that run on commercial off-the-shelf servers. However, the development is still at an early stage and the dependability concerns raise by the virtualization of the network functions are touched ...

  18. Product Platform Development in Industrial Networks

    DEFF Research Database (Denmark)

    Karlsson, Christer; Skold, Martin

    2011-01-01

    The article examines the strategic issues involved in the deployment of product platform development in an industrial network. The move entails identifying the types and characteristics of generically different product platform strategies and clarifying strategic motives and differences. Number o...... of platforms and product brands serve as the key dimensions when distinguishing the different strategies. Each strategy has its own challenges and raises various issues to deal with.......The article examines the strategic issues involved in the deployment of product platform development in an industrial network. The move entails identifying the types and characteristics of generically different product platform strategies and clarifying strategic motives and differences. Number...

  19. Efficient Bayesian network modeling of systems

    International Nuclear Information System (INIS)

    Bensi, Michelle; Kiureghian, Armen Der; Straub, Daniel

    2013-01-01

    The Bayesian network (BN) is a convenient tool for probabilistic modeling of system performance, particularly when it is of interest to update the reliability of the system or its components in light of observed information. In this paper, BN structures for modeling the performance of systems that are defined in terms of their minimum link or cut sets are investigated. Standard BN structures that define the system node as a child of its constituent components or its minimum link/cut sets lead to converging structures, which are computationally disadvantageous and could severely hamper application of the BN to real systems. A systematic approach to defining an alternative formulation is developed that creates chain-like BN structures that are orders of magnitude more efficient, particularly in terms of computational memory demand. The formulation uses an integer optimization algorithm to identify the most efficient BN structure. Example applications demonstrate the proposed methodology and quantify the gained computational advantage

  20. Development of target-tracking algorithms using neural network

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Sun; Lee, Joon Whaoan; Yoon, Sook; Baek, Seong Hyun; Lee, Myung Jae [Chonbuk National University, Chonjoo (Korea)

    1998-04-01

    The utilization of remote-control robot system in atomic power plants or nuclear-related facilities grows rapidly, to protect workers form high radiation environments. Such applications require complete stability of the robot system, so that precisely tracking the robot is essential for the whole system. This research is to accomplish the goal by developing appropriate algorithms for remote-control robot systems. A neural network tracking system is designed and experimented to trace a robot Endpoint. This model is aimed to utilized the excellent capabilities of neural networks; nonlinear mapping between inputs and outputs, learning capability, and generalization capability. The neural tracker consists of two networks for position detection and prediction. Tracking algorithms are developed and experimented for the two models. Results of the experiments show that both models are promising as real-time target-tracking systems for remote-control robot systems. (author). 10 refs., 47 figs.

  1. Mixed Transportation Network Design under a Sustainable Development Perspective

    Directory of Open Access Journals (Sweden)

    Jin Qin

    2013-01-01

    Full Text Available A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%.

  2. Mixed Transportation Network Design under a Sustainable Development Perspective

    Science.gov (United States)

    Qin, Jin; Ni, Ling-lin; Shi, Feng

    2013-01-01

    A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%. PMID:23476142

  3. Design and realization of a network security model

    OpenAIRE

    WANG, Jiahai; HAN, Fangxi; Tang, Zheng; TAMURA, Hiroki; Ishii, Masahiro

    2002-01-01

    The security of information is a key problem in the development of network technology. The basic requirements of security of information clearly include confidentiality, integrity, authentication and non-repudiation. This paper proposes a network security model that is composed of security system, security connection and communication, and key management. The model carries out encrypting, decrypting, signature and ensures confidentiality, integrity, authentication and non-repudiation. Finally...

  4. A three-dimensional computational model of collagen network mechanics.

    Directory of Open Access Journals (Sweden)

    Byoungkoo Lee

    Full Text Available Extracellular matrix (ECM strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned. We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions.

  5. Hybrid network defense model based on fuzzy evaluation.

    Science.gov (United States)

    Cho, Ying-Chiang; Pan, Jen-Yi

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  6. Modeling trust context in networks

    CERN Document Server

    Adali, Sibel

    2013-01-01

    We make complex decisions every day, requiring trust in many different entities for different reasons. These decisions are not made by combining many isolated trust evaluations. Many interlocking factors play a role, each dynamically impacting the others.? In this brief, 'trust context' is defined as the system level description of how the trust evaluation process unfolds.Networks today are part of almost all human activity, supporting and shaping it. Applications increasingly incorporate new interdependencies and new trust contexts. Social networks connect people and organizations throughout

  7. Mathematical model of highways network optimization

    Science.gov (United States)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2017-12-01

    The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.

  8. Developing a Framework for Effective Network Capacity Planning

    Science.gov (United States)

    Yaprak, Ece

    2005-01-01

    As Internet traffic continues to grow exponentially, developing a clearer understanding of, and appropriately measuring, network's performance is becoming ever more critical. An important challenge faced by the Information Resources Directorate (IRD) at the Johnson Space Center in this context remains not only monitoring and maintaining a secure network, but also better understanding the capacity and future growth potential boundaries of its network. This requires capacity planning which involves modeling and simulating different network alternatives, and incorporating changes in design as technologies, components, configurations, and applications change, to determine optimal solutions in light of IRD's goals, objectives and strategies. My primary task this summer was to address this need. I evaluated network-modeling tools from OPNET Technologies Inc. and Compuware Corporation. I generated a baseline model for Building 45 using both tools by importing "real" topology/traffic information using IRD's various network management tools. I compared each tool against the other in terms of the advantages and disadvantages of both tools to accomplish IRD's goals. I also prepared step-by-step "how to design a baseline model" tutorial for both OPNET and Compuware products.

  9. Graphical Model Theory for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Davis, William B.

    2002-01-01

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm

  10. Sparsity in Model Gene Regulatory Networks

    International Nuclear Information System (INIS)

    Zagorski, M.

    2011-01-01

    We propose a gene regulatory network model which incorporates the microscopic interactions between genes and transcription factors. In particular the gene's expression level is determined by deterministic synchronous dynamics with contribution from excitatory interactions. We study the structure of networks that have a particular '' function '' and are subject to the natural selection pressure. The question of network robustness against point mutations is addressed, and we conclude that only a small part of connections defined as '' essential '' for cell's existence is fragile. Additionally, the obtained networks are sparse with narrow in-degree and broad out-degree, properties well known from experimental study of biological regulatory networks. Furthermore, during sampling procedure we observe that significantly different genotypes can emerge under mutation-selection balance. All the preceding features hold for the model parameters which lay in the experimentally relevant range. (author)

  11. Determination of the Corona model parameters with artificial neural networks

    International Nuclear Information System (INIS)

    Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov

    2005-01-01

    Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model

  12. Marketing communications model for innovation networks

    Directory of Open Access Journals (Sweden)

    Tiago João Freitas Correia

    2015-10-01

    Full Text Available Innovation is an increasingly relevant concept for the success of any organization, but it also represents a set of internal and external considerations, barriers and challenges to overcome. Along the concept of innovation, new paradigms emerge such as open innovation and co-creation that are simultaneously innovation modifiers and intensifiers in organizations, promoting organizational openness and stakeholder integration within the value creation process. Innovation networks composed by a multiplicity of agents in co-creative work perform as innovation mechanisms to face the increasingly complexity of products, services and markets. Technology, especially the Internet, is an enabler of all process among organizations supported by co-creative platforms for innovation. The definition of marketing communication strategies that promote motivation and involvement of all stakeholders in synergic creation and external promotion is the central aspect of this research. The implementation of the projects is performed by participative workshops with stakeholders from Madan Parque through IDEAS(REVOLUTION methodology and the operational model LinkUp parameterized for the project. The project is divided into the first part, the theoretical framework, and the second part where a model is developed for the marketing communication strategies that appeal to the Madan Parque case study. Keywords: Marketing Communication; Open Innovation, Technology; Innovation Networks; Incubator; Co-Creation.

  13. A graph model for opportunistic network coding

    KAUST Repository

    Sorour, Sameh

    2015-08-12

    © 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.

  14. Neural network modeling of nonlinear systems based on Volterra series extension of a linear model

    Science.gov (United States)

    Soloway, Donald I.; Bialasiewicz, Jan T.

    1992-01-01

    A Volterra series approach was applied to the identification of nonlinear systems which are described by a neural network model. A procedure is outlined by which a mathematical model can be developed from experimental data obtained from the network structure. Applications of the results to the control of robotic systems are discussed.

  15. Stochastic Online Learning in Dynamic Networks under Unknown Models

    Science.gov (United States)

    2016-08-02

    The key is to develop online learning strategies at each individual node. Specifically, through local information exchange with its neighbors, each...infinitely repeated game with incomplete information and developed a dynamic pricing strategy referred to as Competitive and Cooperative Demand Learning...Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for

  16. Co-Operative Learning and Development Networks.

    Science.gov (United States)

    Hodgson, V.; McConnell, D.

    1995-01-01

    Discusses the theory, nature, and benefits of cooperative learning. Considers the Cooperative Learning and Development Network (CLDN) trial in the JITOL (Just in Time Open Learning) project and examines the relationship between theories about cooperative learning and the reality of a group of professionals participating in a virtual cooperative…

  17. Comprehensive information system development and networking in ...

    African Journals Online (AJOL)

    Background/Aim: Hospital Information System(HIS) and Networking development is now the most important technology that must be embraced by all hospitals and clinics these days. Patients sometimes used to face problems in order to have quick and good services in the hospitals, often due to delay in searching for the ...

  18. Development of steering system in network environment

    International Nuclear Information System (INIS)

    Kanagawa, Fumihiro; Noguchi, So; Yamashita, Hideo

    2002-01-01

    We have been developing the steering system, which can successively observe the-data obtained during the numerical computation and change the parameters in the analysis. Moreover, this system is also extended to link the network. By using this system, a user can easily detect errors immediately and achieve the rapid and accurate analysis with lower computation cost. (Author)

  19. Bayesian Network Models in Cyber Security: A Systematic Review

    OpenAIRE

    Chockalingam, S.; Pieters, W.; Herdeiro Teixeira, A.M.; van Gelder, P.H.A.J.M.; Lipmaa, Helger; Mitrokotsa, Aikaterini; Matulevicius, Raimundas

    2017-01-01

    Bayesian Networks (BNs) are an increasingly popular modelling technique in cyber security especially due to their capability to overcome data limitations. This is also instantiated by the growth of BN models development in cyber security. However, a comprehensive comparison and analysis of these models is missing. In this paper, we conduct a systematic review of the scientific literature and identify 17 standard BN models in cyber security. We analyse these models based on 9 different criteri...

  20. A Model of Network Porosity

    Science.gov (United States)

    2016-11-09

    Figure 1. We generally express such networks in terms of the services running in each enclave as well as the routing and firewall rules between the...compromise a server, they can compromise other devices in the same subnet or protected enclave. They probe attached firewalls and routers for open ports and...spam and malware filter would prevent this content from reaching its destination. Content filtering provides another layer of defense to other controls

  1. SCYNet. Testing supersymmetric models at the LHC with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip; Belkner, Sebastian; Hamer, Matthias [Universitaet Bonn, Bonn (Germany); Dercks, Daniel [Universitaet Hamburg, Hamburg (Germany); Keller, Tim; Kraemer, Michael; Sarrazin, Bjoern; Schuette-Engel, Jan; Tattersall, Jamie [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)

    2017-10-15

    SCYNet (SUSY Calculating Yield Net) is a tool for testing supersymmetric models against LHC data. It uses neural network regression for a fast evaluation of the profile likelihood ratio. Two neural network approaches have been developed: one network has been trained using the parameters of the 11-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-11) as an input and evaluates the corresponding profile likelihood ratio within milliseconds. It can thus be used in global pMSSM-11 fits without time penalty. In the second approach, the neural network has been trained using model-independent signature-related objects, such as energies and particle multiplicities, which were estimated from the parameters of a given new physics model. (orig.)

  2. Modelling and predicting biogeographical patterns in river networks

    Directory of Open Access Journals (Sweden)

    Sabela Lois

    2016-04-01

    Full Text Available Statistical analysis and interpretation of biogeographical phenomena in rivers is now possible using a spatially explicit modelling framework, which has seen significant developments in the past decade. I used this approach to identify a spatial extent (geostatistical range in which the abundance of the parasitic freshwater pearl mussel (Margaritifera margaritifera L. is spatially autocorrelated in river networks. I show that biomass and abundance of host fish are a likely explanation for the autocorrelation in mussel abundance within a 15-km spatial extent. The application of universal kriging with the empirical model enabled precise prediction of mussel abundance within segments of river networks, something that has the potential to inform conservation biogeography. Although I used a variety of modelling approaches in my thesis, I focus here on the details of this relatively new spatial stream network model, thus advancing the study of biogeographical patterns in river networks.

  3. A study of the security technology and a new security model for WiFi network

    Science.gov (United States)

    Huang, Jing

    2013-07-01

    The WiFi network is one of the most rapidly developing wireless communication networks, which makes wireless office and wireless life possible and greatly expands the application form and scope of the internet. At the same time, the WiFi network security has received wide attention, and this is also the key factor of WiFi network development. This paper makes a systematic introduction to the WiFi network and WiFi network security problems, and the WiFi network security technology are reviewed and compared. In order to solve the security problems in WiFi network, this paper presents a new WiFi network security model and the key exchange algorithm. Experiments are performed to test the performance of the model, the results show that the new security model can withstand external network attack and ensure stable and safe operation of WiFi network.

  4. Modelling, Synthesis, and Configuration of Networks-on-Chips

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo

    This thesis presents three contributions in two different areas of network-on-chip and system-on-chip research: Application modelling and identifying and solving different optimization problems related to two specific network-on-chip architectures. The contribution related to application modelling...... is an analytical method for deriving the worst-case traffic pattern caused by an application and the cache-coherence protocol in a cache-coherent shared-memory system. The contributions related to network-on-chip optimization problems consist of two parts: The development and evaluation of six heuristics...... for solving the network synthesis problem in the MANGO network-on-chip, and the identification and formalization of the ReNoC configuration problem together with three heuristics for solving it....

  5. A quantum-implementable neural network model

    Science.gov (United States)

    Chen, Jialin; Wang, Lingli; Charbon, Edoardo

    2017-10-01

    A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.

  6. Combinatorial explosion in model gene networks

    Science.gov (United States)

    Edwards, R.; Glass, L.

    2000-09-01

    The explosive growth in knowledge of the genome of humans and other organisms leaves open the question of how the functioning of genes in interacting networks is coordinated for orderly activity. One approach to this problem is to study mathematical properties of abstract network models that capture the logical structures of gene networks. The principal issue is to understand how particular patterns of activity can result from particular network structures, and what types of behavior are possible. We study idealized models in which the logical structure of the network is explicitly represented by Boolean functions that can be represented by directed graphs on n-cubes, but which are continuous in time and described by differential equations, rather than being updated synchronously via a discrete clock. The equations are piecewise linear, which allows significant analysis and facilitates rapid integration along trajectories. We first give a combinatorial solution to the question of how many distinct logical structures exist for n-dimensional networks, showing that the number increases very rapidly with n. We then outline analytic methods that can be used to establish the existence, stability and periods of periodic orbits corresponding to particular cycles on the n-cube. We use these methods to confirm the existence of limit cycles discovered in a sample of a million randomly generated structures of networks of 4 genes. Even with only 4 genes, at least several hundred different patterns of stable periodic behavior are possible, many of them surprisingly complex. We discuss ways of further classifying these periodic behaviors, showing that small mutations (reversal of one or a few edges on the n-cube) need not destroy the stability of a limit cycle. Although these networks are very simple as models of gene networks, their mathematical transparency reveals relationships between structure and behavior, they suggest that the possibilities for orderly dynamics in such

  7. Development of Tools for DER Components in a Distribution Network

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Koch-Ciobotaru, C; Isleifsson, Fridrik Rafn

    2012-01-01

    The increasing amount of Distributed Energy Resources (DER) components into distribution networks involves the development of accurate simulation models that take into account an increasing number of factors that influence the output power from the DG systems. This paper presents two simulation m...

  8. Development of the brain's functional network architecture.

    Science.gov (United States)

    Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L

    2010-12-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.

  9. Development of Healthy Cities networks in Europe.

    Science.gov (United States)

    Goepel, Eberhard

    2007-01-01

    The Healthy Cities network in Europe was inspired by the Ottawa Charter for Health Promotion when it was launched in 1987. The networking process was initiated by the WHO Regional Office for Europe, but developed its own dynamics in different European countries during a time marked by fundamental political transformations in many of the countries of Eastern Europe. The networks then connected with the 'Local Agenda 21' and the 'Sustainable Cities and Towns Campaign' to create a new and broader programmatic agenda at the local level. In particular, the ''Aalborg plus 10 - commitments"--of local governments in 2004 have the potential to inspire a new phase of participatory and sustainable policies at the level of local communities in Europe. However, the extent to which these initiatives will influence the macro-politics of the European Union towards a proclaimed "Europe of Citizens" remains to be watched carefully during the coming years.

  10. Development of a Testbed for Wireless Underground Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mehmet C. Vuran

    2010-01-01

    Full Text Available Wireless Underground Sensor Networks (WUSNs constitute one of the promising application areas of the recently developed wireless sensor networking techniques. WUSN is a specialized kind of Wireless Sensor Network (WSN that mainly focuses on the use of sensors that communicate through soil. Recent models for the wireless underground communication channel are proposed but few field experiments were realized to verify the accuracy of the models. The realization of field WUSN experiments proved to be extremely complex and time-consuming in comparison with the traditional wireless environment. To the best of our knowledge, this is the first work that proposes guidelines for the development of an outdoor WUSN testbed with the goals of improving the accuracy and reducing of time for WUSN experiments. Although the work mainly aims WUSNs, many of the presented practices can also be applied to generic WSN testbeds.

  11. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  12. NETWORKING - THE URBAN AND REGIONAL DEVELOPMENT STRATEGY?

    Directory of Open Access Journals (Sweden)

    MARIA NOWICKA-SKOWRON

    2011-01-01

    Full Text Available The concept of innovations embraces everything that is connected with creation and application of new knowledge in order to win competitive advantage. A traditional approach applied by organizational and management sciences are not enough to explain and manage the development of enterprises as well as that of cities, regions and countries. According to a new approach to innovativeness, creation of innovations depends on a complex/system approach. A phenomenon of particular importance is the approach to network pro-innovation structures from the urban and regional point of view. What makes a network work is a mutual relation between actors who have same rights to access and participate in the network. The whole system must be perceived by every actor. Simultaneously, every actor is partially responsible for the whole. The nature of networking can be understood as a differentiated system of relations (particularly personal ones inside the network. Tolerance and trust are other foundations of information flow and information return.

  13. Performance modeling, stochastic networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi R

    2013-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan

  14. Modeling acquaintance networks based on balance theory

    Directory of Open Access Journals (Sweden)

    Vukašinović Vida

    2014-09-01

    Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models

  15. Settlement Networks in Polish Spatial Development Regional Plans

    Science.gov (United States)

    Sołtys, Jacek

    2017-10-01

    In 1999, ten years after the great political changes in Poland, 16 self-governed regions (in Polish: voivodeship) were created. According to Polish law, voivodeship spatial development plans, or regional plans in short, determine basic elements of the settlement network. No detailed regulations indicate the specific elements of the settlement network or what features of these elements should be determined. For this reason, centres as elements of the settlement network are variously named in different regions and take the form of various models. The purposes of the research described in this article are: (1) recognition and systematization of settlement network models determined in regional plans; and (2) assessment of the readability of determination in planning and its usefulness in the practice of regional policy. Six models of settlement networks in regional plans have been identified and classified into types and sub-types. Names of specific levels of centres indicate that they were classified according to two criteria: (1) level of services, which concerns only 5 voivodships; and (2) importance in development, which concerns the 11 other voivodships. The hierarchical model referring to the importance of development is less understandable than the one related to services. In the text of most plans, centres of services and centres of development are treated independently from their names. In some plans the functional types of towns and cities are indicated. In some voivodships, specifications in the plan text are too general and seem to be rather useless in the practice of regional policy. The author suggests that regional plans should determine two kinds of centres: hierarchical service centres and non-hierarchical centres of development. These centres should be further distinguished according to: (1) their role in the activation of surroundings; (2) their level of development and the necessity of action for their development; and (3) the types of actions

  16. Modeling the dynamics of evaluation: a multilevel neural network implementation of the iterative reprocessing model.

    Science.gov (United States)

    Ehret, Phillip J; Monroe, Brian M; Read, Stephen J

    2015-05-01

    We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory. © 2014 by the Society for Personality and Social Psychology, Inc.

  17. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  18. Flood routing modelling with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    R. Peters

    2006-01-01

    Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.

  19. Linear approximation model network and its formation via ...

    Indian Academy of Sciences (India)

    To overcome the deficiency of `local model network' (LMN) techniques, an alternative `linear approximation model' (LAM) network approach is proposed. Such a network models a nonlinear or practical system with multiple linear models fitted along operating trajectories, where individual models are simply networked ...

  20. Value shaping in networked business modeling : Case studies of sustainability-oriented innovations

    NARCIS (Netherlands)

    Oskam, I.F.; Bossink, Bart; de Man, Ard-Pieter

    2018-01-01

    A stream of literature is emerging where network development and business modeling intersect. Various authors emphasize that networks influence business models. This paper extends this stream of literature by studying two cases in which we analyze how business modeling and networking interact over

  1. The interaction between network ties and business modeling : Case studies of sustainability-oriented innovations

    NARCIS (Netherlands)

    Oskam, Inge; Bossink, Bart; de Man, Ard Pieter

    2018-01-01

    A stream of literature is emerging where network development and business modeling intersect. Various authors emphasize that networks influence business models. This paper extends this stream of literature by studying two cases in which we analyze how business modeling and networking interact over

  2. The Interaction between network ties and business modeling : case studies of sustainability-oriented innovations

    NARCIS (Netherlands)

    Oskam, Inge; Bossink, Bart; de Man, Ard-Pieter

    2018-01-01

    A stream of literature is emerging where network development and business modeling intersect. Various authors emphasize that networks influence business models. This paper extends this stream of literature by studying two cases in which we analyze how business modeling and networking interact over

  3. Structural equation models from paths to networks

    CERN Document Server

    Westland, J Christopher

    2015-01-01

    This compact reference surveys the full range of available structural equation modeling (SEM) methodologies.  It reviews applications in a broad range of disciplines, particularly in the social sciences where many key concepts are not directly observable.  This is the first book to present SEM’s development in its proper historical context–essential to understanding the application, strengths and weaknesses of each particular method.  This book also surveys the emerging path and network approaches that complement and enhance SEM, and that will grow in importance in the near future.  SEM’s ability to accommodate unobservable theory constructs through latent variables is of significant importance to social scientists.  Latent variable theory and application are comprehensively explained, and methods are presented for extending their power, including guidelines for data preparation, sample size calculation, and the special treatment of Likert scale data.  Tables of software, methodologies and fit st...

  4. A ternary logic model for recurrent neuromime networks with delay.

    Science.gov (United States)

    Hangartner, R D; Cull, P

    1995-07-01

    In contrast to popular recurrent artificial neural network (RANN) models, biological neural networks have unsymmetric structures and incorporate significant delays as a result of axonal propagation. Consequently, biologically inspired neural network models are more accurately described by nonlinear differential-delay equations rather than nonlinear ordinary differential equations (ODEs), and the standard techniques for studying the dynamics of RANNs are wholly inadequate for these models. This paper develops a ternary-logic based method for analyzing these networks. Key to the technique is the realization that a nonzero delay produces a bounded stability region. This result significantly simplifies the construction of sufficient conditions for characterizing the network equilibria. If the network gain is large enough, each equilibrium can be classified as either asymptotically stable or unstable. To illustrate the analysis technique, the swim central pattern generator (CPG) of the sea slug Tritonia diomedea is examined. For wide range of reasonable parameter values, the ternary analysis shows that none of the network equilibria are stable, and thus the network must oscillate. The results show that complex synaptic dynamics are not necessary for pattern generation.

  5. Modeling Security Aspects of Network

    Science.gov (United States)

    Schoch, Elmar

    With more and more widespread usage of computer systems and networks, dependability becomes a paramount requirement. Dependability typically denotes tolerance or protection against all kinds of failures, errors and faults. Sources of failures can basically be accidental, e.g., in case of hardware errors or software bugs, or intentional due to some kind of malicious behavior. These intentional, malicious actions are subject of security. A more complete overview on the relations between dependability and security can be found in [31]. In parallel to the increased use of technology, misuse also has grown significantly, requiring measures to deal with it.

  6. Generalized memory associativity in a network model for the neuroses

    Science.gov (United States)

    Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.

    2009-03-01

    We review concepts introduced in earlier work, where a neural network mechanism describes some mental processes in neurotic pathology and psychoanalytic working-through, as associative memory functioning, according to the findings of Freud. We developed a complex network model, where modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's idea that consciousness is related to symbolic and linguistic memory activity in the brain. We have introduced a generalization of the Boltzmann machine to model memory associativity. Model behavior is illustrated with simulations and some of its properties are analyzed with methods from statistical mechanics.

  7. Inferential ecosystem models, from network data to prediction

    Science.gov (United States)

    James S. Clark; Pankaj Agarwal; David M. Bell; Paul G. Flikkema; Alan Gelfand; Xuanlong Nguyen; Eric Ward; Jun Yang

    2011-01-01

    Recent developments suggest that predictive modeling could begin to play a larger role not only for data analysis, but also for data collection. We address the example of efficient wireless sensor networks, where inferential ecosystem models can be used to weigh the value of an observation against the cost of data collection. Transmission costs make observations ‘‘...

  8. Bayesian Network Models in Cyber Security: A Systematic Review

    NARCIS (Netherlands)

    Chockalingam, S.; Pieters, W.; Herdeiro Teixeira, A.M.; van Gelder, P.H.A.J.M.; Lipmaa, Helger; Mitrokotsa, Aikaterini; Matulevicius, Raimundas

    2017-01-01

    Bayesian Networks (BNs) are an increasingly popular modelling technique in cyber security especially due to their capability to overcome data limitations. This is also instantiated by the growth of BN models development in cyber security. However, a comprehensive comparison and analysis of these

  9. Modeling and optimization of an electric power distribution network ...

    African Journals Online (AJOL)

    Modeling and optimization of an electric power distribution network planning system using ... of the network was modelled with non-linear mathematical expressions. ... given feasible locations, re-conductoring of existing feeders in the network, ...

  10. Two-component network model in voice identification technologies

    Directory of Open Access Journals (Sweden)

    Edita K. Kuular

    2018-03-01

    Full Text Available Among the most important parameters of biometric systems with voice modalities that determine their effectiveness, along with reliability and noise immunity, a speed of identification and verification of a person has been accentuated. This parameter is especially sensitive while processing large-scale voice databases in real time regime. Many research studies in this area are aimed at developing new and improving existing algorithms for presentation and processing voice records to ensure high performance of voice biometric systems. Here, it seems promising to apply a modern approach, which is based on complex network platform for solving complex massive problems with a large number of elements and taking into account their interrelationships. Thus, there are known some works which while solving problems of analysis and recognition of faces from photographs, transform images into complex networks for their subsequent processing by standard techniques. One of the first applications of complex networks to sound series (musical and speech analysis are description of frequency characteristics by constructing network models - converting the series into networks. On the network ontology platform a previously proposed technique of audio information representation aimed on its automatic analysis and speaker recognition has been developed. This implies converting information into the form of associative semantic (cognitive network structure with amplitude and frequency components both. Two speaker exemplars have been recorded and transformed into pertinent networks with consequent comparison of their topological metrics. The set of topological metrics for each of network models (amplitude and frequency one is a vector, and together  those combine a matrix, as a digital "network" voiceprint. The proposed network approach, with its sensitivity to personal conditions-physiological, psychological, emotional, might be useful not only for person identification

  11. Modeling of contact tracing in social networks

    Science.gov (United States)

    Tsimring, Lev S.; Huerta, Ramón

    2003-07-01

    Spreading of certain infections in complex networks is effectively suppressed by using intelligent strategies for epidemic control. One such standard epidemiological strategy consists in tracing contacts of infected individuals. In this paper, we use a recently introduced generalization of the standard susceptible-infectious-removed stochastic model for epidemics in sparse random networks which incorporates an additional (traced) state. We describe a deterministic mean-field description which yields quantitative agreement with stochastic simulations on random graphs. We also discuss the role of contact tracing in epidemics control in small-world and scale-free networks. Effectiveness of contact tracing grows as the rewiring probability is reduced.

  12. A Network Model of Credit Risk Contagion

    Directory of Open Access Journals (Sweden)

    Ting-Qiang Chen

    2012-01-01

    Full Text Available A network model of credit risk contagion is presented, in which the effect of behaviors of credit risk holders and the financial market regulators and the network structure are considered. By introducing the stochastic dominance theory, we discussed, respectively, the effect mechanisms of the degree of individual relationship, individual attitude to credit risk contagion, the individual ability to resist credit risk contagion, the monitoring strength of the financial market regulators, and the network structure on credit risk contagion. Then some derived and proofed propositions were verified through numerical simulations.

  13. Infection dynamics on spatial small-world network models

    Science.gov (United States)

    Iotti, Bryan; Antonioni, Alberto; Bullock, Seth; Darabos, Christian; Tomassini, Marco; Giacobini, Mario

    2017-11-01

    The study of complex networks, and in particular of social networks, has mostly concentrated on relational networks, abstracting the distance between nodes. Spatial networks are, however, extremely relevant in our daily lives, and a large body of research exists to show that the distances between nodes greatly influence the cost and probability of establishing and maintaining a link. A random geometric graph (RGG) is the main type of synthetic network model used to mimic the statistical properties and behavior of many social networks. We propose a model, called REDS, that extends energy-constrained RGGs to account for the synergic effect of sharing the cost of a link with our neighbors, as is observed in real relational networks. We apply both the standard Watts-Strogatz rewiring procedure and another method that conserves the degree distribution of the network. The second technique was developed to eliminate unwanted forms of spatial correlation between the degree of nodes that are affected by rewiring, limiting the effect on other properties such as clustering and assortativity. We analyze both the statistical properties of these two network types and their epidemiological behavior when used as a substrate for a standard susceptible-infected-susceptible compartmental model. We consider and discuss the differences in properties and behavior between RGGs and REDS as rewiring increases and as infection parameters are changed. We report considerable differences both between the network types and, in the case of REDS, between the two rewiring schemes. We conclude that REDS represent, with the application of these rewiring mechanisms, extremely useful and interesting tools in the study of social and epidemiological phenomena in synthetic complex networks.

  14. Perception of similarity: a model for social network dynamics

    International Nuclear Information System (INIS)

    Javarone, Marco Alberto; Armano, Giuliano

    2013-01-01

    Some properties of social networks (e.g., the mixing patterns and the community structure) appear deeply influenced by the individual perception of people. In this work we map behaviors by considering similarity and popularity of people, also assuming that each person has his/her proper perception and interpretation of similarity. Although investigated in different ways (depending on the specific scientific framework), from a computational perspective similarity is typically calculated as a distance measure. In accordance with this view, to represent social network dynamics we developed an agent-based model on top of a hyperbolic space on which individual distance measures are calculated. Simulations, performed in accordance with the proposed model, generate small-world networks that exhibit a community structure. We deem this model to be valuable for analyzing the relevant properties of real social networks. (paper)

  15. The International Trade Network: weighted network analysis and modelling

    International Nuclear Information System (INIS)

    Bhattacharya, K; Mukherjee, G; Manna, S S; Saramäki, J; Kaski, K

    2008-01-01

    Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the 'rich-club' coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the world's trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN

  16. Stochastic modeling and analysis of telecoms networks

    CERN Document Server

    Decreusefond, Laurent

    2012-01-01

    This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an

  17. Decomposed Implicit Models of Piecewise - Linear Networks

    Directory of Open Access Journals (Sweden)

    J. Brzobohaty

    1992-05-01

    Full Text Available The general matrix form of the implicit description of a piecewise-linear (PWL network and the symbolic block diagram of the corresponding circuit model are proposed. Their decomposed forms enable us to determine quite separately the existence of the individual breakpoints of the resultant PWL characteristic and their coordinates using independent network parameters. For the two-diode and three-diode cases all the attainable types of the PWL characteristic are introduced.

  18. Artificial Immune Networks: Models and Applications

    Directory of Open Access Journals (Sweden)

    Xian Shen

    2008-06-01

    Full Text Available Artificial Immune Systems (AIS, which is inspired by the nature immune system, has been applied for solving complex computational problems in classification, pattern rec- ognition, and optimization. In this paper, the theory of the natural immune system is first briefly introduced. Next, we compare some well-known AIS and their applications. Several representative artificial immune networks models are also dis- cussed. Moreover, we demonstrate the applications of artificial immune networks in various engineering fields.

  19. Continuum Modeling of Biological Network Formation

    KAUST Repository

    Albi, Giacomo

    2017-04-10

    We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes the pressure field using a Darcy type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. We first introduce micro- and mesoscopic models and show how they are connected to the macroscopic PDE system. Then, we provide an overview of analytical results for the PDE model, focusing mainly on the existence of weak and mild solutions and analysis of the steady states. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on finite elements and study the qualitative properties of network structures for various parameter values.

  20. Bayesian network models for error detection in radiotherapy plans

    International Nuclear Information System (INIS)

    Kalet, Alan M; Ford, Eric C; Phillips, Mark H; Gennari, John H

    2015-01-01

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures. (paper)

  1. Adaptive-network models of collective dynamics

    Science.gov (United States)

    Zschaler, G.

    2012-09-01

    Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge

  2. Spatial-temporal modeling of malware propagation in networks.

    Science.gov (United States)

    Chen, Zesheng; Ji, Chuanyi

    2005-09-01

    Network security is an important task of network management. One threat to network security is malware (malicious software) propagation. One type of malware is called topological scanning that spreads based on topology information. The focus of this work is on modeling the spread of topological malwares, which is important for understanding their potential damages, and for developing countermeasures to protect the network infrastructure. Our model is motivated by probabilistic graphs, which have been widely investigated in machine learning. We first use a graphical representation to abstract the propagation of malwares that employ different scanning methods. We then use a spatial-temporal random process to describe the statistical dependence of malware propagation in arbitrary topologies. As the spatial dependence is particularly difficult to characterize, the problem becomes how to use simple (i.e., biased) models to approximate the spatially dependent process. In particular, we propose the independent model and the Markov model as simple approximations. We conduct both theoretical analysis and extensive simulations on large networks using both real measurements and synthesized topologies to test the performance of the proposed models. Our results show that the independent model can capture temporal dependence and detailed topology information and, thus, outperforms the previous models, whereas the Markov model incorporates a certain spatial dependence and, thus, achieves a greater accuracy in characterizing both transient and equilibrium behaviors of malware propagation.

  3. Network Design Models for Container Shipping

    DEFF Research Database (Denmark)

    Reinhardt, Line Blander; Kallehauge, Brian; Nielsen, Anders Nørrelund

    This paper presents a study of the network design problem in container shipping. The paper combines the network design and fleet assignment problem into a mixed integer linear programming model minimizing the overall cost. The major contributions of this paper is that the time of a vessel route...... is included in the calculation of the capacity and that a inhomogeneous fleet is modeled. The model also includes the cost of transshipment which is one of the major cost for the shipping companies. The concept of pseudo simple routes is introduced to expand the set of feasible routes. The linearization...

  4. Developing cyber security architecture for military networks using cognitive networking

    OpenAIRE

    Kärkkäinen, Anssi

    2015-01-01

    In recent years, the importance of cyber security has increased. Cyber security has not become a critical issue only for governmental or business actors, but also for armed forces that nowadays rely on national or even global networks in their daily activities. The Network Centric Warfare (NCW) paradigm has increased the significance of networking during last decades as it enables information superiority in which military combat power increased by networking the battlefield actors from perspe...

  5. Modelling of a hybrid plant and development of a control system for the Vaesthamn plant based on artificial neural networks; Modellering av hybridanlaeggning samt utveckling av oevervakningssystem foer Vaesthamnsverket baserat paa Artificiella Neurala Naetverk

    Energy Technology Data Exchange (ETDEWEB)

    Assadi, Mohsen; Fast, Magnus [Lund Inst. of Technology (Sweden). Dept. of Energy Sciences

    2006-12-15

    The project aim is to model the hybrid plant at Vaesthamnsverket in Helsingborg using artificial neural networks (ANN). The definition of a hybrid plant is that it uses more than one fuel, in this case a natural gas fuelled gas turbine with heat recovery steam generator (HRSG) and a biomass fuelled steam boiler with steam turbine. The models in the present project are based on operational data from the plant in contrary to previous projects where synthetic (simulated) data has been used in a large extent. The gas turbine represents the subsystem that has received most attention in previous projects, which will also be the case for the present project although models of the HRSG, steam boiler and steam turbine are created since the whole plant is of interest. The completed ANN sub modules are connected in a network, which can be used for e.g. offline simulation and real-time condition monitoring of the plant. A product, including all sub modules, is created in shape of a user-friendly interface in an MS Excel environment. This user interface can be used for continuous monitoring, training personnel and in planning of the operation. The target group is the plant owners and the original equipment manufacturers (OEM). The plant owners interest lies in receiving a product that can assist them when operating the plant, for instance supply them with information about the grade of degradation. The OEMs main interest lies in investigating the possibilities of delivering ANNs, based on synthetic data, along with their new gas turbines. Vaesthamnsverket have contributed with operational data from the plant as well as support in plant related questions. Siemens have contributed with expert knowledge about their gas turbine, the SGT800. The received data has been examined and filtered before used for training ANN models. The models have been evaluated with independent data. The results are very promising with ANN models showing high prediction accuracy. All subsystems can be

  6. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  7. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  8. Characterization and Modeling of Network Traffic

    DEFF Research Database (Denmark)

    Shawky, Ahmed; Bergheim, Hans; Ragnarsson, Olafur

    2011-01-01

    -arrival time, IP addresses, port numbers and transport protocol are the only necessary parameters to model network traffic behaviour. In order to recreate this behaviour, a complex model is needed which is able to recreate traffic behaviour based on a set of statistics calculated from the parameters values...

  9. Mathematical model of transmission network static state estimation

    Directory of Open Access Journals (Sweden)

    Ivanov Aleksandar

    2012-01-01

    Full Text Available In this paper the characteristics and capabilities of the power transmission network static state estimator are presented. The solving process of the mathematical model containing the measurement errors and their processing is developed. To evaluate difference between the general model of state estimation and the fast decoupled state estimation model, the both models are applied to an example, and so derived results are compared.

  10. Operations Plan for Support Network Development

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-30

    This report describes the operational processes and strategies that are building a support network for the National Security Technology Incubator (NSTI) program. The NSTI program currently is under development as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Grant No. DE FG52-07NA28084. Although the NSTI program offers a wide array of in-house business services, there are a certain number of services that will be provided by entities outside of Arrowhead Center. This report identifies the steps needed to develop an appropriate support network. The Arrowhead Center is working with external service providers and key stakeholders to establish feasible referral and implementation mechanics offering NSTI program participants the most comprehensive incubation services possible.

  11. Towards the development of European networks

    International Nuclear Information System (INIS)

    Hanreich, G.

    2004-01-01

    The second AFG (French Gas Association) forum, held on June 17, addressed the issue of links between European networks with presentations by Guenther Hainreich, Director of Trans-European Networks for the European Commission Energy and Transport DG, and Loannis Galanis, Assistant Unit Director for the European Commission Energy and Transport DG. The choice for this topic has been influenced by the opening of gas markets in Europe which supposes that two conditions are fulfilled: first, the existence of gas availabilities, and second, the development of transportation, storage and LNG terminal infrastructures. In this context, the national policies are today the regional variations of a European policy at the service of the reinforcement of isolated areas and of the sustain of expanding areas. It is thus necessary to consider the European point-of-view about the existing infrastructures, their development and their financing means

  12. 网络管理中的建模技术%Modeling Technologies in Network Management

    Institute of Scientific and Technical Information of China (English)

    张鹏; 李钢; 李增智

    2000-01-01

    Modeling is an effective approach during science research or engineering development. Based on the brief introduction to basic structure of network management systems ,this paper discusses the application scope of modeling method. Subsequently, related to the development work in the project of HiTMN, a local telephone network management system, two kinds of model are built for telephone switching network. They are mathematical model and object-oriented model, built using mathematical modeling method and object modeling technology respectively. Finally ,the importance of using modeling technologies in network management is emphasized.

  13. A Network-Individual-Resource Model for HIV Prevention

    Science.gov (United States)

    Johnson, Blair T.; Redding, Colleen A.; DiClemente, Ralph J.; Mustanski, Brian S.; Dodge, Brian M.; Sheeran, Paschal; Warren, Michelle R.; Zimmerman, Rick S.; Fisher, William A.; Conner, Mark T.; Carey, Michael P.; Fisher, Jeffrey D.; Stall, Ronald D.; Fishbein, Martin

    2014-01-01

    HIV is transmitted through dyadic exchanges of individuals linked in transitory or permanent networks of varying sizes. To optimize prevention efficacy, a complementary theoretical perspective that bridges key individual level elements with important network elements can be a foundation for developing and implementing HIV interventions with outcomes that are more sustainable over time and have greater dissemination potential. Toward that end, we introduce a Network-Individual-Resource (NIR) model for HIV prevention that recognizes how exchanges of resources between individuals and their networks underlies and sustains HIV-risk behaviors. Individual behavior change for HIV prevention, then, may be dependent on increasing the supportiveness of that individual's relevant networks for such change. Among other implications, an NIR model predicts that the success of prevention efforts depends on whether the prevention efforts (1) prompt behavior changes that can be sustained by the resources the individual or their networks possess; (2) meet individual and network needs and are consistent with the individual's current situation/developmental stage; (3) are trusted and valued; and (4) target high HIV-prevalence networks. PMID:20862606

  14. Developing a Domain Model for Relay Circuits

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth

    2009-01-01

    In this paper we stepwise develop a domain model for relay circuits as used in railway control systems. First we provide an abstract, property-oriented model of networks consisting of components that can be glued together with connectors. This model is strongly inspired by a network model...... for railways madeby Bjørner et.al., however our model is more general: the components can be of any kind and can later be refined to e.g. railway components or circuit components. Then we show how the abstract network model can be refined into an explicit model for relay circuits. The circuit model describes...... the statics as well as the dynamics of relay circuits, i.e. how a relay circuit can be composed legally from electrical components as well as how the components may change state over time. Finally the circuit model is transformed into an executable model, and we show how a concrete circuit can be defined...

  15. The Dynamic and Changing Development of EERA Networks

    Science.gov (United States)

    Figueiredo, Maria P.; Grosvenor, Ian; Hoveid, Marit Honerod; Macnab, Natasha

    2014-01-01

    In this article the authors use two EERA networks as a case for a discussion on the development of research networks within the European Educational Research Association (EERA). They contend that EERA networks through their way of working create a European research space. As their case shows, the development of networks is diverse. The emergence…

  16. Discrete dynamic modeling of cellular signaling networks.

    Science.gov (United States)

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  17. Modeling polyvinyl chloride Plasma Modification by Neural Networks

    Science.gov (United States)

    Wang, Changquan

    2018-03-01

    Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.

  18. Enterprise Networks for Competences Exchange: A Simulation Model

    Science.gov (United States)

    Remondino, Marco; Pironti, Marco; Pisano, Paola

    A business process is a set of logically related tasks performed to achieve a defined business and related to improving organizational processes. Process innovation can happen at various levels: incrementally, redesign of existing processes, new processes. The knowledge behind process innovation can be shared, acquired, changed and increased by the enterprises inside a network. An enterprise can decide to exploit innovative processes it owns, thus potentially gaining competitive advantage, but risking, in turn, that other players could reach the same technological levels. Or it could decide to share it, in exchange for other competencies or money. These activities could be the basis for a network formation and/or impact the topology of an existing network. In this work an agent based model is introduced (E3), aiming to explore how a process innovation can facilitate network formation, affect its topology, induce new players to enter the market and spread onto the network by being shared or developed by new players.

  19. Energy flow models for the estimation of technical losses in distribution network

    International Nuclear Information System (INIS)

    Au, Mau Teng; Tan, Chin Hooi

    2013-01-01

    This paper presents energy flow models developed to estimate technical losses in distribution network. Energy flow models applied in this paper is based on input energy and peak demand of distribution network, feeder length and peak demand, transformer loading capacity, and load factor. Two case studies, an urban distribution network and a rural distribution network are used to illustrate application of the energy flow models. Results on technical losses obtained for the two distribution networks are consistent and comparable to network of similar types and characteristics. Hence, the energy flow models are suitable for practical application.

  20. Neural network modeling of associative memory: Beyond the Hopfield model

    Science.gov (United States)

    Dasgupta, Chandan

    1992-07-01

    A number of neural network models, in which fixed-point and limit-cycle attractors of the underlying dynamics are used to store and associatively recall information, are described. In the first class of models, a hierarchical structure is used to store an exponentially large number of strongly correlated memories. The second class of models uses limit cycles to store and retrieve individual memories. A neurobiologically plausible network that generates low-amplitude periodic variations of activity, similar to the oscillations observed in electroencephalographic recordings, is also described. Results obtained from analytic and numerical studies of the properties of these networks are discussed.

  1. Constitutive modelling of composite biopolymer networks.

    Science.gov (United States)

    Fallqvist, B; Kroon, M

    2016-04-21

    The mechanical behaviour of biopolymer networks is to a large extent determined at a microstructural level where the characteristics of individual filaments and the interactions between them determine the response at a macroscopic level. Phenomena such as viscoelasticity and strain-hardening followed by strain-softening are observed experimentally in these networks, often due to microstructural changes (such as filament sliding, rupture and cross-link debonding). Further, composite structures can also be formed with vastly different mechanical properties as compared to the individual networks. In this present paper, we present a constitutive model presented in a continuum framework aimed at capturing these effects. Special care is taken to formulate thermodynamically consistent evolution laws for dissipative effects. This model, incorporating possible anisotropic network properties, is based on a strain energy function, split into an isochoric and a volumetric part. Generalisation to three dimensions is performed by numerical integration over the unit sphere. Model predictions indicate that the constitutive model is well able to predict the elastic and viscoelastic response of biological networks, and to an extent also composite structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Modelling students' knowledge organisation: Genealogical conceptual networks

    Science.gov (United States)

    Koponen, Ismo T.; Nousiainen, Maija

    2018-04-01

    Learning scientific knowledge is largely based on understanding what are its key concepts and how they are related. The relational structure of concepts also affects how concepts are introduced in teaching scientific knowledge. We model here how students organise their knowledge when they represent their understanding of how physics concepts are related. The model is based on assumptions that students use simple basic linking-motifs in introducing new concepts and mostly relate them to concepts that were introduced a few steps earlier, i.e. following a genealogical ordering. The resulting genealogical networks have relatively high local clustering coefficients of nodes but otherwise resemble networks obtained with an identical degree distribution of nodes but with random linking between them (i.e. the configuration-model). However, a few key nodes having a special structural role emerge and these nodes have a higher than average communicability betweenness centralities. These features agree with the empirically found properties of students' concept networks.

  3. Modelling Users` Trust in Online Social Networks

    Directory of Open Access Journals (Sweden)

    Iacob Cătoiu

    2014-02-01

    Full Text Available Previous studies (McKnight, Lankton and Tripp, 2011; Liao, Lui and Chen, 2011 have shown the crucial role of trust when choosing to disclose sensitive information online. This is the case of online social networks users, who must disclose a certain amount of personal data in order to gain access to these online services. Taking into account privacy calculus model and the risk/benefit ratio, we propose a model of users’ trust in online social networks with four variables. We have adapted metrics for the purpose of our study and we have assessed their reliability and validity. We use a Partial Least Squares (PLS based structural equation modelling analysis, which validated all our initial assumptions, indicating that our three predictors (privacy concerns, perceived benefits and perceived risks explain 48% of the variation of users’ trust in online social networks, the resulting variable of our study. We also discuss the implications and further research opportunities of our study.

  4. Bayesian network modelling of upper gastrointestinal bleeding

    Science.gov (United States)

    Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri

    2013-09-01

    Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.

  5. Modeling of methane emissions using artificial neural network approach

    Directory of Open Access Journals (Sweden)

    Stamenković Lidija J.

    2015-01-01

    Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007

  6. A Model of Network Porosity

    Science.gov (United States)

    2016-02-04

    of complex systems [1]. Although the ODD protocol was originally intended for individual-based or agent-based models ( ABM ), we adopt this protocol for...applies to information transfer between air-gapped systems . Trust relationships between devices (e.g. a trust relationship created by a domain controller...prevention systems , and data leakage protection systems . 2.2 ATTACKER The model specifies an attacker who gains access to internal enclaves by

  7. Strategic Networks for Sustainable Tourism Development

    Directory of Open Access Journals (Sweden)

    Ivelyna Krasteva Yoveva

    2014-12-01

    Full Text Available This paper proposes an innovative approach towards introduction of an up-to-date sustainable development philosophy founded on the principles of combination and balance of common and individual interests on multilateral perspective, i.e. individuals vs. organizations, public groups vs. governmental authorities, industry vs. macroeconomic development, nation states vs. international regional development etc. The optimal implementation of such an approach is imminently dependent on an authentic self-awareness of own identity, values, purposes and motivation for positive contribution to the common well-being. The author’s arguments are based on the conviction that when more individuals and organizations harness deeper understanding of the mutual benefits within their operations area and undertake collaborative efforts to solve common problem their steadfast long-term development may be secured even in times of social-economic-political-eco-etc. crises and within a dynamically changing environment.Main purpose of current article is the concentration of the research on looking for and applying the principles of consistency, exchange of good collaborative practices and consequently strategic and operational utilization of the synergy effect, systems thinking and the holistic approach. Collaborative efforts would lead to greater effectiveness and optimization that satisfies individual and common interests in multiple environmental dimensions. The study aims to analyze the potential of a new network paradigm for provision of effectively applied strategies within the contemporary sustainable development context.Some good practices within the area of joint development of sustainable strategic networks in tourism industry in Bulgaria are presented. A case study of a culinary and hospitality cluster recently established in the Dobrudzha region is about to demonstrates the strategic network viability and sustainability in a contemporary agricultural

  8. Insertion algorithms for network model database management systems

    Science.gov (United States)

    Mamadolimov, Abdurashid; Khikmat, Saburov

    2017-12-01

    The network model is a database model conceived as a flexible way of representing objects and their relationships. Its distinguishing feature is that the schema, viewed as a graph in which object types are nodes and relationship types are arcs, forms partial order. When a database is large and a query comparison is expensive then the efficiency requirement of managing algorithms is minimizing the number of query comparisons. We consider updating operation for network model database management systems. We develop a new sequantial algorithm for updating operation. Also we suggest a distributed version of the algorithm.

  9. The ASAC Flight Segment and Network Cost Models

    Science.gov (United States)

    Kaplan, Bruce J.; Lee, David A.; Retina, Nusrat; Wingrove, Earl R., III; Malone, Brett; Hall, Stephen G.; Houser, Scott A.

    1997-01-01

    To assist NASA in identifying research art, with the greatest potential for improving the air transportation system, two models were developed as part of its Aviation System Analysis Capability (ASAC). The ASAC Flight Segment Cost Model (FSCM) is used to predict aircraft trajectories, resource consumption, and variable operating costs for one or more flight segments. The Network Cost Model can either summarize the costs for a network of flight segments processed by the FSCM or can be used to independently estimate the variable operating costs of flying a fleet of equipment given the number of departures and average flight stage lengths.

  10. Recurrent neural network based hybrid model for reconstructing gene regulatory network.

    Science.gov (United States)

    Raza, Khalid; Alam, Mansaf

    2016-10-01

    One of the exciting problems in systems biology research is to decipher how genome controls the development of complex biological system. The gene regulatory networks (GRNs) help in the identification of regulatory interactions between genes and offer fruitful information related to functional role of individual gene in a cellular system. Discovering GRNs lead to a wide range of applications, including identification of disease related pathways providing novel tentative drug targets, helps to predict disease response, and also assists in diagnosing various diseases including cancer. Reconstruction of GRNs from available biological data is still an open problem. This paper proposes a recurrent neural network (RNN) based model of GRN, hybridized with generalized extended Kalman filter for weight update in backpropagation through time training algorithm. The RNN is a complex neural network that gives a better settlement between biological closeness and mathematical flexibility to model GRN; and is also able to capture complex, non-linear and dynamic relationships among variables. Gene expression data are inherently noisy and Kalman filter performs well for estimation problem even in noisy data. Hence, we applied non-linear version of Kalman filter, known as generalized extended Kalman filter, for weight update during RNN training. The developed model has been tested on four benchmark networks such as DNA SOS repair network, IRMA network, and two synthetic networks from DREAM Challenge. We performed a comparison of our results with other state-of-the-art techniques which shows superiority of our proposed model. Further, 5% Gaussian noise has been induced in the dataset and result of the proposed model shows negligible effect of noise on results, demonstrating the noise tolerance capability of the model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Modelling dendritic ecological networks in space: An integrated network perspective

    Science.gov (United States)

    Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...

  12. PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. Hadapiningradja Kusumodestoni

    2015-11-01

    Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.

  13. Strategy development management of Multimodal Transport Network

    Directory of Open Access Journals (Sweden)

    Nesterova Natalia S.

    2016-01-01

    Full Text Available The article gives a brief overview of works on the development of transport infrastructure for multimodal transportation and integration of Russian transport system into the international transport corridors. The technology for control of the strategy, that changes shape and capacity of Multi-modal Transport Network (MTN, is considered as part of the methodology for designing and development of MTN. This technology allows to carry out strategic and operational management of the strategy implementation based on the use of the balanced scorecard.

  14. Green Network Planning Model for Optical Backbones

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael

    2010-01-01

    on the environment in general. In network planning there are existing planning models focused on QoS provisioning, investment minimization or combinations of both and other parameters. But there is a lack of a model for designing green optical backbones. This paper presents novel ideas to be able to define......Communication networks are becoming more essential for our daily lives and critically important for industry and governments. The intense growth in the backbone traffic implies an increment of the power demands of the transmission systems. This power usage might have a significant negative effect...

  15. NETWORKING - THE URBAN AND REGIONAL DEVELOPMENT STRATEGY?

    Directory of Open Access Journals (Sweden)

    PIOTR PACHURA

    2008-01-01

    Full Text Available It has become more and more common to claim that the concept of innovations embraces everything that is connected with creation and application of new knowledge in order to win competitive advantage. In this respect innovations concern as well, apart from technology, economy, society and culture. A traditional approach applied by organizational and management sciences is not enough to explain and manage the development of enterprises as well as that of cities, regions and countries. Simultaneously, according to a new approach to innovativeness, creation of innovations depends on a complex/system approach. The word complex is vital since this approach should embrace the complexity of innovative networks as well as complexity of relations of cooperation and the whole network environment together with social context.

  16. MODEL ANALYTICAL NETWORK PROCESS (ANP DALAM PENGEMBANGAN PARIWISATA DI JEMBER

    Directory of Open Access Journals (Sweden)

    Sukidin Sukidin

    2015-04-01

    Full Text Available Abstrak    : Model Analytical Network Process (ANP dalam Pengembangan Pariwisata di Jember. Penelitian ini mengkaji kebijakan pengembangan pariwisata di Jember, terutama kebijakan pengembangan agrowisata perkebunan kopi dengan menggunakan Jember Fashion Carnival (JFC sebagai event marketing. Metode yang digunakan adalah soft system methodology dengan menggunakan metode analitis jaringan (Analytical Network Process. Penelitian ini menemukan bahwa pengembangan pariwisata di Jember masih dilakukan dengan menggunakan pendekatan konvensional, belum terkoordinasi dengan baik, dan lebih mengandalkan satu even (atraksi pariwisata, yakni JFC, sebagai lokomotif daya tarik pariwisata Jember. Model pengembangan konvensional ini perlu dirancang kembali untuk memperoleh pariwisata Jember yang berkesinambungan. Kata kunci: pergeseran paradigma, industry pariwisata, even pariwisata, agrowisata Abstract: Analytical Network Process (ANP Model in the Tourism Development in Jember. The purpose of this study is to conduct a review of the policy of tourism development in Jember, especially development policies for coffee plantation agro-tourism by using Jember Fashion Carnival (JFC as event marketing. The research method used is soft system methodology using Analytical Network Process. The result shows that the tourism development in Jember is done using a conventional approach, lack of coordination, and merely focus on a single event tourism, i.e. the JFC, as locomotive tourism attraction in Jember. This conventional development model needs to be redesigned to reach Jember sustainable tourism development. Keywords: paradigm shift, tourism industry, agro-tourism

  17. Development of IT-based data communication network technology

    International Nuclear Information System (INIS)

    Hong, Seok Boong; Jeong, K. I.; Yoo, Y. R.

    2010-10-01

    - Developing broadband high-reliability real-time communications technology for NPP - Developing reliability and performance validation technology for communications network - Developing security technology for NPP communications network - Developing field communications network for harsh environment of NPP - International standard registration(Oct. 28, 2009, IEC 61500

  18. Development of Shale Gas Supply Chain Network under Market Uncertainties

    Directory of Open Access Journals (Sweden)

    Jorge Chebeir

    2017-02-01

    Full Text Available The increasing demand of energy has turned the shale gas and shale oil into one of the most promising sources of energy in the United States. In this article, a model is proposed to address the long-term planning problem of the shale gas supply chain under uncertain conditions. A two-stage stochastic programming model is proposed to describe and optimize the shale gas supply chain network. Inherent uncertainty in final products’ prices, such as natural gas and natural gas liquids (NGL, is treated through the utilization of a scenario-based method. A binomial option pricing model is utilized to approximate the stochastic process through the generation of scenario trees. The aim of the proposed model is to generate an appropriate and realistic supply chain network configuration as well as scheduling of different operations throughout the planning horizon of a shale gas development project.

  19. Modelling, Estimation and Control of Networked Complex Systems

    CERN Document Server

    Chiuso, Alessandro; Frasca, Mattia; Rizzo, Alessandro; Schenato, Luca; Zampieri, Sandro

    2009-01-01

    The paradigm of complexity is pervading both science and engineering, leading to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the definition of powerful tools for modelling, estimation, and control; and the cross-fertilization of different disciplines and approaches. This book is devoted to networked systems which are one of the most promising paradigms of complexity. It is demonstrated that complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synchronization, social and economics events, networks of critical infrastructures, resources allocation, information processing, or control over communication networks. Moreover, it is shown how the recent technological advances in wireless communication and decreasing in cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile cap...

  20. Network modeling of PM10 concentration in Malaysia

    Science.gov (United States)

    Supian, Muhammad Nazirul Aiman Abu; Bakar, Sakhinah Abu; Razak, Fatimah Abdul

    2017-08-01

    Air pollution is not a new phenomenon in Malaysia. The Department of Environment (DOE) monitors the country's ambient air quality through a network of 51 stations. The air quality is measured using the Air Pollution Index (API) which is mainly recorded based on the concentration of particulate matter, PM10 readings. The Continuous Air Quality Monitoring (CAQM) stations are located in various places across the country. In this study, a network model of air quality based on PM10 concen tration for selected CAQM stations in Malaysia has been developed. The model is built using a graph formulation, G = (V, E) where vertex, V is a set of CAQM stations and edges, E is a set of correlation values for each pair of vertices. The network measurements such as degree distributions, closeness centrality, and betweenness centrality are computed to analyse the behaviour of the network. As a result, a rank of CAQM stations has been produced based on their centrality characteristics.

  1. Joint physical and numerical modeling of water distribution networks.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Adam; O' Hern, Timothy John; Orear, Leslie Jr.; Kajder, Karen C.; Webb, Stephen Walter; Cappelle, Malynda A.; Khalsa, Siri Sahib; Wright, Jerome L.; Sun, Amy Cha-Tien; Chwirka, J. Benjamin; Hartenberger, Joel David; McKenna, Sean Andrew; van Bloemen Waanders, Bart Gustaaf; McGrath, Lucas K.; Ho, Clifford Kuofei

    2009-01-01

    This report summarizes the experimental and modeling effort undertaken to understand solute mixing in a water distribution network conducted during the last year of a 3-year project. The experimental effort involves measurement of extent of mixing within different configurations of pipe networks, measurement of dynamic mixing in a single mixing tank, and measurement of dynamic solute mixing in a combined network-tank configuration. High resolution analysis of turbulence mixing is carried out via high speed photography as well as 3D finite-volume based Large Eddy Simulation turbulence models. Macroscopic mixing rules based on flow momentum balance are also explored, and in some cases, implemented in EPANET. A new version EPANET code was developed to yield better mixing predictions. The impact of a storage tank on pipe mixing in a combined pipe-tank network during diurnal fill-and-drain cycles is assessed. Preliminary comparison between dynamic pilot data and EPANET-BAM is also reported.

  2. PROJECT ACTIVITY ANALYSIS WITHOUT THE NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    S. Munapo

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper presents a new procedure for analysing and managing activity sequences in projects. The new procedure determines critical activities, critical path, start times, free floats, crash limits, and other useful information without the use of the network model. Even though network models have been successfully used in project management so far, there are weaknesses associated with the use. A network is not easy to generate, and dummies that are usually associated with it make the network diagram complex – and dummy activities have no meaning in the original project management problem. The network model for projects can be avoided while still obtaining all the useful information that is required for project management. What are required are the activities, their accurate durations, and their predecessors.

    AFRIKAANSE OPSOMMING: Die navorsing beskryf ’n nuwerwetse metode vir die ontleding en bestuur van die sekwensiële aktiwiteite van projekte. Die voorgestelde metode bepaal kritiese aktiwiteite, die kritieke pad, aanvangstye, speling, verhasing, en ander groothede sonder die gebruik van ’n netwerkmodel. Die metode funksioneer bevredigend in die praktyk, en omseil die administratiewe rompslomp van die tradisionele netwerkmodelle.

  3. Tools and Models for Integrating Multiple Cellular Networks

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, Mark [Yale Univ., New Haven, CT (United States). Gerstein Lab.

    2015-11-06

    In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novel algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed

  4. Mobility Models for Next Generation Wireless Networks Ad Hoc, Vehicular and Mesh Networks

    CERN Document Server

    Santi, Paolo

    2012-01-01

    Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks provides the reader with an overview of mobility modelling, encompassing both theoretical and practical aspects related to the challenging mobility modelling task. It also: Provides up-to-date coverage of mobility models for next generation wireless networksOffers an in-depth discussion of the most representative mobility models for major next generation wireless network application scenarios, including WLAN/mesh networks, vehicular networks, wireless sensor networks, and

  5. Innovations and networking fostering tourist destination development in Slovakia

    Directory of Open Access Journals (Sweden)

    Gajdošík Tomáš

    2017-12-01

    Full Text Available The paper focuses on the implementation of innovations and networking in the sector of tourism in two Slovak mountain destinations of international significance. The main objective of the paper is to identify and evaluate how innovations and networking contribute to tourist destination development in Slovakia. The implementation of institutional innovation resulted in the establishment of formal and informal networks. The developed networks consist of representatives of all sectors co-ordinating all relevant stakeholders. Formal and informal networks and the collaboration among stakeholders have launched other types of innovations in the tourism sector. The interactions and intensity of relations among stakeholders are analysed by network analysis. Destinations are compared with the network of the same size and density through quantitative network characteristics. Based on empirical research we investigate the impact of networks and innovations on tourist destination development. Due to the synergy effect of networking and implementation of multiple innovations, tourist destination development is observed.

  6. Modeling Renewable Penertration Using a Network Economic Model

    Science.gov (United States)

    Lamont, A.

    2001-03-01

    This paper evaluates the accuracy of a network economic modeling approach in designing energy systems having renewable and conventional generators. The network approach models the system as a network of processes such as demands, generators, markets, and resources. The model reaches a solution by exchanging prices and quantity information between the nodes of the system. This formulation is very flexible and takes very little time to build and modify models. This paper reports an experiment designing a system with photovoltaic and base and peak fossil generators. The level of PV penetration as a function of its price and the capacities of the fossil generators were determined using the network approach and using an exact, analytic approach. It is found that the two methods agree very closely in terms of the optimal capacities and are nearly identical in terms of annual system costs.

  7. Security Modeling on the Supply Chain Networks

    Directory of Open Access Journals (Sweden)

    Marn-Ling Shing

    2007-10-01

    Full Text Available In order to keep the price down, a purchaser sends out the request for quotation to a group of suppliers in a supply chain network. The purchaser will then choose a supplier with the best combination of price and quality. A potential supplier will try to collect the related information about other suppliers so he/she can offer the best bid to the purchaser. Therefore, confidentiality becomes an important consideration for the design of a supply chain network. Chen et al. have proposed the application of the Bell-LaPadula model in the design of a secured supply chain network. In the Bell-LaPadula model, a subject can be in one of different security clearances and an object can be in one of various security classifications. All the possible combinations of (Security Clearance, Classification pair in the Bell-LaPadula model can be thought as different states in the Markov Chain model. This paper extends the work done by Chen et al., provides more details on the Markov Chain model and illustrates how to use it to monitor the security state transition in the supply chain network.

  8. An evolving model of online bipartite networks

    Science.gov (United States)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  9. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  10. Graph and Network for Model Elicitation (GNOME Phase 2)

    Science.gov (United States)

    2013-02-01

    GRAPH AND NETWORK FOR MODEL ELICITATION (GNOME PHASE II) CUBRC FEBRUARY 2013 FINAL TECHNICAL REPORT APPROVED FOR...NUMBER 00 5f. WORK UNIT NUMBER 01 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CUBRC 4455 Genesee St. Buffalo, NY 14225 8. PERFORMING...Explorer Since the previous version of GNOME was developed as an Eclipse RCP plug-in, it allowed CUBRC to develop the Model Explorer separately without

  11. Fuel cell-based CHP system modelling using Artificial Neural Networks aimed at developing techno-economic efficiency maximization control systems

    International Nuclear Information System (INIS)

    Asensio, F.J.; San Martín, J.I.; Zamora, I.; Garcia-Villalobos, J.

    2017-01-01

    This paper focuses on the modelling of the performance of a Polymer Electrolyte Membrane Fuel Cell (PEMFC)-based cogeneration system to integrate it in hybrid and/or connected to grid systems and enable the optimization of the techno-economic efficiency of the system in which it is integrated. To this end, experimental tests on a PEMFC-based cogeneration system of 600 W of electrical power have been performed to train an Artificial Neural Network (ANN). Once the learning of the ANN, it has been able to emulate real operating conditions, such as the cooling water out temperature and the hydrogen consumption of the PEMFC depending on several variables, such as the electric power demanded, temperature of the inlet water flow to the cooling circuit, cooling water flow and the heat demanded to the CHP system. After analysing the results, it is concluded that the presented model reproduces with enough accuracy and precision the performance of the experimented PEMFC, thus enabling the use of the model and the ANN learning methodology to model other PEMFC-based cogeneration systems and integrate them in techno-economic efficiency optimization control systems. - Highlights: • The effect of the energy demand variation on the PEMFC's efficiency is predicted. • The model relies on experimental data obtained from a 600 W PEMFC. • It provides the temperature and the hydrogen consumption with good accuracy. • The range in which the global energy efficiency could be improved is provided.

  12. An autocatalytic network model for stock markets

    Science.gov (United States)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-02-01

    The stock prices of companies with businesses that are closely related within a specific sector of economy might exhibit movement patterns and correlations in their dynamics. The idea in this work is to use the concept of autocatalytic network to model such correlations and patterns in the trends exhibited by the expected returns. The trends are expressed in terms of positive or negative returns within each fixed time interval. The time series derived from these trends is then used to represent the movement patterns by a probabilistic boolean network with transitions modeled as an autocatalytic network. The proposed method might be of value in short term forecasting and identification of dependencies. The method is illustrated with a case study based on four stocks of companies in the field of natural resource and technology.

  13. Using consensus bayesian network to model the reactive oxygen species regulatory pathway.

    Directory of Open Access Journals (Sweden)

    Liangdong Hu

    Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.

  14. A Network Model of Interpersonal Alignment in Dialog

    Directory of Open Access Journals (Sweden)

    Alexander Mehler

    2010-06-01

    Full Text Available In dyadic communication, both interlocutors adapt to each other linguistically, that is, they align interpersonally. In this article, we develop a framework for modeling interpersonal alignment in terms of the structural similarity of the interlocutors’ dialog lexica. This is done by means of so-called two-layer time-aligned network series, that is, a time-adjusted graph model. The graph model is partitioned into two layers, so that the interlocutors’ lexica are captured as subgraphs of an encompassing dialog graph. Each constituent network of the series is updated utterance-wise. Thus, both the inherent bipartition of dyadic conversations and their gradual development are modeled. The notion of alignment is then operationalized within a quantitative model of structure formation based on the mutual information of the subgraphs that represent the interlocutor’s dialog lexica. By adapting and further developing several models of complex network theory, we show that dialog lexica evolve as a novel class of graphs that have not been considered before in the area of complex (linguistic networks. Additionally, we show that our framework allows for classifying dialogs according to their alignment status. To the best of our knowledge, this is the first approach to measuring alignment in communication that explores the similarities of graph-like cognitive representations.

  15. Models and algorithms for biomolecules and molecular networks

    CERN Document Server

    DasGupta, Bhaskar

    2016-01-01

    By providing expositions to modeling principles, theories, computational solutions, and open problems, this reference presents a full scope on relevant biological phenomena, modeling frameworks, technical challenges, and algorithms. * Up-to-date developments of structures of biomolecules, systems biology, advanced models, and algorithms * Sampling techniques for estimating evolutionary rates and generating molecular structures * Accurate computation of probability landscape of stochastic networks, solving discrete chemical master equations * End-of-chapter exercises

  16. GSMNet: A Hierarchical Graph Model for Moving Objects in Networks

    Directory of Open Access Journals (Sweden)

    Hengcai Zhang

    2017-03-01

    Full Text Available Existing data models for moving objects in networks are often limited by flexibly controlling the granularity of representing networks and the cost of location updates and do not encompass semantic information, such as traffic states, traffic restrictions and social relationships. In this paper, we aim to fill the gap of traditional network-constrained models and propose a hierarchical graph model called the Geo-Social-Moving model for moving objects in Networks (GSMNet that adopts four graph structures, RouteGraph, SegmentGraph, ObjectGraph and MoveGraph, to represent the underlying networks, trajectories and semantic information in an integrated manner. The bulk of user-defined data types and corresponding operators is proposed to handle moving objects and answer a new class of queries supporting three kinds of conditions: spatial, temporal and semantic information. Then, we develop a prototype system with the native graph database system Neo4Jto implement the proposed GSMNet model. In the experiment, we conduct the performance evaluation using simulated trajectories generated from the BerlinMOD (Berlin Moving Objects Database benchmark and compare with the mature MOD system Secondo. The results of 17 benchmark queries demonstrate that our proposed GSMNet model has strong potential to reduce time-consuming table join operations an d shows remarkable advantages with regard to representing semantic information and controlling the cost of location updates.

  17. A program for verification of phylogenetic network models.

    Science.gov (United States)

    Gunawan, Andreas D M; Lu, Bingxin; Zhang, Louxin

    2016-09-01

    Genetic material is transferred in a non-reproductive manner across species more frequently than commonly thought, particularly in the bacteria kingdom. On one hand, extant genomes are thus more properly considered as a fusion product of both reproductive and non-reproductive genetic transfers. This has motivated researchers to adopt phylogenetic networks to study genome evolution. On the other hand, a gene's evolution is usually tree-like and has been studied for over half a century. Accordingly, the relationships between phylogenetic trees and networks are the basis for the reconstruction and verification of phylogenetic networks. One important problem in verifying a network model is determining whether or not certain existing phylogenetic trees are displayed in a phylogenetic network. This problem is formally called the tree containment problem. It is NP-complete even for binary phylogenetic networks. We design an exponential time but efficient method for determining whether or not a phylogenetic tree is displayed in an arbitrary phylogenetic network. It is developed on the basis of the so-called reticulation-visible property of phylogenetic networks. A C-program is available for download on http://www.math.nus.edu.sg/∼matzlx/tcp_package matzlx@nus.edu.sg Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Modeling and Simulation Network Data Standards

    Science.gov (United States)

    2011-09-30

    approaches . 2.3. JNAT. JNAT is a Web application that provides connectivity and network analysis capability. JNAT uses propagation models and low-fidelity...COMBATXXI Movement Logger Data Output Dictionary. Field # Geocentric Coordinates (GCC) Heading Geodetic Coordinates (GDC) Heading Universal...B-8 Field # Geocentric Coordinates (GCC) Heading Geodetic Coordinates (GDC) Heading Universal Transverse Mercator (UTM) Heading

  19. Modeling Insurgent Network Structure and Dynamics

    Science.gov (United States)

    Gabbay, Michael; Thirkill-Mackelprang, Ashley

    2010-03-01

    We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.

  20. Propagating semantic information in biochemical network models

    Directory of Open Access Journals (Sweden)

    Schulz Marvin

    2012-01-01

    Full Text Available Abstract Background To enable automatic searches, alignments, and model combination, the elements of systems biology models need to be compared and matched across models. Elements can be identified by machine-readable biological annotations, but assigning such annotations and matching non-annotated elements is tedious work and calls for automation. Results A new method called "semantic propagation" allows the comparison of model elements based not only on their own annotations, but also on annotations of surrounding elements in the network. One may either propagate feature vectors, describing the annotations of individual elements, or quantitative similarities between elements from different models. Based on semantic propagation, we align partially annotated models and find annotations for non-annotated model elements. Conclusions Semantic propagation and model alignment are included in the open-source library semanticSBML, available on sourceforge. Online services for model alignment and for annotation prediction can be used at http://www.semanticsbml.org.

  1. Modelling dendritic ecological networks in space: anintegrated network perspective

    Science.gov (United States)

    Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of ecological networks, or in 2-D space, may be inadequate for studying the influence of structure and connectivity on ecological processes within DENs. We propose a conceptual taxonomy of network analysis methods that account for DEN characteristics to varying degrees and provide a synthesis of the different approaches within

  2. Developing A Generic Optical Avionic Network

    DEFF Research Database (Denmark)

    Zhang, Jiang; An, Yi; Berger, Michael Stübert

    2011-01-01

    We propose a generic optical network design for future avionic systems in order to reduce the weight and power consumption of current networks on board. A three-layered network structure over a ring optical network topology is suggested, as it can provide full reconfiguration flexibility...... and support a wide range of avionic applications. Segregation can be made on different hierarchies according to system criticality and security requirements. The structure of each layer is discussed in detail. Two network configurations are presented, focusing on how to support different network services...... by such a network. Finally, three redundancy scenarios are discussed and compared....

  3. Unified Model for Generation Complex Networks with Utility Preferential Attachment

    International Nuclear Information System (INIS)

    Wu Jianjun; Gao Ziyou; Sun Huijun

    2006-01-01

    In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics of this new network are given.

  4. Developing mathematical modelling competence

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard

    2003-01-01

    In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....

  5. The influence of network characteristics on costs in pharmaceutical new product development

    DEFF Research Database (Denmark)

    Buonansegna, Erika; Schultz, Carsten; Stargardt, Tom

    2015-01-01

    This paper develops a model relating prior experiences, network stability, exclusive partnership, geographical distance, and intermediation in inter-firm R&D networks to new product development (NPD) costs. The developed hypotheses are tested with unique multilevel R&D partnership data from 33...... becomes relevant for non-exclusive partnerships and dispersed networks. NPD costs also increase in more stable networks, reflecting the relevance of structural holes for control and information advantages. This study contributes to the network management literature by understanding the relation between...

  6. Functional model of biological neural networks.

    Science.gov (United States)

    Lo, James Ting-Ho

    2010-12-01

    A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.

  7. Escherichia coli growth modeling using neural network | Shamsudin ...

    African Journals Online (AJOL)

    technique that has the ability to predict with efficient and good performance. Using NARX, a highly accurate model was developed to predict the growth of Escherichia coli (E. coli) based on pH water parameter. The multiparameter portable sensor and spectrophotometer data were used to build and train the neural network.

  8. Modeling social networks in geographic space: approach and empirical application

    NARCIS (Netherlands)

    Arentze, T.A.; Berg, van den P.E.W.; Timmermans, H.J.P.

    2012-01-01

    Social activities are responsible for a large proportion of travel demands of individuals. Modeling of the social network of a studied population offers a basis to predict social travel in a more comprehensive way than currently is possible. In this paper we develop a method to generate a whole

  9. On traffic modelling in GPRS networks

    DEFF Research Database (Denmark)

    Madsen, Tatiana Kozlova; Schwefel, Hans-Peter; Prasad, Ramjee

    2005-01-01

    Optimal design and dimensioning of wireless data networks, such as GPRS, requires the knowledge of traffic characteristics of different data services. This paper presents an in-detail analysis of an IP-level traffic measurements taken in an operational GPRS network. The data measurements reported...... here are done at the Gi interface. The aim of this paper is to reveal some key statistics of GPRS data applications and to validate if the existing traffic models can adequately describe traffic volume and inter-arrival time distribution for different services. Additionally, we present a method of user...

  10. Coarsening by network restructuring in model nanoporous gold

    International Nuclear Information System (INIS)

    Kolluri, Kedarnath; Demkowicz, Michael J.

    2011-01-01

    Using atomistic modeling, we show that restructuring of the network of interconnected ligaments causes coarsening in a model of nanoporous gold. The restructuring arises from the collapse of some ligaments onto neighboring ones and is enabled by localized plasticity at ligaments and nodes. This mechanism may explain the occurrence of enclosed voids and reduction in volume in nanoporous metals during their synthesis. An expression is developed for the critical ligament radius below which coarsening by network restructuring may occur spontaneously, setting a lower limit to the ligament dimensions of nanofoams.

  11. Network Traffic Monitoring Using Poisson Dynamic Linear Models

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-05-09

    In this article, we discuss an approach for network forensics using a class of nonstationary Poisson processes with embedded dynamic linear models. As a modeling strategy, the Poisson DLM (PoDLM) provides a very flexible framework for specifying structured effects that may influence the evolution of the underlying Poisson rate parameter, including diurnal and weekly usage patterns. We develop a novel particle learning algorithm for online smoothing and prediction for the PoDLM, and demonstrate the suitability of the approach to real-time deployment settings via a new application to computer network traffic monitoring.

  12. Development of QSAR models using artificial neural network analysis for risk assessment of repeated-dose, reproductive, and developmental toxicities of cosmetic ingredients.

    Science.gov (United States)

    Hisaki, Tomoka; Aiba Née Kaneko, Maki; Yamaguchi, Masahiko; Sasa, Hitoshi; Kouzuki, Hirokazu

    2015-04-01

    Use of laboratory animals for systemic toxicity testing is subject to strong ethical and regulatory constraints, but few alternatives are yet available. One possible approach to predict systemic toxicity of chemicals in the absence of experimental data is quantitative structure-activity relationship (QSAR) analysis. Here, we present QSAR models for prediction of maximum "no observed effect level" (NOEL) for repeated-dose, developmental and reproductive toxicities. NOEL values of 421 chemicals for repeated-dose toxicity, 315 for reproductive toxicity, and 156 for developmental toxicity were collected from Japan Existing Chemical Data Base (JECDB). Descriptors to predict toxicity were selected based on molecular orbital (MO) calculations, and QSAR models employing multiple independent descriptors as the input layer of an artificial neural network (ANN) were constructed to predict NOEL values. Robustness of the models was indicated by the root-mean-square (RMS) errors after 10-fold cross-validation (0.529 for repeated-dose, 0.508 for reproductive, and 0.558 for developmental toxicity). Evaluation of the models in terms of the percentages of predicted NOELs falling within factors of 2, 5 and 10 of the in-vivo-determined NOELs suggested that the model is applicable to both general chemicals and the subset of chemicals listed in International Nomenclature of Cosmetic Ingredients (INCI). Our results indicate that ANN models using in silico parameters have useful predictive performance, and should contribute to integrated risk assessment of systemic toxicity using a weight-of-evidence approach. Availability of predicted NOELs will allow calculation of the margin of safety, as recommended by the Scientific Committee on Consumer Safety (SCCS).

  13. A model for evolution of overlapping community networks

    Science.gov (United States)

    Karan, Rituraj; Biswal, Bibhu

    2017-05-01

    A model is proposed for the evolution of network topology in social networks with overlapping community structure. Starting from an initial community structure that is defined in terms of group affiliations, the model postulates that the subsequent growth and loss of connections is similar to the Hebbian learning and unlearning in the brain and is governed by two dominant factors: the strength and frequency of interaction between the members, and the degree of overlap between different communities. The temporal evolution from an initial community structure to the current network topology can be described based on these two parameters. It is possible to quantify the growth occurred so far and predict the final stationary state to which the network is likely to evolve. Applications in epidemiology or the spread of email virus in a computer network as well as finding specific target nodes to control it are envisaged. While facing the challenge of collecting and analyzing large-scale time-resolved data on social groups and communities one faces the most basic questions: how do communities evolve in time? This work aims to address this issue by developing a mathematical model for the evolution of community networks and studying it through computer simulation.

  14. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  15. Load-aware modeling for uplink cellular networks in a multi-channel environment

    KAUST Repository

    Alammouri, Ahmad; Elsawy, Hesham; Alouini, Mohamed-Slim

    2014-01-01

    We exploit tools from stochastic geometry to develop a tractable analytical approach for modeling uplink cellular networks. The developed model is load aware and accounts for per-user power control as well as the limited transmit power constraint

  16. Use of artificial neural networks for transport energy demand modeling

    International Nuclear Information System (INIS)

    Murat, Yetis Sazi; Ceylan, Halim

    2006-01-01

    The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem

  17. ENTERPRISES DEVELOPMENT: MANAGEMENT MODEL

    Directory of Open Access Journals (Sweden)

    Lina Shenderivska

    2018-01-01

    Full Text Available The paper’s purpose is to provide recommendations for the effective managing the companies’ development taking into account the sectoral key elements’ transformation. Methodology. The enterprise profits’ econometric simulation is conducted to determine the most significant factors influencing their development. According to the model testing result, their multicollinearity was revealed. To get rid of the multicollinearity phenomenon from the profit models, isolated regressors are excluded, namely, return on assets, material returns, return on equity. To obtain qualitative models with a small error of model parameters estimation and, accordingly, high reliability of the conclusion about the interrelation between the factors of the model and the resulting feature, factors in the income model that are not closely interconnected, that is, not multicollinear, are included. Determination coefficients R2 and F-criterion were calculated for model quality checking. The modern printing enterprises of Ukraine key elements, connected with integration into the global information space, are analysed. Results. The interrelation between a company’s development and earning capacity is identified in the study. The profit importance as the main source for enterprise financing is substantiated. Factors that have the greatest impact on the enterprises’ development are labour productivity, financial autonomy, working capital turnover, and the character of their influence is most adequately reflected by the power model. Peculiarities of the enterprises’ activity include increased competition at the inter-branch level, poorly developed industrial relations, and the own sources of financing activities shortage. Practical implications. Based on information on the most significant developmental impact factors, directions for perspective enterprises development for their competitiveness increase are proposed: diversification based on the activity expansion

  18. Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks.

    Science.gov (United States)

    Tian, Ye; Zhang, Bai; Hoffman, Eric P; Clarke, Robert; Zhang, Zhen; Shih, Ie-Ming; Xuan, Jianhua; Herrington, David M; Wang, Yue

    2014-07-24

    Modeling biological networks serves as both a major goal and an effective tool of systems biology in studying mechanisms that orchestrate the activities of gene products in cells. Biological networks are context-specific and dynamic in nature. To systematically characterize the selectively activated regulatory components and mechanisms, modeling tools must be able to effectively distinguish significant rewiring from random background fluctuations. While differential networks cannot be constructed by existing knowledge alone, novel incorporation of prior knowledge into data-driven approaches can improve the robustness and biological relevance of network inference. However, the major unresolved roadblocks include: big solution space but a small sample size; highly complex networks; imperfect prior knowledge; missing significance assessment; and heuristic structural parameter learning. To address these challenges, we formulated the inference of differential dependency networks that incorporate both conditional data and prior knowledge as a convex optimization problem, and developed an efficient learning algorithm to jointly infer the conserved biological network and the significant rewiring across different conditions. We used a novel sampling scheme to estimate the expected error rate due to "random" knowledge. Based on that scheme, we developed a strategy that fully exploits the benefit of this data-knowledge integrated approach. We demonstrated and validated the principle and performance of our method using synthetic datasets. We then applied our method to yeast cell line and breast cancer microarray data and obtained biologically plausible results. The open-source R software package and the experimental data are freely available at http://www.cbil.ece.vt.edu/software.htm. Experiments on both synthetic and real data demonstrate the effectiveness of the knowledge-fused differential dependency network in revealing the statistically significant rewiring in biological

  19. A Networks Approach to Modeling Enzymatic Reactions.

    Science.gov (United States)

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.

  20. A improved Network Security Situation Awareness Model

    Directory of Open Access Journals (Sweden)

    Li Fangwei

    2015-08-01

    Full Text Available In order to reflect the situation of network security assessment performance fully and accurately, a new network security situation awareness model based on information fusion was proposed. Network security situation is the result of fusion three aspects evaluation. In terms of attack, to improve the accuracy of evaluation, a situation assessment method of DDoS attack based on the information of data packet was proposed. In terms of vulnerability, a improved Common Vulnerability Scoring System (CVSS was raised and maked the assessment more comprehensive. In terms of node weights, the method of calculating the combined weights and optimizing the result by Sequence Quadratic Program (SQP algorithm which reduced the uncertainty of fusion was raised. To verify the validity and necessity of the method, a testing platform was built and used to test through evaluating 2000 DAPRA data sets. Experiments show that the method can improve the accuracy of evaluation results.

  1. Mayo Clinic Care Network: A Collaborative Health Care Model.

    Science.gov (United States)

    Wald, John T; Lowery-Schrandt, Sherri; Hayes, David L; Kotsenas, Amy L

    2018-01-01

    By leveraging its experience and expertise as a consultative clinical partner, the Mayo Clinic developed an innovative, scalable care model to accomplish several strategic goals: (1) create and sustain high-value relationships that benefit patients and providers, (2) foster relationships with like-minded partners to act as a strategy against the development of narrow health care networks, and (3) increase national and international brand awareness of Mayo Clinic. The result was the Mayo Clinic Care Network. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  2. The CIRTL Network: A Professional Development Network for Future STEM Faculty

    Science.gov (United States)

    Herbert, B. E.

    2011-12-01

    The Center for the Integration of Research, Teaching, and Learning (CIRTL) is an NSF Center for Learning and Teaching in higher education using the professional development of graduate students and post-doctoral scholars as the leverage point to develop a national STEM faculty committed to implementing and advancing effective teaching practices for diverse student audiences as part of successful professional careers. The goal of CIRTL is to improve the STEM learning of all students at every college and university, and thereby to increase the diversity in STEM fields and the STEM literacy of the nation. The CIRTL network seeks to support change at a number of levels to support its goals: individual, classroom, institutional, and national. To bring about change, which is never easy, the CIRTL network has developed a conceptual model or change model that is thought to support the program objectives. Three central concepts, Teaching-as-Research, Learning Communities, and Learning-through-Diversity, underlie the design of all CIRTL activities. STEM faculty use research methods to systematically and reflectively improve learning outcomes. This work is done within a community of shared learning and discovery, and explicitly recognizes that effective teaching capitalizes on the rich array of experiences, backgrounds, and skills among the students and instructors to enhance the learning of all. This model is being refined and tested through a networked-design experiment, where the model is tested in diverse settings. Established in fall 2006, the CIRTL Network comprises the University of Colorado at Boulder (CU), Howard University, Michigan State University, Texas A&M University, Vanderbilt University, and the University of Wisconsin-Madison. The diversity of these institutions is by design: private/public; large/moderate size; majority-/minority-serving; geographic location. This talk will describe the theoretical constructs and efficacy of Teaching-as Research as a

  3. Fractional virus epidemic model on financial networks

    Directory of Open Access Journals (Sweden)

    Balci Mehmet Ali

    2016-01-01

    Full Text Available In this study, we present an epidemic model that characterizes the behavior of a financial network of globally operating stock markets. Since the long time series have a global memory effect, we represent our model by using the fractional calculus. This model operates on a network, where vertices are the stock markets and edges are constructed by the correlation distances. Thereafter, we find an analytical solution to commensurate system and use the well-known differential transform method to obtain the solution of incommensurate system of fractional differential equations. Our findings are confirmed and complemented by the data set of the relevant stock markets between 2006 and 2016. Rather than the hypothetical values, we use the Hurst Exponent of each time series to approximate the fraction size and graph theoretical concepts to obtain the variables.

  4. Integrating market share models with network optimizing models for strategic planning in an oil pipeline company

    International Nuclear Information System (INIS)

    Smith, L.D.; Moses, S.W.

    1991-01-01

    Mathematical models of market share are constructed to describe the distribution of petroleum products from pipeline terminals, water terminals and refineries in the midcontinental United States. Network distribution models are developed to analyse the constraints and economics of alternative distribution systems. This paper describes how the two types of models were integrated for strategic planning in an oil pipeline company

  5. Model-Based Fault Diagnosis in Electric Drive Inverters Using Artificial Neural Network

    National Research Council Canada - National Science Library

    Masrur, Abul; Chen, ZhiHang; Zhang, Baifang; Jia, Hongbin; Murphey, Yi-Lu

    2006-01-01

    .... A normal model and various faulted models of the inverter-motor combination were developed, and voltages and current signals were generated from those models to train an artificial neural network for fault diagnosis...

  6. Space-based Networking Technology Developments in the Interplanetary Network Directorate Information Technology Program

    Science.gov (United States)

    Clare, Loren; Clement, B.; Gao, J.; Hutcherson, J.; Jennings, E.

    2006-01-01

    Described recent development of communications protocols, services, and associated tools targeted to reduce risk, reduce cost and increase efficiency of IND infrastructure and supported mission operations. Space-based networking technologies developed were: a) Provide differentiated quality of service (QoS) that will give precedence to traffic that users have selected as having the greatest importance and/or time-criticality; b) Improve the total value of information to users through the use of QoS prioritization techniques; c) Increase operational flexibility and improve command-response turnaround; d) Enable new class of networked and collaborative science missions; e) Simplify applications interfaces to communications services; and f) Reduce risk and cost from a common object model and automated scheduling and communications protocols. Technologies are described in three general areas: communications scheduling, middleware, and protocols. Additionally developed simulation environment, which provides comprehensive, quantitative understanding of the technologies performance within overall, evolving architecture, as well as ability to refine & optimize specific components.

  7. Towards port sustainability through probabilistic models: Bayesian networks

    Directory of Open Access Journals (Sweden)

    B. Molina

    2018-04-01

    Full Text Available It is necessary that a manager of an infrastructure knows relations between variables. Using Bayesian networks, variables can be classified, predicted and diagnosed, being able to estimate posterior probability of the unknown ones based on known ones. The proposed methodology has generated a database with port variables, which have been classified as economic, social, environmental and institutional, as addressed in of smart ports studies made in all Spanish Port System. Network has been developed using an acyclic directed graph, which have let us know relationships in terms of parents and sons. In probabilistic terms, it can be concluded from the constructed network that the most decisive variables for port sustainability are those that are part of the institutional dimension. It has been concluded that Bayesian networks allow modeling uncertainty probabilistically even when the number of variables is high as it occurs in port planning and exploitation.

  8. Vortex network community based reduced-order force model

    Science.gov (United States)

    Gopalakrishnan Meena, Muralikrishnan; Nair, Aditya; Taira, Kunihiko

    2017-11-01

    We characterize the vortical wake interactions by utilizing network theory and cluster-based approaches, and develop a data-inspired unsteady force model. In the present work, the vortical interaction network is defined by nodes representing vortical elements and the edges quantified by induced velocity measures amongst the vortices. The full vorticity field is reduced to a finite number of vortical clusters based on network community detection algorithm, which serves as a basis for a skeleton network that captures the essence of the wake dynamics. We use this reduced representation of the wake to develop a data-inspired reduced-order force model that can predict unsteady fluid forces on the body. The overall formulation is demonstrated for laminar flows around canonical bluff body wake and stalled flow over an airfoil. We also show the robustness of the present network-based model against noisy data, which motivates applications towards turbulent flows and experimental measurements. Supported by the National Science Foundation (Grant 1632003).

  9. Modelling, synthesis and analysis of biorefinery networks

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona

    for the conversion of biomass into chemicals, fuels and energy, because they have the potential to maximize biomass value while reducing emissions. The design of biorefinery networks is a complex decisionmaking problem that involves the selection of feedstocks, processing technologies, products, geographical...... locations, and operating conditions, among others. Unlike petroleumbased processing networks, biorefineries rely on feedstocks that are nonhomogeneous across geographical areas in terms of their availability, type and properties. For this reason, the performance of biorefinery networks depends...... of reactions to convert available biomassbased feedstocks into desired products, the selection of processing routes and technologies from a large set of alternatives, or the generation of hybrid technologies through process intensification. Systematic process synthesis and design methods have been developed...

  10. Northern emporia and maritime networks. Modelling past communication using archaeological network analysis

    DEFF Research Database (Denmark)

    Sindbæk, Søren Michael

    2015-01-01

    preserve patterns of thisinteraction. Formal network analysis and modelling holds the potential to identify anddemonstrate such patterns, where traditional methods often prove inadequate. Thearchaeological study of communication networks in the past, however, calls for radically different analytical...... this is not a problem of network analysis, but network synthesis: theclassic problem of cracking codes or reconstructing black-box circuits. It is proposedthat archaeological approaches to network synthesis must involve a contextualreading of network data: observations arising from individual contexts, morphologies...

  11. The study and implementation of the wireless network data security model

    Science.gov (United States)

    Lin, Haifeng

    2013-03-01

    In recent years, the rapid development of Internet technology and the advent of information age, people are increasing the strong demand for the information products and the market for information technology. Particularly, the network security requirements have become more sophisticated. This paper analyzes the wireless network in the data security vulnerabilities. And a list of wireless networks in the framework is the serious defects with the related problems. It has proposed the virtual private network technology and wireless network security defense structure; and it also given the wireless networks and related network intrusion detection model for the detection strategies.

  12. Modeling Distillation Column Using ARX Model Structure and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Pirmoradi

    2012-04-01

    Full Text Available Distillation is a complex and highly nonlinear industrial process. In general it is not always possible to obtain accurate first principles models for high-purity distillation columns. On the other hand the development of first principles models is usually time consuming and expensive. To overcome these problems, empirical models such as neural networks can be used. One major drawback of empirical models is that the prediction is valid only inside the data domain that is sufficiently covered by measurement data. Modeling distillation columns by means of neural networks is reported in literature by using recursive networks. The recursive networks are proper for modeling purpose, but such models have the problems of high complexity and high computational cost. The objective of this paper is to propose a simple and reliable model for distillation column. The proposed model uses feed forward neural networks which results in a simple model with less parameters and faster training time. Simulation results demonstrate that predictions of the proposed model in all regions are close to outputs of the dynamic model and the error in negligible. This implies that the model is reliable in all regions.

  13. Performance modeling, loss networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi

    2009-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. I

  14. A dynamic ventilation model for gravity sewer networks.

    Science.gov (United States)

    Wang, Y C; Nobi, N; Nguyen, T; Vorreiter, L

    2012-01-01

    To implement any effective odour and corrosion control technology in the sewer network, it is imperative that the airflow through gravity sewer airspaces be quantified. This paper presents a full dynamic airflow model for gravity sewer systems. The model, which is developed using the finite element method, is a compressible air transport model. The model has been applied to the North Head Sewerage Ocean Outfall System (NSOOS) and calibrated using the air pressure and airflow data collected during October 2008. Although the calibration is focused on forced ventilation, the model can be applied to natural ventilation as well.

  15. THE PROSPECTS OF DEVELOPMENT OF ELECTRIC POWER NETWORK IN GEORGIA

    International Nuclear Information System (INIS)

    Mshvidobadze, T.

    2007-01-01

    The possibility of application of one of the versions of development of the electric power network in Georgia is disscussed. The algorithm of grouping of the versions of power network development, which allows choosing the optimal network configuration under indefinite conditions, is offered. The experiments have demonstrated that the same optimal decision can be found by considerable reduction in the number of versions. (author)

  16. Fracture network modeling and GoldSim simulation support

    International Nuclear Information System (INIS)

    Sugita, Kenichiro; Dershowitz, William

    2004-01-01

    During Heisei-15, Golder Associates provided support for JNC Tokai through discrete fracture network data analysis and simulation of the MIU Underground Rock Laboratory, participation in Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport, and development of methodologies for analysis of repository site characterization strategies and safety assessment. MIU Underground Rock Laboratory support during H-15 involved development of new discrete fracture network (DFN) models for the MIU Shoba-sama Site, in the region of shaft development. Golder developed three DFN models for the site using discrete fracture network, equivalent porous medium (EPM), and nested DFN/EPM approaches. Each of these models were compared based upon criteria established for the multiple modeling project (MMP). Golder supported JNC participation in Task 6AB, 6D and 6E of the Aespoe Task Force on Modelling of Groundwater Flow and Transport during H-15. For Task 6AB, Golder implemented an updated microstructural model in GoldSim, and used this updated model to simulate the propagation of uncertainty from experimental to safety assessment time scales, for 5 m scale transport path lengths. Task 6D and 6E compared safety assessment (PA) and experimental time scale simulations in a 200 m scale discrete fracture network. For Task 6D, Golder implemented a DFN model using FracMan/PA Works, and determined the sensitivity of solute transport to a range of material property and geometric assumptions. For Task 6E, Golder carried out demonstration FracMan/PA Works transport calculations at a 1 million year time scale, to ensure that task specifications are realistic. The majority of work for Task 6E will be carried out during H-16. During H-15, Golder supported JNC's Total System Performance Assessment (TSPO) strategy by developing technologies for the analysis of precipitant concentration. These approaches were based on the GoldSim precipitant data management features, and were

  17. Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Liang Jinghang

    2012-08-01

    Full Text Available Abstract Background Various computational models have been of interest due to their use in the modelling of gene regulatory networks (GRNs. As a logical model, probabilistic Boolean networks (PBNs consider molecular and genetic noise, so the study of PBNs provides significant insights into the understanding of the dynamics of GRNs. This will ultimately lead to advances in developing therapeutic methods that intervene in the process of disease development and progression. The applications of PBNs, however, are hindered by the complexities involved in the computation of the state transition matrix and the steady-state distribution of a PBN. For a PBN with n genes and N Boolean networks, the complexity to compute the state transition matrix is O(nN22n or O(nN2n for a sparse matrix. Results This paper presents a novel implementation of PBNs based on the notions of stochastic logic and stochastic computation. This stochastic implementation of a PBN is referred to as a stochastic Boolean network (SBN. An SBN provides an accurate and efficient simulation of a PBN without and with random gene perturbation. The state transition matrix is computed in an SBN with a complexity of O(nL2n, where L is a factor related to the stochastic sequence length. Since the minimum sequence length required for obtaining an evaluation accuracy approximately increases in a polynomial order with the number of genes, n, and the number of Boolean networks, N, usually increases exponentially with n, L is typically smaller than N, especially in a network with a large number of genes. Hence, the computational efficiency of an SBN is primarily limited by the number of genes, but not directly by the total possible number of Boolean networks. Furthermore, a time-frame expanded SBN enables an efficient analysis of the steady-state distribution of a PBN. These findings are supported by the simulation results of a simplified p53 network, several randomly generated networks and a

  18. A Neuronal Network Model for Pitch Selectivity and Representation

    OpenAIRE

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among c...

  19. Analytic models for the evolution of semilocal string networks

    International Nuclear Information System (INIS)

    Nunes, A. S.; Martins, C. J. A. P.; Avgoustidis, A.; Urrestilla, J.

    2011-01-01

    We revisit previously developed analytic models for defect evolution and adapt them appropriately for the study of semilocal string networks. We thus confirm the expectation (based on numerical simulations) that linear scaling evolution is the attractor solution for a broad range of model parameters. We discuss in detail the evolution of individual semilocal segments, focusing on the phenomenology of segment growth, and also provide a preliminary comparison with existing numerical simulations.

  20. Mapping and modeling of physician collaboration network.

    Science.gov (United States)

    Uddin, Shahadat; Hamra, Jafar; Hossain, Liaquat

    2013-09-10

    Effective provisioning of healthcare services during patient hospitalization requires collaboration involving a set of interdependent complex tasks, which needs to be carried out in a synergistic manner. Improved patients' outcome during and after hospitalization has been attributed to how effective different health services provisioning groups carry out their tasks in a coordinated manner. Previous studies have documented the underlying relationships between collaboration among physicians on the effective outcome in delivering health services for improved patient outcomes. However, there are very few systematic empirical studies with a focus on the effect of collaboration networks among healthcare professionals and patients' medical condition. On the basis of the fact that collaboration evolves among physicians when they visit a common hospitalized patient, in this study, we first propose an approach to map collaboration network among physicians from their visiting information to patients. We termed this network as physician collaboration network (PCN). Then, we use exponential random graph (ERG) models to explore the microlevel network structures of PCNs and their impact on hospitalization cost and hospital readmission rate. ERG models are probabilistic models that are presented by locally determined explanatory variables and can effectively identify structural properties of networks such as PCN. It simplifies a complex structure down to a combination of basic parameters such as 2-star, 3-star, and triangle. By applying our proposed mapping approach and ERG modeling technique to the electronic health insurance claims dataset of a very large Australian health insurance organization, we construct and model PCNs. We notice that the 2-star (subset of 3 nodes in which 1 node is connected to each of the other 2 nodes) parameter of ERG has significant impact on hospitalization cost. Further, we identify that triangle (subset of 3 nodes in which each node is connected to

  1. Networking capability and new product development

    NARCIS (Netherlands)

    Mu, J.; Di Benedetto, A.C.

    2012-01-01

    Current research on network theory remains largely focused on structures and outcomes without exploring the capability that firms need to build efficient and effective networks to their advantage. In this paper, we take a networking capability view in studying inter-firm relationships. We assume

  2. Modeling In-Network Aggregation in VANETs

    NARCIS (Netherlands)

    Dietzel, Stefan; Kargl, Frank; Heijenk, Geert; Schaub, Florian

    2011-01-01

    The multitude of applications envisioned for vehicular ad hoc networks requires efficient communication and dissemination mechanisms to prevent network congestion. In-network data aggregation promises to reduce bandwidth requirements and enable scalability in large vehicular networks. However, most

  3. Energy model for rumor propagation on social networks

    Science.gov (United States)

    Han, Shuo; Zhuang, Fuzhen; He, Qing; Shi, Zhongzhi; Ao, Xiang

    2014-01-01

    With the development of social networks, the impact of rumor propagation on human lives is more and more significant. Due to the change of propagation mode, traditional rumor propagation models designed for word-of-mouth process may not be suitable for describing the rumor spreading on social networks. To overcome this shortcoming, we carefully analyze the mechanisms of rumor propagation and the topological properties of large-scale social networks, then propose a novel model based on the physical theory. In this model, heat energy calculation formula and Metropolis rule are introduced to formalize this problem and the amount of heat energy is used to measure a rumor’s impact on a network. Finally, we conduct track experiments to show the evolution of rumor propagation, make comparison experiments to contrast the proposed model with the traditional models, and perform simulation experiments to study the dynamics of rumor spreading. The experiments show that (1) the rumor propagation simulated by our model goes through three stages: rapid growth, fluctuant persistence and slow decline; (2) individuals could spread a rumor repeatedly, which leads to the rumor’s resurgence; (3) rumor propagation is greatly influenced by a rumor’s attraction, the initial rumormonger and the sending probability.

  4. A source-controlled data center network model.

    Science.gov (United States)

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS.

  5. A source-controlled data center network model

    Science.gov (United States)

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS. PMID:28328925

  6. Centralized Bayesian reliability modelling with sensor networks

    Czech Academy of Sciences Publication Activity Database

    Dedecius, Kamil; Sečkárová, Vladimíra

    2013-01-01

    Roč. 19, č. 5 (2013), s. 471-482 ISSN 1387-3954 R&D Projects: GA MŠk 7D12004 Grant - others:GA MŠk(CZ) SVV-265315 Keywords : Bayesian modelling * Sensor network * Reliability Subject RIV: BD - Theory of Information Impact factor: 0.984, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0392551.pdf

  7. Modelling Pollutant Dispersion in a Street Network

    Science.gov (United States)

    Salem, N. Ben; Garbero, V.; Salizzoni, P.; Lamaison, G.; Soulhac, L.

    2015-04-01

    This study constitutes a further step in the analysis of the performances of a street network model to simulate atmospheric pollutant dispersion in urban areas. The model, named SIRANE, is based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer, whose dynamics is assumed to be well established, and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections, and vertical exchange between street canyons and the overlying atmosphere. Here, we aim to evaluate the reliability of the parametrizations adopted to simulate these phenomena, by focusing on their possible dependence on the external wind direction. To this end, we test the model against concentration measurements within an idealized urban district whose geometrical layout closely matches the street network represented in SIRANE. The analysis is performed for an urban array with a fixed geometry and a varying wind incidence angle. The results show that the model provides generally good results with the reference parametrizations adopted in SIRANE and that its performances are quite robust for a wide range of the model parameters. This proves the reliability of the street network approach in simulating pollutant dispersion in densely built city districts. The results also show that the model performances may be improved by considering a dependence of the wind fluctuations at street intersections and of the vertical exchange velocity on the direction of the incident wind. This opens the way for further investigations to clarify the dependence of these parameters on wind direction and street aspect ratios.

  8. The Channel Network model and field applications

    International Nuclear Information System (INIS)

    Khademi, B.; Moreno, L.; Neretnieks, I.

    1999-01-01

    The Channel Network model describes the fluid flow and solute transport in fractured media. The model is based on field observations, which indicate that flow and transport take place in a three-dimensional network of connected channels. The channels are generated in the model from observed stochastic distributions and solute transport is modeled taking into account advection and rock interactions, such as matrix diffusion and sorption within the rock. The most important site-specific data for the Channel Network model are the conductance distribution of the channels and the flow-wetted surface. The latter is the surface area of the rock in contact with the flowing water. These parameters may be estimated from hydraulic measurements. For the Aespoe site, several borehole data sets are available, where a packer distance of 3 meters was used. Numerical experiments were performed in order to study the uncertainties in the determination of the flow-wetted surface and conductance distribution. Synthetic data were generated along a borehole and hydraulic tests with different packer distances were simulated. The model has previously been used to study the Long-term Pumping and Tracer Test (LPT2) carried out in the Aespoe Hard Rock Laboratory (HRL) in Sweden, where the distance travelled by the tracers was of the order hundreds of meters. Recently, the model has been used to simulate the tracer tests performed in the TRUE experiment at HRL, with travel distance of the order of tens of meters. Several tracer tests with non-sorbing and sorbing species have been performed

  9. Advances in dynamic network modeling in complex transportation systems

    CERN Document Server

    Ukkusuri, Satish V

    2013-01-01

    This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.

  10. An artificial neural network model for periodic trajectory generation

    Science.gov (United States)

    Shankar, S.; Gander, R. E.; Wood, H. C.

    A neural network model based on biological systems was developed for potential robotic application. The model consists of three interconnected layers of artificial neurons or units: an input layer subdivided into state and plan units, an output layer, and a hidden layer between the two outer layers which serves to implement nonlinear mappings between the input and output activation vectors. Weighted connections are created between the three layers, and learning is effected by modifying these weights. Feedback connections between the output and the input state serve to make the network operate as a finite state machine. The activation vector of the plan units of the input layer emulates the supraspinal commands in biological central pattern generators in that different plan activation vectors correspond to different sequences or trajectories being recalled, even with different frequencies. Three trajectories were chosen for implementation, and learning was accomplished in 10,000 trials. The fault tolerant behavior, adaptiveness, and phase maintenance of the implemented network are discussed.

  11. Multiobjecitve Sampling Design for Calibration of Water Distribution Network Model Using Genetic Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    Kourosh Behzadian

    2008-03-01

    Full Text Available In this paper, a novel multiobjective optimization model is presented for selecting optimal locations in the water distribution network (WDN with the aim of installing pressure loggers. The pressure data collected at optimal locations will be used later on in the calibration of the proposed WDN model. Objective functions consist of maximization of calibrated model prediction accuracy and minimization of the total cost for sampling design. In order to decrease the model run time, an optimization model has been developed using multiobjective genetic algorithm and adaptive neural network (MOGA-ANN. Neural networks (NNs are initially trained after a number of initial GA generations and periodically retrained and updated after generation of a specified number of full model-analyzed solutions. Trained NNs are replaced with the fitness evaluation of some chromosomes within the GA progress. Using cache prevents objective function evaluation of repetitive chromosomes within GA. Optimal solutions are obtained through pareto-optimal front with respect to the two objective functions. Results show that jointing NNs in MOGA for approximating portions of chromosomes’ fitness in each generation leads to considerable savings in model run time and can be promising for reducing run-time in optimization models with significant computational effort.

  12. Distributed Bayesian Networks for User Modeling

    DEFF Research Database (Denmark)

    Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang

    2006-01-01

    The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used by such ada......The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used...... by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...

  13. Development of neural network simulating power distribution of a BWR fuel bundle

    International Nuclear Information System (INIS)

    Tanabe, A.; Yamamoto, T.; Shinfuku, K.; Nakamae, T.

    1992-01-01

    A neural network model is developed to simulate the precise nuclear physics analysis program code for quick scoping survey calculations. The relation between enrichment and local power distribution of BWR fuel bundles was learned using two layers neural network (ENET). A new model is to introduce burnable neutron absorber (Gadolinia), added to several fuel rods to decrease initial reactivity of fresh bundle. The 2nd stages three layers neural network (GNET) is added on the 1st stage network ENET. GNET studies the local distribution difference caused by Gadolinia. Using this method, it becomes possible to survey of the gradients of sigmoid functions and back propagation constants with reasonable time. Using 99 learning patterns of zero burnup, good error convergence curve is obtained after many trials. This neural network model is able to simulate no learned cases fairly as well as the learned cases. Computer time of this neural network model is about 100 times faster than a precise analysis model. (author)

  14. Riemannian multi-manifold modeling and clustering in brain networks

    Science.gov (United States)

    Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.

    2017-08-01

    This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.

  15. Modelling electric trains energy consumption using Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fernandez, P.; Garcia Roman, C.; Insa Franco, R.

    2016-07-01

    Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last years as they present an inherent efficiency compared to other transport means. However, in order to further expand their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of different variables and alternatives. With this need in mind, this paper presents the development of consumption models based on neural networks that calculate the energy consumption of electric trains. These networks have been trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective of reducing the costs and environmental impact associated to railways. (Author)

  16. Neural Networks for Modeling and Control of Particle Accelerators

    Science.gov (United States)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  17. A Comparison of Geographic Information Systems, Complex Networks, and Other Models for Analyzing Transportation Network Topologies

    Science.gov (United States)

    Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher

    2005-01-01

    This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.

  18. A network model for Ebola spreading.

    Science.gov (United States)

    Rizzo, Alessandro; Pedalino, Biagio; Porfiri, Maurizio

    2016-04-07

    The availability of accurate models for the spreading of infectious diseases has opened a new era in management and containment of epidemics. Models are extensively used to plan for and execute vaccination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the simplifying assumption of homogeneous mixing, which is central to most of the mathematically tractable models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other, and its network of contacts varies in time as a function of an activity potential. Our model contemplates the possibility of non-ideal and time-varying intervention policies, which are critical to accurately describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular, we show that an earlier application of the same intervention policy would have greatly reduced the number of EVD cases, the duration of the outbreak, and the infrastructures needed for the implementation of the intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Modeling Network Transition Constraints with Hypergraphs

    DEFF Research Database (Denmark)

    Harrod, Steven

    2011-01-01

    Discrete time dynamic graphs are frequently used to model multicommodity flows or activity paths through constrained resources, but simple graphs fail to capture the interaction effects of resource transitions. The resulting schedules are not operationally feasible, and return inflated objective...... values. A directed hypergraph formulation is derived to address railway network sequencing constraints, and an experimental problem sample solved to estimate the magnitude of objective inflation when interaction effects are ignored. The model is used to demonstrate the value of advance scheduling...... of train paths on a busy North American railway....

  20. An intermodal transportation geospatial network modeling for containerized soybean shipping

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2017-06-01

    Full Text Available Containerized shipping is a growing market for agricultural exports, particularly soybeans. In order to understand the optimal strategies for improving the United States’ economic competitiveness in this emerging market, this research develops an intermodal transportation network modeling framework, focusing on U.S. soybean container shipments. Built upon detailed modal cost analyses, a Geospatial Intermodal Freight Transportation (GIFT model has been developed to understand the optimal network design for U.S. soybean exports. Based on market demand and domestic supply figures, the model is able to determine which domestically produced soybeans should go to which foreign markets, and by which transport modes. This research and its continual studies, will provide insights into future policies and practices that can improve the transportation efficiency of soybean logistics.