WorldWideScience

Sample records for network model providing

  1. A Model for the Growth of Network Service Providers

    Science.gov (United States)

    2011-12-01

    Service Provider O-D Origin-Destination POP Point of Presence UCG Unilateral Connection Game xiv THIS PAGE INTENTIONALLY LEFT BLANK xv EXECUTIVE...xvi We make use of the Abilene dataset as input to the network provisioning model and assume that the NSP is new to the market and is building an...has to decide on the connections to build and the markets to serve in order to maximize its profits. The NSP makes these decisions based on the market

  2. Structural equation modelling of determinants of customer satisfaction of mobile network providers: Case of Kolkata, India

    Directory of Open Access Journals (Sweden)

    Shibashish Chakraborty

    2014-12-01

    Full Text Available The Indian market of mobile network providers is growing rapidly. India is the second largest market of mobile network providers in the world and there is intense competition among existing players. In such a competitive market, customer satisfaction becomes a key issue. The objective of this paper is to develop a customer satisfaction model of mobile network providers in Kolkata. The results indicate that generic requirements (an aggregation of output quality and perceived value, flexibility, and price are the determinants of customer satisfaction. This study offers insights for mobile network providers to understand the determinants of customer satisfaction.

  3. Medical service provider networks.

    Science.gov (United States)

    Mougeot, Michel; Naegelen, Florence

    2018-05-17

    In many countries, health insurers or health plans choose to contract either with any willing providers or with preferred providers. We compare these mechanisms when two medical services are imperfect substitutes in demand and are supplied by two different firms. In both cases, the reimbursement is higher when patients select the in-network provider(s). We show that these mechanisms yield lower prices, lower providers' and insurer's profits, and lower expense than in the uniform-reimbursement case. Whatever the degree of product differentiation, a not-for-profit insurer should prefer selective contracting and select a reimbursement such that the out-of-pocket expense is null. Although all providers join the network under any-willing-provider contracting in the absence of third-party payment, an asymmetric equilibrium may exist when this billing arrangement is implemented. Copyright © 2018 John Wiley & Sons, Ltd.

  4. A Global Remote Laboratory Experimentation Network and the Experiment Service Provider Business Model and Plans

    Directory of Open Access Journals (Sweden)

    Tor Ivar Eikaas

    2003-07-01

    Full Text Available This paper presents results from the IST KAII Trial project ReLAX - Remote LAboratory eXperimentation trial (IST 1999-20827, and contributes with a framework for a global remote laboratory experimentation network supported by a new business model. The paper presents this new Experiment Service Provider business model that aims at bringing physical experimentation back into the learning arena, where remotely operable laboratory experiments used in advanced education and training schemes are made available to a global education and training market in industry and academia. The business model is based on an approach where individual experiment owners offer remote access to their high-quality laboratory facilities to users around the world. The usage can be for research, education, on-the-job training etc. The access to these facilities is offered via an independent operating company - the Experiment Service Provider. The Experiment Service Provider offers eCommerce services like booking, access control, invoicing, dispute resolution, quality control, customer evaluation services and a unified Lab Portal.

  5. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Science.gov (United States)

    Khader, A. I.; Rosenberg, D. E.; McKee, M.

    2013-05-01

    Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i) ignore the health risk of nitrate-contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome) is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs

  6. Enabling Wireless Cooperation in User Provided Networks

    OpenAIRE

    Rolla, Vitor Guerra

    2015-01-01

    Tese de doutoramento em Ciências e Tecnologias da Informação, apresentada ao Departamento de Engenharia Informática da Faculdade de Ciências e Tecnologia da Universidade de Coimbra This doctoral thesis investigates user provided networks. Such networks have become important research subjects in the field of informatics engineering due to the recent popularity of smart phones. User provided networks are independent from traditional Internet service providers. Communication and informati...

  7. Modeling Epidemic Network Failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...... the SID model’s behavior and impact on the network performance, as well as the severity of the infection spreading. The simulations are carried out in OPNET Modeler. The model provides an important input to epidemic connection recovery mechanisms, and can due to its flexibility and versatility be used...... to evaluate multiple epidemic scenarios in various network types....

  8. Collaborative networks: Reference modeling

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of

  9. Spatio-temporal modelling of atmospheric pollution based on observations provided by an air quality monitoring network at a regional scale

    International Nuclear Information System (INIS)

    Coman, A.

    2008-01-01

    This study is devoted to the spatio-temporal modelling of air pollution at a regional scale using a set of statistical methods in order to treat the measurements of pollutant concentrations (NO 2 , O 3 ) provided by an air quality monitoring network (AIRPARIF). The main objective is the improvement of the pollutant fields mapping using either interpolation methods based on the spatial or spatio-temporal structure of the data (spatial or spatio-temporal kriging) or some algorithms taking into account the observations, in order to correct the concentrations simulated by a deterministic model (Ensemble Kalman Filter). The results show that nitrogen dioxide mapping based only on spatial interpolation (kriging) gives the best results, while the spatial repartition of the monitoring sites is good. For the ozone mapping it is the sequential data assimilation that leads us to a better reconstruction of the plume's form and position for the analyzed cases. Complementary to the pollutant mapping, another objective was to perform a local prediction of ozone concentrations on a 24-hour horizon; this task was performed using Artificial Neural Networks. The performance indices obtained using two types of neural architectures indicate a fair accuracy especially for the first 8 hours of prediction horizon. (author)

  10. Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations

    Directory of Open Access Journals (Sweden)

    Katie A Ferguson

    2015-08-01

    Full Text Available Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens--lacunosum-moleculare (OLM interneurons and bistratified cells (BiCs, make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+ basket and axo-axonic cells (BC/AACs, PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored a number of OLM-BiC connections and connection strengths.We found that our models operate in regimes in which OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the power of network theta oscillations. Our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta

  11. Providing QoS guarantee in 3G wireless networks

    Science.gov (United States)

    Chuah, MooiChoo; Huang, Min; Kumar, Suresh

    2001-07-01

    The third generation networks and services present opportunities to offer multimedia applications and services that meet end-to-end quality of service requirements. In this article, we present UMTS QoS architecture and its requirements. This includes the definition of QoS parameters, traffic classes, the end-to-end data delivery model, and the mapping of end-to-end services to the services provided by the network elements of the UMTS. End-to-end QoS of a user flow is achieved by the combination of the QoS control over UMTS Domain and the IP core Network. In the Third Generation Wireless network, UMTS bearer service manager is responsible to manage radio and transport resources to QoS-enabled applications. The UMTS bearer service consists of the Radio Access Bearer Service between Mobile Terminal and SGSN and Core Network bearer service between SGSN and GGSN. The Radio Access Bearer Service is further realized by the Radio Bearer Service (mostly air interface) and Iu bearer service. For the 3G air interface, one can provide differentiated QoS via intelligent burst allocation scheme, adaptive spreading factor control and weighted fair queueing scheduling algorithms. Next, we discuss the requirements for the transport technologies in the radio access network to provide differentiated QoS to multiple classes of traffic. We discuss both ATM based and IP based transport solutions. Last but not least, we discuss how QoS mechanism is provided in the core network to ensure e2e quality of service requirements. We discuss how mobile terminals that use RSVP as QoS signaling mechanisms can be are supported in the 3G network which may implement only IETF diffserv mechanism. . We discuss how one can map UMTS QoS classes with IETF diffserv code points. We also discuss 2G/3G handover scenarios and how the 2G/3G QoS parameters can be mapped.

  12. The effect of narrow provider networks on health care use.

    Science.gov (United States)

    Atwood, Alicia; Lo Sasso, Anthony T

    2016-12-01

    Network design is an often overlooked aspect of health insurance contracts. Recent policy factors have resulted in narrower provider networks. We provide plausibly causal evidence on the effect of narrow network plans offered by a large national health insurance carrier in a major metropolitan market. Our econometric design exploits the fact that some firms offer a narrow network plan to their employees and some do not. Our results show that narrow network health plans lead to reductions in health care utilization and spending. We find evidence that narrow networks save money by selecting lower cost providers into the network. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Modeling Network Interdiction Tasks

    Science.gov (United States)

    2015-09-17

    118 xiii Table Page 36 Computation times for weighted, 100-node random networks for GAND Approach testing in Python ...in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 38 Accuracy measures for weighted, 100-node random networks for GAND...networks [15:p. 1]. A common approach to modeling network interdiction is to formulate the problem in terms of a two-stage strategic game between two

  14. The cingulo-opercular network provides word-recognition benefit.

    Science.gov (United States)

    Vaden, Kenneth I; Kuchinsky, Stefanie E; Cute, Stephanie L; Ahlstrom, Jayne B; Dubno, Judy R; Eckert, Mark A

    2013-11-27

    Recognizing speech in difficult listening conditions requires considerable focus of attention that is often demonstrated by elevated activity in putative attention systems, including the cingulo-opercular network. We tested the prediction that elevated cingulo-opercular activity provides word-recognition benefit on a subsequent trial. Eighteen healthy, normal-hearing adults (10 females; aged 20-38 years) performed word recognition (120 trials) in multi-talker babble at +3 and +10 dB signal-to-noise ratios during a sparse sampling functional magnetic resonance imaging (fMRI) experiment. Blood oxygen level-dependent (BOLD) contrast was elevated in the anterior cingulate cortex, anterior insula, and frontal operculum in response to poorer speech intelligibility and response errors. These brain regions exhibited significantly greater correlated activity during word recognition compared with rest, supporting the premise that word-recognition demands increased the coherence of cingulo-opercular network activity. Consistent with an adaptive control network explanation, general linear mixed model analyses demonstrated that increased magnitude and extent of cingulo-opercular network activity was significantly associated with correct word recognition on subsequent trials. These results indicate that elevated cingulo-opercular network activity is not simply a reflection of poor performance or error but also supports word recognition in difficult listening conditions.

  15. Modelling computer networks

    International Nuclear Information System (INIS)

    Max, G

    2011-01-01

    Traffic models in computer networks can be described as a complicated system. These systems show non-linear features and to simulate behaviours of these systems are also difficult. Before implementing network equipments users wants to know capability of their computer network. They do not want the servers to be overloaded during temporary traffic peaks when more requests arrive than the server is designed for. As a starting point for our study a non-linear system model of network traffic is established to exam behaviour of the network planned. The paper presents setting up a non-linear simulation model that helps us to observe dataflow problems of the networks. This simple model captures the relationship between the competing traffic and the input and output dataflow. In this paper, we also focus on measuring the bottleneck of the network, which was defined as the difference between the link capacity and the competing traffic volume on the link that limits end-to-end throughput. We validate the model using measurements on a working network. The results show that the initial model estimates well main behaviours and critical parameters of the network. Based on this study, we propose to develop a new algorithm, which experimentally determines and predict the available parameters of the network modelled.

  16. Network performance and fault analytics for LTE wireless service providers

    CERN Document Server

    Kakadia, Deepak; Gilgur, Alexander

    2017-01-01

     This book is intended to describe how to leverage emerging technologies big data analytics and SDN, to address challenges specific to LTE and IP network performance and fault management data in order to more efficiently manage and operate an LTE wireless networks. The proposed integrated solutions permit the LTE network service provider to operate entire integrated network, from RAN to Core , from UE to application service, as one unified system and correspondingly collect and align disparate key metrics and data, using an integrated and holistic approach to network analysis. The LTE wireless network performance and fault involves the network performance and management of network elements in EUTRAN, EPC and IP transport components, not only as individual components, but also as nuances of inter-working of these components. The key metrics for EUTRAN include radio access network accessibility, retainability, integrity, availability and mobility. The key metrics for EPC include MME accessibility, mobility and...

  17. Modeling the citation network by network cosmology.

    Science.gov (United States)

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  18. Brain Network Modelling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther

    Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...

  19. A Service-Oriented Approach for Dynamic Chaining of Virtual Network Functions over Multi-Provider Software-Defined Networks

    Directory of Open Access Journals (Sweden)

    Barbara Martini

    2016-06-01

    Full Text Available Emerging technologies such as Software-Defined Networks (SDN and Network Function Virtualization (NFV promise to address cost reduction and flexibility in network operation while enabling innovative network service delivery models. However, operational network service delivery solutions still need to be developed that actually exploit these technologies, especially at the multi-provider level. Indeed, the implementation of network functions as software running over a virtualized infrastructure and provisioned on a service basis let one envisage an ecosystem of network services that are dynamically and flexibly assembled by orchestrating Virtual Network Functions even across different provider domains, thereby coping with changeable user and service requirements and context conditions. In this paper we propose an approach that adopts Service-Oriented Architecture (SOA technology-agnostic architectural guidelines in the design of a solution for orchestrating and dynamically chaining Virtual Network Functions. We discuss how SOA, NFV, and SDN may complement each other in realizing dynamic network function chaining through service composition specification, service selection, service delivery, and placement tasks. Then, we describe the architecture of a SOA-inspired NFV orchestrator, which leverages SDN-based network control capabilities to address an effective delivery of elastic chains of Virtual Network Functions. Preliminary results of prototype implementation and testing activities are also presented. The benefits for Network Service Providers are also described that derive from the adaptive network service provisioning in a multi-provider environment through the orchestration of computing and networking services to provide end users with an enhanced service experience.

  20. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  1. Bring Your Own Device - Providing Reliable Model of Data Access

    Directory of Open Access Journals (Sweden)

    Stąpór Paweł

    2016-10-01

    Full Text Available The article presents a model of Bring Your Own Device (BYOD as a model network, which provides the user reliable access to network resources. BYOD is a model dynamically developing, which can be applied in many areas. Research network has been launched in order to carry out the test, in which as a service of BYOD model Work Folders service was used. This service allows the user to synchronize files between the device and the server. An access to the network is completed through the wireless communication by the 802.11n standard. Obtained results are shown and analyzed in this article.

  2. Allocating resources between network nodes for providing a network node function

    NARCIS (Netherlands)

    Strijkers, R.J.; Meulenhoff, P.J.

    2014-01-01

    The invention provides a method wherein a first network node advertises available resources that a second network node may use to offload network node functions transparently to the first network node. Examples of the first network node are a client device (e.g. PC, notebook, tablet, smart phone), a

  3. Research on the model of home networking

    Science.gov (United States)

    Yun, Xiang; Feng, Xiancheng

    2007-11-01

    It is the research hotspot of current broadband network to combine voice service, data service and broadband audio-video service by IP protocol to transport various real time and mutual services to terminal users (home). Home Networking is a new kind of network and application technology which can provide various services. Home networking is called as Digital Home Network. It means that PC, home entertainment equipment, home appliances, Home wirings, security, illumination system were communicated with each other by some composing network technology, constitute a networking internal home, and connect with WAN by home gateway. It is a new network technology and application technology, and can provide many kinds of services inside home or between homes. Currently, home networking can be divided into three kinds: Information equipment, Home appliances, Communication equipment. Equipment inside home networking can exchange information with outer networking by home gateway, this information communication is bidirectional, user can get information and service which provided by public networking by using home networking internal equipment through home gateway connecting public network, meantime, also can get information and resource to control the internal equipment which provided by home networking internal equipment. Based on the general network model of home networking, there are four functional entities inside home networking: HA, HB, HC, and HD. (1) HA (Home Access) - home networking connects function entity; (2) HB (Home Bridge) Home networking bridge connects function entity; (3) HC (Home Client) - Home networking client function entity; (4) HD (Home Device) - decoder function entity. There are many physical ways to implement four function entities. Based on theses four functional entities, there are reference model of physical layer, reference model of link layer, reference model of IP layer and application reference model of high layer. In the future home network

  4. Network Information Management: The Key To Providing High WAN Availability.

    Science.gov (United States)

    Tysdal, Craig

    1996-01-01

    Discusses problems associated with increasing corporate network complexity as a result of the proliferation of client/server applications at remote locations, and suggests the key to providing high WAN (wide area network) availability is relational databases used in an integrated management approach. (LRW)

  5. Allocating resources between network nodes for providing a network node function

    OpenAIRE

    Strijkers, R.J.; Meulenhoff, P.J.

    2014-01-01

    The invention provides a method wherein a first network node advertises available resources that a second network node may use to offload network node functions transparently to the first network node. Examples of the first network node are a client device (e.g. PC, notebook, tablet, smart phone), a server (e.g. application server, a proxy server, cloud location, router). Examples of the second network node are an application server, a cloud location or a router. The available resources may b...

  6. Security measures effect over performance in service provider network

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... Abstract—network security is defined as a set of policies and actions taken by a ... These threats are linked with the following factors that are ... typically smaller than those in the service provider space. ... Service providers cannot manage to provide ... e the DB performance effect ... r the business needs [10].

  7. Modeling of fluctuating reaction networks

    International Nuclear Information System (INIS)

    Lipshtat, A.; Biham, O.

    2004-01-01

    Full Text:Various dynamical systems are organized as reaction networks, where the population size of one component affects the populations of all its neighbors. Such networks can be found in interstellar surface chemistry, cell biology, thin film growth and other systems. I cases where the populations of reactive species are large, the network can be modeled by rate equations which provide all reaction rates within mean field approximation. However, in small systems that are partitioned into sub-micron size, these populations strongly fluctuate. Under these conditions rate equations fail and the master equation is needed for modeling these reactions. However, the number of equations in the master equation grows exponentially with the number of reactive species, severely limiting its feasibility for complex networks. Here we present a method which dramatically reduces the number of equations, thus enabling the incorporation of the master equation in complex reaction networks. The method is examplified in the context of reaction network on dust grains. Its applicability for genetic networks will be discussed. 1. Efficient simulations of gas-grain chemistry in interstellar clouds. Azi Lipshtat and Ofer Biham, Phys. Rev. Lett. 93 (2004), 170601. 2. Modeling of negative autoregulated genetic networks in single cells. Azi Lipshtat, Hagai B. Perets, Nathalie Q. Balaban and Ofer Biham, Gene: evolutionary genomics (2004), In press

  8. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  9. Entropy Characterization of Random Network Models

    Directory of Open Access Journals (Sweden)

    Pedro J. Zufiria

    2017-06-01

    Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.

  10. Statistical Models for Social Networks

    NARCIS (Netherlands)

    Snijders, Tom A. B.; Cook, KS; Massey, DS

    2011-01-01

    Statistical models for social networks as dependent variables must represent the typical network dependencies between tie variables such as reciprocity, homophily, transitivity, etc. This review first treats models for single (cross-sectionally observed) networks and then for network dynamics. For

  11. Eight challenges for network epidemic models

    Directory of Open Access Journals (Sweden)

    Lorenzo Pellis

    2015-03-01

    Full Text Available Networks offer a fertile framework for studying the spread of infection in human and animal populations. However, owing to the inherent high-dimensionality of networks themselves, modelling transmission through networks is mathematically and computationally challenging. Even the simplest network epidemic models present unanswered questions. Attempts to improve the practical usefulness of network models by including realistic features of contact networks and of host–pathogen biology (e.g. waning immunity have made some progress, but robust analytical results remain scarce. A more general theory is needed to understand the impact of network structure on the dynamics and control of infection. Here we identify a set of challenges that provide scope for active research in the field of network epidemic models.

  12. Social network analysis provides insights into African swine fever epidemiology.

    Science.gov (United States)

    Lichoti, Jacqueline Kasiiti; Davies, Jocelyn; Kitala, Philip M; Githigia, Samuel M; Okoth, Edward; Maru, Yiheyis; Bukachi, Salome A; Bishop, Richard P

    2016-04-01

    Pig movements play a significant role in the spread of economically important infectious diseases such as the African swine fever. Characterization of movement networks between pig farms and through other types of farm and household enterprises that are involved in pig value chains can provide useful information on the role that different participants in the networks play in pathogen transmission. Analysis of social networks that underpin these pig movements can reveal pathways that are important in the transmission of disease, trade in commodities, the dissemination of information and the influence of behavioural norms. We assessed pig movements among pig keeping households within West Kenya and East Uganda and across the shared Kenya-Uganda border in the study region, to gain insight into within-country and trans-boundary pig movements. Villages were sampled using a randomized cluster design. Data were collected through interviews in 2012 and 2013 from 683 smallholder pig-keeping households in 34 villages. NodeXL software was used to describe pig movement networks at village level. The pig movement and trade networks were localized and based on close social networks involving family ties, friendships and relationships with neighbours. Pig movement network modularity ranged from 0.2 to 0.5 and exhibited good community structure within the network implying an easy flow of knowledge and adoption of new attitudes and beliefs, but also promoting an enhanced rate of disease transmission. The average path length of 5 defined using NodeXL, indicated that disease could easily reach every node in a cluster. Cross-border boar service between Uganda and Kenya was also recorded. Unmonitored trade in both directions was prevalent. While most pig transactions in the absence of disease, were at a small scale (sales during ASF outbreaks were to traders or other farmers from outside the sellers' village at a range of >10km. The close social relationships between actors in pig

  13. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim

    2014-12-03

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  14. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim; Chasparis, Georgios; Shamma, Jeff S.

    2014-01-01

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  15. Nonparametric Bayesian Modeling of Complex Networks

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Mørup, Morten

    2013-01-01

    an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...

  16. Modeling online social signed networks

    Science.gov (United States)

    Li, Le; Gu, Ke; Zeng, An; Fan, Ying; Di, Zengru

    2018-04-01

    People's online rating behavior can be modeled by user-object bipartite networks directly. However, few works have been devoted to reveal the hidden relations between users, especially from the perspective of signed networks. We analyze the signed monopartite networks projected by the signed user-object bipartite networks, finding that the networks are highly clustered with obvious community structure. Interestingly, the positive clustering coefficient is remarkably higher than the negative clustering coefficient. Then, a Signed Growing Network model (SGN) based on local preferential attachment is proposed to generate a user's signed network that has community structure and high positive clustering coefficient. Other structural properties of the modeled networks are also found to be similar to the empirical networks.

  17. A neighbourhood evolving network model

    International Nuclear Information System (INIS)

    Cao, Y.J.; Wang, G.Z.; Jiang, Q.Y.; Han, Z.X.

    2006-01-01

    Many social, technological, biological and economical systems are best described by evolved network models. In this short Letter, we propose and study a new evolving network model. The model is based on the new concept of neighbourhood connectivity, which exists in many physical complex networks. The statistical properties and dynamics of the proposed model is analytically studied and compared with those of Barabasi-Albert scale-free model. Numerical simulations indicate that this network model yields a transition between power-law and exponential scaling, while the Barabasi-Albert scale-free model is only one of its special (limiting) cases. Particularly, this model can be used to enhance the evolving mechanism of complex networks in the real world, such as some social networks development

  18. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  19. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  20. Mobility Models for Next Generation Wireless Networks Ad Hoc, Vehicular and Mesh Networks

    CERN Document Server

    Santi, Paolo

    2012-01-01

    Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks provides the reader with an overview of mobility modelling, encompassing both theoretical and practical aspects related to the challenging mobility modelling task. It also: Provides up-to-date coverage of mobility models for next generation wireless networksOffers an in-depth discussion of the most representative mobility models for major next generation wireless network application scenarios, including WLAN/mesh networks, vehicular networks, wireless sensor networks, and

  1. Performance modeling of network data services

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.A.; Pierson, L.G.

    1997-01-01

    Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.

  2. Networked Print Production: Does JDF Provide a Perfect Workflow?

    Directory of Open Access Journals (Sweden)

    Bernd Zipper

    2004-12-01

    Full Text Available The "networked printing works" is a well-worn slogan used by many providers in the graphics industry and for the past number of years printing-works manufacturers have been working on the goal of achieving the "networked printing works". A turning point from the concept to real implementation can now be expected at drupa 2004: JDF (Job Definition Format and thus "networked production" will form the center of interest here. The first approaches towards a complete, networked workflow between prepress, print and postpress in production are already available - the products and solutions will now be presented publicly at drupa 2004. So, drupa 2004 will undoubtedly be the "JDF-drupa" - the drupa where machines learn to communicate with each other digitally - the drupa, where the dream of general system and job communication in the printing industry can be first realized. CIP3, which has since been renamed CIP4, is an international consortium of leading manufacturers from the printing and media industry who have taken on the task of integrating processes for prepress, print and postpress. The association, to which nearly all manufacturers in the graphics industry belong, has succeeded with CIP3 in developing a first international standard for the transmission of control data in the print workflow.Further development of the CIP4 standard now includes a more extensive "system language" called JDF, which will guarantee workflow communication beyond manufacturer boundaries. However, not only data for actual print production will be communicated with JDF (Job Definition Format: planning and calculation data for MIS (Management Information systems and calculation systems will also be prepared. The German printing specialist Hans-Georg Wenke defines JDF as follows: "JDF takes over data from MIS for machines, aggregates and their control desks, data exchange within office applications, and finally ensures that data can be incorporated in the technical workflow

  3. Network structure exploration via Bayesian nonparametric models

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z

    2015-01-01

    Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)

  4. Clinical social networking--a new revolution in provider communication and delivery of clinical information across providers of care?

    Science.gov (United States)

    Kolowitz, Brian J; Lauro, Gonzalo Romero; Venturella, James; Georgiev, Veliyan; Barone, Michael; Deible, Christopher; Shrestha, Rasu

    2014-04-01

    The adoption of social media technologies appears to enhance clinical outcomes through improved communications as reported by Bacigalupe (Fam Syst Heal 29(1):1-14, 2011). The ability of providers to more effectively, directly, and rapidly communicate among themselves as well as with patients should strengthen collaboration and treatment as reported by Bacigalupe (Fam Syst Heal 29(1):1-14, 2011). This paper is a case study in one organization's development of an internally designed and developed social technology solution termed "Unite." The Unite system combines social technologies' features including push notifications, messaging, community groups, and user lists with clinical workflow and applications to construct dynamic provider networks, simplify communications, and facilitate clinical workflow optimization. Modeling Unite as a social technology may ease adoption barriers. Developing a social network that is integrated with healthcare information systems in the clinical space opens the doors to capturing and studying the way in which providers communicate. The Unite system appears to have the potential to breaking down existing communication paradigms. With Unite, a rich set of usage data tied to clinical events may unravel alternative networks that can be leveraged to advance patient care.

  5. Development of Model for Providing Feasible Scholarship

    Directory of Open Access Journals (Sweden)

    Harry Dhika

    2016-05-01

    Full Text Available The current work focuses on the development of a model to determine a feasible scholarship recipient on the basis of the naiv¨e Bayes’ method using very simple and limited attributes. Those attributes are the applicants academic year, represented by their semester, academic performance, represented by their GPa, socioeconomic ability, which represented the economic capability to attend a higher education institution, and their level of social involvement. To establish and evaluate the model performance, empirical data are collected, and the data of 100 students are divided into 80 student data for the model training and the remaining of 20 student data are for the model testing. The results suggest that the model is capable to provide recommendations for the potential scholarship recipient at the level of accuracy of 95%.

  6. Improved Maximum Parsimony Models for Phylogenetic Networks.

    Science.gov (United States)

    Van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2018-05-01

    Phylogenetic networks are well suited to represent evolutionary histories comprising reticulate evolution. Several methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this article, we propose a new definition of maximum parsimony for phylogenetic networks that permits to model biological scenarios that cannot be modeled by the definitions currently present in the literature (namely, the "hardwired" and "softwired" parsimony). Building on this new definition, we provide several algorithmic results that lay the foundations for new parsimony-based methods for phylogenetic network reconstruction.

  7. Queueing Models for Mobile Ad Hoc Networks

    NARCIS (Netherlands)

    de Haan, Roland

    2009-01-01

    This thesis presents models for the performance analysis of a recent communication paradigm: \\emph{mobile ad hoc networking}. The objective of mobile ad hoc networking is to provide wireless connectivity between stations in a highly dynamic environment. These dynamics are driven by the mobility of

  8. Network models in economics and finance

    CERN Document Server

    Pardalos, Panos; Rassias, Themistocles

    2014-01-01

    Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis  that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.

  9. Network Physics anounces first product to provide business-level management of the most complex and dynamic networks

    CERN Multimedia

    2003-01-01

    Network Physics, provider of business-level, traffic flow-based network management solutions, today announced the introduction of the Network Physics NP/BizFlow-1000. With the NP/BizFlow-1000, Fortune 1000 companies with complex and dynamic networks can analyze the flows that link business groups, critical applications, and network software and hardware (1 page).

  10. Developing Personal Network Business Models

    DEFF Research Database (Denmark)

    Saugstrup, Dan; Henten, Anders

    2006-01-01

    The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports...

  11. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.; Byrne, H.M.; King, J.R.; Bennett, M.J.

    2013-01-01

    methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more

  12. Complex Networks in Psychological Models

    Science.gov (United States)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  13. Healthcare provider education: from institutional boxes to dynamic networks.

    Science.gov (United States)

    Eisler, George

    2009-01-01

    The world recognizes the need for close collaboration in planning between the healthcare system and the post-secondary education system; this has also been advocated in the lead article. Forums and mechanisms to facilitate this collaboration are being implemented from local to global environments. Beyond the focus on competency gaps, there are important functional co-dependencies between healthcare and post-secondary education, including the need for a more formalized continuous quality improvement approach at the inter-organizational system level. The case for this close and continuous collaborative relationship is based on the following: (1) a close functional relationship, (2) joint responsibility for healthcare provider education, (3) the urgent need to address the workforce and education strategies for almost all healthcare services areas and (4) the factors that characterize successful and sustained quality improvement in complex adaptive systems. A go-forward vision consisting of an integrated web of academic health networks is proposed, each with its particular shared vision and aligned with an overall vision for healthcare in each provincial jurisdiction, as well as with national and global healthcare objectives.

  14. A model of coauthorship networks

    Science.gov (United States)

    Zhou, Guochang; Li, Jianping; Xie, Zonglin

    2017-10-01

    A natural way of representing the coauthorship of authors is to use a generalization of graphs known as hypergraphs. A random geometric hypergraph model is proposed here to model coauthorship networks, which is generated by placing nodes on a region of Euclidean space randomly and uniformly, and connecting some nodes if the nodes satisfy particular geometric conditions. Two kinds of geometric conditions are designed to model the collaboration patterns of academic authorities and basic researches respectively. The conditions give geometric expressions of two causes of coauthorship: the authority and similarity of authors. By simulation and calculus, we show that the forepart of the degree distribution of the network generated by the model is mixture Poissonian, and the tail is power-law, which are similar to these of some coauthorship networks. Further, we show more similarities between the generated network and real coauthorship networks: the distribution of cardinalities of hyperedges, high clustering coefficient, assortativity, and small-world property

  15. Network Modeling and Simulation A Practical Perspective

    CERN Document Server

    Guizani, Mohsen; Khan, Bilal

    2010-01-01

    Network Modeling and Simulation is a practical guide to using modeling and simulation to solve real-life problems. The authors give a comprehensive exposition of the core concepts in modeling and simulation, and then systematically address the many practical considerations faced by developers in modeling complex large-scale systems. The authors provide examples from computer and telecommunication networks and use these to illustrate the process of mapping generic simulation concepts to domain-specific problems in different industries and disciplines. Key features: Provides the tools and strate

  16. Telecommunications network modelling, planning and design

    CERN Document Server

    Evans, Sharon

    2003-01-01

    Telecommunication Network Modelling, Planning and Design addresses sophisticated modelling techniques from the perspective of the communications industry and covers some of the major issues facing telecommunications network engineers and managers today. Topics covered include network planning for transmission systems, modelling of SDH transport network structures and telecommunications network design and performance modelling, as well as network costs and ROI modelling and QoS in 3G networks.

  17. Campus network security model study

    Science.gov (United States)

    Zhang, Yong-ku; Song, Li-ren

    2011-12-01

    Campus network security is growing importance, Design a very effective defense hacker attacks, viruses, data theft, and internal defense system, is the focus of the study in this paper. This paper compared the firewall; IDS based on the integrated, then design of a campus network security model, and detail the specific implementation principle.

  18. Generalized Network Psychometrics : Combining Network and Latent Variable Models

    NARCIS (Netherlands)

    Epskamp, S.; Rhemtulla, M.; Borsboom, D.

    2017-01-01

    We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between

  19. Cost Calculation Model for Logistics Service Providers

    Directory of Open Access Journals (Sweden)

    Zoltán Bokor

    2012-11-01

    Full Text Available The exact calculation of logistics costs has become a real challenge in logistics and supply chain management. It is essential to gain reliable and accurate costing information to attain efficient resource allocation within the logistics service provider companies. Traditional costing approaches, however, may not be sufficient to reach this aim in case of complex and heterogeneous logistics service structures. So this paper intends to explore the ways of improving the cost calculation regimes of logistics service providers and show how to adopt the multi-level full cost allocation technique in logistics practice. After determining the methodological framework, a sample cost calculation scheme is developed and tested by using estimated input data. Based on the theoretical findings and the experiences of the pilot project it can be concluded that the improved costing model contributes to making logistics costing more accurate and transparent. Moreover, the relations between costs and performances also become more visible, which enhances the effectiveness of logistics planning and controlling significantly

  20. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  1. Graphical Model Theory for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Davis, William B.

    2002-01-01

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm

  2. Mathematical model of highways network optimization

    Science.gov (United States)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2017-12-01

    The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.

  3. Performance modeling, stochastic networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi R

    2013-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan

  4. Evaluation of Persian Professional Web Social Networks\\\\\\' Features, to Provide a Suitable Solution for Optimization of These Networks in Iran

    Directory of Open Access Journals (Sweden)

    Nadjla Hariri

    2013-03-01

    Full Text Available This study aimed to determine the status of Persian professional web social networks' features and provide a suitable solution for optimization of these networks in Iran. The research methods were library research and evaluative method, and study population consisted of 10 Persian professional web social networks. In this study, for data collection, a check list of social networks important tools and features was used. According to the results, “Cloob”, “IR Experts” and “Doreh” were the most compatible networks with the criteria of social networks. Finally, some solutions were presented for optimization of capabilities of Persian professional web social networks.

  5. Guide to Working with Model Providers.

    Science.gov (United States)

    Walter, Katie; Hassel, Bryan C.

    Often a central feature of a school's improvement efforts is the adoption of a Comprehensive School Reform (CSR) model, an externally developed research-based design for school improvement. Adopting a model is only the first step in CSR. Another important step is forging partnerships with developers of CSR models. This guide aims to help schools…

  6. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  7. Network model of security system

    Directory of Open Access Journals (Sweden)

    Adamczyk Piotr

    2016-01-01

    Full Text Available The article presents the concept of building a network security model and its application in the process of risk analysis. It indicates the possibility of a new definition of the role of the network models in the safety analysis. Special attention was paid to the development of the use of an algorithm describing the process of identifying the assets, vulnerability and threats in a given context. The aim of the article is to present how this algorithm reduced the complexity of the problem by eliminating from the base model these components that have no links with others component and as a result and it was possible to build a real network model corresponding to reality.

  8. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  9. Modeling online social networks based on preferential linking

    International Nuclear Information System (INIS)

    Hu Hai-Bo; Chen Jun; Guo Jin-Li

    2012-01-01

    We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro-mechanisms of network growth and the macrostructures of online social networks

  10. Target-Centric Network Modeling

    DEFF Research Database (Denmark)

    Mitchell, Dr. William L.; Clark, Dr. Robert M.

    In Target-Centric Network Modeling: Case Studies in Analyzing Complex Intelligence Issues, authors Robert Clark and William Mitchell take an entirely new approach to teaching intelligence analysis. Unlike any other book on the market, it offers case study scenarios using actual intelligence...... reporting formats, along with a tested process that facilitates the production of a wide range of analytical products for civilian, military, and hybrid intelligence environments. Readers will learn how to perform the specific actions of problem definition modeling, target network modeling......, and collaborative sharing in the process of creating a high-quality, actionable intelligence product. The case studies reflect the complexity of twenty-first century intelligence issues by dealing with multi-layered target networks that cut across political, economic, social, technological, and military issues...

  11. Social network models predict movement and connectivity in ecological landscapes

    Science.gov (United States)

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  12. Social network models predict movement and connectivity in ecological landscapes.

    Science.gov (United States)

    Fletcher, Robert J; Acevedo, Miguel A; Reichert, Brian E; Pias, Kyle E; Kitchens, Wiley M

    2011-11-29

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  13. Continuum Modeling of Biological Network Formation

    KAUST Repository

    Albi, Giacomo

    2017-04-10

    We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes the pressure field using a Darcy type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. We first introduce micro- and mesoscopic models and show how they are connected to the macroscopic PDE system. Then, we provide an overview of analytical results for the PDE model, focusing mainly on the existence of weak and mild solutions and analysis of the steady states. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on finite elements and study the qualitative properties of network structures for various parameter values.

  14. Local empathy provides global minimization of congestion in communication networks

    Science.gov (United States)

    Meloni, Sandro; Gómez-Gardeñes, Jesús

    2010-11-01

    We present a mechanism to avoid congestion in complex networks based on a local knowledge of traffic conditions and the ability of routers to self-coordinate their dynamical behavior. In particular, routers make use of local information about traffic conditions to either reject or accept information packets from their neighbors. We show that when nodes are only aware of their own congestion state they self-organize into a hierarchical configuration that delays remarkably the onset of congestion although leading to a sharp first-order-like congestion transition. We also consider the case when nodes are aware of the congestion state of their neighbors. In this case, we show that empathy between nodes is strongly beneficial to the overall performance of the system and it is possible to achieve larger values for the critical load together with a smooth, second-order-like, transition. Finally, we show how local empathy minimize the impact of congestion as much as global minimization. Therefore, here we present an outstanding example of how local dynamical rules can optimize the system’s functioning up to the levels reached using global knowledge.

  15. Fundamentals of complex networks models, structures and dynamics

    CERN Document Server

    Chen, Guanrong; Li, Xiang

    2014-01-01

    Complex networks such as the Internet, WWW, transportationnetworks, power grids, biological neural networks, and scientificcooperation networks of all kinds provide challenges for futuretechnological development. In particular, advanced societies havebecome dependent on large infrastructural networks to an extentbeyond our capability to plan (modeling) and to operate (control).The recent spate of collapses in power grids and ongoing virusattacks on the Internet illustrate the need for knowledge aboutmodeling, analysis of behaviors, optimized planning and performancecontrol in such networks. F

  16. Modeling and Simulation Network Data Standards

    Science.gov (United States)

    2011-09-30

    approaches . 2.3. JNAT. JNAT is a Web application that provides connectivity and network analysis capability. JNAT uses propagation models and low-fidelity...COMBATXXI Movement Logger Data Output Dictionary. Field # Geocentric Coordinates (GCC) Heading Geodetic Coordinates (GDC) Heading Universal...B-8 Field # Geocentric Coordinates (GCC) Heading Geodetic Coordinates (GDC) Heading Universal Transverse Mercator (UTM) Heading

  17. Delay and Disruption Tolerant Networking MACHETE Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Gao, Jay L.

    2011-01-01

    To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity

  18. Modelling dendritic ecological networks in space: anintegrated network perspective

    Science.gov (United States)

    Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of ecological networks, or in 2-D space, may be inadequate for studying the influence of structure and connectivity on ecological processes within DENs. We propose a conceptual taxonomy of network analysis methods that account for DEN characteristics to varying degrees and provide a synthesis of the different approaches within

  19. A comprehensive Network Security Risk Model for process control networks.

    Science.gov (United States)

    Henry, Matthew H; Haimes, Yacov Y

    2009-02-01

    The risk of cyber attacks on process control networks (PCN) is receiving significant attention due to the potentially catastrophic extent to which PCN failures can damage the infrastructures and commodity flows that they support. Risk management addresses the coupled problems of (1) reducing the likelihood that cyber attacks would succeed in disrupting PCN operation and (2) reducing the severity of consequences in the event of PCN failure or manipulation. The Network Security Risk Model (NSRM) developed in this article provides a means of evaluating the efficacy of candidate risk management policies by modeling the baseline risk and assessing expectations of risk after the implementation of candidate measures. Where existing risk models fall short of providing adequate insight into the efficacy of candidate risk management policies due to shortcomings in their structure or formulation, the NSRM provides model structure and an associated modeling methodology that captures the relevant dynamics of cyber attacks on PCN for risk analysis. This article develops the NSRM in detail in the context of an illustrative example.

  20. A Complex Network Approach to Distributional Semantic Models.

    Directory of Open Access Journals (Sweden)

    Akira Utsumi

    Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.

  1. Continuum Model for River Networks

    Science.gov (United States)

    Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.

    1995-07-01

    The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.

  2. Agent based modeling of energy networks

    International Nuclear Information System (INIS)

    Gonzalez de Durana, José María; Barambones, Oscar; Kremers, Enrique; Varga, Liz

    2014-01-01

    Highlights: • A new approach for energy network modeling is designed and tested. • The agent-based approach is general and no technology dependent. • The models can be easily extended. • The range of applications encompasses from small to large energy infrastructures. - Abstract: Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed

  3. Discrete dynamic modeling of cellular signaling networks.

    Science.gov (United States)

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  4. Modeling Multistandard Wireless Networks in OPNET

    DEFF Research Database (Denmark)

    Zakrzewska, Anna; Berger, Michael Stübert; Ruepp, Sarah Renée

    2011-01-01

    Future wireless communication is emerging towards one heterogeneous platform. In this new environment wireless access will be provided by multiple radio technologies that are cooperating and complementing one another. The paper investigates the possibilities of developing such a multistandard sys...... system using OPNET Modeler. A network model consisting of LTE interworking with WLAN and WiMAX is considered from the radio resource management perspective. In particular, implementing a joint packet scheduler across multiple systems is discussed more in detail....

  5. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  6. Network modelling methods for FMRI.

    Science.gov (United States)

    Smith, Stephen M; Miller, Karla L; Salimi-Khorshidi, Gholamreza; Webster, Matthew; Beckmann, Christian F; Nichols, Thomas E; Ramsey, Joseph D; Woolrich, Mark W

    2011-01-15

    There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Energy modelling in sensor networks

    Science.gov (United States)

    Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.

    2007-06-01

    Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  8. Keystone Business Models for Network Security Processors

    Directory of Open Access Journals (Sweden)

    Arthur Low

    2013-07-01

    Full Text Available Network security processors are critical components of high-performance systems built for cybersecurity. Development of a network security processor requires multi-domain experience in semiconductors and complex software security applications, and multiple iterations of both software and hardware implementations. Limited by the business models in use today, such an arduous task can be undertaken only by large incumbent companies and government organizations. Neither the “fabless semiconductor” models nor the silicon intellectual-property licensing (“IP-licensing” models allow small technology companies to successfully compete. This article describes an alternative approach that produces an ongoing stream of novel network security processors for niche markets through continuous innovation by both large and small companies. This approach, referred to here as the "business ecosystem model for network security processors", includes a flexible and reconfigurable technology platform, a “keystone” business model for the company that maintains the platform architecture, and an extended ecosystem of companies that both contribute and share in the value created by innovation. New opportunities for business model innovation by participating companies are made possible by the ecosystem model. This ecosystem model builds on: i the lessons learned from the experience of the first author as a senior integrated circuit architect for providers of public-key cryptography solutions and as the owner of a semiconductor startup, and ii the latest scholarly research on technology entrepreneurship, business models, platforms, and business ecosystems. This article will be of interest to all technology entrepreneurs, but it will be of particular interest to owners of small companies that provide security solutions and to specialized security professionals seeking to launch their own companies.

  9. A Model of Network Porosity

    Science.gov (United States)

    2016-11-09

    Figure 1. We generally express such networks in terms of the services running in each enclave as well as the routing and firewall rules between the...compromise a server, they can compromise other devices in the same subnet or protected enclave. They probe attached firewalls and routers for open ports and...spam and malware filter would prevent this content from reaching its destination. Content filtering provides another layer of defense to other controls

  10. Security Modeling on the Supply Chain Networks

    Directory of Open Access Journals (Sweden)

    Marn-Ling Shing

    2007-10-01

    Full Text Available In order to keep the price down, a purchaser sends out the request for quotation to a group of suppliers in a supply chain network. The purchaser will then choose a supplier with the best combination of price and quality. A potential supplier will try to collect the related information about other suppliers so he/she can offer the best bid to the purchaser. Therefore, confidentiality becomes an important consideration for the design of a supply chain network. Chen et al. have proposed the application of the Bell-LaPadula model in the design of a secured supply chain network. In the Bell-LaPadula model, a subject can be in one of different security clearances and an object can be in one of various security classifications. All the possible combinations of (Security Clearance, Classification pair in the Bell-LaPadula model can be thought as different states in the Markov Chain model. This paper extends the work done by Chen et al., provides more details on the Markov Chain model and illustrates how to use it to monitor the security state transition in the supply chain network.

  11. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.

    2015-01-01

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation

  12. Network Physics - the only company to provide physics-based network management - secures additional funding and new executives

    CERN Multimedia

    2003-01-01

    "Network Physics, the only provider of physics-based network management products, today announced an additional venture round of $6 million in funding, as well as the addition of David Jones as president and CEO and Tom Dunn as vice president of sales and business development" (1 page).

  13. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Li Chunguang; Maini, Philip K

    2005-01-01

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  14. Brand Marketing Model on Social Networks

    Directory of Open Access Journals (Sweden)

    Jolita Jezukevičiūtė

    2014-04-01

    Full Text Available The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalysis of a single case study revealed a brand marketingsocial networking tools that affect consumers the most. Basedon information analysis and methodological studies, develop abrand marketing model on social networks.

  15. Distributed Bayesian Networks for User Modeling

    DEFF Research Database (Denmark)

    Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang

    2006-01-01

    The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used by such ada......The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used...... by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...

  16. The Kuramoto model in complex networks

    Science.gov (United States)

    Rodrigues, Francisco A.; Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen

    2016-01-01

    Synchronization of an ensemble of oscillators is an emergent phenomenon present in several complex systems, ranging from social and physical to biological and technological systems. The most successful approach to describe how coherent behavior emerges in these complex systems is given by the paradigmatic Kuramoto model. This model has been traditionally studied in complete graphs. However, besides being intrinsically dynamical, complex systems present very heterogeneous structure, which can be represented as complex networks. This report is dedicated to review main contributions in the field of synchronization in networks of Kuramoto oscillators. In particular, we provide an overview of the impact of network patterns on the local and global dynamics of coupled phase oscillators. We cover many relevant topics, which encompass a description of the most used analytical approaches and the analysis of several numerical results. Furthermore, we discuss recent developments on variations of the Kuramoto model in networks, including the presence of noise and inertia. The rich potential for applications is discussed for special fields in engineering, neuroscience, physics and Earth science. Finally, we conclude by discussing problems that remain open after the last decade of intensive research on the Kuramoto model and point out some promising directions for future research.

  17. A novel Direct Small World network model

    Directory of Open Access Journals (Sweden)

    LIN Tao

    2016-10-01

    Full Text Available There is a certain degree of redundancy and low efficiency of existing computer networks.This paper presents a novel Direct Small World network model in order to optimize networks.In this model,several nodes construct a regular network.Then,randomly choose and replot some nodes to generate Direct Small World network iteratively.There is no change in average distance and clustering coefficient.However,the network performance,such as hops,is improved.The experiments prove that compared to traditional small world network,the degree,average of degree centrality and average of closeness centrality are lower in Direct Small World network.This illustrates that the nodes in Direct Small World networks are closer than Watts-Strogatz small world network model.The Direct Small World can be used not only in the communication of the community information,but also in the research of epidemics.

  18. Modeling management of research and education networks

    NARCIS (Netherlands)

    Galagan, D.V.

    2004-01-01

    Computer networks and their services have become an essential part of research and education. Nowadays every modern R&E institution must have a computer network and provide network services to its students and staff. In addition to its internal computer network, every R&E institution must have a

  19. Performance modeling, loss networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi

    2009-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. I

  20. A Novel Dual Separate Paths (DSP) Algorithm Providing Fault-Tolerant Communication for Wireless Sensor Networks.

    Science.gov (United States)

    Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon

    2017-07-25

    Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.

  1. Brand Marketing Model on Social Networks

    OpenAIRE

    Jolita Jezukevičiūtė; Vida Davidavičienė

    2014-01-01

    The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalys...

  2. Brand marketing model on social networks

    OpenAIRE

    Jezukevičiūtė, Jolita; Davidavičienė, Vida

    2014-01-01

    Paper analyzes the brand and its marketing solutions on social networks. This analysis led to the creation of improved brand marketing model on social networks, which will contribute to the rapid and cheap organization brand recognition, increase competitive advantage and enhance consumer loyalty. Therefore, the brand and a variety of social networks are becoming a hot research area for brand marketing model on social networks. The world‘s most successful brand marketing models exploratory an...

  3. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  4. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  5. Functional model of biological neural networks.

    Science.gov (United States)

    Lo, James Ting-Ho

    2010-12-01

    A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.

  6. A Mathematical Model to Improve the Performance of Logistics Network

    Directory of Open Access Journals (Sweden)

    Muhammad Izman Herdiansyah

    2012-01-01

    Full Text Available The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimization

  7. [Self-owned versus accredited network: comparative cost analysis in a Brazilian health insurance provider].

    Science.gov (United States)

    Souza, Marcos Antônio de; Salvalaio, Dalva

    2010-10-01

    to analyze the cost of a self-owned network maintained by a Brazilian health insurance provider as compared to the price charged by accredited service providers, so as to identify whether or not the self-owned network is economically advantageous. for this exploratory study, the company's management reports were reviewed. The cost associated with the self-owned network was calculated based on medical and dental office visits and diagnostic/laboratory tests performed at one of the company's most representative facilities. The costs associated with third parties were derived from price tables used by the accredited network for the same services analyzed in the self-owned network. The full-cost method was used for cost quantification. Costs are presented as absolute values (in R$) and percent comparisons between self-owned network costs versus accredited network costs. overall, the self-owned network was advantageous for medical and dental consultations as well as diagnostic and laboratory tests. Pediatric and labor medicine consultations and x-rays were less costly in the accredited network. the choice of verticalization has economic advantages for the health care insurance operator in comparison with services provided by third parties.

  8. Using and joining a franchised private sector provider network in Myanmar.

    Science.gov (United States)

    O'Connell, Kathryn; Hom, Mo; Aung, Tin; Theuss, Marc; Huntington, Dale

    2011-01-01

    Quality is central to understanding provider motivations to join and remain within a social franchising network. Quality also appears as a key issue from the client's perspective, and may influence why a client chooses to use a franchised provider over another type of provider. The dynamic relationships between providers of social franchising clinics and clients who use these services have not been thoroughly investigated in the context of Myanmar, which has an established social franchising network. This study examines client motivations to use a Sun Quality Health network provider and provider motivations to join and remain in the Sun Quality Health network. Taken together, these two aims provide an opportunity to explore the symbiotic relationship between client satisfaction and provider incentives to increase the utilization of reproductive health care services. Results from a series of focus group discussions with clients of reproductive health services and franchised providers shows that women chose health services provided by franchised private sector general practitioners because of its perceived higher quality, associated with the availability of effective, affordable, drugs. A key finding of the study is associated with providers. Provider focus group discussions indicate that a principle determinate for joining and remaining in the Sun Quality Health Network was serving the poor.

  9. Using and joining a franchised private sector provider network in Myanmar.

    Directory of Open Access Journals (Sweden)

    Kathryn O'Connell

    Full Text Available BACKGROUND: Quality is central to understanding provider motivations to join and remain within a social franchising network. Quality also appears as a key issue from the client's perspective, and may influence why a client chooses to use a franchised provider over another type of provider. The dynamic relationships between providers of social franchising clinics and clients who use these services have not been thoroughly investigated in the context of Myanmar, which has an established social franchising network. This study examines client motivations to use a Sun Quality Health network provider and provider motivations to join and remain in the Sun Quality Health network. Taken together, these two aims provide an opportunity to explore the symbiotic relationship between client satisfaction and provider incentives to increase the utilization of reproductive health care services. METHODS AND FINDINGS: Results from a series of focus group discussions with clients of reproductive health services and franchised providers shows that women chose health services provided by franchised private sector general practitioners because of its perceived higher quality, associated with the availability of effective, affordable, drugs. A key finding of the study is associated with providers. Provider focus group discussions indicate that a principle determinate for joining and remaining in the Sun Quality Health Network was serving the poor.

  10. Using and Joining a Franchised Private Sector Provider Network in Myanmar

    Science.gov (United States)

    O'Connell, Kathryn; Hom, Mo; Aung, Tin; Theuss, Marc; Huntington, Dale

    2011-01-01

    Background Quality is central to understanding provider motivations to join and remain within a social franchising network. Quality also appears as a key issue from the client's perspective, and may influence why a client chooses to use a franchised provider over another type of provider. The dynamic relationships between providers of social franchising clinics and clients who use these services have not been thoroughly investigated in the context of Myanmar, which has an established social franchising network. This study examines client motivations to use a Sun Quality Health network provider and provider motivations to join and remain in the Sun Quality Health network. Taken together, these two aims provide an opportunity to explore the symbiotic relationship between client satisfaction and provider incentives to increase the utilization of reproductive health care services. Methods and Findings Results from a series of focus group discussions with clients of reproductive health services and franchised providers shows that women chose health services provided by franchised private sector general practitioners because of its perceived higher quality, associated with the availability of effective, affordable, drugs. A key finding of the study is associated with providers. Provider focus group discussions indicate that a principle determinate for joining and remaining in the Sun Quality Health Network was serving the poor. PMID:22180781

  11. A network of experimental forests and ranges: Providing soil solutions for a changing world

    Science.gov (United States)

    Mary Beth. Adams

    2010-01-01

    The network of experimental forests and ranges of the USDA Forest Service represents significant opportunities to provide soil solutions to critical issues of a changing world. This network of 81 experimental forests and ranges encompasses broad geographic, biological, climatic and physical scales, and includes long-term data sets, and long-term experimental...

  12. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  13. Resolving structural variability in network models and the brain.

    Directory of Open Access Journals (Sweden)

    Florian Klimm

    2014-03-01

    Full Text Available Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling--in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity do not in general simultaneously display a second (e.g., hierarchy. This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful

  14. Spinal Cord Injury Model System Information Network

    Science.gov (United States)

    ... the UAB-SCIMS More The UAB-SCIMS Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network as a resource to promote knowledge in the ...

  15. The model of social crypto-network

    Directory of Open Access Journals (Sweden)

    Марк Миколайович Орел

    2015-06-01

    Full Text Available The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks

  16. Introducing Synchronisation in Deterministic Network Models

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.

    2006-01-01

    The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading...... to the suggestion of suitable network models. An existing model for flow control is presented and an inherent weakness is revealed and remedied. Examples are given and numerically analysed through deterministic network modelling. Results are presented to highlight the properties of the suggested models...

  17. Integrative analysis of kinase networks in TRAIL-induced apoptosis provides a source of potential targets for combination therapy

    DEFF Research Database (Denmark)

    So, Jonathan; Pasculescu, Adrian; Dai, Anna Y.

    2015-01-01

    phosphoproteomics. With these protein interaction maps, we modeled information flow through the networks and identified apoptosis-modifying kinases that are highly connected to regulated substrates downstream of TRAIL. The results of this analysis provide a resource of potential targets for the development of TRAIL...

  18. Bayesian Network Webserver: a comprehensive tool for biological network modeling.

    Science.gov (United States)

    Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan

    2013-11-01

    The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.

  19. Malware Propagation and Prevention Model for Time-Varying Community Networks within Software Defined Networks

    Directory of Open Access Journals (Sweden)

    Lan Liu

    2017-01-01

    Full Text Available As the adoption of Software Defined Networks (SDNs grows, the security of SDN still has several unaddressed limitations. A key network security research area is in the study of malware propagation across the SDN-enabled networks. To analyze the spreading processes of network malware (e.g., viruses in SDN, we propose a dynamic model with a time-varying community network, inspired by research models on the spread of epidemics in complex networks across communities. We assume subnets of the network as communities and links that are dense in subnets but sparse between subnets. Using numerical simulation and theoretical analysis, we find that the efficiency of network malware propagation in this model depends on the mobility rate q of the nodes between subnets. We also find that there exists a mobility rate threshold qc. The network malware will spread in the SDN when the mobility rate q>qc. The malware will survive when q>qc and perish when qmodel is effective, and the results may help to decide the SDN control strategy to defend against network malware and provide a theoretical basis to reduce and prevent network security incidents.

  20. A Secure Network Coding-based Data Gathering Model and Its Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qian Xiao

    2012-09-01

    Full Text Available To provide security for data gathering based on network coding in wireless sensor networks (WSNs, a secure network coding-based data gathering model is proposed, and a data-privacy preserving and pollution preventing (DPPaamp;PP protocol using network coding is designed. DPPaamp;PP makes use of a new proposed pollution symbol selection and pollution (PSSP scheme based on a new obfuscation idea to pollute existing symbols. Analyses of DPPaamp;PP show that it not only requires low overhead on computation and communication, but also provides high security on resisting brute-force attacks.

  1. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  2. Model checking mobile ad hoc networks

    NARCIS (Netherlands)

    Ghassemi, Fatemeh; Fokkink, Wan

    2016-01-01

    Modeling arbitrary connectivity changes within mobile ad hoc networks (MANETs) makes application of automated formal verification challenging. We use constrained labeled transition systems as a semantic model to represent mobility. To model check MANET protocols with respect to the underlying

  3. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  4. Modelling Pollutant Dispersion in a Street Network

    Science.gov (United States)

    Salem, N. Ben; Garbero, V.; Salizzoni, P.; Lamaison, G.; Soulhac, L.

    2015-04-01

    This study constitutes a further step in the analysis of the performances of a street network model to simulate atmospheric pollutant dispersion in urban areas. The model, named SIRANE, is based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer, whose dynamics is assumed to be well established, and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections, and vertical exchange between street canyons and the overlying atmosphere. Here, we aim to evaluate the reliability of the parametrizations adopted to simulate these phenomena, by focusing on their possible dependence on the external wind direction. To this end, we test the model against concentration measurements within an idealized urban district whose geometrical layout closely matches the street network represented in SIRANE. The analysis is performed for an urban array with a fixed geometry and a varying wind incidence angle. The results show that the model provides generally good results with the reference parametrizations adopted in SIRANE and that its performances are quite robust for a wide range of the model parameters. This proves the reliability of the street network approach in simulating pollutant dispersion in densely built city districts. The results also show that the model performances may be improved by considering a dependence of the wind fluctuations at street intersections and of the vertical exchange velocity on the direction of the incident wind. This opens the way for further investigations to clarify the dependence of these parameters on wind direction and street aspect ratios.

  5. Medicare Program; Revisions to Payment Policies Under the Physician Fee Schedule and Other Revisions to Part B for CY 2017; Medicare Advantage Bid Pricing Data Release; Medicare Advantage and Part D Medical Loss Ratio Data Release; Medicare Advantage Provider Network Requirements; Expansion of Medicare Diabetes Prevention Program Model; Medicare Shared Savings Program Requirements. Final rule.

    Science.gov (United States)

    2016-11-15

    This major final rule addresses changes to the physician fee schedule and other Medicare Part B payment policies, such as changes to the Value Modifier, to ensure that our payment systems are updated to reflect changes in medical practice and the relative value of services, as well as changes in the statute. This final rule also includes changes related to the Medicare Shared Savings Program, requirements for Medicare Advantage Provider Networks, and provides for the release of certain pricing data from Medicare Advantage bids and of data from medical loss ratio reports submitted by Medicare health and drug plans. In addition, this final rule expands the Medicare Diabetes Prevention Program model.

  6. Aeronautical telecommunications network advances, challenges, and modeling

    CERN Document Server

    Musa, Sarhan M

    2015-01-01

    Addresses the Challenges of Modern-Day Air Traffic Air traffic control (ATC) directs aircraft in the sky and on the ground to safety, while the Aeronautical Telecommunications Network (ATN) comprises all systems and phases that assist in aircraft departure and landing. The Aeronautical Telecommunications Network: Advances, Challenges, and Modeling focuses on the development of ATN and examines the role of the various systems that link aircraft with the ground. The book places special emphasis on ATC-introducing the modern ATC system from the perspective of the user and the developer-and provides a thorough understanding of the operating mechanism of the ATC system. It discusses the evolution of ATC, explaining its structure and how it works; includes design examples; and describes all subsystems of the ATC system. In addition, the book covers relevant tools, techniques, protocols, and architectures in ATN, including MIPv6, air traffic control (ATC), security of air traffic management (ATM), very-high-frequenc...

  7. Comprehensive Care For Joint Replacement Model - Provider Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Comprehensive Care for Joint Replacement Model - provider data. This data set includes provider data for two quality measures tracked during an episode of care:...

  8. A Flexible Collaborative Innovation Model for SOA Services Providers

    OpenAIRE

    Santanna-Filho , João ,; Rabelo , Ricardo ,; Pereira-Klen , Alexandra ,

    2015-01-01

    Part 5: Innovation Networks; International audience; Software sector plays a very relevant role in current world economy. One of its characteristics is that they are mostly composed of SMEs. SMEs have been pushed to invest in innovation to keep competitive. Service Oriented Architecture (SOA) is a recent and powerful ICT paradigm for more sustainable business models. A SOA product has many differences when compared to manufacturing sector. Besides that, SOA projects are however very complex, ...

  9. Modelling the impact of social network on energy savings

    International Nuclear Information System (INIS)

    Du, Feng; Zhang, Jiangfeng; Li, Hailong; Yan, Jinyue; Galloway, Stuart; Lo, Kwok L.

    2016-01-01

    Highlights: • Energy saving propagation along a social network is modelled. • This model consists of a time evolving weighted directed network. • Network weights and information decay are applied in savings calculation. - Abstract: It is noted that human behaviour changes can have a significant impact on energy consumption, however, qualitative study on such an impact is still very limited, and it is necessary to develop the corresponding mathematical models to describe how much energy savings can be achieved through human engagement. In this paper a mathematical model of human behavioural dynamic interactions on a social network is derived to calculate energy savings. This model consists of a weighted directed network with time evolving information on each node. Energy savings from the whole network is expressed as mathematical expectation from probability theory. This expected energy savings model includes both direct and indirect energy savings of individuals in the network. The savings model is obtained by network weights and modified by the decay of information. Expected energy savings are calculated for cases where individuals in the social network are treated as a single information source or multiple sources. This model is tested on a social network consisting of 40 people. The results show that the strength of relations between individuals is more important to information diffusion than the number of connections individuals have. The expected energy savings of optimally chosen node can be 25.32% more than randomly chosen nodes at the end of the second month for the case of single information source in the network, and 16.96% more than random nodes for the case of multiple information sources. This illustrates that the model presented in this paper can be used to determine which individuals will have the most influence on the social network, which in turn provides a useful guide to identify targeted customers in energy efficiency technology rollout

  10. Dynamic thermo-hydraulic model of district cooling networks

    International Nuclear Information System (INIS)

    Oppelt, Thomas; Urbaneck, Thorsten; Gross, Ulrich; Platzer, Bernd

    2016-01-01

    Highlights: • A dynamic thermo-hydraulic model for district cooling networks is presented. • The thermal modelling is based on water segment tracking (Lagrangian approach). • Thus, numerical errors and balance inaccuracies are avoided. • Verification and validation studies proved the reliability of the model. - Abstract: In the present paper, the dynamic thermo-hydraulic model ISENA is presented which can be applied for answering different questions occurring in design and operation of district cooling networks—e.g. related to economic and energy efficiency. The network model consists of a quasistatic hydraulic model and a transient thermal model based on tracking water segments through the whole network (Lagrangian method). Applying this approach, numerical errors and balance inaccuracies can be avoided which leads to a higher quality of results compared to other network models. Verification and validation calculations are presented in order to show that ISENA provides reliable results and is suitable for practical application.

  11. 47 CFR 51.329 - Notice of network changes: Methods for providing notice.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Notice of network changes: Methods for providing notice. 51.329 Section 51.329 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED...) Filing a public notice with the Commission; or (2) Providing public notice through industry fora...

  12. Mathematics of epidemics on networks from exact to approximate models

    CERN Document Server

    Kiss, István Z; Simon, Péter L

    2017-01-01

    This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate...

  13. A network model for Ebola spreading.

    Science.gov (United States)

    Rizzo, Alessandro; Pedalino, Biagio; Porfiri, Maurizio

    2016-04-07

    The availability of accurate models for the spreading of infectious diseases has opened a new era in management and containment of epidemics. Models are extensively used to plan for and execute vaccination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the simplifying assumption of homogeneous mixing, which is central to most of the mathematically tractable models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other, and its network of contacts varies in time as a function of an activity potential. Our model contemplates the possibility of non-ideal and time-varying intervention policies, which are critical to accurately describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular, we show that an earlier application of the same intervention policy would have greatly reduced the number of EVD cases, the duration of the outbreak, and the infrastructures needed for the implementation of the intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Building functional networks of spiking model neurons.

    Science.gov (United States)

    Abbott, L F; DePasquale, Brian; Memmesheimer, Raoul-Martin

    2016-03-01

    Most of the networks used by computer scientists and many of those studied by modelers in neuroscience represent unit activities as continuous variables. Neurons, however, communicate primarily through discontinuous spiking. We review methods for transferring our ability to construct interesting networks that perform relevant tasks from the artificial continuous domain to more realistic spiking network models. These methods raise a number of issues that warrant further theoretical and experimental study.

  15. Modeling, Optimization & Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat

    2014-01-01

    . The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used......Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...

  16. IAS telecommunication infrastructure and value added network services provided by IASNET

    Science.gov (United States)

    Smirnov, Oleg L.; Marchenko, Sergei

    The topology of a packet switching network for the Soviet National Centre for Automated Data Exchange with Foreign Computer Networks and Databanks (NCADE) based on a design by the Institute for Automated Systems (IAS) is discussed. NCADE has partners all over the world: it is linked to East European countries via telephone lines while satellites are used for communication with remote partners, such as Cuba, Mongolia, and Vietnam. Moreover, there is a connection to the Austrian, British, Canadian, Finnish, French, U.S. and other western networks through which users can have access to databases on each network. At the same time, NCADE provides western customers with access to more than 70 Soviet databases. Software and hardware of IASNET use data exchange recommendations agreed with the International Standard Organization (ISO) and International Telegraph and Telephone Consultative Committee (CCITT). Technical parameters of IASNET are compatible with the majority of foreign networks such as DATAPAK, TRANSPAC, TELENET, and others. By means of IASNET, the NCADE provides connection of Soviet and foreign users to information and computer centers around the world on the basis of the CCITT X.25 and X.75 recommendations. Any information resources of IASNET and value added network services, such as computer teleconferences, E-mail, information retrieval system, intelligent support of access to databanks and databases, and others are discussed. The topology of the ACADEMNET connected to IASNET over an X.25 gateway is also discussed.

  17. Providing end-to-end QoS for multimedia applications in 3G wireless networks

    Science.gov (United States)

    Guo, Katherine; Rangarajan, Samapth; Siddiqui, M. A.; Paul, Sanjoy

    2003-11-01

    As the usage of wireless packet data services increases, wireless carriers today are faced with the challenge of offering multimedia applications with QoS requirements within current 3G data networks. End-to-end QoS requires support at the application, network, link and medium access control (MAC) layers. We discuss existing CDMA2000 network architecture and show its shortcomings that prevent supporting multiple classes of traffic at the Radio Access Network (RAN). We then propose changes in RAN within the standards framework that enable support for multiple traffic classes. In addition, we discuss how Session Initiation Protocol (SIP) can be augmented with QoS signaling for supporting end-to-end QoS. We also review state of the art scheduling algorithms at the base station and provide possible extensions to these algorithms to support different classes of traffic as well as different classes of users.

  18. Port Hamiltonian modeling of Power Networks

    NARCIS (Netherlands)

    van Schaik, F.; van der Schaft, Abraham; Scherpen, Jacquelien M.A.; Zonetti, Daniele; Ortega, R

    2012-01-01

    In this talk a full nonlinear model for the power network in port–Hamiltonian framework is derived to study its stability properties. For this we use the modularity approach i.e., we first derive the models of individual components in power network as port-Hamiltonian systems and then we combine all

  19. Modelling traffic congestion using queuing networks

    Indian Academy of Sciences (India)

    Flow-density curves; uninterrupted traffic; Jackson networks. ... ness - also suffer from a big handicap vis-a-vis the Indian scenario: most of these models do .... more well-known queuing network models and onsite data, a more exact Road Cell ...

  20. Settings in Social Networks : a Measurement Model

    NARCIS (Netherlands)

    Schweinberger, Michael; Snijders, Tom A.B.

    2003-01-01

    A class of statistical models is proposed that aims to recover latent settings structures in social networks. Settings may be regarded as clusters of vertices. The measurement model is based on two assumptions. (1) The observed network is generated by hierarchically nested latent transitive

  1. Network interconnections: an architectural reference model

    NARCIS (Netherlands)

    Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.

    1985-01-01

    One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for

  2. Customer-Provider Strategic Alignment: A Maturity Model

    Science.gov (United States)

    Luftman, Jerry; Brown, Carol V.; Balaji, S.

    This chapter presents a new model for assessing the maturity of a ­customer-provider relationship from a collaborative service delivery perspective: the Customer-Provider Strategic Alignment Maturity (CPSAM) Model. This model builds on recent research for effectively managing the customer-provider relationship in IT service outsourcing contexts and a validated model for assessing alignment across internal IT service units and their business customers within the same organization. After reviewing relevant literature by service science and information systems researchers, the six overarching components of the maturity model are presented: value measurements, governance, partnership, communications, human resources and skills, and scope and architecture. A key assumption of the model is that all of the components need be addressed to assess and improve customer-provider alignment. Examples of specific metrics for measuring the maturity level of each component over the five levels of maturity are also presented.

  3. Bayesian Recurrent Neural Network for Language Modeling.

    Science.gov (United States)

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  4. Continuum Modeling of Biological Network Formation

    KAUST Repository

    Albi, Giacomo; Burger, Martin; Haskovec, Jan; Markowich, Peter A.; Schlottbom, Matthias

    2017-01-01

    We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes

  5. On designing of a low leakage patient-centric provider network.

    Science.gov (United States)

    Zheng, Yuchen; Lin, Kun; White, Thomas; Pickreign, Jeremy; Yuen-Reed, Gigi

    2018-03-27

    When a patient in a provider network seeks services outside of their community, the community experiences a leakage. Leakage is undesirable as it typically leads to higher out-of-network cost for patient and increases barrier for care coordination, which is particularly problematic for Accountable Care Organization (ACO) as the in-network providers are financially responsible for quality of care and outcome. We aim to design a data-driven method to identify naturally occurring provider networks driven by diabetic patient choices, and understand the relationship among provider composition, patient composition, and service leakage pattern. By doing so, we learn the features of low service leakage provider networks that can be generalized to different patient population. Data used for this study include de-identified healthcare insurance administrative data acquired from Capital District Physicians' Health Plan (CDPHP) for diabetic patients who resided in four New York state counties (Albany, Rensselaer, Saratoga, and Schenectady) in 2014. We construct a healthcare provider network based on patients' historical medical insurance claims. A community detection algorithm is used to identify naturally occurring communities of collaborating providers. For each detected community, a profile is built using several new key measures to elucidate stakeholders of our findings. Finally, import-export analysis is conducted to benchmark their leakage pattern and identify further leakage reduction opportunity. The design yields six major provider communities with diverse profiles. Some communities are geographically concentrated, while others tend to draw patients with certain diabetic co-morbidities. Providers from the same healthcare institution are likely to be assigned to the same community. While most communities have high within-community utilization and spending, at 85% and 86% respectively, leakage still persists. Hence, we utilize a metric from import-export analysis to

  6. Synergistic effects in threshold models on networks

    Science.gov (United States)

    Juul, Jonas S.; Porter, Mason A.

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  7. Gossip spread in social network Models

    Science.gov (United States)

    Johansson, Tobias

    2017-04-01

    Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.

  8. Evaluation of EOR Processes Using Network Models

    DEFF Research Database (Denmark)

    Winter, Anatol; Larsen, Jens Kjell; Krogsbøll, Anette

    1998-01-01

    The report consists of the following parts: 1) Studies of wetting properties of model fluids and fluid mixtures aimed at an optimal selection of candidates for micromodel experiments. 2) Experimental studies of multiphase transport properties using physical models of porous networks (micromodels......) including estimation of their "petrophysical" properties (e.g. absolute permeability). 3) Mathematical modelling and computer studies of multiphase transport through pore space using mathematical network models. 4) Investigation of link between pore-scale and macroscopic recovery mechanisms....

  9. A universal, fault-tolerant, non-linear analytic network for modeling and fault detection

    International Nuclear Information System (INIS)

    Mott, J.E.; King, R.W.; Monson, L.R.; Olson, D.L.; Staffon, J.D.

    1992-01-01

    The similarities and differences of a universal network to normal neural networks are outlined. The description and application of a universal network is discussed by showing how a simple linear system is modeled by normal techniques and by universal network techniques. A full implementation of the universal network as universal process modeling software on a dedicated computer system at EBR-II is described and example results are presented. It is concluded that the universal network provides different feature recognition capabilities than a neural network and that the universal network can provide extremely fast, accurate, and fault-tolerant estimation, validation, and replacement of signals in a real system

  10. A universal, fault-tolerant, non-linear analytic network for modeling and fault detection

    Energy Technology Data Exchange (ETDEWEB)

    Mott, J.E. [Advanced Modeling Techniques Corp., Idaho Falls, ID (United States); King, R.W.; Monson, L.R.; Olson, D.L.; Staffon, J.D. [Argonne National Lab., Idaho Falls, ID (United States)

    1992-03-06

    The similarities and differences of a universal network to normal neural networks are outlined. The description and application of a universal network is discussed by showing how a simple linear system is modeled by normal techniques and by universal network techniques. A full implementation of the universal network as universal process modeling software on a dedicated computer system at EBR-II is described and example results are presented. It is concluded that the universal network provides different feature recognition capabilities than a neural network and that the universal network can provide extremely fast, accurate, and fault-tolerant estimation, validation, and replacement of signals in a real system.

  11. Nonlinear adaptive inverse control via the unified model neural network

    Science.gov (United States)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  12. Modeling Market Shares of Competing (e)Care Providers

    Science.gov (United States)

    van Ooteghem, Jan; Tesch, Tom; Verbrugge, Sofie; Ackaert, Ann; Colle, Didier; Pickavet, Mario; Demeester, Piet

    In order to address the increasing costs of providing care to the growing group of elderly, efficiency gains through eCare solutions seem an obvious solution. Unfortunately not many techno-economic business models to evaluate the return of these investments are available. The construction of a business case for care for the elderly as they move through different levels of dependency and the effect of introducing an eCare service, is the intended application of the model. The simulation model presented in this paper allows for modeling evolution of market shares of competing care providers. Four tiers are defined, based on the dependency level of the elderly, for which the market shares are determined. The model takes into account available capacity of the different care providers, in- and outflow distribution between tiers and churn between providers within tiers.

  13. Towards reproducible descriptions of neuronal network models.

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2009-08-01

    Full Text Available Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing--and thinking about--complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain.

  14. Modeling, robust and distributed model predictive control for freeway networks

    NARCIS (Netherlands)

    Liu, S.

    2016-01-01

    In Model Predictive Control (MPC) for traffic networks, traffic models are crucial since they are used as prediction models for determining the optimal control actions. In order to reduce the computational complexity of MPC for traffic networks, macroscopic traffic models are often used instead of

  15. Exact model reduction of combinatorial reaction networks

    Directory of Open Access Journals (Sweden)

    Fey Dirk

    2008-08-01

    Full Text Available Abstract Background Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models. Results We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs to a model with 87 ODEs. Conclusion The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks.

  16. Neural network modeling for near wall turbulent flow

    International Nuclear Information System (INIS)

    Milano, Michele; Koumoutsakos, Petros

    2002-01-01

    A neural network methodology is developed in order to reconstruct the near wall field in a turbulent flow by exploiting flow fields provided by direct numerical simulations. The results obtained from the neural network methodology are compared with the results obtained from prediction and reconstruction using proper orthogonal decomposition (POD). Using the property that the POD is equivalent to a specific linear neural network, a nonlinear neural network extension is presented. It is shown that for a relatively small additional computational cost nonlinear neural networks provide us with improved reconstruction and prediction capabilities for the near wall velocity fields. Based on these results advantages and drawbacks of both approaches are discussed with an outlook toward the development of near wall models for turbulence modeling and control

  17. Tool wear modeling using abductive networks

    Science.gov (United States)

    Masory, Oren

    1992-09-01

    A tool wear model based on Abductive Networks, which consists of a network of `polynomial' nodes, is described. The model relates the cutting parameters, components of the cutting force, and machining time to flank wear. Thus real time measurements of the cutting force can be used to monitor the machining process. The model is obtained by a training process in which the connectivity between the network's nodes and the polynomial coefficients of each node are determined by optimizing a performance criteria. Actual wear measurements of coated and uncoated carbide inserts were used for training and evaluating the established model.

  18. Providing probability distributions for the causal pathogen of clinical mastitis using naive Bayesian networks

    NARCIS (Netherlands)

    Steeneveld, W.; Gaag, van der L.C.; Barkema, H.W.; Hogeveen, H.

    2009-01-01

    Clinical mastitis (CM) can be caused by a wide variety of pathogens and farmers must start treatment before the actual causal pathogen is known. By providing a probability distribution for the causal pathogen, naive Bayesian networks (NBN) can serve as a management tool for farmers to decide which

  19. Modeling MAC layer for powerline communications networks

    Science.gov (United States)

    Hrasnica, Halid; Haidine, Abdelfatteh

    2001-02-01

    The usage of electrical power distribution networks for voice and data transmission, called Powerline Communications, becomes nowadays more and more attractive, particularly in the telecommunication access area. The most important reasons for that are the deregulation of the telecommunication market and a fact that the access networks are still property of former monopolistic companies. In this work, first we analyze a PLC network and system structure as well as a disturbance scenario in powerline networks. After that, we define a logical structure of the powerline MAC layer and propose the reservation MAC protocols for the usage in the PLC network which provides collision free data transmission. This makes possible better network utilization and realization of QoS guarantees which can make PLC networks competitive to other access technologies.

  20. Modeling patients' acceptance of provider-delivered e-health.

    Science.gov (United States)

    Wilson, E Vance; Lankton, Nancy K

    2004-01-01

    Health care providers are beginning to deliver a range of Internet-based services to patients; however, it is not clear which of these e-health services patients need or desire. The authors propose that patients' acceptance of provider-delivered e-health can be modeled in advance of application development by measuring the effects of several key antecedents to e-health use and applying models of acceptance developed in the information technology (IT) field. This study tested three theoretical models of IT acceptance among patients who had recently registered for access to provider-delivered e-health. An online questionnaire administered items measuring perceptual constructs from the IT acceptance models (intrinsic motivation, perceived ease of use, perceived usefulness/extrinsic motivation, and behavioral intention to use e-health) and five hypothesized antecedents (satisfaction with medical care, health care knowledge, Internet dependence, information-seeking preference, and health care need). Responses were collected and stored in a central database. All tested IT acceptance models performed well in predicting patients' behavioral intention to use e-health. Antecedent factors of satisfaction with provider, information-seeking preference, and Internet dependence uniquely predicted constructs in the models. Information technology acceptance models provide a means to understand which aspects of e-health are valued by patients and how this may affect future use. In addition, antecedents to the models can be used to predict e-health acceptance in advance of system development.

  1. Modelling of virtual production networks

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available Nowadays many companies, especially small and medium-sized enterprises (SMEs, specialize in a limited field of production. It requires forming virtual production networks of cooperating enterprises to manufacture better, faster and cheaper. Apart from that, some production orders cannot be realized, because there is not a company of sufficient production potential. In this case the virtual production networks of cooperating companies can realize these production orders. These networks have larger production capacity and many different resources. Therefore it can realize many more production orders together than each of them separately. Such organization allows for executing high quality product. The maintenance costs of production capacity and used resources are not so high. In this paper a methodology of rapid prototyping of virtual production networks is proposed. It allows to execute production orders on time considered existing logistic constraints.

  2. A Network Disruption Modeling Tool

    National Research Council Canada - National Science Library

    Leinart, James

    1998-01-01

    Given that network disruption has been identified as a military objective and C2-attack has been identified as the mechanism to accomplish this objective, a target set must be acquired and priorities...

  3. Modeling Epidemics Spreading on Social Contact Networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua

    2015-09-01

    Social contact networks and the way people interact with each other are the key factors that impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR) model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact networks. The results from both simulations and real data set conclude that the epidemics are more likely to outbreak on social contact networks with higher average degree. We also present some potential immunization strategies, such as random set immunization, dominating set immunization, and high degree set immunization to further prove the conclusion.

  4. Spatial Epidemic Modelling in Social Networks

    Science.gov (United States)

    Simoes, Joana Margarida

    2005-06-01

    The spread of infectious diseases is highly influenced by the structure of the underlying social network. The target of this study is not the network of acquaintances, but the social mobility network: the daily movement of people between locations, in regions. It was already shown that this kind of network exhibits small world characteristics. The model developed is agent based (ABM) and comprehends a movement model and a infection model. In the movement model, some assumptions are made about its structure and the daily movement is decomposed into four types: neighborhood, intra region, inter region and random. The model is Geographical Information Systems (GIS) based, and uses real data to define its geometry. Because it is a vector model, some optimization techniques were used to increase its efficiency.

  5. Implementing network constraints in the EMPS model

    Energy Technology Data Exchange (ETDEWEB)

    Helseth, Arild; Warland, Geir; Mo, Birger; Fosso, Olav B.

    2010-02-15

    This report concerns the coupling of detailed market and network models for long-term hydro-thermal scheduling. Currently, the EPF model (Samlast) is the only tool available for this task for actors in the Nordic market. A new prototype for solving the coupled market and network problem has been developed. The prototype is based on the EMPS model (Samkjoeringsmodellen). Results from the market model are distributed to a detailed network model, where a DC load flow detects if there are overloads on monitored lines or intersections. In case of overloads, network constraints are generated and added to the market problem. Theoretical and implementation details for the new prototype are elaborated in this report. The performance of the prototype is tested against the EPF model on a 20-area Nordic dataset. (Author)

  6. Role models for complex networks

    Science.gov (United States)

    Reichardt, J.; White, D. R.

    2007-11-01

    We present a framework for automatically decomposing (“block-modeling”) the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph (“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy.

  7. Neural Network Based Models for Fusion Applications

    Science.gov (United States)

    Meneghini, Orso; Tema Biwole, Arsene; Luda, Teobaldo; Zywicki, Bailey; Rea, Cristina; Smith, Sterling; Snyder, Phil; Belli, Emily; Staebler, Gary; Canty, Jeff

    2017-10-01

    Whole device modeling, engineering design, experimental planning and control applications demand models that are simultaneously physically accurate and fast. This poster reports on the ongoing effort towards the development and validation of a series of models that leverage neural-­network (NN) multidimensional regression techniques to accelerate some of the most mission critical first principle models for the fusion community, such as: the EPED workflow for prediction of the H-Mode and Super H-Mode pedestal structure the TGLF and NEO models for the prediction of the turbulent and neoclassical particle, energy and momentum fluxes; and the NEO model for the drift-kinetic solution of the bootstrap current. We also applied NNs on DIII-D experimental data for disruption prediction and quantifying the effect of RMPs on the pedestal and ELMs. All of these projects were supported by the infrastructure provided by the OMFIT integrated modeling framework. Work supported by US DOE under DE-SC0012656, DE-FG02-95ER54309, DE-FC02-04ER54698.

  8. Modeling stochasticity in biochemical reaction networks

    International Nuclear Information System (INIS)

    Constantino, P H; Vlysidis, M; Smadbeck, P; Kaznessis, Y N

    2016-01-01

    Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts. (topical review)

  9. Modeling the interdependent network based on two-mode networks

    Science.gov (United States)

    An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian

    2017-10-01

    Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.

  10. Latent variable models are network models.

    Science.gov (United States)

    Molenaar, Peter C M

    2010-06-01

    Cramer et al. present an original and interesting network perspective on comorbidity and contrast this perspective with a more traditional interpretation of comorbidity in terms of latent variable theory. My commentary focuses on the relationship between the two perspectives; that is, it aims to qualify the presumed contrast between interpretations in terms of networks and latent variables.

  11. Homophyly/Kinship Model: Naturally Evolving Networks

    Science.gov (United States)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  12. Hybrid network defense model based on fuzzy evaluation.

    Science.gov (United States)

    Cho, Ying-Chiang; Pan, Jen-Yi

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  13. Framework for implementation of maintenance management in distribution network service providers

    International Nuclear Information System (INIS)

    Gomez Fernandez, Juan Francisco; Crespo Marquez, Adolfo

    2009-01-01

    Distribution network service providers (DNSP) are companies dealing with network infrastructure, such as distribution of gas, water, electricity or telecommunications, and they require the development of special maintenance management (MM) capabilities in order to satisfy the needs of their customers. In this sector, maintenance management information systems are essential to ensure control, gain knowledge and improve decision making. The aim of this paper is the study of specific characteristics of maintenance in these types of companies. We will investigate existing standards and best management practices with the scope of defining a suitable ad-hoc framework for implementation of maintenance management. The conclusion of the work supports the proposition of a framework consisting on a processes framework based on a structure of systems, integrated for continuous improvement of maintenance activities. The paper offers a very practical approach to the problem, as a result of more of 10 years of professional experience within this sector, and specially focused to network maintenance.

  14. Can online networks provide quality answers to questions about occupational safety and health?

    Science.gov (United States)

    Rhebergen, Martijn D F; Lenderink, Annet F; van Dijk, Frank J H; Hulshof, Carel T J

    2012-05-01

    To assess whether experts can provide high-quality answers to occupational safety and health (OSH) questions in online Question & Answer (Q&A) networks. The authors evaluated the quality of answers provided by qualified experts in two Dutch online networks: ArboAntwoord and the Helpdesk of the Netherlands Center for Occupational Diseases. A random sample of 594 answers was independently evaluated by two raters using nine answer quality criteria. An additional criterion, the agreement of answers with the best available evidence, was explored by peer review of a sample of 42 answers. Reviewers performed an evidence search in Medline. The median answer quality score of ArboAntwoord (N=295) and the Netherlands Center for Occupational Diseases Helpdesk (N=299) was 8 of 9 (IQR 2). The inter-rater reliability of the first nine quality criteria was high (κ 0.82-0.90, p<0.05). A question answered by two or more experts had a greater probability of a high-quality score than questions answered by one expert (OR 4.9, 95% CI 2.7 to 9.0). Answers most often scored insufficient on the use of evidence to underpin the answer (36% and 38% for the networks, respectively) and on conciseness (35% and 31%, respectively). Peer review demonstrated that 43%-72% of the answers in both online networks were in complete agreement with the best available evidence. OSH experts are able to provide quality answers in online OSH Q&A networks. Our answer quality appraisal instrument was feasible and provided information on how to improve answer quality.

  15. Neural network tagging in a toy model

    International Nuclear Information System (INIS)

    Milek, Marko; Patel, Popat

    1999-01-01

    The purpose of this study is a comparison of Artificial Neural Network approach to HEP analysis against the traditional methods. A toy model used in this analysis consists of two types of particles defined by four generic properties. A number of 'events' was created according to the model using standard Monte Carlo techniques. Several fully connected, feed forward multi layered Artificial Neural Networks were trained to tag the model events. The performance of each network was compared to the standard analysis mechanisms and significant improvement was observed

  16. An endogenous model of the credit network

    Science.gov (United States)

    He, Jianmin; Sui, Xin; Li, Shouwei

    2016-01-01

    In this paper, an endogenous credit network model of firm-bank agents is constructed. The model describes the endogenous formation of firm-firm, firm-bank and bank-bank credit relationships. By means of simulations, the model is capable of showing some obvious similarities with empirical evidence found by other scholars: the upper-tail of firm size distribution can be well fitted with a power-law; the bank size distribution can be lognormally distributed with a power-law tail; the bank in-degrees of the interbank credit network as well as the firm-bank credit network fall into two-power-law distributions.

  17. Modelling and designing electric energy networks

    International Nuclear Information System (INIS)

    Retiere, N.

    2003-11-01

    The author gives an overview of his research works in the field of electric network modelling. After a brief overview of technological evolutions from the telegraph to the all-electric fly-by-wire aircraft, he reports and describes various works dealing with a simplified modelling of electric systems and with fractal simulation. Then, he outlines the challenges for the design of electric networks, proposes a design process, gives an overview of various design models, methods and tools, and reports an application in the design of electric networks for future jumbo jets

  18. Linear control theory for gene network modeling.

    Science.gov (United States)

    Shin, Yong-Jun; Bleris, Leonidas

    2010-09-16

    Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  19. Modeling GMPLS and Optical MPLS Networks

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann; Wessing, Henrik

    2003-01-01

    . The MPLS concept is attractive because it can work as a unifying control structure. covering all technologies. This paper describes how a novel scheme for optical MPLS and circuit switched GMPLS based networks can incorporated in such multi-domain, MPLS-based scenarios and how it could be modeled. Network...

  20. Cyber threat model for tactical radio networks

    Science.gov (United States)

    Kurdziel, Michael T.

    2014-05-01

    The shift to a full information-centric paradigm in the battlefield has allowed ConOps to be developed that are only possible using modern network communications systems. Securing these Tactical Networks without impacting their capabilities has been a challenge. Tactical networks with fixed infrastructure have similar vulnerabilities to their commercial counterparts (although they need to be secure against adversaries with greater capabilities, resources and motivation). However, networks with mobile infrastructure components and Mobile Ad hoc Networks (MANets) have additional unique vulnerabilities that must be considered. It is useful to examine Tactical Network based ConOps and use them to construct a threat model and baseline cyber security requirements for Tactical Networks with fixed infrastructure, mobile infrastructure and/or ad hoc modes of operation. This paper will present an introduction to threat model assessment. A definition and detailed discussion of a Tactical Network threat model is also presented. Finally, the model is used to derive baseline requirements that can be used to design or evaluate a cyber security solution that can be scaled and adapted to the needs of specific deployments.

  1. Modeling documents with Generative Adversarial Networks

    OpenAIRE

    Glover, John

    2016-01-01

    This paper describes a method for using Generative Adversarial Networks to learn distributed representations of natural language documents. We propose a model that is based on the recently proposed Energy-Based GAN, but instead uses a Denoising Autoencoder as the discriminator network. Document representations are extracted from the hidden layer of the discriminator and evaluated both quantitatively and qualitatively.

  2. Designing Network-based Business Model Ontology

    DEFF Research Database (Denmark)

    Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz

    2015-01-01

    Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....

  3. A method for analyzing the business case for provider participation in the National Cancer Institute's Community Clinical Oncology Program and similar federally funded, provider-based research networks.

    Science.gov (United States)

    Reiter, Kristin L; Song, Paula H; Minasian, Lori; Good, Marjorie; Weiner, Bryan J; McAlearney, Ann Scheck

    2012-09-01

    The Community Clinical Oncology Program (CCOP) plays an essential role in the efforts of the National Cancer Institute (NCI) to increase enrollment in clinical trials. Currently, there is little practical guidance in the literature to assist provider organizations in analyzing the return on investment (ROI), or business case, for establishing and operating a provider-based research network (PBRN) such as the CCOP. In this article, the authors present a conceptual model of the business case for PBRN participation, a spreadsheet-based tool and advice for evaluating the business case for provider participation in a CCOP organization. A comparative, case-study approach was used to identify key components of the business case for hospitals attempting to support a CCOP research infrastructure. Semistructured interviews were conducted with providers and administrators. Key themes were identified and used to develop the financial analysis tool. Key components of the business case included CCOP start-up costs, direct revenue from the NCI CCOP grant, direct expenses required to maintain the CCOP research infrastructure, and incidental benefits, most notably downstream revenues from CCOP patients. The authors recognized the value of incidental benefits as an important contributor to the business case for CCOP participation; however, currently, this component is not calculated. The current results indicated that providing a method for documenting the business case for CCOP or other PBRN involvement will contribute to the long-term sustainability and expansion of these programs by improving providers' understanding of the financial implications of participation. Copyright © 2011 American Cancer Society.

  4. Reactor pressure vessel embrittlement: Insights from neural network modelling

    Science.gov (United States)

    Mathew, J.; Parfitt, D.; Wilford, K.; Riddle, N.; Alamaniotis, M.; Chroneos, A.; Fitzpatrick, M. E.

    2018-04-01

    Irradiation embrittlement of steel pressure vessels is an important consideration for the operation of current and future light water nuclear reactors. In this study we employ an ensemble of artificial neural networks in order to provide predictions of the embrittlement using two literature datasets, one based on US surveillance data and the second from the IVAR experiment. We use these networks to examine trends with input variables and to assess various literature models including compositional effects and the role of flux and temperature. Overall, the networks agree with the existing literature models and we comment on their more general use in predicting irradiation embrittlement.

  5. Modeling trust context in networks

    CERN Document Server

    Adali, Sibel

    2013-01-01

    We make complex decisions every day, requiring trust in many different entities for different reasons. These decisions are not made by combining many isolated trust evaluations. Many interlocking factors play a role, each dynamically impacting the others.? In this brief, 'trust context' is defined as the system level description of how the trust evaluation process unfolds.Networks today are part of almost all human activity, supporting and shaping it. Applications increasingly incorporate new interdependencies and new trust contexts. Social networks connect people and organizations throughout

  6. The role of Ethernet in providing state-of-the-art and protected industrial networking

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, J. [GarrettCom Inc., Fremont, CA (United States)

    2006-07-01

    Many networks in power substations are now using Ethernet-based solutions that use specialized protocols and customized controls. This paper discussed the advantages of using Ethernet in power utility network systems. Threats to computer networks supporting process control and supervisory control and data acquisition (SCADA) systems in power utilities also were discussed, and systems and components at risk were reviewed. Higher Ethernet bandwidths now permit more data and control information to be processed by networks. Ethernet bandwidths can be used for physical security functions as well as for the control of processes and systems. Components have now been designed to provide end-to-end Ethernet installations in order to save training costs. New security features include anti-hacking protocols, firewalls, and password protection, and card and badge readers for physical intrusion protection. Traffic restrictions have been implemented between designed ports in order to create secure traffic domains. It was concluded that Ethernet can provide the level of security needed to protect important energy infrastructure.

  7. Modeling Network Traffic in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Sheng Ma

    2004-12-01

    Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.

  8. Sparsity in Model Gene Regulatory Networks

    International Nuclear Information System (INIS)

    Zagorski, M.

    2011-01-01

    We propose a gene regulatory network model which incorporates the microscopic interactions between genes and transcription factors. In particular the gene's expression level is determined by deterministic synchronous dynamics with contribution from excitatory interactions. We study the structure of networks that have a particular '' function '' and are subject to the natural selection pressure. The question of network robustness against point mutations is addressed, and we conclude that only a small part of connections defined as '' essential '' for cell's existence is fragile. Additionally, the obtained networks are sparse with narrow in-degree and broad out-degree, properties well known from experimental study of biological regulatory networks. Furthermore, during sampling procedure we observe that significantly different genotypes can emerge under mutation-selection balance. All the preceding features hold for the model parameters which lay in the experimentally relevant range. (author)

  9. Statistical inference to advance network models in epidemiology.

    Science.gov (United States)

    Welch, David; Bansal, Shweta; Hunter, David R

    2011-03-01

    Contact networks are playing an increasingly important role in the study of epidemiology. Most of the existing work in this area has focused on considering the effect of underlying network structure on epidemic dynamics by using tools from probability theory and computer simulation. This work has provided much insight on the role that heterogeneity in host contact patterns plays on infectious disease dynamics. Despite the important understanding afforded by the probability and simulation paradigm, this approach does not directly address important questions about the structure of contact networks such as what is the best network model for a particular mode of disease transmission, how parameter values of a given model should be estimated, or how precisely the data allow us to estimate these parameter values. We argue that these questions are best answered within a statistical framework and discuss the role of statistical inference in estimating contact networks from epidemiological data. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The QKD network: model and routing scheme

    Science.gov (United States)

    Yang, Chao; Zhang, Hongqi; Su, Jinhai

    2017-11-01

    Quantum key distribution (QKD) technology can establish unconditional secure keys between two communicating parties. Although this technology has some inherent constraints, such as the distance and point-to-point mode limits, building a QKD network with multiple point-to-point QKD devices can overcome these constraints. Considering the development level of current technology, the trust relaying QKD network is the first choice to build a practical QKD network. However, the previous research didn't address a routing method on the trust relaying QKD network in detail. This paper focuses on the routing issues, builds a model of the trust relaying QKD network for easily analysing and understanding this network, and proposes a dynamical routing scheme for this network. From the viewpoint of designing a dynamical routing scheme in classical network, the proposed scheme consists of three components: a Hello protocol helping share the network topology information, a routing algorithm to select a set of suitable paths and establish the routing table and a link state update mechanism helping keep the routing table newly. Experiments and evaluation demonstrates the validity and effectiveness of the proposed routing scheme.

  11. Thermal conductivity model for nanofiber networks

    Science.gov (United States)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  12. Thermal conductivity model for nanofiber networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA

    2018-02-28

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  13. A quantum-implementable neural network model

    Science.gov (United States)

    Chen, Jialin; Wang, Lingli; Charbon, Edoardo

    2017-10-01

    A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.

  14. Combinatorial explosion in model gene networks

    Science.gov (United States)

    Edwards, R.; Glass, L.

    2000-09-01

    The explosive growth in knowledge of the genome of humans and other organisms leaves open the question of how the functioning of genes in interacting networks is coordinated for orderly activity. One approach to this problem is to study mathematical properties of abstract network models that capture the logical structures of gene networks. The principal issue is to understand how particular patterns of activity can result from particular network structures, and what types of behavior are possible. We study idealized models in which the logical structure of the network is explicitly represented by Boolean functions that can be represented by directed graphs on n-cubes, but which are continuous in time and described by differential equations, rather than being updated synchronously via a discrete clock. The equations are piecewise linear, which allows significant analysis and facilitates rapid integration along trajectories. We first give a combinatorial solution to the question of how many distinct logical structures exist for n-dimensional networks, showing that the number increases very rapidly with n. We then outline analytic methods that can be used to establish the existence, stability and periods of periodic orbits corresponding to particular cycles on the n-cube. We use these methods to confirm the existence of limit cycles discovered in a sample of a million randomly generated structures of networks of 4 genes. Even with only 4 genes, at least several hundred different patterns of stable periodic behavior are possible, many of them surprisingly complex. We discuss ways of further classifying these periodic behaviors, showing that small mutations (reversal of one or a few edges on the n-cube) need not destroy the stability of a limit cycle. Although these networks are very simple as models of gene networks, their mathematical transparency reveals relationships between structure and behavior, they suggest that the possibilities for orderly dynamics in such

  15. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  16. Levels of Interaction Provided by Online Distance Education Models

    Science.gov (United States)

    Alhih, Mohammed; Ossiannilsson, Ebba; Berigel, Muhammet

    2017-01-01

    Interaction plays a significant role to foster usability and quality in online education. It is one of the quality standard to reveal the evidence of practice in online distance education models. This research study aims to evaluate levels of interaction in the practices of distance education centres. It is aimed to provide online distance…

  17. Modeling acquaintance networks based on balance theory

    Directory of Open Access Journals (Sweden)

    Vukašinović Vida

    2014-09-01

    Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models

  18. Multilayer network modeling creates opportunities for novel network statistics. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    Science.gov (United States)

    Muldoon, Sarah Feldt

    2018-03-01

    As described in the review by Gosak et al., the field of network science has had enormous success in providing new insights into the structure and function of biological systems [1]. In the complex networks framework, system elements are network nodes, and connections between nodes represent some form of interaction between system elements [2]. The flexibility to define network nodes and edges to represent different aspects of biological systems has been employed to model numerous diverse systems at multiple scales.

  19. A growing social network model in geographical space

    Science.gov (United States)

    Antonioni, Alberto; Tomassini, Marco

    2017-09-01

    In this work we propose a new model for the generation of social networks that includes their often ignored spatial aspects. The model is a growing one and links are created either taking space into account, or disregarding space and only considering the degree of target nodes. These two effects can be mixed linearly in arbitrary proportions through a parameter. We numerically show that for a given range of the combination parameter, and for given mean degree, the generated network class shares many important statistical features with those observed in actual social networks, including the spatial dependence of connections. Moreover, we show that the model provides a good qualitative fit to some measured social networks.

  20. Flood routing modelling with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    R. Peters

    2006-01-01

    Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.

  1. Linear approximation model network and its formation via ...

    Indian Academy of Sciences (India)

    To overcome the deficiency of `local model network' (LMN) techniques, an alternative `linear approximation model' (LAM) network approach is proposed. Such a network models a nonlinear or practical system with multiple linear models fitted along operating trajectories, where individual models are simply networked ...

  2. Modeling Security Aspects of Network

    Science.gov (United States)

    Schoch, Elmar

    With more and more widespread usage of computer systems and networks, dependability becomes a paramount requirement. Dependability typically denotes tolerance or protection against all kinds of failures, errors and faults. Sources of failures can basically be accidental, e.g., in case of hardware errors or software bugs, or intentional due to some kind of malicious behavior. These intentional, malicious actions are subject of security. A more complete overview on the relations between dependability and security can be found in [31]. In parallel to the increased use of technology, misuse also has grown significantly, requiring measures to deal with it.

  3. Randomizing growing networks with a time-respecting null model

    Science.gov (United States)

    Ren, Zhuo-Ming; Mariani, Manuel Sebastian; Zhang, Yi-Cheng; Medo, Matúš

    2018-05-01

    Complex networks are often used to represent systems that are not static but grow with time: People make new friendships, new papers are published and refer to the existing ones, and so forth. To assess the statistical significance of measurements made on such networks, we propose a randomization methodology—a time-respecting null model—that preserves both the network's degree sequence and the time evolution of individual nodes' degree values. By preserving the temporal linking patterns of the analyzed system, the proposed model is able to factor out the effect of the system's temporal patterns on its structure. We apply the model to the citation network of Physical Review scholarly papers and the citation network of US movies. The model reveals that the two data sets are strikingly different with respect to their degree-degree correlations, and we discuss the important implications of this finding on the information provided by paradigmatic node centrality metrics such as indegree and Google's PageRank. The randomization methodology proposed here can be used to assess the significance of any structural property in growing networks, which could bring new insights into the problems where null models play a critical role, such as the detection of communities and network motifs.

  4. Modeling and optimization of an electric power distribution network ...

    African Journals Online (AJOL)

    Modeling and optimization of an electric power distribution network planning system using ... of the network was modelled with non-linear mathematical expressions. ... given feasible locations, re-conductoring of existing feeders in the network, ...

  5. Clustering network layers with the strata multilayer stochastic block model.

    Science.gov (United States)

    Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J

    2016-01-01

    Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the "strata multilayer stochastic block model" (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called "strata", which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project.

  6. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  7. An evolving network model with modular growth

    International Nuclear Information System (INIS)

    Zou Zhi-Yun; Liu Peng; Lei Li; Gao Jian-Zhi

    2012-01-01

    In this paper, we propose an evolving network model growing fast in units of module, according to the analysis of the evolution characteristics in real complex networks. Each module is a small-world network containing several interconnected nodes and the nodes between the modules are linked by preferential attachment on degree of nodes. We study the modularity measure of the proposed model, which can be adjusted by changing the ratio of the number of inner-module edges and the number of inter-module edges. In view of the mean-field theory, we develop an analytical function of the degree distribution, which is verified by a numerical example and indicates that the degree distribution shows characteristics of the small-world network and the scale-free network distinctly at different segments. The clustering coefficient and the average path length of the network are simulated numerically, indicating that the network shows the small-world property and is affected little by the randomness of the new module. (interdisciplinary physics and related areas of science and technology)

  8. Modeling of contact tracing in social networks

    Science.gov (United States)

    Tsimring, Lev S.; Huerta, Ramón

    2003-07-01

    Spreading of certain infections in complex networks is effectively suppressed by using intelligent strategies for epidemic control. One such standard epidemiological strategy consists in tracing contacts of infected individuals. In this paper, we use a recently introduced generalization of the standard susceptible-infectious-removed stochastic model for epidemics in sparse random networks which incorporates an additional (traced) state. We describe a deterministic mean-field description which yields quantitative agreement with stochastic simulations on random graphs. We also discuss the role of contact tracing in epidemics control in small-world and scale-free networks. Effectiveness of contact tracing grows as the rewiring probability is reduced.

  9. A Network Model of Credit Risk Contagion

    Directory of Open Access Journals (Sweden)

    Ting-Qiang Chen

    2012-01-01

    Full Text Available A network model of credit risk contagion is presented, in which the effect of behaviors of credit risk holders and the financial market regulators and the network structure are considered. By introducing the stochastic dominance theory, we discussed, respectively, the effect mechanisms of the degree of individual relationship, individual attitude to credit risk contagion, the individual ability to resist credit risk contagion, the monitoring strength of the financial market regulators, and the network structure on credit risk contagion. Then some derived and proofed propositions were verified through numerical simulations.

  10. Optimization of recurrent neural networks for time series modeling

    DEFF Research Database (Denmark)

    Pedersen, Morten With

    1997-01-01

    The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...... series. The overall objective s are to improve training by application of second-order methods and to improve generalization ability by architecture optimization accomplished by pruning. The major topics covered in the thesis are: 1. The problem of training recurrent networks is analyzed from a numerical...... of solution obtained as well as computation time required. 3. A theoretical definition of the generalization error for recurrent networks is provided. This definition justifies a commonly adopted approach for estimating generalization ability. 4. The viability of pruning recurrent networks by the Optimal...

  11. A network growth model based on the evolutionary ultimatum game

    International Nuclear Information System (INIS)

    Deng, L L; Zhou, G G; Cai, J H; Wang, C; Tang, W S

    2012-01-01

    In this paper, we provide a network growth model with incorporation into the ultimatum game dynamics. The network grows on the basis of the payoff-oriented preferential attachment mechanism, where a new node is added into the network and attached preferentially to nodes with higher payoffs. The interplay between the network growth and the game dynamics gives rise to quite interesting dynamical behaviors. Simulation results show the emergence of altruistic behaviors in the ultimatum game, which is affected by the growing network structure. Compared with the static counterpart case, the levels of altruistic behaviors are promoted. The corresponding strategy distributions and wealth distributions are also presented to further demonstrate the strategy evolutionary dynamics. Subsequently, we turn to the topological properties of the evolved network, by virtue of some statistics. The most studied characteristic path length and the clustering coefficient of the network are shown to indicate their small-world effect. Then the degree distributions are analyzed to clarify the interplay of structure and evolutionary dynamics. In particular, the difference between our growth network and the static counterpart is revealed. To explain clearly the evolved networks, the rich-club ordering and the assortative mixing coefficient are exploited to reveal the degree correlation. (paper)

  12. The International Trade Network: weighted network analysis and modelling

    International Nuclear Information System (INIS)

    Bhattacharya, K; Mukherjee, G; Manna, S S; Saramäki, J; Kaski, K

    2008-01-01

    Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the 'rich-club' coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the world's trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN

  13. Keystone Business Models for Network Security Processors

    OpenAIRE

    Arthur Low; Steven Muegge

    2013-01-01

    Network security processors are critical components of high-performance systems built for cybersecurity. Development of a network security processor requires multi-domain experience in semiconductors and complex software security applications, and multiple iterations of both software and hardware implementations. Limited by the business models in use today, such an arduous task can be undertaken only by large incumbent companies and government organizations. Neither the “fabless semiconductor...

  14. Stochastic modeling and analysis of telecoms networks

    CERN Document Server

    Decreusefond, Laurent

    2012-01-01

    This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an

  15. Decomposed Implicit Models of Piecewise - Linear Networks

    Directory of Open Access Journals (Sweden)

    J. Brzobohaty

    1992-05-01

    Full Text Available The general matrix form of the implicit description of a piecewise-linear (PWL network and the symbolic block diagram of the corresponding circuit model are proposed. Their decomposed forms enable us to determine quite separately the existence of the individual breakpoints of the resultant PWL characteristic and their coordinates using independent network parameters. For the two-diode and three-diode cases all the attainable types of the PWL characteristic are introduced.

  16. Artificial Immune Networks: Models and Applications

    Directory of Open Access Journals (Sweden)

    Xian Shen

    2008-06-01

    Full Text Available Artificial Immune Systems (AIS, which is inspired by the nature immune system, has been applied for solving complex computational problems in classification, pattern rec- ognition, and optimization. In this paper, the theory of the natural immune system is first briefly introduced. Next, we compare some well-known AIS and their applications. Several representative artificial immune networks models are also dis- cussed. Moreover, we demonstrate the applications of artificial immune networks in various engineering fields.

  17. Adaptive-network models of collective dynamics

    Science.gov (United States)

    Zschaler, G.

    2012-09-01

    Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge

  18. Network Design Models for Container Shipping

    DEFF Research Database (Denmark)

    Reinhardt, Line Blander; Kallehauge, Brian; Nielsen, Anders Nørrelund

    This paper presents a study of the network design problem in container shipping. The paper combines the network design and fleet assignment problem into a mixed integer linear programming model minimizing the overall cost. The major contributions of this paper is that the time of a vessel route...... is included in the calculation of the capacity and that a inhomogeneous fleet is modeled. The model also includes the cost of transshipment which is one of the major cost for the shipping companies. The concept of pseudo simple routes is introduced to expand the set of feasible routes. The linearization...

  19. Modelling of word usage frequency dynamics using artificial neural network

    International Nuclear Information System (INIS)

    Maslennikova, Yu S; Bochkarev, V V; Voloskov, D S

    2014-01-01

    In this paper the method for modelling of word usage frequency time series is proposed. An artificial feedforward neural network was used to predict word usage frequencies. The neural network was trained using the maximum likelihood criterion. The Google Books Ngram corpus was used for the analysis. This database provides a large amount of data on frequency of specific word forms for 7 languages. Statistical modelling of word usage frequency time series allows finding optimal fitting and filtering algorithm for subsequent lexicographic analysis and verification of frequency trend models

  20. Modeling the dynamics of evaluation: a multilevel neural network implementation of the iterative reprocessing model.

    Science.gov (United States)

    Ehret, Phillip J; Monroe, Brian M; Read, Stephen J

    2015-05-01

    We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory. © 2014 by the Society for Personality and Social Psychology, Inc.

  1. Corporate and supply chain network governance of third party logistics service providers: Effects on buyers’ intention to continue the relationship

    Directory of Open Access Journals (Sweden)

    Salih Börteçine Avci

    2017-06-01

    Full Text Available This study focuses on the impact of corporate governance, supply chain network governance and competencies such as sales and logistics competence on buyers’ intention to relationship continuity. A total number of 258 questionnaires were distributed to Turkish manufacturing firms, selected using cross-sectional sampling method from the Istanbul and Edirne Chamber of Commerce and Industry in Turkey. The data of survey was analysed using PLS-SEM model with WARP PLS 5.0 software. Our findings indicate that corporate governance and supply chain network governance seem to have a positive effect on sales competence and logistics competence, and together, they influence buyers’ intention to relationship continuity. In this respect, the outcomes of this study may provide valuable insights for the third-party logistics (3PL literature in terms of buyers’ intention to relationship continuity.

  2. Characterization and Modeling of Network Traffic

    DEFF Research Database (Denmark)

    Shawky, Ahmed; Bergheim, Hans; Ragnarsson, Olafur

    2011-01-01

    -arrival time, IP addresses, port numbers and transport protocol are the only necessary parameters to model network traffic behaviour. In order to recreate this behaviour, a complex model is needed which is able to recreate traffic behaviour based on a set of statistics calculated from the parameters values...

  3. Phenomenological network models: Lessons for epilepsy surgery.

    Science.gov (United States)

    Hebbink, Jurgen; Meijer, Hil; Huiskamp, Geertjan; van Gils, Stephan; Leijten, Frans

    2017-10-01

    The current opinion in epilepsy surgery is that successful surgery is about removing pathological cortex in the anatomic sense. This contrasts with recent developments in epilepsy research, where epilepsy is seen as a network disease. Computational models offer a framework to investigate the influence of networks, as well as local tissue properties, and to explore alternative resection strategies. Here we study, using such a model, the influence of connections on seizures and how this might change our traditional views of epilepsy surgery. We use a simple network model consisting of four interconnected neuronal populations. One of these populations can be made hyperexcitable, modeling a pathological region of cortex. Using model simulations, the effect of surgery on the seizure rate is studied. We find that removal of the hyperexcitable population is, in most cases, not the best approach to reduce the seizure rate. Removal of normal populations located at a crucial spot in the network, the "driver," is typically more effective in reducing seizure rate. This work strengthens the idea that network structure and connections may be more important than localizing the pathological node. This can explain why lesionectomy may not always be sufficient. © 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.

  4. A Quantum Implementation Model for Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ammar Daskin

    2018-02-01

    Full Text Available The learning process for multilayered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow–Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, these iterative formulas result in terms formed by the principal components of the weight matrix, namely, the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the phase estimation algorithm is known to provide speedups over the conventional algorithms for the eigenvalue-related problems. Combining the quantum amplitude amplification with the phase estimation algorithm, a quantum implementation model for artificial neural networks using the Widrow–Hoff learning rule is presented. The complexity of the model is found to be linear in the size of the weight matrix. This provides a quadratic improvement over the classical algorithms. Quanta 2018; 7: 7–18.

  5. PROVIDING OF SAFETY AT WORKS IMPLEMENTATION ON RECONSTRUCTION OF PLUMBINGS NETWORKS IN THE STRAITENED TERMS

    Directory of Open Access Journals (Sweden)

    DIDENKO L. M.

    2016-07-01

    Full Text Available Summary. Raising of problem. In all regions of our country plumbings networks have a considerable physical and moral wear, because in the majority they were laid in the middle of the last century. It is known that more than 50 % on-the-road pipelines are made from steel, here middle tenure of employment of metallic pipes for plumbings networks makes 30. [1]. Statistical data testify that more than 34 % plumbings and sewage networks are in the emergency state. Thus, a large enough stake in building industry of Ukraine is on works on the reconstruction of this type of engineering networks. Thus complete replacement of all pipes requires heavy material tolls, a reconstruction and major repairs of separate emergency areas are mainly produced on this account. Logically to assert that providing of safe production of the examined type of works becomes complicated by the presence of harmful and dangerous productive factors arising up due to the complex factor of straitened. This factor is stipulated by that plumbings networks are laid within the limits of folded municipal building and on territory of operating industrial enterprises. About the danger of production of works on a reconstruction the high level of traumatism testifies at their production. According to the law of Ukraine "On a labour (item 13 protection", an employer is under an obligation to create in the workplace the terms of labour accordingly normatively - to the legal acts, requirements of legislation on the observance of rights of workers in area of labour protection. [2] Providing of safety at implementation of works on the reconstruction of plumbings networks, maybe only at the complex going near the study of this problem, that plugs in itself: research of influence of factors of straitened; exposure of features of technology of production building, assembling, breaking-down, earthen and other types of works executable on a site area at a reconstruction; perfection of existent

  6. The new challenges of multiplex networks: Measures and models

    Science.gov (United States)

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2017-02-01

    What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.

  7. Conceptual Models of the Individual Public Service Provider

    DEFF Research Database (Denmark)

    Andersen, Lotte Bøgh; Pedersen, Lene Holm; Bhatti, Yosef

    are used to gain insight on the motivation of public service providers; namely principal-agent theory, self-determination theory and public service motivation theory. We situate the theoretical discussions in the context of public service providers being transferred to private organizations......Individual public service providers’ motivation can be conceptualized as either extrinsic, autonomous or prosocial, and the question is how we can best theoretically understand this complexity without losing too much coherence and parsimony. Drawing on Allison’s approach (1969), three perspectives...... theoretical – to develop a coherent model of individual public service providers – but the empirical illustration also contributes to our understanding of motivation in the context of public sector outsourcing....

  8. Model of Providing Assistive Technologies in Special Education Schools.

    Science.gov (United States)

    Lersilp, Suchitporn; Putthinoi, Supawadee; Chakpitak, Nopasit

    2015-05-14

    Most students diagnosed with disabilities in Thai special education schools received assistive technologies, but this did not guarantee the greatest benefits. The purpose of this study was to survey the provision, use and needs of assistive technologies, as well as the perspectives of key informants regarding a model of providing them in special education schools. The participants were selected by the purposive sampling method, and they comprised 120 students with visual, physical, hearing or intellectual disabilities from four special education schools in Chiang Mai, Thailand; and 24 key informants such as parents or caregivers, teachers, school principals and school therapists. The instruments consisted of an assistive technology checklist and a semi-structured interview. Results showed that a category of assistive technologies was provided for students with disabilities, with the highest being "services", followed by "media" and then "facilities". Furthermore, mostly students with physical disabilities were provided with assistive technologies, but those with visual disabilities needed it more. Finally, the model of providing assistive technologies was composed of 5 components: Collaboration; Holistic perspective; Independent management of schools; Learning systems and a production manual for users; and Development of an assistive technology center, driven by 3 major sources such as Government and Private organizations, and Schools.

  9. Models for QoS-Aware Capacity Management in Cable Access Networks

    NARCIS (Netherlands)

    Attema, T.; van den Berg, Hans Leo; Kempker, P.C.; Worm, D.; van der Vliet-Hameeteman, C.

    In this article, mathematical models are presented that “map‿ measured or predicted network utilisations to user throughputs for given network configurations (segment capacity, subscription speeds etc.). They provide valuable insights into the user experience in cable access networks. The models,

  10. Reliability constrained decision model for energy service provider incorporating demand response programs

    International Nuclear Information System (INIS)

    Mahboubi-Moghaddam, Esmaeil; Nayeripour, Majid; Aghaei, Jamshid

    2016-01-01

    Highlights: • The operation of Energy Service Providers (ESPs) in electricity markets is modeled. • Demand response as the cost-effective solution is used for energy service provider. • The market price uncertainty is modeled using the robust optimization technique. • The reliability of the distribution network is embedded into the framework. • The simulation results demonstrate the benefits of robust framework for ESPs. - Abstract: Demand response (DR) programs are becoming a critical concept for the efficiency of current electric power industries. Therefore, its various capabilities and barriers have to be investigated. In this paper, an effective decision model is presented for the strategic behavior of energy service providers (ESPs) to demonstrate how to participate in the day-ahead electricity market and how to allocate demand in the smart distribution network. Since market price affects DR and vice versa, a new two-step sequential framework is proposed, in which unit commitment problem (UC) is solved to forecast the expected locational marginal prices (LMPs), and successively DR program is applied to optimize the total cost of providing energy for the distribution network customers. This total cost includes the cost of purchased power from the market and distributed generation (DG) units, incentive cost paid to the customers, and compensation cost of power interruptions. To obtain compensation cost, the reliability evaluation of the distribution network is embedded into the framework using some innovative constraints. Furthermore, to consider the unexpected behaviors of the other market participants, the LMP prices are modeled as the uncertainty parameters using the robust optimization technique, which is more practical compared to the conventional stochastic approach. The simulation results demonstrate the significant benefits of the presented framework for the strategic performance of ESPs.

  11. Neural network modeling of chaotic dynamics in nuclear reactor flows

    International Nuclear Information System (INIS)

    Welstead, S.T.

    1992-01-01

    Neural networks have many scientific applications in areas such as pattern classification and time series prediction. The universal approximation property of these networks, however, can also be exploited to provide researchers with tool for modeling observed nonlinear phenomena. It has been shown that multilayer feed forward networks can capture important global nonlinear properties, such as chaotic dynamics, merely by training the network on a finite set of observed data. The network itself then provides a model of the process that generated the data. Characterizations such as the existence and general shape of a strange attractor and the sign of the largest Lyapunov exponent can then be extracted from the neural network model. In this paper, the author applies this idea to data generated from a nonlinear process that is representative of convective flows that can arise in nuclear reactor applications. Such flows play a role in forced convection heat removal from pressurized water reactors and boiling water reactors, and decay heat removal from liquid-metal-cooled reactors, either by natural convection or by thermosyphons

  12. WDM Systems and Networks Modeling, Simulation, Design and Engineering

    CERN Document Server

    Ellinas, Georgios; Roudas, Ioannis

    2012-01-01

    WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...

  13. Modelling catchment areas for secondary care providers: a case study.

    Science.gov (United States)

    Jones, Simon; Wardlaw, Jessica; Crouch, Susan; Carolan, Michelle

    2011-09-01

    Hospitals need to understand patient flows in an increasingly competitive health economy. New initiatives like Patient Choice and the Darzi Review further increase this demand. Essential to understanding patient flows are demographic and geographic profiles of health care service providers, known as 'catchment areas' and 'catchment populations'. This information helps Primary Care Trusts (PCTs) to review how their populations are accessing services, measure inequalities and commission services; likewise it assists Secondary Care Providers (SCPs) to measure and assess potential gains in market share, redesign services, evaluate admission thresholds and plan financial budgets. Unlike PCTs, SCPs do not operate within fixed geographic boundaries. Traditionally, SCPs have used administrative boundaries or arbitrary drive times to model catchment areas. Neither approach satisfactorily represents current patient flows. Furthermore, these techniques are time-consuming and can be challenging for healthcare managers to exploit. This paper presents three different approaches to define catchment areas, each more detailed than the previous method. The first approach 'First Past the Post' defines catchment areas by allocating a dominant SCP to each Census Output Area (OA). The SCP with the highest proportion of activity within each OA is considered the dominant SCP. The second approach 'Proportional Flow' allocates activity proportionally to each OA. This approach allows for cross-boundary flows to be captured in a catchment area. The third and final approach uses a gravity model to define a catchment area, which incorporates drive or travel time into the analysis. Comparing approaches helps healthcare providers to understand whether using more traditional and simplistic approaches to define catchment areas and populations achieves the same or similar results as complex mathematical modelling. This paper has demonstrated, using a case study of Manchester, that when estimating

  14. Neural network modeling of associative memory: Beyond the Hopfield model

    Science.gov (United States)

    Dasgupta, Chandan

    1992-07-01

    A number of neural network models, in which fixed-point and limit-cycle attractors of the underlying dynamics are used to store and associatively recall information, are described. In the first class of models, a hierarchical structure is used to store an exponentially large number of strongly correlated memories. The second class of models uses limit cycles to store and retrieve individual memories. A neurobiologically plausible network that generates low-amplitude periodic variations of activity, similar to the oscillations observed in electroencephalographic recordings, is also described. Results obtained from analytic and numerical studies of the properties of these networks are discussed.

  15. Constitutive modelling of composite biopolymer networks.

    Science.gov (United States)

    Fallqvist, B; Kroon, M

    2016-04-21

    The mechanical behaviour of biopolymer networks is to a large extent determined at a microstructural level where the characteristics of individual filaments and the interactions between them determine the response at a macroscopic level. Phenomena such as viscoelasticity and strain-hardening followed by strain-softening are observed experimentally in these networks, often due to microstructural changes (such as filament sliding, rupture and cross-link debonding). Further, composite structures can also be formed with vastly different mechanical properties as compared to the individual networks. In this present paper, we present a constitutive model presented in a continuum framework aimed at capturing these effects. Special care is taken to formulate thermodynamically consistent evolution laws for dissipative effects. This model, incorporating possible anisotropic network properties, is based on a strain energy function, split into an isochoric and a volumetric part. Generalisation to three dimensions is performed by numerical integration over the unit sphere. Model predictions indicate that the constitutive model is well able to predict the elastic and viscoelastic response of biological networks, and to an extent also composite structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Modelling students' knowledge organisation: Genealogical conceptual networks

    Science.gov (United States)

    Koponen, Ismo T.; Nousiainen, Maija

    2018-04-01

    Learning scientific knowledge is largely based on understanding what are its key concepts and how they are related. The relational structure of concepts also affects how concepts are introduced in teaching scientific knowledge. We model here how students organise their knowledge when they represent their understanding of how physics concepts are related. The model is based on assumptions that students use simple basic linking-motifs in introducing new concepts and mostly relate them to concepts that were introduced a few steps earlier, i.e. following a genealogical ordering. The resulting genealogical networks have relatively high local clustering coefficients of nodes but otherwise resemble networks obtained with an identical degree distribution of nodes but with random linking between them (i.e. the configuration-model). However, a few key nodes having a special structural role emerge and these nodes have a higher than average communicability betweenness centralities. These features agree with the empirically found properties of students' concept networks.

  17. Modelling Users` Trust in Online Social Networks

    Directory of Open Access Journals (Sweden)

    Iacob Cătoiu

    2014-02-01

    Full Text Available Previous studies (McKnight, Lankton and Tripp, 2011; Liao, Lui and Chen, 2011 have shown the crucial role of trust when choosing to disclose sensitive information online. This is the case of online social networks users, who must disclose a certain amount of personal data in order to gain access to these online services. Taking into account privacy calculus model and the risk/benefit ratio, we propose a model of users’ trust in online social networks with four variables. We have adapted metrics for the purpose of our study and we have assessed their reliability and validity. We use a Partial Least Squares (PLS based structural equation modelling analysis, which validated all our initial assumptions, indicating that our three predictors (privacy concerns, perceived benefits and perceived risks explain 48% of the variation of users’ trust in online social networks, the resulting variable of our study. We also discuss the implications and further research opportunities of our study.

  18. Bayesian network modelling of upper gastrointestinal bleeding

    Science.gov (United States)

    Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri

    2013-09-01

    Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.

  19. Linear control theory for gene network modeling.

    Directory of Open Access Journals (Sweden)

    Yong-Jun Shin

    Full Text Available Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain and linear state-space (time domain can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  20. A Model of Network Porosity

    Science.gov (United States)

    2016-02-04

    of complex systems [1]. Although the ODD protocol was originally intended for individual-based or agent-based models ( ABM ), we adopt this protocol for...applies to information transfer between air-gapped systems . Trust relationships between devices (e.g. a trust relationship created by a domain controller...prevention systems , and data leakage protection systems . 2.2 ATTACKER The model specifies an attacker who gains access to internal enclaves by

  1. Models and algorithms for biomolecules and molecular networks

    CERN Document Server

    DasGupta, Bhaskar

    2016-01-01

    By providing expositions to modeling principles, theories, computational solutions, and open problems, this reference presents a full scope on relevant biological phenomena, modeling frameworks, technical challenges, and algorithms. * Up-to-date developments of structures of biomolecules, systems biology, advanced models, and algorithms * Sampling techniques for estimating evolutionary rates and generating molecular structures * Accurate computation of probability landscape of stochastic networks, solving discrete chemical master equations * End-of-chapter exercises

  2. Bayesian latent feature modeling for modeling bipartite networks with overlapping groups

    DEFF Research Database (Denmark)

    Jørgensen, Philip H.; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2016-01-01

    Bi-partite networks are commonly modelled using latent class or latent feature models. Whereas the existing latent class models admit marginalization of parameters specifying the strength of interaction between groups, existing latent feature models do not admit analytical marginalization...... by the notion of community structure such that the edge density within groups is higher than between groups. Our model further assumes that entities can have different propensities of generating links in one of the modes. The proposed framework is contrasted on both synthetic and real bi-partite networks...... feature representations in bipartite networks provides a new framework for accounting for structure in bi-partite networks using binary latent feature representations providing interpretable representations that well characterize structure as quantified by link prediction....

  3. Modeling and optimization of potable water network

    Energy Technology Data Exchange (ETDEWEB)

    Djebedjian, B.; Rayan, M.A. [Mansoura Univ., El-Mansoura (Egypt); Herrick, A. [Suez Canal Authority, Ismailia (Egypt)

    2000-07-01

    Software was developed in order to optimize the design of water distribution systems and pipe networks. While satisfying all the constraints imposed such as pipe diameter and nodal pressure, it was based on a mathematical model treating looped networks. The optimum network configuration and cost are determined considering parameters like pipe diameter, flow rate, corresponding pressure and hydraulic losses. It must be understood that minimum cost is relative to the different objective functions selected. The determination of the proper objective function often depends on the operating policies of a particular company. The solution for the optimization technique was obtained by using a non-linear technique. To solve the optimal design of network, the model was derived using the sequential unconstrained minimization technique (SUMT) of Fiacco and McCormick, which decreased the number of iterations required. The pipe diameters initially assumed were successively adjusted to correspond to the existing commercial pipe diameters. The technique was then applied to a two-loop network without pumps or valves. Fed by gravity, it comprised eight pipes, 1000 m long each. The first evaluation of the method proved satisfactory. As with other methods, it failed to find the global optimum. In the future, research efforts will be directed to the optimization of networks with pumps and reservoirs. 24 refs., 3 tabs., 1 fig.

  4. Probability Model for Data Redundancy Detection in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Suman Kumar

    2009-01-01

    Full Text Available Sensor networks are made of autonomous devices that are able to collect, store, process and share data with other devices. Large sensor networks are often redundant in the sense that the measurements of some nodes can be substituted by other nodes with a certain degree of confidence. This spatial correlation results in wastage of link bandwidth and energy. In this paper, a model for two associated Poisson processes, through which sensors are distributed in a plane, is derived. A probability condition is established for data redundancy among closely located sensor nodes. The model generates a spatial bivariate Poisson process whose parameters depend on the parameters of the two individual Poisson processes and on the distance between the associated points. The proposed model helps in building efficient algorithms for data dissemination in the sensor network. A numerical example is provided investigating the advantage of this model.

  5. A network model for characterizing brine channels in sea ice

    Science.gov (United States)

    Lieblappen, Ross M.; Kumar, Deip D.; Pauls, Scott D.; Obbard, Rachel W.

    2018-03-01

    The brine pore space in sea ice can form complex connected structures whose geometry is critical in the governance of important physical transport processes between the ocean, sea ice, and surface. Recent advances in three-dimensional imaging using X-ray micro-computed tomography have enabled the visualization and quantification of the brine network morphology and variability. Using imaging of first-year sea ice samples at in situ temperatures, we create a new mathematical network model to characterize the topology and connectivity of the brine channels. This model provides a statistical framework where we can characterize the pore networks via two parameters, depth and temperature, for use in dynamical sea ice models. Our approach advances the quantification of brine connectivity in sea ice, which can help investigations of bulk physical properties, such as fluid permeability, that are key in both global and regional sea ice models.

  6. Modelling dendritic ecological networks in space: An integrated network perspective

    Science.gov (United States)

    Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...

  7. PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. Hadapiningradja Kusumodestoni

    2015-11-01

    Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.

  8. Artificial neural network cardiopulmonary modeling and diagnosis

    Science.gov (United States)

    Kangas, Lars J.; Keller, Paul E.

    1997-01-01

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.

  9. Green Network Planning Model for Optical Backbones

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael

    2010-01-01

    on the environment in general. In network planning there are existing planning models focused on QoS provisioning, investment minimization or combinations of both and other parameters. But there is a lack of a model for designing green optical backbones. This paper presents novel ideas to be able to define......Communication networks are becoming more essential for our daily lives and critically important for industry and governments. The intense growth in the backbone traffic implies an increment of the power demands of the transmission systems. This power usage might have a significant negative effect...

  10. A Model for Telestrok Network Evaluation

    DEFF Research Database (Denmark)

    Storm, Anna; Günzel, Franziska; Theiss, Stephan

    2011-01-01

    analysis lacking, current telestroke reimbursement by third-party payers is limited to special contracts and not included in the regular billing system. Based on a systematic literature review and expert interviews with health care economists, third-party payers and neurologists, a Markov model...... was developed from the third-party payer perspective. In principle, it enables telestroke networks to conduct cost-effectiveness studies, because the majority of the required data can be extracted from health insurance companies’ databases and the telestroke network itself. The model presents a basis...

  11. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach.

    Science.gov (United States)

    Senior, Alistair M; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  12. Modeling stochasticity and robustness in gene regulatory networks.

    Science.gov (United States)

    Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis

    2009-06-15

    Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.

  13. Using Alloy to Formally Model and Reason About an OpenFlow Network Switch

    OpenAIRE

    Mirzaei, Saber; Bahargam, Sanaz; Skowyra, Richard; Kfoury, Assaf; Bestavros, Azer

    2016-01-01

    Openflow provides a standard interface for separating a network into a data plane and a programmatic control plane. This enables easy network reconfiguration, but introduces the potential for programming bugs to cause network effects. To study OpenFlow switch behavior, we used Alloy to create a software abstraction describing the internal state of a network and its OpenFlow switches. This work is an attempt to model the static and dynamic behaviour a network built using OpenFlow switches.

  14. PROJECT ACTIVITY ANALYSIS WITHOUT THE NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    S. Munapo

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper presents a new procedure for analysing and managing activity sequences in projects. The new procedure determines critical activities, critical path, start times, free floats, crash limits, and other useful information without the use of the network model. Even though network models have been successfully used in project management so far, there are weaknesses associated with the use. A network is not easy to generate, and dummies that are usually associated with it make the network diagram complex – and dummy activities have no meaning in the original project management problem. The network model for projects can be avoided while still obtaining all the useful information that is required for project management. What are required are the activities, their accurate durations, and their predecessors.

    AFRIKAANSE OPSOMMING: Die navorsing beskryf ’n nuwerwetse metode vir die ontleding en bestuur van die sekwensiële aktiwiteite van projekte. Die voorgestelde metode bepaal kritiese aktiwiteite, die kritieke pad, aanvangstye, speling, verhasing, en ander groothede sonder die gebruik van ’n netwerkmodel. Die metode funksioneer bevredigend in die praktyk, en omseil die administratiewe rompslomp van die tradisionele netwerkmodelle.

  15. Fracture Network Modeling and GoldSim Simulation Support

    OpenAIRE

    杉田 健一郎; Dershowiz, W.

    2003-01-01

    During Heisei-14, Golder Associates provided support for JNC Tokai through data analysis and simulation of the MIU Underground Rock Laboratory, participation in Task 6 of the Aspo Task Force on Modelling of Groundwater Flow and Transport, and analysis of repository safety assessment technologies including cell networks for evaluation of the disturbed rock zone (DRZ) and total systems performance assessment (TSPA).

  16. Modeling Renewable Penertration Using a Network Economic Model

    Science.gov (United States)

    Lamont, A.

    2001-03-01

    This paper evaluates the accuracy of a network economic modeling approach in designing energy systems having renewable and conventional generators. The network approach models the system as a network of processes such as demands, generators, markets, and resources. The model reaches a solution by exchanging prices and quantity information between the nodes of the system. This formulation is very flexible and takes very little time to build and modify models. This paper reports an experiment designing a system with photovoltaic and base and peak fossil generators. The level of PV penetration as a function of its price and the capacities of the fossil generators were determined using the network approach and using an exact, analytic approach. It is found that the two methods agree very closely in terms of the optimal capacities and are nearly identical in terms of annual system costs.

  17. Development of the Moffitt Cancer Network as a Telemedicine and Teleconferencing Educational Tool for Health Care Providers

    National Research Council Canada - National Science Library

    Krischer, Jeffrey

    2002-01-01

    The Moffitt Cancer Network's (MCN) goal is to provide up-to-date oncology related information, resources, and education to oncology health care providers and researchers for the prevention and cure of cancer...

  18. An evolving model of online bipartite networks

    Science.gov (United States)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  19. Recurrent neural network based hybrid model for reconstructing gene regulatory network.

    Science.gov (United States)

    Raza, Khalid; Alam, Mansaf

    2016-10-01

    One of the exciting problems in systems biology research is to decipher how genome controls the development of complex biological system. The gene regulatory networks (GRNs) help in the identification of regulatory interactions between genes and offer fruitful information related to functional role of individual gene in a cellular system. Discovering GRNs lead to a wide range of applications, including identification of disease related pathways providing novel tentative drug targets, helps to predict disease response, and also assists in diagnosing various diseases including cancer. Reconstruction of GRNs from available biological data is still an open problem. This paper proposes a recurrent neural network (RNN) based model of GRN, hybridized with generalized extended Kalman filter for weight update in backpropagation through time training algorithm. The RNN is a complex neural network that gives a better settlement between biological closeness and mathematical flexibility to model GRN; and is also able to capture complex, non-linear and dynamic relationships among variables. Gene expression data are inherently noisy and Kalman filter performs well for estimation problem even in noisy data. Hence, we applied non-linear version of Kalman filter, known as generalized extended Kalman filter, for weight update during RNN training. The developed model has been tested on four benchmark networks such as DNA SOS repair network, IRMA network, and two synthetic networks from DREAM Challenge. We performed a comparison of our results with other state-of-the-art techniques which shows superiority of our proposed model. Further, 5% Gaussian noise has been induced in the dataset and result of the proposed model shows negligible effect of noise on results, demonstrating the noise tolerance capability of the model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A Model-Driven Approach for Telecommunications Network Services Definition

    Science.gov (United States)

    Chiprianov, Vanea; Kermarrec, Yvon; Alff, Patrick D.

    Present day Telecommunications market imposes a short concept-to-market time for service providers. To reduce it, we propose a computer-aided, model-driven, service-specific tool, with support for collaborative work and for checking properties on models. We started by defining a prototype of the Meta-model (MM) of the service domain. Using this prototype, we defined a simple graphical modeling language specific for service designers. We are currently enlarging the MM of the domain using model transformations from Network Abstractions Layers (NALs). In the future, we will investigate approaches to ensure the support for collaborative work and for checking properties on models.

  1. An autocatalytic network model for stock markets

    Science.gov (United States)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-02-01

    The stock prices of companies with businesses that are closely related within a specific sector of economy might exhibit movement patterns and correlations in their dynamics. The idea in this work is to use the concept of autocatalytic network to model such correlations and patterns in the trends exhibited by the expected returns. The trends are expressed in terms of positive or negative returns within each fixed time interval. The time series derived from these trends is then used to represent the movement patterns by a probabilistic boolean network with transitions modeled as an autocatalytic network. The proposed method might be of value in short term forecasting and identification of dependencies. The method is illustrated with a case study based on four stocks of companies in the field of natural resource and technology.

  2. EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks.

    Science.gov (United States)

    Jenness, Samuel M; Goodreau, Steven M; Morris, Martina

    2018-04-01

    Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel , designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel , designed to facilitate the exploration of novel research questions for advanced modelers.

  3. Network Traffic Monitoring Using Poisson Dynamic Linear Models

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-05-09

    In this article, we discuss an approach for network forensics using a class of nonstationary Poisson processes with embedded dynamic linear models. As a modeling strategy, the Poisson DLM (PoDLM) provides a very flexible framework for specifying structured effects that may influence the evolution of the underlying Poisson rate parameter, including diurnal and weekly usage patterns. We develop a novel particle learning algorithm for online smoothing and prediction for the PoDLM, and demonstrate the suitability of the approach to real-time deployment settings via a new application to computer network traffic monitoring.

  4. Computer-Supported Modelling of Multi modal Transportation Networks Rationalization

    Directory of Open Access Journals (Sweden)

    Ratko Zelenika

    2007-09-01

    Full Text Available This paper deals with issues of shaping and functioning ofcomputer programs in the modelling and solving of multimoda Itransportation network problems. A methodology of an integrateduse of a programming language for mathematical modellingis defined, as well as spreadsheets for the solving of complexmultimodal transportation network problems. The papercontains a comparison of the partial and integral methods ofsolving multimodal transportation networks. The basic hypothesisset forth in this paper is that the integral method results inbetter multimodal transportation network rationalization effects,whereas a multimodal transportation network modelbased on the integral method, once built, can be used as the basisfor all kinds of transportation problems within multimodaltransport. As opposed to linear transport problems, multimodaltransport network can assume very complex shapes. This papercontains a comparison of the partial and integral approach totransp01tation network solving. In the partial approach, astraightforward model of a transp01tation network, which canbe solved through the use of the Solver computer tool within theExcel spreadsheet inteiface, is quite sufficient. In the solving ofa multimodal transportation problem through the integralmethod, it is necessmy to apply sophisticated mathematicalmodelling programming languages which supp01t the use ofcomplex matrix functions and the processing of a vast amountof variables and limitations. The LINGO programming languageis more abstract than the Excel spreadsheet, and it requiresa certain programming knowledge. The definition andpresentation of a problem logic within Excel, in a manner whichis acceptable to computer software, is an ideal basis for modellingin the LINGO programming language, as well as a fasterand more effective implementation of the mathematical model.This paper provides proof for the fact that it is more rational tosolve the problem of multimodal transportation networks by

  5. National Water Model: Providing the Nation with Actionable Water Intelligence

    Science.gov (United States)

    Aggett, G. R.; Bates, B.

    2017-12-01

    The National Water Model (NWM) provides national, street-level detail of water movement through time and space. Operating hourly, this flood of information offers enormous benefits in the form of water resource management, natural disaster preparedness, and the protection of life and property. The Geo-Intelligence Division at the NOAA National Water Center supplies forecasters and decision-makers with timely, actionable water intelligence through the processing of billions of NWM data points every hour. These datasets include current streamflow estimates, short and medium range streamflow forecasts, and many other ancillary datasets. The sheer amount of NWM data produced yields a dataset too large to allow for direct human comprehension. As such, it is necessary to undergo model data post-processing, filtering, and data ingestion by visualization web apps that make use of cartographic techniques to bring attention to the areas of highest urgency. This poster illustrates NWM output post-processing and cartographic visualization techniques being developed and employed by the Geo-Intelligence Division at the NOAA National Water Center to provide national actionable water intelligence.

  6. NeuroRecovery Network provides standardization of locomotor training for persons with incomplete spinal cord injury.

    Science.gov (United States)

    Morrison, Sarah A; Forrest, Gail F; VanHiel, Leslie R; Davé, Michele; D'Urso, Denise

    2012-09-01

    To illustrate the continuity of care afforded by a standardized locomotor training program across a multisite network setting within the Christopher and Dana Reeve Foundation NeuroRecovery Network (NRN). Single patient case study. Two geographically different hospital-based outpatient facilities. This case highlights a 25-year-old man diagnosed with C4 motor incomplete spinal cord injury with American Spinal Injury Association Impairment Scale grade D. Standardized locomotor training program 5 sessions per week for 1.5 hours per session, for a total of 100 treatment sessions, with 40 sessions at 1 center and 60 at another. Ten-meter walk test and 6-minute walk test were assessed at admission and discharge across both facilities. For each of the 100 treatment sessions percent body weight support, average, and maximum treadmill speed were evaluated. Locomotor endurance, as measured by the 6-minute walk test, and overground gait speed showed consistent improvement from admission to discharge. Throughout training, the patient decreased the need for body weight support and was able to tolerate faster treadmill speeds. Data indicate that the patient continued to improve on both treatment parameters and walking function. Standardization across the NRN centers provided a mechanism for delivering consistent and reproducible locomotor training programs across 2 facilities without disrupting training or recovery progression. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Providing interoperability of eHealth communities through peer-to-peer networks.

    Science.gov (United States)

    Kilic, Ozgur; Dogac, Asuman; Eichelberg, Marco

    2010-05-01

    Providing an interoperability infrastructure for Electronic Healthcare Records (EHRs) is on the agenda of many national and regional eHealth initiatives. Two important integration profiles have been specified for this purpose, namely, the "Integrating the Healthcare Enterprise (IHE) Cross-enterprise Document Sharing (XDS)" and the "IHE Cross Community Access (XCA)." IHE XDS describes how to share EHRs in a community of healthcare enterprises and IHE XCA describes how EHRs are shared across communities. However, the current version of the IHE XCA integration profile does not address some of the important challenges of cross-community exchange environments. The first challenge is scalability. If every community that joins the network needs to connect to every other community, i.e., a pure peer-to-peer network, this solution will not scale. Furthermore, each community may use a different coding vocabulary for the same metadata attribute, in which case, the target community cannot interpret the query involving such an attribute. Yet another important challenge is that each community may (and typically will) have a different patient identifier domain. Querying for the patient identifiers in the target community using patient demographic data may create patient privacy concerns. In this paper, we address each of these challenges and show how they can be handled effectively in a superpeer-based peer-to-peer architecture.

  8. An architectural model for network interconnection

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Vissers, C.A.; Kalin, T.

    1983-01-01

    This paper presents a technique of successive decomposition of a common users' activity to illustrate the problems of network interconnection. The criteria derived from this approach offer a structuring principle which is used to develop an architectural model that embeds heterogeneous subnetworks

  9. Computational Modeling of Complex Protein Activity Networks

    NARCIS (Netherlands)

    Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude

    2017-01-01

    Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a

  10. A Model of Mental State Transition Network

    Science.gov (United States)

    Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo

    Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.

  11. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.

  12. Modeling Insurgent Network Structure and Dynamics

    Science.gov (United States)

    Gabbay, Michael; Thirkill-Mackelprang, Ashley

    2010-03-01

    We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.

  13. Hybrid simulation models of production networks

    CERN Document Server

    Kouikoglou, Vassilis S

    2001-01-01

    This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.

  14. Propagating semantic information in biochemical network models

    Directory of Open Access Journals (Sweden)

    Schulz Marvin

    2012-01-01

    Full Text Available Abstract Background To enable automatic searches, alignments, and model combination, the elements of systems biology models need to be compared and matched across models. Elements can be identified by machine-readable biological annotations, but assigning such annotations and matching non-annotated elements is tedious work and calls for automation. Results A new method called "semantic propagation" allows the comparison of model elements based not only on their own annotations, but also on annotations of surrounding elements in the network. One may either propagate feature vectors, describing the annotations of individual elements, or quantitative similarities between elements from different models. Based on semantic propagation, we align partially annotated models and find annotations for non-annotated model elements. Conclusions Semantic propagation and model alignment are included in the open-source library semanticSBML, available on sourceforge. Online services for model alignment and for annotation prediction can be used at http://www.semanticsbml.org.

  15. Governance, Government, and the Search for New Provider Models

    Directory of Open Access Journals (Sweden)

    Richard B. Saltman

    2016-01-01

    Full Text Available A central problem in designing effective models of provider governance in health systems has been to ensure an appropriate balance between the concerns of public sector and/or government decision-makers, on the one hand, and of non-governmental health services actors in civil society and private life, on the other. In tax-funded European health systems up to the 1980s, the state and other public sector decision-makers played a dominant role over health service provision, typically operating hospitals through national or regional governments on a command-and-control basis. In a number of countries, however, this state role has started to change, with governments first stepping out of direct service provision and now de facto pushed to focus more on steering provider organizations rather than on direct public management. In this new approach to provider governance, the state has pulled back into a regulatory role that introduces market-like incentives and management structures, which then apply to both public and private sector providers alike. This article examines some of the main operational complexities in implementing this new governance reality/strategy, specifically from a service provision (as opposed to mostly a financing or even regulatory perspective. After briefly reviewing some of the key theoretical dilemmas, the paper presents two case studies where this new approach was put into practice: primary care in Sweden and hospitals in Spain. The article concludes that good governance today needs to reflect practical operational realities if it is to have the desired effect on health sector reform outcome.

  16. Governance, Government, and the Search for New Provider Models.

    Science.gov (United States)

    Saltman, Richard B; Duran, Antonio

    2015-11-03

    A central problem in designing effective models of provider governance in health systems has been to ensure an appropriate balance between the concerns of public sector and/or government decision-makers, on the one hand, and of non-governmental health services actors in civil society and private life, on the other. In tax-funded European health systems up to the 1980s, the state and other public sector decision-makers played a dominant role over health service provision, typically operating hospitals through national or regional governments on a command-and-control basis. In a number of countries, however, this state role has started to change, with governments first stepping out of direct service provision and now de facto pushed to focus more on steering provider organizations rather than on direct public management. In this new approach to provider governance, the state has pulled back into a regulatory role that introduces market-like incentives and management structures, which then apply to both public and private sector providers alike. This article examines some of the main operational complexities in implementing this new governance reality/strategy, specifically from a service provision (as opposed to mostly a financing or even regulatory) perspective. After briefly reviewing some of the key theoretical dilemmas, the paper presents two case studies where this new approach was put into practice: primary care in Sweden and hospitals in Spain. The article concludes that good governance today needs to reflect practical operational realities if it is to have the desired effect on health sector reform outcome. © 2016 by Kerman University of Medical Sciences.

  17. Model Predictive Control of Sewer Networks

    DEFF Research Database (Denmark)

    Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik

    2016-01-01

    The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and cont...... benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control....

  18. Unified Model for Generation Complex Networks with Utility Preferential Attachment

    International Nuclear Information System (INIS)

    Wu Jianjun; Gao Ziyou; Sun Huijun

    2006-01-01

    In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics of this new network are given.

  19. A neural network model for credit risk evaluation.

    Science.gov (United States)

    Khashman, Adnan

    2009-08-01

    Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.

  20. Creating, generating and comparing random network models with NetworkRandomizer.

    Science.gov (United States)

    Tosadori, Gabriele; Bestvina, Ivan; Spoto, Fausto; Laudanna, Carlo; Scardoni, Giovanni

    2016-01-01

    Biological networks are becoming a fundamental tool for the investigation of high-throughput data in several fields of biology and biotechnology. With the increasing amount of information, network-based models are gaining more and more interest and new techniques are required in order to mine the information and to validate the results. To fill the validation gap we present an app, for the Cytoscape platform, which aims at creating randomised networks and randomising existing, real networks. Since there is a lack of tools that allow performing such operations, our app aims at enabling researchers to exploit different, well known random network models that could be used as a benchmark for validating real, biological datasets. We also propose a novel methodology for creating random weighted networks, i.e. the multiplication algorithm, starting from real, quantitative data. Finally, the app provides a statistical tool that compares real versus randomly computed attributes, in order to validate the numerical findings. In summary, our app aims at creating a standardised methodology for the validation of the results in the context of the Cytoscape platform.

  1. Social networks and trade of services: modelling interregional flows with spatial and network autocorrelation effects

    Science.gov (United States)

    de la Mata, Tamara; Llano, Carlos

    2013-07-01

    Recent literature on border effect has fostered research on informal barriers to trade and the role played by network dependencies. In relation to social networks, it has been shown that intensity of trade in goods is positively correlated with migration flows between pairs of countries/regions. In this article, we investigate whether such a relation also holds for interregional trade of services. We also consider whether interregional trade flows in services linked with tourism exhibit spatial and/or social network dependence. Conventional empirical gravity models assume the magnitude of bilateral flows between regions is independent of flows to/from regions located nearby in space, or flows to/from regions related through social/cultural/ethic network connections. With this aim, we provide estimates from a set of gravity models showing evidence of statistically significant spatial and network (demographic) dependence in the bilateral flows of the trade of services considered. The analysis has been applied to the Spanish intra- and interregional monetary flows of services from the accommodation, restaurants and travel agencies for the period 2000-2009, using alternative datasets for the migration stocks and definitions of network effects.

  2. Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Liang Jinghang

    2012-08-01

    Full Text Available Abstract Background Various computational models have been of interest due to their use in the modelling of gene regulatory networks (GRNs. As a logical model, probabilistic Boolean networks (PBNs consider molecular and genetic noise, so the study of PBNs provides significant insights into the understanding of the dynamics of GRNs. This will ultimately lead to advances in developing therapeutic methods that intervene in the process of disease development and progression. The applications of PBNs, however, are hindered by the complexities involved in the computation of the state transition matrix and the steady-state distribution of a PBN. For a PBN with n genes and N Boolean networks, the complexity to compute the state transition matrix is O(nN22n or O(nN2n for a sparse matrix. Results This paper presents a novel implementation of PBNs based on the notions of stochastic logic and stochastic computation. This stochastic implementation of a PBN is referred to as a stochastic Boolean network (SBN. An SBN provides an accurate and efficient simulation of a PBN without and with random gene perturbation. The state transition matrix is computed in an SBN with a complexity of O(nL2n, where L is a factor related to the stochastic sequence length. Since the minimum sequence length required for obtaining an evaluation accuracy approximately increases in a polynomial order with the number of genes, n, and the number of Boolean networks, N, usually increases exponentially with n, L is typically smaller than N, especially in a network with a large number of genes. Hence, the computational efficiency of an SBN is primarily limited by the number of genes, but not directly by the total possible number of Boolean networks. Furthermore, a time-frame expanded SBN enables an efficient analysis of the steady-state distribution of a PBN. These findings are supported by the simulation results of a simplified p53 network, several randomly generated networks and a

  3. On traffic modelling in GPRS networks

    DEFF Research Database (Denmark)

    Madsen, Tatiana Kozlova; Schwefel, Hans-Peter; Prasad, Ramjee

    2005-01-01

    Optimal design and dimensioning of wireless data networks, such as GPRS, requires the knowledge of traffic characteristics of different data services. This paper presents an in-detail analysis of an IP-level traffic measurements taken in an operational GPRS network. The data measurements reported...... here are done at the Gi interface. The aim of this paper is to reveal some key statistics of GPRS data applications and to validate if the existing traffic models can adequately describe traffic volume and inter-arrival time distribution for different services. Additionally, we present a method of user...

  4. Network modelling of fluid retention behaviour in unsaturated soils

    Directory of Open Access Journals (Sweden)

    Athanasiadis Ignatios

    2016-01-01

    Full Text Available The paper describes discrete modelling of the retention behaviour of unsaturated porous materials. A network approach is used within a statistical volume element (SVE, suitable for subsequent use in hydro-mechanical analysis and incorporation within multi-scale numerical modelling. The soil pore structure is modelled by a network of cylindrical pipes connecting spheres, with the spheres representing soil voids and the pipes representing inter-connecting throats. The locations of pipes and spheres are determined by a Voronoi tessellation of the domain. Original aspects of the modelling include a form of periodic boundary condition implementation applied for the first time to this type of network, a new pore volume scaling technique to provide more realistic modelling and a new procedure for initiating drying or wetting paths in a network model employing periodic boundary conditions. Model simulations, employing two linear cumulative probability distributions to represent the distributions of sphere and pipe radii, are presented for the retention behaviour reported from a mercury porosimetry test on a sandstone.

  5. Hydrometeorological network for flood monitoring and modeling

    Science.gov (United States)

    Efstratiadis, Andreas; Koussis, Antonis D.; Lykoudis, Spyros; Koukouvinos, Antonis; Christofides, Antonis; Karavokiros, George; Kappos, Nikos; Mamassis, Nikos; Koutsoyiannis, Demetris

    2013-08-01

    Due to its highly fragmented geomorphology, Greece comprises hundreds of small- to medium-size hydrological basins, in which often the terrain is fairly steep and the streamflow regime ephemeral. These are typically affected by flash floods, occasionally causing severe damages. Yet, the vast majority of them lack flow-gauging infrastructure providing systematic hydrometric data at fine time scales. This has obvious impacts on the quality and reliability of flood studies, which typically use simplistic approaches for ungauged basins that do not consider local peculiarities in sufficient detail. In order to provide a consistent framework for flood design and to ensure realistic predictions of the flood risk -a key issue of the 2007/60/EC Directive- it is essential to improve the monitoring infrastructures by taking advantage of modern technologies for remote control and data management. In this context and in the research project DEUCALION, we have recently installed and are operating, in four pilot river basins, a telemetry-based hydro-meteorological network that comprises automatic stations and is linked to and supported by relevant software. The hydrometric stations measure stage, using 50-kHz ultrasonic pulses or piezometric sensors, or both stage (piezometric) and velocity via acoustic Doppler radar; all measurements are being temperature-corrected. The meteorological stations record air temperature, pressure, relative humidity, wind speed and direction, and precipitation. Data transfer is made via GPRS or mobile telephony modems. The monitoring network is supported by a web-based application for storage, visualization and management of geographical and hydro-meteorological data (ENHYDRIS), a software tool for data analysis and processing (HYDROGNOMON), as well as an advanced model for flood simulation (HYDROGEIOS). The recorded hydro-meteorological observations are accessible over the Internet through the www-application. The system is operational and its

  6. Analytic models for the evolution of semilocal string networks

    International Nuclear Information System (INIS)

    Nunes, A. S.; Martins, C. J. A. P.; Avgoustidis, A.; Urrestilla, J.

    2011-01-01

    We revisit previously developed analytic models for defect evolution and adapt them appropriately for the study of semilocal string networks. We thus confirm the expectation (based on numerical simulations) that linear scaling evolution is the attractor solution for a broad range of model parameters. We discuss in detail the evolution of individual semilocal segments, focusing on the phenomenology of segment growth, and also provide a preliminary comparison with existing numerical simulations.

  7. A Networks Approach to Modeling Enzymatic Reactions.

    Science.gov (United States)

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.

  8. A improved Network Security Situation Awareness Model

    Directory of Open Access Journals (Sweden)

    Li Fangwei

    2015-08-01

    Full Text Available In order to reflect the situation of network security assessment performance fully and accurately, a new network security situation awareness model based on information fusion was proposed. Network security situation is the result of fusion three aspects evaluation. In terms of attack, to improve the accuracy of evaluation, a situation assessment method of DDoS attack based on the information of data packet was proposed. In terms of vulnerability, a improved Common Vulnerability Scoring System (CVSS was raised and maked the assessment more comprehensive. In terms of node weights, the method of calculating the combined weights and optimizing the result by Sequence Quadratic Program (SQP algorithm which reduced the uncertainty of fusion was raised. To verify the validity and necessity of the method, a testing platform was built and used to test through evaluating 2000 DAPRA data sets. Experiments show that the method can improve the accuracy of evaluation results.

  9. Providing surgical care in Somalia: A model of task shifting.

    Science.gov (United States)

    Chu, Kathryn M; Ford, Nathan P; Trelles, Miguel

    2011-07-15

    Somalia is one of the most political unstable countries in the world. Ongoing insecurity has forced an inconsistent medical response by the international community, with little data collection. This paper describes the "remote" model of surgical care by Medecins Sans Frontieres, in Guri-El, Somalia. The challenges of providing the necessary prerequisites for safe surgery are discussed as well as the successes and limitations of task shifting in this resource-limited context. In January 2006, MSF opened a project in Guri-El located between Mogadishu and Galcayo. The objectives were to reduce mortality due to complications of pregnancy and childbirth and from violent and non-violent trauma. At the start of the program, expatriate surgeons and anesthesiologists established safe surgical practices and performed surgical procedures. After January 2008, expatriates were evacuated due to insecurity and surgical care has been provided by local Somalian doctors and nurses with periodic supervisory visits from expatriate staff. Between October 2006 and December 2009, 2086 operations were performed on 1602 patients. The majority (1049, 65%) were male and the median age was 22 (interquartile range, 17-30). 1460 (70%) of interventions were emergent. Trauma accounted for 76% (1585) of all surgical pathology; gunshot wounds accounted for 89% (584) of violent injuries. Operative mortality (0.5% of all surgical interventions) was not higher when Somalian staff provided care compared to when expatriate surgeons and anesthesiologists. The delivery of surgical care in any conflict-settings is difficult, but in situations where international support is limited, the challenges are more extreme. In this model, task shifting, or the provision of services by less trained cadres, was utilized and peri-operative mortality remained low demonstrating that safe surgical practices can be accomplished even without the presence of fully trained surgeon and anesthesiologists. If security improves

  10. A Fluid Model for Performance Analysis in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Coupechoux Marceau

    2010-01-01

    Full Text Available We propose a new framework to study the performance of cellular networks using a fluid model and we derive from this model analytical formulas for interference, outage probability, and spatial outage probability. The key idea of the fluid model is to consider the discrete base station (BS entities as a continuum of transmitters that are spatially distributed in the network. This model allows us to obtain simple analytical expressions to reveal main characteristics of the network. In this paper, we focus on the downlink other-cell interference factor (OCIF, which is defined for a given user as the ratio of its outer cell received power to its inner cell received power. A closed-form formula of the OCIF is provided in this paper. From this formula, we are able to obtain the global outage probability as well as the spatial outage probability, which depends on the location of a mobile station (MS initiating a new call. Our analytical results are compared to Monte Carlo simulations performed in a traditional hexagonal network. Furthermore, we demonstrate an application of the outage probability related to cell breathing and densification of cellular networks.

  11. Spatial Models and Networks of Living Systems

    DEFF Research Database (Denmark)

    Juul, Jeppe Søgaard

    When studying the dynamics of living systems, insight can often be gained by developing a mathematical model that can predict future behaviour of the system or help classify system characteristics. However, in living cells, organisms, and especially groups of interacting individuals, a large number...... variables of the system. However, this approach disregards any spatial structure of the system, which may potentially change the behaviour drastically. An alternative approach is to construct a cellular automaton with nearest neighbour interactions, or even to model the system as a complex network...... with interactions defined by network topology. In this thesis I first describe three different biological models of ageing and cancer, in which spatial structure is important for the system dynamics. I then turn to describe characteristics of ecosystems consisting of three cyclically interacting species...

  12. Fractional virus epidemic model on financial networks

    Directory of Open Access Journals (Sweden)

    Balci Mehmet Ali

    2016-01-01

    Full Text Available In this study, we present an epidemic model that characterizes the behavior of a financial network of globally operating stock markets. Since the long time series have a global memory effect, we represent our model by using the fractional calculus. This model operates on a network, where vertices are the stock markets and edges are constructed by the correlation distances. Thereafter, we find an analytical solution to commensurate system and use the well-known differential transform method to obtain the solution of incommensurate system of fractional differential equations. Our findings are confirmed and complemented by the data set of the relevant stock markets between 2006 and 2016. Rather than the hypothetical values, we use the Hurst Exponent of each time series to approximate the fraction size and graph theoretical concepts to obtain the variables.

  13. Small-World and Scale-Free Network Models for IoT Systems

    Directory of Open Access Journals (Sweden)

    Insoo Sohn

    2017-01-01

    Full Text Available It is expected that Internet of Things (IoT revolution will enable new solutions and business for consumers and entrepreneurs by connecting billions of physical world devices with varying capabilities. However, for successful realization of IoT, challenges such as heterogeneous connectivity, ubiquitous coverage, reduced network and device complexity, enhanced power savings, and enhanced resource management have to be solved. All these challenges are heavily impacted by the IoT network topology supported by massive number of connected devices. Small-world networks and scale-free networks are important complex network models with massive number of nodes and have been actively used to study the network topology of brain networks, social networks, and wireless networks. These models, also, have been applied to IoT networks to enhance synchronization, error tolerance, and more. However, due to interdisciplinary nature of the network science, with heavy emphasis on graph theory, it is not easy to study the various tools provided by complex network models. Therefore, in this paper, we attempt to introduce basic concepts of graph theory, including small-world networks and scale-free networks, and provide system models that can be easily implemented to be used as a powerful tool in solving various research problems related to IoT.

  14. Modeling of methane emissions using artificial neural network approach

    Directory of Open Access Journals (Sweden)

    Stamenković Lidija J.

    2015-01-01

    Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007

  15. Entanglement effects in model polymer networks

    Science.gov (United States)

    Everaers, R.; Kremer, K.

    The influence of topological constraints on the local dynamics in cross-linked polymer melts and their contribution to the elastic properties of rubber elastic systems are a long standing problem in statistical mechanics. Polymer networks with diamond lattice connectivity (Everaers and Kremer 1995, Everaers and Kremer 1996a) are idealized model systems which isolate the effect of topology conservation from other sources of quenched disorder. We study their behavior in molecular dynamics simulations under elongational strain. In our analysis we compare the measured, purely entropic shear moduli G to the predictions of statistical mechanical models of rubber elasticity, making extensive use of the microscopic structural and topological information available in computer simulations. We find (Everaers and Kremer 1995) that the classical models of rubber elasticity underestimate the true change in entropy in a deformed network significantly, because they neglect the tension along the contour of the strands which cannot relax due to entanglements (Everaers and Kremer (in preparation)). This contribution and the fluctuations in strained systems seem to be well described by the constrained mode model (Everaers 1998) which allows to treat the crossover from classical rubber elasticity to the tube model for polymer networks with increasing strand length within one transparant formalism. While this is important for the description of the effects we try to do a first quantitative step towards their explanation by topological considerations. We show (Everaers and Kremer 1996a) that for the comparatively short strand lengths of our diamond networks the topology contribution to the shear modulus is proportional to the density of entangled mesh pairs with non-zero Gauss linking number. Moreover, the prefactor can be estimated consistently within a rather simple model developed by Vologodskii et al. and by Graessley and Pearson, which is based on the definition of an entropic

  16. Information sharing for effective IT incident resolving in IT service provider networks: A financial service case study

    NARCIS (Netherlands)

    Vlietland, J.; Vliet, J.C.

    2015-01-01

    Information technology (IT)-enabled financial services are typically delivered by a network of interdependent IT service providers. Such networks need information to resolve IT incidents in their delivered IT services. The objective of this research is to identify the set of information that needs

  17. Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks.

    Science.gov (United States)

    Tian, Ye; Zhang, Bai; Hoffman, Eric P; Clarke, Robert; Zhang, Zhen; Shih, Ie-Ming; Xuan, Jianhua; Herrington, David M; Wang, Yue

    2014-07-24

    Modeling biological networks serves as both a major goal and an effective tool of systems biology in studying mechanisms that orchestrate the activities of gene products in cells. Biological networks are context-specific and dynamic in nature. To systematically characterize the selectively activated regulatory components and mechanisms, modeling tools must be able to effectively distinguish significant rewiring from random background fluctuations. While differential networks cannot be constructed by existing knowledge alone, novel incorporation of prior knowledge into data-driven approaches can improve the robustness and biological relevance of network inference. However, the major unresolved roadblocks include: big solution space but a small sample size; highly complex networks; imperfect prior knowledge; missing significance assessment; and heuristic structural parameter learning. To address these challenges, we formulated the inference of differential dependency networks that incorporate both conditional data and prior knowledge as a convex optimization problem, and developed an efficient learning algorithm to jointly infer the conserved biological network and the significant rewiring across different conditions. We used a novel sampling scheme to estimate the expected error rate due to "random" knowledge. Based on that scheme, we developed a strategy that fully exploits the benefit of this data-knowledge integrated approach. We demonstrated and validated the principle and performance of our method using synthetic datasets. We then applied our method to yeast cell line and breast cancer microarray data and obtained biologically plausible results. The open-source R software package and the experimental data are freely available at http://www.cbil.ece.vt.edu/software.htm. Experiments on both synthetic and real data demonstrate the effectiveness of the knowledge-fused differential dependency network in revealing the statistically significant rewiring in biological

  18. Northern emporia and maritime networks. Modelling past communication using archaeological network analysis

    DEFF Research Database (Denmark)

    Sindbæk, Søren Michael

    2015-01-01

    preserve patterns of thisinteraction. Formal network analysis and modelling holds the potential to identify anddemonstrate such patterns, where traditional methods often prove inadequate. Thearchaeological study of communication networks in the past, however, calls for radically different analytical...... this is not a problem of network analysis, but network synthesis: theclassic problem of cracking codes or reconstructing black-box circuits. It is proposedthat archaeological approaches to network synthesis must involve a contextualreading of network data: observations arising from individual contexts, morphologies...

  19. Rumor Spreading Model with Trust Mechanism in Complex Social Networks

    International Nuclear Information System (INIS)

    Wang Ya-Qi; Yang Xiao-Yuan; Han Yi-Liang; Wang Xu-An

    2013-01-01

    In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the final size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations. (interdisciplinary physics and related areas of science and technology)

  20. Rumor Spreading Model with Trust Mechanism in Complex Social Networks

    Science.gov (United States)

    Wang, Ya-Qi; Yang, Xiao-Yuan; Han, Yi-Liang; Wang, Xu-An

    2013-04-01

    In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the final size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations.

  1. A source-controlled data center network model.

    Science.gov (United States)

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS.

  2. A source-controlled data center network model

    Science.gov (United States)

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS. PMID:28328925

  3. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  4. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural

  5. Mapping and modeling of physician collaboration network.

    Science.gov (United States)

    Uddin, Shahadat; Hamra, Jafar; Hossain, Liaquat

    2013-09-10

    Effective provisioning of healthcare services during patient hospitalization requires collaboration involving a set of interdependent complex tasks, which needs to be carried out in a synergistic manner. Improved patients' outcome during and after hospitalization has been attributed to how effective different health services provisioning groups carry out their tasks in a coordinated manner. Previous studies have documented the underlying relationships between collaboration among physicians on the effective outcome in delivering health services for improved patient outcomes. However, there are very few systematic empirical studies with a focus on the effect of collaboration networks among healthcare professionals and patients' medical condition. On the basis of the fact that collaboration evolves among physicians when they visit a common hospitalized patient, in this study, we first propose an approach to map collaboration network among physicians from their visiting information to patients. We termed this network as physician collaboration network (PCN). Then, we use exponential random graph (ERG) models to explore the microlevel network structures of PCNs and their impact on hospitalization cost and hospital readmission rate. ERG models are probabilistic models that are presented by locally determined explanatory variables and can effectively identify structural properties of networks such as PCN. It simplifies a complex structure down to a combination of basic parameters such as 2-star, 3-star, and triangle. By applying our proposed mapping approach and ERG modeling technique to the electronic health insurance claims dataset of a very large Australian health insurance organization, we construct and model PCNs. We notice that the 2-star (subset of 3 nodes in which 1 node is connected to each of the other 2 nodes) parameter of ERG has significant impact on hospitalization cost. Further, we identify that triangle (subset of 3 nodes in which each node is connected to

  6. Solitary mammals provide an animal model for autism spectrum disorders.

    Science.gov (United States)

    Reser, Jared Edward

    2014-02-01

    Species of solitary mammals are known to exhibit specialized, neurological adaptations that prepare them to focus working memory on food procurement and survival rather than on social interaction. Solitary and nonmonogamous mammals, which do not form strong social bonds, have been documented to exhibit behaviors and biomarkers that are similar to endophenotypes in autism. Both individuals on the autism spectrum and certain solitary mammals have been reported to be low on measures of affiliative need, bodily expressiveness, bonding and attachment, direct and shared gazing, emotional engagement, conspecific recognition, partner preference, separation distress, and social approach behavior. Solitary mammals also exhibit certain biomarkers that are characteristic of autism, including diminished oxytocin and vasopressin signaling, dysregulation of the endogenous opioid system, increased Hypothalamic-pituitary-adrenal axis (HPA) activity to social encounters, and reduced HPA activity to separation and isolation. The extent of these similarities suggests that solitary mammals may offer a useful model of autism spectrum disorders and an opportunity for investigating genetic and epigenetic etiological factors. If the brain in autism can be shown to exhibit distinct homologous or homoplastic similarities to the brains of solitary animals, it will reveal that they may be central to the phenotype and should be targeted for further investigation. Research of the neurological, cellular, and molecular basis of these specializations in other mammals may provide insight for behavioral analysis, communication intervention, and psychopharmacology for autism.

  7. Secret Shoppers Find Access To Providers And Network Accuracy Lacking For Those In Marketplace And Commercial Plans.

    Science.gov (United States)

    Haeder, Simon F; Weimer, David L; Mukamel, Dana B

    2016-07-01

    The adequacy of provider networks for plans sold through insurance Marketplaces established under the Affordable Care Act has received much scrutiny recently. Various studies have established that networks are generally narrow. To learn more about network adequacy and access to care, we investigated two questions. First, no matter the nominal size of a network, can patients gain access to primary care services from providers of their choice in a timely manner? Second, how does access compare to plans sold outside insurance Marketplaces? We conducted a "secret shopper" survey of 743 primary care providers from five of California's nineteen insurance Marketplace pricing regions in the summer of 2015. Our findings indicate that obtaining access to primary care providers was generally equally challenging both inside and outside insurance Marketplaces. In less than 30 percent of cases were consumers able to schedule an appointment with an initially selected physician provider. Information about provider networks was often inaccurate. Problems accessing services for patients with acute conditions were particularly troubling. Effectively addressing issues of network adequacy requires more accurate provider information. Project HOPE—The People-to-People Health Foundation, Inc.

  8. Planning the network of gas pipelines through modeling tools

    Energy Technology Data Exchange (ETDEWEB)

    Sucupira, Marcos L.L.; Lutif Filho, Raimundo B. [Companhia de Gas do Ceara (CEGAS), Fortaleza, CE (Brazil)

    2009-07-01

    Natural gas is a source of non-renewable energy used by different sectors of the economy of Ceara. Its use may be industrial, residential, commercial, as a source of automotive fuel, as a co-generation of energy and as a source for generating electricity from heat. For its practicality this energy has a strong market acceptance and provides a broad list of clients to fit their use, which makes it possible to reach diverse parts of the city. Its distribution requires a complex network of pipelines that branches throughout the city to meet all potential clients interested in this source of energy. To facilitate the design, analysis, expansion and location of bottlenecks and breaks in the distribution network, a modeling software is used that allows the network manager of the net to manage the various information about the network. This paper presents the advantages of modeling the gas distribution network of natural gas companies in Ceara, showing the tool used, the steps necessary for the implementation of the models, the advantages of using the software and the findings obtained with its use. (author)

  9. Riemannian multi-manifold modeling and clustering in brain networks

    Science.gov (United States)

    Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.

    2017-08-01

    This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.

  10. Modelling electric trains energy consumption using Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fernandez, P.; Garcia Roman, C.; Insa Franco, R.

    2016-07-01

    Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last years as they present an inherent efficiency compared to other transport means. However, in order to further expand their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of different variables and alternatives. With this need in mind, this paper presents the development of consumption models based on neural networks that calculate the energy consumption of electric trains. These networks have been trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective of reducing the costs and environmental impact associated to railways. (Author)

  11. Modeling In-Network Aggregation in VANETs

    NARCIS (Netherlands)

    Dietzel, Stefan; Kargl, Frank; Heijenk, Geert; Schaub, Florian

    2011-01-01

    The multitude of applications envisioned for vehicular ad hoc networks requires efficient communication and dissemination mechanisms to prevent network congestion. In-network data aggregation promises to reduce bandwidth requirements and enable scalability in large vehicular networks. However, most

  12. Stimulus Sensitivity of a Spiking Neural Network Model

    Science.gov (United States)

    Chevallier, Julien

    2018-02-01

    Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.

  13. Mayo Clinic Care Network: A Collaborative Health Care Model.

    Science.gov (United States)

    Wald, John T; Lowery-Schrandt, Sherri; Hayes, David L; Kotsenas, Amy L

    2018-01-01

    By leveraging its experience and expertise as a consultative clinical partner, the Mayo Clinic developed an innovative, scalable care model to accomplish several strategic goals: (1) create and sustain high-value relationships that benefit patients and providers, (2) foster relationships with like-minded partners to act as a strategy against the development of narrow health care networks, and (3) increase national and international brand awareness of Mayo Clinic. The result was the Mayo Clinic Care Network. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  14. Different Epidemic Models on Complex Networks

    International Nuclear Information System (INIS)

    Zhang Haifeng; Small, Michael; Fu Xinchu

    2009-01-01

    Models for diseases spreading are not just limited to SIS or SIR. For instance, for the spreading of AIDS/HIV, the susceptible individuals can be classified into different cases according to their immunity, and similarly, the infected individuals can be sorted into different classes according to their infectivity. Moreover, some diseases may develop through several stages. Many authors have shown that the individuals' relation can be viewed as a complex network. So in this paper, in order to better explain the dynamical behavior of epidemics, we consider different epidemic models on complex networks, and obtain the epidemic threshold for each case. Finally, we present numerical simulations for each case to verify our results.

  15. The Healthy Aging Research Network: Modeling Collaboration for Community Impact.

    Science.gov (United States)

    Belza, Basia; Altpeter, Mary; Smith, Matthew Lee; Ory, Marcia G

    2017-03-01

    As the first Centers for Disease Control and Prevention (CDC) Prevention Research Centers Program thematic network, the Healthy Aging Research Network was established to better understand the determinants of healthy aging within older adult populations, identify interventions that promote healthy aging, and assist in translating research into sustainable community-based programs throughout the nation. To achieve these goals requires concerted efforts of a collaborative network of academic, community, and public health organizational partnerships. For the 2001-2014 Prevention Research Center funding cycles, the Healthy Aging Research Network conducted prevention research and promoted the wide use of practices known to foster optimal health. Organized around components necessary for successful collaborations (i.e., governance and infrastructure, shaping focus, community involvement, and evaluation and improvement), this commentary highlights exemplars that demonstrate the Healthy Aging Research Network's unique contributions to the field. The Healthy Aging Research Network's collaboration provided a means to collectively build capacity for practice and policy, reduce fragmentation and duplication in health promotion and aging research efforts, maximize the efficient use of existing resources and generate additional resources, and ultimately, create synergies for advancing the healthy aging agenda. This collaborative model was built upon a backbone organization (coordinating center); setting of common agendas and mutually reinforcing activities; and continuous communications. Given its successes, the Healthy Aging Research Network model could be used to create new and evaluate existing thematic networks to guide the translation of research into policy and practice. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Centralized Bayesian reliability modelling with sensor networks

    Czech Academy of Sciences Publication Activity Database

    Dedecius, Kamil; Sečkárová, Vladimíra

    2013-01-01

    Roč. 19, č. 5 (2013), s. 471-482 ISSN 1387-3954 R&D Projects: GA MŠk 7D12004 Grant - others:GA MŠk(CZ) SVV-265315 Keywords : Bayesian modelling * Sensor network * Reliability Subject RIV: BD - Theory of Information Impact factor: 0.984, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0392551.pdf

  17. The Channel Network model and field applications

    International Nuclear Information System (INIS)

    Khademi, B.; Moreno, L.; Neretnieks, I.

    1999-01-01

    The Channel Network model describes the fluid flow and solute transport in fractured media. The model is based on field observations, which indicate that flow and transport take place in a three-dimensional network of connected channels. The channels are generated in the model from observed stochastic distributions and solute transport is modeled taking into account advection and rock interactions, such as matrix diffusion and sorption within the rock. The most important site-specific data for the Channel Network model are the conductance distribution of the channels and the flow-wetted surface. The latter is the surface area of the rock in contact with the flowing water. These parameters may be estimated from hydraulic measurements. For the Aespoe site, several borehole data sets are available, where a packer distance of 3 meters was used. Numerical experiments were performed in order to study the uncertainties in the determination of the flow-wetted surface and conductance distribution. Synthetic data were generated along a borehole and hydraulic tests with different packer distances were simulated. The model has previously been used to study the Long-term Pumping and Tracer Test (LPT2) carried out in the Aespoe Hard Rock Laboratory (HRL) in Sweden, where the distance travelled by the tracers was of the order hundreds of meters. Recently, the model has been used to simulate the tracer tests performed in the TRUE experiment at HRL, with travel distance of the order of tens of meters. Several tracer tests with non-sorbing and sorbing species have been performed

  18. Advances in dynamic network modeling in complex transportation systems

    CERN Document Server

    Ukkusuri, Satish V

    2013-01-01

    This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.

  19. Service providers' experiences of using a telehealth network 12 months after digitisation of a large Australian rural mental health service.

    Science.gov (United States)

    Newman, Lareen; Bidargaddi, Niranjan; Schrader, Geoffrey

    2016-10-01

    Complexity"; (4) "Technical Compatibility" with two sub-themes: technical-clinical and technical-administrative; and (5) "Broader Organisational Culture", with two sub-themes: organizational policy support and 'digital telehealth' culture. The digitised telehealth network was generally well received by providers and adopted into clinical practice. Compared with the previous analog system, staff found advantages in better visual and audio quality, more technical stability with less "drop-out", less time delay to conversations and less confusion for clients. Despite these advantages, providers identified a range of challenges to starting or continuing use and they recommended improvements to increase uptake among mental health service providers and other providers (including GPs), and to clinical uses other than mental health. To further increase uptake and impact of telehealth-mediated mental health care in rural and remote areas, even with a high quality digital system, future research must design innovative care models, consider time and cost incentives for providers to use telehealth, and must focus not only on technical training but also how to best integrate technology with clinical practice and must develop an organization-wide digital telehealth culture. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. RAHIM: Robust Adaptive Approach Based on Hierarchical Monitoring Providing Trust Aggregation for Wireless Sensor Networks

    NARCIS (Netherlands)

    Labraoui, Nabila; Gueroui, Mourad; Aliouat, Makhlouf; Petit, Jonathan

    2011-01-01

    In-network data aggregation has a great impact on the energy consumption in large-scale wireless sensor networks. However, the resource constraints and vulnerable deployment environments challenge the application of this technique in terms of security and efficiency. A compromised node may forge

  1. k-Degree Anonymity Model for Social Network Data Publishing

    Directory of Open Access Journals (Sweden)

    MACWAN, K. R.

    2017-11-01

    Full Text Available Publicly accessible platform for social networking has gained special attraction because of its easy data sharing. Data generated on such social network is analyzed for various activities like marketing, social psychology, etc. This requires preservation of sensitive attributes before it becomes easily accessible. Simply removing the personal identities of the users before publishing data is not enough to maintain the privacy of the individuals. The structure of the social network data itself reveals much information regarding its users and their connections. To resolve this problem, k-degree anonymous method is adopted. It emphasizes on the modification of the graph to provide at least k number of nodes that contain the same degree. However, this approach is not efficient on a huge amount of social data and the modification of the original data fails to maintain data usefulness. In addition to this, the current anonymization approaches focus on a degree sequence-based graph model which leads to major modification of the graph topological properties. In this paper, we have proposed an improved k-degree anonymity model that retain the social network structural properties and also to provide privacy to the individuals. Utility measurement approach for community based graph model is used to verify the performance of the proposed technique.

  2. Nonlinear signal processing using neural networks: Prediction and system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.; Farber, R.

    1987-06-01

    The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.

  3. A Comparison of Geographic Information Systems, Complex Networks, and Other Models for Analyzing Transportation Network Topologies

    Science.gov (United States)

    Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher

    2005-01-01

    This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.

  4. Benchmarking Measures of Network Controllability on Canonical Graph Models

    Science.gov (United States)

    Wu-Yan, Elena; Betzel, Richard F.; Tang, Evelyn; Gu, Shi; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-03-01

    The control of networked dynamical systems opens the possibility for new discoveries and therapies in systems biology and neuroscience. Recent theoretical advances provide candidate mechanisms by which a system can be driven from one pre-specified state to another, and computational approaches provide tools to test those mechanisms in real-world systems. Despite already having been applied to study network systems in biology and neuroscience, the practical performance of these tools and associated measures on simple networks with pre-specified structure has yet to be assessed. Here, we study the behavior of four control metrics (global, average, modal, and boundary controllability) on eight canonical graphs (including Erdős-Rényi, regular, small-world, random geometric, Barábasi-Albert preferential attachment, and several modular networks) with different edge weighting schemes (Gaussian, power-law, and two nonparametric distributions from brain networks, as examples of real-world systems). We observe that differences in global controllability across graph models are more salient when edge weight distributions are heavy-tailed as opposed to normal. In contrast, differences in average, modal, and boundary controllability across graph models (as well as across nodes in the graph) are more salient when edge weight distributions are less heavy-tailed. Across graph models and edge weighting schemes, average and modal controllability are negatively correlated with one another across nodes; yet, across graph instances, the relation between average and modal controllability can be positive, negative, or nonsignificant. Collectively, these findings demonstrate that controllability statistics (and their relations) differ across graphs with different topologies and that these differences can be muted or accentuated by differences in the edge weight distributions. More generally, our numerical studies motivate future analytical efforts to better understand the mathematical

  5. Modeling Network Transition Constraints with Hypergraphs

    DEFF Research Database (Denmark)

    Harrod, Steven

    2011-01-01

    Discrete time dynamic graphs are frequently used to model multicommodity flows or activity paths through constrained resources, but simple graphs fail to capture the interaction effects of resource transitions. The resulting schedules are not operationally feasible, and return inflated objective...... values. A directed hypergraph formulation is derived to address railway network sequencing constraints, and an experimental problem sample solved to estimate the magnitude of objective inflation when interaction effects are ignored. The model is used to demonstrate the value of advance scheduling...... of train paths on a busy North American railway....

  6. Empirical modeling of nuclear power plants using neural networks

    International Nuclear Information System (INIS)

    Parlos, A.G.; Atiya, A.; Chong, K.T.

    1991-01-01

    A summary of a procedure for nonlinear identification of process dynamics encountered in nuclear power plant components is presented in this paper using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the nonlinear structure for system identification. In the overall identification process, the feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of time-dependent system nonlinearities. The standard backpropagation learning algorithm is modified and is used to train the proposed hybrid network in a supervised manner. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The nonlinear response of a representative steam generator is predicted using a neural network and is compared to the response obtained from a sophisticated physical model during both high- and low-power operation. The transient responses compare well, though further research is warranted for training and testing of recurrent neural networks during more severe operational transients and accident scenarios

  7. Mathematical model for spreading dynamics of social network worms

    International Nuclear Information System (INIS)

    Sun, Xin; Liu, Yan-Heng; Han, Jia-Wei; Liu, Xue-Jie; Li, Bin; Li, Jin

    2012-01-01

    In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks

  8. Model parameter updating using Bayesian networks

    International Nuclear Information System (INIS)

    Treml, C.A.; Ross, Timothy J.

    2004-01-01

    This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.

  9. SPAN: A Network Providing Integrated, End-to-End, Sensor-to-Database Solutions for Environmental Sciences

    Science.gov (United States)

    Benzel, T.; Cho, Y. H.; Deschon, A.; Gullapalli, S.; Silva, F.

    2009-12-01

    In recent years, advances in sensor network technology have shown great promise to revolutionize environmental data collection. Still, wide spread adoption of these systems by domain experts has been lacking, and these have remained the purview of the engineers who design them. While there are many data logging options for basic data collection in the field currently, scientists are often required to visit the deployment sites to retrieve their data and manually import it into spreadsheets. Some advanced commercial software systems do allow scientists to collect data remotely, but most of these systems only allow point-to-point access, and require proprietary hardware. Furthermore, these commercial solutions preclude the use of sensors from other manufacturers or integration with internet based database repositories and compute engines. Therefore, scientists often must download and manually reformat their data before uploading it to the repositories if they wish to share their data. We present an open-source, low-cost, extensible, turnkey solution called Sensor Processing and Acquisition Network (SPAN) which provides a robust and flexible sensor network service. At the deployment site, SPAN leverages low-power generic embedded processors to integrate variety of commercially available sensor hardware to the network of environmental observation systems. By bringing intelligence close to the sensed phenomena, we can remotely control configuration and re-use, establish rules to trigger sensor activity, manage power requirements, and control the two-way flow of sensed data as well as control information to the sensors. Key features of our design include (1) adoption of a hardware agnostic architecture: our solutions are compatible with several programmable platforms, sensor systems, communication devices and protocols. (2) information standardization: our system supports several popular communication protocols and data formats, and (3) extensible data support: our

  10. Bayesian exponential random graph modeling of whole-brain structural networks across lifespan

    OpenAIRE

    Sinke, Michel R T; Dijkhuizen, Rick M; Caimo, Alberto; Stam, Cornelis J; Otte, Wim

    2016-01-01

    Descriptive neural network analyses have provided important insights into the organization of structural and functional networks in the human brain. However, these analyses have limitations for inter-subject or between-group comparisons in which network sizes and edge densities may differ, such as in studies on neurodevelopment or brain diseases. Furthermore, descriptive neural network analyses lack an appropriate generic null model and a unifying framework. These issues may be solved with an...

  11. Designing area optimized application-specific network-on-chip architectures while providing hard QoS guarantees.

    Directory of Open Access Journals (Sweden)

    Sajid Gul Khawaja

    Full Text Available With the increase of transistors' density, popularity of System on Chip (SoC has increased exponentially. As a communication module for SoC, Network on Chip (NoC framework has been adapted as its backbone. In this paper, we propose a methodology for designing area-optimized application specific NoC while providing hard Quality of Service (QoS guarantees for real time flows. The novelty of the proposed system lies in derivation of a Mixed Integer Linear Programming model which is then used to generate a resource optimal Network on Chip (NoC topology and architecture while considering traffic and QoS requirements. We also present the micro-architectural design features used for enabling traffic and latency guarantees and discuss how the solution adapts for dynamic variations in the application traffic. The paper highlights the effectiveness of proposed method by generating resource efficient NoC solutions for both industrial and benchmark applications. The area-optimized results are generated in few seconds by proposed technique, without resorting to heuristics, even for an application with 48 traffic flows.

  12. Complex networks-based energy-efficient evolution model for wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)

    2009-08-30

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  13. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun

    2009-01-01

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  14. Synchronous versus asynchronous modeling of gene regulatory networks.

    Science.gov (United States)

    Garg, Abhishek; Di Cara, Alessandro; Xenarios, Ioannis; Mendoza, Luis; De Micheli, Giovanni

    2008-09-01

    In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.

  15. Improving Earth/Prediction Models to Improve Network Processing

    Science.gov (United States)

    Wagner, G. S.

    2017-12-01

    The United States Atomic Energy Detection System (USAEDS) primaryseismic network consists of a relatively small number of arrays andthree-component stations. The relatively small number of stationsin the USAEDS primary network make it both necessary and feasibleto optimize both station and network processing.Station processing improvements include detector tuning effortsthat use Receiver Operator Characteristic (ROC) curves to helpjudiciously set acceptable Type 1 (false) vs. Type 2 (miss) errorrates. Other station processing improvements include the use ofempirical/historical observations and continuous background noisemeasurements to compute time-varying, maximum likelihood probabilityof detection thresholds.The USAEDS network processing software makes extensive use of theazimuth and slowness information provided by frequency-wavenumberanalysis at array sites, and polarization analysis at three-componentsites. Most of the improvements in USAEDS network processing aredue to improvements in the models used to predict azimuth, slowness,and probability of detection. Kriged travel-time, azimuth andslowness corrections-and associated uncertainties-are computedusing a ground truth database. Improvements in station processingand the use of improved models for azimuth, slowness, and probabilityof detection have led to significant improvements in USADES networkprocessing.

  16. Testing a Cloud Provider Network for Hybrid P2P and Cloud Streaming Architectures

    OpenAIRE

    Cerviño Arriba, Javier; Rodríguez, Pedro; Trajkovska, Irena; Mozo Velasco, Alberto; Salvachúa Rodríguez, Joaquín

    2011-01-01

    The number of online real-time streaming services deployed over network topologies like P2P or centralized ones has remarkably increased in the recent years. This has revealed the lack of networks that are well prepared to respond to this kind of traffic. A hybrid distribution network can be an efficient solution for real-time streaming services. This paper contains the experimental results of streaming distribution in a hybrid architecture that consist of mixed connections among P2P and Clou...

  17. Modeling the Effect of Bandwidth Allocation on Network Performance

    African Journals Online (AJOL)

    ... The proposed model showed improved performance for CDMA networks, but further increase in the bandwidth did not benefit the network; (iii) A reliability measure such as the spectral efficiency is therefore useful to redeem the limitation in (ii). Keywords: Coverage Capacity, CDMA, Mobile Network, Network Throughput ...

  18. Computational Models and Emergent Properties of Respiratory Neural Networks

    Science.gov (United States)

    Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.

    2012-01-01

    Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564

  19. Modelling dependable systems using hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter

    2008-01-01

    A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems

  20. Logic integer programming models for signaling networks.

    Science.gov (United States)

    Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert

    2009-05-01

    We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.

  1. Modeling Networks and Dynamics in Complex Systems: from Nano-Composites to Opinion Formation

    Science.gov (United States)

    Shi, Feng

    Complex networks are ubiquitous in systems of physical, biological, social or technological origin. Components in those systems range from as large as cities in power grids, to as small as molecules in metabolic networks. Since the dawn of network science, significant attention has focused on the implications of dynamics in establishing network structure and the impact of structural properties on dynamics on those networks. The first part of the thesis follows this direction, studying the network formed by conductive nanorods in nano-materials, and focuses on the electrical response of the composite to the structure change of the network. New scaling laws for the shear-induced anisotropic percolation are introduced and a robust exponential tail of the current distribution across the network is identified. These results are relevant especially to "active" composite materials where materials are exposed to mechanical loading and strain deformations. However, in many real-world networks the evolution of the network topology is tied to the states of the vertices and vice versa. Networks that exhibit such a feedback are called adaptive or coevolutionary networks. The second part of the thesis examines two closely related variants of a simple, abstract model for coevolution of a network and the opinions of its members. As a representative model for adaptive networks, it displays the feature of self-organization of the system into a stable configuration due to the interplay between the network topology and the dynamics on the network. This simple model yields interesting dynamics and the slight change in the rewiring strategy results in qualitatively different behaviors of the system. In conclusion, the dissertation aims to develop new network models and tools which enable insights into the structure and dynamics of various systems, and seeks to advance network algorithms which provide approaches to coherently articulated questions in real-world complex systems such as

  2. Optimized green operation of LTE networks in the presence of multiple electricity providers

    KAUST Repository

    Ghazzai, Hakim

    2012-12-01

    Energy efficiency aspects in cellular networks can significantly contribute to the reduction of greenhouse gas emissions and help to save the environment. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off redundant BSs mainly for lightly loaded networks. Besides, introducing renewable energies as alternative power sources becomes a real challenge to network operators. In this paper, we propose a method that reduces the energy consumption of BSs by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from different retailers (Renewable energy and electricity retailers). We formulate an optimization problem that leads to the maximization of the profit of a Long-Term Evolution (LTE) cellular operator, and at the same time to the minimization of CO2 emissions in green wireless cellular networks without affecting the desired Quality of Service. © 2012 IEEE.

  3. Optimized green operation of LTE networks in the presence of multiple electricity providers

    KAUST Repository

    Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.

    2012-01-01

    Energy efficiency aspects in cellular networks can significantly contribute to the reduction of greenhouse gas emissions and help to save the environment. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off redundant BSs mainly for lightly loaded networks. Besides, introducing renewable energies as alternative power sources becomes a real challenge to network operators. In this paper, we propose a method that reduces the energy consumption of BSs by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from different retailers (Renewable energy and electricity retailers). We formulate an optimization problem that leads to the maximization of the profit of a Long-Term Evolution (LTE) cellular operator, and at the same time to the minimization of CO2 emissions in green wireless cellular networks without affecting the desired Quality of Service. © 2012 IEEE.

  4. An intermodal transportation geospatial network modeling for containerized soybean shipping

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2017-06-01

    Full Text Available Containerized shipping is a growing market for agricultural exports, particularly soybeans. In order to understand the optimal strategies for improving the United States’ economic competitiveness in this emerging market, this research develops an intermodal transportation network modeling framework, focusing on U.S. soybean container shipments. Built upon detailed modal cost analyses, a Geospatial Intermodal Freight Transportation (GIFT model has been developed to understand the optimal network design for U.S. soybean exports. Based on market demand and domestic supply figures, the model is able to determine which domestically produced soybeans should go to which foreign markets, and by which transport modes. This research and its continual studies, will provide insights into future policies and practices that can improve the transportation efficiency of soybean logistics.

  5. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  6. Using structural equation modeling for network meta-analysis.

    Science.gov (United States)

    Tu, Yu-Kang; Wu, Yun-Chun

    2017-07-14

    Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison

  7. Model organoids provide new research opportunities for ductal pancreatic cancer

    NARCIS (Netherlands)

    Boj, Sylvia F; Hwang, Chang-Il; Baker, Lindsey A; Engle, Dannielle D; Tuveson, David A; Clevers, Hans

    We recently established organoid models from normal and neoplastic murine and human pancreas tissues. These organoids exhibit ductal- and disease stage-specific characteristics and, after orthotopic transplantation, recapitulate the full spectrum of tumor progression. Pancreatic organoid technology

  8. OA20 The positioning of family, friends, community, and service providers in support networks for caring at end-of-life: a social network analysis.

    Science.gov (United States)

    Leonard, Rosemary; Horsfall, Debbie; Rosenberg, John; Noonan, Kerrie

    2015-04-01

    Although there is ample evidence of the risk to carers from the burden of caring, there is also evidence that a caring network can relieve the burden on the principal carer, strengthen community relationships, and increase 'Death Literacy' in the community. There is often an assumption that, in caring networks, family and service providers are central and friends and community are marginal. We examined whether this is the case in practice using SNA. To identify the relative positioning of family, friends, community, and service providers in caring networks. In interviews with carers (N = 23) and focus groups with caring networks (N = 13) participants were asked to list the people in the caring network and rate the strength of their relationships to them (0 no relationship to 3 strong relationship). SNA in UCInet was used to map the networks, examine density (number and strength of relationships) across time (when caring began to the present) and across relationship types (family, friends, community, and service providers) supplemented by qualitative data. The analysis revealed significant increases in the density of the networks over time. The density of relationships with friends was similar to that other family. Community and service providers had significantly lower density. Qualitative analysis revealed that often service providers were not seen as part of the networks. To avoid carer burnout, it is important not to make assumptions about where carers obtain support but work with each carer to mobilise any support that is available. © 2015, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Research on network information security model and system construction

    OpenAIRE

    Wang Haijun

    2016-01-01

    It briefly describes the impact of large data era on China’s network policy, but also brings more opportunities and challenges to the network information security. This paper reviews for the internationally accepted basic model and characteristics of network information security, and analyses the characteristics of network information security and their relationship. On the basis of the NIST security model, this paper describes three security control schemes in safety management model and the...

  10. Statistical and RBF NN models : providing forecasts and risk assessment

    OpenAIRE

    Marček, Milan

    2009-01-01

    Forecast accuracy of economic and financial processes is a popular measure for quantifying the risk in decision making. In this paper, we develop forecasting models based on statistical (stochastic) methods, sometimes called hard computing, and on a soft method using granular computing. We consider the accuracy of forecasting models as a measure for risk evaluation. It is found that the risk estimation process based on soft methods is simplified and less critical to the question w...

  11. Analyzing, Modeling, and Simulation for Human Dynamics in Social Network

    Directory of Open Access Journals (Sweden)

    Yunpeng Xiao

    2012-01-01

    Full Text Available This paper studies the human behavior in the top-one social network system in China (Sina Microblog system. By analyzing real-life data at a large scale, we find that the message releasing interval (intermessage time obeys power law distribution both at individual level and at group level. Statistical analysis also reveals that human behavior in social network is mainly driven by four basic elements: social pressure, social identity, social participation, and social relation between individuals. Empirical results present the four elements' impact on the human behavior and the relation between these elements. To further understand the mechanism of such dynamic phenomena, a hybrid human dynamic model which combines “interest” of individual and “interaction” among people is introduced, incorporating the four elements simultaneously. To provide a solid evaluation, we simulate both two-agent and multiagent interactions with real-life social network topology. We achieve the consistent results between empirical studies and the simulations. The model can provide a good understanding of human dynamics in social network.

  12. MODEL OF PROVIDING WITH DEVELOPMENT STRATEGY FOR INFORMATION TECHNOLOGIES IN AN ORGANIZATION

    Directory of Open Access Journals (Sweden)

    A. A. Kuzkin

    2015-03-01

    Full Text Available Subject of research. The paper presents research and instructional tools for assessment of providing with the development strategy for information technologies in an organization. Method. The corresponding assessment model is developed which takes into consideration IT-processes equilibrium according to selected efficiency factors of information technologies application. Basic results. The model peculiarity resides in applying neuro-fuzzy approximators where the conclusion is drawn upon fuzzy logic, and membership functions are adjusted through the use of neural networks. For the adequacy testing of the suggested model, due diligence result analysis has been carried out for the IT-strategy executed in the “Navigator” group of companies at the stage of implementation and support of new technologies and production methods. Data visualization with a circle diagram is applied for the comparative evaluation of the analysis results. The chosen model adequacy is proved by the agreement between predictive assessments for IT-strategy performance targets derived by means of the fuzzy cognitive model over 12 months planning horizon and the real values of these targets upon the expiry of the given planning term. Practical significance. The developed model application gives the possibility to solve the problem of sustainability assessment for the process of providing the required IT-strategy realization level based upon the fuzzy cognitive map analysis and to reveal IT-objectives changing tendencies for an organization over the stated planning interval.

  13. Two stage neural network modelling for robust model predictive control.

    Science.gov (United States)

    Patan, Krzysztof

    2018-01-01

    The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Project ECHO: A Telementoring Network Model for Continuing Professional Development.

    Science.gov (United States)

    Arora, Sanjeev; Kalishman, Summers G; Thornton, Karla A; Komaromy, Miriam S; Katzman, Joanna G; Struminger, Bruce B; Rayburn, William F

    2017-01-01

    A major challenge with current systems of CME is the inability to translate the explosive growth in health care knowledge into daily practice. Project ECHO (Extension for Community Healthcare Outcomes) is a telementoring network designed for continuing professional development (CPD) and improving patient outcomes. The purpose of this article was to describe how the model has complied with recommendations from several authoritative reports about redesigning and enhancing CPD. This model links primary care clinicians through a knowledge network with an interprofessional team of specialists from an academic medical center who provide telementoring and ongoing education enabling community clinicians to treat patients with a variety of complex conditions. Knowledge and skills are shared during weekly condition-specific videoconferences. The model exemplifies learning as described in the seven levels of CPD by Moore (participation, satisfaction, learning, competence, performance, patient, and community health). The model is also aligned with recommendations from four national reports intended to redesign knowledge transfer in improving health care. Efforts in learning sessions focus on information that is relevant to practice, focus on evidence, education methodology, tailoring of recommendations to individual needs and community resources, and interprofessionalism. Project ECHO serves as a telementoring network model of CPD that aligns with current best practice recommendations for CME. This transformative initiative has the potential to serve as a leading model for larger scale CPD, nationally and globally, to enhance access to care, improve quality, and reduce cost.

  15. Neural Networks For Electrohydrodynamic Effect Modelling

    Directory of Open Access Journals (Sweden)

    Wiesław Wajs

    2004-01-01

    Full Text Available This paper presents currently achieved results concerning methods of electrohydrodynamiceffect used in geophysics simulated with feedforward networks trained with backpropagation algorithm, radial basis function networks and generalized regression networks.

  16. A hierarchical network modeling method for railway tunnels safety assessment

    Science.gov (United States)

    Zhou, Jin; Xu, Weixiang; Guo, Xin; Liu, Xumin

    2017-02-01

    Using network theory to model risk-related knowledge on accidents is regarded as potential very helpful in risk management. A large amount of defects detection data for railway tunnels is collected in autumn every year in China. It is extremely important to discover the regularities knowledge in database. In this paper, based on network theories and by using data mining techniques, a new method is proposed for mining risk-related regularities to support risk management in railway tunnel projects. A hierarchical network (HN) model which takes into account the tunnel structures, tunnel defects, potential failures and accidents is established. An improved Apriori algorithm is designed to rapidly and effectively mine correlations between tunnel structures and tunnel defects. Then an algorithm is presented in order to mine the risk-related regularities table (RRT) from the frequent patterns. At last, a safety assessment method is proposed by consideration of actual defects and possible risks of defects gained from the RRT. This method cannot only generate the quantitative risk results but also reveal the key defects and critical risks of defects. This paper is further development on accident causation network modeling methods which can provide guidance for specific maintenance measure.

  17. Neural network models of categorical perception.

    Science.gov (United States)

    Damper, R I; Harnad, S R

    2000-05-01

    Studies of the categorical perception (CP) of sensory continua have a long and rich history in psychophysics. In 1977, Macmillan, Kaplan, and Creelman introduced the use of signal detection theory to CP studies. Anderson and colleagues simultaneously proposed the first neural model for CP, yet this line of research has been less well explored. In this paper, we assess the ability of neural-network models of CP to predict the psychophysical performance of real observers with speech sounds and artificial/novel stimuli. We show that a variety of neural mechanisms are capable of generating the characteristics of CP. Hence, CP may not be a special model of perception but an emergent property of any sufficiently powerful general learning system.

  18. Combination of Bayesian Network and Overlay Model in User Modeling

    Directory of Open Access Journals (Sweden)

    Loc Nguyen

    2009-12-01

    Full Text Available The core of adaptive system is user model containing personal information such as knowledge, learning styles, goals… which is requisite for learning personalized process. There are many modeling approaches, for example: stereotype, overlay, plan recognition… but they don’t bring out the solid method for reasoning from user model. This paper introduces the statistical method that combines Bayesian network and overlay modeling so that it is able to infer user’s knowledge from evidences collected during user’s learning process.

  19. Fitting Latent Cluster Models for Networks with latentnet

    Directory of Open Access Journals (Sweden)

    Pavel N. Krivitsky

    2007-12-01

    Full Text Available latentnet is a package to fit and evaluate statistical latent position and cluster models for networks. Hoff, Raftery, and Handcock (2002 suggested an approach to modeling networks based on positing the existence of an latent space of characteristics of the actors. Relationships form as a function of distances between these characteristics as well as functions of observed dyadic level covariates. In latentnet social distances are represented in a Euclidean space. It also includes a variant of the extension of the latent position model to allow for clustering of the positions developed in Handcock, Raftery, and Tantrum (2007.The package implements Bayesian inference for the models based on an Markov chain Monte Carlo algorithm. It can also compute maximum likelihood estimates for the latent position model and a two-stage maximum likelihood method for the latent position cluster model. For latent position cluster models, the package provides a Bayesian way of assessing how many groups there are, and thus whether or not there is any clustering (since if the preferred number of groups is 1, there is little evidence for clustering. It also estimates which cluster each actor belongs to. These estimates are probabilistic, and provide the probability of each actor belonging to each cluster. It computes four types of point estimates for the coefficients and positions: maximum likelihood estimate, posterior mean, posterior mode and the estimator which minimizes Kullback-Leibler divergence from the posterior. You can assess the goodness-of-fit of the model via posterior predictive checks. It has a function to simulate networks from a latent position or latent position cluster model.

  20. Networks model of the East Turkistan terrorism

    Science.gov (United States)

    Li, Ben-xian; Zhu, Jun-fang; Wang, Shun-guo

    2015-02-01

    The presence of the East Turkistan terrorist network in China can be traced back to the rebellions on the BAREN region in Xinjiang in April 1990. This article intends to research the East Turkistan networks in China and offer a panoramic view. The events, terrorists and their relationship are described using matrices. Then social network analysis is adopted to reveal the network type and the network structure characteristics. We also find the crucial terrorist leader. Ultimately, some results show that the East Turkistan network has big hub nodes and small shortest path, and that the network follows a pattern of small world network with hierarchical structure.

  1. Vein networks in hydrothermal systems provide constraints for the monitoring of active volcanoes.

    Science.gov (United States)

    Cucci, Luigi; Di Luccio, Francesca; Esposito, Alessandra; Ventura, Guido

    2017-03-10

    Vein networks affect the hydrothermal systems of many volcanoes, and variations in their arrangement may precede hydrothermal and volcanic eruptions. However, the long-term evolution of vein networks is often unknown because data are lacking. We analyze two gypsum-filled vein networks affecting the hydrothermal field of the active Lipari volcanic Island (Italy) to reconstruct the dynamics of the hydrothermal processes. The older network (E1) consists of sub-vertical, N-S striking veins; the younger network (E2) consists of veins without a preferred strike and dip. E2 veins have larger aperture/length, fracture density, dilatancy, and finite extension than E1. The fluid overpressure of E2 is larger than that of E1 veins, whereas the hydraulic conductance is lower. The larger number of fracture intersections in E2 slows down the fluid movement, and favors fluid interference effects and pressurization. Depths of the E1 and E2 hydrothermal sources are 0.8 km and 4.6 km, respectively. The decrease in the fluid flux, depth of the hydrothermal source, and the pressurization increase in E2 are likely associated to a magma reservoir. The decrease of fluid discharge in hydrothermal fields may reflect pressurization at depth potentially preceding hydrothermal explosions. This has significant implications for the long-term monitoring strategy of volcanoes.

  2. Pruning Boltzmann networks and hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Morten With; Stork, D.

    1996-01-01

    We present sensitivity-based pruning algorithms for general Boltzmann networks. Central to our methods is the efficient calculation of a second-order approximation to the true weight saliencies in a cross-entropy error. Building upon previous work which shows a formal correspondence between linear...... Boltzmann chains and hidden Markov models (HMMs), we argue that our method can be applied to HMMs as well. We illustrate pruning on Boltzmann zippers, which are equivalent to two HMMs with cross-connection links. We verify that our second-order approximation preserves the rank ordering of weight saliencies...

  3. Compartmentalization analysis using discrete fracture network models

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  4. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...... between horizontal sliding and rocking is discussed....

  5. Analysis and Comparison of Typical Models within Distribution Network Design

    DEFF Research Database (Denmark)

    Jørgensen, Hans Jacob; Larsen, Allan; Madsen, Oli B.G.

    This paper investigates the characteristics of typical optimisation models within Distribution Network Design. During the paper fourteen models known from the literature will be thoroughly analysed. Through this analysis a schematic approach to categorisation of distribution network design models...... for educational purposes. Furthermore, the paper can be seen as a practical introduction to network design modelling as well as a being an art manual or recipe when constructing such a model....

  6. A Performance Evaluation Model for Mobile Ad Hoc Networks and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Heng LUO

    2014-03-01

    Full Text Available Potential applications in areas such as military sites and disaster relief fields that are characterized by absence of prefixed infrastructure justify the development of mobile ad hoc networks (MANETs and wireless sensor networks (WSNs. However, unfavorable wireless links and dynamic topology are still challenging, leading to the proposal of a collection of routing protocols for MANETs and WSNs. Nevertheless the performance of algorithms may vary with deployment scenario due to the application dependent philosophy behind algorithms. In this paper, the performance evaluation problem for MANETs and WSNs is investigated and a novel performance ranking model, termed AHP-SAW, is proposed. For simplicity but without loss of generality, the performance of two routing protocols DSDV and DSR are studies based on which ranking results are provided. Extensive simulations show that an overall 37.2 %, at most, gain may be achieved based on the AHP-SAW model.

  7. A Search Model with a Quasi-Network

    DEFF Research Database (Denmark)

    Ejarque, Joao Miguel

    This paper adds a quasi-network to a search model of the labor market. Fitting the model to an average unemployment rate and to other moments in the data implies the presence of the network is not noticeable in the basic properties of the unemployment and job finding rates. However, the network...

  8. Joint Modelling of Structural and Functional Brain Networks

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Herlau, Tue; Mørup, Morten

    -parametric Bayesian network model which allows for joint modelling and integration of multiple networks. We demonstrate the model’s ability to detect vertices that share structure across networks jointly in functional MRI (fMRI) and diffusion MRI (dMRI) data. Using two fMRI and dMRI scans per subject, we establish...

  9. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological decomposition of pollutants in the reactor. The neural network has been trained with experimental data ...

  10. Degree distribution of a new model for evolving networks

    Indian Academy of Sciences (India)

    on intuitive but realistic consideration that nodes are added to the network with both preferential and random attachments. The degree distribution of the model is between a power-law and an exponential decay. Motivated by the features of network evolution, we introduce a new model of evolving networks, incorporating the ...

  11. Gene Expression Networks in the Murine Pulmonary Myocardium Provide Insight into the Pathobiology of Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Jordan K. Boutilier

    2017-09-01

    Full Text Available The pulmonary myocardium is a muscular coat surrounding the pulmonary and caval veins. Although its definitive physiological function is unknown, it may have a pathological role as the source of ectopic beats initiating atrial fibrillation. How the pulmonary myocardium gains pacemaker function is not clearly defined, although recent evidence indicates that changed transcriptional gene expression networks are at fault. The gene expression profile of this distinct cell type in situ was examined to investigate underlying molecular events that might contribute to atrial fibrillation. Via systems genetics, a whole-lung transcriptome data set from the BXD recombinant inbred mouse resource was analyzed, uncovering a pulmonary cardiomyocyte gene network of 24 transcripts, coordinately regulated by chromosome 1 and 2 loci. Promoter enrichment analysis and interrogation of publicly available ChIP-seq data suggested that transcription of this gene network may be regulated by the concerted activity of NKX2-5, serum response factor, myocyte enhancer factor 2, and also, at a post-transcriptional level, by RNA binding protein motif 20. Gene ontology terms indicate that this gene network overlaps with molecular markers of the stressed heart. Therefore, we propose that perturbed regulation of this gene network might lead to altered calcium handling, myocyte growth, and contractile force contributing to the aberrant electrophysiological properties observed in atrial fibrillation. We reveal novel molecular interactions and pathways representing possible therapeutic targets for atrial fibrillation. In addition, we highlight the utility of recombinant inbred mouse resources in detecting and characterizing gene expression networks of relatively small populations of cells that have a pathological significance.

  12. Centralised gaming models: providing optimal gambling behaviour controls

    OpenAIRE

    Griffiths, MD; Wood, RTA

    2009-01-01

    The expansion in the gaming industry and its widening attraction points to the need for ever more verifiable means of controlling problem gambling. Various strategies have been built into casino venue operations to address this, but recently, following a new focus on social responsibility, a group of experts considered the possibilities of a centralised gaming model as a more effective control mechanism for dealing with gambling behaviours.

  13. A network of networks model to study phase synchronization using structural connection matrix of human brain

    Science.gov (United States)

    Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.

    2018-04-01

    The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.

  14. SUNSEED — An evolutionary path to smart grid comms over converged telco and energy provider networks

    DEFF Research Database (Denmark)

    Stefanovic, Cedomir; Popovski, Petar; Jorguseski, Ljupco

    2014-01-01

    of energy distribution service operators (DSO) and telecom operators (telco) for the future smart grid operations and services. To achieve this objective, SUNSEED proposes an evolutionary approach to converge existing DSO and telco networks, consisting of six steps: overlap, interconnect, interoperate......SUNSEED, “Sustainable and robust networking for smart electricity distribution”, is a 3-year project started in 2014 and partially funded under call FP7-ICT-2013-11. The project objective is to research, design and implement methods for exploitation of existing communication infrastructure...

  15. Quantum-Like Bayesian Networks for Modeling Decision Making

    Directory of Open Access Journals (Sweden)

    Catarina eMoreira

    2016-01-01

    Full Text Available In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.

  16. Fluid Methods for Modeling Large, Heterogeneous Networks

    National Research Council Canada - National Science Library

    Towsley, Don; Gong, Weibo; Hollot, Kris; Liu, Yong; Misra, Vishal

    2005-01-01

    .... The resulting fluid models were used to develop novel active queue management mechanisms resulting in more stable TCP performance and novel rate controllers for the purpose of providing minimum rate...

  17. Active patterning and asymmetric transport in a model actomyosin network

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shenshen [Department of Chemical Engineering and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Wolynes, Peter G. [Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)

    2013-12-21

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  18. Fracture network modeling and GoldSim simulation support

    International Nuclear Information System (INIS)

    Sugita, Kenichiro; Dershowitz, William

    2004-01-01

    During Heisei-15, Golder Associates provided support for JNC Tokai through discrete fracture network data analysis and simulation of the MIU Underground Rock Laboratory, participation in Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport, and development of methodologies for analysis of repository site characterization strategies and safety assessment. MIU Underground Rock Laboratory support during H-15 involved development of new discrete fracture network (DFN) models for the MIU Shoba-sama Site, in the region of shaft development. Golder developed three DFN models for the site using discrete fracture network, equivalent porous medium (EPM), and nested DFN/EPM approaches. Each of these models were compared based upon criteria established for the multiple modeling project (MMP). Golder supported JNC participation in Task 6AB, 6D and 6E of the Aespoe Task Force on Modelling of Groundwater Flow and Transport during H-15. For Task 6AB, Golder implemented an updated microstructural model in GoldSim, and used this updated model to simulate the propagation of uncertainty from experimental to safety assessment time scales, for 5 m scale transport path lengths. Task 6D and 6E compared safety assessment (PA) and experimental time scale simulations in a 200 m scale discrete fracture network. For Task 6D, Golder implemented a DFN model using FracMan/PA Works, and determined the sensitivity of solute transport to a range of material property and geometric assumptions. For Task 6E, Golder carried out demonstration FracMan/PA Works transport calculations at a 1 million year time scale, to ensure that task specifications are realistic. The majority of work for Task 6E will be carried out during H-16. During H-15, Golder supported JNC's Total System Performance Assessment (TSPO) strategy by developing technologies for the analysis of precipitant concentration. These approaches were based on the GoldSim precipitant data management features, and were

  19. QSAR modelling using combined simple competitive learning networks and RBF neural networks.

    Science.gov (United States)

    Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E

    2018-04-01

    The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.

  20. Linear approximation model network and its formation via ...

    Indian Academy of Sciences (India)

    niques, an alternative `linear approximation model' (LAM) network approach is .... network is LPV, existing LTI theory is difficult to apply (Kailath 1980). ..... Beck J V, Arnold K J 1977 Parameter estimation in engineering and science (New York: ...

  1. Equity venture capital platform model based on complex network

    Science.gov (United States)

    Guo, Dongwei; Zhang, Lanshu; Liu, Miao

    2018-05-01

    This paper uses the small-world network and the random-network to simulate the relationship among the investors, construct the network model of the equity venture capital platform to explore the impact of the fraud rate and the bankruptcy rate on the robustness of the network model while observing the impact of the average path length and the average agglomeration coefficient of the investor relationship network on the income of the network model. The study found that the fraud rate and bankruptcy rate exceeded a certain threshold will lead to network collapse; The bankruptcy rate has a great influence on the income of the platform; The risk premium exists, and the average return is better under a certain range of bankruptcy risk; The structure of the investor relationship network has no effect on the income of the investment model.

  2. Feature network models for proximity data : statistical inference, model selection, network representations and links with related models

    NARCIS (Netherlands)

    Frank, Laurence Emmanuelle

    2006-01-01

    Feature Network Models (FNM) are graphical structures that represent proximity data in a discrete space with the use of features. A statistical inference theory is introduced, based on the additivity properties of networks and the linear regression framework. Considering features as predictor

  3. Related work on reference modeling for collaborative networks

    NARCIS (Netherlands)

    Afsarmanesh, H.; Camarinha-Matos, L.M.; Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Several international research and development initiatives have led to development of models for organizations and organization interactions. These models and their approaches constitute a background for development of reference models for collaborative networks. A brief survey of work on modeling

  4. A random spatial network model based on elementary postulates

    Science.gov (United States)

    Karlinger, Michael R.; Troutman, Brent M.

    1989-01-01

    A model for generating random spatial networks that is based on elementary postulates comparable to those of the random topology model is proposed. In contrast to the random topology model, this model ascribes a unique spatial specification to generated drainage networks, a distinguishing property of some network growth models. The simplicity of the postulates creates an opportunity for potential analytic investigations of the probabilistic structure of the drainage networks, while the spatial specification enables analyses of spatially dependent network properties. In the random topology model all drainage networks, conditioned on magnitude (number of first-order streams), are equally likely, whereas in this model all spanning trees of a grid, conditioned on area and drainage density, are equally likely. As a result, link lengths in the generated networks are not independent, as usually assumed in the random topology model. For a preliminary model evaluation, scale-dependent network characteristics, such as geometric diameter and link length properties, and topologic characteristics, such as bifurcation ratio, are computed for sets of drainage networks generated on square and rectangular grids. Statistics of the bifurcation and length ratios fall within the range of values reported for natural drainage networks, but geometric diameters tend to be relatively longer than those for natural networks.

  5. PageRank model of opinion formation on Ulam networks

    Science.gov (United States)

    Chakhmakhchyan, L.; Shepelyansky, D.

    2013-12-01

    We consider a PageRank model of opinion formation on Ulam networks, generated by the intermittency map and the typical Chirikov map. The Ulam networks generated by these maps have certain similarities with such scale-free networks as the World Wide Web (WWW), showing an algebraic decay of the PageRank probability. We find that the opinion formation process on Ulam networks has certain similarities but also distinct features comparing to the WWW. We attribute these distinctions to internal differences in network structure of the Ulam and WWW networks. We also analyze the process of opinion formation in the frame of generalized Sznajd model which protects opinion of small communities.

  6. An Improved Car-Following Model in Vehicle Networking Based on Network Control

    Directory of Open Access Journals (Sweden)

    D. Y. Kong

    2014-01-01

    Full Text Available Vehicle networking is a system to realize information interoperability between vehicles and people, vehicles and roads, vehicles and vehicles, and cars and transport facilities, through the network information exchange, in order to achieve the effective monitoring of the vehicle and traffic flow. Realizing information interoperability between vehicles and vehicles, which can affect the traffic flow, is an important application of network control system (NCS. In this paper, a car-following model using vehicle networking theory is established, based on network control principle. The car-following model, which is an improvement of the traditional traffic model, describes the traffic in vehicle networking condition. The impact that vehicle networking has on the traffic flow is quantitatively assessed in a particular scene of one-way, no lane changing highway. The examples show that the capacity of the road is effectively enhanced by using vehicle networking.

  7. Commanders and Cyber Chat: Should More Guidance be Provided for Social Networking Sites

    Science.gov (United States)

    2011-04-01

    networks. On one hand, the perception is there should be rules of etiquette for friending someone related to social norms of endorsing that person...agreed.. Reasons given in free text by lieutenants were as follows: - “Plenty of briefings were given on basic protocol regarding what goes on

  8. A New Resource for STD Clinical Providers: The Sexually Transmitted Diseases Clinical Consultation Network.

    Science.gov (United States)

    Caragol, Laura A; Wendel, Karen A; Anderson, Teri S; Burnside, Helen C; Finkenbinder, Allison; Fitch, John D; Kelley, Destiny H; Stewart, Terry W; Thrun, Mark; Rietmeijer, Cornelis A

    2017-08-01

    An online consultation tool, the Sexually Transmitted Diseases Clinical Consultation Network is a new resource for sexually transmitted disease clinicians and clinic managers. An initial evaluation shows that most requests (29%) were from medical doctors, followed by nurse practitioners (22%). Syphilis queries comprised 39% of consults followed by gonorrhea (12%) and chlamydia (11%).

  9. Marketing communications model for innovation networks

    Directory of Open Access Journals (Sweden)

    Tiago João Freitas Correia

    2015-10-01

    Full Text Available Innovation is an increasingly relevant concept for the success of any organization, but it also represents a set of internal and external considerations, barriers and challenges to overcome. Along the concept of innovation, new paradigms emerge such as open innovation and co-creation that are simultaneously innovation modifiers and intensifiers in organizations, promoting organizational openness and stakeholder integration within the value creation process. Innovation networks composed by a multiplicity of agents in co-creative work perform as innovation mechanisms to face the increasingly complexity of products, services and markets. Technology, especially the Internet, is an enabler of all process among organizations supported by co-creative platforms for innovation. The definition of marketing communication strategies that promote motivation and involvement of all stakeholders in synergic creation and external promotion is the central aspect of this research. The implementation of the projects is performed by participative workshops with stakeholders from Madan Parque through IDEAS(REVOLUTION methodology and the operational model LinkUp parameterized for the project. The project is divided into the first part, the theoretical framework, and the second part where a model is developed for the marketing communication strategies that appeal to the Madan Parque case study. Keywords: Marketing Communication; Open Innovation, Technology; Innovation Networks; Incubator; Co-Creation.

  10. A graph model for opportunistic network coding

    KAUST Repository

    Sorour, Sameh

    2015-08-12

    © 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.

  11. Efficient Bayesian network modeling of systems

    International Nuclear Information System (INIS)

    Bensi, Michelle; Kiureghian, Armen Der; Straub, Daniel

    2013-01-01

    The Bayesian network (BN) is a convenient tool for probabilistic modeling of system performance, particularly when it is of interest to update the reliability of the system or its components in light of observed information. In this paper, BN structures for modeling the performance of systems that are defined in terms of their minimum link or cut sets are investigated. Standard BN structures that define the system node as a child of its constituent components or its minimum link/cut sets lead to converging structures, which are computationally disadvantageous and could severely hamper application of the BN to real systems. A systematic approach to defining an alternative formulation is developed that creates chain-like BN structures that are orders of magnitude more efficient, particularly in terms of computational memory demand. The formulation uses an integer optimization algorithm to identify the most efficient BN structure. Example applications demonstrate the proposed methodology and quantify the gained computational advantage

  12. SUSTAIN: a network model of category learning.

    Science.gov (United States)

    Love, Bradley C; Medin, Douglas L; Gureckis, Todd M

    2004-04-01

    SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes-attractors-rules. SUSTAIN's discovery of category substructure is affected not only by the structure of the world but by the nature of the learning task and the learner's goals. SUSTAIN successfully extends category learning models to studies of inference learning, unsupervised learning, category construction, and contexts in which identification learning is faster than classification learning.

  13. Evaluating Flight Crew Performance by a Bayesian Network Model

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2018-03-01

    Full Text Available Flight crew performance is of great significance in keeping flights safe and sound. When evaluating the crew performance, quantitative detailed behavior information may not be available. The present paper introduces the Bayesian Network to perform flight crew performance evaluation, which permits the utilization of multidisciplinary sources of objective and subjective information, despite sparse behavioral data. In this paper, the causal factors are selected based on the analysis of 484 aviation accidents caused by human factors. Then, a network termed Flight Crew Performance Model is constructed. The Delphi technique helps to gather subjective data as a supplement to objective data from accident reports. The conditional probabilities are elicited by the leaky noisy MAX model. Two ways of inference for the BN—probability prediction and probabilistic diagnosis are used and some interesting conclusions are drawn, which could provide data support to make interventions for human error management in aviation safety.

  14. Evaluating a nurse-led model for providing neonatal care.

    Science.gov (United States)

    2004-07-01

    The paper presents an overview of a multi-dimensional, prospective, comparative 5-year audit of the quality of the neonatal care provided by a maternity unit in the UK delivering 2000 babies a year, where all neonatal care after 1995 was provided by advanced neonatal nurse practitioners, in relation to that provided by a range of other medically staffed comparator units. The audit includes 11 separate comparative studies supervised by a panel of independent external advisors. Data on intrapartum and neonatal mortality is reported. A review of resuscitation at birth, and a two-tier confidential inquiry into sentinel events in six units were carried out. The reliability of the routine predischarge neonatal examination was studied and, in particular, the recognition of congenital heart disease. A review of the quality of postdischarge letters was undertaken alongside an interview survey to elicit parental views on care provision. An audit of all hospital readmissions within 28 days of birth is reported. Other areas of study include management of staff stress, perceived adequacy of the training of nurse practitioners coming into post, and an assessment of unit costs. Intrapartum and neonatal death among women with a singleton pregnancy originally booked for delivery in Ashington fell 39% between 1991-1995 and 1996-2000 (5.12 vs. 3.11 deaths per 1000 births); the decline for the whole region was 27% (4.10 vs. 2.99). By all other indicators the quality of care in the nurse-managed unit was as good as, or better than, that in the medically staffed comparator units. An appropriately trained, stable team with a store of experience can deliver cot-side care of a higher quality than staff rostered to this task for a few months to gain experience, and this is probably more important than their medical or nursing background. Factors limiting the on-site availability of medical staff with paediatric expertise do not need to dictate the future disposition of maternity services.

  15. Do Cochrane reviews provide a good model for social science?

    DEFF Research Database (Denmark)

    Konnerup, Merete; Kongsted, Hans Christian

    2012-01-01

    Formalised research synthesis to underpin evidence-based policy and practice has become increasingly important in areas of public policy. In this paper we discuss whether the Cochrane standard for systematic reviews of healthcare interventions is appropriate for social research. We examine...... the formal criteria of the Cochrane Collaboration for including particular study designs and search the Cochrane Library to provide quantitative evidence on the de facto standard of actual Cochrane reviews. By identifying the sample of Cochrane reviews that consider observational designs, we are able...... to conclude that the majority of reviews appears limited to considering randomised controlled trials only. Because recent studies have delineated conditions for observational studies in social research to produce valid evidence, we argue that an inclusive approach is essential for truly evidence-based policy...

  16. Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control.

    Science.gov (United States)

    Yang, Shiju; Li, Chuandong; Huang, Tingwen

    2016-03-01

    The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A simplified memory network model based on pattern formations

    Science.gov (United States)

    Xu, Kesheng; Zhang, Xiyun; Wang, Chaoqing; Liu, Zonghua

    2014-12-01

    Many experiments have evidenced the transition with different time scales from short-term memory (STM) to long-term memory (LTM) in mammalian brains, while its theoretical understanding is still under debate. To understand its underlying mechanism, it has recently been shown that it is possible to have a long-period rhythmic synchronous firing in a scale-free network, provided the existence of both the high-degree hubs and the loops formed by low-degree nodes. We here present a simplified memory network model to show that the self-sustained synchronous firing can be observed even without these two necessary conditions. This simplified network consists of two loops of coupled excitable neurons with different synaptic conductance and with one node being the sensory neuron to receive an external stimulus signal. This model can be further used to show how the diversity of firing patterns can be selectively formed by varying the signal frequency, duration of the stimulus and network topology, which corresponds to the patterns of STM and LTM with different time scales. A theoretical analysis is presented to explain the underlying mechanism of firing patterns.

  18. Innovation Network Development Model in Telemedicine: A Change in Participation.

    Science.gov (United States)

    Goodarzi, Maryam; Torabi, Mashallah; Safdari, Reza; Dargahi, Hossein; Naeimi, Sara

    2015-10-01

    This paper introduces a telemedicine innovation network and reports its implementation in Tehran University of Medical Sciences. The required conditions for the development of future projects in the field of telemedicine are also discussed; such projects should be based on the common needs and opportunities in the areas of healthcare, education, and technology. The development of the telemedicine innovation network in Tehran University of Medical Sciences was carried out in two phases: identifying the beneficiaries of telemedicine, and codification of the innovation network memorandum; and brainstorming of three workgroup members, and completion and clustering ideas. The present study employed a qualitative survey by using brain storming method. Thus, the ideas of the innovation network members were gathered, and by using Freeplane software, all of them were clustered and innovation projects were defined. In the services workgroup, 87 and 25 ideas were confirmed in phase 1 and phase 2, respectively. In the education workgroup, 8 new programs in the areas of telemedicine, tele-education and teleconsultation were codified. In the technology workgroup, 101 and 11 ideas were registered in phase 1 and phase 2, respectively. Today, innovation is considered a major infrastructural element of any change or progress. Thus, the successful implementation of a telemedicine project not only needs funding, human resources, and full equipment. It also requires the use of innovation models to cover several different aspects of change and progress. The results of the study can provide a basis for the implementation of future telemedicine projects using new participatory, creative, and innovative models.

  19. Multiplicative Attribute Graph Model of Real-World Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myunghwan [Stanford Univ., CA (United States); Leskovec, Jure [Stanford Univ., CA (United States)

    2010-10-20

    Large scale real-world network data, such as social networks, Internet andWeb graphs, is ubiquitous in a variety of scientific domains. The study of such social and information networks commonly finds patterns and explain their emergence through tractable models. In most networks, especially in social networks, nodes also have a rich set of attributes (e.g., age, gender) associatedwith them. However, most of the existing network models focus only on modeling the network structure while ignoring the features of nodes in the network. Here we present a class of network models that we refer to as the Multiplicative Attribute Graphs (MAG), which naturally captures the interactions between the network structure and node attributes. We consider a model where each node has a vector of categorical features associated with it. The probability of an edge between a pair of nodes then depends on the product of individual attributeattribute similarities. The model yields itself to mathematical analysis as well as fit to real data. We derive thresholds for the connectivity, the emergence of the giant connected component, and show that the model gives rise to graphs with a constant diameter. Moreover, we analyze the degree distribution to show that the model can produce networks with either lognormal or power-law degree distribution depending on certain conditions.

  20. Robust recurrent neural network modeling for software fault detection and correction prediction

    International Nuclear Information System (INIS)

    Hu, Q.P.; Xie, M.; Ng, S.H.; Levitin, G.

    2007-01-01

    Software fault detection and correction processes are related although different, and they should be studied together. A practical approach is to apply software reliability growth models to model fault detection, and fault correction process is assumed to be a delayed process. On the other hand, the artificial neural networks model, as a data-driven approach, tries to model these two processes together with no assumptions. Specifically, feedforward backpropagation networks have shown their advantages over analytical models in fault number predictions. In this paper, the following approach is explored. First, recurrent neural networks are applied to model these two processes together. Within this framework, a systematic networks configuration approach is developed with genetic algorithm according to the prediction performance. In order to provide robust predictions, an extra factor characterizing the dispersion of prediction repetitions is incorporated into the performance function. Comparisons with feedforward neural networks and analytical models are developed with respect to a real data set

  1. Multilevel method for modeling large-scale networks.

    Energy Technology Data Exchange (ETDEWEB)

    Safro, I. M. (Mathematics and Computer Science)

    2012-02-24

    Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from

  2. A Novel Stackelberg-Bertrand Game Model for Pricing Content Provider

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    2015-11-01

    Full Text Available With the popularity of smart devices such as smartphone, tablet, contents that traditionally be viewed on a personal computer, can also be viewed on these smart devices. The demand for contents thus is increasing year by year, which makes the content providers (CPs get great revenue from either users’ subscription or advertisement. On the other hand, Internet service providers (ISPs, who keep investing in the network technology or capacity capacity to support the huge traffic generated by contents, do not benefit directly from the content traffic. One choice for ISPs is to charge CPs to share the revenue from the huge content traffic. Then ISPs have enough incentives to invest in network infrastructure to improve quality of services (QoS, which eventually benefit CPs and users. This paper presents a novel economic model called Stackelberg-Bertrand game to capture the interaction and competitions among ISPs, CPs and users when ISPs charge CPs. A generic user demand function is assumed to capture the sensitivity of demand to prices of ISPs and CPs. The numerical results show that the price elasticity of ISP and CP plays an important part on the payoff of the ISP and CP.

  3. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    Science.gov (United States)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  4. A theoretical design for learning model addressing the networked society

    DEFF Research Database (Denmark)

    Levinsen, Karin; Nielsen, Janni; Sørensen, Birgitte Holm

    2010-01-01

    The transition from the industrial to the networked society produces contradictions that challenges the educational system and force it to adapt to new conditions. In a Danish virtual Master in Information and Communication Technologies and Learning (MIL) these contradictions appear as a field of...... which enables students to develop Networked Society competencies and maintain progression in the learning process also during the online periods. Additionally we suggest that our model contributes to the innovation of a networked society's design for learning....... is continuously decreasing. We teach for deep learning but are confronted by students' cost-benefit strategies when they navigate through the study programme under time pressure. To meet these challenges a Design for Learning Model has been developed. The aim is to provide a scaffold that ensures students......' acquisition of the subject matter within a time limit and at a learning quality that support their deep learning process during a subsequent period of on-line study work. In the process of moving from theory to application the model passes through three stages: 1) Conceptual modelling; 2) Orchestration, and 3...

  5. A fusion networking model for smart grid power distribution backbone communication network based on PTN

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2016-01-01

    Full Text Available In current communication network for distribution in Chinese power grid systems, the fiber communication backbone network for distribution and TD-LTE power private wireless backhaul network of power grid are both bearing by the SDH optical transmission network, which also carries the communication network of transformer substation and main electric. As the data traffic of the distribution communication and TD-LTE power private wireless network grow rapidly in recent years, it will have a big impact with the SDH network’s bearing capacity which is mainly used for main electric communication in high security level. This paper presents a fusion networking model which use a multiple-layer PTN network as the unified bearing of the TD-LTE power private wireless backhaul network and fiber communication backbone network for distribution. Network dataflow analysis shows that this model can greatly reduce the capacity pressure of the traditional SDH network as well as ensure the reliability of the transmission of the communication network for distribution and TD-LTE power private wireless network.

  6. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Demystifying the cytokine network: Mathematical models point the way.

    Science.gov (United States)

    Morel, Penelope A; Lee, Robin E C; Faeder, James R

    2017-10-01

    Cytokines provide the means by which immune cells communicate with each other and with parenchymal cells. There are over one hundred cytokines and many exist in families that share receptor components and signal transduction pathways, creating complex networks. Reductionist approaches to understanding the role of specific cytokines, through the use of gene-targeted mice, have revealed further complexity in the form of redundancy and pleiotropy in cytokine function. Creating an understanding of the complex interactions between cytokines and their target cells is challenging experimentally. Mathematical and computational modeling provides a robust set of tools by which complex interactions between cytokines can be studied and analyzed, in the process creating novel insights that can be further tested experimentally. This review will discuss and provide examples of the different modeling approaches that have been used to increase our understanding of cytokine networks. This includes discussion of knowledge-based and data-driven modeling approaches and the recent advance in single-cell analysis. The use of modeling to optimize cytokine-based therapies will also be discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Models as Tools of Analysis of a Network Organisation

    Directory of Open Access Journals (Sweden)

    Wojciech Pająk

    2013-06-01

    Full Text Available The paper presents models which may be applied as tools of analysis of a network organisation. The starting point of the discussion is defining the following terms: supply chain and network organisation. Further parts of the paper present basic assumptions analysis of a network organisation. Then the study characterises the best known models utilised in analysis of a network organisation. The purpose of the article is to define the notion and the essence of network organizations and to present the models used for their analysis.

  9. The improving of the heat networks operating process under the conditions of the energy efficiency providing

    Directory of Open Access Journals (Sweden)

    Blinova Tatiana

    2016-01-01

    Full Text Available Among the priorities it is important to highlight the modernization and improvement of energy efficiency of housing and communal services, as well as the transition to the principle of using the most efficient technologies used in reproduction (construction, creation of objects of municipal infrastructure and housing modernization. The main hypothesis of this study lies in the fact that in modern conditions the realization of the most important priorities of the state policy in the sphere of housing and communal services, is possible in the conditions of use of the most effective control technologies for the reproduction of thermal networks. It is possible to raise the level of information security Heat Distribution Company, and other market participants by improving business processes through the development of organizational and economic mechanism in the conditions of complex monitoring of heat network operation processes

  10. Development of a cyber security risk model using Bayesian networks

    International Nuclear Information System (INIS)

    Shin, Jinsoo; Son, Hanseong; Khalil ur, Rahman; Heo, Gyunyoung

    2015-01-01

    Cyber security is an emerging safety issue in the nuclear industry, especially in the instrumentation and control (I and C) field. To address the cyber security issue systematically, a model that can be used for cyber security evaluation is required. In this work, a cyber security risk model based on a Bayesian network is suggested for evaluating cyber security for nuclear facilities in an integrated manner. The suggested model enables the evaluation of both the procedural and technical aspects of cyber security, which are related to compliance with regulatory guides and system architectures, respectively. The activity-quality analysis model was developed to evaluate how well people and/or organizations comply with the regulatory guidance associated with cyber security. The architecture analysis model was created to evaluate vulnerabilities and mitigation measures with respect to their effect on cyber security. The two models are integrated into a single model, which is called the cyber security risk model, so that cyber security can be evaluated from procedural and technical viewpoints at the same time. The model was applied to evaluate the cyber security risk of the reactor protection system (RPS) of a research reactor and to demonstrate its usefulness and feasibility. - Highlights: • We developed the cyber security risk model can be find the weak point of cyber security integrated two cyber analysis models by using Bayesian Network. • One is the activity-quality model signifies how people and/or organization comply with the cyber security regulatory guide. • Other is the architecture model represents the probability of cyber-attack on RPS architecture. • The cyber security risk model can provide evidence that is able to determine the key element for cyber security for RPS of a research reactor

  11. Contribution to the improvement of the performance of wireless mesh networks providing real time services

    OpenAIRE

    Vázquez Rodas, Andrés Marcelo

    2015-01-01

    Nowadays, people expectations for ubiquitous connectivity is continuously growing. Cities are now moving towards the smart city paradigm. Electricity companies aims to become part of smart grids. Internet is no longer exclusive for humans, we now assume the Internet of everything. We consider that Wireless Mesh Networks (WMNs) have a set of valuable features that will make it an important part of such environments. WMNs can also be use in less favored areas thanks to their low-cost deployment...

  12. A Framework to Implement IoT Network Performance Modelling Techniques for Network Solution Selection

    Directory of Open Access Journals (Sweden)

    Declan T. Delaney

    2016-12-01

    Full Text Available No single network solution for Internet of Things (IoT networks can provide the required level of Quality of Service (QoS for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.

  13. A Framework to Implement IoT Network Performance Modelling Techniques for Network Solution Selection.

    Science.gov (United States)

    Delaney, Declan T; O'Hare, Gregory M P

    2016-12-01

    No single network solution for Internet of Things (IoT) networks can provide the required level of Quality of Service (QoS) for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.

  14. Validating neural-network refinements of nuclear mass models

    Science.gov (United States)

    Utama, R.; Piekarewicz, J.

    2018-01-01

    Background: Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. Purpose: We aim to test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. Methods: The basic paradigm underlining the recently refined nuclear mass models is based on existing state-of-the-art models that are subsequently refined through the training of an artificial neural network. Bayesian inference is used to determine the parameters of the neural network so that statistical uncertainties are provided for all model predictions. Results: We observe a significant improvement in the Bayesian neural network (BNN) predictions relative to the corresponding "bare" models when compared to the nearly 50 new masses reported in the AME2016 compilation. Further, AME2016 estimates for the handful of impactful isotopes in the determination of r -process abundances are found to be in fairly good agreement with our theoretical predictions. Indeed, the BNN-improved Duflo-Zuker model predicts a root-mean-square deviation relative to experiment of σrms≃400 keV. Conclusions: Given the excellent performance of the BNN refinement in confronting the recently published AME2016 compilation, we are confident of its critical role in our quest for mass models of the highest quality. Moreover, as uncertainty quantification is at the core of the BNN approach, the improved mass models are in a unique position to identify those nuclei that will have the strongest impact in resolving some of the outstanding questions in nuclear astrophysics.

  15. Fracture network modeling and GoldSim simulation support

    International Nuclear Information System (INIS)

    Sugita, Kenichirou; Dershowitz, W.

    2005-01-01

    During Heisei-16, Golder Associates provided support for JNC Tokai through discrete fracture network data analysis and simulation of the Mizunami Underground Research Laboratory (MIU), participation in Task 6 of the AEspoe Task Force on Modeling of Groundwater Flow and Transport, and development of methodologies for analysis of repository site characterization strategies and safety assessment. MIU support during H-16 involved updating the H-15 FracMan discrete fracture network (DFN) models for the MIU shaft region, and developing improved simulation procedures. Updates to the conceptual model included incorporation of 'Step2' (2004) versions of the deterministic structures, and revision of background fractures to be consistent with conductive structure data from the DH-2 borehole. Golder developed improved simulation procedures for these models through the use of hybrid discrete fracture network (DFN), equivalent porous medium (EPM), and nested DFN/EPM approaches. For each of these models, procedures were documented for the entire modeling process including model implementation, MMP simulation, and shaft grouting simulation. Golder supported JNC participation in Task 6AB, 6D and 6E of the AEspoe Task Force on Modeling of Groundwater Flow and Transport during H-16. For Task 6AB, Golder developed a new technique to evaluate the role of grout in performance assessment time-scale transport. For Task 6D, Golder submitted a report of H-15 simulations to SKB. For Task 6E, Golder carried out safety assessment time-scale simulations at the block scale, using the Laplace Transform Galerkin method. During H-16, Golder supported JNC's Total System Performance Assessment (TSPA) strategy by developing technologies for the analysis of the use site characterization data in safety assessment. This approach will aid in the understanding of the use of site characterization to progressively reduce site characterization uncertainty. (author)

  16. Women’s Social Networks and Birth Attendant Decisions: Application of the Network-Episode Model

    OpenAIRE

    Edmonds, Joyce K.; Hruschka, Daniel; Bernard, H. Russell; Sibley, Lynn

    2011-01-01

    This paper examines the association of women's social networks with the use of skilled birth attendants in uncomplicated pregnancy and childbirth in Matlab, Bangladesh. The Network-Episode Model was applied to determine if network structure variables (density / kinship homogeneity / strength of ties) together with network content (endorsement for or against a particular type of birth attendant) explain the type of birth attendant used by women above and beyond the variance explained by women'...

  17. A last updating evolution model for online social networks

    Science.gov (United States)

    Bu, Zhan; Xia, Zhengyou; Wang, Jiandong; Zhang, Chengcui

    2013-05-01

    As information technology has advanced, people are turning to electronic media more frequently for communication, and social relationships are increasingly found on online channels. However, there is very limited knowledge about the actual evolution of the online social networks. In this paper, we propose and study a novel evolution network model with the new concept of “last updating time”, which exists in many real-life online social networks. The last updating evolution network model can maintain the robustness of scale-free networks and can improve the network reliance against intentional attacks. What is more, we also found that it has the “small-world effect”, which is the inherent property of most social networks. Simulation experiment based on this model show that the results and the real-life data are consistent, which means that our model is valid.

  18. Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    Directory of Open Access Journals (Sweden)

    Melike Bildirici

    2014-01-01

    Full Text Available The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100. Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications.

  19. Adaptive Networks Theory, Models and Applications

    CERN Document Server

    Gross, Thilo

    2009-01-01

    With adaptive, complex networks, the evolution of the network topology and the dynamical processes on the network are equally important and often fundamentally entangled. Recent research has shown that such networks can exhibit a plethora of new phenomena which are ultimately required to describe many real-world networks. Some of those phenomena include robust self-organization towards dynamical criticality, formation of complex global topologies based on simple, local rules, and the spontaneous division of "labor" in which an initially homogenous population of network nodes self-organizes into functionally distinct classes. These are just a few. This book is a state-of-the-art survey of those unique networks. In it, leading researchers set out to define the future scope and direction of some of the most advanced developments in the vast field of complex network science and its applications.

  20. A graph model for opportunistic network coding

    KAUST Repository

    Sorour, Sameh; Aboutoraby, Neda; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    © 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase

  1. Modeling and control of magnetorheological fluid dampers using neural networks

    Science.gov (United States)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  2. Structural equation models from paths to networks

    CERN Document Server

    Westland, J Christopher

    2015-01-01

    This compact reference surveys the full range of available structural equation modeling (SEM) methodologies.  It reviews applications in a broad range of disciplines, particularly in the social sciences where many key concepts are not directly observable.  This is the first book to present SEM’s development in its proper historical context–essential to understanding the application, strengths and weaknesses of each particular method.  This book also surveys the emerging path and network approaches that complement and enhance SEM, and that will grow in importance in the near future.  SEM’s ability to accommodate unobservable theory constructs through latent variables is of significant importance to social scientists.  Latent variable theory and application are comprehensively explained, and methods are presented for extending their power, including guidelines for data preparation, sample size calculation, and the special treatment of Likert scale data.  Tables of software, methodologies and fit st...

  3. Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models

    International Nuclear Information System (INIS)

    Benmouiza, Khalil; Cheknane, Ali

    2013-01-01

    Highlights: • An unsupervised clustering algorithm with a neural network model was explored. • The forecasting results of solar radiation time series and the comparison of their performance was simulated. • A new method was proposed combining k-means algorithm and NAR network to provide better prediction results. - Abstract: In this paper, we review our work for forecasting hourly global horizontal solar radiation based on the combination of unsupervised k-means clustering algorithm and artificial neural networks (ANN). k-Means algorithm focused on extracting useful information from the data with the aim of modeling the time series behavior and find patterns of the input space by clustering the data. On the other hand, nonlinear autoregressive (NAR) neural networks are powerful computational models for modeling and forecasting nonlinear time series. Taking the advantage of both methods, a new method was proposed combining k-means algorithm and NAR network to provide better forecasting results

  4. MODELS AND METHODS FOR LOGISTICS HUB LOCATION: A REVIEW TOWARDS TRANSPORTATION NETWORKS DESIGN

    Directory of Open Access Journals (Sweden)

    Carolina Luisa dos Santos Vieira

    Full Text Available ABSTRACT Logistics hubs affect the distribution patterns in transportation networks since they are flow-concentrating structures. Indeed, the efficient moving of goods throughout supply chains depends on the design of such networks. This paper presents a literature review on the logistics hub location problem, providing an outline of modeling approaches, solving techniques, and their applicability to such context. Two categories of models were identified. While multi-criteria models may seem best suited to find optimal locations, they do not allow an assessment of the impact of new hubs on goods flow and on the transportation network. On the other hand, single-criterion models, which provide location and flow allocation information, adopt network simplifications that hinder an accurate representation of the relationshipbetween origins, destinations, and hubs. In view of these limitations we propose future research directions for addressing real challenges of logistics hubs location regarding transportation networks design.

  5. Network formation under heterogeneous costs: The multiple group model

    NARCIS (Netherlands)

    Kamphorst, J.J.A.; van der Laan, G.

    2007-01-01

    It is widely recognized that the shape of networks influences both individual and aggregate behavior. This raises the question which types of networks are likely to arise. In this paper we investigate a model of network formation, where players are divided into groups and the costs of a link between

  6. Neural networks in economic modelling : An empirical study

    NARCIS (Netherlands)

    Verkooijen, W.J.H.

    1996-01-01

    This dissertation addresses the statistical aspects of neural networks and their usability for solving problems in economics and finance. Neural networks are discussed in a framework of modelling which is generally accepted in econometrics. Within this framework a neural network is regarded as a

  7. Multiple Social Networks, Data Models and Measures for

    DEFF Research Database (Denmark)

    Magnani, Matteo; Rossi, Luca

    2017-01-01

    Multiple Social Network Analysis is a discipline defining models, measures, methodologies, and algorithms to study multiple social networks together as a single social system. It is particularly valuable when the networks are interconnected, e.g., the same actors are present in more than one...

  8. The coaching network: A model for conducting and managing

    International Nuclear Information System (INIS)

    Rudd, J.G.; Smith, E.E.

    1991-01-01

    The Coaching Network is a mechanism for continually instructing and providing feedback to the learner during and after formal instruction. Six conditions necessary for the implementation of a Coaching Network are discussed. Use of the Coaching Network leads to improved performance, independent learning, improved skill/knowledge, and goal/objective setting

  9. Agent Based Modeling on Organizational Dynamics of Terrorist Network

    OpenAIRE

    Bo Li; Duoyong Sun; Renqi Zhu; Ze Li

    2015-01-01

    Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model ...

  10. Learning Analytics for Networked Learning Models

    Science.gov (United States)

    Joksimovic, Srecko; Hatala, Marek; Gaševic, Dragan

    2014-01-01

    Teaching and learning in networked settings has attracted significant attention recently. The central topic of networked learning research is human-human and human-information interactions occurring within a networked learning environment. The nature of these interactions is highly complex and usually requires a multi-dimensional approach to…

  11. Network model for fine coal dewatering. Part I. The model

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, I.; Tierney, J.W.; Chiang, S.H.

    1985-08-01

    There is a body of well established research in filtration and related subjects, but much of it has been empirical - based on correlations from experimental data. This approach has the disadvantage that it lacks generality, and it is difficult to predict the behavior of new or different systems. A more general method for studying dewatering is needed-one which will include the microscopic characteristics of the filter cake, which, like other porous media, contains a complicated network of interconnected pores through which the fluid must flow. These pores play an important role in dewatering because they give rise to capillary forces when one fluid is displacing another. In this report, we describe a network model which we believe satisfies these requirements. In the main body of this report, the model is described in detail. Background information is given where appropriate, and a brief description is given of the experimental work being done in our laboratories to verify the model. A detailed description of the experimental procedures and results is given in other DOE reports. The computer programs which are needed to solve the model are described in detail in the Appendices and are accompanied by flow charts, sample problems, and sample outputs. Sufficient detail is given in order to use the model programs on other computer systems. 32 refs., 7 figs., 5 tabs.

  12. Stochastic actor-oriented models for network change

    NARCIS (Netherlands)

    Snijders, T.A.B.

    1996-01-01

    A class of models is proposed for longitudinal network data. These models are along the lines of methodological individualism: actors use heuristics to try to achieve their individual goals, subject to constraints. The current network structure is among these constraints. The models are continuous

  13. Modeling fMRI signals can provide insights into neural processing in the cerebral cortex.

    Science.gov (United States)

    Vanni, Simo; Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo

    2015-08-01

    Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. Copyright © 2015 the American Physiological Society.

  14. Modeling the reemergence of information diffusion in social network

    Science.gov (United States)

    Yang, Dingda; Liao, Xiangwen; Shen, Huawei; Cheng, Xueqi; Chen, Guolong

    2018-01-01

    Information diffusion in networks is an important research topic in various fields. Existing studies either focus on modeling the process of information diffusion, e.g., independent cascade model and linear threshold model, or investigate information diffusion in networks with certain structural characteristics such as scale-free networks and small world networks. However, there are still several phenomena that have not been captured by existing information diffusion models. One of the prominent phenomena is the reemergence of information diffusion, i.e., a piece of information reemerges after the completion of its initial diffusion process. In this paper, we propose an optimized information diffusion model by introducing a new informed state into traditional susceptible-infected-removed model. We verify the proposed model via simulations in real-world social networks, and the results indicate that the model can reproduce the reemergence of information during the diffusion process.

  15. Online social network use by health care providers in a high traffic patient care environment.

    Science.gov (United States)

    Black, Erik; Light, Jennifer; Paradise Black, Nicole; Thompson, Lindsay

    2013-05-17

    The majority of workers, regardless of age or occupational status, report engaging in personal Internet use in the workplace. There is little understanding of the impact that personal Internet use may have on patient care in acute clinical settings. The objective of this study was to investigate the volume of one form of personal Internet use-online social networking (Facebook)-generated by workstations in the emergency department (ED) in contrast to measures of clinical volume and severity. The research team analyzed anonymous network utilization records for 68 workstations located in the emergency medicine department within one academic medical center for 15 consecutive days (12/29/2009 to 1/12/2010). This data was compared to ED work index (EDWIN) data derived by the hospital information systems. Health care workers spent an accumulated 4349 minutes (72.5 hours) browsing Facebook, staff cumulatively visited Facebook 9369 times and spent, on average, 12.0 minutes per hour browsing Facebook. There was a statistically significant difference in the time spent on Facebook according to time of day (19.8 minutes per hour versus 4.3 minutes per hour, P<.001). There was a significant, positive correlation between EDWIN scores and time spent on Facebook (r=.266, P<.001). Facebook use constituted a substantive percentage of staff time during the 15-day observation period. Facebook use increased with increased patient volume and severity within the ED.

  16. Modelling the guaranteed QoS for wireless sensor networks: a network calculus approach

    Directory of Open Access Journals (Sweden)

    Yu Jianping

    2011-01-01

    Full Text Available Abstract Wireless sensor networks (WSNs became one of the high technology domains during the last 10 years. Real-time applications for them make it necessary to provide the guaranteed quality of service (QoS. The main contributions of this article are a system skeleton and a guaranteed QoS model that are suitable for the WSNs. To do it, we develop a sensor node model based on virtual buffer sharing and present a two-layer scheduling model using the network calculus. With the system skeleton, we develop a guaranteed QoS model, such as the upper bounds on buffer queue length/delay/effective bandwidth, and single-hop/multi-hops delay/jitter/effective bandwidth. Numerical results show the system skeleton and the guaranteed QoS model are scalable for different types of flows, including the self-similar traffic flows, and the parameters of flow regulators and service curves of sensor nodes affect them. Our proposal leads to buffer dimensioning, guaranteed QoS support and control in the WSNs.

  17. An Improved Walk Model for Train Movement on Railway Network

    International Nuclear Information System (INIS)

    Li Keping; Mao Bohua; Gao Ziyou

    2009-01-01

    In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic. (general)

  18. Infinite Multiple Membership Relational Modeling for Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel Nørgaard; Hansen, Lars Kai

    Learning latent structure in complex networks has become an important problem fueled by many types of networked data originating from practically all fields of science. In this paper, we propose a new non-parametric Bayesian multiplemembership latent feature model for networks. Contrary to existing...... multiplemembership models that scale quadratically in the number of vertices the proposedmodel scales linearly in the number of links admittingmultiple-membership analysis in large scale networks. We demonstrate a connection between the single membership relational model and multiple membership models and show...

  19. Accessing Wireless Sensor Networks Via Dynamically Reconfigurable Interaction Models

    Directory of Open Access Journals (Sweden)

    Maria Cecília Gomes

    2012-12-01

    Full Text Available The Wireless Sensor Networks (WSNs technology is already perceived as fundamental for science across many domains, since it provides a low cost solution for environment monitoring. WSNs representation via the service concept and its inclusion in Web environments, e.g. through Web services, supports particularly their open/standard access and integration. Although such Web enabled WSNs simplify data access, network parameterization and aggregation, the existing interaction models and run-time adaptation mechanisms available to clients are still scarce. Nevertheless, applications increasingly demand richer and more flexible accesses besides the traditional client/server. For instance, applications may require a streaming model in order to avoid sequential data requests, or the asynchronous notification of subscribed data through the publish/subscriber. Moreover, the possibility to automatically switch between such models at runtime allows applications to define flexible context-based data acquisition. To this extent, this paper discusses the relevance of the session and pattern abstractions on the design of a middleware prototype providing richer and dynamically reconfigurable interaction models to Web enabled WSNs.

  20. Stabilization of model-based networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Francisco [CIDMA, Universidade de Aveiro, Aveiro (Portugal); Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); Abreu, Carlos [Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); CMEMS-UMINHO, Universidade do Minho, Braga (Portugal); Mendes, Paulo M. [CMEMS-UMINHO, Universidade do Minho, Braga (Portugal)

    2016-06-08

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.

  1. Mixture models with entropy regularization for community detection in networks

    Science.gov (United States)

    Chang, Zhenhai; Yin, Xianjun; Jia, Caiyan; Wang, Xiaoyang

    2018-04-01

    Community detection is a key exploratory tool in network analysis and has received much attention in recent years. NMM (Newman's mixture model) is one of the best models for exploring a range of network structures including community structure, bipartite and core-periphery structures, etc. However, NMM needs to know the number of communities in advance. Therefore, in this study, we have proposed an entropy regularized mixture model (called EMM), which is capable of inferring the number of communities and identifying network structure contained in a network, simultaneously. In the model, by minimizing the entropy of mixing coefficients of NMM using EM (expectation-maximization) solution, the small clusters contained little information can be discarded step by step. The empirical study on both synthetic networks and real networks has shown that the proposed model EMM is superior to the state-of-the-art methods.

  2. Conceptual and methodological biases in network models.

    Science.gov (United States)

    Lamm, Ehud

    2009-10-01

    Many natural and biological phenomena can be depicted as networks. Theoretical and empirical analyses of networks have become prevalent. I discuss theoretical biases involved in the delineation of biological networks. The network perspective is shown to dissolve the distinction between regulatory architecture and regulatory state, consistent with the theoretical impossibility of distinguishing a priori between "program" and "data." The evolutionary significance of the dynamics of trans-generational and interorganism regulatory networks is explored and implications are presented for understanding the evolution of the biological categories development-heredity, plasticity-evolvability, and epigenetic-genetic.

  3. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  4. Switching performance of OBS network model under prefetched real traffic

    Science.gov (United States)

    Huang, Zhenhua; Xu, Du; Lei, Wen

    2005-11-01

    Optical Burst Switching (OBS) [1] is now widely considered as an efficient switching technique in building the next generation optical Internet .So it's very important to precisely evaluate the performance of the OBS network model. The performance of the OBS network model is variable in different condition, but the most important thing is that how it works under real traffic load. In the traditional simulation models, uniform traffics are usually generated by simulation software to imitate the data source of the edge node in the OBS network model, and through which the performance of the OBS network is evaluated. Unfortunately, without being simulated by real traffic, the traditional simulation models have several problems and their results are doubtable. To deal with this problem, we present a new simulation model for analysis and performance evaluation of the OBS network, which uses prefetched IP traffic to be data source of the OBS network model. The prefetched IP traffic can be considered as real IP source of the OBS edge node and the OBS network model has the same clock rate with a real OBS system. So it's easy to conclude that this model is closer to the real OBS system than the traditional ones. The simulation results also indicate that this model is more accurate to evaluate the performance of the OBS network system and the results of this model are closer to the actual situation.

  5. Modeling the quantum to classical crossover in topologically disordered networks

    International Nuclear Information System (INIS)

    Schijven, P; Kohlberger, J; Blumen, A; Mülken, O

    2012-01-01

    We model transport in topologically disordered networks that are subjected to an environment that induces classical diffusion. The dynamics is phenomenologically described within the framework of the recently introduced quantum stochastic walk, allowing study of the crossover between coherent transport and purely classical diffusion. To study the transport efficiency, we connect our system with a source and a drain and provide a detailed analysis of their effects. We find that the coupling to the environment removes all effects of localization and quickly leads to classical transport. Furthermore, we find that on the level of the transport efficiency, the system can be well described by reducing it to a two-node network (a dimer). (paper)

  6. Pathloss Measurements and Modeling for UAVs Connected to Cellular Networks

    DEFF Research Database (Denmark)

    Amorim, Rafhael Medeiros de; Mogensen, Preben Elgaard; Sørensen, Troels Bundgaard

    2017-01-01

    . The measurements were conducted in an operating LTE network (850 MHz), using a commercial cell phone, placed inside the frame of the UAV. Trials were conducted for UAV flying at 5 different heights measured above ground level (20, 40, 60, 80 and 100m) and a pathloss regression line was obtained from results. Then......This paper assess field measurements, as part of the investigation of the suitability of cellular networks for providing connectivity to UAVs (unmanned aerial vehicles). Evaluation is done by means of field measurements obtained in a rural environment in Denmark with an airbone UAV......, downlink (DL) SINR levels obtained during flight measurements are also presented. An important result obtained from the measurents reveal that there is a height-related DL SINR degradation. Three main sources of uncertainty on the pathloss model that could be responsible for the SINR degradation are also...

  7. Modeling and analysis of mobility management in mobile communication networks.

    Science.gov (United States)

    Baek, Woon Min; Yoon, Ji Hyun; Kim, Chesoong

    2014-01-01

    Many strategies have been proposed to reduce the mobility management cost in mobile communication networks. This paper studies the zone-based registration methods that have been adopted by most mobile communication networks. We focus on two special zone-based registration methods, called two-zone registration (2Z) and two-zone registration with implicit registration by outgoing calls (2Zi). We provide a new mathematical model to analyze the exact performance of 2Z and 2Zi. We also present various numerical results, to compare the performance of 2Zi with those of 2Z and one-zone registration (1Z), and show that 2Zi is superior to 2Z as well as 1Z in most cases.

  8. Exploring Neural Network Models with Hierarchical Memories and Their Use in Modeling Biological Systems

    Science.gov (United States)

    Pusuluri, Sai Teja

    Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features

  9. Loss Performance Modeling for Hierarchical Heterogeneous Wireless Networks With Speed-Sensitive Call Admission Control

    DEFF Research Database (Denmark)

    Huang, Qian; Huang, Yue-Cai; Ko, King-Tim

    2011-01-01

    . This approach avoids unnecessary and frequent handoff between cells and reduces signaling overheads. An approximation model with guaranteed accuracy and low computational complexity is presented for the loss performance of multiservice traffic. The accuracy of numerical results is validated by comparing......A hierarchical overlay structure is an alternative solution that integrates existing and future heterogeneous wireless networks to provide subscribers with better mobile broadband services. Traffic loss performance in such integrated heterogeneous networks is necessary for an operator's network...

  10. Modeling Land-Use Decision Behavior with Bayesian Belief Networks

    Directory of Open Access Journals (Sweden)

    Inge Aalders

    2008-06-01

    Full Text Available The ability to incorporate and manage the different drivers of land-use change in a modeling process is one of the key challenges because they are complex and are both quantitative and qualitative in nature. This paper uses Bayesian belief networks (BBN to incorporate characteristics of land managers in the modeling process and to enhance our understanding of land-use change based on the limited and disparate sources of information. One of the two models based on spatial data represented land managers in the form of a quantitative variable, the area of individual holdings, whereas the other model included qualitative data from a survey of land managers. Random samples from the spatial data provided evidence of the relationship between the different variables, which I used to develop the BBN structure. The model was tested for four different posterior probability distributions, and results showed that the trained and learned models are better at predicting land use than the uniform and random models. The inference from the model demonstrated the constraints that biophysical characteristics impose on land managers; for older land managers without heirs, there is a higher probability of the land use being arable agriculture. The results show the benefits of incorporating a more complex notion of land managers in land-use models, and of using different empirical data sources in the modeling process. Future research should focus on incorporating more complex social processes into the modeling structure, as well as incorporating spatio-temporal dynamics in a BBN.

  11. An integrative computational analysis provides evidence for FBN1-associated network deregulation in trisomy 21

    Directory of Open Access Journals (Sweden)

    Mireia Vilardell

    2013-06-01

    Although approximately 50% of Down Syndrome (DS patients have heart abnormalities, they exhibit an overprotection against cardiac abnormalities related with the connective tissue, for example a lower risk of coronary artery disease. A recent study reported a case of a person affected by DS who carried mutations in FBN1, the gene causative for a connective tissue disorder called Marfan Syndrome (MFS. The fact that the person did not have any cardiac alterations suggested compensation effects due to DS. This observation is supported by a previous DS meta-analysis at the molecular level where we have found an overall upregulation of FBN1 (which is usually downregulated in MFS. Additionally, that result was cross-validated with independent expression data from DS heart tissue. The aim of this work is to elucidate the role of FBN1 in DS and to establish a molecular link to MFS and MFS-related syndromes using a computational approach. To reach that, we conducted different analytical approaches over two DS studies (our previous meta-analysis and independent expression data from DS heart tissue and revealed expression alterations in the FBN1 interaction network, in FBN1 co-expressed genes and FBN1-related pathways. After merging the significant results from different datasets with a Bayesian approach, we prioritized 85 genes that were able to distinguish control from DS cases. We further found evidence for several of these genes (47%, such as FBN1, DCN, and COL1A2, being dysregulated in MFS and MFS-related diseases. Consequently, we further encourage the scientific community to take into account FBN1 and its related network for the study of DS cardiovascular characteristics.

  12. Homologous Basal Ganglia Network Models in Physiological and Parkinsonian Conditions

    Directory of Open Access Journals (Sweden)

    Jyotika Bahuguna

    2017-08-01

    diversity in basal ganglia networks. We propose that our approach of generating and analyzing an ensemble of multiple solutions to an underdetermined network model provides greater confidence in its predictions than those derived from a unique solution, and that projecting such homologous networks on a lower dimensional space of sensibly chosen dynamical features gives a better chance than a purely structural analysis at understanding complex pathologies such as Parkinson's disease.

  13. Ripple-Spreading Network Model Optimization by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Hu

    2013-01-01

    Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.

  14. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Huang, Can

    2018-01-01

    –slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....

  15. A nonaffine network model for elastomers undergoing finite deformations

    Science.gov (United States)

    Davidson, Jacob D.; Goulbourne, N. C.

    2013-08-01

    In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.

  16. Benefits of a Pharmacology Antimalarial Reference Standard and Proficiency Testing Program Provided by the Worldwide Antimalarial Resistance Network (WWARN)

    Science.gov (United States)

    Lourens, Chris; Lindegardh, Niklas; Barnes, Karen I.; Guerin, Philippe J.; Sibley, Carol H.; White, Nicholas J.

    2014-01-01

    Comprehensive assessment of antimalarial drug resistance should include measurements of antimalarial blood or plasma concentrations in clinical trials and in individual assessments of treatment failure so that true resistance can be differentiated from inadequate drug exposure. Pharmacometric modeling is necessary to assess pharmacokinetic-pharmacodynamic relationships in different populations to optimize dosing. To accomplish both effectively and to allow comparison of data from different laboratories, it is essential that drug concentration measurement is accurate. Proficiency testing (PT) of laboratory procedures is necessary for verification of assay results. Within the Worldwide Antimalarial Resistance Network (WWARN), the goal of the quality assurance/quality control (QA/QC) program is to facilitate and sustain high-quality antimalarial assays. The QA/QC program consists of an international PT program for pharmacology laboratories and a reference material (RM) program for the provision of antimalarial drug standards, metabolites, and internal standards for laboratory use. The RM program currently distributes accurately weighed quantities of antimalarial drug standards, metabolites, and internal standards to 44 pharmacology, in vitro, and drug quality testing laboratories. The pharmacology PT program has sent samples to eight laboratories in four rounds of testing. WWARN technical experts have provided advice for correcting identified problems to improve performance of subsequent analysis and ultimately improved the quality of data. Many participants have demonstrated substantial improvements over subsequent rounds of PT. The WWARN QA/QC program has improved the quality and value of antimalarial drug measurement in laboratories globally. It is a model that has potential to be applied to strengthening laboratories more widely and improving the therapeutics of other infectious diseases. PMID:24777099

  17. Signalling network construction for modelling plant defence response.

    Directory of Open Access Journals (Sweden)

    Dragana Miljkovic

    Full Text Available Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2 triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be

  18. Calculations of dose distributions using a neural network model

    International Nuclear Information System (INIS)

    Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J

    2005-01-01

    The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map

  19. Impact of Loss Synchronization on Reliable High Speed Networks: A Model Based Simulation

    Directory of Open Access Journals (Sweden)

    Suman Kumar

    2014-01-01

    Full Text Available Contemporary nature of network evolution demands for simulation models which are flexible, scalable, and easily implementable. In this paper, we propose a fluid based model for performance analysis of reliable high speed networks. In particular, this paper aims to study the dynamic relationship between congestion control algorithms and queue management schemes, in order to develop a better understanding of the causal linkages between the two. We propose a loss synchronization module which is user configurable. We validate our model through simulations under controlled settings. Also, we present a performance analysis to provide insights into two important issues concerning 10 Gbps high speed networks: (i impact of bottleneck buffer size on the performance of 10 Gbps high speed network and (ii impact of level of loss synchronization on link utilization-fairness tradeoffs. The practical impact of the proposed work is to provide design guidelines along with a powerful simulation tool to protocol designers and network developers.

  20. The simplest maximum entropy model for collective behavior in a neural network

    International Nuclear Information System (INIS)

    Tkačik, Gašper; Marre, Olivier; Mora, Thierry; Amodei, Dario; Bialek, William; Berry II, Michael J

    2013-01-01

    Recent work emphasizes that the maximum entropy principle provides a bridge between statistical mechanics models for collective behavior in neural networks and experiments on networks of real neurons. Most of this work has focused on capturing the measured correlations among pairs of neurons. Here we suggest an alternative, constructing models that are consistent with the distribution of global network activity, i.e. the probability that K out of N cells in the network generate action potentials in the same small time bin. The inverse problem that we need to solve in constructing the model is analytically tractable, and provides a natural ‘thermodynamics’ for the network in the limit of large N. We analyze the responses of neurons in a small patch of the retina to naturalistic stimuli, and find that the implied thermodynamics is very close to an unusual critical point, in which the entropy (in proper units) is exactly equal to the energy. (paper)

  1. Hybrid neural network bushing model for vehicle dynamics simulation

    International Nuclear Information System (INIS)

    Sohn, Jeong Hyun; Lee, Seung Kyu; Yoo, Wan Suk

    2008-01-01

    Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers

  2. Model for the growth of the world airline network

    Science.gov (United States)

    Verma, T.; Araújo, N. A. M.; Nagler, J.; Andrade, J. S.; Herrmann, H. J.

    2016-06-01

    We propose a probabilistic growth model for transport networks which employs a balance between popularity of nodes and the physical distance between nodes. By comparing the degree of each node in the model network and the World Airline Network (WAN), we observe that the difference between the two is minimized for α≈2. Interestingly, this is the value obtained for the node-node correlation function in the WAN. This suggests that our model explains quite well the growth of airline networks.

  3. Modelling the dependability in Network Function Virtualisation

    OpenAIRE

    Lin, Wenqi

    2017-01-01

    Network Function Virtualization has been brought up to allow the TSPs to have more possibilities and flexibilities to provision services with better load optimizing, energy utilizing and dynamic scaling. Network functions will be decoupled from the underlying dedicated hardware into software instances that run on commercial off-the-shelf servers. However, the development is still at an early stage and the dependability concerns raise by the virtualization of the network functions are touched ...

  4. Mode Choice Modeling Using Artificial Neural Networks

    OpenAIRE

    Edara, Praveen Kumar

    2003-01-01

    Artificial intelligence techniques have produced excellent results in many diverse fields of engineering. Techniques such as neural networks and fuzzy systems have found their way into transportation engineering. In recent years, neural networks are being used instead of regression techniques for travel demand forecasting purposes. The basic reason lies in the fact that neural networks are able to capture complex relationships and learn from examples and also able to adapt when new data becom...

  5. Bayesian Networks for Modeling Dredging Decisions

    Science.gov (United States)

    2011-10-01

    years, that algorithms have been developed to solve these problems efficiently. Most modern Bayesian network software uses junction tree (a.k.a. join... software was used to develop the network . This is by no means an exhaustive list of Bayesian network applications, but it is representative of recent...characteristic node (SCN), state- defining node ( SDN ), effect node (EFN), or value node. The five types of nodes can be described as follows: ERDC/EL TR-11

  6. A genetic algorithm for solving supply chain network design model

    Science.gov (United States)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  7. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  8. Runoff Modelling in Urban Storm Drainage by Neural Networks

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld

    1995-01-01

    A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....

  9. Sequence-based model of gap gene regulatory network.

    Science.gov (United States)

    Kozlov, Konstantin; Gursky, Vitaly; Kulakovskiy, Ivan; Samsonova, Maria

    2014-01-01

    The detailed analysis of transcriptional regulation is crucially important for understanding biological processes. The gap gene network in Drosophila attracts large interest among researches studying mechanisms of transcriptional regulation. It implements the most upstream regulatory layer of the segmentation gene network. The knowledge of molecular mechanisms involved in gap gene regulation is far less complete than that of genetics of the system. Mathematical modeling goes beyond insights gained by genetics and molecular approaches. It allows us to reconstruct wild-type gene expression patterns in silico, infer underlying regulatory mechanism and prove its sufficiency. We developed a new model that provides a dynamical description of gap gene regulatory systems, using detailed DNA-based information, as well as spatial transcription factor concentration data at varying time points. We showed that this model correctly reproduces gap gene expression patterns in wild type embryos and is able to predict gap expression patterns in Kr mutants and four reporter constructs. We used four-fold cross validation test and fitting to random dataset to validate the model and proof its sufficiency in data description. The identifiability analysis showed that most model parameters are well identifiable. We reconstructed the gap gene network topology and studied the impact of individual transcription factor binding sites on the model output. We measured this impact by calculating the site regulatory weight as a normalized difference between the residual sum of squares error for the set of all annotated sites and for the set with the site of interest excluded. The reconstructed topology of the gap gene network is in agreement with previous modeling results and data from literature. We showed that 1) the regulatory weights of transcription factor binding sites show very weak correlation with their PWM score; 2) sites with low regulatory weight are important for the model output; 3

  10. Model of community emergence in weighted social networks

    Science.gov (United States)

    Kumpula, J. M.; Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K.

    2009-04-01

    Over the years network theory has proven to be rapidly expanding methodology to investigate various complex systems and it has turned out to give quite unparalleled insight to their structure, function, and response through data analysis, modeling, and simulation. For social systems in particular the network approach has empirically revealed a modular structure due to interplay between the network topology and link weights between network nodes or individuals. This inspired us to develop a simple network model that could catch some salient features of mesoscopic community and macroscopic topology formation during network evolution. Our model is based on two fundamental mechanisms of network sociology for individuals to find new friends, namely cyclic closure and focal closure, which are mimicked by local search-link-reinforcement and random global attachment mechanisms, respectively. In addition we included to the model a node deletion mechanism by removing all its links simultaneously, which corresponds for an individual to depart from the network. Here we describe in detail the implementation of our model algorithm, which was found to be computationally efficient and produce many empirically observed features of large-scale social networks. Thus this model opens a new perspective for studying such collective social phenomena as spreading, structure formation, and evolutionary processes.

  11. The climate4impact platform: Providing, tailoring and facilitating climate model data access

    Science.gov (United States)

    Pagé, Christian; Pagani, Andrea; Plieger, Maarten; Som de Cerff, Wim; Mihajlovski, Andrej; de Vreede, Ernst; Spinuso, Alessandro; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Vega, Manuel; Cofiño, Antonio; d'Anca, Alessandro; Fiore, Sandro; Kolax, Michael

    2017-04-01

    One of the main objectives of climate4impact is to provide standardized web services and tools that are reusable in other portals. These services include web processing services, web coverage services and web mapping services (WPS, WCS and WMS). Tailored portals can be targeted to specific communities and/or countries/regions while making use of those services. Easier access to climate data is very important for the climate change impact communities. To fulfill this objective, the climate4impact (http://climate4impact.eu/) web portal and services has been developed, targeting climate change impact modellers, impact and adaptation consultants, as well as other experts using climate change data. It provides to users harmonized access to climate model data through tailored services. It features static and dynamic documentation, Use Cases and best practice examples, an advanced search interface, an integrated authentication and authorization system with the Earth System Grid Federation (ESGF), a visualization interface with ADAGUC web mapping tools. In the latest version, statistical downscaling services, provided by the Santander Meteorology Group Downscaling Portal, were integrated. An innovative interface to integrate statistical downscaling services will be released in the upcoming version. The latter will be a big step in bridging the gap between climate scientists and the climate change impact communities. The climate4impact portal builds on the infrastructure of an international distributed database that has been set to disseminate the results from the global climate model results of the Coupled Model Intercomparison project Phase 5 (CMIP5). This database, the ESGF, is an international collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of climate model data. The European FP7 project IS-ENES, Infrastructure for the European Network for Earth System modelling, supports the European

  12. A control model for district heating networks with storage

    NARCIS (Netherlands)

    Scholten, Tjeert; De Persis, Claudio; Tesi, Pietro

    2014-01-01

    In [1] pressure control of hydraulic networks is investigated. We extend this work to district heating systems with storage capabilities and derive a model taking the topology of the network into account. The goal for the derived model is that it should allow for control of the storage level and

  13. Travel Time Reliability for Urban Networks : Modelling and Empirics

    NARCIS (Netherlands)

    Zheng, F.; Liu, Xiaobo; van Zuylen, H.J.; Li, Jie; Lu, Chao

    2017-01-01

    The importance of travel time reliability in traffic management, control, and network design has received a lot of attention in the past decade. In this paper, a network travel time distribution model based on the Johnson curve system is proposed. The model is applied to field travel time data

  14. Deterministic ripple-spreading model for complex networks.

    Science.gov (United States)

    Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel

    2011-04-01

    This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.

  15. Mathematical modelling of complex contagion on clustered networks

    Science.gov (United States)

    O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James

    2015-09-01

    The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  16. Mathematical modelling of complex contagion on clustered networks

    Directory of Open Access Journals (Sweden)

    David J. P. O'Sullivan

    2015-09-01

    Full Text Available The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010, adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the complex contagion effects of social reinforcement are important in such diffusion, in contrast to simple contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010, to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  17. A small-world network model of facial emotion recognition.

    Science.gov (United States)

    Takehara, Takuma; Ochiai, Fumio; Suzuki, Naoto

    2016-01-01

    Various models have been proposed to increase understanding of the cognitive basis of facial emotions. Despite those efforts, interactions between facial emotions have received minimal attention. If collective behaviours relating to each facial emotion in the comprehensive cognitive system could be assumed, specific facial emotion relationship patterns might emerge. In this study, we demonstrate that the frameworks of complex networks can effectively capture those patterns. We generate 81 facial emotion images (6 prototypes and 75 morphs) and then ask participants to rate degrees of similarity in 3240 facial emotion pairs in a paired comparison task. A facial emotion network constructed on the basis of similarity clearly forms a small-world network, which features an extremely short average network distance and close connectivity. Further, even if two facial emotions have opposing valences, they are connected within only two steps. In addition, we show that intermediary morphs are crucial for maintaining full network integration, whereas prototypes are not at all important. These results suggest the existence of collective behaviours in the cognitive systems of facial emotions and also describe why people can efficiently recognize facial emotions in terms of information transmission and propagation. For comparison, we construct three simulated networks--one based on the categorical model, one based on the dimensional model, and one random network. The results reveal that small-world connectivity in facial emotion networks is apparently different from those networks, suggesting that a small-world network is the most suitable model for capturing the cognitive basis of facial emotions.

  18. A general evolving model for growing bipartite networks

    International Nuclear Information System (INIS)

    Tian, Lixin; He, Yinghuan; Liu, Haijun; Du, Ruijin

    2012-01-01

    In this Letter, we propose and study an inner evolving bipartite network model. Significantly, we prove that the degree distribution of two different kinds of nodes both obey power-law form with adjustable exponents. Furthermore, the joint degree distribution of any two nodes for bipartite networks model is calculated analytically by the mean-field method. The result displays that such bipartite networks are nearly uncorrelated networks, which is different from one-mode networks. Numerical simulations and empirical results are given to verify the theoretical results. -- Highlights: ► We proposed a general evolving bipartite network model which was based on priority connection, reconnection and breaking edges. ► We prove that the degree distribution of two different kinds of nodes both obey power-law form with adjustable exponents. ► The joint degree distribution of any two nodes for bipartite networks model is calculated analytically by the mean-field method. ► The result displays that such bipartite networks are nearly uncorrelated networks, which is different from one-mode networks.

  19. Modeling geomagnetic induced currents in Australian power networks

    Science.gov (United States)

    Marshall, R. A.; Kelly, A.; Van Der Walt, T.; Honecker, A.; Ong, C.; Mikkelsen, D.; Spierings, A.; Ivanovich, G.; Yoshikawa, A.

    2017-07-01

    Geomagnetic induced currents (GICs) have been considered an issue for high-latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a "geoelectric field" determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29-31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29-31 October 2003 exceed 40 A with the larger GICs occurring in the south-east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east-west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania.

  20. Aggregated Residential Load Modeling Using Dynamic Bayesian Networks

    Energy Technology Data Exchange (ETDEWEB)

    Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai

    2014-09-28

    Abstract—It is already obvious that the future power grid will have to address higher demand for power and energy, and to incorporate renewable resources of different energy generation patterns. Demand response (DR) schemes could successfully be used to manage and balance power supply and demand under operating conditions of the future power grid. To achieve that, more advanced tools for DR management of operations and planning are necessary that can estimate the available capacity from DR resources. In this research, a Dynamic Bayesian Network (DBN) is derived, trained, and tested that can model aggregated load of Heating, Ventilation, and Air Conditioning (HVAC) systems. DBNs can provide flexible and powerful tools for both operations and planing, due to their unique analytical capabilities. The DBN model accuracy and flexibility of use is demonstrated by testing the model under different operational scenarios.

  1. Analysis of deterministic cyclic gene regulatory network models with delays

    CERN Document Server

    Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian

    2015-01-01

    This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.

  2. Systems and methods for modeling and analyzing networks

    Science.gov (United States)

    Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W

    2013-10-29

    The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.

  3. Modelling Altitude Information in Two-Dimensional Traffic Networks for Electric Mobility Simulation

    Directory of Open Access Journals (Sweden)

    Diogo Santos

    2016-06-01

    Full Text Available Elevation data is important for electric vehicle simulation. However, traffic simulators are often two-dimensional and do not offer the capability of modelling urban networks taking elevation into account. Specifically, SUMO - Simulation of Urban Mobility, a popular microscopic traffic simulator, relies on networks previously modelled with elevation data as to provide this information during simulations. This work tackles the problem of adding elevation data to urban network models - particularly for the case of the Porto urban network, in Portugal. With this goal in mind, a comparison between different altitude information retrieval approaches is made and a simple tool to annotate network models with altitude data is proposed. The work starts by describing the methodological approach followed during research and development, then describing and analysing its main findings. This description includes an in-depth explanation of the proposed tool. Lastly, this work reviews some related work to the subject.

  4. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  5. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  6. Dynamic Pathloss Model for Future Mobile Communication Networks

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena Dimitrova; Prasad, Ramjee

    2016-01-01

    that are essentially static. Therefore, once the signal level drops beyond the predicted values due to any variance in the environmental conditions, very crowded areas may not be catered well enough by the deployed network that had been designed with the static path loss model. This paper proposes an approach......— Future mobile communication networks (MCNs) are expected to be more intelligent and proactive based on new capabilities that increase agility and performance. However, for any successful mobile network service, the dexterity in network deployment is a key factor. The efficiency of the network...... planning depends on how congruent the chosen path loss model and real propagation are. Various path loss models have been developed that predict the signal propagation in various morphological and climatic environments; however they consider only those physical parameters of the network environment...

  7. Dynamic Pathloss Model for Place and Time Itinerant Networks

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena; Prasad, Ramjee

    2018-01-01

    that are essentially static. Therefore, once the signal level drops beyond the predicted values due to any variance in the environmental conditions, very crowded areas may not be catered well enough by the deployed network that had been designed with the static path loss model. This paper proposes an approach......t Future mobile communication networks are expected to be more intelligent and proactive based on new capabilities that increase agility and performance. However, for any successful mobile network service, the dexterity in network deployment is a key factor. The efficiency of the network planning...... depends on how congruent the chosen path loss model and real propagation are. Various path loss models have been developed that predict the signal propagation in various morphological and climatic environments; however they consider only those physical parameters of the network environment...

  8. An information spreading model based on online social networks

    Science.gov (United States)

    Wang, Tao; He, Juanjuan; Wang, Xiaoxia

    2018-01-01

    Online social platforms are very popular in recent years. In addition to spreading information, users could review or collect information on online social platforms. According to the information spreading rules of online social network, a new information spreading model, namely IRCSS model, is proposed in this paper. It includes sharing mechanism, reviewing mechanism, collecting mechanism and stifling mechanism. Mean-field equations are derived to describe the dynamics of the IRCSS model. Moreover, the steady states of reviewers, collectors and stiflers and the effects of parameters on the peak values of reviewers, collectors and sharers are analyzed. Finally, numerical simulations are performed on different networks. Results show that collecting mechanism and reviewing mechanism, as well as the connectivity of the network, make information travel wider and faster, and compared to WS network and ER network, the speed of reviewing, sharing and collecting information is fastest on BA network.

  9. An Integral Model to Provide Reactive and Proactive Services in an Academic CSIRT Based on Business Intelligence

    OpenAIRE

    Walter Fuertes; Francisco Reyes; Paúl Valladares; Freddy Tapia; Theofilos Toulkeridis; Ernesto Pérez

    2017-01-01

    Cyber-attacks have increased in severity and complexity. That requires, that the CERT/CSIRT research and develops new security tools. Therefore, our study focuses on the design of an integral model based on Business Intelligence (BI), which provides reactive and proactive services in a CSIRT, in order to alert and reduce any suspicious or malicious activity on information systems and data networks. To achieve this purpose, a solution has been assembled, that generates information stores, bein...

  10. A Network Contention Model for the Extreme-scale Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, Christian [ORNL; Naughton III, Thomas J [ORNL

    2015-01-01

    The Extreme-scale Simulator (xSim) is a performance investigation toolkit for high-performance computing (HPC) hardware/software co-design. It permits running a HPC application with millions of concurrent execution threads, while observing its performance in a simulated extreme-scale system. This paper details a newly developed network modeling feature for xSim, eliminating the shortcomings of the existing network modeling capabilities. The approach takes a different path for implementing network contention and bandwidth capacity modeling using a less synchronous and accurate enough model design. With the new network modeling feature, xSim is able to simulate on-chip and on-node networks with reasonable accuracy and overheads.

  11. Efficient Neural Network Modeling for Flight and Space Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Ayman Hamdy Kassem

    2011-01-01

    Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.

  12. Research on e-commerce transaction networks using multi-agent modelling and open application programming interface

    Science.gov (United States)

    Piao, Chunhui; Han, Xufang; Wu, Harris

    2010-08-01

    We provide a formal definition of an e-commerce transaction network. Agent-based modelling is used to simulate e-commerce transaction networks. For real-world analysis, we studied the open application programming interfaces (APIs) from eBay and Taobao e-commerce websites and captured real transaction data. Pajek is used to visualise the agent relationships in the transaction network. We derived one-mode networks from the transaction network and analysed them using degree and betweenness centrality. Integrating multi-agent modelling, open APIs and social network analysis, we propose a new way to study large-scale e-commerce systems.

  13. Dynamic modeling of physical phenomena for PRAs using neural networks

    International Nuclear Information System (INIS)

    Benjamin, A.S.; Brown, N.N.; Paez, T.L.

    1998-04-01

    In most probabilistic risk assessments, there is a set of accident scenarios that involves the physical responses of a system to environmental challenges. Examples include the effects of earthquakes and fires on the operability of a nuclear reactor safety system, the effects of fires and impacts on the safety integrity of a nuclear weapon, and the effects of human intrusions on the transport of radionuclides from an underground waste facility. The physical responses of the system to these challenges can be quite complex, and their evaluation may require the use of detailed computer codes that are very time consuming to execute. Yet, to perform meaningful probabilistic analyses, it is necessary to evaluate the responses for a large number of variations in the input parameters that describe the initial state of the system, the environments to which it is exposed, and the effects of human interaction. Because the uncertainties of the system response may be very large, it may also be necessary to perform these evaluations for various values of modeling parameters that have high uncertainties, such as material stiffnesses, surface emissivities, and ground permeabilities. The authors have been exploring the use of artificial neural networks (ANNs) as a means for estimating the physical responses of complex systems to phenomenological events such as those cited above. These networks are designed as mathematical constructs with adjustable parameters that can be trained so that the results obtained from the networks will simulate the results obtained from the detailed computer codes. The intent is for the networks to provide an adequate simulation of the detailed codes over a significant range of variables while requiring only a small fraction of the computer processing time required by the detailed codes. This enables the authors to integrate the physical response analyses into the probabilistic models in order to estimate the probabilities of various responses

  14. Model and simulation of Krause model in dynamic open network

    Science.gov (United States)

    Zhu, Meixia; Xie, Guangqiang

    2017-08-01

    The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.

  15. A comprehensive multi-local-world model for complex networks

    International Nuclear Information System (INIS)

    Fan Zhengping; Chen Guanrong; Zhang Yunong

    2009-01-01

    The nodes in a community within a network are much more connected to each other than to the others outside the community in the same network. This phenomenon has been commonly observed from many real-world networks, ranging from social to biological even to technical networks. Meanwhile, the number of communities in some real-world networks, such as the Internet and most social networks, are evolving with time. To model this kind of networks, the present Letter proposes a multi-local-world (MLW) model to capture and describe their essential topological properties. Based on the mean-field theory, the degree distribution of this model is obtained analytically, showing that the generated network has a novel topological feature as being not completely random nor completely scale-free but behaving somewhere between them. As a typical application, the MLW model is applied to characterize the Internet against some other models such as the BA, GBA, Fitness and HOT models, demonstrating the superiority of the new model.

  16. Fracture network modeling and GoldSim simulation support

    International Nuclear Information System (INIS)

    Sugita, Kenichiro; Dershowitz, William

    2003-01-01

    During Heisei-14, Golder Associates provided support for JNC Tokai through data analysis and simulation of the MIU Underground Rock Laboratory, participation in Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport, and analysis of repository safety assessment technologies including cell networks for evaluation of the disturbed rock zone (DRZ) and total systems performance assessment (TSPA). MIU Underground Rock Laboratory support during H-14 involved discrete fracture network (DFN) modelling in support of the Multiple Modelling Project (MMP) and the Long Term Pumping Test (LPT). Golder developed updated DFN models for the MIU site, reflecting updated analyses of fracture data. Golder also developed scripts to support JNC simulations of flow and transport pathways within the MMP. Golder supported JNC participation in Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport during H-14. Task 6A and 6B compared safety assessment (PA) and experimental time scale simulations along a pipe transport pathway. Task 6B2 extended Task 6B simulations from 1-D to 2-D. For Task 6B2, Golder carried out single fracture transport simulations on a wide variety of generic heterogeneous 2D fractures using both experimental and safety assessment boundary conditions. The heterogeneous 2D fractures were implemented according to a variety of in plane heterogeneity patterns. Multiple immobile zones were considered including stagnant zones, infillings, altered wall rock, and intact rock. During H-14, JNC carried out extensive studies of the distributed rock zone (DRZ) surrounding repository tunnels and drifts. Golder supported this activity be evaluating the calculation time necessary for simulating a reference heterogeneous DRZ cell network for a range of computational strategies. To support the development of JNC's total system performance assessment (TSPA) strategy, Golder carried out a review of the US DOE Yucca Mountain Project TSPA. This

  17. Genetic demographic networks: Mathematical model and applications.

    Science.gov (United States)

    Kimmel, Marek; Wojdyła, Tomasz

    2016-10-01

    Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise

  18. A neural network model of ventriloquism effect and aftereffect.

    Science.gov (United States)

    Magosso, Elisa; Cuppini, Cristiano; Ursino, Mauro

    2012-01-01

    Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i) the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii) amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii) ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli). By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.

  19. A neural network model of ventriloquism effect and aftereffect.

    Directory of Open Access Journals (Sweden)

    Elisa Magosso

    Full Text Available Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli. By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.

  20. Hidden long evolutionary memory in a model biochemical network

    Science.gov (United States)

    Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-04-01

    We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.