Campus network security model study
Zhang, Yong-ku; Song, Li-ren
2011-12-01
Campus network security is growing importance, Design a very effective defense hacker attacks, viruses, data theft, and internal defense system, is the focus of the study in this paper. This paper compared the firewall; IDS based on the integrated, then design of a campus network security model, and detail the specific implementation principle.
A simple model for studying interacting networks
Liu, Wenjia; Jolad, Shivakumar; Schmittmann, Beate; Zia, R. K. P.
2011-03-01
Many specific physical networks (e.g., internet, power grid, interstates), have been characterized in considerable detail, but in isolation from each other. Yet, each of these networks supports the functions of the others, and so far, little is known about how their interactions affect their structure and functionality. To address this issue, we consider two coupled model networks. Each network is relatively simple, with a fixed set of nodes, but dynamically generated set of links which has a preferred degree, κ . In the stationary state, the degree distribution has exponential tails (far from κ), an attribute which we can explain. Next, we consider two such networks with different κ 's, reminiscent of two social groups, e.g., extroverts and introverts. Finally, we let these networks interact by establishing a controllable fraction of cross links. The resulting distribution of links, both within and across the two model networks, is investigated and discussed, along with some potential consequences for real networks. Supported in part by NSF-DMR-0705152 and 1005417.
New approaches to model and study social networks
Lind, P. G.; Herrmann, H. J.
2007-07-01
We describe and develop three recent novelties in network research which are particularly useful for studying social systems. The first one concerns the discovery of some basic dynamical laws that enable the emergence of the fundamental features observed in social networks, namely the nontrivial clustering properties, the existence of positive degree correlations and the subdivision into communities. To reproduce all these features, we describe a simple model of mobile colliding agents, whose collisions define the connections between the agents which are the nodes in the underlying network, and develop some analytical considerations. The second point addresses the particular feature of clustering and its relationship with global network measures, namely with the distribution of the size of cycles in the network. Since in social bipartite networks it is not possible to measure the clustering from standard procedures, we propose an alternative clustering coefficient that can be used to extract an improved normalized cycle distribution in any network. Finally, the third point addresses dynamical processes occurring on networks, namely when studying the propagation of information in them. In particular, we focus on the particular features of gossip propagation which impose some restrictions in the propagation rules. To this end we introduce a quantity, the spread factor, which measures the average maximal fraction of nearest neighbours which get in contact with the gossip, and find the striking result that there is an optimal non-trivial number of friends for which the spread factor is minimized, decreasing the danger of being gossiped about.
Metabolic robustness and network modularity: a model study.
Holme, Petter
2011-02-02
Several studies have mentioned network modularity-that a network can easily be decomposed into subgraphs that are densely connected within and weakly connected between each other-as a factor affecting metabolic robustness. In this paper we measure the relation between network modularity and several aspects of robustness directly in a model system of metabolism. By using a model for generating chemical reaction systems where one can tune the network modularity, we find that robustness increases with modularity for changes in the concentrations of metabolites, whereas it decreases with changes in the expression of enzymes. The same modularity scaling is true for the speed of relaxation after the perturbations. Modularity is not a general principle for making metabolism either more or less robust; this question needs to be addressed specifically for different types of perturbations of the system.
Numerical study on the perception-based network formation model
Jo, Hang-Hyun
2015-01-01
In order to understand the evolution of social networks in terms of perception-based strategic link formation, we numerically study a perception-based network formation model. Here each individual is assumed to have his/her own perception of the actual network, and use it to decide whether to create a link to other individual. An individual with the least perception accuracy can benefit from updating his/her perception using that of the most accurate individual via a new link. This benefit is compared to the cost of linking in decision making. Once a new link is created, it affects the accuracies of other individuals' perceptions, leading to a further evolution of the actual network. The initial actual network and initial perceptions are modeled by Erd\\H{o}s-R\\'enyi random networks but with different linking probabilities. Then the stable link density of the actual network is found to show discontinuous transitions or jumps according to the cost of linking. The effect of initial conditions on the complexity o...
Optimizing neural network models: motivation and case studies
Harp, S A; T. Samad
2012-01-01
Practical successes have been achieved with neural network models in a variety of domains, including energy-related industry. The large, complex design space presented by neural networks is only minimally explored in current practice. The satisfactory results that nevertheless have been obtained testify that neural networks are a robust modeling technology; at the same time, however, the lack of a systematic design approach implies that the best neural network models generally rem...
Directory of Open Access Journals (Sweden)
Guang Hu
2017-01-01
Full Text Available The overall topology and interfacial interactions play key roles in understanding structural and functional principles of protein complexes. Elastic Network Model (ENM and Protein Contact Network (PCN are two widely used methods for high throughput investigation of structures and interactions within protein complexes. In this work, the comparative analysis of ENM and PCN relative to hemoglobin (Hb was taken as case study. We examine four types of structural and dynamical paradigms, namely, conformational change between different states of Hbs, modular analysis, allosteric mechanisms studies, and interface characterization of an Hb. The comparative study shows that ENM has an advantage in studying dynamical properties and protein-protein interfaces, while PCN is better for describing protein structures quantitatively both from local and from global levels. We suggest that the integration of ENM and PCN would give a potential but powerful tool in structural systems biology.
Petrovskaya, Olga V; Petrovskiy, Evgeny D; Lavrik, Inna N; Ivanisenko, Vladimir A
2017-04-01
Gene network modeling is one of the widely used approaches in systems biology. It allows for the study of complex genetic systems function, including so-called mosaic gene networks, which consist of functionally interacting subnetworks. We conducted a study of a mosaic gene networks modeling method based on integration of models of gene subnetworks by linear control functionals. An automatic modeling of 10,000 synthetic mosaic gene regulatory networks was carried out using computer experiments on gene knockdowns/knockouts. Structural analysis of graphs of generated mosaic gene regulatory networks has revealed that the most important factor for building accurate integrated mathematical models, among those analyzed in the study, is data on expression of genes corresponding to the vertices with high properties of centrality.
Zhang, Yan; Zheng, Hongmei; Chen, Bin; Yang, Naijin
2013-06-01
An important and practical pattern of industrial symbiosis is rapidly developing: eco-industrial parks. In this study, we used social network analysis to study the network connectedness (i.e., the proportion of the theoretical number of connections that had been achieved) and related attributes of these hybrid ecological and industrial symbiotic systems. This approach provided insights into details of the network's interior and analyzed the overall degree of connectedness and the relationships among the nodes within the network. We then characterized the structural attributes of the network and subnetwork nodes at two levels (core and periphery), thereby providing insights into the operational problems within each eco-industrial park. We chose ten typical ecoindustrial parks in China and around the world and compared the degree of network connectedness of these systems that resulted from exchanges of products, byproducts, and wastes. By analyzing the density and nodal degree, we determined the relative power and status of the nodes in these networks, as well as other structural attributes such as the core-periphery structure and the degree of sub-network connectedness. The results reveal the operational problems created by the structure of the industrial networks and provide a basis for improving the degree of completeness, thereby increasing their potential for sustainable development and enriching the methods available for the study of industrial symbiosis.
Collaborative networks: Reference modeling
Camarinha-Matos, L.M.; Afsarmanesh, H.
2008-01-01
Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of
MODELLING STUDIES BY APPLICATION OF ARTIFICIAL NEURAL NETWORK USING MATLAB
Directory of Open Access Journals (Sweden)
K. S. ARJUN
2015-11-01
Full Text Available Four ANN models to estimate Bubble point pressure (Pb, Oil Formation Volume Factor (Bob, Bubble point solution Gas Oil Ratio (Rsob and Stock Tank Vent GOR (RST in the absence of Pressure, Volume and Temperature (PVT analysis, were proposed as a function of readily available field data. The estimated Rsob and RST values from the proposed models can be used as a basic input variable in many PVT correlations in order to estimate other fluid properties such as the Pb and Bob. Another proposed ANN model has the ability to predict and interpolate average reservoir pressure accurately by employing oil, water and gas production rates and number of producers are used as four inputs for the proposed model without the wells having to be closed. Another ANN model proposed is to predict the performance of oil production within water injection reservoirs, which can be utilized to find the most economical scenario of water injection to maximize ultimate oil recovery. It has reasonable accuracy, requires little data and can forecast quickly. ANN approach to solving the identified pipeline damage problem gives satisfactory results as the error between the ANN output and the target is very tolerable. The results conclusively proved with error 0.0027 that it has the ability to accurately predict the pipeline damage probability by employing the model data obtained in this study.
Neural networks for modeling gene-gene interactions in association studies
Directory of Open Access Journals (Sweden)
Bammann Karin
2009-12-01
Full Text Available Abstract Background Our aim is to investigate the ability of neural networks to model different two-locus disease models. We conduct a simulation study to compare neural networks with two standard methods, namely logistic regression models and multifactor dimensionality reduction. One hundred data sets are generated for each of six two-locus disease models, which are considered in a low and in a high risk scenario. Two models represent independence, one is a multiplicative model, and three models are epistatic. For each data set, six neural networks (with up to five hidden neurons and five logistic regression models (the null model, three main effect models, and the full model with two different codings for the genotype information are fitted. Additionally, the multifactor dimensionality reduction approach is applied. Results The results show that neural networks are more successful in modeling the structure of the underlying disease model than logistic regression models in most of the investigated situations. In our simulation study, neither logistic regression nor multifactor dimensionality reduction are able to correctly identify biological interaction. Conclusions Neural networks are a promising tool to handle complex data situations. However, further research is necessary concerning the interpretation of their parameters.
Performance Estimation of Networked Business Models: Case Study on a Finnish eHealth Service Project
Directory of Open Access Journals (Sweden)
Marikka Heikkilä
2014-08-01
Full Text Available Purpose: The objective of this paper is to propose and demonstrate a framework for estimating performance in a networked business model. Design/methodology/approach: Our approach is design science, utilising action research in studying a case of four independent firms in Health & Wellbeing sector aiming to jointly provide a new service for business and private customers. The duration of the research study is 3 years. Findings: We propose that a balanced set of performance indicators can be defined by paying attention to all main components of the business model, enriched with of network collaboration. The results highlight the importance of measuring all main components of the business model and also the business network partners’ view on trust, contracts and fairness. Research implications: This article contributes to the business model literature by combining business modelling with performance evaluation. The article points out that it is essential to create metrics that can be applied to evaluate and improve the business model blueprints, but it is also important to measure business collaboration aspects. Practical implications: Companies have already adopted Business model canvas or similar business model tools to innovate new business models. We suggest that companies continue their business model innovation work by agreeing on a set of performance metrics, building on the business model components model enriched with measures of network collaboration. Originality/value: This article contributes to the business model literature and praxis by combining business modelling with performance evaluation.
A Study on Standard Competition with Network Effect Based on Evolutionary Game Model
Wang, Ye; Wang, Bingdong; Li, Kangning
Owing to networks widespread in modern society, standard competition with network effect is now endowed with new connotation. This paper aims to study the impact of network effect on standard competition; it is organized in the mode of "introduction-model setup-equilibrium analysis-conclusion". Starting from a well-structured model of evolutionary game, it is then extended to a dynamic analysis. This article proves both theoretically and empirically that whether or not a standard can lead the market trends depends on the utility it would bring, and the author also discusses some advisable strategies revolving around the two factors of initial position and border break.
Perrin, Christian L; Tardy, Philippe M J; Sorbie, Ken S; Crawshaw, John C
2006-03-15
The in situ rheology of polymeric solutions has been studied experimentally in etched silicon micromodels which are idealizations of porous media. The rectangular channels in these etched networks have dimensions typical of pore sizes in sandstone rocks. Pressure drop/flow rate relations have been measured for water and non-Newtonian hydrolyzed-polyacrylamide (HPAM) solutions in both individual straight rectangular capillaries and in networks of such capillaries. Results from these experiments have been analyzed using pore-scale network modeling incorporating the non-Newtonian fluid mechanics of a Carreau fluid. Quantitative agreement is seen between the experiments and the network calculations in the Newtonian and shear-thinning flow regions demonstrating that the 'shift factor,'alpha, can be calculated a priori. Shear-thickening behavior was observed at higher flow rates in the micromodel experiments as a result of elastic effects becoming important and this remains to be incorporated in the network model.
A behavioral study of healthy and cancer genes by modeling electrical network.
Roy, Tanusree; Barman, Soma
2014-10-15
In recent years, gene network modeling is gaining popularity in genomics to monitor the activity profile of genes. More specifically, the objective of the network modeling concept is to study the genetic behavior associated with disease. Previous researchers have designed network model at nucleotide level which produces more complexity for designing circuits mostly in case of gene expression studies. Whereas the authors have designed the present network model, based on amino acid level which is simpler as well as more appropriate for prediction of the genetic abnormality. In the present concept, SISO continuous and discrete system models of genes are realized using Foster network. The model is designed based on hydropathy index value of amino acids to study the biological system behavior. The time and phase response in continuous (s) domain and pole-zero distribution in discrete (z) domain are used as measurement metric in the present study. The simulated responses of the system show genetic instability for cancer genes which truly reflects the medical reports. The proposed modeling concept can be used, to accurately identify or separate out the diseased genes from healthy genes. Copyright © 2014 Elsevier B.V. All rights reserved.
Studies on the population dynamics of a rumor-spreading model in online social networks
Dong, Suyalatu; Fan, Feng-Hua; Huang, Yong-Chang
2018-02-01
This paper sets up a rumor spreading model in online social networks based on the European fox rabies SIR model. The model considers the impact of changing number of online social network users, combines the transmission dynamics to set up a population dynamics of rumor spreading model in online social networks. Simulation is carried out on online social network, and results show that the new rumor spreading model is in accordance with the real propagation characteristics in online social networks.
A study on the forecasting of daily stream flow using the multilayer neural networks model
Energy Technology Data Exchange (ETDEWEB)
Kim, Sung-Won [Colorado State University, Fort Collins, CO(United States)
2000-10-31
In this study, Neural Networks models were used to forecast daily stream flow at Jindong station of the Nakdong River basin. Neural Networks models consist of CASE 1(5-5-1) and CASE 2(5-5-5-1). The criteria which separates two models is the number of hidden layers. Each model has Fletcher-Reeves Conjugate Gradient BackPropagation(FR-CGBP) and Scaled Conjugate Gradient BackPropagation(SCGBP) algorithms, which are better than original BackPropagation(BP) in convergence of global error and training tolerance. The data which are available for model training and validation were composed of wet, average, dry, wet+average, wet+dry, average+dry and wet+average+dry year respectively. During model training, the optimal connection weights and biases were determined using each data set and the daily stream flow was calculated at the same time. Except for wet+dry year, the results of training were good conditions by statistical analysis of forecast errors. And, model validation was carried out using the connection weights and biases which were calculated from model training. The results of validation were satisfactory like those of training. Daily stream flow forecasting using Neural Networks models were compared with those forecasted by Multiple Regression Analysis Model(MRAM). Neural Networks models were displayed slightly better results than MRAM in this study. Thus, Neural Networks models have much advantage to provide a more systematic approach, reduce model parameters, and shorten the time spent in the model development. (author). 22 refs., 9 tabs., 7 figs.
Temperature-induced unfolding behavior of proteins studied by tensorial elastic network model.
Srivastava, Amit; Granek, Rony
2016-12-01
Motivated by single molecule experiments and recent molecular dynamics (MD) studies, we propose a simple and computationally efficient method based on a tensorial elastic network model to investigate the unfolding pathways of proteins under temperature variation. The tensorial elastic network model, which relies on the native state topology of a protein, combines the anisotropic network model, the bond bending elasticity, and the backbone twist elasticity to successfully predicts both the isotropic and anisotropic fluctuations in a manner similar to the Gaussian network model and anisotropic network model. The unfolding process is modeled by breaking the native contacts between residues one by one, and by assuming a threshold value for strain fluctuation. Using this method, we simulated the unfolding processes of four well-characterized proteins: chymotrypsin inhibitor, barnase, ubiquitein, and adenalyate kinase. We found that this step-wise process leads to two or more cooperative, first-order-like transitions between partial denaturation states. The sequence of unfolding events obtained using this method is consistent with experimental and MD studies. The results also imply that the native topology of proteins "encrypts" information regarding their unfolding process. Proteins 2016; 84:1767-1775. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mahseredjian, Jean; Haddadi, Aboutaleb; HOOSHYAR, Hossein; Vanfretti, Luigi; Dufour, Christian
2017-01-01
This paper presents the implementation of an Active Distribution Network (ADN) model and its qualitative assessment using different off-line and real-time simulation tools. The objective is to provide software-to-software verification for the establishment of the model as a potential benchmark. Expanding upon the authors’ previous work [7], this paper provides additional simulation results, cross-examination of the models, and presents the latest modifications incorporated to address practica...
Analysis regarding the transport network models. Case study on finding the optimal transport route
Stîngă, V.-G.
2017-08-01
Transport networks are studied most of the time from a graph theory perspective, mostly studied in a static way, in order to emphasize their characteristics like: topology, morphology, costs, traffic flows etc. There are many methods used to describe these characteristics at local and global level. Usually when analysing the transport network models, the aim is to achieve minimum capacity transit or minimum cost of operating or investment. Throughout this paper we will get an insight into the many models of the transport network that were presented over the years and we will try to make a short analysis regarding the most important ones. We will make a case study on finding the optimal route by using one of the models presented within this paper.
Evaluation Study of a Wireless Multimedia Traffic-Oriented Network Model
Vasiliadis, D. C.; Rizos, G. E.; Vassilakis, C.
2008-11-01
In this paper, a wireless multimedia traffic-oriented network scheme over a fourth generation system (4-G) is presented and analyzed. We conducted an extensive evaluation study for various mobility configurations in order to incorporate the behavior of the IEEE 802.11b standard over a test-bed wireless multimedia network model. In this context, the Quality of Services (QoS) over this network is vital for providing a reliable high-bandwidth platform for data-intensive sources like video streaming. Therefore, the main issues concerned in terms of QoS were the metrics for bandwidth of both dropped and lost packets and their mean packet delay under various traffic conditions. Finally, we used a generic distance-vector routing protocol which was based on an implementation of Distributed Bellman-Ford algorithm. The performance of the test-bed network model has been evaluated by using the simulation environment of NS-2.
A study of the spreading scheme for viral marketing based on a complex network model
Yang, Jianmei; Yao, Canzhong; Ma, Weicheng; Chen, Guanrong
2010-02-01
Buzzword-based viral marketing, known also as digital word-of-mouth marketing, is a marketing mode attached to some carriers on the Internet, which can rapidly copy marketing information at a low cost. Viral marketing actually uses a pre-existing social network where, however, the scale of the pre-existing network is believed to be so large and so random, so that its theoretical analysis is intractable and unmanageable. There are very few reports in the literature on how to design a spreading scheme for viral marketing on real social networks according to the traditional marketing theory or the relatively new network marketing theory. Complex network theory provides a new model for the study of large-scale complex systems, using the latest developments of graph theory and computing techniques. From this perspective, the present paper extends the complex network theory and modeling into the research of general viral marketing and develops a specific spreading scheme for viral marking and an approach to design the scheme based on a real complex network on the QQ instant messaging system. This approach is shown to be rather universal and can be further extended to the design of various spreading schemes for viral marketing based on different instant messaging systems.
DEFF Research Database (Denmark)
Zakrzewska, Anna; Ruepp, Sarah Renée; Berger, Michael Stübert
2013-01-01
The paper addresses the problem of optimal selection of Radio Access Technology (RAT) and assignment of resources in a multistandard wireless network scenario. It is shown how OPNET Modeler can be used to perform optimization studies using Integer Linear Programming (ILP) solvers. In this way...
Heikkilä, M.; Solaimani, H. (Sam); Kuivaniemi, L.; Suoranta, M.
2014-01-01
Purpose: The objective of this paper is to propose and demonstrate a framework for estimating performance in a networked business model. Design/methodology/approach: Our approach is design science, utilising action research in studying a case of four independent firms in Health & Wellbeing sector
Analysis of Artificial Neural Network in Erosion Modeling: A Case Study of Serang Watershed
Arif, N.; Danoedoro, P.; Hartono
2017-12-01
Erosion modeling is an important measuring tool for both land users and decision makers to evaluate land cultivation and thus it is necessary to have a model to represent the actual reality. Erosion models are a complex model because of uncertainty data with different sources and processing procedures. Artificial neural networks can be relied on for complex and non-linear data processing such as erosion data. The main difficulty in artificial neural network training is the determination of the value of each network input parameters, i.e. hidden layer, momentum, learning rate, momentum, and RMS. This study tested the capability of artificial neural network application in the prediction of erosion risk with some input parameters through multiple simulations to get good classification results. The model was implemented in Serang Watershed, Kulonprogo, Yogyakarta which is one of the critical potential watersheds in Indonesia. The simulation results showed the number of iterations that gave a significant effect on the accuracy compared to other parameters. A small number of iterations can produce good accuracy if the combination of other parameters was right. In this case, one hidden layer was sufficient to produce good accuracy. The highest training accuracy achieved in this study was 99.32%, occurred in ANN 14 simulation with combination of network input parameters of 1 HL; LR 0.01; M 0.5; RMS 0.0001, and the number of iterations of 15000. The ANN training accuracy was not influenced by the number of channels, namely input dataset (erosion factors) as well as data dimensions, rather it was determined by changes in network parameters.
Directory of Open Access Journals (Sweden)
Beigi Mohsen
2017-01-01
Full Text Available The present study aimed at investigation of deep bed drying of rough rice kernels at various thin layers at different drying air temperatures and flow rates. A comparative study was performed between mathematical thin layer models and artificial neural networks to estimate the drying curves of rough rice. The suitability of nine mathematical models in simulating the drying kinetics was examined and the Midilli model was determined as the best approach for describing drying curves. Different feed forward-back propagation artificial neural networks were examined to predict the moisture content variations of the grains. The ANN with 4-18-18-1 topology, transfer function of hyperbolic tangent sigmoid and a Levenberg-Marquardt back propagation training algorithm provided the best results with the maximum correlation coefficient and the minimum mean square error values. Furthermore, it was revealed that ANN modeling had better performance in prediction of drying curves with lower root mean square error values.
Directory of Open Access Journals (Sweden)
Dubitzky Werner
2010-09-01
Full Text Available Abstract Background A gene-regulatory network (GRN refers to DNA segments that interact through their RNA and protein products and thereby govern the rates at which genes are transcribed. Creating accurate dynamic models of GRNs is gaining importance in biomedical research and development. To improve our understanding of continuous deterministic modeling methods employed to construct dynamic GRN models, we have carried out a comprehensive comparative study of three commonly used systems of ordinary differential equations: The S-system (SS, artificial neural networks (ANNs, and the general rate law of transcription (GRLOT method. These were thoroughly evaluated in terms of their ability to replicate the reference models' regulatory structure and dynamic gene expression behavior under varying conditions. Results While the ANN and GRLOT methods appeared to produce robust models even when the model parameters deviated considerably from those of the reference models, SS-based models exhibited a notable loss of performance even when the parameters of the reverse-engineered models corresponded closely to those of the reference models: this is due to the high number of power terms in the SS-method, and the manner in which they are combined. In cross-method reverse-engineering experiments the different characteristics, biases and idiosynchracies of the methods were revealed. Based on limited training data, with only one experimental condition, all methods produced dynamic models that were able to reproduce the training data accurately. However, an accurate reproduction of regulatory network features was only possible with training data originating from multiple experiments under varying conditions. Conclusions The studied GRN modeling methods produced dynamic GRN models exhibiting marked differences in their ability to replicate the reference models' structure and behavior. Our results suggest that care should be taking when a method is chosen for a
Modeling the citation network by network cosmology.
Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing
2015-01-01
Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.
Modeling the citation network by network cosmology.
Directory of Open Access Journals (Sweden)
Zheng Xie
Full Text Available Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.
Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F; Musen, Mark A
The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks.
DEFF Research Database (Denmark)
Andersen, Kasper Winther
Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...
Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study
Directory of Open Access Journals (Sweden)
Modesto Pérez-Sánchez
2016-06-01
Full Text Available Water irrigation systems are required to provide adequate pressure levels in any sort of network. Quite frequently, this requirement is achieved by using pressure reducing valves (PRVs. Nevertheless, the possibility of using hydraulic machines to recover energy instead of PRVs could reduce the energy footprint of the whole system. In this research, a new methodology is proposed to help water managers quantify the potential energy recovering of an irrigation water network with adequate conditions of topographies distribution. EPANET has been used to create a model based on probabilities of irrigation and flow distribution in real networks. Knowledge of the flows and pressures in the network is necessary to perform an analysis of economic viability. Using the proposed methodology, a case study has been analyzed in a typical Mediterranean region and the potential available energy has been estimated. The study quantifies the theoretical energy recoverable if hydraulic machines were installed in the network. Particularly, the maximum energy potentially recovered in the system has been estimated up to 188.23 MWh/year with a potential saving of non-renewable energy resources (coal and gas of CO2 137.4 t/year.
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
Applications of Wavelet Neural Network Model to Building Settlement Prediction: A Case Study
Directory of Open Access Journals (Sweden)
Qulin TAN
2014-04-01
Full Text Available Deformation monitoring is a significant work for engineering safety, which is performed throughout the entire process of engineering design, construction and operation. Based on the theoretic analysis of wavelet and neural network, we applied the improved BP neural network model, auxiliary wavelet neural network model and embedded wavelet neural network model to the settlement prediction in one practical engineering monitoring project with MATLAB software programming. The cumulative and the interval settlement was predicted and compared with measured data. The overall performances of the three models were analyzed and compared. The results show that the accuracies of two kinds of wavelet neural network models are roughly the same, which prediction errors of monitoring points are less than 1mm, obviously superior to the single BP neural network model.
Study of a Market Model with Conservative Exchanges on Complex Networks
Braunstein, L A; Iglesias, J R
2012-01-01
Many models of market dynamics make use of the idea of conservative wealth exchanges among economic agents. A few years ago an exchange model using extremal dynamics was developed and a very interesting result was obtained: a self-generated minimum wealth or poverty line. On the other hand, the wealth distribution exhibited an exponential shape as a function of the square of the wealth. These results have been obtained both considering exchanges between nearest neighbors or in a mean field scheme. In the present paper we study the effect of distributing the agents on a complex network. We have considered archetypical complex networks: Erd\\"{o}s-R\\'enyi random networks and scale-free networks. The presence of a poverty line with finite wealth is preserved but spatial correlations are important, particularly between the degree of the node and the wealth. We present a detailed study of the correlations, as well as the changes in the Gini coefficient, that measures the inequality, as a function of the type and av...
Modeling network technology deployment rates with different network models
Chung, Yoo
2011-01-01
To understand the factors that encourage the deployment of a new networking technology, we must be able to model how such technology gets deployed. We investigate how network structure influences deployment with a simple deployment model and different network models through computer simulations. The results indicate that a realistic model of networking technology deployment should take network structure into account.
Development of a pore network simulation model to study nonaqueous phase liquid dissolution
Dillard, Leslie A.; Blunt, Martin J.
2000-01-01
A pore network simulation model was developed to investigate the fundamental physics of nonequilibrium nonaqueous phase liquid (NAPL) dissolution. The network model is a lattice of cubic chambers and rectangular tubes that represent pore bodies and pore throats, respectively. Experimental data obtained by Powers [1992] were used to develop and validate the model. To ensure the network model was representative of a real porous medium, the pore size distribution of the network was calibrated by matching simulated and experimental drainage and imbibition capillary pressure-saturation curves. The predicted network residual styrene blob-size distribution was nearly identical to the observed distribution. The network model reproduced the observed hydraulic conductivity and produced relative permeability curves that were representative of a poorly consolidated sand. Aqueous-phase transport was represented by applying the equation for solute flux to the network tubes and solving for solute concentrations in the network chambers. Complete mixing was found to be an appropriate approximation for calculation of chamber concentrations. Mass transfer from NAPL blobs was represented using a corner diffusion model. Predicted results of solute concentration versus Peclet number and of modified Sherwood number versus Peclet number for the network model compare favorably with experimental data for the case in which NAPL blob dissolution was negligible. Predicted results of normalized effluent concentration versus pore volume for the network were similar to the experimental data for the case in which NAPL blob dissolution occurred with time.
Using a small scale wireless sensor network for model validation. Two case studies
Energy Technology Data Exchange (ETDEWEB)
Lengfeld, Katharina; Ament, Felix [Hamburg Univ. (Germany). Meteorological Inst.; Zacharias, Stefan [Deutscher Wetterdienst, Freiburg im Breisgau (Germany)
2013-10-15
In this paper, the potential of a network consisting of low cost weather stations for validating microscale model simulations and for forcing surface-atmosphere-transfer-schemes is investigated within two case studies. Transfer schemes often do not account for small scale variabilities of the earth surface, because measurements of the atmospheric conditions do not exist in such a high spatial resolution to force the models. To overcome this issue, in this study a small scale network of meteorological stations is used to derive measurements in high spatial and temporal resolution. The observations carried out during the measurement campaign are compared to air temperature and specific humidity simulations of the mesoscale atmospheric model FOOT3DK (Flow Over Orographically-Structured Terrain - 3 Dimensional Model (Koelner Version)). This comparison indicates that FOOT3DK simulates either air temperature or specific humidity satisfactorily for each station at the lowest model level, depending on the dominating land use class within each grid cell. The influence of heterogeneous forcing and vegetation on heat flux modelling is studied using the soil-vegetation-atmosphere transfer scheme TERRA. The observations of the measurement campaign are used as input for four different runs with homogeneous and heterogeneous forcing and vegetation. Heterogeneous vegetation reduces the bias between the grid cells, heterogeneous forcing reduces the random error for each grid cell. (orig.)
Directory of Open Access Journals (Sweden)
Biplab Bhattacharjee
Full Text Available The socio-economic systems today possess high levels of both interconnectedness and interdependencies, and such system-level relationships behave very dynamically. In such situations, it is all around perceived that influence is a perplexing power that has an overseeing part in affecting the dynamics and behaviours of involved ones. As a result of the force & direction of influence, the transformative change of one entity has a cogent aftereffect on the other entities in the system. The current study employs directed weighted networks for investigating the influential relationship patterns existent in a typical equity market as an outcome of inter-stock interactions happening at the market level, the sectorial level and the industrial level. The study dataset is derived from 335 constituent stocks of 'Standard & Poor Bombay Stock Exchange 500 index' and study period is 1st June 2005 to 30th June 2015. The study identifies the set of most dynamically influential stocks & their respective temporal pattern at three hierarchical levels: the complete equity market, different sectors, and constituting industry segments of those sectors. A detailed influence relationship analysis is performed for the sectorial level network of the construction sector, and it was found that stocks belonging to the cement industry possessed high influence within this sector. Also, the detailed network analysis of construction sector revealed that it follows scale-free characteristics and power law distribution. In the industry specific influence relationship analysis for cement industry, methods based on threshold filtering and minimum spanning tree were employed to derive a set of sub-graphs having temporally stable high-correlation structure over this ten years period.
DEFF Research Database (Denmark)
Lund, Morten; Nielsen, Christian
2014-01-01
-based business model that generates additional value for the core business model and for both the partners and the customers. Research limitations/implications: The results should be taken with caution as they are based on the case study of a single network-based business model. Practical implications: Managers......Purpose: Existing frameworks for understanding and analyzing the value configuration and structuring of partnerships in relation such network-based business models are found to be inferior. The purpose of this paper is therefore to broaden our understanding of how business models may change over......: This paper illustrates how a network-based business model arises and evolves and how the forces of a network structure impact the development of its partner relationships. The contribution of this article is to understanding how partners positioned around a business model can be organized into a network...
Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study
Directory of Open Access Journals (Sweden)
Soha Saleh
2017-01-01
Full Text Available Mirror visual feedback (MVF is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical or opposite (mirror hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with
Scribner, Elizabeth Y; Fathallah-Shaykh, Hassan M
2011-01-01
Biological networks can be very complex. Mathematical modeling and simulation of regulatory networks can assist in resolving unanswered questions about these complex systems, which are often impossible to explore experimentally. The network regulating the Drosophila circadian clock is particularly amenable to such modeling given its complexity and what we call the clockwork orange (CWO) anomaly. CWO is a protein whose function in the network as an indirect activator of genes per, tim, vri, and pdp1 is counterintuitive--in isolated experiments, CWO inhibits transcription of these genes. Although many different types of modeling frameworks have recently been applied to the Drosophila circadian network, this chapter focuses on the application of continuous deterministic dynamic modeling to this network. In particular, we present three unique systems of ordinary differential equations that have been used to successfully model different aspects of the circadian network. The last model incorporates the newly identified protein CWO, and we explain how this model's unique mathematical equations can be used to explore and resolve the CWO anomaly. Finally, analysis of these equations gives rise to a new network regulatory rule, which clarifies the unusual role of CWO in this dynamical system. © 2011 Elsevier Inc. All rights reserved.
Modeling Epidemic Network Failures
DEFF Research Database (Denmark)
Ruepp, Sarah Renée; Fagertun, Anna Manolova
2013-01-01
This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...
Service entity network virtualization architecture and model
Jin, Xue-Guang; Shou, Guo-Chu; Hu, Yi-Hong; Guo, Zhi-Gang
2017-07-01
Communication network can be treated as a complex network carrying a variety of services and service can be treated as a network composed of functional entities. There are growing interests in multiplex service entities where individual entity and link can be used for different services simultaneously. Entities and their relationships constitute a service entity network. In this paper, we introduced a service entity network virtualization architecture including service entity network hierarchical model, service entity network model, service implementation and deployment of service entity networks. Service entity network oriented multiplex planning model were also studied and many of these multiplex models were characterized by a significant multiplex of the links or entities in different service entity network. Service entity networks were mapped onto shared physical resources by dynamic resource allocation controller. The efficiency of the proposed architecture was illustrated in a simulation environment that allows for comparative performance evaluation. The results show that, compared to traditional networking architecture, this architecture has a better performance.
Modeling semiflexible polymer networks
Broedersz, Chase P.; MacKintosh, Fred C.
2014-01-01
Here, we provide an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have been motivated by their importance in biology. Indeed, crosslinked networks of semiflexible polymers form a major structural component of tissue and living cells. Reconstituted networks o...
CNEM: Cluster Based Network Evolution Model
Directory of Open Access Journals (Sweden)
Sarwat Nizamani
2015-01-01
Full Text Available This paper presents a network evolution model, which is based on the clustering approach. The proposed approach depicts the network evolution, which demonstrates the network formation from individual nodes to fully evolved network. An agglomerative hierarchical clustering method is applied for the evolution of network. In the paper, we present three case studies which show the evolution of the networks from the scratch. These case studies include: terrorist network of 9/11 incidents, terrorist network of WMD (Weapons Mass Destruction plot against France and a network of tweets discussing a topic. The network of 9/11 is also used for evaluation, using other social network analysis methods which show that the clusters created using the proposed model of network evolution are of good quality, thus the proposed method can be used by law enforcement agencies in order to further investigate the criminal networks
Kotevska, Olivera; Kusne, A Gilad; Samarov, Daniel V; Lbath, Ahmed; Battou, Abdella
2017-01-01
Today's cities generate tremendous amounts of data, thanks to a boom in affordable smart devices and sensors. The resulting big data creates opportunities to develop diverse sets of context-aware services and systems, ensuring smart city services are optimized to the dynamic city environment. Critical resources in these smart cities will be more rapidly deployed to regions in need, and those regions predicted to have an imminent or prospective need. For example, crime data analytics may be used to optimize the distribution of police, medical, and emergency services. However, as smart city services become dependent on data, they also become susceptible to disruptions in data streams, such as data loss due to signal quality reduction or due to power loss during data collection. This paper presents a dynamic network model for improving service resilience to data loss. The network model identifies statistically significant shared temporal trends across multivariate spatiotemporal data streams and utilizes these trends to improve data prediction performance in the case of data loss. Dynamics also allow the system to respond to changes in the data streams such as the loss or addition of new information flows. The network model is demonstrated by city-based crime rates reported in Montgomery County, MD, USA. A resilient network is developed utilizing shared temporal trends between cities to provide improved crime rate prediction and robustness to data loss, compared with the use of single city-based auto-regression. A maximum improvement in performance of 7.8% for Silver Spring is found and an average improvement of 5.6% among cities with high crime rates. The model also correctly identifies all the optimal network connections, according to prediction error minimization. City-to-city distance is designated as a predictor of shared temporal trends in crime and weather is shown to be a strong predictor of crime in Montgomery County.
Abdelbaki, Chérifa; Benchaib, Mohamed Mouâd; Benziada, Salim; Mahmoudi, Hacène; Goosen, Mattheus
2017-06-01
For more effective management of water distribution network in an arid region, Mapinfo GIS (8.0) software was coupled with a hydraulic model (EPANET 2.0) and applied to a case study region, Chetouane, situated in the north-west of Algeria. The area is characterized not only by water scarcity but also by poor water management practices. The results showed that a combination of GIS and modeling permits network operators to better analyze malfunctions with a resulting more rapid response as well as facilitating in an improved understanding of the work performed on the network. The grouping of GIS and modeling as an operating tool allows managers to diagnosis a network, to study solutions of problems and to predict future situations. The later can assist them in making informed decisions to ensure an acceptable performance level for optimal network operation.
Li, Qiongge; Chan, Maria F
2017-01-01
Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field. © 2016 New York Academy of Sciences.
Models of educational institutions' networking
Shilova Olga Nikolaevna
2015-01-01
The importance of educational institutions' networking in modern sociocultural conditions and a definition of networking in education are presented in the article. The results of research levels, methods and models of educational institutions' networking are presented and substantially disclosed.
Shear stress is not sufficient to control growth of vascular networks: a model study
Hacking, W. J.; VanBavel, E.; Spaan, J. A.
1996-01-01
Local vessel wall shear stress is considered to be important for vessel growth. This study is a theoretical investigation of how this mechanism contributes to the structure of a vascular network. The analyses and simulations were performed on vascular networks of increasing complexity, ranging from
Directory of Open Access Journals (Sweden)
Krivtchik Guillaume
2017-01-01
Full Text Available Scenario studies simulate the whole fuel cycle over a period of time, from extraction of natural resources to geological storage. Through the comparison of different reactor fleet evolutions and fuel management options, they constitute a decision-making support. Consequently uncertainty propagation studies, which are necessary to assess the robustness of the studies, are strategic. Among numerous types of physical model in scenario computation that generate uncertainty, the equivalence models, built for calculating fresh fuel enrichment (for instance plutonium content in PWR MOX so as to be representative of nominal fuel behavior, are very important. The equivalence condition is generally formulated in terms of end-of-cycle mean core reactivity. As this results from a physical computation, it is therefore associated with an uncertainty. A state-of-the-art of equivalence models is exposed and discussed. It is shown that the existing equivalent models implemented in scenario codes, such as COSI6, are not suited to uncertainty propagation computation, for the following reasons: (i existing analytical models neglect irradiation, which has a strong impact on the result and its uncertainty; (ii current black-box models are not suited to cross-section perturbations management; and (iii models based on transport and depletion codes are too time-consuming for stochastic uncertainty propagation. A new type of equivalence model based on Artificial Neural Networks (ANN has been developed, constructed with data calculated with neutron transport and depletion codes. The model inputs are the fresh fuel isotopy, the irradiation parameters (burnup, core fractionation, etc., cross-sections perturbations and the equivalence criterion (for instance the core target reactivity in pcm at the end of the irradiation cycle. The model output is the fresh fuel content such that target reactivity is reached at the end of the irradiation cycle. Those models are built and
The social networking application success model : An empirical study of Facebook and Twitter
Ou, Carol; Davison, R.M.; Huang, Q.
2016-01-01
Social networking applications (SNAs) are among the fastest growing web applications of recent years. In this paper, we propose a causal model to assess the success of SNAs, grounded on DeLone and McLean’s updated information systems (IS) success model. In addition to their original three dimensions
Techniques for Modelling Network Security
Lech Gulbinovič
2012-01-01
The article compares modelling techniques for network security, including the theory of probability, Markov processes, Petri networks and application of stochastic activity networks. The paper introduces the advantages and disadvantages of the above proposed methods and accepts the method of modelling the network of stochastic activity as one of the most relevant. The stochastic activity network allows modelling the behaviour of the dynamic system where the theory of probability is inappropri...
URBAN GROWTH MODELING USING AN ARTIFICIAL NEURAL NETWORK A CASE STUDY OF SANANDAJ CITY, IRAN
Directory of Open Access Journals (Sweden)
S. Mohammady
2014-10-01
Full Text Available Land use activity is a major issue and challenge for town and country planners. Modelling and managing urban growth is a complex problem. Cities are now recognized as complex, non-linear and dynamic process systems. The design of a system that can handle these complexities is a challenging prospect. Local governments that implement urban growth models need to estimate the amount of urban land required in the future given anticipated growth of housing, business, recreation and other urban uses within the boundary. There are so many negative implications related with the type of inappropriate urban development such as increased traffic and demand for mobility, reduced landscape attractively, land use fragmentation, loss of biodiversity and alterations of the hydrological cycle. The aim of this study is to use the Artificial Neural Network (ANN to make a powerful tool for simulating urban growth patterns. Our study area is Sanandaj city located in the west of Iran. Landsat imageries acquired at 2000 and 2006 are used. Dataset were used include distance to principle roads, distance to residential areas, elevation, slope, distance to green spaces and distance to region centers. In this study an appropriate methodology for urban growth modelling using satellite remotely sensed data is presented and evaluated. Percent Correct Match (PCM and Figure of Merit were used to evaluate ANN results.
Urban Growth Modeling Using AN Artificial Neural Network a Case Study of Sanandaj City, Iran
Mohammady, S.; Delavar, M. R.; Pahlavani, P.
2014-10-01
Land use activity is a major issue and challenge for town and country planners. Modelling and managing urban growth is a complex problem. Cities are now recognized as complex, non-linear and dynamic process systems. The design of a system that can handle these complexities is a challenging prospect. Local governments that implement urban growth models need to estimate the amount of urban land required in the future given anticipated growth of housing, business, recreation and other urban uses within the boundary. There are so many negative implications related with the type of inappropriate urban development such as increased traffic and demand for mobility, reduced landscape attractively, land use fragmentation, loss of biodiversity and alterations of the hydrological cycle. The aim of this study is to use the Artificial Neural Network (ANN) to make a powerful tool for simulating urban growth patterns. Our study area is Sanandaj city located in the west of Iran. Landsat imageries acquired at 2000 and 2006 are used. Dataset were used include distance to principle roads, distance to residential areas, elevation, slope, distance to green spaces and distance to region centers. In this study an appropriate methodology for urban growth modelling using satellite remotely sensed data is presented and evaluated. Percent Correct Match (PCM) and Figure of Merit were used to evaluate ANN results.
The Social Networking Application Success Model: An Empirical Study of Facebook and Twitter
Directory of Open Access Journals (Sweden)
Carol X. J. Ou
2016-06-01
Full Text Available Social networking applications (SNAs are among the fastest growing web applications of recent years. In this paper, we propose a causal model to assess the success of SNAs, grounded on DeLone and McLean’s updated information systems (IS success model. In addition to their original three dimensions of quality, i.e., system quality, information quality and service quality, we propose that a fourth dimension - networking quality - contributes to SNA success. We empirically examined the proposed research model with a survey of 168 Facebook and 149 Twitter users. The data validates the significant role of networking quality in determining the focal SNA’s success. The theoretical and practical implications are discussed.
RMBNToolbox: random models for biochemical networks
Directory of Open Access Journals (Sweden)
Niemi Jari
2007-05-01
Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.
Loucif, Hemza; Boubetra, Abdelhak; Akrouf, Samir
2016-10-01
This paper aims to describe a new simplistic model dedicated to gauge the online influence of Twitter users based on a mixture of structural and interactional features. The model is an additive mathematical formulation which involves two main parts. The first part serves to measure the influence of the Twitter user on just his neighbourhood covering his followers. However, the second part evaluates the potential influence of the Twitter user beyond the circle of his followers. Particularly, it measures the likelihood that the tweets of the Twitter user will spread further within the social graph through the retweeting process. The model is tested on a data set involving four kinds of real-world egocentric networks. The empirical results reveal that an active ordinary user is more prominent than a non-active celebrity one. A simple comparison is conducted between the proposed model and two existing simplistic approaches. The results show that our model generates the most realistic influence scores due to its dealing with both explicit (structural and interactional) and implicit features.
A Comparative Study of Neural Networks and Fuzzy Systems in Modeling of a Nonlinear Dynamic System
Directory of Open Access Journals (Sweden)
Metin Demirtas
2011-07-01
Full Text Available The aim of this paper is to compare the neural networks and fuzzy modeling approaches on a nonlinear system. We have taken Permanent Magnet Brushless Direct Current (PMBDC motor data and have generated models using both approaches. The predictive performance of both methods was compared on the data set for model configurations. The paper describes the results of these tests and discusses the effects of changing model parameters on predictive and practical performance. Modeling sensitivity was used to compare for two methods.
Modeling semiflexible polymer networks
Broedersz, C.P.; MacKintosh, F.C.
2014-01-01
This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have
Target-Centric Network Modeling
DEFF Research Database (Denmark)
Mitchell, Dr. William L.; Clark, Dr. Robert M.
In Target-Centric Network Modeling: Case Studies in Analyzing Complex Intelligence Issues, authors Robert Clark and William Mitchell take an entirely new approach to teaching intelligence analysis. Unlike any other book on the market, it offers case study scenarios using actual intelligence......, and collaborative sharing in the process of creating a high-quality, actionable intelligence product. The case studies reflect the complexity of twenty-first century intelligence issues by dealing with multi-layered target networks that cut across political, economic, social, technological, and military issues....... Working through these cases, students will learn to manage and evaluate realistic intelligence accounts....
Modeling Network Interdiction Tasks
2015-09-17
allow professionals and families to stay in touch through voice or video calls. Power grids provide electricity to homes , offices, and recreational...instances using IBMr ILOGr CPLEXr Optimization Studio V12.6. For each instance, two solutions are deter- mined. First, the MNDP-a model is solved with no...three values: 0.25, 0.50, or 0.75. The DMP-a model is solved for the various random network instances using IBMr ILOGr CPLEXr Optimization Studio V12.6
Directory of Open Access Journals (Sweden)
Hahn Lance W
2003-07-01
Full Text Available Abstract Background Appropriate definitionof neural network architecture prior to data analysis is crucialfor successful data mining. This can be challenging when the underlyingmodel of the data is unknown. The goal of this study was to determinewhether optimizing neural network architecture using genetic programmingas a machine learning strategy would improve the ability of neural networksto model and detect nonlinear interactions among genes in studiesof common human diseases. Results Using simulateddata, we show that a genetic programming optimized neural network approachis able to model gene-gene interactions as well as a traditionalback propagation neural network. Furthermore, the genetic programmingoptimized neural network is better than the traditional back propagationneural network approach in terms of predictive ability and powerto detect gene-gene interactions when non-functional polymorphismsare present. Conclusion This study suggeststhat a machine learning strategy for optimizing neural network architecturemay be preferable to traditional trial-and-error approaches forthe identification and characterization of gene-gene interactionsin common, complex human diseases.
Dynamic hydraulic models to study sedimentation in drinking water networks in detail
Directory of Open Access Journals (Sweden)
I. W. M. Pothof
2012-12-01
Full Text Available Sedimentation in drinking water networks can lead to discolouration complaints. A sufficient criterion to prevent sedimentation in the Dutch drinking water networks is a daily maximum velocity of 0.25 m s^{−1}. Flushing experiments have shown that this criterion is a sufficient condition for a clean network, but not a necessary condition. Drinking water networks include many locations with a maximum velocity well below 0.25 m s^{−1} without accumulated sediments. Other criteria need to be developed to predict which locations are susceptible to sedimentation and to prevent sedimentation in future networks. More distinctive criteria are helpful to prioritise flushing operations and to prevent water quality complaints.
The authors use three different numerical modelling approaches – quasi-steady, rigid column and water hammer – with a temporal discretisation of 1 s in order to assess the influence of unsteady flows on the wall shear stress, causing resuspension of sediment particles. The model predictions are combined with results from flushing experiments in the drinking water distribution system of Purmerend, the Netherlands. The waterhammer model does not result in essentially different flow distribution patterns, compared to the rigid column and quasi-steady modelling approach. The extra information from the waterhammer model is a velocity oscillation of approximately 0.02 m s^{−1} around the quasi-steady solution. The presence of stagnation zones and multiple flow direction reversals seem to be interesting new parameters to predict sediment accumulation, which are consistent with the observed turbidity data and theoretical considerations on critical shear stresses.
Coevolutionary modeling in network formation
Al-Shyoukh, Ibrahim
2014-12-03
Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.
Modelling a recovery network for WEEE: a case study in Portugal.
Gomes, Maria Isabel; Barbosa-Povoa, Ana Paula; Novais, Augusto Q
2011-07-01
The European Union directive for electric and electronic waste, published in 2003, enforced all European countries to meet some targets concerning the recycling and recovery of these products. This directive was transposed to the Portuguese legislation in 2004. Following this, a group of EEE producers set up an organization (Amb3e) whose mission was to design and manage a nationwide recovery network for WEEE, which will be the subject matter of this work. A generic MILP model is proposed to represent this network, which is applied to its design and planning, where the best locations for collection and sorting centres are chosen simultaneously with the definition of a tactical network planning. Several analyses are performed to provide further insights regarding the selection of these alternative locations. The results gave support to the company strategic expansion plans for a high number of centres to be opened and to their location near the major WEEE sources. Copyright © 2011 Elsevier Ltd. All rights reserved.
Do Network Models Just Model Networks? On The Applicability of Network-Oriented Modeling
Treur, J.; Shmueli, Erez
2017-01-01
In this paper for a Network-Oriented Modelling perspective based on temporal-causal networks it is analysed how generic and applicable it is as a general modelling approach and as a computational paradigm. This results in an answer to the question in the title different from: network models just
Torii, Ryo; Oshima, Marie
2012-01-01
Patient-specific haemodynamic computations have been used as an effective tool in researches on cardiovascular disease associated with haemodynamics such as atherosclerosis and aneurysm. Recent development of computer resource has enabled 3D haemodynamic computations in wide-spread arterial network but there are still difficulties in modelling vascular geometry because of noise and limited resolution in medical images. In this paper, an integrated framework to model an arterial network tree for patient-specific computational haemodynamic study is developed. With this framework, 3D vascular geometry reconstruction of an arterial network and quantification of its geometric feature are aimed. The combination of 3D haemodynamic computation and vascular morphology quantification helps better understand the relationship between vascular morphology and haemodynamic force behind 'geometric risk factor' for cardiovascular diseases. The proposed method is applied to an intracranial arterial network to demonstrate its accuracy and effectiveness. The results are compared with the marching-cubes (MC) method. The comparison shows that the present modelling method can reconstruct a wide-ranged vascular network anatomically more accurate than the MC method, particularly in peripheral circulation where the image resolution is low in comparison to the vessel diameter, because of the recognition of an arterial network connectivity based on its centreline.
KOHONEN NEURAL NETWORKS FOR RAINFALL-RUNOFF MODELING: CASE STUDY OF PIANCÓ RIVER BASIN
Directory of Open Access Journals (Sweden)
Camilo A. S. Farias
2013-06-01
Full Text Available The existence of long and reliable streamflow data records is essential to establishing strategies for the operation of water resources systems. In areas where streamflow data records are limited or present missing values, rainfall-runoff models are typically used for reconstruction and/or extension of river flow series. The main objective of this paper is to verify the application of Kohonen Neural Networks (KNN for estimating streamflows in Piancó River. The Piancó River basin is located in the Brazilian semiarid region, an area devoid of hydrometeorological data and characterized by recurrent periods of water scarcity. The KNN are unsupervised neural networks that cluster data into groups according to their similarities. Such models are able to classify data vectors even when there are missing values in some of its components, a very common situation in rainfall-runoff modeling. Twenty two years of rainfall and streamflow monthly data were used in order to calibrate and test the proposed model. Statistical indexes were chose as criteria for evaluating the performance of the KNN model under four different scenarios of input data. The results show that the proposed model was able to provide reliable estimations even when there were missing values in the input data set.
Polymer networks: Modeling and applications
Masoud, Hassan
Polymer networks are an important class of materials that are ubiquitously found in natural, biological, and man-made systems. The complex mesoscale structure of these soft materials has made it difficult for researchers to fully explore their properties. In this dissertation, we introduce a coarse-grained computational model for permanently cross-linked polymer networks than can properly capture common properties of these materials. We use this model to study several practical problems involving dry and solvated networks. Specifically, we analyze the permeability and diffusivity of polymer networks under mechanical deformations, we examine the release of encapsulated solutes from microgel capsules during volume transitions, and we explore the complex tribological behavior of elastomers. Our simulations reveal that the network transport properties are defined by the network porosity and by the degree of network anisotropy due to mechanical deformations. In particular, the permeability of mechanically deformed networks can be predicted based on the alignment of network filaments that is characterized by a second order orientation tensor. Moreover, our numerical calculations demonstrate that responsive microcapsules can be effectively utilized for steady and pulsatile release of encapsulated solutes. We show that swollen gel capsules allow steady, diffusive release of nanoparticles and polymer chains, whereas gel deswelling causes burst-like discharge of solutes driven by an outward flow of the solvent initially enclosed within a shrinking capsule. We further demonstrate that this hydrodynamic release can be regulated by introducing rigid microscopic rods in the capsule interior. We also probe the effects of velocity, temperature, and normal load on the sliding of elastomers on smooth and corrugated substrates. Our friction simulations predict a bell-shaped curve for the dependence of the friction coefficient on the sliding velocity. Our simulations also illustrate
An adaptive complex network model for brain functional networks.
Directory of Open Access Journals (Sweden)
Ignacio J Gomez Portillo
Full Text Available Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution.
Saro, Lee; Woo, Jeon Seong; Kwan-Young, Oh; Moung-Jin, Lee
2016-02-01
The aim of this study is to predict landslide susceptibility caused using the spatial analysis by the application of a statistical methodology based on the GIS. Logistic regression models along with artificial neutral network were applied and validated to analyze landslide susceptibility in Inje, Korea. Landslide occurrence area in the study were identified based on interpretations of optical remote sensing data (Aerial photographs) followed by field surveys. A spatial database considering forest, geophysical, soil and topographic data, was built on the study area using the Geographical Information System (GIS). These factors were analysed using artificial neural network (ANN) and logistic regression models to generate a landslide susceptibility map. The study validates the landslide susceptibility map by comparing them with landslide occurrence areas. The locations of landslide occurrence were divided randomly into a training set (50%) and a test set (50%). A training set analyse the landslide susceptibility map using the artificial network along with logistic regression models, and a test set was retained to validate the prediction map. The validation results revealed that the artificial neural network model (with an accuracy of 80.10%) was better at predicting landslides than the logistic regression model (with an accuracy of 77.05%). Of the weights used in the artificial neural network model, `slope' yielded the highest weight value (1.330), and `aspect' yielded the lowest value (1.000). This research applied two statistical analysis methods in a GIS and compared their results. Based on the findings, we were able to derive a more effective method for analyzing landslide susceptibility.
Directory of Open Access Journals (Sweden)
Saro Lee
2016-02-01
Full Text Available The aim of this study is to predict landslide susceptibility caused using the spatial analysis by the application of a statistical methodology based on the GIS. Logistic regression models along with artificial neutral network were applied and validated to analyze landslide susceptibility in Inje, Korea. Landslide occurrence area in the study were identified based on interpretations of optical remote sensing data (Aerial photographs followed by field surveys. A spatial database considering forest, geophysical, soil and topographic data, was built on the study area using the Geographical Information System (GIS. These factors were analysed using artificial neural network (ANN and logistic regression models to generate a landslide susceptibility map. The study validates the landslide susceptibility map by comparing them with landslide occurrence areas. The locations of landslide occurrence were divided randomly into a training set (50% and a test set (50%. A training set analyse the landslide susceptibility map using the artificial network along with logistic regression models, and a test set was retained to validate the prediction map. The validation results revealed that the artificial neural network model (with an accuracy of 80.10% was better at predicting landslides than the logistic regression model (with an accuracy of 77.05%. Of the weights used in the artificial neural network model, ‘slope’ yielded the highest weight value (1.330, and ‘aspect’ yielded the lowest value (1.000. This research applied two statistical analysis methods in a GIS and compared their results. Based on the findings, we were able to derive a more effective method for analyzing landslide susceptibility.
Networked Microgrids Scoping Study
Energy Technology Data Exchange (ETDEWEB)
Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dobriansky, Larisa [General MicroGrids, San Diego, CA (United States); Glover, Steve [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Liu, Chen-Ching [Washington State Univ., Pullman, WA (United States); Looney, Patrick [Brookhaven National Lab. (BNL), Upton, NY (United States); Mashayekh, Salman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pratt, Annabelle [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schneider, Kevin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stadler, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Starke, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Jianhui [Argonne National Lab. (ANL), Argonne, IL (United States); Yue, Meng [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-12-05
Much like individual microgrids, the range of opportunities and potential architectures of networked microgrids is very diverse. The goals of this scoping study are to provide an early assessment of research and development needs by examining the benefits of, risks created by, and risks to networked microgrids. At this time there are very few, if any, examples of deployed microgrid networks. In addition, there are very few tools to simulate or otherwise analyze the behavior of networked microgrids. In this setting, it is very difficult to evaluate networked microgrids systematically or quantitatively. At this early stage, this study is relying on inputs, estimations, and literature reviews by subject matter experts who are engaged in individual microgrid research and development projects, i.e., the authors of this study The initial step of the study gathered input about the potential opportunities provided by networked microgrids from these subject matter experts. These opportunities were divided between the subject matter experts for further review. Part 2 of this study is comprised of these reviews. Part 1 of this study is a summary of the benefits and risks identified in the reviews in Part 2 and synthesis of the research needs required to enable networked microgrids.
Mathematical Modelling Plant Signalling Networks
Muraro, D.
2013-01-01
During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.
Study of the Gray Scale, Polychromatic, Distortion Invariant Neural Networks Using the Ipa Model.
Uang, Chii-Maw
Research in the optical neural network field is primarily motivated by the fact that humans recognize objects better than the conventional digital computers and the massively parallel inherent nature of optics. This research represents a continuous effort during the past several years in the exploitation of using neurocomputing for pattern recognition. Based on the interpattern association (IPA) model and Hamming net model, many new systems and applications are introduced. A gray level discrete associative memory that is based on object decomposition/composition is proposed for recognizing gray-level patterns. This technique extends the processing ability from the binary mode to gray-level mode, and thus the information capacity is increased. Two polychromatic optical neural networks using color liquid crystal television (LCTV) panels for color pattern recognition are introduced. By introducing a color encoding technique in conjunction with the interpattern associative algorithm, a color associative memory was realized. Based on the color decomposition and composition technique, a color exemplar-based Hamming net was built for color image classification. A shift-invariant neural network is presented through use of the translation invariant property of the modulus of the Fourier transformation and the hetero-associative interpattern association (IPA) memory. To extract the main features, a quadrantal sampling method is used to sampled data and then replace the training patterns. Using the concept of hetero-associative memory to recall the distorted object. A shift and rotation invariant neural network using an interpattern hetero-association (IHA) model is presented. To preserve the shift and rotation invariant properties, a set of binarized-encoded circular harmonic expansion (CHE) functions at the Fourier domain is used as the training set. We use the shift and symmetric properties of the modulus of the Fourier spectrum to avoid the problem of centering the CHE
A comparison study between MLP and convolutional neural network models for character recognition
Ben Driss, S.; Soua, M.; Kachouri, R.; Akil, M.
2017-05-01
Optical Character Recognition (OCR) systems have been designed to operate on text contained in scanned documents and images. They include text detection and character recognition in which characters are described then classified. In the classification step, characters are identified according to their features or template descriptions. Then, a given classifier is employed to identify characters. In this context, we have proposed the unified character descriptor (UCD) to represent characters based on their features. Then, matching was employed to ensure the classification. This recognition scheme performs a good OCR Accuracy on homogeneous scanned documents, however it cannot discriminate characters with high font variation and distortion.3 To improve recognition, classifiers based on neural networks can be used. The multilayer perceptron (MLP) ensures high recognition accuracy when performing a robust training. Moreover, the convolutional neural network (CNN), is gaining nowadays a lot of popularity for its high performance. Furthermore, both CNN and MLP may suffer from the large amount of computation in the training phase. In this paper, we establish a comparison between MLP and CNN. We provide MLP with the UCD descriptor and the appropriate network configuration. For CNN, we employ the convolutional network designed for handwritten and machine-printed character recognition (Lenet-5) and we adapt it to support 62 classes, including both digits and characters. In addition, GPU parallelization is studied to speed up both of MLP and CNN classifiers. Based on our experimentations, we demonstrate that the used real-time CNN is 2x more relevant than MLP when classifying characters.
Sebti, Aicha; Souahi, Fatiha; Mohellebi, Faroudja; Igoud, Sadek
2017-07-01
This research focuses on the application of an artificial neural network (ANN) to predict the removal efficiency of tartrazine from simulated wastewater using a photocatalytic process under solar illumination. A program is developed in Matlab software to optimize the neural network architecture and select the suitable combination of training algorithm, activation function and hidden neurons number. The experimental results of a batch reactor operated under different conditions of pH, TiO2 concentration, initial organic pollutant concentration and solar radiation intensity are used to train, validate and test the networks. While negligible mineralization is demonstrated, the experimental results show that under sunlight irradiation, 85% of tartrazine is removed after 300 min using only 0.3 g/L of TiO2 powder. Therefore, irradiation time is prolonged and almost 66% of total organic carbon is reduced after 15 hours. ANN 5-8-1 with Bayesian regulation back-propagation algorithm and hyperbolic tangent sigmoid transfer function is found to be able to predict the response with high accuracy. In addition, the connection weights approach is used to assess the importance contribution of each input variable on the ANN model response. Among the five experimental parameters, the irradiation time has the greatest effect on the removal efficiency of tartrazine.
Energy modelling in sensor networks
Directory of Open Access Journals (Sweden)
D. Schmidt
2007-06-01
Full Text Available Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.
Rolls, David A.; Wang, Peng; McBryde, Emma; Pattison, Philippa; Robins, Garry
2015-01-01
We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR) epidemic dynamics. The types of network models are exponential random graph models (ERGMs) and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a “hidden population”. In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model) and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure. PMID:26555701
Calibrating a flow model in an irrigation network: Case study in Alicante, Spain
Directory of Open Access Journals (Sweden)
Modesto Pérez-Sánchez
2017-04-01
Full Text Available The usefulness of models depends on their validation in a calibration process, ensuring that simulated flows and pressure values in any line are really occurring and, therefore, becoming a powerful decision tool for many aspects in the network management (i.e., selection of hydraulic machines in pumped systems, reduction of the installed power in operation, analysis of theoretical energy recovery. A new proposed method to assign consumptions patterns and to determine flows over time in irrigation networks is calibrated in the present research. As novelty, the present paper proposes a robust calibration strategy for flow assignment in lines, based on some key performance indicators (KPIF coming from traditional hydrological models: Nash-Sutcliffe coefficient (non-dimensional index, root relative square error (error index and percent bias (tendency index. The proposed strategy for calibration was applied to a real case in Alicante (Spain, with a goodness of fit considered as “very good” in many indicators. KPIF parameters observed present a satisfactory goodness of fit of the series, considering their repeatability. Average Nash-Sutcliffe coefficient value oscillated between 0.30 and 0.63, average percent bias values were below 10% in all the range, and average root relative square error values varied between 0.65 and 0.80.
Mazloom, Amin R.; Basu, Kalyan; Mandal, Subhrangsu S.; Das, Sajal K.
Complex biological systems often characterize nonlinear dynamics. Employing traditional deterministic or stochastic approaches to quantify these dynamics either fail to capture their existing deviant effects or lead to combinatorial explosion. In this work we devised a novel approach that projects the biological functions within a pathway to a network of stochastic events that are random in time and space. By applying this approach recursively to the object system we build the event network of the entire system. The dynamics of the system evolves through the execution of the event network by a simulation engine which comprised of a time prioritized event queue. As a case study we utilized the current method and conducted an in-silico experiment on the metabolic plasticity of a cardiac myocyete. We aimed to quantify the down stream effects of insulin signaling that predominantly controls the plasticity in myocardium. Intriguingly, our in-silico results on transcription regulatory effect of insulin showed a good agreement with experimental data. Meanwhile we were able to characterize the flux change across major metabolic pathways over 48 hours of the in-silico experiment. Our simulation performed a remarkable efficiency by conducting 48 hours of simulation-time in less that 2 hours of processor time.
Hock, Karlo; Ng, Kah Loon; Fefferman, Nina H.
2010-01-01
Social networks can be used to represent group structure as a network of interacting components, and also to quantify both the position of each individual and the global properties of a group. In a series of simulation experiments based on dynamic social networks, we test the prediction that social behaviors that help individuals reach prominence within their social group may conflict with their potential to benefit from their social environment. In addition to cases where individuals were able to benefit from improving both their personal relative importance and group organization, using only simple rules of social affiliation we were able to obtain results in which individuals would face a trade-off between these factors. While selection would favor (or work against) social behaviors that concordantly increase (or decrease, respectively) fitness at both individual and group level, when these factors conflict with each other the eventual selective pressure would depend on the relative returns individuals get from their social environment and their position within it. The presented results highlight the importance of a systems approach to studying animal sociality, in which the effects of social behaviors should be viewed not only through the benefits that those provide to individuals, but also in terms of how they affect broader social environment and how in turn this is reflected back on an individual's fitness. PMID:21203425
Complex Networks in Psychological Models
Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.
We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.
Directory of Open Access Journals (Sweden)
Xiao Kefeng
2017-08-01
Full Text Available The bulk commodity, different with the retail goods, has a uniqueness in the location selection, the chosen of transportation program and the decision objectives. How to make optimal decisions in the facility location, requirement distribution, shipping methods and the route selection and establish an effective distribution system to reduce the cost has become a burning issue for the e-commerce logistics, which is worthy to be deeply and systematically solved. In this paper, Logistics warehousing center model and precision marketing strategy optimization based on fuzzy method and neural network model is proposed to solve this problem. In addition, we have designed principles of the fuzzy method and neural network model to solve the proposed model because of its complexity. Finally, we have solved numerous examples to compare the results of lingo and Matlab, we use Matlab and lingo just to check the result and to illustrate the numerical example, we can find from the result, the multi-objective model increases logistics costs and improves the efficiency of distribution time.
Paini, Dean R; Yemshanov, Denys
2012-01-01
Species can sometimes spread significant distances beyond their natural dispersal ability by anthropogenic means. International shipping routes and the transport of shipping containers, in particular are a commonly recognised pathway for the introduction of invasive species. Species can gain access to a shipping container and remain inside, hidden and undetected for long periods. Currently, government biosecurity agencies charged with intercepting and removing these invasive species when they arrive to a county's border only assess the most immediate point of loading in evaluating a shipping container's risk profile. However, an invasive species could have infested a container previous to this point and travelled undetected before arriving at the border. To assess arrival risk for an invasive species requires analysing the international shipping network in order to identify the most likely source countries and the domestic ports of entry where the species is likely to arrive. We analysed an international shipping network and generated pathway simulations using a first-order Markov chain model to identify possible source ports and countries for the arrival of Khapra beetle (Trogoderma granarium) to Australia. We found Kaohsiung (Taiwan) and Busan (Republic of Korea) to be the most likely sources for Khapra beetle arrival, while the port of Melbourne was the most likely point of entry to Australia. Sensitivity analysis revealed significant stability in the rankings of foreign and Australian ports. This methodology provides a reliable modelling tool to identify and rank possible sources for an invasive species that could arrive at some time in the future. Such model outputs can be used by biosecurity agencies concerned with inspecting incoming shipping containers and wishing to optimise their inspection protocols.
Directory of Open Access Journals (Sweden)
Dean R Paini
Full Text Available Species can sometimes spread significant distances beyond their natural dispersal ability by anthropogenic means. International shipping routes and the transport of shipping containers, in particular are a commonly recognised pathway for the introduction of invasive species. Species can gain access to a shipping container and remain inside, hidden and undetected for long periods. Currently, government biosecurity agencies charged with intercepting and removing these invasive species when they arrive to a county's border only assess the most immediate point of loading in evaluating a shipping container's risk profile. However, an invasive species could have infested a container previous to this point and travelled undetected before arriving at the border. To assess arrival risk for an invasive species requires analysing the international shipping network in order to identify the most likely source countries and the domestic ports of entry where the species is likely to arrive. We analysed an international shipping network and generated pathway simulations using a first-order Markov chain model to identify possible source ports and countries for the arrival of Khapra beetle (Trogoderma granarium to Australia. We found Kaohsiung (Taiwan and Busan (Republic of Korea to be the most likely sources for Khapra beetle arrival, while the port of Melbourne was the most likely point of entry to Australia. Sensitivity analysis revealed significant stability in the rankings of foreign and Australian ports. This methodology provides a reliable modelling tool to identify and rank possible sources for an invasive species that could arrive at some time in the future. Such model outputs can be used by biosecurity agencies concerned with inspecting incoming shipping containers and wishing to optimise their inspection protocols.
Spiking modular neural networks: A neural network modeling approach for hydrological processes
National Research Council Canada - National Science Library
Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey
2006-01-01
.... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...
Developing Personal Network Business Models
DEFF Research Database (Denmark)
Saugstrup, Dan; Henten, Anders
2006-01-01
on the 'state of the art' in the field of business modeling. Furthermore, the paper suggests three generic business models for PNs: a service oriented model, a self-organized model, and a combination model. Finally, examples of relevant services and applications in relation to three different cases......The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports...... are presented and analyzed in light of business modeling of PN....
Pore network modeling of drainage process in patterned porous media: a quasi-static study
Zhang, Tao
2015-04-17
This work represents a preliminary investigation on the role of wettability conditions on the flow of a two-phase system in porous media. Since such effects have been lumped implicitly in relative permeability-saturation and capillary pressure-saturation relationships, it is quite challenging to isolate its effects explicitly in real porous media applications. However, within the framework of pore network models, it is easy to highlight the effects of wettability conditions on the transport of two-phase systems. We employ quasi-static investigation in which the system undergo slow movement based on slight increment of the imposed pressure. Several numerical experiments of the drainage process are conducted to displace a wetting fluid with a non-wetting one. In all these experiments the network is assigned different scenarios of various wettability patterns. The aim is to show that the drainage process is very much affected by the imposed pattern of wettability. The wettability conditions are imposed by assigning the value of contact angle to each pore throat according to predefined patterns.
A model of coauthorship networks
Zhou, Guochang; Li, Jianping; Xie, Zonglin
2017-10-01
A natural way of representing the coauthorship of authors is to use a generalization of graphs known as hypergraphs. A random geometric hypergraph model is proposed here to model coauthorship networks, which is generated by placing nodes on a region of Euclidean space randomly and uniformly, and connecting some nodes if the nodes satisfy particular geometric conditions. Two kinds of geometric conditions are designed to model the collaboration patterns of academic authorities and basic researches respectively. The conditions give geometric expressions of two causes of coauthorship: the authority and similarity of authors. By simulation and calculus, we show that the forepart of the degree distribution of the network generated by the model is mixture Poissonian, and the tail is power-law, which are similar to these of some coauthorship networks. Further, we show more similarities between the generated network and real coauthorship networks: the distribution of cardinalities of hyperedges, high clustering coefficient, assortativity, and small-world property
Hapugoda, J. C.; Sooriyarachchi, M. R.
2017-09-01
Survival time of patients with a disease and the incidence of that particular disease (count) is frequently observed in medical studies with the data of a clustered nature. In many cases, though, the survival times and the count can be correlated in a way that, diseases that occur rarely could have shorter survival times or vice versa. Due to this fact, joint modelling of these two variables will provide interesting and certainly improved results than modelling these separately. Authors have previously proposed a methodology using Generalized Linear Mixed Models (GLMM) by joining the Discrete Time Hazard model with the Poisson Regression model to jointly model survival and count model. As Aritificial Neural Network (ANN) has become a most powerful computational tool to model complex non-linear systems, it was proposed to develop a new joint model of survival and count of Dengue patients of Sri Lanka by using that approach. Thus, the objective of this study is to develop a model using ANN approach and compare the results with the previously developed GLMM model. As the response variables are continuous in nature, Generalized Regression Neural Network (GRNN) approach was adopted to model the data. To compare the model fit, measures such as root mean square error (RMSE), absolute mean error (AME) and correlation coefficient (R) were used. The measures indicate the GRNN model fits the data better than the GLMM model.
Modelling the structure of complex networks
DEFF Research Database (Denmark)
Herlau, Tue
networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex......A complex network is a systems in which a discrete set of units interact in a quantifiable manner. Representing systems as complex networks have become increasingly popular in a variety of scientific fields including biology, social sciences and economics. Parallel to this development complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...
2016-11-09
standpoint remains more of an art than a science . Even when well executed, the ongoing evolution of the network may violate initial, security-critical design...from a security standpoint remains more of an art than a science . Even when well executed, the ongoing evolution of the network may violate initial...is outside the scope of this paper. As such, we focus on event probabilities. The output of the network porosity model is a stream of timestamped
Optimized null model for protein structure networks.
Milenković, Tijana; Filippis, Ioannis; Lappe, Michael; Przulj, Natasa
2009-06-26
Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs) as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model for RIGs, by
Optimized null model for protein structure networks.
Directory of Open Access Journals (Sweden)
Tijana Milenković
Full Text Available Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model
Telecommunications network modelling, planning and design
Evans, Sharon
2003-01-01
Telecommunication Network Modelling, Planning and Design addresses sophisticated modelling techniques from the perspective of the communications industry and covers some of the major issues facing telecommunications network engineers and managers today. Topics covered include network planning for transmission systems, modelling of SDH transport network structures and telecommunications network design and performance modelling, as well as network costs and ROI modelling and QoS in 3G networks.
Thermal Network Modelling Handbook
1972-01-01
Thermal mathematical modelling is discussed in detail. A three-fold purpose was established: (1) to acquaint the new user with the terminology and concepts used in thermal mathematical modelling, (2) to present the more experienced and occasional user with quick formulas and methods for solving everyday problems, coupled with study cases which lend insight into the relationships that exist among the various solution techniques and parameters, and (3) to begin to catalog in an orderly fashion the common formulas which may be applied to automated conversational language techniques.
Li, Rui; Chen, Kewei; Fleisher, Adam S; Reiman, Eric M; Yao, Li; Wu, Xia
2011-06-01
This study examined the large-scale connectivity among multiple resting-state networks (RSNs) in the human brain. Independent component analysis was first applied to the resting-state functional MRI (fMRI) data acquired from 12 healthy young subjects for the separation of RSNs. Four sensory (lateral and medial visual, auditory, and sensory-motor) RSNs and four cognitive (default-mode, self-referential, dorsal and ventral attention) RSNs were identified. Gaussian Bayesian network (BN) learning approach was then used for the examination of the conditional dependencies among these RSNs and the construction of the network-to-network directional connectivity patterns. The BN based results demonstrated that sensory networks and cognitive networks were hierarchically organized. Specially, we found the sensory networks were highly intra-dependent and the cognitive networks were strongly intra-influenced. In addition, the results depicted dominant bottom-up connectivity from sensory networks to cognitive networks in which the self-referential and the default-mode networks might play respectively important roles in the process of resting-state information transfer and integration. The present study characterized the global connectivity relations among RSNs and delineated more characteristics of spontaneous activity dynamics. Copyright © 2011 Elsevier Inc. All rights reserved.
Gossip spread in social network Models
Johansson, Tobias
2017-04-01
Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.
Modeling, Optimization & Control of Hydraulic Networks
DEFF Research Database (Denmark)
Tahavori, Maryamsadat
2014-01-01
in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply....... The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used...... to solve nonlinear optimal control problems. In the water supply system model, the hydraulic resistance of the valve is estimated by real data and it is considered to be a disturbance. The disturbance in our system is updated every 24 hours based on the amount of water usage by consumers every day. Model...
Lan Liu; Ryan K. L. Ko; Guangming Ren; Xiaoping Xu
2017-01-01
As the adoption of Software Defined Networks (SDNs) grows, the security of SDN still has several unaddressed limitations. A key network security research area is in the study of malware propagation across the SDN-enabled networks. To analyze the spreading processes of network malware (e.g., viruses) in SDN, we propose a dynamic model with a time-varying community network, inspired by research models on the spread of epidemics in complex networks across communities. We assume subnets of the ne...
Towards Reproducible Descriptions of Neuronal Network Models
Nordlie, Eilen; Gewaltig, Marc-Oliver; Plesser, Hans Ekkehard
2009-01-01
Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing—and thinking about—complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain. PMID:19662159
Towards reproducible descriptions of neuronal network models.
Directory of Open Access Journals (Sweden)
Eilen Nordlie
2009-08-01
Full Text Available Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing--and thinking about--complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain.
Neural network modeling of emotion
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
Information Propagation in Peer-to-Peer Networking : Modeling and Empirical Studies
Tang, S.
2010-01-01
Although being a young technology, peer-to-peer (P2P) networking has spurred dramatic evolution on the Internet over the recent twenty years. Unlike traditional server-client mode, P2P networking applications are user-centric. Users (peers) generate their own content and share it with others across
Tensor network models of multiboundary wormholes
Peach, Alex; Ross, Simon F.
2017-05-01
We study the entanglement structure of states dual to multiboundary wormhole geometries using tensor network models. Perfect and random tensor networks tiling the hyperbolic plane have been shown to provide good models of the entanglement structure in holography. We extend this by quotienting the plane by discrete isometries to obtain models of the multiboundary states. We show that there are networks where the entanglement structure is purely bipartite, extending results obtained in the large temperature limit. We analyse the entanglement structure in a range of examples.
Heddam, Salim
2016-09-01
This paper proposes multilayer perceptron neural network (MLPNN) to predict phycocyanin (PC) pigment using water quality variables as predictor. In the proposed model, four water quality variables that are water temperature, dissolved oxygen, pH, and specific conductance were selected as the inputs for the MLPNN model, and the PC as the output. To demonstrate the capability and the usefulness of the MLPNN model, a total of 15,849 data measured at 15-min (15 min) intervals of time are used for the development of the model. The data are collected at the lower Charles River buoy, and available from the US Environmental Protection Agency (USEPA). For comparison purposes, a multiple linear regression (MLR) model that was frequently used for predicting water quality variables in previous studies is also built. The performances of the models are evaluated using a set of widely used statistical indices. The performance of the MLPNN and MLR models is compared with the measured data. The obtained results show that (i) the all proposed MLPNN models are more accurate than the MLR models and (ii) the results obtained are very promising and encouraging for the development of phycocyanin-predictive models.
Mobility Model for Tactical Networks
Rollo, Milan; Komenda, Antonín
In this paper a synthetic mobility model which represents behavior and movement pattern of heterogeneous units in disaster relief and battlefield scenarios is proposed. These operations usually take place in environment without preexisting communication infrastructure and units thus have to be connected by wireless communication network. Units cooperate to fulfill common tasks and communication network has to serve high amount of communication requests, especially data, voice and video stream transmissions. To verify features of topology control, routing and interaction protocols software simulations are usually used, because of their scalability, repeatability and speed. Behavior of all these protocols relies on the mobility model of the network nodes, which has to resemble real-life movement pattern. Proposed mobility model is goal-driven and provides support for various types of units, group mobility and realistic environment model with obstacles. Basic characteristics of the mobility model like node spatial distribution and average node degree were analyzed.
Validation Study of CODES Dragonfly Network Model with Theta Cray XC System
Energy Technology Data Exchange (ETDEWEB)
Mubarak, Misbah [Argonne National Lab. (ANL), Argonne, IL (United States); Ross, Robert B. [Argonne National Lab. (ANL), Argonne, IL (United States)
2017-05-31
This technical report describes the experiments performed to validate the MPI performance measurements reported by the CODES dragonfly network simulation with the Theta Cray XC system at the Argonne Leadership Computing Facility (ALCF).
Mathematical model of highways network optimization
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.
Modelling freeway networks by hybrid stochastic models
Boel, R.; Mihaylova, L.
2004-01-01
Traffic flow on freeways is a nonlinear, many-particle phenomenon, with complex interactions between the vehicles. This paper presents a stochastic hybrid model of freeway traffic at a time scale and at a level of detail suitable for on-line flow estimation, for routing and ramp metering control. The model describes the evolution of continuous and discrete state variables. The freeway is considered as a network of components, each component representing a different section of the network. The...
Mondal, Naba Kumar; Bhaumik, Ria; Das, Biswajit; Roy, Palas; Datta, Jayanta Kumar; Bhattacharyya, Siddhartha; Bhattacharjee, Siddhartha
2015-09-01
Artificial Neural Network model and isotherm study were done to predict the removal efficiency of phenol. An inexpensive adsorbent was developed from orange peel ash (OPA) for effective uptake of phenol from aqueous solution. The influence of different experimental parameters (initial concentration, pH, adsorbents dose, contact time, stirring rate and temperature) on phenol uptake efficiency was evaluated. Phenol was adsorbed by the OPA up to maximum of 97.34 %. Adsorption of phenol on OPA correlated well with the Langmuir isotherm model, implying monolayer coverage of phenol onto the surface of the adsorbent. The maximum adsorption capacity was found to be 3.55 mg g-1 at 303 K. Pseudo-second-order kinetic model provided a better correlation for the experimental data. Moreover, the activation energy of the adsorption process ( E a) was found to be -18.001 kJ mol-1 indicating physorption nature of phenol onto OPA. A negative enthalpy (∆ H°) value indicated that the adsorption process was exothermic. Again multi-layer Neural Network model was in very good agreement with the experimental results.
Posterior Predictive Model Checking in Bayesian Networks
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.
Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van
2017-06-01
In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.
A multi-scale hybrid neural network retrieval model for dust storm detection, a study in Asia
Wong, Man Sing; Xiao, Fei; Nichol, Janet; Fung, Jimmy; Kim, Jhoon; Campbell, James; Chan, P. W.
2015-05-01
Dust storms are known to have adverse effects on human health and significant impact on weather, air quality, hydrological cycle, and ecosystem. Atmospheric dust loading is also one of the large uncertainties in global climate modeling, due to its significant impact on the radiation budget and atmospheric stability. Observations of dust storms in humid tropical south China (e.g. Hong Kong), are challenging due to high industrial pollution from the nearby Pearl River Delta region. This study develops a method for dust storm detection by combining ground station observations (PM10 concentration, AERONET data), geostationary satellite images (MTSAT), and numerical weather and climatic forecasting products (WRF/Chem). The method is based on a hybrid neural network (NN) retrieval model for two scales: (i) a NN model for near real-time detection of dust storms at broader regional scale; (ii) a NN model for detailed dust storm mapping for Hong Kong and Taiwan. A feed-forward multilayer perceptron (MLP) NN, trained using back propagation (BP) algorithm, was developed and validated by the k-fold cross validation approach. The accuracy of the near real-time detection MLP-BP network is 96.6%, and the accuracies for the detailed MLP-BP neural network for Hong Kong and Taiwan is 74.8%. This newly automated multi-scale hybrid method can be used to give advance near real-time mapping of dust storms for environmental authorities and the public. It is also beneficial for identifying spatial locations of adverse air quality conditions, and estimates of low visibility associated with dust events for port and airport authorities.
Network model of security system
Directory of Open Access Journals (Sweden)
Adamczyk Piotr
2016-01-01
Full Text Available The article presents the concept of building a network security model and its application in the process of risk analysis. It indicates the possibility of a new definition of the role of the network models in the safety analysis. Special attention was paid to the development of the use of an algorithm describing the process of identifying the assets, vulnerability and threats in a given context. The aim of the article is to present how this algorithm reduced the complexity of the problem by eliminating from the base model these components that have no links with others component and as a result and it was possible to build a real network model corresponding to reality.
Directory of Open Access Journals (Sweden)
Sofie Marton
2017-12-01
Full Text Available This paper presents a real industrial example in which the steam utility network of a refinery is modelled in order to evaluate potential Heat Integration retrofits proposed for the site. A refinery, typically, has flexibility to optimize the operating strategy for the steam system depending on the operation of the main processes. This paper presents a few examples of Heat Integration retrofit measures from a case study of a large oil refinery. In order to evaluate expected changes in fuel and electricity imports to the refinery after implementation of the proposed retrofits, a steam system model has been developed. The steam system model has been tested and validated with steady state data from three different operating scenarios and can be used to evaluate how changes to steam balances at different pressure levels would affect overall steam balances, generation of shaft power in turbines, and the consumption of fuel gas.
Complex networks repair strategies: Dynamic models
Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang
2017-09-01
Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree 〈 k 〉 and enhances network invulnerability.
A Multilayer Model of Computer Networks
Shchurov, Andrey A.
2015-01-01
The fundamental concept of applying the system methodology to network analysis declares that network architecture should take into account services and applications which this network provides and supports. This work introduces a formal model of computer networks on the basis of the hierarchical multilayer networks. In turn, individual layers are represented as multiplex networks. The concept of layered networks provides conditions of top-down consistency of the model. Next, we determined the...
Buch, A. M.; Narain, A.; Pandey, P. C.
1994-01-01
The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.
Evaluation of EOR Processes Using Network Models
DEFF Research Database (Denmark)
Larsen, Jens Kjell; Krogsbøll, Anette
1998-01-01
The report consists of the following parts: 1) Studies of wetting properties of model fluids and fluid mixtures aimed at an optimal selection of candidates for micromodel experiments. 2) Experimental studies of multiphase transport properties using physical models of porous networks (micromodels...
Data modeling of network dynamics
Jaenisch, Holger M.; Handley, James W.; Faucheux, Jeffery P.; Harris, Brad
2004-01-01
This paper highlights Data Modeling theory and its use for text data mining as a graphical network search engine. Data Modeling is then used to create a real-time filter capable of monitoring network traffic down to the port level for unusual dynamics and changes in business as usual. This is accomplished in an unsupervised fashion without a priori knowledge of abnormal characteristics. Two novel methods for converting streaming binary data into a form amenable to graphics based search and change detection are introduced. These techniques are then successfully applied to 1999 KDD Cup network attack data log-on sessions to demonstrate that Data Modeling can detect attacks without prior training on any form of attack behavior. Finally, two new methods for data encryption using these ideas are proposed.
Jean-Denis Mathias; Steven Lade; Victor Galaz
2017-01-01
Information and collaboration patterns embedded in social networks play key roles in multilevel and polycentric modes of governance. However, modeling the dynamics of such social networks in multilevel settings has been seldom addressed in the literature. Here we use an adaptive social network model to elaborate the interplay between a central and a local government in order to maintain a polycentric governance. More specifically, our analysis explores in what ways specific policy choices mad...
Directory of Open Access Journals (Sweden)
Armin Alipour
2014-01-01
Full Text Available Reference evapotranspiration (ETO is one of the major parameters affecting hydrological cycle. Use of satellite images can be very helpful to compensate for lack of reliable weather data. This study aimed to determine ETO using land surface temperature (LST data acquired from MODIS sensor. LST data were considered as inputs of two data-driven models including artificial neural network (ANN and M5 model tree to estimate ETO values and their results were compared with calculated ETO by FAO-Penman-Monteith (FAO-PM equation. Climatic data of five weather stations in Khuzestan province, which is located in the southeastern Iran, were employed in order to calculate ETO. LST data extracted from corresponding points of MODIS images were used in training of ANN and M5 model tree. Among study stations, three stations (Amirkabir, Farabi, and Gazali were selected for creating the models and two stations (Khazaei and Shoeybie for testing. In Khazaei station, the coefficient of determination (R2 values for comparison between calculated ETO by FAO-PM and estimated ETO by ANN and M5 tree model were 0.79 and 0.80, respectively. In a similar manner, R2 values for Shoeybie station were 0.86 and 0.85. In general, the results showed that both models can properly estimate ETO by means of LST data derived from MODIS sensor.
Modeling the interdependent network based on two-mode networks
An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian
2017-10-01
Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.
Directory of Open Access Journals (Sweden)
Vít Maca
2017-06-01
Full Text Available Aim of the paper is to describe methodology for calculating significance of environmental factors in landslide susceptibility modeling and present result of selected one. As a study area part of a Jemma basin in Ethiopian Highland is used. This locality is highly affected by mass movement processes. In the first part all major factors and their influence are described briefly. Majority of the work focuses on research of other methodologies used in susceptibility models and design of own methodology. This method is unlike most of the methods used completely objective, therefore it is not possible to intervene in the results. In article all inputs and outputs of the method are described as well as all stages of calculations. Results are illustrated on specific examples. In study area most important factor for landslide susceptibility is slope, on the other hand least important is land cover. At the end of article landslide susceptibility map is created. Part of the article is discussion of results and possible improvements of the methodology.
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...
Study of Memristor-based Oscillatory Neural Networks using PPV modeling
Wang, Hanyu; Qi, Miao; Wang, Bo
2015-01-01
Memristor-based oscillator is becoming promising thanks to its inherent NDR (Negative Differential Region) property and compact circuit structure. This paves the way to the large scale oscillatory neural network (ONN) and the realization of pattern recognition based on its global synchronization. However, the simulation of large scale ONN encounters the problem of long simulation time because of the large number of oscillators. Here we propose a highly efficient method to abstract the phase s...
Model Servqual Rule Base Asean University Network untuk Penilaian Kualitas Program Studi
Directory of Open Access Journals (Sweden)
Esti Wijayanti
2016-05-01
Full Text Available As well known that AUN (Asean University Network.AUN and ABET (Accreditation Boardb for Enginnering and Technology are non-profit organitatinon which have. AUN (Asean University Network were using variable with refer to AUN’s criteria’s there consist of fifteen which are: Expected Learning Outcomes, Programme Specification, Programme Structure and Content, Teaching and Learning Strategy, Student Assessment, Academic Staff Quality, Support Staff Quality, Student Quality, Student Advice and Support, Facilities and Infrastructure, Quality Assurance of Teaching/Learning Process, Staff Development Activities, Stakeholders Feedback, Output, Stakeholders Satisfaction,and adopted score's scale 7. In there here, we discuss the fifteen AUN’s of AUN in the criterias. There servqual of as can be into five dimensions, assurance, empathy, responsive, reliability and facilty in order to make the assessment's process easier. This research outcome indicated that this proposed method can be used to evaluate an education program. The validation result by using AUN's data and the analysis of servqual rule base Asean University Network almost have the same pattern with correlation value is 0,985 and this is can be accepted because its validity have reach 97%.
[Study on a back propogation neural network-based predictive model for prevalence of birth defect].
Wang, Wei; Xu, Wei; Zheng, Ya-jun; Zhou, Bao-sen
2007-05-01
To evaluate the value of a back propogation (BP) network on prediction of birth defect and to give clues on its prevention. Data of birth defect in Shenyang from 1995 to 2005 were used as a training set to predict the prevalence rate of birth defect. Neural network tools box of Software MATLAB 6.5 was used to train and simulate BP Artificial Neural Network. When using data of the year 1995-2003 to predict the prevalence rate of birth defect in 2004-2005, the results showed that: the fitting average error of prevalence rate was 1.34%, RNL was 0.9874, and the prediction of average error was 1.78%. Using data of the year 1995-2005 to predict the prevalence rate of birth defect in 2006-2007, the results showed that: the fitting average error was 0.33%, RNL was 0.9954, the prevalence rates of birth defect in 2006-2007 were 11.00% and 11.29%. Compared to the conventional statistics method, BP not only showed better prediction precision, but had no limit to the type or distribution of relevant data, thus providing a powerful method in epidemiological prediction.
Network Models of Mechanical Assemblies
Whitney, Daniel E.
Recent network research has sought to characterize complex systems with a number of statistical metrics, such as power law exponent (if any), clustering coefficient, community behavior, and degree correlation. Use of such metrics represents a choice of level of abstraction, a balance of generality and detailed accuracy. It has been noted that "social networks" consistently display clustering coefficients that are higher than those of random or generalized random networks, that they have small world properties such as short path lengths, and that they have positive degree correlations (assortative mixing). "Technological" or "non-social" networks display many of these characteristics except that they generally have negative degree correlations (disassortative mixing). [Newman 2003i] In this paper we examine network models of mechanical assemblies. Such systems are well understood functionally. We show that there is a cap on their average nodal degree and that they have negative degree correlations (disassortative mixing). We identify specific constraints arising from first principles, their structural patterns, and engineering practice that suggest why they have these properties. In addition, we note that their main "motif" is closed loops (as it is for electric and electronic circuits), a pattern that conventional network analysis does not detect but which is used by software intended to aid in the design of such systems.
Directory of Open Access Journals (Sweden)
Jean-Denis Mathias
2017-03-01
Full Text Available Information and collaboration patterns embedded in social networks play key roles in multilevel and polycentric modes of governance. However, modeling the dynamics of such social networks in multilevel settings has been seldom addressed in the literature. Here we use an adaptive social network model to elaborate the interplay between a central and a local government in order to maintain a polycentric governance. More specifically, our analysis explores in what ways specific policy choices made by a central agent affect the features of an emerging social network composed of local organizations and local users. Using two types of stylized policies, adaptive co-management and adaptive one-level management, we focus on the benefits of multi-level adaptive cooperation for network management. Our analysis uses viability theory to explore and to quantify the ability of these policies to achieve specific network properties. Viability theory gives the family of policies that enables maintaining the polycentric governance unlike optimal control that gives a unique blueprint. We found that the viability of the policies can change dramatically depending on the goals and features of the social network. For some social networks, we also found a very large difference between the viability of the adaptive one-level management and adaptive co-management policies. However, results also show that adaptive co-management doesn’t always provide benefits. Hence, we argue that applying viability theory to governance networks can help policy design by analyzing the trade-off between the costs of adaptive co-management and the benefits associated with its ability to maintain desirable social network properties in a polycentric governance framework.
Markov State Models of gene regulatory networks.
Chu, Brian K; Tse, Margaret J; Sato, Royce R; Read, Elizabeth L
2017-02-06
Gene regulatory networks with dynamics characterized by multiple stable states underlie cell fate-decisions. Quantitative models that can link molecular-level knowledge of gene regulation to a global understanding of network dynamics have the potential to guide cell-reprogramming strategies. Networks are often modeled by the stochastic Chemical Master Equation, but methods for systematic identification of key properties of the global dynamics are currently lacking. The method identifies the number, phenotypes, and lifetimes of long-lived states for a set of common gene regulatory network models. Application of transition path theory to the constructed Markov State Model decomposes global dynamics into a set of dominant transition paths and associated relative probabilities for stochastic state-switching. In this proof-of-concept study, we found that the Markov State Model provides a general framework for analyzing and visualizing stochastic multistability and state-transitions in gene networks. Our results suggest that this framework-adopted from the field of atomistic Molecular Dynamics-can be a useful tool for quantitative Systems Biology at the network scale.
Flood routing modelling with Artificial Neural Networks
Directory of Open Access Journals (Sweden)
R. Peters
2006-01-01
Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.
Modelling Users` Trust in Online Social Networks
Directory of Open Access Journals (Sweden)
Iacob Cătoiu
2014-02-01
Full Text Available Previous studies (McKnight, Lankton and Tripp, 2011; Liao, Lui and Chen, 2011 have shown the crucial role of trust when choosing to disclose sensitive information online. This is the case of online social networks users, who must disclose a certain amount of personal data in order to gain access to these online services. Taking into account privacy calculus model and the risk/benefit ratio, we propose a model of users’ trust in online social networks with four variables. We have adapted metrics for the purpose of our study and we have assessed their reliability and validity. We use a Partial Least Squares (PLS based structural equation modelling analysis, which validated all our initial assumptions, indicating that our three predictors (privacy concerns, perceived benefits and perceived risks explain 48% of the variation of users’ trust in online social networks, the resulting variable of our study. We also discuss the implications and further research opportunities of our study.
Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher
2005-01-01
This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.
Stochastic modeling and analysis of telecoms networks
Decreusefond, Laurent
2012-01-01
This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an
Directory of Open Access Journals (Sweden)
vahid Rezaverdinejad
2017-01-01
Full Text Available Introduction: Greenhouse cultivation is a steadily developing agricultural sector throughout the world. In addition, it is known that water is a major issue almost all part of the world especially for countries which have insufficient water source. With this great expansion of greenhouse cultivation, the need of appropriate irrigation management has a great importance. Accurate determination of irrigation scheduling (irrigation timing and frequency is one of the main factors in achieving high yields and avoiding loss of quality in greenhouse tomato and cucumber. To do this, it is fundamental to know the crop water requirements or real evapotranspiration. Accurate estimation on crop water requirement is needed to avoid the excess or deficit water application, with consequent impacts on nutrient availability for plants. This can be done by using appropriate method to determine the crop evapotranspiration (ETc. In greenhouse cultivation, crop transpiration is the most important energy dissipation mechanisms that influence ETc rate. There are a large number of literatures on methods to estimate ETc in greenhouses. ETc can be measured or estimated by direct or indirect methods. The most common direct method estimates ETc from measurements with weighing lysimeters. Thisalsoincludes the evaporation measuring equipment, class A pan, Piche atmometer and modified atmometer. Indirect method includes the measurement of net radiation, temperature, relative humidity, and air vapour pressure deficit. A large number of models have been developed from these measurements to estimate ETc. Due to the fast development of under greenhouse cultivation all around the world, the needs of information on how it affects ETc in greenhouses has to be known and summarized. The existing models for ETc calculation have to be studied to know whether it is reliable for greenhouse climate (hereafter, microclimate or not. Regression and artificial neural network models are two
Directory of Open Access Journals (Sweden)
Yi Wen
2014-08-01
Full Text Available Transportation system disruption due to a disaster results in "ripple effects" throughout the entire transportation system of a metropolitan region. Many researchers have focused on the economic costs of transportation system disruptions in transportation-related industries, specifïcally within commerce and logistics, in the assessment of the regional economic costs. However, the foundation of an assessment of the regional economic costs of a disaster needs to include the evaluation of consumer surplus in addition to the direct cost for reconstruction of the regional transportation system. The objective of this study is to propose a method to estimate the regional consumer surplus based on indirect economic costs of a disaster on intermodal transportation systems in the context of diverting vehicles and trains. The computational methods used to assess the regional indirect economic costs sustained by the highway and railroad system can utilize readily available state departments of transportation (DOTs and metropolitan planning organizations (MPOs traffic models allowing prioritization of regional recovery plans after a disaster and strengthening of infrastructure before a disaster. Hurricane Katrina is one of the most devastating hurricanes in the history of the United States. Due to the significance of Hurricane Katrina, a case study is presented to evaluate consumer surplus in the Gulf Coast Region of Mississippi. Results from the case study indicate the costs of rerouting and congestion delays in the regional highway system and the rent costs of right-of-way in the regional railroad system are major factors of the indirect costs in the consumer surplus.
A Transfer Learning Approach for Network Modeling
Huang, Shuai; Li, Jing; Chen, Kewei; Wu, Teresa; Ye, Jieping; Wu, Xia; Yao, Li
2012-01-01
Networks models have been widely used in many domains to characterize the interacting relationship between physical entities. A typical problem faced is to identify the networks of multiple related tasks that share some similarities. In this case, a transfer learning approach that can leverage the knowledge gained during the modeling of one task to help better model another task is highly desirable. In this paper, we propose a transfer learning approach, which adopts a Bayesian hierarchical model framework to characterize task relatedness and additionally uses the L1-regularization to ensure robust learning of the networks with limited sample sizes. A method based on the Expectation-Maximization (EM) algorithm is further developed to learn the networks from data. Simulation studies are performed, which demonstrate the superiority of the proposed transfer learning approach over single task learning that learns the network of each task in isolation. The proposed approach is also applied to identification of brain connectivity networks of Alzheimer’s disease (AD) from functional magnetic resonance image (fMRI) data. The findings are consistent with the AD literature. PMID:24526804
Biological transportation networks: Modeling and simulation
Albi, Giacomo
2015-09-15
We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.
Continuum Modeling of Biological Network Formation
Albi, Giacomo
2017-04-10
We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes the pressure field using a Darcy type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. We first introduce micro- and mesoscopic models and show how they are connected to the macroscopic PDE system. Then, we provide an overview of analytical results for the PDE model, focusing mainly on the existence of weak and mild solutions and analysis of the steady states. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on finite elements and study the qualitative properties of network structures for various parameter values.
Phenomenological network models: Lessons for epilepsy surgery.
Hebbink, Jurgen; Meijer, Hil; Huiskamp, Geertjan; van Gils, Stephan; Leijten, Frans
2017-10-01
The current opinion in epilepsy surgery is that successful surgery is about removing pathological cortex in the anatomic sense. This contrasts with recent developments in epilepsy research, where epilepsy is seen as a network disease. Computational models offer a framework to investigate the influence of networks, as well as local tissue properties, and to explore alternative resection strategies. Here we study, using such a model, the influence of connections on seizures and how this might change our traditional views of epilepsy surgery. We use a simple network model consisting of four interconnected neuronal populations. One of these populations can be made hyperexcitable, modeling a pathological region of cortex. Using model simulations, the effect of surgery on the seizure rate is studied. We find that removal of the hyperexcitable population is, in most cases, not the best approach to reduce the seizure rate. Removal of normal populations located at a crucial spot in the network, the "driver," is typically more effective in reducing seizure rate. This work strengthens the idea that network structure and connections may be more important than localizing the pathological node. This can explain why lesionectomy may not always be sufficient. © 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
Modelling dendritic ecological networks in space: anintegrated network perspective
Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.
2013-01-01
Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of ecological networks, or in 2-D space, may be inadequate for studying the influence of structure and connectivity on ecological processes within DENs. We propose a conceptual taxonomy of network analysis methods that account for DEN characteristics to varying degrees and provide a synthesis of the different approaches within
Directory of Open Access Journals (Sweden)
Irwan Budi Santoso
2013-10-01
Full Text Available Langkah pertama dalam membangun model pengenalan Tree-Augmented Network (TAN dengan mengukur besarnya hubungan diantara pasangan fitur objek. Salah satu metode yang dapat digunakan mengukur besarnya keeratan hubungan secara linier diantara pasangan fitur adalah Korelasi Pearson. Aplikasi Korelasi Pearson dalam membangun model Tree-Augmented Network (TAN dalam penelitian ini, akan diujicobakan pada kasus membangun model pengenalan karakter tulisan tangan. Data fitur karakter tulisan tangan untuk kasus ini, diasumsikan mengikuti distribusi gaussian karena estimasi parameter model pengenalannya menggunakan estimator Maximum Likelihood (ML. Hasil eksperimen dengan menggunakan data training yang terdiri dari 5 jenis karakter tulisan tangan, menunjukkan untuk dimensi fitur karakter tulisan tangan 10x30 (30 fitur, akurasi sistem Korelasi Pearson dalam membangun model TAN untuk mengenali karakter tulisan tangan sebesar 88 %.
Model Microvascular Networks Can Have Many Equilibria.
Karst, Nathaniel J; Geddes, John B; Carr, Russell T
2017-03-01
We show that large microvascular networks with realistic topologies, geometries, boundary conditions, and constitutive laws can exhibit many steady-state flow configurations. This is in direct contrast to most previous studies which have assumed, implicitly or explicitly, that a given network can only possess one equilibrium state. While our techniques are general and can be applied to any network, we focus on two distinct network types that model human tissues: perturbed honeycomb networks and random networks generated from Voronoi diagrams. We demonstrate that the disparity between observed and predicted flow directions reported in previous studies might be attributable to the presence of multiple equilibria. We show that the pathway effect, in which hematocrit is steadily increased along a series of diverging junctions, has important implications for equilibrium discovery, and that our estimates of the number of equilibria supported by these networks are conservative. If a more complete description of the plasma skimming effect that captures red blood cell allocation at junctions with high feed hematocrit were to be obtained empirically, then the number of equilibria found by our approach would at worst remain the same and would in all likelihood increase significantly.
Probabilistic logic modeling of network reliability for hybrid network architectures
Energy Technology Data Exchange (ETDEWEB)
Wyss, G.D.; Schriner, H.K.; Gaylor, T.R.
1996-10-01
Sandia National Laboratories has found that the reliability and failure modes of current-generation network technologies can be effectively modeled using fault tree-based probabilistic logic modeling (PLM) techniques. We have developed fault tree models that include various hierarchical networking technologies and classes of components interconnected in a wide variety of typical and atypical configurations. In this paper we discuss the types of results that can be obtained from PLMs and why these results are of great practical value to network designers and analysts. After providing some mathematical background, we describe the `plug-and-play` fault tree analysis methodology that we have developed for modeling connectivity and the provision of network services in several current- generation network architectures. Finally, we demonstrate the flexibility of the method by modeling the reliability of a hybrid example network that contains several interconnected ethernet, FDDI, and token ring segments. 11 refs., 3 figs., 1 tab.
Generalization performance of regularized neural network models
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai
1994-01-01
Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...
Plant Growth Models Using Artificial Neural Networks
Bubenheim, David
1997-01-01
In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.
Introducing Synchronisation in Deterministic Network Models
DEFF Research Database (Denmark)
Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.
2006-01-01
The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading...
A Complex Network Approach to Distributional Semantic Models.
Directory of Open Access Journals (Sweden)
Akira Utsumi
Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.
Solaimani, Sam; Heikkilä, Marikka; Bouwman, W.A.G.A.
2017-01-01
In many entrepreneurial projects, the concept of the business model (BM) is used to describe a business idea at a high-level and in a holistic way. However, existing literature pays less attention to implementation (or execution) of BM. Implementation becomes more complex when a BM is proposed by
Chen, Chau-Kuang
2010-01-01
Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…
Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...
Pandey, Deeksha; Podder, Avijit; Pandit, Mansi; Latha, Narayanan
2017-09-01
The major causative agent for Acquired Immune Deficiency Syndrome (AIDS) is Human Immunodeficiency Virus-1 (HIV-1). HIV-1 is a predominant subtype of HIV which counts on human cellular mechanism virtually in every aspect of its life cycle. Binding of viral envelope glycoprotein-gp120 with human cell surface CD4 receptor triggers the early infection stage of HIV-1. This study focuses on the interaction interface between these two proteins that play a crucial role for viral infectivity. The CD4-gp120 interaction interface has been studied through a comprehensive protein-protein interaction network (PPIN) analysis and highlighted as a useful step towards identifying potential therapeutic drug targets against HIV-1 infection. We prioritized gp41, Nef and Tat proteins of HIV-1 as valuable drug targets at early stage of viral infection. Lack of crystal structure has made it difficult to understand the biological implication of these proteins during disease progression. Here, computational protein modeling techniques and molecular dynamics simulations were performed to generate three-dimensional models of these targets. Besides, molecular docking was initiated to determine the desirability of these target proteins for already available HIV-1 specific drugs which indicates the usefulness of these protein structures to identify an effective drug combination therapy against AIDS.
Modeling the Dynamics of Compromised Networks
Energy Technology Data Exchange (ETDEWEB)
Soper, B; Merl, D M
2011-09-12
Accurate predictive models of compromised networks would contribute greatly to improving the effectiveness and efficiency of the detection and control of network attacks. Compartmental epidemiological models have been applied to modeling attack vectors such as viruses and worms. We extend the application of these models to capture a wider class of dynamics applicable to cyber security. By making basic assumptions regarding network topology we use multi-group epidemiological models and reaction rate kinetics to model the stochastic evolution of a compromised network. The Gillespie Algorithm is used to run simulations under a worst case scenario in which the intruder follows the basic connection rates of network traffic as a method of obfuscation.
QSAR modelling using combined simple competitive learning networks and RBF neural networks.
Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E
2018-04-01
The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.
Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi
2007-04-01
SummaryModeling of rainfall-runoff dynamics is one of the most studied topics in hydrology due to its essential application to water resources management. Recently, artificial intelligence has gained much popularity for calibrating the nonlinear relationships inherent in the rainfall-runoff process. In this study, the advantages of artificial neural networks and neuro-fuzzy system in continuous modeling of the daily and hourly behaviour of runoff were examined. Three different adaptive techniques were constructed and examined namely, Levenberg-Marquardt feed forward neural network, Bayesian regularization feed forward neural network, and neuro-fuzzy. In addition, the effects of data transformation on model performance were also investigated. This was done by examining the performance of the three network architectures and training algorithms using both raw and transformed data. Through inspection of the results it was found that although the model built on transformed data outperforms the model built on raw data, no significant differences were found between the forecast accuracies of the three examined models. A detailed comparison of the overall performance indicated that the neuro-fuzzy model performed better than both the Levenberg-Marquardt-FFNN and the Bayesian regularization-FFNN. In order to enable users to process the data easily, a graphic user interface (GUI) was developed. This program allows users to process the rainfall-runoff data, to train/test the model using various input options and to visualize results.
Directory of Open Access Journals (Sweden)
Youness El Ansari
2017-01-01
Full Text Available We investigate the various conditions that control the extinction and stability of a nonlinear mathematical spread model with stochastic perturbations. This model describes the spread of viruses into an infected computer network which is powered by a system of antivirus software. The system is analyzed by using the stability theory of stochastic differential equations and the computer simulations. First, we study the global stability of the virus-free equilibrium state and the virus-epidemic equilibrium state. Furthermore, we use the Itô formula and some other theoretical theorems of stochastic differential equation to discuss the extinction and the stationary distribution of our system. The analysis gives a sufficient condition for the infection to be extinct (i.e., the number of viruses tends exponentially to zero. The ergodicity of the solution and the stationary distribution can be obtained if the basic reproduction number Rp is bigger than 1, and the intensities of stochastic fluctuations are small enough. Numerical simulations are carried out to illustrate the theoretical results.
Straka, Hans; Simmers, John
2012-04-01
The amphibian Xenopus laevis represents a highly amenable model system for exploring the ontogeny of central neural networks, the functional establishment of sensory-motor transformations, and the generation of effective motor commands for complex behaviors. Specifically, the ability to employ a range of semi-intact and isolated preparations for in vitro morphophysiological experimentation has provided new insights into the developmental and integrative processes associated with the generation of locomotory behavior during changing life styles. In vitro electrophysiological studies have begun to explore the functional assembly, disassembly and dynamic plasticity of spinal pattern generating circuits as Xenopus undergoes the developmental switch from larval tail-based swimming to adult limb-based locomotion. Major advances have also been made in understanding the developmental onset of multisensory signal processing for reactive gaze and posture stabilizing reflexes during self-motion. Additionally, recent evidence from semi-intact animal and isolated CNS experiments has provided compelling evidence that in Xenopus tadpoles, predictive feed-forward signaling from the spinal locomotor pattern generator are engaged in minimizing visual disturbances during tail-based swimming. This new concept questions the traditional view of retinal image stabilization that in vertebrates has been exclusively attributed to sensory-motor transformations of body/head motion-detecting signals. Moreover, changes in visuomotor demands associated with the developmental transition in propulsive strategy from tail- to limb-based locomotion during metamorphosis presumably necessitates corresponding adaptive alterations in the intrinsic spinoextraocular coupling mechanism. Consequently, Xenopus provides a unique opportunity to address basic questions on the developmental dynamics of neural network assembly and sensory-motor computations for vertebrate motor behavior in general. Copyright
Ruohotie, Pekka; Nokelainen, Petri; Tirri, Henry; Silander, Tomi
This study examined the data selection process preceding multivariate analysis for a data set measuring student motivation and self-regulated learning. Data were 138 responses to a questionnaire on motivation and self-regulated learning, adapted for Finnish students. The first goal was to compare the results gained with "gentle" and…
Studying Dynamics in Business Networks
DEFF Research Database (Denmark)
Andersen, Poul Houman; Anderson, Helen; Havila, Virpi
1998-01-01
This paper develops a theory on network dynamics using the concepts of role and position from sociological theory. Moreover, the theory is further tested using case studies from Denmark and Finland......This paper develops a theory on network dynamics using the concepts of role and position from sociological theory. Moreover, the theory is further tested using case studies from Denmark and Finland...
Dynamics of Bottlebrush Networks: A Computational Study
Dobrynin, Andrey; Cao, Zhen; Sheiko, Sergei
We study dynamics of deformation of bottlebrush networks using molecular dynamics simulations and theoretical calculations. Analysis of our simulation results show that the dynamics of bottlebrush network deformation can be described by a Rouse model for polydisperse networks with effective Rouse time of the bottlebrush network strand, τR =τ0Ns2 (Nsc + 1) where, Ns is the number-average degree of polymerization of the bottlebrush backbone strands between crosslinks, Nsc is the degree of polymerization of the side chains and τ0is a characteristic monomeric relaxation time. At time scales t smaller than the Rouse time, t crosslinks, the network response is pure elastic with shear modulus G (t) =G0 , where G0 is the equilibrium shear modulus at small deformation. The stress evolution in the bottlebrush networks can be described by a universal function of t /τR . NSF DMR-1409710.
Integrating public transort networks in the axial model
Gil, J.
2012-01-01
This study presents a first step in the development of a model that integrates public transport networks with the space syntax axial model, towards a network model that can describe the multi?modal movement structure of a city and study its patterns and flows. It describes the method for building an
Network Bandwidth Utilization Forecast Model on High Bandwidth Network
Energy Technology Data Exchange (ETDEWEB)
Yoo, Wucherl; Sim, Alex
2014-07-07
With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.
Network bandwidth utilization forecast model on high bandwidth networks
Energy Technology Data Exchange (ETDEWEB)
Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-03-30
With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.
An autocatalytic network model for stock markets
Caetano, Marco Antonio Leonel; Yoneyama, Takashi
2015-02-01
The stock prices of companies with businesses that are closely related within a specific sector of economy might exhibit movement patterns and correlations in their dynamics. The idea in this work is to use the concept of autocatalytic network to model such correlations and patterns in the trends exhibited by the expected returns. The trends are expressed in terms of positive or negative returns within each fixed time interval. The time series derived from these trends is then used to represent the movement patterns by a probabilistic boolean network with transitions modeled as an autocatalytic network. The proposed method might be of value in short term forecasting and identification of dependencies. The method is illustrated with a case study based on four stocks of companies in the field of natural resource and technology.
Pedaballi, Siddareddy B.
2006-01-01
Development of alternative methodologies for travel demand modeling has become important in recent years due to the lack of resources for small and medium communities to adopt conventional four step travel models. Many researchers have proposed alternative tools of travel demand modeling for these communities. But majority of them still require large amount of data and technical sophistication. In this study, the Path Flow Estimator (PFE) is used to estimate the network traffic of Cache Co...
Directory of Open Access Journals (Sweden)
Rachid Darnag
2017-02-01
Full Text Available Support vector machines (SVM represent one of the most promising Machine Learning (ML tools that can be applied to develop a predictive quantitative structure–activity relationship (QSAR models using molecular descriptors. Multiple linear regression (MLR and artificial neural networks (ANNs were also utilized to construct quantitative linear and non linear models to compare with the results obtained by SVM. The prediction results are in good agreement with the experimental value of HIV activity; also, the results reveal the superiority of the SVM over MLR and ANN model. The contribution of each descriptor to the structure–activity relationships was evaluated.
An acoustical model based monitoring network
Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der
2010-01-01
In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the
Directory of Open Access Journals (Sweden)
morteza akbari
2017-03-01
of the basin with 2962 meters above sea level. Kardeh dam was primarily constructed on the Kardehriver for providing drinking and agriculture water demand with an annual volume rate of 21.23 million cubic meters. Satellite image: To estimate the level of snow cover, the satellite Landsat ETM+ data at path 35-159, rows 34-159 over the period 2001-2002 were used. Surfaces covered with snow were separated bysnow distinction normalized index (NDSI, But due to the lack of training data for image classification (areas with snow and no snow, the k-means unsupervised classification algorithm was used. Extracting the data from the meteorological and hydrological Since only a gauging station exists at the Kardeh dam site, the daily discharge data recorded at these stations was used. To extract meteorological parameters such as precipitation and temperature data, the records of the three stations Golmakan, Mashhad and Ghouchan, as the stations closest to the dam basin Kardeh were used. The purpose of this study was to simulate snowmelt runoff using SRM hydrological models and to compare the results with the outputs of the neural network models such as the ANN and the ANFIS model. Flow simulation was carried out using SRM, ANN model with the Multilayer Perceptron with back-propagation algorithm, and Sugeno type ANFIS. To evaluate the performance of the models in addition to the standard statistics such as mean square error or mean absolute percentage error, the regression coefficient measures and the difference in volume were used. The results showed that all three models are almost similar in terms of statistical parameters MSE and R and the differences were negligible. SRM model: SRM model is a daily hydrological model. This equation is composed of different components including 14 parameters. The input values were calculated based on the equations of degree-day factor. The evaluation of the model was performed with flow subside factor, coefficient and subtracting volume
Directory of Open Access Journals (Sweden)
Abdol Iman Amouei
2013-12-01
Full Text Available Background and purpose: Cadmium is hazardous and non-biodegradable material entering the food chain. In this paper, the removal of cadmium from aqueous solutions by sunflower powder (the natural biosorbent was investigated. Materials and Methods: The experiments were performed in a batch system. The effect of parameters such as contact time, pH, cadmium concentration and adsorbent dose were evaluated. Results: The results showed that increasing of pH, contact time and adsorbent dose caused increasing efficiency of removal cadmium from aqueous solutions. The results were modeled using biosorption kinetics and a neural network with four hidden neurons, including bias which was able to predict the concentration dependency of data very accurately. Conclusion: On the basis of the results, could be used from sunflower residues as a cost and efficient biosorbent for treatment of wastewater with Cadmium. The prediction of the artificial neural network model fit the experimental data very precisely.
Models as Tools of Analysis of a Network Organisation
Directory of Open Access Journals (Sweden)
Wojciech Pająk
2013-06-01
Full Text Available The paper presents models which may be applied as tools of analysis of a network organisation. The starting point of the discussion is defining the following terms: supply chain and network organisation. Further parts of the paper present basic assumptions analysis of a network organisation. Then the study characterises the best known models utilised in analysis of a network organisation. The purpose of the article is to define the notion and the essence of network organizations and to present the models used for their analysis.
Spatial Models and Networks of Living Systems
DEFF Research Database (Denmark)
Juul, Jeppe Søgaard
When studying the dynamics of living systems, insight can often be gained by developing a mathematical model that can predict future behaviour of the system or help classify system characteristics. However, in living cells, organisms, and especially groups of interacting individuals, a large number....... Such systems are known to be stabilized by spatial structure. Finally, I analyse data from a large mobile phone network and show that people who are topologically close in the network have similar communication patterns. This main part of the thesis is based on six different articles, which I have co...
Modeling gene regulatory networks: A network simplification algorithm
Ferreira, Luiz Henrique O.; de Castro, Maria Clicia S.; da Silva, Fabricio A. B.
2016-12-01
Boolean networks have been used for some time to model Gene Regulatory Networks (GRNs), which describe cell functions. Those models can help biologists to make predictions, prognosis and even specialized treatment when some disturb on the GRN lead to a sick condition. However, the amount of information related to a GRN can be huge, making the task of inferring its boolean network representation quite a challenge. The method shown here takes into account information about the interactome to build a network, where each node represents a protein, and uses the entropy of each node as a key to reduce the size of the network, allowing the further inferring process to focus only on the main protein hubs, the ones with most potential to interfere in overall network behavior.
Topological evolution of virtual social networks by modeling social activities
Sun, Xin; Dong, Junyu; Tang, Ruichun; Xu, Mantao; Qi, Lin; Cai, Yang
2015-09-01
With the development of Internet and wireless communication, virtual social networks are becoming increasingly important in the formation of nowadays' social communities. Topological evolution model is foundational and critical for social network related researches. Up to present most of the related research experiments are carried out on artificial networks, however, a study of incorporating the actual social activities into the network topology model is ignored. This paper first formalizes two mathematical abstract concepts of hobbies search and friend recommendation to model the social actions people exhibit. Then a social activities based topology evolution simulation model is developed to satisfy some well-known properties that have been discovered in real-world social networks. Empirical results show that the proposed topology evolution model has embraced several key network topological properties of concern, which can be envisioned as signatures of real social networks.
A Model of Mental State Transition Network
Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo
Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.
Li, Liang; Li, Baojuan; Bai, Yuanhan; Liu, Wenlei; Wang, Huaning; Leung, Hoi-Chung; Tian, Ping; Zhang, Linchuan; Guo, Fan; Cui, Long-Biao; Yin, Hong; Lu, Hongbing; Tan, Qingrong
2017-07-01
Understanding the neural basis underlying major depressive disorder (MDD) is essential for the diagnosis and treatment of this mental disorder. Aberrant activation and functional connectivity of the default mode network (DMN) have been consistently found in patients with MDD. It is not known whether effective connectivity within the DMN is altered in MDD. The primary object of this study is to investigate the effective connectivity within the DMN during resting state in MDD patients before and after eight weeks of antidepressant treatment. We defined four regions of the DMN (medial frontal cortex, posterior cingulate cortex, left parietal cortex, and right parietal cortex) for each participant using a group independent component analysis. The coupling parameters reflecting the causal interactions among the DMN regions were estimated using spectral dynamic causal modeling (DCM). Twenty-seven MDD patients and 27 healthy controls were included in the statistical analysis. Our results showed declined influences from the left parietal cortex to other DMN regions in the pre-treatment patients as compared with healthy controls. After eight weeks of treatment, the influence from the right parietal cortex to the posterior cingulate cortex significantly decreased. These findings suggest that the reduced excitatory causal influence of the left parietal cortex is the key alteration of the DMN in patients with MDD, and the disrupted causal influences that parietal cortex exerts on the posterior cingulate cortex is responsive to antidepressant treatment.
Multiple Social Networks, Data Models and Measures for
DEFF Research Database (Denmark)
Magnani, Matteo; Rossi, Luca
2017-01-01
Multiple Social Network Analysis is a discipline defining models, measures, methodologies, and algorithms to study multiple social networks together as a single social system. It is particularly valuable when the networks are interconnected, e.g., the same actors are present in more than one...
The model of social crypto-network
Directory of Open Access Journals (Sweden)
Марк Миколайович Орел
2015-06-01
Full Text Available The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks
Entropy Characterization of Random Network Models
Directory of Open Access Journals (Sweden)
Pedro J. Zufiria
2017-06-01
Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.
The model of social crypto-network
Марк Миколайович Орел
2015-01-01
The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks
Multiplicative Attribute Graph Model of Real-World Networks
Energy Technology Data Exchange (ETDEWEB)
Kim, Myunghwan [Stanford Univ., CA (United States); Leskovec, Jure [Stanford Univ., CA (United States)
2010-10-20
Large scale real-world network data, such as social networks, Internet andWeb graphs, is ubiquitous in a variety of scientific domains. The study of such social and information networks commonly finds patterns and explain their emergence through tractable models. In most networks, especially in social networks, nodes also have a rich set of attributes (e.g., age, gender) associatedwith them. However, most of the existing network models focus only on modeling the network structure while ignoring the features of nodes in the network. Here we present a class of network models that we refer to as the Multiplicative Attribute Graphs (MAG), which naturally captures the interactions between the network structure and node attributes. We consider a model where each node has a vector of categorical features associated with it. The probability of an edge between a pair of nodes then depends on the product of individual attributeattribute similarities. The model yields itself to mathematical analysis as well as fit to real data. We derive thresholds for the connectivity, the emergence of the giant connected component, and show that the model gives rise to graphs with a constant diameter. Moreover, we analyze the degree distribution to show that the model can produce networks with either lognormal or power-law degree distribution depending on certain conditions.
An Efficient Multitask Scheduling Model for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Hongsheng Yin
2014-01-01
Full Text Available The sensor nodes of multitask wireless network are constrained in performance-driven computation. Theoretical studies on the data processing model of wireless sensor nodes suggest satisfying the requirements of high qualities of service (QoS of multiple application networks, thus improving the efficiency of network. In this paper, we present the priority based data processing model for multitask sensor nodes in the architecture of multitask wireless sensor network. The proposed model is deduced with the M/M/1 queuing model based on the queuing theory where the average delay of data packets passing by sensor nodes is estimated. The model is validated with the real data from the Huoerxinhe Coal Mine. By applying the proposed priority based data processing model in the multitask wireless sensor network, the average delay of data packets in a sensor nodes is reduced nearly to 50%. The simulation results show that the proposed model can improve the throughput of network efficiently.
Modeling Diagnostic Assessments with Bayesian Networks
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego
2007-01-01
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
Piecewise linear and Boolean models of chemical reaction networks.
Veliz-Cuba, Alan; Kumar, Ajit; Josić, Krešimir
2014-12-01
Models of biochemical networks are frequently complex and high-dimensional. Reduction methods that preserve important dynamical properties are therefore essential for their study. Interactions in biochemical networks are frequently modeled using Hill functions ([Formula: see text]). Reduced ODEs and Boolean approximations of such model networks have been studied extensively when the exponent [Formula: see text] is large. However, while the case of small constant [Formula: see text] appears in practice, it is not well understood. We provide a mathematical analysis of this limit and show that a reduction to a set of piecewise linear ODEs and Boolean networks can be mathematically justified. The piecewise linear systems have closed-form solutions that closely track those of the fully nonlinear model. The simpler, Boolean network can be used to study the qualitative behavior of the original system. We justify the reduction using geometric singular perturbation theory and compact convergence, and illustrate the results in network models of a toggle switch and an oscillator.
Bayesian Network Webserver: a comprehensive tool for biological network modeling.
Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan
2013-11-01
The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.
Networked Microgrids Scoping Study
Energy Technology Data Exchange (ETDEWEB)
Starke, Michael R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-10-01
While the utilization of a microgrid for local power reliability during grid outage and emergencies is a well-known benefit, the integration of microgrids with the broader electrical distribution system will allow for seamless interaction with distribution system operations, contributing to resource and economic optimization, enhanced reliability and resiliency, and improved power quality. By virtue of integration with the distribution system, multiple microgrids should be networked and collectively known as networked microgrids. As a follow-up to the work conducted by Oak Ridge National Laboratory on a microgrid controller [the Complete System-level Efficient and Interoperable Solution for Microgrid Integrated Controls (CSEISMIC)], the main goal of this work is to identify the next steps for bringing microgrid research to the utility industry, particularly as a resource for enhancing efficiency, reliability, and resilience. Various R&D needs for the integration of microgrids into the distribution system have been proposed, including interconnection types, communications, control architectures, quantification of benefits, functional requirements, and various operational issues.
A last updating evolution model for online social networks
Bu, Zhan; Xia, Zhengyou; Wang, Jiandong; Zhang, Chengcui
2013-05-01
As information technology has advanced, people are turning to electronic media more frequently for communication, and social relationships are increasingly found on online channels. However, there is very limited knowledge about the actual evolution of the online social networks. In this paper, we propose and study a novel evolution network model with the new concept of “last updating time”, which exists in many real-life online social networks. The last updating evolution network model can maintain the robustness of scale-free networks and can improve the network reliance against intentional attacks. What is more, we also found that it has the “small-world effect”, which is the inherent property of most social networks. Simulation experiment based on this model show that the results and the real-life data are consistent, which means that our model is valid.
Energy Technology Data Exchange (ETDEWEB)
Perumalla, Kalyan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Alam, Maksudul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-10-01
A novel parallel algorithm is presented for generating random scale-free networks using the preferential-attachment model. The algorithm, named cuPPA, is custom-designed for single instruction multiple data (SIMD) style of parallel processing supported by modern processors such as graphical processing units (GPUs). To the best of our knowledge, our algorithm is the first to exploit GPUs, and also the fastest implementation available today, to generate scale free networks using the preferential attachment model. A detailed performance study is presented to understand the scalability and runtime characteristics of the cuPPA algorithm. In one of the best cases, when executed on an NVidia GeForce 1080 GPU, cuPPA generates a scale free network of a billion edges in less than 2 seconds.
Network Authentication Protocol Studies
2009-04-01
Blue, and P. Jaszkowiak. Using Spark-Ada to model and verify a MILS message router. In Proc. Int’l Symposium on Secure Software Enginneering , Mar...Foss, R. Blue, and P. Jaszkowiak. Using Spark-Ada to model and verify a MILS message router. In Proc. Int’l Symposium on Secure Software Enginneering
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Object Oriented Modeling Of Social Networks
Zeggelink, Evelien P.H.; Oosten, Reinier van; Stokman, Frans N.
1996-01-01
The aim of this paper is to explain principles of object oriented modeling in the scope of modeling dynamic social networks. As such, the approach of object oriented modeling is advocated within the field of organizational research that focuses on networks. We provide a brief introduction into the
Bayesian estimation of the network autocorrelation model
Dittrich, D.; Leenders, R.T.A.J.; Mulder, J.
2017-01-01
The network autocorrelation model has been extensively used by researchers interested modeling social influence effects in social networks. The most common inferential method in the model is classical maximum likelihood estimation. This approach, however, has known problems such as negative bias of
A Cascade-Based Emergency Model for Water Distribution Network
Directory of Open Access Journals (Sweden)
Qing Shuang
2015-01-01
Full Text Available Water distribution network is important in the critical physical infrastructure systems. The paper studies the emergency resource strategies on water distribution network with the approach of complex network and cascading failures. The model of cascade-based emergency for water distribution network is built. The cascade-based model considers the network topology analysis and hydraulic analysis to provide a more realistic result. A load redistribution function with emergency recovery mechanisms is established. From the aspects of uniform distribution, node betweenness, and node pressure, six recovery strategies are given to reflect the network topology and the failure information, respectively. The recovery strategies are evaluated with the complex network indicators to describe the failure scale and failure velocity. The proposed method is applied by an illustrative example. The results showed that the recovery strategy considering the node pressure can enhance the network robustness effectively. Besides, this strategy can reduce the failure nodes and generate the least failure nodes per time.
Agent-based modeling and network dynamics
Namatame, Akira
2016-01-01
The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...
Modeling the reemergence of information diffusion in social network
Yang, Dingda; Liao, Xiangwen; Shen, Huawei; Cheng, Xueqi; Chen, Guolong
2018-01-01
Information diffusion in networks is an important research topic in various fields. Existing studies either focus on modeling the process of information diffusion, e.g., independent cascade model and linear threshold model, or investigate information diffusion in networks with certain structural characteristics such as scale-free networks and small world networks. However, there are still several phenomena that have not been captured by existing information diffusion models. One of the prominent phenomena is the reemergence of information diffusion, i.e., a piece of information reemerges after the completion of its initial diffusion process. In this paper, we propose an optimized information diffusion model by introducing a new informed state into traditional susceptible-infected-removed model. We verify the proposed model via simulations in real-world social networks, and the results indicate that the model can reproduce the reemergence of information during the diffusion process.
DEFF Research Database (Denmark)
Rasmussen, Erik Stavnsager; Jørgensen, Jacob Høj; Goduscheit, René Chester
2007-01-01
We have in the research project NEWGIBM (New Global ICT based Business Models) during 2005 and 2006 closely cooperated with a group of firms. The focus in the project has been development of new business models (and innovation) in close cooperation with multiple partners. These partners have been...... customers, suppliers, R&D partners, and others. The methodological problem is thus, how to come from e.g. one in-depth case study to a more formalized theory or model on how firms can develop new projects and be innovative in a network. The paper is structured so that it starts with a short presentation...... of the two key concepts in our research setting and theoretical models: Innovation and networks. It is not our intention in this paper to present a lengthy discussion of the two concepts, but a short presentation is necessary to understand the validity and interpretation discussion later in the paper. Next...
Modeling data throughput on communication networks
Energy Technology Data Exchange (ETDEWEB)
Eldridge, J.M.
1993-11-01
New challenges in high performance computing and communications are driving the need for fast, geographically distributed networks. Applications such as modeling physical phenomena, interactive visualization, large data set transfers, and distributed supercomputing require high performance networking [St89][Ra92][Ca92]. One measure of a communication network`s performance is the time it takes to complete a task -- such as transferring a data file or displaying a graphics image on a remote monitor. Throughput, defined as the ratio of the number of useful data bits transmitted per the time required to transmit those bits, is a useful gauge of how well a communication system meets this performance measure. This paper develops and describes an analytical model of throughput. The model is a tool network designers can use to predict network throughput. It also provides insight into those parts of the network that act as a performance bottleneck.
Concentration dependent model of protein-protein interaction networks
Zhang, Jingshan
2007-01-01
The scale free structure p(k)~k^{-gamma} of protein-protein interaction networks can be produced by a static physical model. We find the earlier study of deterministic threshold models with exponential fitness distributions can be generalized to explain the apparent scale free degree distribution of the physical model, and this explanation provides a generic mechanism of "scale free" networks. We predict the dependence of gamma on experimental protein concentrations. The clustering coefficient distribution of the model is also studied.
Ripple-Spreading Network Model Optimization by Genetic Algorithm
Directory of Open Access Journals (Sweden)
Xiao-Bing Hu
2013-01-01
Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.
Directory of Open Access Journals (Sweden)
Lan Liu
2017-01-01
Full Text Available As the adoption of Software Defined Networks (SDNs grows, the security of SDN still has several unaddressed limitations. A key network security research area is in the study of malware propagation across the SDN-enabled networks. To analyze the spreading processes of network malware (e.g., viruses in SDN, we propose a dynamic model with a time-varying community network, inspired by research models on the spread of epidemics in complex networks across communities. We assume subnets of the network as communities and links that are dense in subnets but sparse between subnets. Using numerical simulation and theoretical analysis, we find that the efficiency of network malware propagation in this model depends on the mobility rate q of the nodes between subnets. We also find that there exists a mobility rate threshold qc. The network malware will spread in the SDN when the mobility rate q>qc. The malware will survive when q>qc and perish when q
Network models of frugivory and seed dispersal: Challenges and opportunities
Carlo, Tomás A.; Yang, Suann
2011-11-01
Network analyses have emerged as a new tool to study frugivory and seed dispersal (FSD) mutualisms because networks can model and simplify the complexity of multiple community-wide species interactions. Moreover, network theory suggests that structural properties, such as the presence of highly generalist species, are linked to the stability of mutualistic communities. However, we still lack empirical validation of network model predictions. Here we outline new research avenues to connect network models to FSD processes, and illustrate the challenges and opportunities of this tool with a field study. We hypothesized that generalist frugivores would be important for forest stability by dispersing seeds into deforested areas and initiating reforestation. We then constructed a network of plant-frugivore interactions using published data and identified the most generalist frugivores. To test the importance of generalists we measured: 1) the frequency with which frugivores moved between pasture and forest, 2) the bird-generated seed rain under perches in the pasture, and 3) the perching frequency of birds above seed traps. The generalist frugivores in the forest network were not important for seed dispersal into pastures, and thus for forest recovery, because the forest network excluded habitat heterogeneities, frugivore behavior, and movements. More research is needed to develop ways to incorporate relevant FSD processes into network models in order for these models to be more useful to community ecology and conservation. The network framework can serve to spark and renew interest in FSD and further our understanding of plant-animal communities.
Modified Penna bit-string network evolution model for scale-free networks with assortative mixing
Kim, Yup; Choi, Woosik; Yook, Soon-Hyung
2012-02-01
Motivated by biological aging dynamics, we introduce a network evolution model for social interaction networks. In order to study the effect of social interactions originating from biological and sociological reasons on the topological properties of networks, we introduce the activitydependent rewiring process. From the numerical simulations, we show that the degree distribution of the obtained networks follows a power-law distribution with an exponentially decaying tail, P( k) ˜ ( k + c)- γ exp(- k/k 0). The obtained value of γ is in the range 2 networks. Moreover, we also show that the degree-degree correlation of the network is positive, which is a characteristic of social interaction networks. The possible applications of our model to real systems are also discussed.
Kinematic Structural Modelling in Bayesian Networks
Schaaf, Alexander; de la Varga, Miguel; Florian Wellmann, J.
2017-04-01
We commonly capture our knowledge about the spatial distribution of distinct geological lithologies in the form of 3-D geological models. Several methods exist to create these models, each with its own strengths and limitations. We present here an approach to combine the functionalities of two modeling approaches - implicit interpolation and kinematic modelling methods - into one framework, while explicitly considering parameter uncertainties and thus model uncertainty. In recent work, we proposed an approach to implement implicit modelling algorithms into Bayesian networks. This was done to address the issues of input data uncertainty and integration of geological information from varying sources in the form of geological likelihood functions. However, one general shortcoming of implicit methods is that they usually do not take any physical constraints into consideration, which can result in unrealistic model outcomes and artifacts. On the other hand, kinematic structural modelling intends to reconstruct the history of a geological system based on physically driven kinematic events. This type of modelling incorporates simplified, physical laws into the model, at the cost of a substantial increment of usable uncertain parameters. In the work presented here, we show an integration of these two different modelling methodologies, taking advantage of the strengths of both of them. First, we treat the two types of models separately, capturing the information contained in the kinematic models and their specific parameters in the form of likelihood functions, in order to use them in the implicit modelling scheme. We then go further and combine the two modelling approaches into one single Bayesian network. This enables the direct flow of information between the parameters of the kinematic modelling step and the implicit modelling step and links the exclusive input data and likelihoods of the two different modelling algorithms into one probabilistic inference framework. In
Settings in Social Networks : a Measurement Model
Schweinberger, Michael; Snijders, Tom A.B.
2003-01-01
A class of statistical models is proposed that aims to recover latent settings structures in social networks. Settings may be regarded as clusters of vertices. The measurement model is based on two assumptions. (1) The observed network is generated by hierarchically nested latent transitive
Settings in social networks : A measurement model
Schweinberger, M; Snijders, TAB
2003-01-01
A class of statistical models is proposed that aims to recover latent settings structures in social networks. Settings may be regarded as clusters of vertices. The measurement model is based on two assumptions. (1) The observed network is generated by hierarchically nested latent transitive
Spinal Cord Injury Model System Information Network
... the UAB-SCIMS Contact the UAB-SCIMS UAB Spinal Cord Injury Model System Newly Injured Health Daily Living Consumer ... Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network ...
Radio Channel Modeling in Body Area Networks
An, L.; Bentum, Marinus Jan; Meijerink, Arjan; Scanlon, W.G.
2009-01-01
A body area network (BAN) is a network of bodyworn or implanted electronic devices, including wireless sensors which can monitor body parameters or to de- tect movements. One of the big challenges in BANs is the propagation channel modeling. Channel models can be used to understand wave propagation
Radio channel modeling in body area networks
An, L.; Bentum, Marinus Jan; Meijerink, Arjan; Scanlon, W.G.
2010-01-01
A body area network (BAN) is a network of bodyworn or implanted electronic devices, including wireless sensors which can monitor body parameters or to detect movements. One of the big challenges in BANs is the propagation channel modeling. Channel models can be used to understand wave propagation in
Network interconnections: an architectural reference model
Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.
1985-01-01
One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for
Performance modeling of network data services
Energy Technology Data Exchange (ETDEWEB)
Haynes, R.A.; Pierson, L.G.
1997-01-01
Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.
Learning Bayesian Network Model Structure from Data
National Research Council Canada - National Science Library
Margaritis, Dimitris
2003-01-01
In this thesis I address the important problem of the determination of the structure of directed statistical models, with the widely used class of Bayesian network models as a concrete vehicle of my ideas...
NC truck network model development research.
2008-09-01
This research develops a validated prototype truck traffic network model for North Carolina. The model : includes all counties and metropolitan areas of North Carolina and major economic areas throughout the : U.S. Geographic boundaries, population a...
Network models in economics and finance
Pardalos, Panos; Rassias, Themistocles
2014-01-01
Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.
A Network Formation Model Based on Subgraphs
Chandrasekhar, Arun
2016-01-01
We develop a new class of random-graph models for the statistical estimation of network formation that allow for substantial correlation in links. Various subgraphs (e.g., links, triangles, cliques, stars) are generated and their union results in a network. We provide estimation techniques for recovering the rates at which the underlying subgraphs were formed. We illustrate the models via a series of applications including testing for incentives to form cross-caste relationships in rural India, testing to see whether network structure is used to enforce risk-sharing, testing as to whether networks change in response to a community's exposure to microcredit, and show that these models significantly outperform stochastic block models in matching observed network characteristics. We also establish asymptotic properties of the models and various estimators, which requires proving a new Central Limit Theorem for correlated random variables.
Synergistic effects in threshold models on networks
Juul, Jonas S.; Porter, Mason A.
2018-01-01
Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.
Directory of Open Access Journals (Sweden)
Orłowska-Szostak Maria
2017-01-01
Full Text Available The paper describes the issues of optimization of calculations performed during the calibration of a computer model describing the flow in the water distribution network. Optimization concerns the efficiency of these calculations which means not only the volume and speed of calculations, but above all, the optimal use of the measurements made during calibration to obtain the best, i.e. the most real value of the searched parameters/characteristics of the system components. The paper includes a short introduction which orders the range of methods of calibration and the area of calculation methods used in this class of issues, and then the description of an example where in the calibration process was used a computational tool called EPANET Calibrator developed by scientists – engineers of cooperating Brazilian universities. This tool is based on genetic...algorithm.
Characterization and Modeling of Network Traffic
DEFF Research Database (Denmark)
Shawky, Ahmed; Bergheim, Hans; Ragnarsson, Olafur
2011-01-01
This paper attempts to characterize and model backbone network traffic, using a small number of statistics. In order to reduce cost and processing power associated with traffic analysis. The parameters affecting the behaviour of network traffic are investigated and the choice is that inter......-arrival time, IP addresses, port numbers and transport protocol are the only necessary parameters to model network traffic behaviour. In order to recreate this behaviour, a complex model is needed which is able to recreate traffic behaviour based on a set of statistics calculated from the parameters values....... The model investigates the traffic generation mechanisms, and grouping traffic into flows and applications....
Van Dijk, Jerry; Van Der Vliet, Roland E.; De Jong, Harm; Zeylmans Van Emmichoven, Maarten J.; Van Hardeveld, Henk A.; Dekker, Stefan C.; Wassen, Martin J.
2015-01-01
Context: Climate change can directly affect habitats within ecological networks, but may also have indirect effects on network quality by inducing land use change. The relative impact of indirect effects of climate change on the quality of ecological networks currently remains largely unknown.
Completely random measures for modelling block-structured sparse networks
DEFF Research Database (Denmark)
Herlau, Tue; Schmidt, Mikkel Nørgaard; Mørup, Morten
2016-01-01
Many statistical methods for network data parameterize the edge-probability by attributing latent traits to the vertices such as block structure and assume exchangeability in the sense of the Aldous-Hoover representation theorem. Empirical studies of networks indicate that many real-world networks...... [2014] proposed the use of a different notion of exchangeability due to Kallenberg [2006] and obtained a network model which admits power-law behaviour while retaining desirable statistical properties, however this model does not capture latent vertex traits such as block-structure. In this work we re......-introduce the use of block-structure for network models obeying allenberg’s notion of exchangeability and thereby obtain a model which admits the inference of block-structure and edge inhomogeneity. We derive a simple expression for the likelihood and an efficient sampling method. The obtained model...
A network model of the interbank market
Li, Shouwei; He, Jianmin; Zhuang, Yaming
2010-12-01
This work introduces a network model of an interbank market based on interbank credit lending relationships. It generates some network features identified through empirical analysis. The critical issue to construct an interbank network is to decide the edges among banks, which is realized in this paper based on the interbank’s degree of trust. Through simulation analysis of the interbank network model, some typical structural features are identified in our interbank network, which are also proved to exist in real interbank networks. They are namely, a low clustering coefficient and a relatively short average path length, community structures, and a two-power-law distribution of out-degree and in-degree.
Model for Microcirculation Transportation Network Design
Directory of Open Access Journals (Sweden)
Qun Chen
2012-01-01
Full Text Available The idea of microcirculation transportation was proposed to shunt heavy traffic on arterial roads through branch roads. The optimization model for designing micro-circulation transportation network was developed to pick out branch roads as traffic-shunting channels and determine their required capacity, trying to minimize the total reconstruction expense and land occupancy subject to saturation and reconstruction space constraints, while accounting for the route choice behaviour of network users. Since micro-circulation transportation network design problem includes both discrete and continuous variables, a discretization method was developed to convert two groups of variables (discrete variables and continuous variables into one group of new discrete variables, transforming the mixed network design problem into a new kind of discrete network design problem with multiple values. The genetic algorithm was proposed to solve the new discrete network design problem. Finally a numerical example demonstrated the efficiency of the model and algorithm.
A small-world network model of facial emotion recognition.
Takehara, Takuma; Ochiai, Fumio; Suzuki, Naoto
2016-01-01
Various models have been proposed to increase understanding of the cognitive basis of facial emotions. Despite those efforts, interactions between facial emotions have received minimal attention. If collective behaviours relating to each facial emotion in the comprehensive cognitive system could be assumed, specific facial emotion relationship patterns might emerge. In this study, we demonstrate that the frameworks of complex networks can effectively capture those patterns. We generate 81 facial emotion images (6 prototypes and 75 morphs) and then ask participants to rate degrees of similarity in 3240 facial emotion pairs in a paired comparison task. A facial emotion network constructed on the basis of similarity clearly forms a small-world network, which features an extremely short average network distance and close connectivity. Further, even if two facial emotions have opposing valences, they are connected within only two steps. In addition, we show that intermediary morphs are crucial for maintaining full network integration, whereas prototypes are not at all important. These results suggest the existence of collective behaviours in the cognitive systems of facial emotions and also describe why people can efficiently recognize facial emotions in terms of information transmission and propagation. For comparison, we construct three simulated networks--one based on the categorical model, one based on the dimensional model, and one random network. The results reveal that small-world connectivity in facial emotion networks is apparently different from those networks, suggesting that a small-world network is the most suitable model for capturing the cognitive basis of facial emotions.
Modelling of virtual production networks
Directory of Open Access Journals (Sweden)
2011-03-01
Full Text Available Nowadays many companies, especially small and medium-sized enterprises (SMEs, specialize in a limited field of production. It requires forming virtual production networks of cooperating enterprises to manufacture better, faster and cheaper. Apart from that, some production orders cannot be realized, because there is not a company of sufficient production potential. In this case the virtual production networks of cooperating companies can realize these production orders. These networks have larger production capacity and many different resources. Therefore it can realize many more production orders together than each of them separately. Such organization allows for executing high quality product. The maintenance costs of production capacity and used resources are not so high. In this paper a methodology of rapid prototyping of virtual production networks is proposed. It allows to execute production orders on time considered existing logistic constraints.
Modeling Epidemics Spreading on Social Contact Networks.
Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua
2015-09-01
Social contact networks and the way people interact with each other are the key factors that impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR) model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact networks. The results from both simulations and real data set conclude that the epidemics are more likely to outbreak on social contact networks with higher average degree. We also present some potential immunization strategies, such as random set immunization, dominating set immunization, and high degree set immunization to further prove the conclusion.
Vrettaros, John; Vouros, George; Drigas, Athanasios S.
This article studies the expediency of using neural networks technology and the development of back-propagation networks (BPN) models for modeling automated evaluation of the answers and progress of deaf students' that possess basic knowledge of the English language and computer skills, within a virtual e-learning environment. The performance of the developed neural models is evaluated with the correlation factor between the neural networks' response values and the real value data as well as the percentage measurement of the error between the neural networks' estimate values and the real value data during its training process and afterwards with unknown data that weren't used in the training process.
Wei-Bo Chen; Wen-Cheng Liu
2015-01-01
In this study, two artificial neural network models (i.e., a radial basis function neural network, RBFN, and an adaptive neurofuzzy inference system approach, ANFIS) and a multilinear regression (MLR) model were developed to simulate the DO, TP, Chl a, and SD in the Mingder Reservoir of central Taiwan. The input variables of the neural network and the MLR models were determined using linear regression. The performances were evaluated using the RBFN, ANFIS, and MLR models based on statistical ...
Random graph models for dynamic networks
Zhang, Xiao; Moore, Cristopher; Newman, Mark E. J.
2017-10-01
Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.
Energy Technology Data Exchange (ETDEWEB)
Hwangbo, Soonho; Lee, In-Beum [POSTECH, Pohang (Korea, Republic of); Han, Jeehoon [University of Wisconsin-Madison, Madison (United States)
2014-10-15
Lots of networks are constructed in a large scale industrial complex. Each network meet their demands through production or transportation of materials which are needed to companies in a network. Network directly produces materials for satisfying demands in a company or purchase form outside due to demand uncertainty, financial factor, and so on. Especially utility network and hydrogen network are typical and major networks in a large scale industrial complex. Many studies have been done mainly with focusing on minimizing the total cost or optimizing the network structure. But, few research tries to make an integrated network model by connecting utility network and hydrogen network. In this study, deterministic mixed integer linear programming model is developed for integrating utility network and hydrogen network. Steam Methane Reforming process is necessary for combining two networks. After producing hydrogen from Steam-Methane Reforming process whose raw material is steam vents from utility network, produced hydrogen go into hydrogen network and fulfill own needs. Proposed model can suggest optimized case in integrated network model, optimized blueprint, and calculate optimal total cost. The capability of the proposed model is tested by applying it to Yeosu industrial complex in Korea. Yeosu industrial complex has the one of the biggest petrochemical complex and various papers are based in data of Yeosu industrial complex. From a case study, the integrated network model suggests more optimal conclusions compared with previous results obtained by individually researching utility network and hydrogen network.
VEPCO network model reconciliation of LANL and MZA model data
Energy Technology Data Exchange (ETDEWEB)
NONE
1992-12-15
The LANL DC load flow model of the VEPCO transmission network shows 210 more substations than the AC load flow model produced by MZA utility Consultants. MZA was requested to determine the source of the difference. The AC load flow model used for this study utilizes 2 standard network algorithms (Decoupled or Newton). The solution time of each is affected by the number of substations. The more substations included, the longer the model will take to solve. In addition, the ability of the algorithms to converge to a solution is affected by line loadings and characteristics. Convergence is inhibited by numerous lightly loaded and electrically short lines. The MZA model reduces the total substations to 343 by creating equivalent loads and generation. Most of the omitted substations are lightly loaded and rated at 115 kV. The MZA model includes 16 substations not included in the LANL model. These represent new generation including Non-Utility Generator (NUG) sites, additional substations and an intertie (Wake, to CP and L). This report also contains data from the Italian State AC power flow model and the Duke Power Company AC flow model.
An endogenous model of the credit network
He, Jianmin; Sui, Xin; Li, Shouwei
2016-01-01
In this paper, an endogenous credit network model of firm-bank agents is constructed. The model describes the endogenous formation of firm-firm, firm-bank and bank-bank credit relationships. By means of simulations, the model is capable of showing some obvious similarities with empirical evidence found by other scholars: the upper-tail of firm size distribution can be well fitted with a power-law; the bank size distribution can be lognormally distributed with a power-law tail; the bank in-degrees of the interbank credit network as well as the firm-bank credit network fall into two-power-law distributions.
Stochastic discrete model of karstic networks
Jaquet, O.; Siegel, P.; Klubertanz, G.; Benabderrhamane, H.
Karst aquifers are characterised by an extreme spatial heterogeneity that strongly influences their hydraulic behaviour and the transport of pollutants. These aquifers are particularly vulnerable to contamination because of their highly permeable networks of conduits. A stochastic model is proposed for the simulation of the geometry of karstic networks at a regional scale. The model integrates the relevant physical processes governing the formation of karstic networks. The discrete simulation of karstic networks is performed with a modified lattice-gas cellular automaton for a representative description of the karstic aquifer geometry. Consequently, more reliable modelling results can be obtained for the management and the protection of karst aquifers. The stochastic model was applied jointly with groundwater modelling techniques to a regional karst aquifer in France for the purpose of resolving surface pollution issues.
Designing Network-based Business Model Ontology
DEFF Research Database (Denmark)
Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz
2015-01-01
Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....
Queueing Models for Mobile Ad Hoc Networks
de Haan, Roland
2009-01-01
This thesis presents models for the performance analysis of a recent communication paradigm: \\emph{mobile ad hoc networking}. The objective of mobile ad hoc networking is to provide wireless connectivity between stations in a highly dynamic environment. These dynamics are driven by the mobility of
Modelling traffic congestion using queuing networks
Indian Academy of Sciences (India)
Traffic Flow-Density diagrams are obtained using simple Jackson queuing network analysis. Such simple analytical models can be used to capture the effect of non- homogenous traffic. Keywords. Flow-density curves; uninterrupted traffic; Jackson networks. 1. Introduction. Traffic management has become very essential in ...
Some queuing network models of computer systems
Herndon, E. S.
1980-01-01
Queuing network models of a computer system operating with a single workload type are presented. Program algorithms are adapted for use on the Texas Instruments SR-52 programmable calculator. By slightly altering the algorithm to process the G and H matrices row by row instead of column by column, six devices and an unlimited job/terminal population could be handled on the SR-52. Techniques are also introduced for handling a simple load dependent server and for studying interactive systems with fixed multiprogramming limits.
A Three-Dimensional Computational Model of Collagen Network Mechanics
Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi
2014-01-01
Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649
Modeling the propagation of mobile malware on complex networks
Liu, Wanping; Liu, Chao; Yang, Zheng; Liu, Xiaoyang; Zhang, Yihao; Wei, Zuxue
2016-08-01
In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.
Modeling trust context in networks
Adali, Sibel
2013-01-01
We make complex decisions every day, requiring trust in many different entities for different reasons. These decisions are not made by combining many isolated trust evaluations. Many interlocking factors play a role, each dynamically impacting the others.? In this brief, 'trust context' is defined as the system level description of how the trust evaluation process unfolds.Networks today are part of almost all human activity, supporting and shaping it. Applications increasingly incorporate new interdependencies and new trust contexts. Social networks connect people and organizations throughout
Towards a Social Networks Model for Online Learning & Performance
Chung, Kon Shing Kenneth; Paredes, Walter Christian
2015-01-01
In this study, we develop a theoretical model to investigate the association between social network properties, "content richness" (CR) in academic learning discourse, and performance. CR is the extent to which one contributes content that is meaningful, insightful and constructive to aid learning and by social network properties we…
Water distribution network modelling of a small community using ...
African Journals Online (AJOL)
In this study a network model was constructed for the hydraulic analysis and design of a small community (Sakwa) water distribution network in North Eastern geopolitical region of Nigeria using WaterCAD simulator. The analysis included a review of pressures, velocities and head loss gradients under steady state average ...
An artificial neural network based fast radiative transfer model for ...
Indian Academy of Sciences (India)
In the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of INSAT-3D. Realistic atmospheric temperature and humidity profiles have been used for training the network. Spectral response functions of GOES-13, a satellite similar in ...
Line and lattice networks under deterministic interference models
Goseling, Jasper; Gastpar, Michael; Weber, Jos H.
Capacity bounds are compared for four different deterministic models of wireless networks, representing four different ways of handling broadcast and superposition in the physical layer. In particular, the transport capacity under a multiple unicast traffic pattern is studied for a 1-D network of
Model-based control of networked systems
Garcia, Eloy; Montestruque, Luis A
2014-01-01
This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled. The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates . It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control. Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and ...
Modeling Network Traffic in Wavelet Domain
Directory of Open Access Journals (Sweden)
Sheng Ma
2004-12-01
Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.
Gene Regulation Networks for Modeling Drosophila Development
Mjolsness, E.
1999-01-01
This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.
Graphical Model Theory for Wireless Sensor Networks
Energy Technology Data Exchange (ETDEWEB)
Davis, William B.
2002-12-08
Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm.
Mitigating risk during strategic supply network modeling
Müssigmann, Nikolaus
2006-01-01
Mitigating risk during strategic supply network modeling. - In: Managing risks in supply chains / ed. by Wolfgang Kersten ... - Berlin : Schmidt, 2006. - S. 213-226. - (Operations and technology management ; 1)
Hybrid network defense model based on fuzzy evaluation.
Cho, Ying-Chiang; Pan, Jen-Yi
2014-01-01
With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.
Road maintenance planning using network flow modelling
Yang, Chao; Remenyte-Prescott, Rasa; Andrews, John
2015-01-01
This paper presents a road maintenance planning model that can be used to balance out maintenance cost and road user cost, since performing road maintenance at night can be convenient for road users but costly for highway agency. Based on the platform of the network traffic flow modelling, the traffic through the worksite and its adjacent road links is evaluated. Thus, maintenance arrangements at a worksite can be optimized considering the overall network performance. In addition, genetic alg...
Network models in optimization and their applications in practice
Glover, Fred; Phillips, Nancy V
2011-01-01
Unique in that it focuses on formulation and case studies rather than solutions procedures covering applications for pure, generalized and integer networks, equivalent formulations plus successful techniques of network models. Every chapter contains a simple model which is expanded to handle more complicated developments, a synopsis of existing applications, one or more case studies, at least 20 exercises and invaluable references. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.
DEFF Research Database (Denmark)
Sindbæk, Søren Michael
2015-01-01
Long-distance communication has emerged as a particular focus for archaeologicalexploration using network theory, analysis, and modelling. The promise is apparentlyobvious: communication in the past doubtlessly had properties of complex, dynamicnetworks, and archaeological datasets almost certainly...... preserve patterns of thisinteraction. Formal network analysis and modelling holds the potential to identify anddemonstrate such patterns, where traditional methods often prove inadequate. Thearchaeological study of communication networks in the past, however, calls for radically different analytical......,and use patterns. This point is demonstrated with reference to a study of Viking-period communication in the North Sea region...
Zhang, Yan; Zheng, Hongmei; Fath, Brian D; Liu, Hong; Yang, Zhifeng; Liu, Gengyuan; Su, Meirong
2014-01-15
If cities are considered as "superorganisms", then disorders of their metabolic processes cause something analogous to an "urban disease". It is therefore helpful to identify the causes of such disorders by analyzing the inner mechanisms that control urban metabolic processes. Combining input-output analysis with ecological network analysis lets researchers study the functional relationships and hierarchy of the urban metabolic processes, thereby providing direct support for the analysis of urban disease. In this paper, using Beijing as an example, we develop a model of an urban metabolic system that accounts for the intensity of the embodied ecological elements using monetary input-output tables from 1997, 2000, 2002, 2005, and 2007, and use this data to compile the corresponding physical input-output tables. This approach described the various flows of ecological elements through urban metabolic processes and let us build an ecological network model with 32 components. Then, using two methods from ecological network analysis (flow analysis and utility analysis), we quantitatively analyzed the physical input-output relationships among urban components, determined the ecological hierarchy of the components of the metabolic system, and determined the distribution of advantage-dominated and disadvantage-dominated relationships, thereby providing scientific support to guide restructuring of the urban metabolic system in an effort to prevent or cure urban "diseases". © 2013.
Dynamical complexity in the perception-based network formation model
Jo, Hang-Hyun; Moon, Eunyoung
2016-12-01
Many link formation mechanisms for the evolution of social networks have been successful to reproduce various empirical findings in social networks. However, they have largely ignored the fact that individuals make decisions on whether to create links to other individuals based on cost and benefit of linking, and the fact that individuals may use perception of the network in their decision making. In this paper, we study the evolution of social networks in terms of perception-based strategic link formation. Here each individual has her own perception of the actual network, and uses it to decide whether to create a link to another individual. An individual with the least perception accuracy can benefit from updating her perception using that of the most accurate individual via a new link. This benefit is compared to the cost of linking in decision making. Once a new link is created, it affects the accuracies of other individuals' perceptions, leading to a further evolution of the actual network. As for initial actual networks, we consider both homogeneous and heterogeneous cases. The homogeneous initial actual network is modeled by Erdős-Rényi (ER) random networks, while we take a star network for the heterogeneous case. In any cases, individual perceptions of the actual network are modeled by ER random networks with controllable linking probability. Then the stable link density of the actual network is found to show discontinuous transitions or jumps according to the cost of linking. As the number of jumps is the consequence of the dynamical complexity, we discuss the effect of initial conditions on the number of jumps to find that the dynamical complexity strongly depends on how much individuals initially overestimate or underestimate the link density of the actual network. For the heterogeneous case, the role of the highly connected individual as an information spreader is also discussed.
Modeling gene regulatory network motifs using Statecharts.
Fioravanti, Fabio; Helmer-Citterich, Manuela; Nardelli, Enrico
2012-03-28
Gene regulatory networks are widely used by biologists to describe the interactions among genes, proteins and other components at the intra-cellular level. Recently, a great effort has been devoted to give gene regulatory networks a formal semantics based on existing computational frameworks.For this purpose, we consider Statecharts, which are a modular, hierarchical and executable formal model widely used to represent software systems. We use Statecharts for modeling small and recurring patterns of interactions in gene regulatory networks, called motifs. We present an improved method for modeling gene regulatory network motifs using Statecharts and we describe the successful modeling of several motifs, including those which could not be modeled or whose models could not be distinguished using the method of a previous proposal.We model motifs in an easy and intuitive way by taking advantage of the visual features of Statecharts. Our modeling approach is able to simulate some interesting temporal properties of gene regulatory network motifs: the delay in the activation and the deactivation of the "output" gene in the coherent type-1 feedforward loop, the pulse in the incoherent type-1 feedforward loop, the bistability nature of double positive and double negative feedback loops, the oscillatory behavior of the negative feedback loop, and the "lock-in" effect of positive autoregulation. We present a Statecharts-based approach for the modeling of gene regulatory network motifs in biological systems. The basic motifs used to build more complex networks (that is, simple regulation, reciprocal regulation, feedback loop, feedforward loop, and autoregulation) can be faithfully described and their temporal dynamics can be analyzed.
Multi-mode clustering model for hierarchical wireless sensor networks
Hu, Xiangdong; Li, Yongfu; Xu, Huifen
2017-03-01
The topology management, i.e., clusters maintenance, of wireless sensor networks (WSNs) is still a challenge due to its numerous nodes, diverse application scenarios and limited resources as well as complex dynamics. To address this issue, a multi-mode clustering model (M2 CM) is proposed to maintain the clusters for hierarchical WSNs in this study. In particular, unlike the traditional time-trigger model based on the whole-network and periodic style, the M2 CM is proposed based on the local and event-trigger operations. In addition, an adaptive local maintenance algorithm is designed for the broken clusters in the WSNs using the spatial-temporal demand changes accordingly. Numerical experiments are performed using the NS2 network simulation platform. Results validate the effectiveness of the proposed model with respect to the network maintenance costs, node energy consumption and transmitted data as well as the network lifetime.
Exponential random graph models for networks with community structure.
Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian
2013-09-01
Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.
Neural network approaches for noisy language modeling.
Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid
2013-11-01
Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.
A quantum-implementable neural network model
Chen, Jialin; Wang, Lingli; Charbon, Edoardo
2017-10-01
A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.
Telestroke network business model strategies.
Fanale, Christopher V; Demaerschalk, Bart M
2012-10-01
Our objective is to summarize the evidence that supports the reliability of telemedicine for diagnosis and efficacy in acute stroke treatment, identify strategies for funding the development of a telestroke network, and to present issues with respect to economic sustainability, cost effectiveness, and the status of reimbursement for telestroke. Copyright © 2012 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Complex networks under dynamic repair model
Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao
2018-01-01
Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.
Performance modeling, stochastic networks, and statistical multiplexing
Mazumdar, Ravi R
2013-01-01
This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan
Modeling acquaintance networks based on balance theory
Directory of Open Access Journals (Sweden)
Vukašinović Vida
2014-09-01
Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models
Optimal transportation networks models and theory
Bernot, Marc; Morel, Jean-Michel
2009-01-01
The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.
Directory of Open Access Journals (Sweden)
John A. KershawJr
2017-09-01
Full Text Available Background A novel approach to modelling individual tree growth dynamics is proposed. The approach combines multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection system. Methods The Nova Scotia, Canada permanent sample plot network is used as a case study to develop and test the modelling approach. Predictions from this model are compared to predictions from the Acadian variant of the Forest Vegetation Simulator, a widely used statistical individual tree growth and yield model. Results Diameter and height growth rates were predicted with error rates consistent with those produced using statistical models. Mortality and ingrowth error rates were higher than those observed for diameter and height, but also were within the bounds produced by traditional approaches for predicting these rates. Ingrowth species composition was very poorly predicted. The model was capable of reproducing a wide range of stand dynamic trajectories and in some cases reproduced trajectories that the statistical model was incapable of reproducing. Conclusions The model has potential to be used as a benchmarking tool for evaluating statistical and process models and may provide a mechanism to separate signal from noise and improve our ability to analyze and learn from large regional datasets that often have underlying flaws in sample design.
A graph model for opportunistic network coding
Sorour, Sameh
2015-08-12
© 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.
Marketing communications model for innovation networks
Directory of Open Access Journals (Sweden)
Tiago João Freitas Correia
2015-10-01
Full Text Available Innovation is an increasingly relevant concept for the success of any organization, but it also represents a set of internal and external considerations, barriers and challenges to overcome. Along the concept of innovation, new paradigms emerge such as open innovation and co-creation that are simultaneously innovation modifiers and intensifiers in organizations, promoting organizational openness and stakeholder integration within the value creation process. Innovation networks composed by a multiplicity of agents in co-creative work perform as innovation mechanisms to face the increasingly complexity of products, services and markets. Technology, especially the Internet, is an enabler of all process among organizations supported by co-creative platforms for innovation. The definition of marketing communication strategies that promote motivation and involvement of all stakeholders in synergic creation and external promotion is the central aspect of this research. The implementation of the projects is performed by participative workshops with stakeholders from Madan Parque through IDEAS(REVOLUTION methodology and the operational model LinkUp parameterized for the project. The project is divided into the first part, the theoretical framework, and the second part where a model is developed for the marketing communication strategies that appeal to the Madan Parque case study. Keywords: Marketing Communication; Open Innovation, Technology; Innovation Networks; Incubator; Co-Creation.
Dutt-Mazumder, Aviroop; Button, Chris; Robins, Anthony; Bartlett, Roger
2011-12-01
Recent studies have explored the organization of player movements in team sports using a range of statistical tools. However, the factors that best explain the performance of association football teams remain elusive. Arguably, this is due to the high-dimensional behavioural outputs that illustrate the complex, evolving configurations typical of team games. According to dynamical system analysts, movement patterns in team sports exhibit nonlinear self-organizing features. Nonlinear processing tools (i.e. Artificial Neural Networks; ANNs) are becoming increasingly popular to investigate the coordination of participants in sports competitions. ANNs are well suited to describing high-dimensional data sets with nonlinear attributes, however, limited information concerning the processes required to apply ANNs exists. This review investigates the relative value of various ANN learning approaches used in sports performance analysis of team sports focusing on potential applications for association football. Sixty-two research sources were summarized and reviewed from electronic literature search engines such as SPORTDiscus, Google Scholar, IEEE Xplore, Scirus, ScienceDirect and Elsevier. Typical ANN learning algorithms can be adapted to perform pattern recognition and pattern classification. Particularly, dimensionality reduction by a Kohonen feature map (KFM) can compress chaotic high-dimensional datasets into low-dimensional relevant information. Such information would be useful for developing effective training drills that should enhance self-organizing coordination among players. We conclude that ANN-based qualitative analysis is a promising approach to understand the dynamical attributes of association football players.
Studies on a network of complex neurons
Chakravarthy, Srinivasa V.; Ghosh, Joydeep
1993-09-01
In the last decade, much effort has been directed towards understanding the role of chaos in the brain. Work with rabbits reveals that in the resting state the electrical activity on the surface of the olfactory bulb is chaotic. But, when the animal is involved in a recognition task, the activity shifts to a specific pattern corresponding to the odor that is being recognized. Unstable, quasiperiodic behavior can be found in a class of conservative, deterministic physical systems called the Hamiltonian systems. In this paper, we formulate a complex version of Hopfield's network of real parameters and show that a variation on this model is a conservative system. Conditions under which the complex network can be used as a Content Addressable memory are studied. We also examine the effect of singularities of the complex sigmoid function on the network dynamics. The network exhibits unpredictable behavior at the singularities due to the failure of a uniqueness condition for the solution of the dynamic equations. On incorporating a weight adaptation rule, the structure of the resulting complex network equations is shown to have an interesting similarity with Kosko's Adaptive Bidirectional Associative Memory.
Implicit methods for qualitative modeling of gene regulatory networks.
Garg, Abhishek; Mohanram, Kartik; De Micheli, Giovanni; Xenarios, Ioannis
2012-01-01
Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene-gene or gene-protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.
Stochastic S-system modeling of gene regulatory network.
Chowdhury, Ahsan Raja; Chetty, Madhu; Evans, Rob
2015-10-01
Microarray gene expression data can provide insights into biological processes at a system-wide level and is commonly used for reverse engineering gene regulatory networks (GRN). Due to the amalgamation of noise from different sources, microarray expression profiles become inherently noisy leading to significant impact on the GRN reconstruction process. Microarray replicates (both biological and technical), generated to increase the reliability of data obtained under noisy conditions, have limited influence in enhancing the accuracy of reconstruction . Therefore, instead of the conventional GRN modeling approaches which are deterministic, stochastic techniques are becoming increasingly necessary for inferring GRN from noisy microarray data. In this paper, we propose a new stochastic GRN model by investigating incorporation of various standard noise measurements in the deterministic S-system model. Experimental evaluations performed for varying sizes of synthetic network, representing different stochastic processes, demonstrate the effect of noise on the accuracy of genetic network modeling and the significance of stochastic modeling for GRN reconstruction . The proposed stochastic model is subsequently applied to infer the regulations among genes in two real life networks: (1) the well-studied IRMA network, a real-life in-vivo synthetic network constructed within the Saccharomyces cerevisiae yeast, and (2) the SOS DNA repair network in Escherichia coli.
Puddu, Paolo Emilio; Menotti, Alessandro
2012-07-23
Projection pursuit regression, multilayer feed-forward networks, multivariate adaptive regression splines and trees (including survival trees) have challenged classic multivariable models such as the multiple logistic function, the proportional hazards life table Cox model (Cox), the Poisson's model, and the Weibull's life table model to perform multivariable predictions. However, only artificial neural networks (NN) have become popular in medical applications. We compared several Cox versus NN models in predicting 45-year all-cause mortality (45-ACM) by 18 risk factors selected a priori: age; father life status; mother life status; family history of cardiovascular diseases; job-related physical activity; cigarette smoking; body mass index (linear and quadratic terms); arm circumference; mean blood pressure; heart rate; forced expiratory volume; serum cholesterol; corneal arcus; diagnoses of cardiovascular diseases, cancer and diabetes; minor ECG abnormalities at rest. Two Italian rural cohorts of the Seven Countries Study, made up of men aged 40 to 59 years, enrolled and first examined in 1960 in Italy. Cox models were estimated by: a) forcing all factors; b) a forward-; and c) a backward-stepwise procedure. Observed cases of deaths and of survivors were computed in decile classes of estimated risk. Forced and stepwise NN were run and compared by C-statistics (ROC analysis) with the Cox models. Out of 1591 men, 1447 died. Model global accuracies were extremely high by all methods (ROCs > 0.810) but there was no clear-cut superiority of any model to predict 45-ACM. The highest ROCs (> 0.838) were observed by NN. There were inter-model variations to select predictive covariates: whereas all models concurred to define the role of 10 covariates (mainly cardiovascular risk factors), family history, heart rate and minor ECG abnormalities were not contributors by Cox models but were so by forced NN. Forced expiratory volume and arm circumference (two protectors), were
Directory of Open Access Journals (Sweden)
Puddu Paolo
2012-07-01
Full Text Available Abstract Background Projection pursuit regression, multilayer feed-forward networks, multivariate adaptive regression splines and trees (including survival trees have challenged classic multivariable models such as the multiple logistic function, the proportional hazards life table Cox model (Cox, the Poisson’s model, and the Weibull’s life table model to perform multivariable predictions. However, only artificial neural networks (NN have become popular in medical applications. Results We compared several Cox versus NN models in predicting 45-year all-cause mortality (45-ACM by 18 risk factors selected a priori: age; father life status; mother life status; family history of cardiovascular diseases; job-related physical activity; cigarette smoking; body mass index (linear and quadratic terms; arm circumference; mean blood pressure; heart rate; forced expiratory volume; serum cholesterol; corneal arcus; diagnoses of cardiovascular diseases, cancer and diabetes; minor ECG abnormalities at rest. Two Italian rural cohorts of the Seven Countries Study, made up of men aged 40 to 59 years, enrolled and first examined in 1960 in Italy. Cox models were estimated by: a forcing all factors; b a forward-; and c a backward-stepwise procedure. Observed cases of deaths and of survivors were computed in decile classes of estimated risk. Forced and stepwise NN were run and compared by C-statistics (ROC analysis with the Cox models. Out of 1591 men, 1447 died. Model global accuracies were extremely high by all methods (ROCs > 0.810 but there was no clear-cut superiority of any model to predict 45-ACM. The highest ROCs (> 0.838 were observed by NN. There were inter-model variations to select predictive covariates: whereas all models concurred to define the role of 10 covariates (mainly cardiovascular risk factors, family history, heart rate and minor ECG abnormalities were not contributors by Cox models but were so by forced NN. Forced expiratory volume and arm
Modelling complex networks by random hierarchical graphs
Directory of Open Access Journals (Sweden)
M.Wróbel
2008-06-01
Full Text Available Numerous complex networks contain special patterns, called network motifs. These are specific subgraphs, which occur oftener than in randomized networks of Erdős-Rényi type. We choose one of them, the triangle, and build a family of random hierarchical graphs, being Sierpiński gasket-based graphs with random "decorations". We calculate the important characteristics of these graphs - average degree, average shortest path length, small-world graph family characteristics. They depend on probability of decorations. We analyze the Ising model on our graphs and describe its critical properties using a renormalization-group technique.
A Network Model of Credit Risk Contagion
Directory of Open Access Journals (Sweden)
Ting-Qiang Chen
2012-01-01
Full Text Available A network model of credit risk contagion is presented, in which the effect of behaviors of credit risk holders and the financial market regulators and the network structure are considered. By introducing the stochastic dominance theory, we discussed, respectively, the effect mechanisms of the degree of individual relationship, individual attitude to credit risk contagion, the individual ability to resist credit risk contagion, the monitoring strength of the financial market regulators, and the network structure on credit risk contagion. Then some derived and proofed propositions were verified through numerical simulations.
Deep space network software cost estimation model
Tausworthe, R. C.
1981-01-01
A parametric software cost estimation model prepared for Jet PRopulsion Laboratory (JPL) Deep Space Network (DSN) Data System implementation tasks is described. The resource estimation mdel modifies and combines a number of existing models. The model calibrates the task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit JPL software life-cycle statistics.
Neural networks as models of psychopathology.
Aakerlund, L; Hemmingsen, R
1998-04-01
Neural network modeling is situated between neurobiology, cognitive science, and neuropsychology. The structural and functional resemblance with biological computation has made artificial neural networks (ANN) useful for exploring the relationship between neurobiology and computational performance, i.e., cognition and behavior. This review provides an introduction to the theory of ANN and how they have linked theories from neurobiology and psychopathology in schizophrenia, affective disorders, and dementia.
Decomposed Implicit Models of Piecewise - Linear Networks
Directory of Open Access Journals (Sweden)
J. Brzobohaty
1992-05-01
Full Text Available The general matrix form of the implicit description of a piecewise-linear (PWL network and the symbolic block diagram of the corresponding circuit model are proposed. Their decomposed forms enable us to determine quite separately the existence of the individual breakpoints of the resultant PWL characteristic and their coordinates using independent network parameters. For the two-diode and three-diode cases all the attainable types of the PWL characteristic are introduced.
Liu, Zugang
Network systems, including transportation and logistic systems, electric power generation and distribution networks as well as financial networks, provide the critical infrastructure for the functioning of our societies and economies. The understanding of the dynamic behavior of such systems is also crucial to national security and prosperity. The identification of new connections between distinct network systems is the inspiration for the research in this dissertation. In particular, I answer two questions raised by Beckmann, McGuire, and Winsten (1956) and Copeland (1952) over half a century ago, which are, respectively, how are electric power flows related to transportation flows and does money flow like water or electricity? In addition, in this dissertation, I achieve the following: (1) I establish the relationships between transportation networks and three other classes of complex network systems: supply chain networks, electric power generation and transmission networks, and financial networks with intermediation. The establishment of such connections provides novel theoretical insights as well as new pricing mechanisms, and efficient computational methods. (2) I develop new modeling frameworks based on evolutionary variational inequality theory that capture the dynamics of such network systems in terms of the time-varying flows and incurred costs, prices, and, where applicable, profits. This dissertation studies the dynamics of such network systems by addressing both internal competition and/or cooperation, and external changes, such as varying costs and demands. (3) I focus, in depth, on electric power supply chains. By exploiting the relationships between transportation networks and electric power supply chains, I develop a large-scale network model that integrates electric power supply chains and fuel supply markets. The model captures both the economic transactions as well as the physical transmission constraints. The model is then applied to the New
Non-consensus Opinion Models on Complex Networks
Li, Qian; Braunstein, Lidia A.; Wang, Huijuan; Shao, Jia; Stanley, H. Eugene; Havlin, Shlomo
2013-04-01
Social dynamic opinion models have been widely studied to understand how interactions among individuals cause opinions to evolve. Most opinion models that utilize spin interaction models usually produce a consensus steady state in which only one opinion exists. Because in reality different opinions usually coexist, we focus on non-consensus opinion models in which above a certain threshold two opinions coexist in a stable relationship. We revisit and extend the non-consensus opinion (NCO) model introduced by Shao et al. (Phys. Rev. Lett. 103:01870, 2009). The NCO model in random networks displays a second order phase transition that belongs to regular mean field percolation and is characterized by the appearance (above a certain threshold) of a large spanning cluster of the minority opinion. We generalize the NCO model by adding a weight factor W to each individual's original opinion when determining their future opinion (NCO W model). We find that as W increases the minority opinion holders tend to form stable clusters with a smaller initial minority fraction than in the NCO model. We also revisit another non-consensus opinion model based on the NCO model, the inflexible contrarian opinion (ICO) model (Li et al. in Phys. Rev. E 84:066101, 2011), which introduces inflexible contrarians to model the competition between two opinions in a steady state. Inflexible contrarians are individuals that never change their original opinion but may influence the opinions of others. To place the inflexible contrarians in the ICO model we use two different strategies, random placement and one in which high-degree nodes are targeted. The inflexible contrarians effectively decrease the size of the largest rival-opinion cluster in both strategies, but the effect is more pronounced under the targeted method. All of the above models have previously been explored in terms of a single network, but human communities are usually interconnected, not isolated. Because opinions propagate not
Saeedimoghaddam, M.; Kim, C.
2017-10-01
Understanding individual travel behavior is vital in travel demand management as well as in urban and transportation planning. New data sources including mobile phone data and location-based social media (LBSM) data allow us to understand mobility behavior on an unprecedented level of details. Recent studies of trip purpose prediction tend to use machine learning (ML) methods, since they generally produce high levels of predictive accuracy. Few studies used LSBM as a large data source to extend its potential in predicting individual travel destination using ML techniques. In the presented research, we created a spatio-temporal probabilistic model based on an ensemble ML framework named "Random Forests" utilizing the travel extracted from geotagged Tweets in 419 census tracts of Greater Cincinnati area for predicting the tract ID of an individual's travel destination at any time using the information of its origin. We evaluated the model accuracy using the travels extracted from the Tweets themselves as well as the travels from household travel survey. The Tweets and survey based travels that start from same tract in the south western parts of the study area is more likely to select same destination compare to the other parts. Also, both Tweets and survey based travels were affected by the attraction points in the downtown of Cincinnati and the tracts in the north eastern part of the area. Finally, both evaluations show that the model predictions are acceptable, but it cannot predict destination using inputs from other data sources as precise as the Tweets based data.
Green Network Planning Model for Optical Backbones
DEFF Research Database (Denmark)
Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael
2010-01-01
on the environment in general. In network planning there are existing planning models focused on QoS provisioning, investment minimization or combinations of both and other parameters. But there is a lack of a model for designing green optical backbones. This paper presents novel ideas to be able to define...
Empirical generalization assessment of neural network models
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai
1995-01-01
This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model...
Numerical analysis of modeling based on improved Elman neural network.
Jie, Shao; Li, Wang; WeiSong, Zhao; YaQin, Zhong; Malekian, Reza
2014-01-01
A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA) with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL) model, Chebyshev neural network (CNN) model, and basic Elman neural network (BENN) model, the proposed model has better performance.
Numerical Analysis of Modeling Based on Improved Elman Neural Network
Directory of Open Access Journals (Sweden)
Shao Jie
2014-01-01
Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.
Modelling and predicting biogeographical patterns in river networks
Directory of Open Access Journals (Sweden)
Sabela Lois
2016-04-01
Full Text Available Statistical analysis and interpretation of biogeographical phenomena in rivers is now possible using a spatially explicit modelling framework, which has seen significant developments in the past decade. I used this approach to identify a spatial extent (geostatistical range in which the abundance of the parasitic freshwater pearl mussel (Margaritifera margaritifera L. is spatially autocorrelated in river networks. I show that biomass and abundance of host fish are a likely explanation for the autocorrelation in mussel abundance within a 15-km spatial extent. The application of universal kriging with the empirical model enabled precise prediction of mussel abundance within segments of river networks, something that has the potential to inform conservation biogeography. Although I used a variety of modelling approaches in my thesis, I focus here on the details of this relatively new spatial stream network model, thus advancing the study of biogeographical patterns in river networks.
DEFF Research Database (Denmark)
and encouraged studies that linked sound modeling by analysis-synthesis to perception and cognition. CMMR 2008 seeks to enlarge upon the Sense of Sounds-concept by taking into account the musical structure as a whole. More precisely, the workshop will have as its theme Genesis of Meaning in Sound and Music...... of sound meaning and its implications in music, modelling and retrieval. as a step in this direction, NTSMb, the Network for Cross-Disciplinary Studies of Music and Meaning (www.ntsmb.dk) and JMM: The Journal of Music and Meaning (www.musicandmeaning.net will be joining as participants in CMMR 2008. CMMR...... the symposium as a post-event proceedings in the Springer verlag Lecture Notes in Computer Science (LNCS) Series is planned. an award for the best paper dealing with the theme of the conference - Genesis of Meaning in Sound and Music - will be given under the auspices of The Journal of Music and Meaning....
Infection dynamics on spatial small-world network models
Iotti, Bryan; Antonioni, Alberto; Bullock, Seth; Darabos, Christian; Tomassini, Marco; Giacobini, Mario
2017-11-01
The study of complex networks, and in particular of social networks, has mostly concentrated on relational networks, abstracting the distance between nodes. Spatial networks are, however, extremely relevant in our daily lives, and a large body of research exists to show that the distances between nodes greatly influence the cost and probability of establishing and maintaining a link. A random geometric graph (RGG) is the main type of synthetic network model used to mimic the statistical properties and behavior of many social networks. We propose a model, called REDS, that extends energy-constrained RGGs to account for the synergic effect of sharing the cost of a link with our neighbors, as is observed in real relational networks. We apply both the standard Watts-Strogatz rewiring procedure and another method that conserves the degree distribution of the network. The second technique was developed to eliminate unwanted forms of spatial correlation between the degree of nodes that are affected by rewiring, limiting the effect on other properties such as clustering and assortativity. We analyze both the statistical properties of these two network types and their epidemiological behavior when used as a substrate for a standard susceptible-infected-susceptible compartmental model. We consider and discuss the differences in properties and behavior between RGGs and REDS as rewiring increases and as infection parameters are changed. We report considerable differences both between the network types and, in the case of REDS, between the two rewiring schemes. We conclude that REDS represent, with the application of these rewiring mechanisms, extremely useful and interesting tools in the study of social and epidemiological phenomena in synthetic complex networks.
Quebec mental health services networks: models and implementation
Directory of Open Access Journals (Sweden)
Marie-Josée Fleury
2005-06-01
Full Text Available Purpose: In the transformation of health care systems, the introduction of integrated service networks is considered to be one of the main solutions for enhancing efficiency. In the last few years, a wealth of literature has emerged on the topic of services integration. However, the question of how integrated service networks should be modelled to suit different implementation contexts has barely been touched. To fill that gap, this article presents four models for the organization of mental health integrated networks. Data sources: The proposed models are drawn from three recently published studies on mental health integrated services in the province of Quebec (Canada with the author as principal investigator. Description: Following an explanation of the concept of integrated service network and a description of the Quebec context for mental health networks, the models, applicable in all settings: rural, urban or semi-urban, and metropolitan, and summarized in four figures, are presented. Discussion and conclusion: To apply the models successfully, the necessity of rallying all the actors of a system, from the strategic, tactical and operational levels, according to the type of integration involved: functional/administrative, clinical and physician-system is highlighted. The importance of formalizing activities among organizations and actors in a network and reinforcing the governing mechanisms at the local level is also underlined. Finally, a number of integration strategies and key conditions of success to operationalize integrated service networks are suggested.
Vehicle Scheduling with Network Flow Models
Directory of Open Access Journals (Sweden)
Gustavo P. Silva
2010-04-01
Full Text Available
Este trabalho retrata a primeira fase de uma pesquisa de doutorado voltada para a utilização de modelos de fluxo em redes para programação de veículos (de ônibus, em particular. A utilização de modelos deste tipo ainda e muito pouco explorada na literatura, principalmente pela dificuldade imposta pelo grande numero de variáveis resultante. Neste trabalho são apresentadas formulações para tratamento do problema de programação de veículos associados a um único depósito (ou garagem como problema de fluxo em redes, incluindo duas técnicas para reduzir o numero de arcos na rede criada e, conseqüentemente, o numero de variáveis a tratar. Uma destas técnicas de redução de arcos foi implementada e o problema de fluxo resultante foi direcionado para ser resolvido, nesta fase da pesquisa, por uma versão disponível do algoritmo Simplex para redes. Problemas teste baseados em dados reais da cidade de Reading, UK, foram resolvidos com a utilização da formulação de fluxo em redes adotada, e os resultados comparados com aqueles obtidos pelo método heurístico BOOST, o qual tem sido largamente testado e comercializado pela School of Computer Studies da Universidade de Leeds, UK. Os resultados alcançados demonstram a possibilidade de tratamento de problemas reais com a técnica de redução de arcos.
ABSTRACT
This paper presents the successful results of a first phase of a doctoral research addressed to solving vehicle (bus, in particular scheduling problems through network flow formulations. Network flow modeling for this kind of problem is a promising, but not a well explored approach, mainly because of the large number of variables related to number of arcs of real case networks. The paper presents and discusses some network flow formulations for the single depot bus vehicle scheduling problem, along with two techniques of arc reduction. One of these arc reduction techniques has been implemented and the underlying
Modeling Verdict Outcomes Using Social Network Measures: The Watergate and Caviar Network Cases
2016-01-01
Modelling criminal trial verdict outcomes using social network measures is an emerging research area in quantitative criminology. Few studies have yet analyzed which of these measures are the most important for verdict modelling or which data classification techniques perform best for this application. To compare the performance of different techniques in classifying members of a criminal network, this article applies three different machine learning classifiers–Logistic Regression, Naïve Bayes and Random Forest–with a range of social network measures and the necessary databases to model the verdicts in two real–world cases: the U.S. Watergate Conspiracy of the 1970’s and the now–defunct Canada–based international drug trafficking ring known as the Caviar Network. In both cases it was found that the Random Forest classifier did better than either Logistic Regression or Naïve Bayes, and its superior performance was statistically significant. This being so, Random Forest was used not only for classification but also to assess the importance of the measures. For the Watergate case, the most important one proved to be betweenness centrality while for the Caviar Network, it was the effective size of the network. These results are significant because they show that an approach combining machine learning with social network analysis not only can generate accurate classification models but also helps quantify the importance social network variables in modelling verdict outcomes. We conclude our analysis with a discussion and some suggestions for future work in verdict modelling using social network measures. PMID:26824351
Artificial neural network modeling of dissolved oxygen in reservoir.
Chen, Wei-Bo; Liu, Wen-Cheng
2014-02-01
The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.
Models of network reliability analysis, combinatorics, and Monte Carlo
Gertsbakh, Ilya B
2009-01-01
Unique in its approach, Models of Network Reliability: Analysis, Combinatorics, and Monte Carlo provides a brief introduction to Monte Carlo methods along with a concise exposition of reliability theory ideas. From there, the text investigates a collection of principal network reliability models, such as terminal connectivity for networks with unreliable edges and/or nodes, network lifetime distribution in the process of its destruction, network stationary behavior for renewable components, importance measures of network elements, reliability gradient, and network optimal reliability synthesis
Language Networks as Models of Cognition: Understanding Cognition through Language
Beckage, Nicole M.; Colunga, Eliana
Language is inherently cognitive and distinctly human. Separating the object of language from the human mind that processes and creates language fails to capture the full language system. Linguistics traditionally has focused on the study of language as a static representation, removed from the human mind. Network analysis has traditionally been focused on the properties and structure that emerge from network representations. Both disciplines could gain from looking at language as a cognitive process. In contrast, psycholinguistic research has focused on the process of language without committing to a representation. However, by considering language networks as approximations of the cognitive system we can take the strength of each of these approaches to study human performance and cognition as related to language. This paper reviews research showcasing the contributions of network science to the study of language. Specifically, we focus on the interplay of cognition and language as captured by a network representation. To this end, we review different types of language network representations before considering the influence of global level network features. We continue by considering human performance in relation to network structure and conclude with theoretical network models that offer potential and testable explanations of cognitive and linguistic phenomena.
Delay and Disruption Tolerant Networking MACHETE Model
Segui, John S.; Jennings, Esther H.; Gao, Jay L.
2011-01-01
To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity
A comprehensive Network Security Risk Model for process control networks.
Henry, Matthew H; Haimes, Yacov Y
2009-02-01
The risk of cyber attacks on process control networks (PCN) is receiving significant attention due to the potentially catastrophic extent to which PCN failures can damage the infrastructures and commodity flows that they support. Risk management addresses the coupled problems of (1) reducing the likelihood that cyber attacks would succeed in disrupting PCN operation and (2) reducing the severity of consequences in the event of PCN failure or manipulation. The Network Security Risk Model (NSRM) developed in this article provides a means of evaluating the efficacy of candidate risk management policies by modeling the baseline risk and assessing expectations of risk after the implementation of candidate measures. Where existing risk models fall short of providing adequate insight into the efficacy of candidate risk management policies due to shortcomings in their structure or formulation, the NSRM provides model structure and an associated modeling methodology that captures the relevant dynamics of cyber attacks on PCN for risk analysis. This article develops the NSRM in detail in the context of an illustrative example.
Personalized Learning Network Teaching Model
Feng, Zhou
Adaptive learning system on the salient features, expounded personalized learning is adaptive learning system adaptive to learners key to learning. From the perspective of design theory, put forward an adaptive learning system to learn design thinking individual model, and using data mining techniques, the initial establishment of personalized adaptive systems model of learning.
Minovski, Nikola; Župerl, Špela; Drgan, Viktor; Novič, Marjana
2013-01-08
Alongside the validation, the concept of applicability domain (AD) is probably one of the most important aspects which determine the quality as well as reliability of the established quantitative structure-activity relationship (QSAR) models. To date, a variety of approaches for AD estimation have been devised which can be applied to particular type of QSAR models and their practical utilization is extensively elaborated in the literature. The present study introduces a novel, simple, and effective distance-based method for estimation of the AD in case of developed and validated predictive counter-propagation artificial neural network (CP ANN) models through a proficient exploitation of the euclidean distance (ED) metric in the structure-representation vector space. The performance of the method was evaluated and explained in a case study by using a pre-built and validated CP ANN model for prediction of the transport activity of the transmembrane protein bilitranslocase for a diverse set of compounds. The method was tested on two more datasets in order to confirm its performance for evaluation of the applicability domain in CP ANN models. The chemical compounds determined as potential outliers, i.e., outside of the CP ANN model AD, were confirmed in a comparative AD assessment by using the leverage approach. Moreover, the method offers a graphical depiction of the AD for fast and simple determination of the extreme points. Copyright © 2012 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Garcia, Luis Guilherme Uzeda; Rodriguez, Ignacio; Catania, Davide
2013-01-01
WiFi is the prevalent wireless access technology in local area deployments and is expected to play a major role in a mobile operator’s data offloading strategy. As a result, having simple tools that are able to assess the offloading potential of IEEE 802.11 networks is vital. In this paper, we...
ICA model order selection of task co-activation networks.
Ray, Kimberly L; McKay, D Reese; Fox, Peter M; Riedel, Michael C; Uecker, Angela M; Beckmann, Christian F; Smith, Stephen M; Fox, Peter T; Laird, Angela R
2013-01-01
Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders.
Ginebreda, A; Sabater-Liesa, L; Rico, A; Focks, A; Barceló, D
2017-11-10
Rivers extend in space and time under the influence of their catchment area. Our perception largely relies on discrete spatial and temporal observations carried out at certain sites located throughout the catchment (monitoring networks, MN). However, MNs are constrained by (a) the distribution of sampling sites, (b) the dynamics of the variable considered and (c) the river hydrological conditions. In this study, all three aspects were captured and quantified by applying a spatial autocorrelation modeling approach. We exemplarily studied its application to 235 emerging contaminants (pesticides, pharmaceuticals, and personal care products [PPCP], industrial and miscellaneous) measured at 55 sampling sites in the Danube River. 22 out of the 235 compounds monitored were present at all sites and 125 were found in at least 50%.We first calculated the Moran Index (MI) to characterize the spatial autocorrelation of the compound set. 59 compounds showed MI≤0, which can be interpreted as 'no spatial correlation'. Next, spatial autocorrelation models were set for each compound. From the autocorrelation parameter ρ, catchment average correlation lengths were derived for each compound. MN optimality was examined and compounds were classified into three groups: (a) those with ρ≤0 [25%]; (b) those with ρ>0 and correl. length0 and correl. length>average distance between consecutive sites [73%]. The MN was considered optimal only for the latter class. Networks with the larger average distance between consecutive sites resulted in a decreasing number of optimally monitored compounds. Furthermore, neighbors vs. local relative contributions were quantified based on the spatial autocorrelation model for all the measured compounds. The results of this study show how autocorrelation models can aid water managers to improve the design of river MNs, which are a key aspect of the Water Framework Directive. Copyright © 2017 Elsevier B.V. All rights reserved.
Natural Models for Evolution on Networks
Mertzios, George B; Raptopoulos, Christoforos; Spirakis, Paul G
2011-01-01
Evolutionary dynamics have been traditionally studied in the context of homogeneous populations, mainly described my the Moran process. Recently, this approach has been generalized in \\cite{LHN} by arranging individuals on the nodes of a network. Undirected networks seem to have a smoother behavior than directed ones, and thus it is more challenging to find suppressors/amplifiers of selection. In this paper we present the first class of undirected graphs which act as suppressors of selection, by achieving a fixation probability that is at most one half of that of the complete graph, as the number of vertices increases. Moreover, we provide some generic upper and lower bounds for the fixation probability of general undirected graphs. As our main contribution, we introduce the natural alternative of the model proposed in \\cite{LHN}, where all individuals interact simultaneously and the result is a compromise between aggressive and non-aggressive individuals. That is, the behavior of the individuals in our new m...
Directory of Open Access Journals (Sweden)
M. Saeedimoghaddam
2017-10-01
Full Text Available Understanding individual travel behavior is vital in travel demand management as well as in urban and transportation planning. New data sources including mobile phone data and location-based social media (LBSM data allow us to understand mobility behavior on an unprecedented level of details. Recent studies of trip purpose prediction tend to use machine learning (ML methods, since they generally produce high levels of predictive accuracy. Few studies used LSBM as a large data source to extend its potential in predicting individual travel destination using ML techniques. In the presented research, we created a spatio-temporal probabilistic model based on an ensemble ML framework named “Random Forests” utilizing the travel extracted from geotagged Tweets in 419 census tracts of Greater Cincinnati area for predicting the tract ID of an individual’s travel destination at any time using the information of its origin. We evaluated the model accuracy using the travels extracted from the Tweets themselves as well as the travels from household travel survey. The Tweets and survey based travels that start from same tract in the south western parts of the study area is more likely to select same destination compare to the other parts. Also, both Tweets and survey based travels were affected by the attraction points in the downtown of Cincinnati and the tracts in the north eastern part of the area. Finally, both evaluations show that the model predictions are acceptable, but it cannot predict destination using inputs from other data sources as precise as the Tweets based data.
Bayesian network models for error detection in radiotherapy plans.
Kalet, Alan M; Gennari, John H; Ford, Eric C; Phillips, Mark H
2015-04-07
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network's conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
Kalyanapu, A. J.; Dullo, T. T.; Thornton, J. C.; Auld, L. A.
2015-12-01
Obion River, is located in the northwestern Tennessee region, and discharges into the Mississippi River. In the past, the river system was largely channelized for agricultural purposes that resulted in increased erosion, loss of wildlife habitat and downstream flood risks. These impacts are now being slowly reversed mainly due to wetland restoration. The river system is characterized by a large network of "loops" around the main channels that hold water either from excess flows or due to flow diversions. Without data on each individual channel, levee, canal, or pond it is not known where the water flows from or to. In some segments along the river, the natural channel has been altered and rerouted by the farmers for their irrigation purposes. Satellite imagery can aid in identifying these features, but its spatial coverage is temporally sparse. All the alterations that have been done to the watershed make it difficult to develop hydraulic models, which could predict flooding and droughts. This is especially true when building one-dimensional (1D) hydraulic models compared to two-dimensional (2D) models, as the former cannot adequately simulate lateral flows in the floodplain and in complex terrains. The objective of this study therefore is to study the performance of 1D and 2D flood models in this complex river system, evaluate the limitations of 1D models and highlight the advantages of 2D models. The study presents the application of HEC-RAS and HEC-2D models developed by the Hydrologic Engineering Center (HEC), a division of the US Army Corps of Engineers. The broader impacts of this study is the development of best practices for developing flood models in channelized river systems and in agricultural watersheds.
Elder, William G; Munk, Niki
2014-01-01
Pragmatic clinical trials (PCTs) are increasingly recommended to evaluate interventions in real-world conditions. Although PCTs share a common approach of evaluating variables from actual clinical practice, multiple characteristics can differ. These differences affect interpretation of the trial. The Pragmatic-Explanatory Continuum Indicator Summary (PRECIS) model was developed in 2009 by the CONSORT Work Group on Pragmatic Trials, published by Thorpe et al, to aid in trial design. PRECIS provides clarity about the generalizability and applicability of a trial by depicting multiple study characteristics. We recently completed a National Institutes of Health-sponsored pilot study examining health-related outcomes for 2 complementary therapies for chronic low back pain in patients referred by primary care providers in the Kentucky Ambulatory Network. In preparation for a larger study, we sought to characterize the pragmatic features of the study to aid in our design decisions. The purpose of this article is to introduce clinical researchers to the PRECIS model while demonstrating its application to refine a practice based research network study. We designed an exercise using an audience response system integrated with a Works in Progress presentation to experienced researchers at the University of Kentucky to examine our study methodologies of parameters suggested by the PRECIS model. The exercise went smoothly and participants remained engaged throughout. The study received an overall summary score of 30.17 (scale of 0 to 48; a higher score indicates a more pragmatic approach), with component scores that differentiate design components of the study. A polar chart is presented to depict the pragmatism of the overall study methodology across each of these components. The study was not as pragmatic as expected. The exercise results seem to be useful in identifying necessary refinements to the study methodology that may benefit future study design and increase
Directory of Open Access Journals (Sweden)
K. Anand
2015-09-01
Full Text Available The present study focuses on friction welding process parameter optimization using a hybrid technique of ANN and different optimization algorithms. This optimization techniques are not only for the effective process modelling, but also to illustrate the correlation between the input and output responses of the friction welding of Incoloy 800H. In addition the focus is also to obtain optimal strength and hardness of joints with minimum burn off length. ANN based approaches could model this welding process of INCOLOY 800H in both forward and reverse directions efficiently, which are required for the automation of the same. Five different training algorithms were used to train ANN for both forward and reverse mapping and ANN tuned force approach was used for optimization. The paper makes a robust comparison of the performances of the five algorithms employing standard statistical indices. The results showed that GANN with 4-9-3 for forward and 4-7-3 for reverse mapping arrangement could outperform the other four approaches in most of the cases but not in all. Experiments on tensile strength (TS, microhardness (H and burn off length (BOL of the joints were performed with optimised parameter. It is concluded that this ANN model with genetic algorithm may provide good ability to predict the friction welding process parameters to weld Incoloy 800H.
PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK
Directory of Open Access Journals (Sweden)
R. Hadapiningradja Kusumodestoni
2015-11-01
Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.
Network and adaptive system of systems modeling and analysis.
Energy Technology Data Exchange (ETDEWEB)
Lawton, Craig R.; Campbell, James E. Dr. (.; .); Anderson, Dennis James; Eddy, John P.
2007-05-01
This report documents the results of an LDRD program entitled ''Network and Adaptive System of Systems Modeling and Analysis'' that was conducted during FY 2005 and FY 2006. The purpose of this study was to determine and implement ways to incorporate network communications modeling into existing System of Systems (SoS) modeling capabilities. Current SoS modeling, particularly for the Future Combat Systems (FCS) program, is conducted under the assumption that communication between the various systems is always possible and occurs instantaneously. A more realistic representation of these communications allows for better, more accurate simulation results. The current approach to meeting this objective has been to use existing capabilities to model network hardware reliability and adding capabilities to use that information to model the impact on the sustainment supply chain and operational availability.
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, Lars J.; Keller, Paul E.
1997-01-01
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.
Modified network simulation model with token method of bus access
Directory of Open Access Journals (Sweden)
L.V. Stribulevich
2013-08-01
Full Text Available Purpose. To study the characteristics of the local network with the marker method of access to the bus its modified simulation model was developed. Methodology. Defining characteristics of the network is carried out on the developed simulation model, which is based on the state diagram-layer network station with the mechanism of processing priorities, both in steady state and in the performance of control procedures: the initiation of a logical ring, the entrance and exit of the station network with a logical ring. Findings. A simulation model, on the basis of which can be obtained the dependencies of the application the maximum waiting time in the queue for different classes of access, and the reaction time usable bandwidth on the data rate, the number of network stations, the generation rate applications, the number of frames transmitted per token holding time, frame length was developed. Originality. The technique of network simulation reflecting its work in the steady condition and during the control procedures, the mechanism of priority ranking and handling was proposed. Practical value. Defining network characteristics in the real-time systems on railway transport based on the developed simulation model.
Artificial neural network applications in ionospheric studies
Directory of Open Access Journals (Sweden)
L. R. Cander
1998-06-01
Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.
Modeling and simulation of the USAVRE network and radiology operations
Martinez, Ralph; Bradford, Daniel Q.; Hatch, Jay; Sochan, John; Chimiak, William J.
1998-07-01
. There are three levels to the model: (1) Network model of the Cable Bundling Initiative (CBI) network and base networks (CUITIN), (2) Protocol model, including network, transport, and middleware protocols, such TCP/IP and Common Object Request Broker Architecture (CORBA) protocols, and (3) USAVRE Application layer model, including database archive systems, acquisition equipment, viewing workstations, and operations and management. The Network layer of the model contains the ATM-based backbone network provided by the CBI, interfaces into the RMC regional networks and the PACS networks at the medical centers and RMC sites. The CBI network currently is a DS-3 (45 Mbps) backbone consisting of three major hubs, at Ft. Leavenworth, KS, Ft. Belvoir, VA, and Ft. McPherson, GA. The medical center PACS networks are 100 Mbps and 1 Gbps networks. The RMC site networks are 100 Mbps speeds. The model is very beneficial in studying the multimedia transfer and operations characteristics of the USAVRE before it is completely built and deployed.
Network management systems for active distribution networks. A feasibility study
Energy Technology Data Exchange (ETDEWEB)
Roberts, D.A.
2004-07-01
A technical feasibility study on network management systems for active distribution networks is reported. The study investigated the potential for modifying a Distribution Network Operator (DNO) Supervisory Control and Data Acquisition System (SCADA) to give some degree of active management. Government incentives have encouraged more and more embedded generation being connected to the UK distribution networks and further acceleration of the process should support the 2010 target for a reduction in emissions of carbon dioxide. The report lists the objectives of the study and summarises what has been achieved; it also discusses limitations, reliability and resilience of existing SCADA. Safety and operational communications are discussed under staff safety and operational safety. Recommendations that could facilitate active management through SCADA are listed, together with suggestions for further study. The work was carried out as part of the DTI New and Renewable Energy Programme managed by Future Energy Solutions.
Li, Huixia; Luo, Miyang; Zheng, Jianfei; Luo, Jiayou; Zeng, Rong; Feng, Na; Du, Qiyun; Fang, Junqun
2017-02-01
An artificial neural network (ANN) model was developed to predict the risks of congenital heart disease (CHD) in pregnant women.This hospital-based case-control study involved 119 CHD cases and 239 controls all recruited from birth defect surveillance hospitals in Hunan Province between July 2013 and June 2014. All subjects were interviewed face-to-face to fill in a questionnaire that covered 36 CHD-related variables. The 358 subjects were randomly divided into a training set and a testing set at the ratio of 85:15. The training set was used to identify the significant predictors of CHD by univariate logistic regression analyses and develop a standard feed-forward back-propagation neural network (BPNN) model for the prediction of CHD. The testing set was used to test and evaluate the performance of the ANN model. Univariate logistic regression analyses were performed on SPSS 18.0. The ANN models were developed on Matlab 7.1.The univariate logistic regression identified 15 predictors that were significantly associated with CHD, including education level (odds ratio = 0.55), gravidity (1.95), parity (2.01), history of abnormal reproduction (2.49), family history of CHD (5.23), maternal chronic disease (4.19), maternal upper respiratory tract infection (2.08), environmental pollution around maternal dwelling place (3.63), maternal exposure to occupational hazards (3.53), maternal mental stress (2.48), paternal chronic disease (4.87), paternal exposure to occupational hazards (2.51), intake of vegetable/fruit (0.45), intake of fish/shrimp/meat/egg (0.59), and intake of milk/soymilk (0.55). After many trials, we selected a 3-layer BPNN model with 15, 12, and 1 neuron in the input, hidden, and output layers, respectively, as the best prediction model. The prediction model has accuracies of 0.91 and 0.86 on the training and testing sets, respectively. The sensitivity, specificity, and Yuden Index on the testing set (training set) are 0.78 (0.83), 0.90 (0.95), and 0
Riley, Richard D; Ensor, Joie; Jackson, Dan; Burke, Danielle L
2017-01-01
Many meta-analysis models contain multiple parameters, for example due to multiple outcomes, multiple treatments or multiple regression coefficients. In particular, meta-regression models may contain multiple study-level covariates, and one-stage individual participant data meta-analysis models may contain multiple patient-level covariates and interactions. Here, we propose how to derive percentage study weights for such situations, in order to reveal the (otherwise hidden) contribution of each study toward the parameter estimates of interest. We assume that studies are independent, and utilise a decomposition of Fisher's information matrix to decompose the total variance matrix of parameter estimates into study-specific contributions, from which percentage weights are derived. This approach generalises how percentage weights are calculated in a traditional, single parameter meta-analysis model. Application is made to one- and two-stage individual participant data meta-analyses, meta-regression and network (multivariate) meta-analysis of multiple treatments. These reveal percentage study weights toward clinically important estimates, such as summary treatment effects and treatment-covariate interactions, and are especially useful when some studies are potential outliers or at high risk of bias. We also derive percentage study weights toward methodologically interesting measures, such as the magnitude of ecological bias (difference between within-study and across-study associations) and the amount of inconsistency (difference between direct and indirect evidence in a network meta-analysis).
PROJECT ACTIVITY ANALYSIS WITHOUT THE NETWORK MODEL
Directory of Open Access Journals (Sweden)
S. Munapo
2012-01-01
Full Text Available
ENGLISH ABSTRACT: This paper presents a new procedure for analysing and managing activity sequences in projects. The new procedure determines critical activities, critical path, start times, free floats, crash limits, and other useful information without the use of the network model. Even though network models have been successfully used in project management so far, there are weaknesses associated with the use. A network is not easy to generate, and dummies that are usually associated with it make the network diagram complex – and dummy activities have no meaning in the original project management problem. The network model for projects can be avoided while still obtaining all the useful information that is required for project management. What are required are the activities, their accurate durations, and their predecessors.
AFRIKAANSE OPSOMMING: Die navorsing beskryf ’n nuwerwetse metode vir die ontleding en bestuur van die sekwensiële aktiwiteite van projekte. Die voorgestelde metode bepaal kritiese aktiwiteite, die kritieke pad, aanvangstye, speling, verhasing, en ander groothede sonder die gebruik van ’n netwerkmodel. Die metode funksioneer bevredigend in die praktyk, en omseil die administratiewe rompslomp van die tradisionele netwerkmodelle.
Algebraic Statistics for Network Models
2014-02-19
use algebra, combinatorics and Markov bases to give a constructing way of answering this question for ERGMs of interest. Question 2: How do we model...for every function. 06/06/13 Petrović. Manuscripts 8, 10. Invited lecture at the Scientific Session on Commutative Algebra and Combinatorics at the
Network Modeling and Simulation (NEMSE)
2013-07-01
Prioritized Packet Fragmentation", IEEE Trans. Multimedia , Oct. 2012. [13 SYSENG] . Defense Acquisition Guidebook, Chapter 4 System Engineering, and...2012 IEEE High Performance Extreme Computing Conference (HPEC) poster session [1 Ross]. Motivation Air Force Research Lab needs o Capability...is virtual. These eight virtualizations were: System-in-the-Loop (SITL) using OPNET Modeler, COPE, Field Programmable Gate Array ( FPGA Physical
Social networks and cooperation: a bibliometric study
Directory of Open Access Journals (Sweden)
Ana Paula Lopes
2013-05-01
Full Text Available The social network analysis involves social and behavioral science. The decentralization of productive activities, such as the formation of "network organizations" as a result of downsizing of large corporate structures of the past, marked by outsoucing and formation of alliances, shows the importance of this theme. The main objective of this paper is to analyze the theory of cooperation and social networks over a period of 24 years. For this, was performed a bibliometric study with content analysis. The database chosen for the initial sample search was ISI Web of Science. The search topics were “social network” and “cooperation”. Were analyzed 97 articles and their references, through networks of citations. The main identified research groups dealing with issues related to trust, strategic alliances, natural cooperation, game theory, social capital, intensity of interaction, reciprocity and innovation. It was found that the publications occurred in a large number of journals, which indicates that the theme is multidisciplinary, and only five journals published at least three articles. Although the first publication has occurred in 1987, was from 2006 that the publications effectively increased. The areas most related to the theme of the research were performance, evolution, management, graphics, model and game theory.
Directory of Open Access Journals (Sweden)
Mahdi Rastegarnia
2016-09-01
Full Text Available Electrofacies are used to determine reservoir rock properties, especially permeability, to simulate fluid flow in porous media. These are determined based on classification of similar logs among different groups of logging data. Data classification is accomplished by different statistical analysis such as principal component analysis, cluster analysis and differential analysis. The aim of this study is to predict 3D FZI (flow zone index and Electrofacies (EFACT volumes from a large volume of 3D seismic data. This study is divided into two parts. In the first part of the study, in order to make the EFACT model, nuclear magnetic resonance (NMR log parameters were employed for developing an Electrofacies diagram based on pore size distribution and porosity variations. Then, a graph-based clustering method, known as multi resolution graph-based clustering (MRGC, was employed to classify and obtain the optimum number of Electrofacies. Seismic attribute analysis was then applied to model each relaxation group in order to build the initial 3D model which was used to reach the final model by applying Probabilistic Neural Network (PNN. In the second part of the study, the FZI 3D model was created by multi attributes technique. Then, this model was improved by three different artificial intelligence systems including PNN, multilayer feed-forward network (MLFN and radial basis function network (RBFN. Finally, models of FZI and EFACT were compared. Results obtained from this study revealed that the two models are in good agreement and PNN method is successful in modeling FZI and EFACT from 3D seismic data for which no Stoneley data or NMR log data are available. Moreover, they may be used to detect hydrocarbon-bearing zones and locate the exact place for producing wells for the future development plans. In addition, the result provides a geologically realistic spatial FZI and reservoir facies distribution which helps to understand the subsurface reservoirs
Security Modeling on the Supply Chain Networks
Directory of Open Access Journals (Sweden)
Marn-Ling Shing
2007-10-01
Full Text Available In order to keep the price down, a purchaser sends out the request for quotation to a group of suppliers in a supply chain network. The purchaser will then choose a supplier with the best combination of price and quality. A potential supplier will try to collect the related information about other suppliers so he/she can offer the best bid to the purchaser. Therefore, confidentiality becomes an important consideration for the design of a supply chain network. Chen et al. have proposed the application of the Bell-LaPadula model in the design of a secured supply chain network. In the Bell-LaPadula model, a subject can be in one of different security clearances and an object can be in one of various security classifications. All the possible combinations of (Security Clearance, Classification pair in the Bell-LaPadula model can be thought as different states in the Markov Chain model. This paper extends the work done by Chen et al., provides more details on the Markov Chain model and illustrates how to use it to monitor the security state transition in the supply chain network.
An evolving model of online bipartite networks
Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang
2013-12-01
Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.
Artificial neural networks modeling gene-environment interaction
Directory of Open Access Journals (Sweden)
Günther Frauke
2012-05-01
Full Text Available Abstract Background Gene-environment interactions play an important role in the etiological pathway of complex diseases. An appropriate statistical method for handling a wide variety of complex situations involving interactions between variables is still lacking, especially when continuous variables are involved. The aim of this paper is to explore the ability of neural networks to model different structures of gene-environment interactions. A simulation study is set up to compare neural networks with standard logistic regression models. Eight different structures of gene-environment interactions are investigated. These structures are characterized by penetrance functions that are based on sigmoid functions or on combinations of linear and non-linear effects of a continuous environmental factor and a genetic factor with main effect or with a masking effect only. Results In our simulation study, neural networks are more successful in modeling gene-environment interactions than logistic regression models. This outperfomance is especially pronounced when modeling sigmoid penetrance functions, when distinguishing between linear and nonlinear components, and when modeling masking effects of the genetic factor. Conclusion Our study shows that neural networks are a promising approach for analyzing gene-environment interactions. Especially, if no prior knowledge of the correct nature of the relationship between co-variables and response variable is present, neural networks provide a valuable alternative to regression methods that are limited to the analysis of linearly separable data.
An artificial neural network based fast radiative transfer model for ...
Indian Academy of Sciences (India)
the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of ... in construction, purpose and design and already in use are used. The fast RT model is able to ... porates measurements from various instruments in comparison with other ...
Ding, Xiaoyu; Lee, Seong-Whan
2013-08-26
Model order selection in group independent component analysis (ICA) has a significant effect on the obtained components. This study investigated the reproducible brain regions of abnormal default-mode network (DMN) functional connectivity related with cocaine addiction through different model order settings in group ICA. Resting-state fMRI data from 24 cocaine addicts and 24 healthy controls were temporally concatenated and processed by group ICA using model orders of 10, 20, 30, 40, and 50, respectively. For each model order, the group ICA approach was repeated 100 times using the ICASSO toolbox and after clustering the obtained components, centrotype-based anterior and posterior DMN components were selected for further analysis. Individual DMN components were obtained through back-reconstruction and converted to z-score maps. A whole brain mixed effects factorial ANOVA was performed to explore the differences in resting-state DMN functional connectivity between cocaine addicts and healthy controls. The hippocampus, which showed decreased functional connectivity in cocaine addicts for all the tested model orders, might be considered as a reproducible abnormal region in DMN associated with cocaine addiction. This finding suggests that using group ICA to examine the functional connectivity of the hippocampus in the resting-state DMN may provide an additional insight potentially relevant for cocaine-related diagnoses and treatments. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Keystone Business Models for Network Security Processors
Directory of Open Access Journals (Sweden)
Arthur Low
2013-07-01
Full Text Available Network security processors are critical components of high-performance systems built for cybersecurity. Development of a network security processor requires multi-domain experience in semiconductors and complex software security applications, and multiple iterations of both software and hardware implementations. Limited by the business models in use today, such an arduous task can be undertaken only by large incumbent companies and government organizations. Neither the “fabless semiconductor” models nor the silicon intellectual-property licensing (“IP-licensing” models allow small technology companies to successfully compete. This article describes an alternative approach that produces an ongoing stream of novel network security processors for niche markets through continuous innovation by both large and small companies. This approach, referred to here as the "business ecosystem model for network security processors", includes a flexible and reconfigurable technology platform, a “keystone” business model for the company that maintains the platform architecture, and an extended ecosystem of companies that both contribute and share in the value created by innovation. New opportunities for business model innovation by participating companies are made possible by the ecosystem model. This ecosystem model builds on: i the lessons learned from the experience of the first author as a senior integrated circuit architect for providers of public-key cryptography solutions and as the owner of a semiconductor startup, and ii the latest scholarly research on technology entrepreneurship, business models, platforms, and business ecosystems. This article will be of interest to all technology entrepreneurs, but it will be of particular interest to owners of small companies that provide security solutions and to specialized security professionals seeking to launch their own companies.
Bayesian network models for error detection in radiotherapy plans
Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.
2015-04-01
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
Directory of Open Access Journals (Sweden)
Ibrahim A. Naguib
2017-12-01
Full Text Available In the presented study, orthogonal projection to latent structures (OPLS is introduced asÂ a data preprocessing method that handles nonlinear data prior to modelling with two well established nonlinear multivariate models; namely support vector regression (SVR and artificial neural networks (ANN. The proposed preprocessing proved to significantly improve prediction abilities through removal of uncorrelated data.The study was established based on a case study nonlinear spectrofluorimetric data of agomelatine (AGM and its hydrolysis degradation products (Deg I and Deg II, where a 3 factor 4 level experimental design was used to provide a training set of 16 mixtures with different proportions of studied components. An independent test set which consisted of 9 mixtures was established to confirm the prediction ability of the introduced models. Excitation wavelength was 227Â nm, and working range for emission spectra was 320â440Â nm.The couplings of OPLS-SVR and OPLS-ANN provided better accuracy for prediction of independent nonlinear test set. The root mean square error of prediction RMSEP for the test set mixtures was used asÂ a major comparison parameter, where RMSEP results for OPLS-SVR and OPLS-ANN are 2.19 and 1.50 respectively. Keywords: Agomelatine, SVR, ANN, OPLS, Spectrofluorimetry, Nonlinear
A mixture copula Bayesian network model for multimodal genomic data
Directory of Open Access Journals (Sweden)
Qingyang Zhang
2017-04-01
Full Text Available Gaussian Bayesian networks have become a widely used framework to estimate directed associations between joint Gaussian variables, where the network structure encodes the decomposition of multivariate normal density into local terms. However, the resulting estimates can be inaccurate when the normality assumption is moderately or severely violated, making it unsuitable for dealing with recent genomic data such as the Cancer Genome Atlas data. In the present paper, we propose a mixture copula Bayesian network model which provides great flexibility in modeling non-Gaussian and multimodal data for causal inference. The parameters in mixture copula functions can be efficiently estimated by a routine expectation–maximization algorithm. A heuristic search algorithm based on Bayesian information criterion is developed to estimate the network structure, and prediction can be further improved by the best-scoring network out of multiple predictions from random initial values. Our method outperforms Gaussian Bayesian networks and regular copula Bayesian networks in terms of modeling flexibility and prediction accuracy, as demonstrated using a cell signaling data set. We apply the proposed methods to the Cancer Genome Atlas data to study the genetic and epigenetic pathways that underlie serous ovarian cancer.
A mixture copula Bayesian network model for multimodal genomic data.
Zhang, Qingyang; Shi, Xuan
2017-01-01
Gaussian Bayesian networks have become a widely used framework to estimate directed associations between joint Gaussian variables, where the network structure encodes the decomposition of multivariate normal density into local terms. However, the resulting estimates can be inaccurate when the normality assumption is moderately or severely violated, making it unsuitable for dealing with recent genomic data such as the Cancer Genome Atlas data. In the present paper, we propose a mixture copula Bayesian network model which provides great flexibility in modeling non-Gaussian and multimodal data for causal inference. The parameters in mixture copula functions can be efficiently estimated by a routine expectation-maximization algorithm. A heuristic search algorithm based on Bayesian information criterion is developed to estimate the network structure, and prediction can be further improved by the best-scoring network out of multiple predictions from random initial values. Our method outperforms Gaussian Bayesian networks and regular copula Bayesian networks in terms of modeling flexibility and prediction accuracy, as demonstrated using a cell signaling data set. We apply the proposed methods to the Cancer Genome Atlas data to study the genetic and epigenetic pathways that underlie serous ovarian cancer.
UAV Trajectory Modeling Using Neural Networks
Xue, Min
2017-01-01
Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.
Propagation models for computing biochemical reaction networks
Henzinger, Thomas A; Mateescu, Maria
2011-01-01
We introduce propagation models, a formalism designed to support general and efficient data structures for the transient analysis of biochemical reaction networks. We give two use cases for propagation abstract data types: the uniformization method and numerical integration. We also sketch an implementation of a propagation abstract data type, which uses abstraction to approximate states.
Modelling crime linkage with Bayesian networks
de Zoete, J.; Sjerps, M.; Lagnado, D.; Fenton, N.
2015-01-01
When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model
Lagrangian modeling of switching electrical networks
Scherpen, Jacquelien M.A.; Jeltsema, Dimitri; Klaassens, J. Ben
2003-01-01
In this paper, a general and systematic method is presented to model topologically complete electrical networks, with or without multiple or single switches, within the Euler–Lagrange framework. Apart from the physical insight that can be obtained in this way, the framework has proven to be useful
Computational Modeling of Complex Protein Activity Networks
Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude
2017-01-01
Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a
Modeling Network Transition Constraints with Hypergraphs
DEFF Research Database (Denmark)
Harrod, Steven
2011-01-01
values. A directed hypergraph formulation is derived to address railway network sequencing constraints, and an experimental problem sample solved to estimate the magnitude of objective inflation when interaction effects are ignored. The model is used to demonstrate the value of advance scheduling...
A neural network model for texture discrimination.
Xing, J; Gerstein, G L
1993-01-01
A model of texture discrimination in visual cortex was built using a feedforward network with lateral interactions among relatively realistic spiking neural elements. The elements have various membrane currents, equilibrium potentials and time constants, with action potentials and synapses. The model is derived from the modified programs of MacGregor (1987). Gabor-like filters are applied to overlapping regions in the original image; the neural network with lateral excitatory and inhibitory interactions then compares and adjusts the Gabor amplitudes in order to produce the actual texture discrimination. Finally, a combination layer selects and groups various representations in the output of the network to form the final transformed image material. We show that both texture segmentation and detection of texture boundaries can be represented in the firing activity of such a network for a wide variety of synthetic to natural images. Performance details depend most strongly on the global balance of strengths of the excitatory and inhibitory lateral interconnections. The spatial distribution of lateral connective strengths has relatively little effect. Detailed temporal firing activities of single elements in the lateral connected network were examined under various stimulus conditions. Results show (as in area 17 of cortex) that a single element's response to image features local to its receptive field can be altered by changes in the global context.
Sahinkaya, Erkan
2009-05-15
Sulfidogenic treatment of sulfate (2-10g/L) and zinc (65-677mg/L) containing simulated wastewater was studied in a mesophilic (35 degrees C) CSTR. Ethanol was supplemented (COD/sulfate=0.67) as carbon and energy source for sulfate-reducing bacteria (SRB). The robustness of the system was studied by increasing Zn, COD and sulfate loadings. Sulfate removal efficiency, which was 70% at 2g/L feed sulfate concentration, steadily decreased with increasing feed sulfate concentration and reached 40% at 10g/L. Over 99% Zn removal was attained due to the formation of zinc-sulfide precipitate. COD removal efficiency at 2g/L feed sulfate concentration was over 94%, whereas, it steadily decreased due to the accumulation of acetate at higher loadings. Alkalinity produced from acetate oxidation increased wastewater pH remarkably when feed sulfate concentration was 5g/L or lower. Electron flow from carbon oxidation to sulfate reduction averaged 83+/-13%. The rest of the electrons were most likely coupled with fermentative reactions as the amount of methane production was insignificant. The developed ANN model was very successful as an excellent to reasonable match was obtained between the measured and the predicted concentrations of sulfate (R=0.998), COD (R=0.993), acetate (R=0.976) and zinc (R=0.827) in the CSTR effluent.
Propagating semantic information in biochemical network models
Directory of Open Access Journals (Sweden)
Schulz Marvin
2012-01-01
Full Text Available Abstract Background To enable automatic searches, alignments, and model combination, the elements of systems biology models need to be compared and matched across models. Elements can be identified by machine-readable biological annotations, but assigning such annotations and matching non-annotated elements is tedious work and calls for automation. Results A new method called "semantic propagation" allows the comparison of model elements based not only on their own annotations, but also on annotations of surrounding elements in the network. One may either propagate feature vectors, describing the annotations of individual elements, or quantitative similarities between elements from different models. Based on semantic propagation, we align partially annotated models and find annotations for non-annotated model elements. Conclusions Semantic propagation and model alignment are included in the open-source library semanticSBML, available on sourceforge. Online services for model alignment and for annotation prediction can be used at http://www.semanticsbml.org.
Distributed Bayesian Networks for User Modeling
DEFF Research Database (Denmark)
Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang
2006-01-01
The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...... efficiently combines distributed learner models without the need to exchange internal structure of local Bayesian networks, nor local evidence between the involved platforms....
Network traffic model using GIPP and GIBP
Lee, Yong Duk; Van de Liefvoort, Appie; Wallace, Victor L.
1998-10-01
In telecommunication networks, the correlated nature of teletraffic patterns can have significant impact on queuing measures such as queue length, blocking and delay. There is, however, not yet a good general analytical description which can easily incorporate the correlation effect of the traffic, while at the same time maintaining the ease of modeling. The authors have shown elsewhere, that the covariance structures of the generalized Interrupted Poisson Process (GIPP) and the generalized Interrupted Bernoulli Process (GIBP) have an invariance property which makes them reasonably general, yet algebraically manageable, models for representing correlated network traffic. The GIPP and GIBP have a surprisingly rich sets of parameters, yet these invariance properties enable us to easily incorporate the covariance function as well as the interarrival time distribution into the model to better matchobservations. In this paper, we show an application of GIPP and GIBP for matching an analytical model to observed or experimental data.
Piety, Philip John
With science education in the United States entering a period of greater accountability, this study investigated how student learning in science was assessed by educators within one state, asking what systemic assessment approaches existed and how the information from them was used. Conducted during the 20o6-2007 school year, this research developed and piloted a network-model case study design that included teachers, principals, administrators, and the state test development process, as well as several state-level professional associations. The data analyzed included observations, interviews, surveys, and both public and private documents. Some data were secondary. This design produced an empirical depiction of practice with a web of related cases. The network model expands on the hierarchical (nested) models often assumed in the growing literature on how information is used in educational contexts by showing multiple ways in which individuals are related through organizational structures. Seven case study teachers, each employing assessment methods largely unique and invisible to others in their schools, illustrate one set of assessment practices. The only alternative to classroom assessments that could be documented was the annual state accountability test. These two assessment species were neither tightly coupled nor distinct. Some teachers were partners in developing state test instruments, and in some cases the annual test could be seen as a school management resource. Boundary practices---activities where these two systems connected---were opportunities to identify challenges to policy implementation in science education. The challenges include standards, cognition, vocabulary, and classroom equipment. The boundary practices, along with the web of connections, provide the outlines of potential (and often unrealized) synergistic relationships. This model shows diverse indigenous practices and adaptations by actors responding to pressures of change and
Model Predictive Control of Sewer Networks
DEFF Research Database (Denmark)
Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik
2016-01-01
The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and cont...... benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control....
Modeling Multistandard Wireless Networks in OPNET
DEFF Research Database (Denmark)
Zakrzewska, Anna; Berger, Michael Stübert; Ruepp, Sarah Renée
2011-01-01
Future wireless communication is emerging towards one heterogeneous platform. In this new environment wireless access will be provided by multiple radio technologies that are cooperating and complementing one another. The paper investigates the possibilities of developing such a multistandard...... system using OPNET Modeler. A network model consisting of LTE interworking with WLAN and WiMAX is considered from the radio resource management perspective. In particular, implementing a joint packet scheduler across multiple systems is discussed more in detail....
Applying Model Based Systems Engineering to NASA's Space Communications Networks
Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert
2013-01-01
System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its
On traffic modelling in GPRS networks
DEFF Research Database (Denmark)
Madsen, Tatiana Kozlova; Schwefel, Hans-Peter; Prasad, Ramjee
2005-01-01
Optimal design and dimensioning of wireless data networks, such as GPRS, requires the knowledge of traffic characteristics of different data services. This paper presents an in-detail analysis of an IP-level traffic measurements taken in an operational GPRS network. The data measurements reported...... here are done at the Gi interface. The aim of this paper is to reveal some key statistics of GPRS data applications and to validate if the existing traffic models can adequately describe traffic volume and inter-arrival time distribution for different services. Additionally, we present a method of user...
A Random Dot Product Model for Weighted Networks
DeFord, Daryl R
2016-01-01
This paper presents a generalization of the random dot product model for networks whose edge weights are drawn from a parametrized probability distribution. We focus on the case of integer weight edges and show that many previously studied models can be recovered as special cases of this generalization. Our model also determines a dimension--reducing embedding process that gives geometric interpretations of community structure and centrality. The dimension of the embedding has consequences for the derived community structure and we exhibit a stress function for determining appropriate dimensions. We use this approach to analyze a coauthorship network and voting data from the U.S. Senate.
Sagar, Vidya R; Prasad, Raghu BK
2009-01-01
In this paper, numerical modelling of fracture in concrete using two-dimensional lattice model is presented and also a few issues related to lattice modelling technique applicable to concrete fracture are reviewed. A comparison is made with acoustic emission (AE) events with the number of fractured elements. To implement the heterogeneity of the plain concrete, two methods namely, by generating grain structure of the concrete using Fuller's distribution and the concrete material properties ar...
Directory of Open Access Journals (Sweden)
Amin Moori Roozali
2014-08-01
Full Text Available Correct estimation of water inflow into underground excavations can decrease safety risks and associated costs. Researchers have proposed different methods to asses this value. It has been proved that water transmissivity of a rock joint is a function of factors, such as normal stress, joint roughness and its size and water pressure therefore, a laboratory setup was proposed to quantitatively measure the flow as a function of mentioned parameters. Among these, normal stress has proved to be the most influential parameter. With increasing joint roughness and rock sample size, water flow has decreased while increasing water pressure has a direct increasing effect on the flow. To simulate the complex interaction of these parameters, neural networks and Fuzzy method together with regression analysis have been utilized. Correlation factors between laboratory results and obtained numerical ones show good agreement which proves usefulness of these methods for assessment of water inflow.
Neural Network Model of memory retrieval
Directory of Open Access Journals (Sweden)
Stefano eRecanatesi
2015-12-01
Full Text Available Human memory can store large amount of information. Nevertheless, recalling is often achallenging task. In a classical free recall paradigm, where participants are asked to repeat abriefly presented list of words, people make mistakes for lists as short as 5 words. We present amodel for memory retrieval based on a Hopfield neural network where transition between itemsare determined by similarities in their long-term memory representations. Meanfield analysis ofthe model reveals stable states of the network corresponding (1 to single memory representationsand (2 intersection between memory representations. We show that oscillating feedback inhibitionin the presence of noise induces transitions between these states triggering the retrieval ofdifferent memories. The network dynamics qualitatively predicts the distribution of time intervalsrequired to recall new memory items observed in experiments. It shows that items having largernumber of neurons in their representation are statistically easier to recall and reveals possiblebottlenecks in our ability of retrieving memories. Overall, we propose a neural network model ofinformation retrieval broadly compatible with experimental observations and is consistent with ourrecent graphical model (Romani et al., 2013.
Modeling the Relationship Between Social Network Activity, Inactivity, and Growth
Ribeiro, Bruno
2013-01-01
Online Social Networks (OSNs) are multi-billion dollar enterprises. Surprisingly, little is known about the mechanisms that drive them to growth, stability, or death. This study sheds light on these mechanisms. We are particularly interested in OSNs where current subscribers can invite new users to join the network (e.g., Facebook, LinkedIn). Measuring the relationship between subscriber activity and network growth of a large OSN over five years, we formulate three hypotheses that together describe the observed OSN subscriber behavior. We then provide a model (and extensions) that simultaneously satisfies all three hypotheses. Our model provides deep insights into the dynamics of subscriber activity, inactivity, and network growth rates, even predicting four types of OSNs with respect to subscriber activity evolution. Finally, we present activity data of nearly thirty OSN websites, measured over five years, and show that the observed activity is well described by one of the four activity time series predicted...
Network modeling of PM10 concentration in Malaysia
Supian, Muhammad Nazirul Aiman Abu; Bakar, Sakhinah Abu; Razak, Fatimah Abdul
2017-08-01
Air pollution is not a new phenomenon in Malaysia. The Department of Environment (DOE) monitors the country's ambient air quality through a network of 51 stations. The air quality is measured using the Air Pollution Index (API) which is mainly recorded based on the concentration of particulate matter, PM10 readings. The Continuous Air Quality Monitoring (CAQM) stations are located in various places across the country. In this study, a network model of air quality based on PM10 concen tration for selected CAQM stations in Malaysia has been developed. The model is built using a graph formulation, G = (V, E) where vertex, V is a set of CAQM stations and edges, E is a set of correlation values for each pair of vertices. The network measurements such as degree distributions, closeness centrality, and betweenness centrality are computed to analyse the behaviour of the network. As a result, a rank of CAQM stations has been produced based on their centrality characteristics.
a Model for Brand Competition Within a Social Network
Huerta-Quintanilla, R.; Canto-Lugo, E.; Rodríguez-Achach, M.
An agent-based model was built representing an economic environment in which m brands are competing for a product market. These agents represent companies that interact within a social network in which a certain agent persuades others to update or shift their brands; the brands of the products they are using. Decision rules were established that caused each agent to react according to the economic benefits it would receive; they updated/shifted only if it was beneficial. Each agent can have only one of the m possible brands, and she can interact with its two nearest neighbors and another set of agents which are chosen according to a particular set of rules in the network topology. An absorbing state was always reached in which a single brand monopolized the network (known as condensation). The condensation time varied as a function of model parameters is studied including an analysis of brand competition using different networks.
Model and simulation of Krause model in dynamic open network
Zhu, Meixia; Xie, Guangqiang
2017-08-01
The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.
Fast reconstruction of compact context-specific metabolic network models.
Directory of Open Access Journals (Sweden)
Nikos Vlassis
2014-01-01
Full Text Available Systemic approaches to the study of a biological cell or tissue rely increasingly on the use of context-specific metabolic network models. The reconstruction of such a model from high-throughput data can routinely involve large numbers of tests under different conditions and extensive parameter tuning, which calls for fast algorithms. We present fastcore, a generic algorithm for reconstructing context-specific metabolic network models from global genome-wide metabolic network models such as Recon X. fastcore takes as input a core set of reactions that are known to be active in the context of interest (e.g., cell or tissue, and it searches for a flux consistent subnetwork of the global network that contains all reactions from the core set and a minimal set of additional reactions. Our key observation is that a minimal consistent reconstruction can be defined via a set of sparse modes of the global network, and fastcore iteratively computes such a set via a series of linear programs. Experiments on liver data demonstrate speedups of several orders of magnitude, and significantly more compact reconstructions, over a rival method. Given its simplicity and its excellent performance, fastcore can form the backbone of many future metabolic network reconstruction algorithms.
A improved Network Security Situation Awareness Model
Directory of Open Access Journals (Sweden)
Li Fangwei
2015-08-01
Full Text Available In order to reflect the situation of network security assessment performance fully and accurately, a new network security situation awareness model based on information fusion was proposed. Network security situation is the result of fusion three aspects evaluation. In terms of attack, to improve the accuracy of evaluation, a situation assessment method of DDoS attack based on the information of data packet was proposed. In terms of vulnerability, a improved Common Vulnerability Scoring System (CVSS was raised and maked the assessment more comprehensive. In terms of node weights, the method of calculating the combined weights and optimizing the result by Sequence Quadratic Program (SQP algorithm which reduced the uncertainty of fusion was raised. To verify the validity and necessity of the method, a testing platform was built and used to test through evaluating 2000 DAPRA data sets. Experiments show that the method can improve the accuracy of evaluation results.
Ghaedi, M; Shojaeipour, E; Ghaedi, A M; Sahraei, Reza
2015-05-05
In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1g), contact time (1-40min) and initial MG concentration (5, 10, 20, 70 and 100mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R(2)) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8mg/g at 25°C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model. Copyright © 2015 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Elston Timothy C
2004-03-01
Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.
Modelling hierarchical and modular complex networks: division and independence
Kim, D.-H.; Rodgers, G. J.; Kahng, B.; Kim, D.
2005-06-01
We introduce a growing network model which generates both modular and hierarchical structure in a self-organized way. To this end, we modify the Barabási-Albert model into the one evolving under the principles of division and independence as well as growth and preferential attachment (PA). A newly added vertex chooses one of the modules composed of existing vertices, and attaches edges to vertices belonging to that module following the PA rule. When the module size reaches a proper size, the module is divided into two, and a new module is created. The karate club network studied by Zachary is a simple version of the current model. We find that the model can reproduce both modular and hierarchical properties, characterized by the hierarchical clustering function of a vertex with degree k, C(k), being in good agreement with empirical measurements for real-world networks.
Forecast of consumer behaviour based on neural networks models comparison
Directory of Open Access Journals (Sweden)
Michael Štencl
2012-01-01
Full Text Available The aim of this article is comparison of accuracy level of forecasted values of several artificial neural network models. The comparison is performed on datasets of Czech household consumption values. Several statistical models often resolve this task with more or fewer restrictions. In previous work where models’ input conditions were not so strict and model with missing data was used (the time series didn’t contain many values we have obtained comparably good results with artificial neural networks. Two views – practical and theoretical, motivate the purpose of this study. Forecasting models for medium term prognosis of the main trends of Czech household consumption is part of the faculty research design grant MSM 6215648904/03/02 (Sub-task 5.3 which defines the practical purpose. Testing of nonlinear autoregressive artificial neural network model compared with feed-forward neural network and radial basis function neural network defines the theoretical purpose. The performance metrics of the models were evaluated using a combination of common error metrics, namely Correlation Coefficient and Mean Square Error, together with the number of epochs and/or main prediction error.
Shukla, Anuradha; Khan, Eram; Tandon, Poonam; Sinha, Kirti
2017-03-01
Ampicillin is a β-lactam antibiotic that is active against both gram-positive and gram-negative bacteria and is widely used for the treatment of infections. In this work, molecular properties of ampicillin are calculated on the basis of calculations on its dimeric and tetrameric models using DFT/B3LYP/6-311G(d,p). HOMO-LUMO energy gap shows that chemical reactivity of tetrameric model of ampicillin is higher than the dimeric and monomeric model of ampicillin. To get a better understanding of intra and intermolecular bonding and interactions among bonds, NBO analysis is carried out with tetrameric model of ampicillin, and is further finalized with an 'quantum theory of atoms-in-molecules' (QTAIM) analysis. The binding energy of dimeric model of ampicillin is calculated as -26.84 kcal/mol and -29.34 kcal/mol using AIM and DFT calculations respectively. The global electrophilicity index (ω = 2.8118 eV) of tetrameric model of ampicillin shows that this behaves as a strong electrophile in comparison to dimeric and monomeric model of ampicillin. The FT-Raman and FT-IR spectra were recorded in the solid phase, and interpreted in terms of potential energy distribution analysis. A collective theoretical and experimental vibrational analysis approves the presence of hydrogen bonds in the ampicillin molecule.
Performance modeling, loss networks, and statistical multiplexing
Mazumdar, Ravi
2009-01-01
This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. I
A Spatial Clustering Approach for Stochastic Fracture Network Modelling
Seifollahi, S.; Dowd, P. A.; Xu, C.; Fadakar, A. Y.
2014-07-01
Fracture network modelling plays an important role in many application areas in which the behaviour of a rock mass is of interest. These areas include mining, civil, petroleum, water and environmental engineering and geothermal systems modelling. The aim is to model the fractured rock to assess fluid flow or the stability of rock blocks. One important step in fracture network modelling is to estimate the number of fractures and the properties of individual fractures such as their size and orientation. Due to the lack of data and the complexity of the problem, there are significant uncertainties associated with fracture network modelling in practice. Our primary interest is the modelling of fracture networks in geothermal systems and, in this paper, we propose a general stochastic approach to fracture network modelling for this application. We focus on using the seismic point cloud detected during the fracture stimulation of a hot dry rock reservoir to create an enhanced geothermal system; these seismic points are the conditioning data in the modelling process. The seismic points can be used to estimate the geographical extent of the reservoir, the amount of fracturing and the detailed geometries of fractures within the reservoir. The objective is to determine a fracture model from the conditioning data by minimizing the sum of the distances of the points from the fitted fracture model. Fractures are represented as line segments connecting two points in two-dimensional applications or as ellipses in three-dimensional (3D) cases. The novelty of our model is twofold: (1) it comprises a comprehensive fracture modification scheme based on simulated annealing and (2) it introduces new spatial approaches, a goodness-of-fit measure for the fitted fracture model, a measure for fracture similarity and a clustering technique for proposing a locally optimal solution for fracture parameters. We use a simulated dataset to demonstrate the application of the proposed approach
UAV Trajectory Modeling Using Neural Networks
Xue, Min
2017-01-01
Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural
Wang, Cheng; Hipp, John R; Butts, Carter T; Jose, Rupa; Lakon, Cynthia M
2017-05-01
While studies suggest that peer influence can in some cases encourage adolescent substance use, recent work demonstrates that peer influence may be on average protective for cigarette smoking, raising questions about whether this effect occurs for other substance use behaviors. Herein, we focus on adolescent drinking, which may follow different social dynamics than smoking. We use a data-calibrated Stochastic Actor-Based (SAB) Model of adolescent friendship tie choice and drinking behavior to explore the impact of manipulating the size of peer influence and selection effects on drinking in two school-based networks. We first fit a SAB Model to data on friendship tie choice and adolescent drinking behavior within two large schools (n = 2178 and n = 976) over three time points using data from the National Longitudinal Study of Adolescent to Adult Health. We then alter the size of the peer influence and selection parameters with all other effects fixed at their estimated values and simulate the social systems forward 1000 times under varying conditions. Whereas peer selection appears to contribute to drinking behavior similarity among adolescents, there is no evidence that it leads to higher levels of drinking at the school level. A stronger peer influence effect lowers the overall level of drinking in both schools. There are many similarities in the patterning of findings between this study of drinking and previous work on smoking, suggesting that peer influence and selection may function similarly with respect to these substances.
Modelling and evaluation of optical WDM transport networks
Wauters, Nico
1997-10-01
In this PhD thesis optical WDM transport networks are investigated that use novel optical components to transmit simultaneously multiple datasignals using WDM and which route in their nodes incoming datasignals to one of the outlet fibers without converting these signals to the electrical domain. The goal of the thesis is twofold. On the one hand developing new models that lead to a classification of components, nodes, network architectures and network management techniques such as monitoring and signalling. On the other hand to investigate to which extent wavelength convertors are required for an optimal use of the available wavelength channels. At the same time the tuneability of the WDM terminal multiplexers is questioned. Part 1 gives a general introduction to optical transmission and network techniques by an extensive study of the literature and a limited market survey. In part 2 we propose a number of new models to represent WDM networks and their main building blocks. This leads to a black box model and a classification of all the OXC architectures. Secondly we extend the G.803 layer structure with new layers allowing the representation of hybrid WDM and SDH networks. Finally the model is used to classify different signalling and monitoring options that can be followed. In part 3 we investigate the requirement of wavelength convertors and the tuneability of the WDM terminal multiplexers. The main conclusion of this part is that wavelength translation is not a conditio sine qua non to achieve low blocking probabilities. This contrasts to the much larger difference that appeared between WPa and WPb and which allowed us to conclude that tuneability of the WDM terminal multiplexers is thoroughly required. We do not want to disregard other consequences of not using wavelength convertors in the network as e.g., simplified wavelength management in networks with wavelength convertors and the regeneration capabilities of new all- optical wavelength conversion devices.
A model for evolution of overlapping community networks
Karan, Rituraj; Biswal, Bibhu
2017-05-01
A model is proposed for the evolution of network topology in social networks with overlapping community structure. Starting from an initial community structure that is defined in terms of group affiliations, the model postulates that the subsequent growth and loss of connections is similar to the Hebbian learning and unlearning in the brain and is governed by two dominant factors: the strength and frequency of interaction between the members, and the degree of overlap between different communities. The temporal evolution from an initial community structure to the current network topology can be described based on these two parameters. It is possible to quantify the growth occurred so far and predict the final stationary state to which the network is likely to evolve. Applications in epidemiology or the spread of email virus in a computer network as well as finding specific target nodes to control it are envisaged. While facing the challenge of collecting and analyzing large-scale time-resolved data on social groups and communities one faces the most basic questions: how do communities evolve in time? This work aims to address this issue by developing a mathematical model for the evolution of community networks and studying it through computer simulation.
3D data model of transportation network in city
Zuo, Xiao-qing; Li, Qing-quan; Yang, Bi-sheng
2005-10-01
Modern data-capture technology, especially digital photogrammetry technology, provides abundant data resources for digital city. Transportation network, forming framework of city, is an important component of city and a vital fundamental data of ITS and LBS (Location-based Services). Therefore, developing a data model is very valuable and significant which can describe 3D feature of city road network and support 3D navigation. Nowadays existing 3D GIS data models pay less attention to the support of transportation application, such as 3D vehicle navigation and traffic simulation, and previous GIS for transportation (GIS-T) data models failed to support 3D visualization. In view of it, we developed a 3D data model for transportation network that (1) supports of linear referencing system (LRS) and dynamic segmentation, (2) makes network topology build on the basis of 3D geometry network, and (3) realizes the transformation between linear coordinate and spatial coordinate. A performance study depicts that the proposed model can not only realize 3D visualization but also have transportation analysis (such 3D Vehicle navigation) more efficiently and conveniently.
Aplication of artificial neural network model in aviation specialist training
Directory of Open Access Journals (Sweden)
Висиль Миколайович Казак
2016-02-01
Full Text Available This paper reviews the application of artificial neural network (ANN model in aviation specialist training. The ANN model is based on the dependence of residual knowledge of subjects of study on their individual abilities. The residual knowledge is the skills acquired by the subject before he is going for an occupation. The presented ANN model gives the possibility to predict the level of professional training of the specialists with high accuracy
Open innovation, networking, and business model dynamics: The two sides
Gay, Brigitte
2014-01-01
A business model describes the design of the value creation and capture mechanisms needed to yield profit. We contend that for a business model to be viable in turbulent and hypercompetitive environments, its dynamics are important and must leverage, out of all key business model modules proposed in different studies, on a combined value and network perspective. These different elements present, however, distinctive challenges for small innovative companies and larger firms. Moreover, the bus...
Naguib, Ibrahim A.; Darwish, Hany W.
2012-02-01
A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.
Naguib, Ibrahim A; Darwish, Hany W
2012-02-01
A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer. Copyright © 2011 Elsevier B.V. All rights reserved.
An Effect of the Co-Operative Network Model for Students' Quality in Thai Primary Schools
Khanthaphum, Udomsin; Tesaputa, Kowat; Weangsamoot, Visoot
2016-01-01
This research aimed: 1) to study the current and desirable states of the co-operative network in developing the learners' quality in Thai primary schools, 2) to develop a model of the co-operative network in developing the learners' quality, and 3) to examine the results of implementation of the co-operative network model in the primary school.…
DEFF Research Database (Denmark)
Kock, Anders Bredahl; Teräsvirta, Timo
In this paper we consider the forecasting performance of a well-defined class of flexible models, the so-called single hidden-layer feedforward neural network models. A major aim of our study is to find out whether they, due to their flexibility, are as useful tools in economic forecasting as some...... previous studies have indicated. When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. In fact, their parameters are not even globally...... on the linearisation idea: the Marginal Bridge Estimator and Autometrics. Second, one must decide whether forecasting should be carried out recursively or directly. Comparisons of these two methodss exist for linear models and here these comparisons are extended to neural networks. Finally, a nonlinear model...
Systems biology of plant molecular networks: from networks to models
Valentim, F.L.
2015-01-01
Developmental processes are controlled by regulatory networks (GRNs), which are tightly coordinated networks of transcription factors (TFs) that activate and repress gene expression within a spatial and temporal context. In Arabidopsis thaliana, the key components and network structures of the GRNs
A Dynamic Evolutionary Game Model of Modular Production Network
Directory of Open Access Journals (Sweden)
Wei He
2016-01-01
Full Text Available As a new organization mode of production in the 21st century, modular production network is deemed extensively to be a source of competitiveness for lead firms in manufacturing industries. However, despite the abundant studies on the modular production network, there are very few studies from a dynamic perspective to discuss the conditions on which a modular production network develops. Based on the dynamic evolutionary game theory, this paper constructs a model, which incorporates several main factors influencing the development of modular production network. By calculating the replicator dynamics equations and analyzing the evolutionary stable strategies, this paper discusses the evolution process of cooperation strategies of member enterprises in a modular production network. Furthermore, by using NetLogo software to simulate the model, this paper verifies the effectiveness of the model. From the model, we can find that the final stable equilibrium strategy is related to such factors as the initial cost, the extra payoff, the cooperation willingness of both parties, the cooperation efforts, and the proportion each party can get from the extra payoff. To encourage the cooperation of production integrator and modular supplier, some suggestions are also provided.
Tamada, Yoshinori; Bannai, Hideo; Imoto, Seiya; Katayama, Toshiaki; Kanehisa, Minoru; Miyano, Satoru
2005-12-01
Since microarray gene expression data do not contain sufficient information for estimating accurate gene networks, other biological information has been considered to improve the estimated networks. Recent studies have revealed that highly conserved proteins that exhibit similar expression patterns in different organisms, have almost the same function in each organism. Such conserved proteins are also known to play similar roles in terms of the regulation of genes. Therefore, this evolutionary information can be used to refine regulatory relationships among genes, which are estimated from gene expression data. We propose a statistical method for estimating gene networks from gene expression data by utilizing evolutionarily conserved relationships between genes. Our method simultaneously estimates two gene networks of two distinct organisms, with a Bayesian network model utilizing the evolutionary information so that gene expression data of one organism helps to estimate the gene network of the other. We show the effectiveness of the method through the analysis on Saccharomyces cerevisiae and Homo sapiens cell cycle gene expression data. Our method was successful in estimating gene networks that capture many known relationships as well as several unknown relationships which are likely to be novel. Supplementary information is available at http://bonsai.ims.u-tokyo.ac.jp/~tamada/bayesnet/.
Advances in dynamic network modeling in complex transportation systems
Ukkusuri, Satish V
2013-01-01
This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.
A NEURAL OSCILLATOR-NETWORK MODEL OF TEMPORAL PATTERN GENERATION
Schomaker, Lambert
Most contemporary neural network models deal with essentially static, perceptual problems of classification and transformation. Models such as multi-layer feedforward perceptrons generally do not incorporate time as an essential dimension, whereas biological neural networks are inherently temporal
An information search model for online social Networks - MOBIRSE
Directory of Open Access Journals (Sweden)
J. A. Astaiza
2015-12-01
Full Text Available Online Social Networks (OSNs have been gaining great importance among Internet users in recent years. These are sites where it is possible to meet people, publish, and share content in a way that is both easy and free of charge. As a result, the volume of information contained in these websites has grown exponentially, and web search has consequently become an important tool for users to easily find information relevant to their social networking objectives. Making use of ontologies and user profiles can make these searches more effective. This article presents a model for Information Retrieval in OSNs (MOBIRSE based on user profile and ontologies which aims to improve the relevance of retrieved information on these websites. The social network Facebook was chosen for a case study and as the instance for the proposed model. The model was validated using measures such as At-k Precision and Kappa statistics, to assess its efficiency.
A DUAL NETWORK MODEL OF INTERLOCKING DIRECTORATES
Directory of Open Access Journals (Sweden)
Humphry Hung
2003-01-01
Full Text Available The article proposes an integrative framework for the study of interlocking directorates by using an approach that encompasses the concepts of multiple networks and resource endowment. This serves to integrate the traditional views of interorganizational linkages and intra-class cohesion. Through appropriate strategic analysis of relevant resource endowment of internal environment and external networks of organizations and corporate elites, this article argues that the selection of directors, if used effectively, can be adopted as a strategic device to enhance the corporation's overall performance.
Biological networks 101: computational modeling for molecular biologists.
Scholma, Jetse; Schivo, Stefano; Urquidi Camacho, Ricardo A; van de Pol, Jaco; Karperien, Marcel; Post, Janine N
2014-01-01
Computational modeling of biological networks permits the comprehensive analysis of cells and tissues to define molecular phenotypes and novel hypotheses. Although a large number of software tools have been developed, the versatility of these tools is limited by mathematical complexities that prevent their broad adoption and effective use by molecular biologists. This study clarifies the basic aspects of molecular modeling, how to convert data into useful input, as well as the number of time points and molecular parameters that should be considered for molecular regulatory models with both explanatory and predictive potential. We illustrate the necessary experimental preconditions for converting data into a computational model of network dynamics. This model requires neither a thorough background in mathematics nor precise data on intracellular concentrations, binding affinities or reaction kinetics. Finally, we show how an interactive model of crosstalk between signal transduction pathways in primary human articular chondrocytes allows insight into processes that regulate gene expression. © 2013 Elsevier B.V. All rights reserved.
Model of Opinion Spreading in Social Networks
Kanovsky, Igor
2011-01-01
We proposed a new model, which capture the main difference between information and opinion spreading. In information spreading additional exposure to certain information has a small effect. Contrary, when an actor is exposed to 2 opinioned actors the probability to adopt the opinion is significant higher than in the case of contact with one such actor (called by J. Kleinberg "the 0-1-2 effect"). In each time step if an actor does not have an opinion, we randomly choose 2 his network neighbors. If one of them has an opinion, the actor adopts opinion with some low probability, if two - with a higher probability. Opinion spreading was simulated on different real world social networks and similar random scale-free networks. The results show that small world structure has a crucial impact on tipping point time. The "0-1-2" effect causes a significant difference between ability of the actors to start opinion spreading. Actor is an influencer according to his topological position in the network.
Computer Networks and African Studies Centers.
Kuntz, Patricia S.
The use of electronic communication in the 12 Title VI African Studies Centers is discussed, and the networks available for their use are reviewed. It is argued that the African Studies Centers should be on the cutting edge of contemporary electronic communication and that computer networks should be a fundamental aspect of their programs. An…
Modeling structure and resilience of the dark network.
De Domenico, Manlio; Arenas, Alex
2017-02-01
While the statistical and resilience properties of the Internet are no longer changing significantly across time, the Darknet, a network devoted to keep anonymous its traffic, still experiences rapid changes to improve the security of its users. Here we study the structure of the Darknet and find that its topology is rather peculiar, being characterized by a nonhomogeneous distribution of connections, typical of scale-free networks; very short path lengths and high clustering, typical of small-world networks; and lack of a core of highly connected nodes. We propose a model to reproduce such features, demonstrating that the mechanisms used to improve cybersecurity are responsible for the observed topology. Unexpectedly, we reveal that its peculiar structure makes the Darknet much more resilient than the Internet (used as a benchmark for comparison at a descriptive level) to random failures, targeted attacks, and cascade failures, as a result of adaptive changes in response to the attempts of dismantling the network across time.
Modeling structure and resilience of the dark network
De Domenico, Manlio; Arenas, Alex
2017-02-01
While the statistical and resilience properties of the Internet are no longer changing significantly across time, the Darknet, a network devoted to keep anonymous its traffic, still experiences rapid changes to improve the security of its users. Here we study the structure of the Darknet and find that its topology is rather peculiar, being characterized by a nonhomogeneous distribution of connections, typical of scale-free networks; very short path lengths and high clustering, typical of small-world networks; and lack of a core of highly connected nodes. We propose a model to reproduce such features, demonstrating that the mechanisms used to improve cybersecurity are responsible for the observed topology. Unexpectedly, we reveal that its peculiar structure makes the Darknet much more resilient than the Internet (used as a benchmark for comparison at a descriptive level) to random failures, targeted attacks, and cascade failures, as a result of adaptive changes in response to the attempts of dismantling the network across time.
Modelling opinion formation driven communities in social networks
Iñiguez, Gerardo; Kertész, János; Kaski, Kimmo K
2010-01-01
In a previous paper we proposed a model to study the dynamics of opinion formation in human societies by a co-evolution process involving two distinct time scales of fast transaction and slower network evolution dynamics. In the transaction dynamics we take into account short range interactions as discussions between individuals and long range interactions to describe the attitude to the overall mood of society. The latter is handled by a uniformly distributed parameter $\\alpha$, assigned randomly to each individual, as quenched personal bias. The network evolution dynamics is realized by rewiring the societal network due to state variable changes as a result of transaction dynamics. The main consequence of this complex dynamics is that communities emerge in the social network for a range of values in the ratio between time scales. In this paper we focus our attention on the attitude parameter $\\alpha$ and its influence on the conformation of opinion and the size of the resulting communities. We present numer...
Mathematical model for spreading dynamics of social network worms
Sun, Xin; Liu, Yan-Heng; Li, Bin; Li, Jin; Han, Jia-Wei; Liu, Xue-Jie
2012-04-01
In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks.
A Fluid Model for Performance Analysis in Cellular Networks
Directory of Open Access Journals (Sweden)
Coupechoux Marceau
2010-01-01
Full Text Available We propose a new framework to study the performance of cellular networks using a fluid model and we derive from this model analytical formulas for interference, outage probability, and spatial outage probability. The key idea of the fluid model is to consider the discrete base station (BS entities as a continuum of transmitters that are spatially distributed in the network. This model allows us to obtain simple analytical expressions to reveal main characteristics of the network. In this paper, we focus on the downlink other-cell interference factor (OCIF, which is defined for a given user as the ratio of its outer cell received power to its inner cell received power. A closed-form formula of the OCIF is provided in this paper. From this formula, we are able to obtain the global outage probability as well as the spatial outage probability, which depends on the location of a mobile station (MS initiating a new call. Our analytical results are compared to Monte Carlo simulations performed in a traditional hexagonal network. Furthermore, we demonstrate an application of the outage probability related to cell breathing and densification of cellular networks.
Hydrometeorological network for flood monitoring and modeling
Efstratiadis, Andreas; Koussis, Antonis D.; Lykoudis, Spyros; Koukouvinos, Antonis; Christofides, Antonis; Karavokiros, George; Kappos, Nikos; Mamassis, Nikos; Koutsoyiannis, Demetris
2013-08-01
Due to its highly fragmented geomorphology, Greece comprises hundreds of small- to medium-size hydrological basins, in which often the terrain is fairly steep and the streamflow regime ephemeral. These are typically affected by flash floods, occasionally causing severe damages. Yet, the vast majority of them lack flow-gauging infrastructure providing systematic hydrometric data at fine time scales. This has obvious impacts on the quality and reliability of flood studies, which typically use simplistic approaches for ungauged basins that do not consider local peculiarities in sufficient detail. In order to provide a consistent framework for flood design and to ensure realistic predictions of the flood risk -a key issue of the 2007/60/EC Directive- it is essential to improve the monitoring infrastructures by taking advantage of modern technologies for remote control and data management. In this context and in the research project DEUCALION, we have recently installed and are operating, in four pilot river basins, a telemetry-based hydro-meteorological network that comprises automatic stations and is linked to and supported by relevant software. The hydrometric stations measure stage, using 50-kHz ultrasonic pulses or piezometric sensors, or both stage (piezometric) and velocity via acoustic Doppler radar; all measurements are being temperature-corrected. The meteorological stations record air temperature, pressure, relative humidity, wind speed and direction, and precipitation. Data transfer is made via GPRS or mobile telephony modems. The monitoring network is supported by a web-based application for storage, visualization and management of geographical and hydro-meteorological data (ENHYDRIS), a software tool for data analysis and processing (HYDROGNOMON), as well as an advanced model for flood simulation (HYDROGEIOS). The recorded hydro-meteorological observations are accessible over the Internet through the www-application. The system is operational and its
Modeling regulatory networks with weight matrices
DEFF Research Database (Denmark)
Weaver, D.C.; Workman, Christopher; Stormo, Gary D.
1999-01-01
Systematic gene expression analyses provide comprehensive information about the transcriptional responseto different environmental and developmental conditions. With enough gene expression data points,computational biologists may eventually generate predictive computer models of transcription...... regulation.Such models will require computational methodologies consistent with the behavior of known biologicalsystems that remain tractable. We represent regulatory relationships between genes as linear coefficients orweights, with the "net" regulation influence on a gene's expression being...... the mathematical summation of theindependent regulatory inputs. Test regulatory networks generated with this approach display stable andcyclically stable gene expression levels, consistent with known biological systems. We include variables tomodel the effect of environmental conditions on transcription regulation...
Modeling social influence through network autocorrelation : constructing the weight matrix
Leenders, Roger Th. A. J.
Many physical and social phenomena are embedded within networks of interdependencies, the so-called 'context' of these phenomena. In network analysis, this type of process is typically modeled as a network autocorrelation model. Parameter estimates and inferences based on autocorrelation models,
Network Analysis and Modeling in Systems Biology
Bosque Chacón, Gabriel
2017-01-01
This thesis is dedicated to the study and comprehension of biological networks at the molecular level. The objectives were to analyse their topology, integrate it in a genotype-phenotype analysis, develop richer mathematical descriptions for them, study their community structure and compare different methodologies for estimating their internal fluxes. The work presented in this document moves around three main axes. The first one is the biological. Which organisms were studied in this ...
Hsieh, Chih-Sheng; Lee, Lung fei
2017-01-01
In this paper, we model network formation and network interactions under a unified framework. The key feature of our model is to allow individuals to respond to incentives stemming from interaction benefits on certain activities when they choose friends (network links), while capturing homophily in terms of unobserved characteristic variables in network formation and activities. There are two advantages of this modeling approach: first, one can evaluate whether incentives from certain interac...
Modeling of methane emissions using artificial neural network approach
Directory of Open Access Journals (Sweden)
Stamenković Lidija J.
2015-01-01
Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007
Modelling electric trains energy consumption using Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Martinez Fernandez, P.; Garcia Roman, C.; Insa Franco, R.
2016-07-01
Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last years as they present an inherent efficiency compared to other transport means. However, in order to further expand their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of different variables and alternatives. With this need in mind, this paper presents the development of consumption models based on neural networks that calculate the energy consumption of electric trains. These networks have been trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective of reducing the costs and environmental impact associated to railways. (Author)
Network modeling links breast cancer susceptibility and centrosome dysfunction.
Pujana, Miguel Angel; Han, Jing-Dong J; Starita, Lea M; Stevens, Kristen N; Tewari, Muneesh; Ahn, Jin Sook; Rennert, Gad; Moreno, Víctor; Kirchhoff, Tomas; Gold, Bert; Assmann, Volker; Elshamy, Wael M; Rual, Jean-François; Levine, Douglas; Rozek, Laura S; Gelman, Rebecca S; Gunsalus, Kristin C; Greenberg, Roger A; Sobhian, Bijan; Bertin, Nicolas; Venkatesan, Kavitha; Ayivi-Guedehoussou, Nono; Solé, Xavier; Hernández, Pilar; Lázaro, Conxi; Nathanson, Katherine L; Weber, Barbara L; Cusick, Michael E; Hill, David E; Offit, Kenneth; Livingston, David M; Gruber, Stephen B; Parvin, Jeffrey D; Vidal, Marc
2007-11-01
Many cancer-associated genes remain to be identified to clarify the underlying molecular mechanisms of cancer susceptibility and progression. Better understanding is also required of how mutations in cancer genes affect their products in the context of complex cellular networks. Here we have used a network modeling strategy to identify genes potentially associated with higher risk of breast cancer. Starting with four known genes encoding tumor suppressors of breast cancer, we combined gene expression profiling with functional genomic and proteomic (or 'omic') data from various species to generate a network containing 118 genes linked by 866 potential functional associations. This network shows higher connectivity than expected by chance, suggesting that its components function in biologically related pathways. One of the components of the network is HMMR, encoding a centrosome subunit, for which we demonstrate previously unknown functional associations with the breast cancer-associated gene BRCA1. Two case-control studies of incident breast cancer indicate that the HMMR locus is associated with higher risk of breast cancer in humans. Our network modeling strategy should be useful for the discovery of additional cancer-associated genes.
Distinct Tensile Response of Model Semi-flexible Elastomer Networks
Aguilera-Mercado, Bernardo M.; Cohen, Claude; Escobedo, Fernando A.
2011-03-01
Through coarse-grained molecular modeling, we study how the elastic response strongly depends upon nanostructural heterogeneities in model networks made of semi-flexible chains exhibiting both regular and realistic connectivity. Idealized regular polymer networks have been shown to display a peculiar elastic response similar to that of super-tough natural materials (e.g., organic adhesives inside abalone shells). We investigate the impact of chain stiffness, and the effect of including tri-block copolymer chains, on the network's topology and elastic response. We find in some systems a dual tensile response: a liquid-like behavior at small deformations, and a distinct saw-tooth shaped stress-strain curve at moderate to large deformations. Additionally, stiffer regular networks exhibit a marked hysteresis over loading-unloading cycles that can be deleted by heating-cooling cycles or by performing deformations along different axes. Furthermore, small variations of chain stiffness may entirely change the nature of the network's tensile response from an entropic to an enthalpic elastic regime, and micro-phase separation of different blocks within elastomer networks may significantly enhance their mechanical strength. This work was supported by the American Chemical Society.
A Constructive Neural-Network Approach to Modeling Psychological Development
Shultz, Thomas R.
2012-01-01
This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…
Particle swarm optimization of a neural network model in a ...
Indian Academy of Sciences (India)
sets of cutting conditions and noting the root mean square (RMS) value of spindle motor current as well as ... A multi- objective optimization of hard turning using neural network modelling and swarm intelligence ... being used in this study), and these activated values in turn become the starting signals for the next adjacent ...
Network motif identification and structure detection with exponential random graph models
Directory of Open Access Journals (Sweden)
Munni Begum
2014-12-01
Full Text Available Local regulatory motifs are identified in the transcription regulatory network of the most studied model organism Escherichia coli (E. coli through graphical models. Network motifs are small structures in a network that appear more frequently than expected by chance alone. We apply social network methodologies such as p* models, also known as Exponential Random Graph Models (ERGMs, to identify statistically significant network motifs. In particular, we generate directed graphical models that can be applied to study interaction networks in a broad range of databases. The Markov Chain Monte Carlo (MCMC computational algorithms are implemented to obtain the estimates of model parameters to the corresponding network statistics. A variety of ERGMs are fitted to identify statistically significant network motifs in transcription regulatory networks of E. coli. A total of nine ERGMs are fitted to study the transcription factor - transcription factor interactions and eleven ERGMs are fitted for the transcription factor-operon interactions. For both of these interaction networks, arc (a directed edge in a directed network and k-istar (or incoming star structures, for values of k between 2 and 10, are found to be statistically significant local structures or network motifs. The goodness of fit statistics are provided to determine the quality of these models.
Challenges on Probabilistic Modeling for Evolving Networks
Ding, Jianguo; Bouvry, Pascal
2013-01-01
With the emerging of new networks, such as wireless sensor networks, vehicle networks, P2P networks, cloud computing, mobile Internet, or social networks, the network dynamics and complexity expands from system design, hardware, software, protocols, structures, integration, evolution, application, even to business goals. Thus the dynamics and uncertainty are unavoidable characteristics, which come from the regular network evolution and unexpected hardware defects, unavoidable software errors,...
Shoham, David A; Harris, Jenine K; Mundt, Marlon; McGaghie, William
2016-09-01
Healthcare teams consist of individuals communicating with one another during patient care delivery. Coordination of multiple specialties is critical for patients with complex health conditions, and requires interprofessional and intraprofessional communication. We examined a communication network of 71 health professionals in four professional roles: physician, nurse, health management, and support personnel (dietitian, pharmacist, or social worker), or other health professionals (including physical, respiratory, and occupational therapists, and medical students) working in a burn unit. Data for this cross-sectional study were collected by surveying members of a healthcare team. Ties were defined by asking team members whom they discussed patient care matters with on the shift. We built an exponential random graph model to determine: (1) does professional role influence the likelihood of a tie; (2) are ties more likely between team members from different professions compared to between team members from the same profession; and (3) which professions are more likely to form interprofessional ties. Health management and support personnel ties were 94% interprofessional while ties among nurses were 60% interprofessional. Nurses and other health professionals were significantly less likely than physicians to form ties. Nurses were 1.64 times more likely to communicate with nurses than non-nurses (OR = 1.64, 95% CI: 1.01-2.66); there was no significant role homophily for physicians, other health professionals, or health management and support personnel. Understanding communication networks in healthcare teams is an early step in understanding how teams work together to provide care; future work should evaluate the types and quality of interactions between members of interprofessional healthcare teams.
CCNA Cisco Certified Network Associate Study Guide
Lammle, Todd
2011-01-01
Learn from the Best - Cisco Networking Authority Todd LammleWritten by Cisco networking authority Todd Lammle, this comprehensive guide has been completely updated to reflect the latest CCNA 640-802 exam. Todd's straightforward style provides lively examples, hands on and written labs, easy-to-understand analogies, and real-world scenarios that will not only help you prepare for the exam, but also give you a solid foundation as a Cisco networking professional.This Study Guide teaches you how toDescribe how a network worksConfigure, verify and troubleshoot a switch with VLANs and interswitch co
Energy model for rumor propagation on social networks
Han, Shuo; Zhuang, Fuzhen; He, Qing; Shi, Zhongzhi; Ao, Xiang
2014-01-01
With the development of social networks, the impact of rumor propagation on human lives is more and more significant. Due to the change of propagation mode, traditional rumor propagation models designed for word-of-mouth process may not be suitable for describing the rumor spreading on social networks. To overcome this shortcoming, we carefully analyze the mechanisms of rumor propagation and the topological properties of large-scale social networks, then propose a novel model based on the physical theory. In this model, heat energy calculation formula and Metropolis rule are introduced to formalize this problem and the amount of heat energy is used to measure a rumor’s impact on a network. Finally, we conduct track experiments to show the evolution of rumor propagation, make comparison experiments to contrast the proposed model with the traditional models, and perform simulation experiments to study the dynamics of rumor spreading. The experiments show that (1) the rumor propagation simulated by our model goes through three stages: rapid growth, fluctuant persistence and slow decline; (2) individuals could spread a rumor repeatedly, which leads to the rumor’s resurgence; (3) rumor propagation is greatly influenced by a rumor’s attraction, the initial rumormonger and the sending probability.
Wu, Haiyan
2013-01-01
General diagnostic models (GDMs) and Bayesian networks are mathematical frameworks that cover a wide variety of psychometric models. Both extend latent class models, and while GDMs also extend item response theory (IRT) models, Bayesian networks can be parameterized using discretized IRT. The purpose of this study is to examine similarities and…
Socialising Health Burden Through Different Network Topologies: A Simulation Study.
Peacock, Adrian; Cheung, Anthony; Kim, Peter; Poon, Simon K
2017-01-01
An aging population and the expectation of premium quality health services combined with the increasing economic burden of the healthcare system requires a paradigm shift toward patient oriented healthcare. The guardian angel theory described by Szolovits [1] explores the notion of enlisting patients as primary providers of information and motivation to patients with similar clinical history through social connections. In this study, an agent based model was developed to simulate to explore how individuals are affected through their levels of intrinsic positivity. Ring, point-to-point (paired buddy), and random networks were modelled, with individuals able to send messages to each other given their levels of variables positivity and motivation. Of the 3 modelled networks it is apparent that the ring network provides the most equal, collective improvement in positivity and motivation for all users. Further study into other network topologies should be undertaken in the future.
Aeronautical telecommunications network advances, challenges, and modeling
Musa, Sarhan M
2015-01-01
Addresses the Challenges of Modern-Day Air Traffic Air traffic control (ATC) directs aircraft in the sky and on the ground to safety, while the Aeronautical Telecommunications Network (ATN) comprises all systems and phases that assist in aircraft departure and landing. The Aeronautical Telecommunications Network: Advances, Challenges, and Modeling focuses on the development of ATN and examines the role of the various systems that link aircraft with the ground. The book places special emphasis on ATC-introducing the modern ATC system from the perspective of the user and the developer-and provides a thorough understanding of the operating mechanism of the ATC system. It discusses the evolution of ATC, explaining its structure and how it works; includes design examples; and describes all subsystems of the ATC system. In addition, the book covers relevant tools, techniques, protocols, and architectures in ATN, including MIPv6, air traffic control (ATC), security of air traffic management (ATM), very-high-frequenc...
Neural Network Program Package for Prosody Modeling
Directory of Open Access Journals (Sweden)
J. Santarius
2004-04-01
Full Text Available This contribution describes the programme for one part of theautomatic Text-to-Speech (TTS synthesis. Some experiments (for example[14] documented the considerable improvement of the naturalness ofsynthetic speech, but this approach requires completing the inputfeature values by hand. This completing takes a lot of time for bigfiles. We need to improve the prosody by other approaches which useonly automatically classified features (input parameters. Theartificial neural network (ANN approach is used for the modeling ofprosody parameters. The program package contains all modules necessaryfor the text and speech signal pre-processing, neural network training,sensitivity analysis, result processing and a module for the creationof the input data protocol for Czech speech synthesizer ARTIC [1].
Towards an evolutionary model of transcription networks.
Directory of Open Access Journals (Sweden)
Dan Xie
2011-06-01
Full Text Available DNA evolution models made invaluable contributions to comparative genomics, although it seemed formidable to include non-genomic features into these models. In order to build an evolutionary model of transcription networks (TNs, we had to forfeit the substitution model used in DNA evolution and to start from modeling the evolution of the regulatory relationships. We present a quantitative evolutionary model of TNs, subjecting the phylogenetic distance and the evolutionary changes of cis-regulatory sequence, gene expression and network structure to one probabilistic framework. Using the genome sequences and gene expression data from multiple species, this model can predict regulatory relationships between a transcription factor (TF and its target genes in all species, and thus identify TN re-wiring events. Applying this model to analyze the pre-implantation development of three mammalian species, we identified the conserved and re-wired components of the TNs downstream to a set of TFs including Oct4, Gata3/4/6, cMyc and nMyc. Evolutionary events on the DNA sequence that led to turnover of TF binding sites were identified, including a birth of an Oct4 binding site by a 2nt deletion. In contrast to recent reports of large interspecies differences of TF binding sites and gene expression patterns, the interspecies difference in TF-target relationship is much smaller. The data showed increasing conservation levels from genomic sequences to TF-DNA interaction, gene expression, TN, and finally to morphology, suggesting that evolutionary changes are larger at molecular levels and smaller at functional levels. The data also showed that evolutionarily older TFs are more likely to have conserved target genes, whereas younger TFs tend to have larger re-wiring rates.
Contributions and challenges for network models in cognitive neuroscience.
Sporns, Olaf
2014-05-01
The confluence of new approaches in recording patterns of brain connectivity and quantitative analytic tools from network science has opened new avenues toward understanding the organization and function of brain networks. Descriptive network models of brain structural and functional connectivity have made several important contributions; for example, in the mapping of putative network hubs and network communities. Building on the importance of anatomical and functional interactions, network models have provided insight into the basic structures and mechanisms that enable integrative neural processes. Network models have also been instrumental in understanding the role of structural brain networks in generating spatially and temporally organized brain activity. Despite these contributions, network models are subject to limitations in methodology and interpretation, and they face many challenges as brain connectivity data sets continue to increase in detail and complexity.
Modeling of regional warehouse network generation
Directory of Open Access Journals (Sweden)
Popov Pavel Vladimirovich
2016-08-01
Full Text Available One of the factors that has a significant impact on the socio-economic development of the Russian Federation’s regions is the logistics infrastructure. It provides integrated transportation and distribution service of material flows. One of the main elements of logistics infrastructure is a storage infrastructure, which includes distribution center, distribution-and-sortout and sortout warehouses. It is the most expedient to place distribution center in the vicinity of the regional center. One of the tasks of the distribution network creation within the regions of the Russian Federation is to determine the location, capacity and number of stores. When determining regional network location of general purpose warehouses methodological approaches to solving the problems of location of production and non-production can be used which depend on various economic factors. The mathematical models for solving relevant problems are the deployment models. However, the existing models focus on the dimensionless power storage. The purpose of the given work is to develop a model to determine the optimal location of general-purpose warehouses on the Russian Federation area. At the first stage of the work, the authors assess the main economic indicators influencing the choice of the location of general purpose warehouses. An algorithm for solving the first stage, based on ABC, discriminant and cluster analysis were proposed by the authors in earlier papers. At the second stage the specific locations of general purpose warehouses and their power is chosen to provide the cost minimization for the construction and subsequent maintenance of warehouses and transportation heterogeneous products. In order to solve this problem the authors developed a mathematical model that takes into account the possibility of delivery in heterogeneous goods from suppliers and manufacturers in the distribution and storage sorting with specified set of capacities. The model allows
Game-Theoretic Models of Information Overload in Social Networks
Borgs, Christian; Chayes, Jennifer; Karrer, Brian; Meeder, Brendan; Ravi, R.; Reagans, Ray; Sayedi, Amin
We study the effect of information overload on user engagement in an asymmetric social network like Twitter. We introduce simple game-theoretic models that capture rate competition between celebrities producing updates in such networks where users non-strategically choose a subset of celebrities to follow based on the utility derived from high quality updates as well as disutility derived from having to wade through too many updates. Our two variants model the two behaviors of users dropping some potential connections (followership model) or leaving the network altogether (engagement model). We show that under a simple formulation of celebrity rate competition, there is no pure strategy Nash equilibrium under the first model. We then identify special cases in both models when pure rate equilibria exist for the celebrities: For the followership model, we show existence of a pure rate equilibrium when there is a global ranking of the celebrities in terms of the quality of their updates to users. This result also generalizes to the case when there is a partial order consistent with all the linear orders of the celebrities based on their qualities to the users. Furthermore, these equilibria can be computed in polynomial time. For the engagement model, pure rate equilibria exist when all users are interested in the same number of celebrities, or when they are interested in at most two. Finally, we also give a finite though inefficient procedure to determine if pure equilibria exist in the general case of the followership model.
Non-consensus opinion models on complex networks
Li, Qian; Wang, Huijuan; Shao, Jia; Stanldy, H Eugene; Havline, Shlomo
2012-01-01
We focus on non-consensus opinion models in which above a certain threshold two opinions coexist in a stable relationship. We revisit and extend the non-consensus opinion (NCO) model introduced by Shao. We generalize the NCO model by adding a weight factor W to individual's own opinion when determining its future opinion (NCOW model). We find that as W increases the minority opinion holders tend to form stable clusters with a smaller initial minority fraction compared to the NCO model. We also revisit another non-consensus opinion, the inflexible contrarian opinion (ICO) model, which introduces inflexible contrarians to model a competition between two opinions in the steady state. In the ICO model, the inflexible contrarians effectively decrease the size of the largest cluster of the rival opinion. All of the above models have previously been explored in terms of a single network. However opinions propagate not only within single networks but also between networks, we study here the opinion dynamics in couple...
A coevolving model based on preferential triadic closure for social media networks.
Li, Menghui; Zou, Hailin; Guan, Shuguang; Gong, Xiaofeng; Li, Kun; Di, Zengru; Lai, Choy-Heng
2013-01-01
The dynamical origin of complex networks, i.e., the underlying principles governing network evolution, is a crucial issue in network study. In this paper, by carrying out analysis to the temporal data of Flickr and Epinions-two typical social media networks, we found that the dynamical pattern in neighborhood, especially the formation of triadic links, plays a dominant role in the evolution of networks. We thus proposed a coevolving dynamical model for such networks, in which the evolution is only driven by the local dynamics-the preferential triadic closure. Numerical experiments verified that the model can reproduce global properties which are qualitatively consistent with the empirical observations.
Limitations of gene duplication models: evolution of modules in protein interaction networks.
Directory of Open Access Journals (Sweden)
Frank Emmert-Streib
Full Text Available It has been generally acknowledged that the module structure of protein interaction networks plays a crucial role with respect to the functional understanding of these networks. In this paper, we study evolutionary aspects of the module structure of protein interaction networks, which forms a mesoscopic level of description with respect to the architectural principles of networks. The purpose of this paper is to investigate limitations of well known gene duplication models by showing that these models are lacking crucial structural features present in protein interaction networks on a mesoscopic scale. This observation reveals our incomplete understanding of the structural evolution of protein networks on the module level.
Small-World and Scale-Free Network Models for IoT Systems
Directory of Open Access Journals (Sweden)
Insoo Sohn
2017-01-01
Full Text Available It is expected that Internet of Things (IoT revolution will enable new solutions and business for consumers and entrepreneurs by connecting billions of physical world devices with varying capabilities. However, for successful realization of IoT, challenges such as heterogeneous connectivity, ubiquitous coverage, reduced network and device complexity, enhanced power savings, and enhanced resource management have to be solved. All these challenges are heavily impacted by the IoT network topology supported by massive number of connected devices. Small-world networks and scale-free networks are important complex network models with massive number of nodes and have been actively used to study the network topology of brain networks, social networks, and wireless networks. These models, also, have been applied to IoT networks to enhance synchronization, error tolerance, and more. However, due to interdisciplinary nature of the network science, with heavy emphasis on graph theory, it is not easy to study the various tools provided by complex network models. Therefore, in this paper, we attempt to introduce basic concepts of graph theory, including small-world networks and scale-free networks, and provide system models that can be easily implemented to be used as a powerful tool in solving various research problems related to IoT.
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
Degeneracy estimation in interference models on wireless networks
McBride, Neal; Bulava, John; Galiotto, Carlo; Marchetti, Nicola; Macaluso, Irene; Doyle, Linda
2017-03-01
We present a Monte Carlo study of interference in real-world wireless networks using the Potts model. Our approach maps the Potts energy to discrete interference levels. These levels depend on the configurations of radio frequency allocation in the network. For the first time, we estimate the degeneracy of these interference levels using the Wang-Landau algorithm. The cumulative distribution function of the resulting density of states is found to increase rapidly at a critical interference value. We compare these critical values for several different real-world interference networks and Potts models. Our results show that models with a greater number of available frequency channels and less dense interference networks result in the majority of configurations having lower interference levels. Consequently, their critical interference levels occur at lower values. Furthermore, the area under the density of states increases and shifts to lower interference values. Therefore, the probability of randomly sampling low interference configurations is higher under these conditions. This result can be used to consider dynamic and distributed spectrum allocation in future wireless networks.
Inferring gene regression networks with model trees
Directory of Open Access Journals (Sweden)
Aguilar-Ruiz Jesus S
2010-10-01
Full Text Available Abstract Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear
Influence of rainfall observation network on model calibration and application
Directory of Open Access Journals (Sweden)
A. Bárdossy
2008-01-01
Full Text Available The objective in this study is to investigate the influence of the spatial resolution of the rainfall input on the model calibration and application. The analysis is carried out by varying the distribution of the raingauge network. A meso-scale catchment located in southwest Germany has been selected for this study. First, the semi-distributed HBV model is calibrated with the precipitation interpolated from the available observed rainfall of the different raingauge networks. An automatic calibration method based on the combinatorial optimization algorithm simulated annealing is applied. The performance of the hydrological model is analyzed as a function of the raingauge density. Secondly, the calibrated model is validated using interpolated precipitation from the same raingauge density used for the calibration as well as interpolated precipitation based on networks of reduced and increased raingauge density. Lastly, the effect of missing rainfall data is investigated by using a multiple linear regression approach for filling in the missing measurements. The model, calibrated with the complete set of observed data, is then run in the validation period using the above described precipitation field. The simulated hydrographs obtained in the above described three sets of experiments are analyzed through the comparisons of the computed Nash-Sutcliffe coefficient and several goodness-of-fit indexes. The results show that the model using different raingauge networks might need re-calibration of the model parameters, specifically model calibrated on relatively sparse precipitation information might perform well on dense precipitation information while model calibrated on dense precipitation information fails on sparse precipitation information. Also, the model calibrated with the complete set of observed precipitation and run with incomplete observed data associated with the data estimated using multiple linear regressions, at the locations treated as
Study on Dissemination Patterns in Location-Aware Gossiping Networks
Kami, Nobuharu; Baba, Teruyuki; Yoshikawa, Takashi; Morikawa, Hiroyuki
We study the properties of information dissemination over location-aware gossiping networks leveraging location-based real-time communication applications. Gossiping is a promising method for quickly disseminating messages in a large-scale system, but in its application to information dissemination for location-aware applications, it is important to consider the network topology and patterns of spatial dissemination over the network in order to achieve effective delivery of messages to potentially interested users. To this end, we propose a continuous-space network model extended from Kleinberg's small-world model applicable to actual location-based applications. Analytical and simulation-based study shows that the proposed network achieves high dissemination efficiency resulting from geographically neutral dissemination patterns as well as selective dissemination to proximate users. We have designed a highly scalable location management method capable of promptly updating the network topology in response to node movement and have implemented a distributed simulator to perform dynamic target pursuit experiments as one example of applications that are the most sensitive to message forwarding delay. The experimental results show that the proposed network surpasses other types of networks in pursuit efficiency and achieves the desirable dissemination patterns.
Two stage neural network modelling for robust model predictive control.
Patan, Krzysztof
2017-11-02
The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Marsman, M; Borsboom, D; Kruis, J; Epskamp, S; van Bork, R; Waldorp, L J; Maas, H L J van der; Maris, G
2017-11-07
In recent years, network models have been proposed as an alternative representation of psychometric constructs such as depression. In such models, the covariance between observables (e.g., symptoms like depressed mood, feelings of worthlessness, and guilt) is explained in terms of a pattern of causal interactions between these observables, which contrasts with classical interpretations in which the observables are conceptualized as the effects of a reflective latent variable. However, few investigations have been directed at the question how these different models relate to each other. To shed light on this issue, the current paper explores the relation between one of the most important network models-the Ising model from physics-and one of the most important latent variable models-the Item Response Theory (IRT) model from psychometrics. The Ising model describes the interaction between states of particles that are connected in a network, whereas the IRT model describes the probability distribution associated with item responses in a psychometric test as a function of a latent variable. Despite the divergent backgrounds of the models, we show a broad equivalence between them and also illustrate several opportunities that arise from this connection.
Social network models predict movement and connectivity in ecological landscapes
Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.
2011-01-01
Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.
Neural Networks For Electrohydrodynamic Effect Modelling
Directory of Open Access Journals (Sweden)
Wiesław Wajs
2004-01-01
Full Text Available This paper presents currently achieved results concerning methods of electrohydrodynamiceffect used in geophysics simulated with feedforward networks trained with backpropagation algorithm, radial basis function networks and generalized regression networks.
A network-oriented business modeling environment
Bisconti, Cristian; Storelli, Davide; Totaro, Salvatore; Arigliano, Francesco; Savarino, Vincenzo; Vicari, Claudia
The development of formal models related to the organizational aspects of an enterprise is fundamental when these aspects must be re-engineered and digitalized, especially when the enterprise is involved in the dynamics and value flows of a business network. Business modeling provides an opportunity to synthesize and make business processes, business rules and the structural aspects of an organization explicit, allowing business managers to control their complexity and guide an enterprise through effective decisional and strategic activities. This chapter discusses the main results of the TEKNE project in terms of software components that enable enterprises to configure, store, search and share models of any aspects of their business while leveraging standard and business-oriented technologies and languages to bridge the gap between the world of business people and IT experts and to foster effective business-to-business collaborations.
Compartmentalization analysis using discrete fracture network models
Energy Technology Data Exchange (ETDEWEB)
La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)
1997-08-01
This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.
Optimization Models for Flexible and Adaptive SDN Network Virtualization Layers
Zerwas, Johannes; Blenk, Andreas; Kellerer, Wolfgang
2016-01-01
Network hypervisors provide the network virtualization layer for Software Defined Networking (SDN). They enable virtual network (VN) tenants to bring their SDN controllers to program their logical networks individually according to their demands. In order to make use of the high flexibility of virtual SDN networks and to provide high performance, the deployment of the virtualization layer needs to adapt to changing VN demands. This paper initializes the study of the optimization of dynamic SD...
Networks model of the East Turkistan terrorism
Li, Ben-xian; Zhu, Jun-fang; Wang, Shun-guo
2015-02-01
The presence of the East Turkistan terrorist network in China can be traced back to the rebellions on the BAREN region in Xinjiang in April 1990. This article intends to research the East Turkistan networks in China and offer a panoramic view. The events, terrorists and their relationship are described using matrices. Then social network analysis is adopted to reveal the network type and the network structure characteristics. We also find the crucial terrorist leader. Ultimately, some results show that the East Turkistan network has big hub nodes and small shortest path, and that the network follows a pattern of small world network with hierarchical structure.
Fundamentals of complex networks models, structures and dynamics
Chen, Guanrong; Li, Xiang
2014-01-01
Complex networks such as the Internet, WWW, transportationnetworks, power grids, biological neural networks, and scientificcooperation networks of all kinds provide challenges for futuretechnological development. In particular, advanced societies havebecome dependent on large infrastructural networks to an extentbeyond our capability to plan (modeling) and to operate (control).The recent spate of collapses in power grids and ongoing virusattacks on the Internet illustrate the need for knowledge aboutmodeling, analysis of behaviors, optimized planning and performancecontrol in such networks. F
Stochastic simulation of HIV population dynamics through complex network modelling
Sloot, P. M. A.; Ivanov, S. V.; Boukhanovsky, A. V.; van de Vijver, D. A. M. C.; Boucher, C. A. B.
We propose a new way to model HIV infection spreading through the use of dynamic complex networks. The heterogeneous population of HIV exposure groups is described through a unique network degree probability distribution. The time evolution of the network nodes is modelled by a Markov process and
A Search Model with a Quasi-Network
DEFF Research Database (Denmark)
Ejarque, Joao Miguel
This paper adds a quasi-network to a search model of the labor market. Fitting the model to an average unemployment rate and to other moments in the data implies the presence of the network is not noticeable in the basic properties of the unemployment and job finding rates. However, the network c...
Stochastic simulation of HIV population dynamics through complex network modelling
Sloot, P.M.A.; Ivanov, S.V.; Boukhanovsky, A.V.; van de Vijver, D.A.M.C.; Boucher, C.A.B.
2008-01-01
We propose a new way to model HIV infection spreading through the use of dynamic complex networks. The heterogeneous population of HIV exposure groups is described through a unique network degree probability distribution. The time evolution of the network nodes is modelled by a Markov process and
Directory of Open Access Journals (Sweden)
Yan eWang
2014-05-01
Full Text Available Recent neuroimaging studies have revealed normal aging-related alterations in functional and structural brain networks such as the default mode network (DMN. However, less is understood about specific brain structural dependencies or interactions between brain regions within the DMN in the normal aging process. In this study, using Bayesian network (BN modeling, we analyzed grey matter volume data from 109 young and 82 old subjects to characterize the influence of aging on associations between core brain regions within the DMN. Furthermore, we investigated the discriminability of the aging-associated BN models for the young and old groups. Compared to their young counterparts, the old subjects showed significant reductions in connections from right inferior temporal cortex (ITC to medial prefrontal cortex (mPFC, right hippocampus (HP to right ITC, and mPFC to posterior cingulate cortex (PCC and increases in connections from left HP to mPFC and right inferior parietal cortex (IPC to right ITC. Moreover, the classification results showed that the aging-related BN models could predict group membership with 88.48% accuracy, 88.07% sensitivity and 89.02% specificity. Our findings suggest that structural associations within the DMN may be affected by normal aging and provide crucial information about aging effects on brain structural networks.
Load Balancing of Large Distribution Network Model Calculations
Directory of Open Access Journals (Sweden)
MARTINOVIC, L.
2017-11-01
Full Text Available Performance measurement and evaluation study of calculations based on load flow analysis in power distribution network is presented. The focus is on the choice of load index as it is the basic input for efficient dynamic load balancing. The basic description of problem along with the proposed architecture is given. Different server resources are inspected and analyzed while running calculations, and based on this investigation, recommendations regarding the choice of load index are made. Short description of used static and dynamic load balancing algorithms is given and the proposition of load index choice is supported by tests run on large real-world power distribution network models.
Dynamic Model on the Transmission of Malicious Codes in Network
Bimal Kumar Mishra; Apeksha Prajapati
2013-01-01
This paper introduces differential susceptible e-epidemic model S_i IR (susceptible class-1 for virus (S1) - susceptible class-2 for worms (S2) -susceptible class-3 for Trojan horse (S3) – infectious (I) – recovered (R)) for the transmission of malicious codes in a computer network. We derive the formula for reproduction number (R0) to study the spread of malicious codes in computer network. We show that the Infectious free equilibrium is globally asymptotically stable and endemic equilibrium...
A Model of Genetic Variation in Human Social Networks
Fowler, James H; Christakis, Nicholas A
2008-01-01
Social networks influence the evolution of cooperation and they exhibit strikingly systematic patterns across a wide range of human contexts. Both of these facts suggest that variation in the topological attributes of human social networks might have a genetic basis. While genetic variation accounts for a significant portion of the variation in many complex social behaviors, the heritability of egocentric social network attributes is unknown. Here we show that three of these attributes (in-degree, transitivity, and centrality) are heritable. We then develop a "mirror network" method to test extant network models and show that none accounts for observed genetic variation in human social networks. We propose an alternative "attract and introduce" model that generates significant heritability as well as other important network features, and we show that this model with two simple forms of heterogeneity is well suited to the modeling of real social networks in humans. These results suggest that natural selection ...
Frank, Laurence Emmanuelle
2006-01-01
Feature Network Models (FNM) are graphical structures that represent proximity data in a discrete space with the use of features. A statistical inference theory is introduced, based on the additivity properties of networks and the linear regression framework. Considering features as predictor
PageRank model of opinion formation on Ulam networks
Chakhmakhchyan, L.; Shepelyansky, D.
2013-12-01
We consider a PageRank model of opinion formation on Ulam networks, generated by the intermittency map and the typical Chirikov map. The Ulam networks generated by these maps have certain similarities with such scale-free networks as the World Wide Web (WWW), showing an algebraic decay of the PageRank probability. We find that the opinion formation process on Ulam networks has certain similarities but also distinct features comparing to the WWW. We attribute these distinctions to internal differences in network structure of the Ulam and WWW networks. We also analyze the process of opinion formation in the frame of generalized Sznajd model which protects opinion of small communities.
THE USE OF NEURAL NETWORK TECHNOLOGY TO MODEL SWIMMING PERFORMANCE
Directory of Open Access Journals (Sweden)
António José Silva
2007-03-01
Full Text Available The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility, swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports
Adaptive elastic networks as models of supercooled liquids
Yan, Le; Wyart, Matthieu
2015-08-01
The thermodynamics and dynamics of supercooled liquids correlate with their elasticity. In particular for covalent networks, the jump of specific heat is small and the liquid is strong near the threshold valence where the network acquires rigidity. By contrast, the jump of specific heat and the fragility are large away from this threshold valence. In a previous work [Proc. Natl. Acad. Sci. USA 110, 6307 (2013), 10.1073/pnas.1300534110], we could explain these behaviors by introducing a model of supercooled liquids in which local rearrangements interact via elasticity. However, in that model the disorder characterizing elasticity was frozen, whereas it is itself a dynamic variable in supercooled liquids. Here we study numerically and theoretically adaptive elastic network models where polydisperse springs can move on a lattice, thus allowing for the geometry of the elastic network to fluctuate and evolve with temperature. We show numerically that our previous results on the relationship between structure and thermodynamics hold in these models. We introduce an approximation where redundant constraints (highly coordinated regions where the frustration is large) are treated as an ideal gas, leading to analytical predictions that are accurate in the range of parameters relevant for real materials. Overall, these results lead to a description of supercooled liquids, in which the distance to the rigidity transition controls the number of directions in phase space that cost energy and the specific heat.
Sai-rat, Wipa; Tesaputa, Kowat; Sriampai, Anan
2015-01-01
The objectives of this study were 1) to study the current state of and problems with the Learning Organization of the Primary School Network, 2) to develop a Learning Organization Model for the Primary School Network, and 3) to study the findings of analyses conducted using the developed Learning Organization Model to determine how to develop the…
Earth Regime Network Evolution Study (ERNESt)
Menrad, Bob
2016-01-01
Speaker and Presenter at the Lincoln Laboratory Communications Workshop on April 5, 2016 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. A visual presentation titled Earth Regimes Network Evolution Study (ERNESt).
Artificial neural network modeling of p-cresol photodegradation.
Abdollahi, Yadollah; Zakaria, Azmi; Abbasiyannejad, Mina; Masoumi, Hamid Reza Fard; Moghaddam, Mansour Ghaffari; Matori, Khamirul Amin; Jahangirian, Hossein; Keshavarzi, Ashkan
2013-06-03
The complexity of reactions and kinetic is the current problem of photodegradation processes. Recently, artificial neural networks have been widely used to solve the problems because of their reliable, robust, and salient characteristics in capturing the non-linear relationships between variables in complex systems. In this study, an artificial neural network was applied for modeling p-cresol photodegradation. To optimize the network, the independent variables including irradiation time, pH, photocatalyst amount and concentration of p-cresol were used as the input parameters, while the photodegradation% was selected as output. The photodegradation% was obtained from the performance of the experimental design of the variables under UV irradiation. The network was trained by Quick propagation (QP) and the other three algorithms as a model. To determine the number of hidden layer nodes in the model, the root mean squared error of testing set was minimized. After minimizing the error, the topologies of the algorithms were compared by coefficient of determination and absolute average deviation. The comparison indicated that the Quick propagation algorithm had minimum root mean squared error, 1.3995, absolute average deviation, 3.0478, and maximum coefficient of determination, 0.9752, for the testing data set. The validation test results of the artificial neural network based on QP indicated that the root mean squared error was 4.11, absolute average deviation was 8.071 and the maximum coefficient of determination was 0.97. Artificial neural network based on Quick propagation algorithm with topology 4-10-1 gave the best performance in this study.
Zelenev, Alexei; Li, Jianghong; Mazhnaya, Alyona; Basu, Sanjay; Altice, Frederick L
2018-02-01
Chronic infections with hepatitis C virus (HCV) and HIV are highly prevalent in the USA and concentrated in people who inject drugs. Treatment as prevention with highly effective new direct-acting antivirals is a prospective HCV elimination strategy. We used network-based modelling to analyse the effect of this strategy in HCV-infected people who inject drugs in a US city. Five graph models were fit using data from 1574 people who inject drugs in Hartford, CT, USA. We used a degree-corrected stochastic block model, based on goodness-of-fit, to model networks of injection drug users. We simulated transmission of HCV and HIV through this network with varying levels of HCV treatment coverage (0%, 3%, 6%, 12%, or 24%) and varying baseline HCV prevalence in people who inject drugs (30%, 60%, 75%, or 85%). We compared the effectiveness of seven treatment-as-prevention strategies on reducing HCV prevalence over 10 years and 20 years versus no treatment. The strategies consisted of treatment assigned to either a randomly chosen individual who injects drugs or to an individual with the highest number of injection partners. Additional strategies explored the effects of treating either none, half, or all of the injection partners of the selected individual, as well as a strategy based on respondent-driven recruitment into treatment. Our model estimates show that at the highest baseline HCV prevalence in people who inject drugs (85%), expansion of treatment coverage does not substantially reduce HCV prevalence for any treatment-as-prevention strategy. However, when baseline HCV prevalence is 60% or lower, treating more than 120 (12%) individuals per 1000 people who inject drugs per year would probably eliminate HCV within 10 years. On average, assigning treatment randomly to individuals who inject drugs is better than targeting individuals with the most injection partners. Treatment-as-prevention strategies that treat additional network members are among the best performing
Using structural equation modeling for network meta-analysis.
Tu, Yu-Kang; Wu, Yun-Chun
2017-07-14
Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison
Enhancement of a model for Large-scale Airline Network Planning Problems
Kölker, K.; Lopes dos Santos, B.F.; Lütjens, K.
2016-01-01
The main focus of this study is to solve the network planning problem based on passenger decision criteria including the preferred departure time and travel time for a real-sized airline network. For this purpose, a model of the integrated network planning problem is formulated including scheduling
Understanding Homophily and More-Becomes-More Through Adaptive Temporal-Causal Network Models
Beukel, Sven van den; Goos, Simon; Treur, J.; De la Prieta, F
2017-01-01
This study describes the use of adaptive temporal-causal networks to model and simulate the development of mutually interacting opinion states and connections between individuals in social networks. The focus is on adaptive networks combining the homophily principle with the more becomes more
Mental Health, School Problems, and Social Networks: Modeling Urban Adolescent Substance Use
Mason, Michael J.
2010-01-01
This study tested a mediation model of the relationship with school problems, social network quality, and substance use with a primary care sample of 301 urban adolescents. It was theorized that social network quality (level of risk or protection in network) would mediate the effects of school problems, accounting for internalizing problems and…
West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.
2010-01-01
A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…
A scale-free neural network for modelling neurogenesis
Perotti, Juan I.; Tamarit, Francisco A.; Cannas, Sergio A.
2006-11-01
In this work we introduce a neural network model for associative memory based on a diluted Hopfield model, which grows through a neurogenesis algorithm that guarantees that the final network is a small-world and scale-free one. We also analyze the storage capacity of the network and prove that its performance is larger than that measured in a randomly dilute network with the same connectivity.
Determining Application Runtimes Using Queueing Network Modeling
Energy Technology Data Exchange (ETDEWEB)
Elliott, Michael L. [Univ. of San Francisco, CA (United States)
2006-12-14
Determination of application times-to-solution for large-scale clustered computers continues to be a difficult problem in high-end computing, which will only become more challenging as multi-core consumer machines become more prevalent in the market. Both researchers and consumers of these multi-core systems desire reasonable estimates of how long their programs will take to run (time-to-solution, or TTS), and how many resources will be consumed in the execution. Currently there are few methods of determining these values, and those that do exist are either overly simplistic in their assumptions or require great amounts of effort to parameterize and understand. One previously untried method is queuing network modeling (QNM), which is easy to parameterize and solve, and produces results that typically fall within 10 to 30% of the actual TTS for our test cases. Using characteristics of the computer network (bandwidth, latency) and communication patterns (number of messages, message length, time spent in communication), the QNM model of the NAS-PB CG application was applied to MCR and ALC, supercomputers at LLNL, and the Keck Cluster at USF, with average errors of 2.41%, 3.61%, and -10.73%, respectively, compared to the actual TTS observed. While additional work is necessary to improve the predictive capabilities of QNM, current results show that QNM has a great deal of promise for determining application TTS for multi-processor computer systems.
Modeling management of research and education networks
Galagan, D.V.
2004-01-01
Computer networks and their services have become an essential part of research and education. Nowadays every modern R&E institution must have a computer network and provide network services to its students and staff. In addition to its internal computer network, every R&E institution must have a
Modeling stochasticity in biochemical reaction networks
Constantino, P. H.; Vlysidis, M.; Smadbeck, P.; Kaznessis, Y. N.
2016-03-01
Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts.
Modelling of A Trust and Reputation Model in Wireless Networks
Directory of Open Access Journals (Sweden)
Saurabh Mishra
2015-09-01
Full Text Available Security is the major challenge for Wireless Sensor Networks (WSNs. The sensor nodes are deployed in non controlled environment, facing the danger of information leakage, adversary attacks and other threats. Trust and Reputation models are solutions for this problem and to identify malicious, selfish and compromised nodes. This paper aims to evaluate varying collusion effect with respect to static (SW, dynamic (DW, static with collusion (SWC, dynamic with collusion (DWC and oscillating wireless sensor networks to derive the joint resultant of Eigen Trust Model. An attempt has been made for the same by comparing aforementioned networks that are purely dedicated to protect the WSNs from adversary attacks and maintain the security issues. The comparison has been made with respect to accuracy and path length and founded that, collusion for wireless sensor networks seems intractable with the static and dynamic WSNs when varied with specified number of fraudulent nodes in the scenario. Additionally, it consumes more energy and resources in oscillating and collusive environments.
A Stochastic After-Taxes Optimisation Model to Support Distribution Network Strategies
DEFF Research Database (Denmark)
Fernandes, Rui; Hvolby, Hans-Henrik; Gouveia, Borges
2012-01-01
The paper proposes a stochastic model to integrate tax issues into strategic distribution network decisions. Specifically, this study will explore the role of distribution models in business profitability, and how to use the network design to deliver additional bottom-line results, using distribu......The paper proposes a stochastic model to integrate tax issues into strategic distribution network decisions. Specifically, this study will explore the role of distribution models in business profitability, and how to use the network design to deliver additional bottom-line results, using...
Multilevel method for modeling large-scale networks.
Energy Technology Data Exchange (ETDEWEB)
Safro, I. M. (Mathematics and Computer Science)
2012-02-24
Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from
CNMO: Towards the Construction of a Communication Network Modelling Ontology
Rahman, Muhammad Azizur; Pakstas, Algirdas; Wang, Frank Zhigang
Ontologies that explicitly identify objects, properties, and relationships in specific domains are essential for collaboration that involves sharing of data, knowledge or resources. A communications network modelling ontology (CNMO) has been designed to represent a network model as well as aspects related to its development and actual network operation. Network nodes/sites, link, traffic sources, protocols as well as aspects of the modeling/simulation scenario and operational aspects are defined with their formal representation. A CNMO may be beneficial for various network design/simulation/research communities due to the uniform representation of network models. This ontology is designed using terminology and concepts from various network modeling, simulation and topology generation tools.
Directory of Open Access Journals (Sweden)
Basri Mahiran
2008-12-01
Full Text Available Abstract Background Thermostable bacterial lipases occupy a place of prominence among biocatalysts owing to their novel, multifold applications and resistance to high temperature and other operational conditions. The capability of lipases to catalyze a variety of novel reactions in both aqueous and nonaqueous media presents a fascinating field for research, creating interest to isolate novel lipase producers and optimize lipase production. The most important stages in a biological process are modeling and optimization to improve a system and increase the efficiency of the process without increasing the cost. Results Different production media were tested for lipase production by a newly isolated thermophilic Geobacillus sp. strain ARM (DSM 21496 = NCIMB 41583. The maximum production was obtained in the presence of peptone and yeast extract as organic nitrogen sources, olive oil as carbon source and lipase production inducer, sodium and calcium as metal ions, and gum arabic as emulsifier and lipase production inducer. The best models for optimization of culture parameters were achieved by multilayer full feedforward incremental back propagation network and modified response surface model using backward elimination, where the optimum condition was: growth temperature (52.3°C, medium volume (50 ml, inoculum size (1%, agitation rate (static condition, incubation period (24 h and initial pH (5.8. The experimental lipase activity was 0.47 Uml-1 at optimum condition (4.7-fold increase, which compared well to the maximum predicted values by ANN (0.47 Uml-1 and RSM (0.476 Uml-1, whereas R2 and AAD were determined as 0.989 and 0.059% for ANN, and 0.95 and 0.078% for RSM respectively. Conclusion Lipase production is the result of a synergistic combination of effective parameters interactions. These parameters are in equilibrium and the change of one parameter can be compensated by changes of other parameters to give the same results. Though both RSM and
Ebrahimpour, Afshin; Abd Rahman, Raja Noor Zaliha Raja; Ean Ch'ng, Diana Hooi; Basri, Mahiran; Salleh, Abu Bakar
2008-12-23
Thermostable bacterial lipases occupy a place of prominence among biocatalysts owing to their novel, multifold applications and resistance to high temperature and other operational conditions. The capability of lipases to catalyze a variety of novel reactions in both aqueous and nonaqueous media presents a fascinating field for research, creating interest to isolate novel lipase producers and optimize lipase production. The most important stages in a biological process are modeling and optimization to improve a system and increase the efficiency of the process without increasing the cost. Different production media were tested for lipase production by a newly isolated thermophilic Geobacillus sp. strain ARM (DSM 21496 = NCIMB 41583). The maximum production was obtained in the presence of peptone and yeast extract as organic nitrogen sources, olive oil as carbon source and lipase production inducer, sodium and calcium as metal ions, and gum arabic as emulsifier and lipase production inducer. The best models for optimization of culture parameters were achieved by multilayer full feedforward incremental back propagation network and modified response surface model using backward elimination, where the optimum condition was: growth temperature (52.3 degrees C), medium volume (50 ml), inoculum size (1%), agitation rate (static condition), incubation period (24 h) and initial pH (5.8). The experimental lipase activity was 0.47 Uml(-1) at optimum condition (4.7-fold increase), which compared well to the maximum predicted values by ANN (0.47 Uml(-1)) and RSM (0.476 Uml(-1)), whereas R2 and AAD were determined as 0.989 and 0.059% for ANN, and 0.95 and 0.078% for RSM respectively. Lipase production is the result of a synergistic combination of effective parameters interactions. These parameters are in equilibrium and the change of one parameter can be compensated by changes of other parameters to give the same results. Though both RSM and ANN models provided good quality
DEFF Research Database (Denmark)
Haakonsson, Stine Jessen; Kirkegaard, Julia Kirch
2016-01-01
Through a comparative analysis of technology management at the component level by wind turbine manufacturers from Europe and China, this article compares strategies of internalisation of core technology components by European and Chinese lead firms and outlines how different internalisation...... or relational ties with key component suppliers, whereas Chinese lead firms modularise and externalise core technology components, hence adopting a more flexible approach to technology management. The latter model mirrors a strategy of overcoming technological barriers by tapping into knowledge through global...... strategies impact the networks established by the two types of lead firms. Building on the concept of governance developed by the global value chain literature, the article identifies two different types of networks: European lead firms internalise core technology components and keep strong captive...
Sui, Yi; Shao, Fengjing; Wang, Changying; Sun, Rencheng; Ji, Jun
2016-12-01
Feature bands selection and targets classification is of great importance in spectral remotely sensed imagery interpretation. In this work, complex network is adopted for modeling spectral remotely sensed imagery. Subnet is constructed for each band based on spatial neighboring characteristic. Feature bands could be obtained by analyzing and comparing topological characteristics between subnets. After finding feature bands, subnets of feature bands are compounded. Targets classification could be measured by degree distribution of the composited network. This approach is evaluated with empirical experiments based on detecting massive green algae blooms with MODIS data. Feature bands found are coincided with spectral mechanism of green algae. By comparing with FAI, RVI, NDVI, EVI and OSABI methods, our approach improves correct classification rates.
A Hierarchy of Linear Threshold Models for the Spread of Political Revolutions on Social Networks
Lang, John C.; De Sterck, Hans
2015-01-01
We study a linear threshold agent-based model (ABM) for the spread of political revolutions on social networks using empirical network data. We propose new techniques for building a hierarchy of simplified ordinary differential equation (ODE) based models that aim to capture essential features of the ABM, including effects of the actual networks, and give insight in the parameter regime transitions of the ABM. We relate the ABM and the hierarchy of models to a population-level compartmental O...
Zhang, Jun; Shoham, David A; Tesdahl, Eric; Gesell, Sabina B
2015-04-01
We studied simulated interventions that leveraged social networks to increase physical activity in children. We studied a real-world social network of 81 children (average age = 7.96 years) who lived in low socioeconomic status neighborhoods, and attended public schools and 1 of 2 structured afterschool programs. The sample was ethnically diverse, and 44% were overweight or obese. We used social network analysis and agent-based modeling simulations to test whether implementing a network intervention would increase children's physical activity. We tested 3 intervention strategies. The intervention that targeted opinion leaders was effective in increasing the average level of physical activity across the entire network. However, the intervention that targeted the most sedentary children was the best at increasing their physical activity levels. Which network intervention to implement depends on whether the goal is to shift the entire distribution of physical activity or to influence those most adversely affected by low physical activity. Agent-based modeling could be an important complement to traditional project planning tools, analogous to sample size and power analyses, to help researchers design more effective interventions for increasing children's physical activity.
Bicriteria Models of Vehicles Recycling Network Facility Location
Merkisz-Guranowska, Agnieszka
2012-06-01
The paper presents the issues related to modeling of a vehicle recycling network. The functioning of the recycling network is within the realm of interest of a variety of government agendas, companies participating in the network, vehicle manufacturers and vehicle end users. The interests of these groups need to be considered when deciding about the network organization. The paper presents bicriteria models of network entity location that take into account the preferences of the vehicle owners and network participants related to the network construction and reorganization. A mathematical formulation of the optimization tasks has been presented including the objective functions and limitations that the solutions have to comply with. Then, the models were used for the network optimization in Poland.
Risk prediction model: Statistical and artificial neural network approach
Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim
2017-04-01
Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.
HIV lipodystrophy case definition using artificial neural network modelling
DEFF Research Database (Denmark)
Ioannidis, John P A; Trikalinos, Thomas A; Law, Matthew
2003-01-01
OBJECTIVE: A case definition of HIV lipodystrophy has recently been developed from a combination of clinical, metabolic and imaging/body composition variables using logistic regression methods. We aimed to evaluate whether artificial neural networks could improve the diagnostic accuracy. METHODS......: The database of the case-control Lipodystrophy Case Definition Study was split into 504 subjects (265 with and 239 without lipodystrophy) used for training and 284 independent subjects (152 with and 132 without lipodystrophy) used for validation. Back-propagation neural networks with one or two middle layers...... were trained and validated. Results were compared against logistic regression models using the same information. RESULTS: Neural networks using clinical variables only (41 items) achieved consistently superior performance than logistic regression in terms of specificity, overall accuracy and area under...
Neural network versus classical time series forecasting models
Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam
2017-05-01
Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.
Real-time dynamic hydraulic model for water distribution networks: steady state modelling
CSIR Research Space (South Africa)
Osman, Mohammad S
2016-09-01
Full Text Available steady state hydraulic model that will be used within a real-time dynamic hydraulic model (DHM). The Council for Scientific and Industrial Research (CSIR) water distribution network (WDN) is used as a pilot study for this purpose. A hydraulic analysis...
Using actor-network theory to study an educational situation: an ...
African Journals Online (AJOL)
Actor-network theory allows a researcher to analyse a complex social setting involving both human and non-human actors. An actor network can be used to model a dynamic and complex set of relationships between these actors. This article describes actor-network theory and shows how it was applied to study and model ...
A neural network model of attention-modulated neurodynamics.
Gu, Yuqiao; Liljenström, Hans
2007-12-01
Visual attention appears to modulate cortical neurodynamics and synchronization through various cholinergic mechanisms. In order to study these mechanisms, we have developed a neural network model of visual cortex area V4, based on psychophysical, anatomical and physiological data. With this model, we want to link selective visual information processing to neural circuits within V4, bottom-up sensory input pathways, top-down attention input pathways, and to cholinergic modulation from the prefrontal lobe. We investigate cellular and network mechanisms underlying some recent analytical results from visual attention experimental data. Our model can reproduce the experimental findings that attention to a stimulus causes increased gamma-frequency synchronization in the superficial layers. Computer simulations and STA power analysis also demonstrate different effects of the different cholinergic attention modulation action mechanisms.
Software for Brain Network Simulations: A Comparative Study
Tikidji-Hamburyan, Ruben A.; Narayana, Vikram; Bozkus, Zeki; El-Ghazawi, Tarek A.
2017-01-01
Numerical simulations of brain networks are a critical part of our efforts in understanding brain functions under pathological and normal conditions. For several decades, the community has developed many software packages and simulators to accelerate research in computational neuroscience. In this article, we select the three most popular simulators, as determined by the number of models in the ModelDB database, such as NEURON, GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we study them based on one of the most important characteristics, the range of supported models. Our investigation reveals that brain network simulators may be biased toward supporting a specific set of models. However, all simulators tend to expand the supported range of models by providing a universal environment for the computational study of individual neurons and brain networks. Next, our investigations on the characteristics of computational architecture and efficiency indicate that all simulators compile the most computationally intensive procedures into binary code, with the aim of maximizing their computational performance. However, not all simulators provide the simplest method for module development and/or guarantee efficient binary code. Third, a study of their amenability for high-performance computing reveals that NEST can almost transparently map an existing model on a cluster or multicore computer, while NEURON requires code modification if the model developed for a single computer has to be mapped on a computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN, which provides no support for cluster computations and limited support for multicore computers. Fourth, we identify the level of user support and frequency of usage for all simulators. Finally, we carry out an evaluation using two case studies: a large network with
Modeling information diffusion in time-varying community networks
Cui, Xuelian; Zhao, Narisa
2017-12-01
Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.
Social network analysis of study environment
Directory of Open Access Journals (Sweden)
Blaženka Divjak
2010-06-01
Full Text Available Student working environment influences student learning and achievement level. In this respect social aspects of students’ formal and non-formal learning play special role in learning environment. The main research problem of this paper is to find out if students' academic performance influences their position in different students' social networks. Further, there is a need to identify other predictors of this position. In the process of problem solving we use the Social Network Analysis (SNA that is based on the data we collected from the students at the Faculty of Organization and Informatics, University of Zagreb. There are two data samples: in the basic sample N=27 and in the extended sample N=52. We collected data on social-demographic position, academic performance, learning and motivation styles, student status (full-time/part-time, attitudes towards individual and teamwork as well as informal cooperation. Afterwards five different networks (exchange of learning materials, teamwork, informal communication, basic and aggregated social network were constructed. These networks were analyzed with different metrics and the most important were betweenness, closeness and degree centrality. The main result is, firstly, that the position in a social network cannot be forecast only by academic success and, secondly, that part-time students tend to form separate groups that are poorly connected with full-time students. In general, position of a student in social networks in study environment can influence student learning as well as her/his future employability and therefore it is worthwhile to be investigated.
Kothari, Anita; Sibbald, Shannon L; Wathen, C Nadine
2014-05-23
Family violence is a significant and complex public health problem that demands collaboration between researchers, practitioners, and policymakers for systemic, sustainable solutions. An integrated knowledge translation network was developed to support joint research production and application in the area. The purpose of this study was to determine the extent to which the international Preventing Violence Across the Lifespan (PreVAiL) Research Network built effective partnerships among its members, with a focus on the knowledge user partner perspective. This mixed-methods study employed a combination of questionnaire and semi-structured interviews to understand partnerships two years after PreVAiL's inception. The questionnaire examined communication, collaborative research, dissemination of research, research findings, negotiation, partnership enhancement, information needs, rapport, and commitment. The interviews elicited feedback about partners' experiences with being part of the network. Five main findings were highlighted: i) knowledge user partner involvement varied across activities, ranging from 11% to 79% participation rates; ii) partners and researchers generally converged on their assessment of communication indicators; iii) partners valued the network at both an individual level and to fulfill their organizations' mandates; iv) being part of PreVAiL allowed partners to readily contact researchers, and partners felt comfortable acting as an intermediary between PreVAiL and the rest of their own organization; v) application of research was just emerging; partners needed more actionable insights to determine ways to move forward given the research at that point in time. Our results demonstrate the importance of developing and nurturing strong partnerships for integrated knowledge translation. Our findings are applicable to other network-oriented partnerships where a diversity of stakeholders work to address complex, multi-faceted public health problems.
Formal derivation of qualitative dynamical models from biochemical networks.
Abou-Jaoudé, Wassim; Thieffry, Denis; Feret, Jérôme
2016-11-01
As technological advances allow a better identification of cellular networks, large-scale molecular data are swiftly produced, allowing the construction of large and detailed molecular interaction maps. One approach to unravel the dynamical properties of such complex systems consists in deriving coarse-grained dynamical models from these maps, which would make the salient properties emerge. We present here a method to automatically derive such models, relying on the abstract interpretation framework to formally relate model behaviour at different levels of description. We illustrate our approach on two relevant case studies: the formation of a complex involving a protein adaptor, and a race between two competing biochemical reactions. States and traces of reaction networks are first abstracted by sampling the number of instances of chemical species within a finite set of intervals. We show that the qualitative models induced by this abstraction are too coarse to reproduce properties of interest. We then refine our approach by taking into account additional constraints, the mass invariants and the limiting resources for interval crossing, and by introducing information on the reaction kinetics. The resulting qualitative models are able to capture sophisticated properties of interest, such as a sequestration effect, which arise in the case studies and, more generally, participate in shaping the dynamics of cell signaling and regulatory networks. Our methodology offers new trade-offs between complexity and accuracy, and clarifies the implicit assumptions made in the process of qualitative modelling of biological networks. Copyright © 2016 The Author(s). Published by Elsevier Ireland Ltd.. All rights reserved.
Empirical Modeling of the Plasmasphere Dynamics Using Neural Networks
Zhelavskaya, Irina S.; Shprits, Yuri Y.; Spasojević, Maria
2017-11-01
We present the PINE (Plasma density in the Inner magnetosphere Neural network-based Empirical) model - a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of 1 October 2012 to 1 July 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2≤L≤6 and all local times. We validate and test the model by measuring its performance on independent data sets withheld from the training set and by comparing the model-predicted global evolution with global images of He+ distribution in the Earth's plasmasphere from the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters that best quantify the plasmasphere dynamics by training and comparing multiple neural networks with different combinations of input parameters (geomagnetic indices, solar wind data, and different durations of their time history). The optimal model is based on the 96 h time history of Kp, AE, SYM-H, and F10.7 indices. The model successfully reproduces erosion of the plasmasphere on the nightside and plume formation and evolution. We demonstrate results of both local and global plasma density reconstruction. This study illustrates how global dynamics can be reconstructed from local in situ observations by using machine learning techniques.
A rumor transmission model with incubation in social networks
Jia, Jianwen; Wu, Wenjiang
2018-02-01
In this paper, we propose a rumor transmission model with incubation period and constant recruitment in social networks. By carrying out an analysis of the model, we study the stability of rumor-free equilibrium and come to the local stable condition of the rumor equilibrium. We use the geometric approach for ordinary differential equations for showing the global stability of the rumor equilibrium. And when ℜ0 = 1, the new model occurs a transcritical bifurcation. Furthermore, numerical simulations are used to support the analysis. At last, some conclusions are presented.
A Bayesian Network View on Nested Effects Models
Directory of Open Access Journals (Sweden)
Fröhlich Holger
2009-01-01
Full Text Available Nested effects models (NEMs are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it explicitly states the assumptions that are tacitly underlying the original version. Our approach gives rise to new learning methods for NEMs, which have been implemented in the /Bioconductor package nem. We validate these methods in a simulation study and apply them to a synthetic lethality dataset in yeast.
Mechanical modeling of interpenetrating polymer network reinforced acrylic elastomer
Schmidt, Arne; Bergamini, Andrea; Kovacs, Gabor; Mazza, Edoardo
2010-04-01
Interpenetrating polymer network reinforced acrylic elastomers (IPN) offer outstanding performance in free-standing contractile dielectric elastomer actuators. This work presents the verification of a recently proposed material model for a VHB 4910 based IPN [1]. The 3D large strain material model was determined from extensive data of multiaxial mechanical experiments and allows to account for the variations in material composition of IPN-membranes. We employed inflation tests to membranes of different material composition to study the materials response in a stress state different from the one that was used to extract the material parameters. By applying the material model to finite element models we successfully validated the material model in a range of material compositions typically used for dielectric elastomer actuator applications. In combination with a characterization of electro-mechanical coupling, this 3D large strain model can be used to model IPN-based dielectric elastomer actuators.
Directory of Open Access Journals (Sweden)
Wei-Bo Chen
2015-01-01
Full Text Available In this study, two artificial neural network models (i.e., a radial basis function neural network, RBFN, and an adaptive neurofuzzy inference system approach, ANFIS and a multilinear regression (MLR model were developed to simulate the DO, TP, Chl a, and SD in the Mingder Reservoir of central Taiwan. The input variables of the neural network and the MLR models were determined using linear regression. The performances were evaluated using the RBFN, ANFIS, and MLR models based on statistical errors, including the mean absolute error, the root mean square error, and the correlation coefficient, computed from the measured and the model-simulated DO, TP, Chl a, and SD values. The results indicate that the performance of the ANFIS model is superior to those of the MLR and RBFN models. The study results show that the neural network using the ANFIS model is suitable for simulating the water quality variables with reasonable accuracy, suggesting that the ANFIS model can be used as a valuable tool for reservoir management in Taiwan.
Analyzing, Modeling, and Simulation for Human Dynamics in Social Network
Directory of Open Access Journals (Sweden)
Yunpeng Xiao
2012-01-01
Full Text Available This paper studies the human behavior in the top-one social network system in China (Sina Microblog system. By analyzing real-life data at a large scale, we find that the message releasing interval (intermessage time obeys power law distribution both at individual level and at group level. Statistical analysis also reveals that human behavior in social network is mainly driven by four basic elements: social pressure, social identity, social participation, and social relation between individuals. Empirical results present the four elements' impact on the human behavior and the relation between these elements. To further understand the mechanism of such dynamic phenomena, a hybrid human dynamic model which combines “interest” of individual and “interaction” among people is introduced, incorporating the four elements simultaneously. To provide a solid evaluation, we simulate both two-agent and multiagent interactions with real-life social network topology. We achieve the consistent results between empirical studies and the simulations. The model can provide a good understanding of human dynamics in social network.
Innovation Network Development Model in Telemedicine: A Change in Participation.
Goodarzi, Maryam; Torabi, Mashallah; Safdari, Reza; Dargahi, Hossein; Naeimi, Sara
2015-10-01
This paper introduces a telemedicine innovation network and reports its implementation in Tehran University of Medical Sciences. The required conditions for the development of future projects in the field of telemedicine are also discussed; such projects should be based on the common needs and opportunities in the areas of healthcare, education, and technology. The development of the telemedicine innovation network in Tehran University of Medical Sciences was carried out in two phases: identifying the beneficiaries of telemedicine, and codification of the innovation network memorandum; and brainstorming of three workgroup members, and completion and clustering ideas. The present study employed a qualitative survey by using brain storming method. Thus, the ideas of the innovation network members were gathered, and by using Freeplane software, all of them were clustered and innovation projects were defined. In the services workgroup, 87 and 25 ideas were confirmed in phase 1 and phase 2, respectively. In the education workgroup, 8 new programs in the areas of telemedicine, tele-education and teleconsultation were codified. In the technology workgroup, 101 and 11 ideas were registered in phase 1 and phase 2, respectively. Today, innovation is considered a major infrastructural element of any change or progress. Thus, the successful implementation of a telemedicine project not only needs funding, human resources, and full equipment. It also requires the use of innovation models to cover several different aspects of change and progress. The results of the study can provide a basis for the implementation of future telemedicine projects using new participatory, creative, and innovative models.
Modelling opinion formation driven communities in social networks
Iñiguez, Gerardo; Barrio, Rafael A.; Kertész, János; Kaski, Kimmo K.
2011-09-01
In a previous paper we proposed a model to study the dynamics of opinion formation in human societies by a co-evolution process involving two distinct time scales of fast transaction and slower network evolution dynamics. In the transaction dynamics we take into account short range interactions as discussions between individuals and long range interactions to describe the attitude to the overall mood of society. The latter is handled by a uniformly distributed parameter α, assigned randomly to each individual, as quenched personal bias. The network evolution dynamics is realised by rewiring the societal network due to state variable changes as a result of transaction dynamics. The main consequence of this complex dynamics is that communities emerge in the social network for a range of values in the ratio between time scales. In this paper we focus our attention on the attitude parameter α and its influence on the conformation of opinion and the size of the resulting communities. We present numerical studies and extract interesting features of the model that can be interpreted in terms of social behaviour.
Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.
Ziebarth, Jesse D; Cui, Yan
2017-01-01
The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW ) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.
Throughput capacity computation model for hybrid wireless networks
African Journals Online (AJOL)
wireless networks. We present in this paper, a computational model for obtaining throughput capacity for hybrid wireless networks. For a hybrid network with n nodes and m base stations, we observe through simulation that the throughput capacity increases linearly with the base station infrastructure connected by the wired ...
Modelling crime linkage with Bayesian networks.
de Zoete, Jacob; Sjerps, Marjan; Lagnado, David; Fenton, Norman
2015-05-01
When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model different evidential structures that can occur when linking crimes, and how they assist in understanding the complex underlying dependencies. That is, how evidence that is obtained in one case can be used in another and vice versa. The flip side of this is that the intuitive decision to "unlink" a case in which exculpatory evidence is obtained leads to serious overestimation of the strength of the remaining cases. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Structural equation models from paths to networks
Westland, J Christopher
2015-01-01
This compact reference surveys the full range of available structural equation modeling (SEM) methodologies. It reviews applications in a broad range of disciplines, particularly in the social sciences where many key concepts are not directly observable. This is the first book to present SEM’s development in its proper historical context–essential to understanding the application, strengths and weaknesses of each particular method. This book also surveys the emerging path and network approaches that complement and enhance SEM, and that will grow in importance in the near future. SEM’s ability to accommodate unobservable theory constructs through latent variables is of significant importance to social scientists. Latent variable theory and application are comprehensively explained, and methods are presented for extending their power, including guidelines for data preparation, sample size calculation, and the special treatment of Likert scale data. Tables of software, methodologies and fit st...
A mathematical model for networks with structures in the mesoscale
Criado, Regino; Flores, Julio; Gacia Del Amo, Alejandro Jose; Gómez, Jesus; Romance, Miguel
2011-01-01
Abstract The new concept of multilevel network is introduced in order to embody some topological properties of complex systems with structures in the mesoscale which are not completely captured by the classical models. This new model, which generalizes the hyper-network and hyper-structure models, fits perfectly with several real-life complex systems, including social and public transportation networks. We present an analysis of the structural properties of the mu...
Agent Based Modeling on Organizational Dynamics of Terrorist Network
Bo Li; Duoyong Sun; Renqi Zhu; Ze Li
2015-01-01
Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model ...
Adaptive Networks Theory, Models and Applications
Gross, Thilo
2009-01-01
With adaptive, complex networks, the evolution of the network topology and the dynamical processes on the network are equally important and often fundamentally entangled. Recent research has shown that such networks can exhibit a plethora of new phenomena which are ultimately required to describe many real-world networks. Some of those phenomena include robust self-organization towards dynamical criticality, formation of complex global topologies based on simple, local rules, and the spontaneous division of "labor" in which an initially homogenous population of network nodes self-organizes into functionally distinct classes. These are just a few. This book is a state-of-the-art survey of those unique networks. In it, leading researchers set out to define the future scope and direction of some of the most advanced developments in the vast field of complex network science and its applications.
An intercausal cancellation model for Bayesian-network engineering
Woudenberg, Steven P D; Van Der Gaag, Linda C.; Rademaker, Carin M A
2015-01-01
When constructing Bayesian networks with domain experts, network engineers often use the noisy-OR model, and causal interaction models more generally, to alleviate the burden of probability elicitation: the use of such a model serves to reduce the number of probabilities to be elicited on the one
Common quandaries and their practical solutions in Bayesian network modeling
Bruce G. Marcot
2017-01-01
Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many common problems remain. Here, I summarize key problems in BN model construction and interpretation,along with suggested practical solutions. Problems in BN model construction include parameterizing probability values, variable definition, complex network structures,...
Spectral Modelling for Spatial Network Analysis
Nourian, P.; Rezvani, S.; Sariyildiz, I.S.; van der Hoeven, F.D.; Attar, Ramtin; Chronis, Angelos; Hanna, Sean; Turrin, Michela
2016-01-01
Spatial Networks represent the connectivity structure between units of space as a weighted graph whose links are weighted as to the strength of connections. In case of urban spatial networks, the units of space correspond closely to streets and in architectural spatial networks the units correspond