Blue, Christine M; Funkhouser, D Ellen; Riggs, Sheila; Rindal, D Brad; Worley, Donald; Pihlstrom, Daniel J; Benjamin, Paul; Gilbert, Gregg H
2013-01-01
The purpose of this study was to quantify, within the National Dental Practice-Based Research Network, current utilization of dental hygienists and assistants with expanded functions and quantify network dentists' attitudes toward a new nondentist provider model - the dental therapist. National Dental Practice-Based Research Network practitioner-investigators participated in a single, cross-sectional administration of a questionnaire. Current nondentist providers are not being utilized by network practitioner-investigators to the fullest extent allowed by law. Minnesota practitioners, practitioners in large group practices, and those with prior experience with expanded-function nondentist providers delegate at a higher rate and had more-positive perceptions of the new dental therapist model. Expanding scopes of practice for dental hygienists and assistants has not translated to the maximal delegation allowed by law among network practices. This finding may provide insight into dentists' acceptance of newer nondentist provider models. © 2013 American Association of Public Health Dentistry.
A Model for the Growth of Network Service Providers
2011-12-01
Chiam 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER...explores the implications for the evolution of the internet. Zhang, Nabipay, Odlyzko and Guerin (2010) present an economic model for studying competition...Performance tradeoffs between heuristic and optimization-based approaches (Master’s thesis). Naval Postgraduate School, Monterey, CA . Dorogovtsev
Directory of Open Access Journals (Sweden)
Shibashish Chakraborty
2014-12-01
Full Text Available The Indian market of mobile network providers is growing rapidly. India is the second largest market of mobile network providers in the world and there is intense competition among existing players. In such a competitive market, customer satisfaction becomes a key issue. The objective of this paper is to develop a customer satisfaction model of mobile network providers in Kolkata. The results indicate that generic requirements (an aggregation of output quality and perceived value, flexibility, and price are the determinants of customer satisfaction. This study offers insights for mobile network providers to understand the determinants of customer satisfaction.
M. Mahdavi (Mahdi)
2015-01-01
markdownabstract__Abstract__ The PhD research has two objectives: - To develop generally applicable operational models which allow developing the evidence base for health service operations in provider networks. - To contribute to the evidence base by validating the model through
Khader, A. I.; Rosenberg, D. E.; McKee, M.
2013-05-01
Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i) ignore the health risk of nitrate-contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome) is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs
Directory of Open Access Journals (Sweden)
A. I. Khader
2013-05-01
Full Text Available Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i ignore the health risk of nitrate-contaminated water, (ii switch to alternative water sources such as bottled water, or (iii implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012. The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water
Bornkessel, Alexandra; Furberg, Robert; Lefebvre, R Craig
2014-07-01
Social media brings a new dimension to health care for patients, providers, and their support networks. Increasing evidence demonstrates that patients who are more actively involved in their healthcare experience have better health outcomes and incur lower costs. In the field of cardiology, social media are proposed as innovative tools for the education and update of clinicians, physicians, nurses, and medical students. This article reviews the use of social media by healthcare providers and patients and proposes a model of "networked care" that integrates the use of digital social networks and platforms by both patients and providers and offers recommendations for providers to optimize their use and understanding of social media for quality improvement.
Health Provider Networks, Quality and Costs
Boone, J.; Schottmuller, C.
2015-01-01
We provide a modeling framework to think about selective contracting in the health care sector. Two health care providers differ in quality and costs. When buying health insurance, consumers observe neither provider quality nor costs. We derive an equilibrium where health insurers signal provider
Health provider networks, quality and costs
Boone, Jan; Schottmuller, C.
2015-01-01
We provide a modeling framework to think about selective contracting in the health care sector. Two health care providers differ in quality and costs. When buying health insurance, consumers observe neither provider quality nor costs. We derive an equilibrium where health insurers signal provider
Collaborative networks: Reference modeling
Camarinha-Matos, L.M.; Afsarmanesh, H.
2008-01-01
Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of
Provider Patient-Sharing Networks and Multiple-Provider Prescribing of Benzodiazepines.
Ong, Mei-Sing; Olson, Karen L; Cami, Aurel; Liu, Chunfu; Tian, Fang; Selvam, Nandini; Mandl, Kenneth D
2016-02-01
Prescription benzodiazepine overdose continues to cause significant morbidity and mortality in the US. Multiple-provider prescribing, due to either fragmented care or "doctor-shopping," contributes to the problem. To elucidate the effect of provider professional relationships on multiple-provider prescribing of benzodiazepines, using social network analytics. A retrospective analysis of commercial healthcare claims spanning the years 2008 through 2011. Provider patient-sharing networks were modelled using social network analytics. Care team cohesion was measured using care density, defined as the ratio between the total number of patients shared by provider pairs within a patient's care team and the total number of provider pairs in the care team. Relationships within provider pairs were further quantified using a range of network metrics, including the number and proportion of patients or collaborators shared. The relationship between patient-sharing network metrics and the likelihood of multiple prescribing of benzodiazepines. Patients between the ages of 18 and 64 years who received two or more benzodiazepine prescriptions from multiple providers, with overlapping coverage of more than 14 days. A total of 5659 patients and 1448 provider pairs were included in our study. Among these, 1028 patients (18.2 %) received multiple prescriptions of benzodiazepines, involving 445 provider pairs (30.7 %). Patients whose providers rarely shared patients had a higher risk of being prescribed overlapping benzodiazepines; the median care density was 8.1 for patients who were prescribed overlapping benzodiazepines and 10.1 for those who were not (p benzodiazepines. Our findings demonstrate the importance of care team cohesion in addressing multiple-provider prescribing of controlled substances. Furthermore, we illustrate the potential of the provider network as a surveillance tool to detect and prevent adverse events that could arise due to fragmentation of care.
Directory of Open Access Journals (Sweden)
Katie A Ferguson
2015-08-01
Full Text Available Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens--lacunosum-moleculare (OLM interneurons and bistratified cells (BiCs, make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+ basket and axo-axonic cells (BC/AACs, PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored a number of OLM-BiC connections and connection strengths.We found that our models operate in regimes in which OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the power of network theta oscillations. Our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta
Foundry provides the network backbone for supercomputing
2003-01-01
Some of the results from the fourth annual High-Performance Bandwidth Challenge, held in conjunction with SC2003, the international conference on high-performance computing and networking which occurred last week in Phoenix, AZ (1/2 page).
A Multilayer Model of Computer Networks
Shchurov, Andrey A.
2015-01-01
The fundamental concept of applying the system methodology to network analysis declares that network architecture should take into account services and applications which this network provides and supports. This work introduces a formal model of computer networks on the basis of the hierarchical multilayer networks. In turn, individual layers are represented as multiplex networks. The concept of layered networks provides conditions of top-down consistency of the model. Next, we determined the...
Modeling Network Interdiction Tasks
2015-09-17
allow professionals and families to stay in touch through voice or video calls. Power grids provide electricity to homes , offices, and recreational...instances using IBMr ILOGr CPLEXr Optimization Studio V12.6. For each instance, two solutions are deter- mined. First, the MNDP-a model is solved with no...three values: 0.25, 0.50, or 0.75. The DMP-a model is solved for the various random network instances using IBMr ILOGr CPLEXr Optimization Studio V12.6
Modeling the citation network by network cosmology.
Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing
2015-01-01
Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.
Modeling the citation network by network cosmology.
Directory of Open Access Journals (Sweden)
Zheng Xie
Full Text Available Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.
Network performance and fault analytics for LTE wireless service providers
Kakadia, Deepak; Gilgur, Alexander
2017-01-01
This book is intended to describe how to leverage emerging technologies big data analytics and SDN, to address challenges specific to LTE and IP network performance and fault management data in order to more efficiently manage and operate an LTE wireless networks. The proposed integrated solutions permit the LTE network service provider to operate entire integrated network, from RAN to Core , from UE to application service, as one unified system and correspondingly collect and align disparate key metrics and data, using an integrated and holistic approach to network analysis. The LTE wireless network performance and fault involves the network performance and management of network elements in EUTRAN, EPC and IP transport components, not only as individual components, but also as nuances of inter-working of these components. The key metrics for EUTRAN include radio access network accessibility, retainability, integrity, availability and mobility. The key metrics for EPC include MME accessibility, mobility and...
DEFF Research Database (Denmark)
Andersen, Kasper Winther
Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...
Directory of Open Access Journals (Sweden)
Barbara Martini
2016-06-01
Full Text Available Emerging technologies such as Software-Defined Networks (SDN and Network Function Virtualization (NFV promise to address cost reduction and flexibility in network operation while enabling innovative network service delivery models. However, operational network service delivery solutions still need to be developed that actually exploit these technologies, especially at the multi-provider level. Indeed, the implementation of network functions as software running over a virtualized infrastructure and provisioned on a service basis let one envisage an ecosystem of network services that are dynamically and flexibly assembled by orchestrating Virtual Network Functions even across different provider domains, thereby coping with changeable user and service requirements and context conditions. In this paper we propose an approach that adopts Service-Oriented Architecture (SOA technology-agnostic architectural guidelines in the design of a solution for orchestrating and dynamically chaining Virtual Network Functions. We discuss how SOA, NFV, and SDN may complement each other in realizing dynamic network function chaining through service composition specification, service selection, service delivery, and placement tasks. Then, we describe the architecture of a SOA-inspired NFV orchestrator, which leverages SDN-based network control capabilities to address an effective delivery of elastic chains of Virtual Network Functions. Preliminary results of prototype implementation and testing activities are also presented. The benefits for Network Service Providers are also described that derive from the adaptive network service provisioning in a multi-provider environment through the orchestration of computing and networking services to provide end users with an enhanced service experience.
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
CONSTRICTOR: constraint modification provides insight into design of biochemical networks.
Directory of Open Access Journals (Sweden)
Keesha E Erickson
Full Text Available Advances in computational methods that allow for exploration of the combinatorial mutation space are needed to realize the potential of synthetic biology based strain engineering efforts. Here, we present Constrictor, a computational framework that uses flux balance analysis (FBA to analyze inhibitory effects of genetic mutations on the performance of biochemical networks. Constrictor identifies engineering interventions by classifying the reactions in the metabolic model depending on the extent to which their flux must be decreased to achieve the overproduction target. The optimal inhibition of various reaction pathways is determined by restricting the flux through targeted reactions below the steady state levels of a baseline strain. Constrictor generates unique in silico strains, each representing an "expression state", or a combination of gene expression levels required to achieve the overproduction target. The Constrictor framework is demonstrated by studying overproduction of ethylene in Escherichia coli network models iAF1260 and iJO1366 through the addition of the heterologous ethylene-forming enzyme from Pseudomonas syringae. Targeting individual reactions as well as combinations of reactions reveals in silico mutants that are predicted to have as high as 25% greater theoretical ethylene yields than the baseline strain during simulated exponential growth. Altering the degree of restriction reveals a large distribution of ethylene yields, while analysis of the expression states that return lower yields provides insight into system bottlenecks. Finally, we demonstrate the ability of Constrictor to scan networks and provide targets for a range of possible products. Constrictor is an adaptable technique that can be used to generate and analyze disparate populations of in silico mutants, select gene expression levels and provide non-intuitive strategies for metabolic engineering.
Modeling network technology deployment rates with different network models
Chung, Yoo
2011-01-01
To understand the factors that encourage the deployment of a new networking technology, we must be able to model how such technology gets deployed. We investigate how network structure influences deployment with a simple deployment model and different network models through computer simulations. The results indicate that a realistic model of networking technology deployment should take network structure into account.
Bring Your Own Device - Providing Reliable Model of Data Access
Directory of Open Access Journals (Sweden)
Stąpór Paweł
2016-10-01
Full Text Available The article presents a model of Bring Your Own Device (BYOD as a model network, which provides the user reliable access to network resources. BYOD is a model dynamically developing, which can be applied in many areas. Research network has been launched in order to carry out the test, in which as a service of BYOD model Work Folders service was used. This service allows the user to synchronize files between the device and the server. An access to the network is completed through the wireless communication by the 802.11n standard. Obtained results are shown and analyzed in this article.
Allocating resources between network nodes for providing a network node function
Strijkers, R.J.; Meulenhoff, P.J.
2014-01-01
The invention provides a method wherein a first network node advertises available resources that a second network node may use to offload network node functions transparently to the first network node. Examples of the first network node are a client device (e.g. PC, notebook, tablet, smart phone), a
Modeling semiflexible polymer networks
Broedersz, Chase P.; MacKintosh, Fred C.
2014-01-01
Here, we provide an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have been motivated by their importance in biology. Indeed, crosslinked networks of semiflexible polymers form a major structural component of tissue and living cells. Reconstituted networks o...
Modeling Epidemic Network Failures
DEFF Research Database (Denmark)
Ruepp, Sarah Renée; Fagertun, Anna Manolova
2013-01-01
This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...
Mobility Model for Tactical Networks
Rollo, Milan; Komenda, Antonín
In this paper a synthetic mobility model which represents behavior and movement pattern of heterogeneous units in disaster relief and battlefield scenarios is proposed. These operations usually take place in environment without preexisting communication infrastructure and units thus have to be connected by wireless communication network. Units cooperate to fulfill common tasks and communication network has to serve high amount of communication requests, especially data, voice and video stream transmissions. To verify features of topology control, routing and interaction protocols software simulations are usually used, because of their scalability, repeatability and speed. Behavior of all these protocols relies on the mobility model of the network nodes, which has to resemble real-life movement pattern. Proposed mobility model is goal-driven and provides support for various types of units, group mobility and realistic environment model with obstacles. Basic characteristics of the mobility model like node spatial distribution and average node degree were analyzed.
RMBNToolbox: random models for biochemical networks
Directory of Open Access Journals (Sweden)
Niemi Jari
2007-05-01
Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.
Models of educational institutions' networking
Shilova Olga Nikolaevna
2015-01-01
The importance of educational institutions' networking in modern sociocultural conditions and a definition of networking in education are presented in the article. The results of research levels, methods and models of educational institutions' networking are presented and substantially disclosed.
Probabilistic logic modeling of network reliability for hybrid network architectures
Energy Technology Data Exchange (ETDEWEB)
Wyss, G.D.; Schriner, H.K.; Gaylor, T.R.
1996-10-01
Sandia National Laboratories has found that the reliability and failure modes of current-generation network technologies can be effectively modeled using fault tree-based probabilistic logic modeling (PLM) techniques. We have developed fault tree models that include various hierarchical networking technologies and classes of components interconnected in a wide variety of typical and atypical configurations. In this paper we discuss the types of results that can be obtained from PLMs and why these results are of great practical value to network designers and analysts. After providing some mathematical background, we describe the `plug-and-play` fault tree analysis methodology that we have developed for modeling connectivity and the provision of network services in several current- generation network architectures. Finally, we demonstrate the flexibility of the method by modeling the reliability of a hybrid example network that contains several interconnected ethernet, FDDI, and token ring segments. 11 refs., 3 figs., 1 tab.
Entropy Characterization of Random Network Models
Directory of Open Access Journals (Sweden)
Pedro J. Zufiria
2017-06-01
Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.
Techniques for Modelling Network Security
Lech Gulbinovič
2012-01-01
The article compares modelling techniques for network security, including the theory of probability, Markov processes, Petri networks and application of stochastic activity networks. The paper introduces the advantages and disadvantages of the above proposed methods and accepts the method of modelling the network of stochastic activity as one of the most relevant. The stochastic activity network allows modelling the behaviour of the dynamic system where the theory of probability is inappropri...
Object Oriented Modeling Of Social Networks
Zeggelink, Evelien P.H.; Oosten, Reinier van; Stokman, Frans N.
1996-01-01
The aim of this paper is to explain principles of object oriented modeling in the scope of modeling dynamic social networks. As such, the approach of object oriented modeling is advocated within the field of organizational research that focuses on networks. We provide a brief introduction into the
Awareness of LGBT aging issues among aging services network providers.
Hughes, Anne K; Harold, Rena D; Boyer, Janet M
2011-10-01
Very little research exists examining the interactions between community-based aging service providers and lesbian, gay, bisexual, and transgender (LGBT) older adults. It is unclear whether mainstream aging services acknowledge the needs of this community. We asked direct care providers and administrators in the Michigan aging services network to describe their work with LGBT older adults. We found there are very few services specific to the needs of older LGBT adults and very little outreach to this community. At the agency level, resistance to providing services was found.
Coevolutionary modeling in network formation
Al-Shyoukh, Ibrahim
2014-12-03
Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.
Do Network Models Just Model Networks? On The Applicability of Network-Oriented Modeling
Treur, J.; Shmueli, Erez
2017-01-01
In this paper for a Network-Oriented Modelling perspective based on temporal-causal networks it is analysed how generic and applicable it is as a general modelling approach and as a computational paradigm. This results in an answer to the question in the title different from: network models just
Modeling data throughput on communication networks
Energy Technology Data Exchange (ETDEWEB)
Eldridge, J.M.
1993-11-01
New challenges in high performance computing and communications are driving the need for fast, geographically distributed networks. Applications such as modeling physical phenomena, interactive visualization, large data set transfers, and distributed supercomputing require high performance networking [St89][Ra92][Ca92]. One measure of a communication network`s performance is the time it takes to complete a task -- such as transferring a data file or displaying a graphics image on a remote monitor. Throughput, defined as the ratio of the number of useful data bits transmitted per the time required to transmit those bits, is a useful gauge of how well a communication system meets this performance measure. This paper develops and describes an analytical model of throughput. The model is a tool network designers can use to predict network throughput. It also provides insight into those parts of the network that act as a performance bottleneck.
Models of network reliability analysis, combinatorics, and Monte Carlo
Gertsbakh, Ilya B
2009-01-01
Unique in its approach, Models of Network Reliability: Analysis, Combinatorics, and Monte Carlo provides a brief introduction to Monte Carlo methods along with a concise exposition of reliability theory ideas. From there, the text investigates a collection of principal network reliability models, such as terminal connectivity for networks with unreliable edges and/or nodes, network lifetime distribution in the process of its destruction, network stationary behavior for renewable components, importance measures of network elements, reliability gradient, and network optimal reliability synthesis
A logical model provides insights into T cell receptor signaling.
Directory of Open Access Journals (Sweden)
Julio Saez-Rodriguez
2007-08-01
Full Text Available Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications.
Mathematical Modelling Plant Signalling Networks
Muraro, D.
2013-01-01
During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.
Performance modeling of network data services
Energy Technology Data Exchange (ETDEWEB)
Haynes, R.A.; Pierson, L.G.
1997-01-01
Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.
Queueing Models for Mobile Ad Hoc Networks
de Haan, Roland
2009-01-01
This thesis presents models for the performance analysis of a recent communication paradigm: \\emph{mobile ad hoc networking}. The objective of mobile ad hoc networking is to provide wireless connectivity between stations in a highly dynamic environment. These dynamics are driven by the mobility of
Network models in economics and finance
Pardalos, Panos; Rassias, Themistocles
2014-01-01
Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.
Modelling the structure of complex networks
DEFF Research Database (Denmark)
Herlau, Tue
networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex......A complex network is a systems in which a discrete set of units interact in a quantifiable manner. Representing systems as complex networks have become increasingly popular in a variety of scientific fields including biology, social sciences and economics. Parallel to this development complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...
A Network Formation Model Based on Subgraphs
Chandrasekhar, Arun
2016-01-01
We develop a new class of random-graph models for the statistical estimation of network formation that allow for substantial correlation in links. Various subgraphs (e.g., links, triangles, cliques, stars) are generated and their union results in a network. We provide estimation techniques for recovering the rates at which the underlying subgraphs were formed. We illustrate the models via a series of applications including testing for incentives to form cross-caste relationships in rural India, testing to see whether network structure is used to enforce risk-sharing, testing as to whether networks change in response to a community's exposure to microcredit, and show that these models significantly outperform stochastic block models in matching observed network characteristics. We also establish asymptotic properties of the models and various estimators, which requires proving a new Central Limit Theorem for correlated random variables.
Networked Print Production: Does JDF Provide a Perfect Workflow?
Directory of Open Access Journals (Sweden)
Bernd Zipper
2004-12-01
Full Text Available The "networked printing works" is a well-worn slogan used by many providers in the graphics industry and for the past number of years printing-works manufacturers have been working on the goal of achieving the "networked printing works". A turning point from the concept to real implementation can now be expected at drupa 2004: JDF (Job Definition Format and thus "networked production" will form the center of interest here. The first approaches towards a complete, networked workflow between prepress, print and postpress in production are already available - the products and solutions will now be presented publicly at drupa 2004. So, drupa 2004 will undoubtedly be the "JDF-drupa" - the drupa where machines learn to communicate with each other digitally - the drupa, where the dream of general system and job communication in the printing industry can be first realized. CIP3, which has since been renamed CIP4, is an international consortium of leading manufacturers from the printing and media industry who have taken on the task of integrating processes for prepress, print and postpress. The association, to which nearly all manufacturers in the graphics industry belong, has succeeded with CIP3 in developing a first international standard for the transmission of control data in the print workflow.Further development of the CIP4 standard now includes a more extensive "system language" called JDF, which will guarantee workflow communication beyond manufacturer boundaries. However, not only data for actual print production will be communicated with JDF (Job Definition Format: planning and calculation data for MIS (Management Information systems and calculation systems will also be prepared. The German printing specialist Hans-Georg Wenke defines JDF as follows: "JDF takes over data from MIS for machines, aggregates and their control desks, data exchange within office applications, and finally ensures that data can be incorporated in the technical workflow
Development of Model for Providing Feasible Scholarship
Directory of Open Access Journals (Sweden)
Harry Dhika
2016-05-01
Full Text Available The current work focuses on the development of a model to determine a feasible scholarship recipient on the basis of the naiv¨e Bayes’ method using very simple and limited attributes. Those attributes are the applicants academic year, represented by their semester, academic performance, represented by their GPa, socioeconomic ability, which represented the economic capability to attend a higher education institution, and their level of social involvement. To establish and evaluate the model performance, empirical data are collected, and the data of 100 students are divided into 80 student data for the model training and the remaining of 20 student data are for the model testing. The results suggest that the model is capable to provide recommendations for the potential scholarship recipient at the level of accuracy of 95%.
Complex Networks in Psychological Models
Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.
We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.
2003-01-01
Network Physics, provider of business-level, traffic flow-based network management solutions, today announced the introduction of the Network Physics NP/BizFlow-1000. With the NP/BizFlow-1000, Fortune 1000 companies with complex and dynamic networks can analyze the flows that link business groups, critical applications, and network software and hardware (1 page).
Tensor network models of multiboundary wormholes
Peach, Alex; Ross, Simon F.
2017-05-01
We study the entanglement structure of states dual to multiboundary wormhole geometries using tensor network models. Perfect and random tensor networks tiling the hyperbolic plane have been shown to provide good models of the entanglement structure in holography. We extend this by quotienting the plane by discrete isometries to obtain models of the multiboundary states. We show that there are networks where the entanglement structure is purely bipartite, extending results obtained in the large temperature limit. We analyse the entanglement structure in a range of examples.
Optimized null model for protein structure networks.
Milenković, Tijana; Filippis, Ioannis; Lappe, Michael; Przulj, Natasa
2009-06-26
Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs) as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model for RIGs, by
Optimized null model for protein structure networks.
Directory of Open Access Journals (Sweden)
Tijana Milenković
Full Text Available Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model
Developing Personal Network Business Models
DEFF Research Database (Denmark)
Saugstrup, Dan; Henten, Anders
2006-01-01
on the 'state of the art' in the field of business modeling. Furthermore, the paper suggests three generic business models for PNs: a service oriented model, a self-organized model, and a combination model. Finally, examples of relevant services and applications in relation to three different cases......The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports...... are presented and analyzed in light of business modeling of PN....
A model of coauthorship networks
Zhou, Guochang; Li, Jianping; Xie, Zonglin
2017-10-01
A natural way of representing the coauthorship of authors is to use a generalization of graphs known as hypergraphs. A random geometric hypergraph model is proposed here to model coauthorship networks, which is generated by placing nodes on a region of Euclidean space randomly and uniformly, and connecting some nodes if the nodes satisfy particular geometric conditions. Two kinds of geometric conditions are designed to model the collaboration patterns of academic authorities and basic researches respectively. The conditions give geometric expressions of two causes of coauthorship: the authority and similarity of authors. By simulation and calculus, we show that the forepart of the degree distribution of the network generated by the model is mixture Poissonian, and the tail is power-law, which are similar to these of some coauthorship networks. Further, we show more similarities between the generated network and real coauthorship networks: the distribution of cardinalities of hyperedges, high clustering coefficient, assortativity, and small-world property
2016-11-09
standpoint remains more of an art than a science . Even when well executed, the ongoing evolution of the network may violate initial, security-critical design...from a security standpoint remains more of an art than a science . Even when well executed, the ongoing evolution of the network may violate initial...is outside the scope of this paper. As such, we focus on event probabilities. The output of the network porosity model is a stream of timestamped
Telecommunications network modelling, planning and design
Evans, Sharon
2003-01-01
Telecommunication Network Modelling, Planning and Design addresses sophisticated modelling techniques from the perspective of the communications industry and covers some of the major issues facing telecommunications network engineers and managers today. Topics covered include network planning for transmission systems, modelling of SDH transport network structures and telecommunications network design and performance modelling, as well as network costs and ROI modelling and QoS in 3G networks.
Providing Morphological Information for SMT Using Neural Networks
Directory of Open Access Journals (Sweden)
Passban Peyman
2017-06-01
Full Text Available Treating morphologically complex words (MCWs as atomic units in translation would not yield a desirable result. Such words are complicated constituents with meaningful subunits. A complex word in a morphologically rich language (MRL could be associated with a number of words or even a full sentence in a simpler language, which means the surface form of complex words should be accompanied with auxiliary morphological information in order to provide a precise translation and a better alignment. In this paper we follow this idea and propose two different methods to convey such information for statistical machine translation (SMT models. In the first model we enrich factored SMT engines by introducing a new morphological factor which relies on subword-aware word embeddings. In the second model we focus on the language-modeling component. We explore a subword-level neural language model (NLM to capture sequence-, word- and subword-level dependencies. Our NLM is able to approximate better scores for conditional word probabilities, so the decoder generates more fluent translations. We studied two languages Farsi and German in our experiments and observed significant improvements for both of them.
Campus network security model study
Zhang, Yong-ku; Song, Li-ren
2011-12-01
Campus network security is growing importance, Design a very effective defense hacker attacks, viruses, data theft, and internal defense system, is the focus of the study in this paper. This paper compared the firewall; IDS based on the integrated, then design of a campus network security model, and detail the specific implementation principle.
Model-based control of networked systems
Garcia, Eloy; Montestruque, Luis A
2014-01-01
This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled. The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates . It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control. Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and ...
Neural network modeling of emotion
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
Graphical Model Theory for Wireless Sensor Networks
Energy Technology Data Exchange (ETDEWEB)
Davis, William B.
2002-12-08
Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm.
Modeling semiflexible polymer networks
Broedersz, C.P.; MacKintosh, F.C.
2014-01-01
This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have
Mathematical model of highways network optimization
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.
Performance modeling, stochastic networks, and statistical multiplexing
Mazumdar, Ravi R
2013-01-01
This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan
Neural networks as models of psychopathology.
Aakerlund, L; Hemmingsen, R
1998-04-01
Neural network modeling is situated between neurobiology, cognitive science, and neuropsychology. The structural and functional resemblance with biological computation has made artificial neural networks (ANN) useful for exploring the relationship between neurobiology and computational performance, i.e., cognition and behavior. This review provides an introduction to the theory of ANN and how they have linked theories from neurobiology and psychopathology in schizophrenia, affective disorders, and dementia.
Cost Calculation Model for Logistics Service Providers
Directory of Open Access Journals (Sweden)
Zoltán Bokor
2012-11-01
Full Text Available The exact calculation of logistics costs has become a real challenge in logistics and supply chain management. It is essential to gain reliable and accurate costing information to attain efficient resource allocation within the logistics service provider companies. Traditional costing approaches, however, may not be sufficient to reach this aim in case of complex and heterogeneous logistics service structures. So this paper intends to explore the ways of improving the cost calculation regimes of logistics service providers and show how to adopt the multi-level full cost allocation technique in logistics practice. After determining the methodological framework, a sample cost calculation scheme is developed and tested by using estimated input data. Based on the theoretical findings and the experiences of the pilot project it can be concluded that the improved costing model contributes to making logistics costing more accurate and transparent. Moreover, the relations between costs and performances also become more visible, which enhances the effectiveness of logistics planning and controlling significantly
Modelling freeway networks by hybrid stochastic models
Boel, R.; Mihaylova, L.
2004-01-01
Traffic flow on freeways is a nonlinear, many-particle phenomenon, with complex interactions between the vehicles. This paper presents a stochastic hybrid model of freeway traffic at a time scale and at a level of detail suitable for on-line flow estimation, for routing and ramp metering control. The model describes the evolution of continuous and discrete state variables. The freeway is considered as a network of components, each component representing a different section of the network. The...
Optimal transportation networks models and theory
Bernot, Marc; Morel, Jean-Michel
2009-01-01
The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.
Network model of security system
Directory of Open Access Journals (Sweden)
Adamczyk Piotr
2016-01-01
Full Text Available The article presents the concept of building a network security model and its application in the process of risk analysis. It indicates the possibility of a new definition of the role of the network models in the safety analysis. Special attention was paid to the development of the use of an algorithm describing the process of identifying the assets, vulnerability and threats in a given context. The aim of the article is to present how this algorithm reduced the complexity of the problem by eliminating from the base model these components that have no links with others component and as a result and it was possible to build a real network model corresponding to reality.
Markov State Models of gene regulatory networks.
Chu, Brian K; Tse, Margaret J; Sato, Royce R; Read, Elizabeth L
2017-02-06
Gene regulatory networks with dynamics characterized by multiple stable states underlie cell fate-decisions. Quantitative models that can link molecular-level knowledge of gene regulation to a global understanding of network dynamics have the potential to guide cell-reprogramming strategies. Networks are often modeled by the stochastic Chemical Master Equation, but methods for systematic identification of key properties of the global dynamics are currently lacking. The method identifies the number, phenotypes, and lifetimes of long-lived states for a set of common gene regulatory network models. Application of transition path theory to the constructed Markov State Model decomposes global dynamics into a set of dominant transition paths and associated relative probabilities for stochastic state-switching. In this proof-of-concept study, we found that the Markov State Model provides a general framework for analyzing and visualizing stochastic multistability and state-transitions in gene networks. Our results suggest that this framework-adopted from the field of atomistic Molecular Dynamics-can be a useful tool for quantitative Systems Biology at the network scale.
Neural network approaches for noisy language modeling.
Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid
2013-11-01
Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.
Social network models predict movement and connectivity in ecological landscapes
Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.
2011-01-01
Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.
Data modeling of network dynamics
Jaenisch, Holger M.; Handley, James W.; Faucheux, Jeffery P.; Harris, Brad
2004-01-01
This paper highlights Data Modeling theory and its use for text data mining as a graphical network search engine. Data Modeling is then used to create a real-time filter capable of monitoring network traffic down to the port level for unusual dynamics and changes in business as usual. This is accomplished in an unsupervised fashion without a priori knowledge of abnormal characteristics. Two novel methods for converting streaming binary data into a form amenable to graphics based search and change detection are introduced. These techniques are then successfully applied to 1999 KDD Cup network attack data log-on sessions to demonstrate that Data Modeling can detect attacks without prior training on any form of attack behavior. Finally, two new methods for data encryption using these ideas are proposed.
Guide to Working with Model Providers.
Walter, Katie; Hassel, Bryan C.
Often a central feature of a school's improvement efforts is the adoption of a Comprehensive School Reform (CSR) model, an externally developed research-based design for school improvement. Adopting a model is only the first step in CSR. Another important step is forging partnerships with developers of CSR models. This guide aims to help schools…
Continuum Modeling of Biological Network Formation
Albi, Giacomo
2017-04-10
We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes the pressure field using a Darcy type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. We first introduce micro- and mesoscopic models and show how they are connected to the macroscopic PDE system. Then, we provide an overview of analytical results for the PDE model, focusing mainly on the existence of weak and mild solutions and analysis of the steady states. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on finite elements and study the qualitative properties of network structures for various parameter values.
Fundamentals of complex networks models, structures and dynamics
Chen, Guanrong; Li, Xiang
2014-01-01
Complex networks such as the Internet, WWW, transportationnetworks, power grids, biological neural networks, and scientificcooperation networks of all kinds provide challenges for futuretechnological development. In particular, advanced societies havebecome dependent on large infrastructural networks to an extentbeyond our capability to plan (modeling) and to operate (control).The recent spate of collapses in power grids and ongoing virusattacks on the Internet illustrate the need for knowledge aboutmodeling, analysis of behaviors, optimized planning and performancecontrol in such networks. F
Thermal Network Modelling Handbook
1972-01-01
Thermal mathematical modelling is discussed in detail. A three-fold purpose was established: (1) to acquaint the new user with the terminology and concepts used in thermal mathematical modelling, (2) to present the more experienced and occasional user with quick formulas and methods for solving everyday problems, coupled with study cases which lend insight into the relationships that exist among the various solution techniques and parameters, and (3) to begin to catalog in an orderly fashion the common formulas which may be applied to automated conversational language techniques.
Delay and Disruption Tolerant Networking MACHETE Model
Segui, John S.; Jennings, Esther H.; Gao, Jay L.
2011-01-01
To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity
Contributions and challenges for network models in cognitive neuroscience.
Sporns, Olaf
2014-05-01
The confluence of new approaches in recording patterns of brain connectivity and quantitative analytic tools from network science has opened new avenues toward understanding the organization and function of brain networks. Descriptive network models of brain structural and functional connectivity have made several important contributions; for example, in the mapping of putative network hubs and network communities. Building on the importance of anatomical and functional interactions, network models have provided insight into the basic structures and mechanisms that enable integrative neural processes. Network models have also been instrumental in understanding the role of structural brain networks in generating spatially and temporally organized brain activity. Despite these contributions, network models are subject to limitations in methodology and interpretation, and they face many challenges as brain connectivity data sets continue to increase in detail and complexity.
Network Models of Mechanical Assemblies
Whitney, Daniel E.
Recent network research has sought to characterize complex systems with a number of statistical metrics, such as power law exponent (if any), clustering coefficient, community behavior, and degree correlation. Use of such metrics represents a choice of level of abstraction, a balance of generality and detailed accuracy. It has been noted that "social networks" consistently display clustering coefficients that are higher than those of random or generalized random networks, that they have small world properties such as short path lengths, and that they have positive degree correlations (assortative mixing). "Technological" or "non-social" networks display many of these characteristics except that they generally have negative degree correlations (disassortative mixing). [Newman 2003i] In this paper we examine network models of mechanical assemblies. Such systems are well understood functionally. We show that there is a cap on their average nodal degree and that they have negative degree correlations (disassortative mixing). We identify specific constraints arising from first principles, their structural patterns, and engineering practice that suggest why they have these properties. In addition, we note that their main "motif" is closed loops (as it is for electric and electronic circuits), a pattern that conventional network analysis does not detect but which is used by software intended to aid in the design of such systems.
A Complex Network Approach to Distributional Semantic Models.
Directory of Open Access Journals (Sweden)
Akira Utsumi
Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.
Local empathy provides global minimization of congestion in communication networks
Meloni, Sandro; Gómez-Gardeñes, Jesús
2010-11-01
We present a mechanism to avoid congestion in complex networks based on a local knowledge of traffic conditions and the ability of routers to self-coordinate their dynamical behavior. In particular, routers make use of local information about traffic conditions to either reject or accept information packets from their neighbors. We show that when nodes are only aware of their own congestion state they self-organize into a hierarchical configuration that delays remarkably the onset of congestion although leading to a sharp first-order-like congestion transition. We also consider the case when nodes are aware of the congestion state of their neighbors. In this case, we show that empathy between nodes is strongly beneficial to the overall performance of the system and it is possible to achieve larger values for the critical load together with a smooth, second-order-like, transition. Finally, we show how local empathy minimize the impact of congestion as much as global minimization. Therefore, here we present an outstanding example of how local dynamical rules can optimize the system’s functioning up to the levels reached using global knowledge.
Service entity network virtualization architecture and model
Jin, Xue-Guang; Shou, Guo-Chu; Hu, Yi-Hong; Guo, Zhi-Gang
2017-07-01
Communication network can be treated as a complex network carrying a variety of services and service can be treated as a network composed of functional entities. There are growing interests in multiplex service entities where individual entity and link can be used for different services simultaneously. Entities and their relationships constitute a service entity network. In this paper, we introduced a service entity network virtualization architecture including service entity network hierarchical model, service entity network model, service implementation and deployment of service entity networks. Service entity network oriented multiplex planning model were also studied and many of these multiplex models were characterized by a significant multiplex of the links or entities in different service entity network. Service entity networks were mapped onto shared physical resources by dynamic resource allocation controller. The efficiency of the proposed architecture was illustrated in a simulation environment that allows for comparative performance evaluation. The results show that, compared to traditional networking architecture, this architecture has a better performance.
Modelling dendritic ecological networks in space: anintegrated network perspective
Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.
2013-01-01
Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of ecological networks, or in 2-D space, may be inadequate for studying the influence of structure and connectivity on ecological processes within DENs. We propose a conceptual taxonomy of network analysis methods that account for DEN characteristics to varying degrees and provide a synthesis of the different approaches within
A comprehensive Network Security Risk Model for process control networks.
Henry, Matthew H; Haimes, Yacov Y
2009-02-01
The risk of cyber attacks on process control networks (PCN) is receiving significant attention due to the potentially catastrophic extent to which PCN failures can damage the infrastructures and commodity flows that they support. Risk management addresses the coupled problems of (1) reducing the likelihood that cyber attacks would succeed in disrupting PCN operation and (2) reducing the severity of consequences in the event of PCN failure or manipulation. The Network Security Risk Model (NSRM) developed in this article provides a means of evaluating the efficacy of candidate risk management policies by modeling the baseline risk and assessing expectations of risk after the implementation of candidate measures. Where existing risk models fall short of providing adequate insight into the efficacy of candidate risk management policies due to shortcomings in their structure or formulation, the NSRM provides model structure and an associated modeling methodology that captures the relevant dynamics of cyber attacks on PCN for risk analysis. This article develops the NSRM in detail in the context of an illustrative example.
Polymer networks: Modeling and applications
Masoud, Hassan
Polymer networks are an important class of materials that are ubiquitously found in natural, biological, and man-made systems. The complex mesoscale structure of these soft materials has made it difficult for researchers to fully explore their properties. In this dissertation, we introduce a coarse-grained computational model for permanently cross-linked polymer networks than can properly capture common properties of these materials. We use this model to study several practical problems involving dry and solvated networks. Specifically, we analyze the permeability and diffusivity of polymer networks under mechanical deformations, we examine the release of encapsulated solutes from microgel capsules during volume transitions, and we explore the complex tribological behavior of elastomers. Our simulations reveal that the network transport properties are defined by the network porosity and by the degree of network anisotropy due to mechanical deformations. In particular, the permeability of mechanically deformed networks can be predicted based on the alignment of network filaments that is characterized by a second order orientation tensor. Moreover, our numerical calculations demonstrate that responsive microcapsules can be effectively utilized for steady and pulsatile release of encapsulated solutes. We show that swollen gel capsules allow steady, diffusive release of nanoparticles and polymer chains, whereas gel deswelling causes burst-like discharge of solutes driven by an outward flow of the solvent initially enclosed within a shrinking capsule. We further demonstrate that this hydrodynamic release can be regulated by introducing rigid microscopic rods in the capsule interior. We also probe the effects of velocity, temperature, and normal load on the sliding of elastomers on smooth and corrugated substrates. Our friction simulations predict a bell-shaped curve for the dependence of the friction coefficient on the sliding velocity. Our simulations also illustrate
Distributed Bayesian Networks for User Modeling
DEFF Research Database (Denmark)
Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang
2006-01-01
The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...... efficiently combines distributed learner models without the need to exchange internal structure of local Bayesian networks, nor local evidence between the involved platforms....
Target-Centric Network Modeling
DEFF Research Database (Denmark)
Mitchell, Dr. William L.; Clark, Dr. Robert M.
In Target-Centric Network Modeling: Case Studies in Analyzing Complex Intelligence Issues, authors Robert Clark and William Mitchell take an entirely new approach to teaching intelligence analysis. Unlike any other book on the market, it offers case study scenarios using actual intelligence......, and collaborative sharing in the process of creating a high-quality, actionable intelligence product. The case studies reflect the complexity of twenty-first century intelligence issues by dealing with multi-layered target networks that cut across political, economic, social, technological, and military issues....... Working through these cases, students will learn to manage and evaluate realistic intelligence accounts....
Modeling Multistandard Wireless Networks in OPNET
DEFF Research Database (Denmark)
Zakrzewska, Anna; Berger, Michael Stübert; Ruepp, Sarah Renée
2011-01-01
Future wireless communication is emerging towards one heterogeneous platform. In this new environment wireless access will be provided by multiple radio technologies that are cooperating and complementing one another. The paper investigates the possibilities of developing such a multistandard...... system using OPNET Modeler. A network model consisting of LTE interworking with WLAN and WiMAX is considered from the radio resource management perspective. In particular, implementing a joint packet scheduler across multiple systems is discussed more in detail....
CNEM: Cluster Based Network Evolution Model
Directory of Open Access Journals (Sweden)
Sarwat Nizamani
2015-01-01
Full Text Available This paper presents a network evolution model, which is based on the clustering approach. The proposed approach depicts the network evolution, which demonstrates the network formation from individual nodes to fully evolved network. An agglomerative hierarchical clustering method is applied for the evolution of network. In the paper, we present three case studies which show the evolution of the networks from the scratch. These case studies include: terrorist network of 9/11 incidents, terrorist network of WMD (Weapons Mass Destruction plot against France and a network of tweets discussing a topic. The network of 9/11 is also used for evaluation, using other social network analysis methods which show that the clusters created using the proposed model of network evolution are of good quality, thus the proposed method can be used by law enforcement agencies in order to further investigate the criminal networks
Biological transportation networks: Modeling and simulation
Albi, Giacomo
2015-09-15
We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.
Energy modelling in sensor networks
Directory of Open Access Journals (Sweden)
D. Schmidt
2007-06-01
Full Text Available Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.
Keystone Business Models for Network Security Processors
Directory of Open Access Journals (Sweden)
Arthur Low
2013-07-01
Full Text Available Network security processors are critical components of high-performance systems built for cybersecurity. Development of a network security processor requires multi-domain experience in semiconductors and complex software security applications, and multiple iterations of both software and hardware implementations. Limited by the business models in use today, such an arduous task can be undertaken only by large incumbent companies and government organizations. Neither the “fabless semiconductor” models nor the silicon intellectual-property licensing (“IP-licensing” models allow small technology companies to successfully compete. This article describes an alternative approach that produces an ongoing stream of novel network security processors for niche markets through continuous innovation by both large and small companies. This approach, referred to here as the "business ecosystem model for network security processors", includes a flexible and reconfigurable technology platform, a “keystone” business model for the company that maintains the platform architecture, and an extended ecosystem of companies that both contribute and share in the value created by innovation. New opportunities for business model innovation by participating companies are made possible by the ecosystem model. This ecosystem model builds on: i the lessons learned from the experience of the first author as a senior integrated circuit architect for providers of public-key cryptography solutions and as the owner of a semiconductor startup, and ii the latest scholarly research on technology entrepreneurship, business models, platforms, and business ecosystems. This article will be of interest to all technology entrepreneurs, but it will be of particular interest to owners of small companies that provide security solutions and to specialized security professionals seeking to launch their own companies.
Security Modeling on the Supply Chain Networks
Directory of Open Access Journals (Sweden)
Marn-Ling Shing
2007-10-01
Full Text Available In order to keep the price down, a purchaser sends out the request for quotation to a group of suppliers in a supply chain network. The purchaser will then choose a supplier with the best combination of price and quality. A potential supplier will try to collect the related information about other suppliers so he/she can offer the best bid to the purchaser. Therefore, confidentiality becomes an important consideration for the design of a supply chain network. Chen et al. have proposed the application of the Bell-LaPadula model in the design of a secured supply chain network. In the Bell-LaPadula model, a subject can be in one of different security clearances and an object can be in one of various security classifications. All the possible combinations of (Security Clearance, Classification pair in the Bell-LaPadula model can be thought as different states in the Markov Chain model. This paper extends the work done by Chen et al., provides more details on the Markov Chain model and illustrates how to use it to monitor the security state transition in the supply chain network.
Generalization performance of regularized neural network models
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai
1994-01-01
Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...
Plant Growth Models Using Artificial Neural Networks
Bubenheim, David
1997-01-01
In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.
Introducing Synchronisation in Deterministic Network Models
DEFF Research Database (Denmark)
Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.
2006-01-01
The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading...
Modeling the Dynamics of Compromised Networks
Energy Technology Data Exchange (ETDEWEB)
Soper, B; Merl, D M
2011-09-12
Accurate predictive models of compromised networks would contribute greatly to improving the effectiveness and efficiency of the detection and control of network attacks. Compartmental epidemiological models have been applied to modeling attack vectors such as viruses and worms. We extend the application of these models to capture a wider class of dynamics applicable to cyber security. By making basic assumptions regarding network topology we use multi-group epidemiological models and reaction rate kinetics to model the stochastic evolution of a compromised network. The Gillespie Algorithm is used to run simulations under a worst case scenario in which the intruder follows the basic connection rates of network traffic as a method of obfuscation.
Quality in Family Child Care Networks: An Evaluation of All Our Kin Provider Quality
Porter, Toni; Reiman, Kayla; Nelson, Christina; Sager, Jessica; Wagner, Janna
2016-01-01
This article presents findings from a quasi-experimental evaluation of quality with a sample of 28 family child care providers in the All Our Kin Family Child Care Network, a staffed family child care network which offers a range of services including relationship-based intensive consultation, and 20 family child care providers who had no…
2003-01-01
"Network Physics, the only provider of physics-based network management products, today announced an additional venture round of $6 million in funding, as well as the addition of David Jones as president and CEO and Tom Dunn as vice president of sales and business development" (1 page).
Modeling management of research and education networks
Galagan, D.V.
2004-01-01
Computer networks and their services have become an essential part of research and education. Nowadays every modern R&E institution must have a computer network and provide network services to its students and staff. In addition to its internal computer network, every R&E institution must have a
Performance modeling, loss networks, and statistical multiplexing
Mazumdar, Ravi
2009-01-01
This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. I
A Mathematical Model to Improve the Performance of Logistics Network
Directory of Open Access Journals (Sweden)
Muhammad Izman Herdiansyah
2012-01-01
Full Text Available The role of logistics nowadays is expanding from just providing transportation and warehousing to offering total integrated logistics. To remain competitive in the global market environment, business enterprises need to improve their logistics operations performance. The improvement will be achieved when we can provide a comprehensive analysis and optimize its network performances. In this paper, a mixed integer linier model for optimizing logistics network performance is developed. It provides a single-product multi-period multi-facilities model, as well as the multi-product concept. The problem is modeled in form of a network flow problem with the main objective to minimize total logistics cost. The problem can be solved using commercial linear programming package like CPLEX or LINDO. Even in small case, the solver in Excel may also be used to solve such model.Keywords: logistics network, integrated model, mathematical programming, network optimization
Network Bandwidth Utilization Forecast Model on High Bandwidth Network
Energy Technology Data Exchange (ETDEWEB)
Yoo, Wucherl; Sim, Alex
2014-07-07
With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.
Network bandwidth utilization forecast model on high bandwidth networks
Energy Technology Data Exchange (ETDEWEB)
Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-03-30
With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.
Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.
Ziebarth, Jesse D; Cui, Yan
2017-01-01
The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW ) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.
A comparison of lightning data provided by ZEUS and LINET networks over Western Europe
Directory of Open Access Journals (Sweden)
K. Lagouvardos
2009-10-01
Full Text Available In the framework of this paper, one-year of lightning data from the experimental network ZEUS operated by the National Observatory of Athens is compared to collocated data provided by the LINET detection network. The area of comparison is limited to a part of Central-Western Europe, where LINET data exhibits the highest data quality, permitting thus to be used as the validation dataset. The location error of ZEUS was calculated to be ~6.8 km, while the detection efficiency was ~25%, with a characteristic under-detection during nighttime. Moreover, the analysis revealed that ZEUS is also capable to detect not only cloud-to-ground but also intra-cloud strokes. Analysis of a specific case study revealed that the spatial distribution of ZEUS was very close to that of LINET, although the total number of strokes as seen by ZEUS is much lower than the one from LINET. The overall analysis permitted to assess the main characteristics of ZEUS network, information considered of paramount importance before the use of ZEUS data for a variety of observational and modeling work.
A Cascade-Based Emergency Model for Water Distribution Network
Directory of Open Access Journals (Sweden)
Qing Shuang
2015-01-01
Full Text Available Water distribution network is important in the critical physical infrastructure systems. The paper studies the emergency resource strategies on water distribution network with the approach of complex network and cascading failures. The model of cascade-based emergency for water distribution network is built. The cascade-based model considers the network topology analysis and hydraulic analysis to provide a more realistic result. A load redistribution function with emergency recovery mechanisms is established. From the aspects of uniform distribution, node betweenness, and node pressure, six recovery strategies are given to reflect the network topology and the failure information, respectively. The recovery strategies are evaluated with the complex network indicators to describe the failure scale and failure velocity. The proposed method is applied by an illustrative example. The results showed that the recovery strategy considering the node pressure can enhance the network robustness effectively. Besides, this strategy can reduce the failure nodes and generate the least failure nodes per time.
An acoustical model based monitoring network
Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der
2010-01-01
In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the
Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon
2017-07-25
Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.
An adaptive complex network model for brain functional networks.
Directory of Open Access Journals (Sweden)
Ignacio J Gomez Portillo
Full Text Available Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution.
Piecewise linear and Boolean models of chemical reaction networks.
Veliz-Cuba, Alan; Kumar, Ajit; Josić, Krešimir
2014-12-01
Models of biochemical networks are frequently complex and high-dimensional. Reduction methods that preserve important dynamical properties are therefore essential for their study. Interactions in biochemical networks are frequently modeled using Hill functions ([Formula: see text]). Reduced ODEs and Boolean approximations of such model networks have been studied extensively when the exponent [Formula: see text] is large. However, while the case of small constant [Formula: see text] appears in practice, it is not well understood. We provide a mathematical analysis of this limit and show that a reduction to a set of piecewise linear ODEs and Boolean networks can be mathematically justified. The piecewise linear systems have closed-form solutions that closely track those of the fully nonlinear model. The simpler, Boolean network can be used to study the qualitative behavior of the original system. We justify the reduction using geometric singular perturbation theory and compact convergence, and illustrate the results in network models of a toggle switch and an oscillator.
Modeling gene regulatory networks: A network simplification algorithm
Ferreira, Luiz Henrique O.; de Castro, Maria Clicia S.; da Silva, Fabricio A. B.
2016-12-01
Boolean networks have been used for some time to model Gene Regulatory Networks (GRNs), which describe cell functions. Those models can help biologists to make predictions, prognosis and even specialized treatment when some disturb on the GRN lead to a sick condition. However, the amount of information related to a GRN can be huge, making the task of inferring its boolean network representation quite a challenge. The method shown here takes into account information about the interactome to build a network, where each node represents a protein, and uses the entropy of each node as a key to reduce the size of the network, allowing the further inferring process to focus only on the main protein hubs, the ones with most potential to interfere in overall network behavior.
The model of social crypto-network
Directory of Open Access Journals (Sweden)
Марк Миколайович Орел
2015-06-01
Full Text Available The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks
The model of social crypto-network
Марк Миколайович Орел
2015-01-01
The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks
The Changing Role of Community Networks in Providing Citizen Access to the Internet.
Keenan, Thomas P.; Trotter, David Mitchell
1999-01-01
Examines the changing role of community network associations or freenets in providing Internet access by examining the case of the Calgary Community Network Association (CCNA) in Alberta, Canada. Discusses the withdrawal of states from the telecommunications field, priorities of the Canadian government, and the role of the private sector.…
A network of experimental forests and ranges: Providing soil solutions for a changing world
Mary Beth. Adams
2010-01-01
The network of experimental forests and ranges of the USDA Forest Service represents significant opportunities to provide soil solutions to critical issues of a changing world. This network of 81 experimental forests and ranges encompasses broad geographic, biological, climatic and physical scales, and includes long-term data sets, and long-term experimental...
Modeling regulatory networks with weight matrices
DEFF Research Database (Denmark)
Weaver, D.C.; Workman, Christopher; Stormo, Gary D.
1999-01-01
Systematic gene expression analyses provide comprehensive information about the transcriptional responseto different environmental and developmental conditions. With enough gene expression data points,computational biologists may eventually generate predictive computer models of transcription...... regulation.Such models will require computational methodologies consistent with the behavior of known biologicalsystems that remain tractable. We represent regulatory relationships between genes as linear coefficients orweights, with the "net" regulation influence on a gene's expression being...... the mathematical summation of theindependent regulatory inputs. Test regulatory networks generated with this approach display stable andcyclically stable gene expression levels, consistent with known biological systems. We include variables tomodel the effect of environmental conditions on transcription regulation...
Modeling Diagnostic Assessments with Bayesian Networks
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego
2007-01-01
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
A query result merging scheme for providing energy efficiency in underwater sensor networks.
Kim, Yunsung; Park, Soo-Hyun
2011-01-01
Underwater sensor networks are emerging as a promising distributed data management system for various applications in underwater environments, despite their limited accessibility and restricted energy capacity. With the aid of recent developments in ubiquitous data computing, an increasing number of users are expected to overcome low accessibility by applying queries to underwater sensor networks. However, when multiple users send queries to an underwater sensor network in a disorganized manner, it may incur lethal energy waste and problematic network traffic. The current query management mechanisms cannot effectively deal with this matter due to their limited applicability and unrealistic assumptions. In this paper, a novel query management scheme involving query result merging is proposed for underwater sensor networks. The mechanism is based on a relational database model and is adjusted to the practical restrictions affecting underwater communication environments. Network simulations will prove that the scheme becomes more efficient with a greater number of queries and a smaller period range.
Concentration dependent model of protein-protein interaction networks
Zhang, Jingshan
2007-01-01
The scale free structure p(k)~k^{-gamma} of protein-protein interaction networks can be produced by a static physical model. We find the earlier study of deterministic threshold models with exponential fitness distributions can be generalized to explain the apparent scale free degree distribution of the physical model, and this explanation provides a generic mechanism of "scale free" networks. We predict the dependence of gamma on experimental protein concentrations. The clustering coefficient distribution of the model is also studied.
Bayesian Network Webserver: a comprehensive tool for biological network modeling.
Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan
2013-11-01
The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.
Directory of Open Access Journals (Sweden)
Lan Liu
2017-01-01
Full Text Available As the adoption of Software Defined Networks (SDNs grows, the security of SDN still has several unaddressed limitations. A key network security research area is in the study of malware propagation across the SDN-enabled networks. To analyze the spreading processes of network malware (e.g., viruses in SDN, we propose a dynamic model with a time-varying community network, inspired by research models on the spread of epidemics in complex networks across communities. We assume subnets of the network as communities and links that are dense in subnets but sparse between subnets. Using numerical simulation and theoretical analysis, we find that the efficiency of network malware propagation in this model depends on the mobility rate q of the nodes between subnets. We also find that there exists a mobility rate threshold qc. The network malware will spread in the SDN when the mobility rate q>qc. The malware will survive when q>qc and perish when q
Optical Network Models and Their Application to Software-Defined Network Management
Directory of Open Access Journals (Sweden)
Thomas Szyrkowiec
2017-01-01
Full Text Available Software-defined networking is finding its way into optical networks. Here, it promises a simplification and unification of network management for optical networks allowing automation of operational tasks despite the highly diverse and vendor-specific commercial systems and the complexity and analog nature of optical transmission. Common abstractions and interfaces are a fundamental component for software-defined optical networking. Currently, a number of models for optical networks are available. They all claim to provide open and vendor agnostic management of optical equipment. In this work, we survey and compare the most important models and propose an intent interface for creating virtual topologies which is integrated in the existing model ecosystem.
Bayesian estimation of the network autocorrelation model
Dittrich, D.; Leenders, R.T.A.J.; Mulder, J.
2017-01-01
The network autocorrelation model has been extensively used by researchers interested modeling social influence effects in social networks. The most common inferential method in the model is classical maximum likelihood estimation. This approach, however, has known problems such as negative bias of
Agent-based modeling and network dynamics
Namatame, Akira
2016-01-01
The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...
A modelling and reasoning framework for social networks policies
Governatori, Guido; Iannella, Renato
2011-02-01
Policy languages (such as privacy and rights) have had little impact on the wider community. Now that social networks have taken off, the need to revisit policy languages and realign them towards social networks requirements has become more apparent. One such language is explored as to its applicability to the social networks masses. We also argue that policy languages alone are not sufficient and thus they should be paired with reasoning mechanisms to provide precise and unambiguous execution models of the policies. To this end, we propose a computationally oriented model to represent, reason with and execute policies for social networks.
Aeronautical telecommunications network advances, challenges, and modeling
Musa, Sarhan M
2015-01-01
Addresses the Challenges of Modern-Day Air Traffic Air traffic control (ATC) directs aircraft in the sky and on the ground to safety, while the Aeronautical Telecommunications Network (ATN) comprises all systems and phases that assist in aircraft departure and landing. The Aeronautical Telecommunications Network: Advances, Challenges, and Modeling focuses on the development of ATN and examines the role of the various systems that link aircraft with the ground. The book places special emphasis on ATC-introducing the modern ATC system from the perspective of the user and the developer-and provides a thorough understanding of the operating mechanism of the ATC system. It discusses the evolution of ATC, explaining its structure and how it works; includes design examples; and describes all subsystems of the ATC system. In addition, the book covers relevant tools, techniques, protocols, and architectures in ATN, including MIPv6, air traffic control (ATC), security of air traffic management (ATM), very-high-frequenc...
Mathematics of epidemics on networks from exact to approximate models
Kiss, István Z; Simon, Péter L
2017-01-01
This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate...
2016-11-15
This major final rule addresses changes to the physician fee schedule and other Medicare Part B payment policies, such as changes to the Value Modifier, to ensure that our payment systems are updated to reflect changes in medical practice and the relative value of services, as well as changes in the statute. This final rule also includes changes related to the Medicare Shared Savings Program, requirements for Medicare Advantage Provider Networks, and provides for the release of certain pricing data from Medicare Advantage bids and of data from medical loss ratio reports submitted by Medicare health and drug plans. In addition, this final rule expands the Medicare Diabetes Prevention Program model.
Panulla, Brian J.; More, Loretta D.; Shumaker, Wade R.; Jones, Michael D.; Hooper, Robert; Vernon, Jeffrey M.; Aungst, Stanley G.
2009-05-01
Rapid improvements in communications infrastructure and sophistication of commercial hand-held devices provide a major new source of information for assessing extreme situations such as environmental crises. In particular, ad hoc collections of humans can act as "soft sensors" to augment data collected by traditional sensors in a net-centric environment (in effect, "crowd-sourcing" observational data). A need exists to understand how to task such soft sensors, characterize their performance and fuse the data with traditional data sources. In order to quantitatively study such situations, as well as study distributed decision-making, we have developed an Extreme Events Laboratory (EEL) at The Pennsylvania State University. This facility provides a network-centric, collaborative situation assessment and decision-making capability by supporting experiments involving human observers, distributed decision making and cognition, and crisis management. The EEL spans the information chain from energy detection via sensors, human observations, signal and image processing, pattern recognition, statistical estimation, multi-sensor data fusion, visualization and analytics, and modeling and simulation. The EEL command center combines COTS and custom collaboration tools in innovative ways, providing capabilities such as geo-spatial visualization and dynamic mash-ups of multiple data sources. This paper describes the EEL and several on-going human-in-the-loop experiments aimed at understanding the new collective observation and analysis landscape.
Modeling of regional warehouse network generation
Directory of Open Access Journals (Sweden)
Popov Pavel Vladimirovich
2016-08-01
Full Text Available One of the factors that has a significant impact on the socio-economic development of the Russian Federation’s regions is the logistics infrastructure. It provides integrated transportation and distribution service of material flows. One of the main elements of logistics infrastructure is a storage infrastructure, which includes distribution center, distribution-and-sortout and sortout warehouses. It is the most expedient to place distribution center in the vicinity of the regional center. One of the tasks of the distribution network creation within the regions of the Russian Federation is to determine the location, capacity and number of stores. When determining regional network location of general purpose warehouses methodological approaches to solving the problems of location of production and non-production can be used which depend on various economic factors. The mathematical models for solving relevant problems are the deployment models. However, the existing models focus on the dimensionless power storage. The purpose of the given work is to develop a model to determine the optimal location of general-purpose warehouses on the Russian Federation area. At the first stage of the work, the authors assess the main economic indicators influencing the choice of the location of general purpose warehouses. An algorithm for solving the first stage, based on ABC, discriminant and cluster analysis were proposed by the authors in earlier papers. At the second stage the specific locations of general purpose warehouses and their power is chosen to provide the cost minimization for the construction and subsequent maintenance of warehouses and transportation heterogeneous products. In order to solve this problem the authors developed a mathematical model that takes into account the possibility of delivery in heterogeneous goods from suppliers and manufacturers in the distribution and storage sorting with specified set of capacities. The model allows
Comprehensive Care For Joint Replacement Model - Provider Data
U.S. Department of Health & Human Services — Comprehensive Care for Joint Replacement Model - provider data. This data set includes provider data for two quality measures tracked during an episode of care:...
Rushmore, Julie; Caillaud, Damien; Matamba, Leopold; Stumpf, Rebecca M; Borgatti, Stephen P; Altizer, Sonia
2013-09-01
1. Heterogeneity in host association patterns can alter pathogen transmission and strategies for control. Great apes are highly social and endangered animals that have experienced substantial population declines from directly transmitted pathogens; as such, network approaches to quantify contact heterogeneity could be crucially important for predicting infection probability and outbreak size following pathogen introduction, especially owing to challenges in collecting real-time infection data for endangered wildlife. 2. We present here the first study using network analysis to quantify contact heterogeneity in wild apes, with applications for predicting community-wide infectious disease risk. Specifically, within a wild chimpanzee community, we ask how associations between individuals vary over time, and we identify traits of highly connected individuals that might contribute disproportionately to pathogen spread. 3. We used field observations of behavioural encounters in a habituated wild chimpanzee community in Kibale National Park, Uganda to construct monthly party level (i.e. subgroup) and close-contact (i.e. ≤ 5 m) association networks over a 9-month period. 4. Network analysis revealed that networks were highly dynamic over time. In particular, oestrous events significantly increased pairwise party associations, suggesting that community-wide disease outbreaks should be more likely to occur when many females are in oestrus. 5. Bayesian models and permutation tests identified traits of chimpanzees that were highly connected within the network. Individuals with large families (i.e. mothers and their juveniles) that range in the core of the community territory and to a lesser extent high-ranking males were central to association networks, and thus represent the most important individuals to target for disease intervention strategies. 6. Overall, we show striking temporal variation in network structure and traits that predict association patterns in a wild
Settings in Social Networks : a Measurement Model
Schweinberger, Michael; Snijders, Tom A.B.
2003-01-01
A class of statistical models is proposed that aims to recover latent settings structures in social networks. Settings may be regarded as clusters of vertices. The measurement model is based on two assumptions. (1) The observed network is generated by hierarchically nested latent transitive
Settings in social networks : A measurement model
Schweinberger, M; Snijders, TAB
2003-01-01
A class of statistical models is proposed that aims to recover latent settings structures in social networks. Settings may be regarded as clusters of vertices. The measurement model is based on two assumptions. (1) The observed network is generated by hierarchically nested latent transitive
Spinal Cord Injury Model System Information Network
... the UAB-SCIMS Contact the UAB-SCIMS UAB Spinal Cord Injury Model System Newly Injured Health Daily Living Consumer ... Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network ...
Radio Channel Modeling in Body Area Networks
An, L.; Bentum, Marinus Jan; Meijerink, Arjan; Scanlon, W.G.
2009-01-01
A body area network (BAN) is a network of bodyworn or implanted electronic devices, including wireless sensors which can monitor body parameters or to de- tect movements. One of the big challenges in BANs is the propagation channel modeling. Channel models can be used to understand wave propagation
Radio channel modeling in body area networks
An, L.; Bentum, Marinus Jan; Meijerink, Arjan; Scanlon, W.G.
2010-01-01
A body area network (BAN) is a network of bodyworn or implanted electronic devices, including wireless sensors which can monitor body parameters or to detect movements. One of the big challenges in BANs is the propagation channel modeling. Channel models can be used to understand wave propagation in
Network interconnections: an architectural reference model
Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.
1985-01-01
One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for
Network Inoculation: Heteroclinics and phase transitions in an epidemic model
Yang, Hui; Gross, Thilo
2016-01-01
In epidemiological modelling, dynamics on networks, and in particular adaptive and heterogeneous networks have recently received much interest. Here we present a detailed analysis of a previously proposed model that combines heterogeneity in the individuals with adaptive rewiring of the network structure in response to a disease. We show that in this model qualitative changes in the dynamics occur in two phase transitions. In a macroscopic description one of these corresponds to a local bifurcation whereas the other one corresponds to a non-local heteroclinic bifurcation. This model thus provides a rare example of a system where a phase transition is caused by a non-local bifurcation, while both micro- and macro-level dynamics are accessible to mathematical analysis. The bifurcation points mark the onset of a behaviour that we call network inoculation. In the respective parameter region exposure of the system to a pathogen will lead to an outbreak that collapses, but leaves the network in a configuration wher...
A network-oriented business modeling environment
Bisconti, Cristian; Storelli, Davide; Totaro, Salvatore; Arigliano, Francesco; Savarino, Vincenzo; Vicari, Claudia
The development of formal models related to the organizational aspects of an enterprise is fundamental when these aspects must be re-engineered and digitalized, especially when the enterprise is involved in the dynamics and value flows of a business network. Business modeling provides an opportunity to synthesize and make business processes, business rules and the structural aspects of an organization explicit, allowing business managers to control their complexity and guide an enterprise through effective decisional and strategic activities. This chapter discusses the main results of the TEKNE project in terms of software components that enable enterprises to configure, store, search and share models of any aspects of their business while leveraging standard and business-oriented technologies and languages to bridge the gap between the world of business people and IT experts and to foster effective business-to-business collaborations.
Random field Ising model and community structure in complex networks
Son, S.-W.; Jeong, H.; Noh, J. D.
2006-04-01
We propose a method to determine the community structure of a complex network. In this method the ground state problem of a ferromagnetic random field Ising model is considered on the network with the magnetic field Bs = +∞, Bt = -∞, and Bi≠s,t=0 for a node pair s and t. The ground state problem is equivalent to the so-called maximum flow problem, which can be solved exactly numerically with the help of a combinatorial optimization algorithm. The community structure is then identified from the ground state Ising spin domains for all pairs of s and t. Our method provides a criterion for the existence of the community structure, and is applicable equally well to unweighted and weighted networks. We demonstrate the performance of the method by applying it to the Barabási-Albert network, Zachary karate club network, the scientific collaboration network, and the stock price correlation network. (Ising, Potts, etc.)
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
Learning Bayesian Network Model Structure from Data
National Research Council Canada - National Science Library
Margaritis, Dimitris
2003-01-01
In this thesis I address the important problem of the determination of the structure of directed statistical models, with the widely used class of Bayesian network models as a concrete vehicle of my ideas...
NC truck network model development research.
2008-09-01
This research develops a validated prototype truck traffic network model for North Carolina. The model : includes all counties and metropolitan areas of North Carolina and major economic areas throughout the : U.S. Geographic boundaries, population a...
A universal, fault-tolerant, non-linear analytic network for modeling and fault detection
Energy Technology Data Exchange (ETDEWEB)
Mott, J.E. [Advanced Modeling Techniques Corp., Idaho Falls, ID (United States); King, R.W.; Monson, L.R.; Olson, D.L.; Staffon, J.D. [Argonne National Lab., Idaho Falls, ID (United States)
1992-03-06
The similarities and differences of a universal network to normal neural networks are outlined. The description and application of a universal network is discussed by showing how a simple linear system is modeled by normal techniques and by universal network techniques. A full implementation of the universal network as universal process modeling software on a dedicated computer system at EBR-II is described and example results are presented. It is concluded that the universal network provides different feature recognition capabilities than a neural network and that the universal network can provide extremely fast, accurate, and fault-tolerant estimation, validation, and replacement of signals in a real system.
Gossip spread in social network Models
Johansson, Tobias
2017-04-01
Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.
Synergistic effects in threshold models on networks
Juul, Jonas S.; Porter, Mason A.
2018-01-01
Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.
Towards Reproducible Descriptions of Neuronal Network Models
Nordlie, Eilen; Gewaltig, Marc-Oliver; Plesser, Hans Ekkehard
2009-01-01
Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing—and thinking about—complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain. PMID:19662159
Towards reproducible descriptions of neuronal network models.
Directory of Open Access Journals (Sweden)
Eilen Nordlie
2009-08-01
Full Text Available Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing--and thinking about--complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain.
Geometric and Network Model for Knowledge Structure and Mindspace
Chris Arney
2012-01-01
This paper describes an adaptive, complex network architecture for knowledge representation in virtual mindspace. Structures and processes for knowing, remembering, thinking, learning, deciding, and communicating describe a virtual geometric space (mathematical model) of a notional mind. This mindspace model can be visualized as a workspace and this paper provides a glimpse of a virtual model of the mind.
Geometric and Network Model for Knowledge Structure and Mindspace
Directory of Open Access Journals (Sweden)
Chris Arney
2012-02-01
Full Text Available This paper describes an adaptive, complex network architecture for knowledge representation in virtual mindspace. Structures and processes for knowing, remembering, thinking, learning, deciding, and communicating describe a virtual geometric space (mathematical model of a notional mind. This mindspace model can be visualized as a workspace and this paper provides a glimpse of a virtual model of the mind.
Characterization and Modeling of Network Traffic
DEFF Research Database (Denmark)
Shawky, Ahmed; Bergheim, Hans; Ragnarsson, Olafur
2011-01-01
This paper attempts to characterize and model backbone network traffic, using a small number of statistics. In order to reduce cost and processing power associated with traffic analysis. The parameters affecting the behaviour of network traffic are investigated and the choice is that inter......-arrival time, IP addresses, port numbers and transport protocol are the only necessary parameters to model network traffic behaviour. In order to recreate this behaviour, a complex model is needed which is able to recreate traffic behaviour based on a set of statistics calculated from the parameters values....... The model investigates the traffic generation mechanisms, and grouping traffic into flows and applications....
Modeling, Optimization & Control of Hydraulic Networks
DEFF Research Database (Denmark)
Tahavori, Maryamsadat
2014-01-01
in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply....... The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used...... to solve nonlinear optimal control problems. In the water supply system model, the hydraulic resistance of the valve is estimated by real data and it is considered to be a disturbance. The disturbance in our system is updated every 24 hours based on the amount of water usage by consumers every day. Model...
Customer-Provider Strategic Alignment: A Maturity Model
Luftman, Jerry; Brown, Carol V.; Balaji, S.
This chapter presents a new model for assessing the maturity of a customer-provider relationship from a collaborative service delivery perspective: the Customer-Provider Strategic Alignment Maturity (CPSAM) Model. This model builds on recent research for effectively managing the customer-provider relationship in IT service outsourcing contexts and a validated model for assessing alignment across internal IT service units and their business customers within the same organization. After reviewing relevant literature by service science and information systems researchers, the six overarching components of the maturity model are presented: value measurements, governance, partnership, communications, human resources and skills, and scope and architecture. A key assumption of the model is that all of the components need be addressed to assess and improve customer-provider alignment. Examples of specific metrics for measuring the maturity level of each component over the five levels of maturity are also presented.
A network model of the interbank market
Li, Shouwei; He, Jianmin; Zhuang, Yaming
2010-12-01
This work introduces a network model of an interbank market based on interbank credit lending relationships. It generates some network features identified through empirical analysis. The critical issue to construct an interbank network is to decide the edges among banks, which is realized in this paper based on the interbank’s degree of trust. Through simulation analysis of the interbank network model, some typical structural features are identified in our interbank network, which are also proved to exist in real interbank networks. They are namely, a low clustering coefficient and a relatively short average path length, community structures, and a two-power-law distribution of out-degree and in-degree.
Model for Microcirculation Transportation Network Design
Directory of Open Access Journals (Sweden)
Qun Chen
2012-01-01
Full Text Available The idea of microcirculation transportation was proposed to shunt heavy traffic on arterial roads through branch roads. The optimization model for designing micro-circulation transportation network was developed to pick out branch roads as traffic-shunting channels and determine their required capacity, trying to minimize the total reconstruction expense and land occupancy subject to saturation and reconstruction space constraints, while accounting for the route choice behaviour of network users. Since micro-circulation transportation network design problem includes both discrete and continuous variables, a discretization method was developed to convert two groups of variables (discrete variables and continuous variables into one group of new discrete variables, transforming the mixed network design problem into a new kind of discrete network design problem with multiple values. The genetic algorithm was proposed to solve the new discrete network design problem. Finally a numerical example demonstrated the efficiency of the model and algorithm.
An extended differentiated optical services model for WDM optical networks
Ouyang, Yong; Zeng, Qingji; Wei, Wei
2004-04-01
The need to provide QoS-guaranteed services in the WDM optical networks is becoming increasingly important because of a variety of candidate client networks (e.g., IP, ATM, SONET/SDH) and the requirement for QoS-delivery within the transport layers. This article addresses the QoS problem and presents a framework of QoS provisioning in the WDM optical network. We first characterize the QoS problem in the WDM optical network by comparing with that in the traditional networks. Then we propose a QoS service model in the optical domain called extended differentiated optical services (E-DoS) model based on a set of optical parameters that captures the quality, the reliability and the priority of an optical connection. Each component of the E-DoS model has been analyzed in detail in this article.
Modelling of virtual production networks
Directory of Open Access Journals (Sweden)
2011-03-01
Full Text Available Nowadays many companies, especially small and medium-sized enterprises (SMEs, specialize in a limited field of production. It requires forming virtual production networks of cooperating enterprises to manufacture better, faster and cheaper. Apart from that, some production orders cannot be realized, because there is not a company of sufficient production potential. In this case the virtual production networks of cooperating companies can realize these production orders. These networks have larger production capacity and many different resources. Therefore it can realize many more production orders together than each of them separately. Such organization allows for executing high quality product. The maintenance costs of production capacity and used resources are not so high. In this paper a methodology of rapid prototyping of virtual production networks is proposed. It allows to execute production orders on time considered existing logistic constraints.
Modeling Epidemics Spreading on Social Contact Networks.
Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua
2015-09-01
Social contact networks and the way people interact with each other are the key factors that impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR) model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact networks. The results from both simulations and real data set conclude that the epidemics are more likely to outbreak on social contact networks with higher average degree. We also present some potential immunization strategies, such as random set immunization, dominating set immunization, and high degree set immunization to further prove the conclusion.
Random graph models for dynamic networks
Zhang, Xiao; Moore, Cristopher; Newman, Mark E. J.
2017-10-01
Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.
Modeling stochasticity in biochemical reaction networks
Constantino, P. H.; Vlysidis, M.; Smadbeck, P.; Kaznessis, Y. N.
2016-03-01
Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts.
Modeling the interdependent network based on two-mode networks
An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian
2017-10-01
Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.
Hybrid network defense model based on fuzzy evaluation.
Cho, Ying-Chiang; Pan, Jen-Yi
2014-01-01
With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.
2011-05-16
... Southwest Health Alliances, Inc., Doing Business as BSA Provider Network; Analysis of Agreement Containing... or deceptive acts or practices or unfair methods of competition. The attached Analysis To Aid Public.... The following Analysis To Aid Public Comment describes the terms of the consent agreement, and the...
del Valle, Jorge F.; Bravo, Amaia; Lopez, Monica
2010-01-01
The authors carried out an assessment of social support networks with a sample of 884 Spanish adolescents aged 12 to 17. The main goal was to analyze the development of the figures of parents and peers as providers of social support in the two basic dimensions of emotional and instrumental support. In peers, they distinguished between the contexts…
An endogenous model of the credit network
He, Jianmin; Sui, Xin; Li, Shouwei
2016-01-01
In this paper, an endogenous credit network model of firm-bank agents is constructed. The model describes the endogenous formation of firm-firm, firm-bank and bank-bank credit relationships. By means of simulations, the model is capable of showing some obvious similarities with empirical evidence found by other scholars: the upper-tail of firm size distribution can be well fitted with a power-law; the bank size distribution can be lognormally distributed with a power-law tail; the bank in-degrees of the interbank credit network as well as the firm-bank credit network fall into two-power-law distributions.
Joint Modelling of Structural and Functional Brain Networks
DEFF Research Database (Denmark)
Andersen, Kasper Winther; Herlau, Tue; Mørup, Morten
Functional and structural magnetic resonance imaging have become the most important noninvasive windows to the human brain. A major challenge in the analysis of brain networks is to establish the similarities and dissimilarities between functional and structural connectivity. We formulate a non......-parametric Bayesian network model which allows for joint modelling and integration of multiple networks. We demonstrate the model’s ability to detect vertices that share structure across networks jointly in functional MRI (fMRI) and diffusion MRI (dMRI) data. Using two fMRI and dMRI scans per subject, we establish...... significant structures that are consistently shared across subjects and data splits. This provides an unsupervised approach for modeling of structure-function relations in the brain and provides a general framework for multimodal integration....
Stochastic discrete model of karstic networks
Jaquet, O.; Siegel, P.; Klubertanz, G.; Benabderrhamane, H.
Karst aquifers are characterised by an extreme spatial heterogeneity that strongly influences their hydraulic behaviour and the transport of pollutants. These aquifers are particularly vulnerable to contamination because of their highly permeable networks of conduits. A stochastic model is proposed for the simulation of the geometry of karstic networks at a regional scale. The model integrates the relevant physical processes governing the formation of karstic networks. The discrete simulation of karstic networks is performed with a modified lattice-gas cellular automaton for a representative description of the karstic aquifer geometry. Consequently, more reliable modelling results can be obtained for the management and the protection of karst aquifers. The stochastic model was applied jointly with groundwater modelling techniques to a regional karst aquifer in France for the purpose of resolving surface pollution issues.
Designing Network-based Business Model Ontology
DEFF Research Database (Denmark)
Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz
2015-01-01
Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....
Modelling traffic congestion using queuing networks
Indian Academy of Sciences (India)
Traffic Flow-Density diagrams are obtained using simple Jackson queuing network analysis. Such simple analytical models can be used to capture the effect of non- homogenous traffic. Keywords. Flow-density curves; uninterrupted traffic; Jackson networks. 1. Introduction. Traffic management has become very essential in ...
Stochastic S-system modeling of gene regulatory network.
Chowdhury, Ahsan Raja; Chetty, Madhu; Evans, Rob
2015-10-01
Microarray gene expression data can provide insights into biological processes at a system-wide level and is commonly used for reverse engineering gene regulatory networks (GRN). Due to the amalgamation of noise from different sources, microarray expression profiles become inherently noisy leading to significant impact on the GRN reconstruction process. Microarray replicates (both biological and technical), generated to increase the reliability of data obtained under noisy conditions, have limited influence in enhancing the accuracy of reconstruction . Therefore, instead of the conventional GRN modeling approaches which are deterministic, stochastic techniques are becoming increasingly necessary for inferring GRN from noisy microarray data. In this paper, we propose a new stochastic GRN model by investigating incorporation of various standard noise measurements in the deterministic S-system model. Experimental evaluations performed for varying sizes of synthetic network, representing different stochastic processes, demonstrate the effect of noise on the accuracy of genetic network modeling and the significance of stochastic modeling for GRN reconstruction . The proposed stochastic model is subsequently applied to infer the regulations among genes in two real life networks: (1) the well-studied IRMA network, a real-life in-vivo synthetic network constructed within the Saccharomyces cerevisiae yeast, and (2) the SOS DNA repair network in Escherichia coli.
Modeling trust context in networks
Adali, Sibel
2013-01-01
We make complex decisions every day, requiring trust in many different entities for different reasons. These decisions are not made by combining many isolated trust evaluations. Many interlocking factors play a role, each dynamically impacting the others.? In this brief, 'trust context' is defined as the system level description of how the trust evaluation process unfolds.Networks today are part of almost all human activity, supporting and shaping it. Applications increasingly incorporate new interdependencies and new trust contexts. Social networks connect people and organizations throughout
Complex networks repair strategies: Dynamic models
Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang
2017-09-01
Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree 〈 k 〉 and enhances network invulnerability.
Computational modeling of signal transduction networks: a pedagogical exposition.
Prasad, Ashok
2012-01-01
We give a pedagogical introduction to computational modeling of signal transduction networks, starting from explaining the representations of chemical reactions by differential equations via the law of mass action. We discuss elementary biochemical reactions such as Michaelis-Menten enzyme kinetics and cooperative binding, and show how these allow the representation of large networks as systems of differential equations. We discuss the importance of looking for simpler or reduced models, such as network motifs or dynamical motifs within the larger network, and describe methods to obtain qualitative behavior by bifurcation analysis, using freely available continuation software. We then discuss stochastic kinetics and show how to implement easy-to-use methods of rule-based modeling for stochastic simulations. We finally suggest some methods for comprehensive parameter sensitivity analysis, and discuss the insights that it could yield. Examples, including code to try out, are provided based on a paper that modeled Ras kinetics in thymocytes.
Modeling Network Traffic in Wavelet Domain
Directory of Open Access Journals (Sweden)
Sheng Ma
2004-12-01
Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.
Gene Regulation Networks for Modeling Drosophila Development
Mjolsness, E.
1999-01-01
This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.
Mitigating risk during strategic supply network modeling
Müssigmann, Nikolaus
2006-01-01
Mitigating risk during strategic supply network modeling. - In: Managing risks in supply chains / ed. by Wolfgang Kersten ... - Berlin : Schmidt, 2006. - S. 213-226. - (Operations and technology management ; 1)
Optimization of recurrent neural networks for time series modeling
DEFF Research Database (Denmark)
Pedersen, Morten With
1997-01-01
series. The overall objective s are to improve training by application of second-order methods and to improve generalization ability by architecture optimization accomplished by pruning. The major topics covered in the thesis are: 1. The problem of training recurrent networks is analyzed from a numerical...... of solution obtained as well as computation time required. 3. A theoretical definition of the generalization error for recurrent networks is provided. This definition justifies a commonly adopted approach for estimating generalization ability. 4. The viability of pruning recurrent networks by the Optimal...... networks is proposed. The tool allows for assessment of the length of the effe ctive memory of previous inputs built up in the recurrent network during application. Time series modeling is also treated from a more general point of view, namely modeling of the joint probability distribution function...
Road maintenance planning using network flow modelling
Yang, Chao; Remenyte-Prescott, Rasa; Andrews, John
2015-01-01
This paper presents a road maintenance planning model that can be used to balance out maintenance cost and road user cost, since performing road maintenance at night can be convenient for road users but costly for highway agency. Based on the platform of the network traffic flow modelling, the traffic through the worksite and its adjacent road links is evaluated. Thus, maintenance arrangements at a worksite can be optimized considering the overall network performance. In addition, genetic alg...
Reiter, Kristin L; Song, Paula H; Minasian, Lori; Good, Marjorie; Weiner, Bryan J; McAlearney, Ann Scheck
2012-09-01
The Community Clinical Oncology Program (CCOP) plays an essential role in the efforts of the National Cancer Institute (NCI) to increase enrollment in clinical trials. Currently, there is little practical guidance in the literature to assist provider organizations in analyzing the return on investment (ROI), or business case, for establishing and operating a provider-based research network (PBRN) such as the CCOP. In this article, the authors present a conceptual model of the business case for PBRN participation, a spreadsheet-based tool and advice for evaluating the business case for provider participation in a CCOP organization. A comparative, case-study approach was used to identify key components of the business case for hospitals attempting to support a CCOP research infrastructure. Semistructured interviews were conducted with providers and administrators. Key themes were identified and used to develop the financial analysis tool. Key components of the business case included CCOP start-up costs, direct revenue from the NCI CCOP grant, direct expenses required to maintain the CCOP research infrastructure, and incidental benefits, most notably downstream revenues from CCOP patients. The authors recognized the value of incidental benefits as an important contributor to the business case for CCOP participation; however, currently, this component is not calculated. The current results indicated that providing a method for documenting the business case for CCOP or other PBRN involvement will contribute to the long-term sustainability and expansion of these programs by improving providers' understanding of the financial implications of participation. Copyright © 2011 American Cancer Society.
Artificial Neural Networks for Modeling Knowing and Learning in Science.
Roth, Wolff-Michael
2000-01-01
Advocates artificial neural networks as models for cognition and development. Provides an example of how such models work in the context of a well-known Piagetian developmental task and school science activity: balance beam problems. (Contains 59 references.) (Author/WRM)
Liu, Zugang
Network systems, including transportation and logistic systems, electric power generation and distribution networks as well as financial networks, provide the critical infrastructure for the functioning of our societies and economies. The understanding of the dynamic behavior of such systems is also crucial to national security and prosperity. The identification of new connections between distinct network systems is the inspiration for the research in this dissertation. In particular, I answer two questions raised by Beckmann, McGuire, and Winsten (1956) and Copeland (1952) over half a century ago, which are, respectively, how are electric power flows related to transportation flows and does money flow like water or electricity? In addition, in this dissertation, I achieve the following: (1) I establish the relationships between transportation networks and three other classes of complex network systems: supply chain networks, electric power generation and transmission networks, and financial networks with intermediation. The establishment of such connections provides novel theoretical insights as well as new pricing mechanisms, and efficient computational methods. (2) I develop new modeling frameworks based on evolutionary variational inequality theory that capture the dynamics of such network systems in terms of the time-varying flows and incurred costs, prices, and, where applicable, profits. This dissertation studies the dynamics of such network systems by addressing both internal competition and/or cooperation, and external changes, such as varying costs and demands. (3) I focus, in depth, on electric power supply chains. By exploiting the relationships between transportation networks and electric power supply chains, I develop a large-scale network model that integrates electric power supply chains and fuel supply markets. The model captures both the economic transactions as well as the physical transmission constraints. The model is then applied to the New
Posterior Predictive Model Checking in Bayesian Networks
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
A simple model for studying interacting networks
Liu, Wenjia; Jolad, Shivakumar; Schmittmann, Beate; Zia, R. K. P.
2011-03-01
Many specific physical networks (e.g., internet, power grid, interstates), have been characterized in considerable detail, but in isolation from each other. Yet, each of these networks supports the functions of the others, and so far, little is known about how their interactions affect their structure and functionality. To address this issue, we consider two coupled model networks. Each network is relatively simple, with a fixed set of nodes, but dynamically generated set of links which has a preferred degree, κ . In the stationary state, the degree distribution has exponential tails (far from κ), an attribute which we can explain. Next, we consider two such networks with different κ 's, reminiscent of two social groups, e.g., extroverts and introverts. Finally, we let these networks interact by establishing a controllable fraction of cross links. The resulting distribution of links, both within and across the two model networks, is investigated and discussed, along with some potential consequences for real networks. Supported in part by NSF-DMR-0705152 and 1005417.
Modeling the Relationship Between Social Network Activity, Inactivity, and Growth
Ribeiro, Bruno
2013-01-01
Online Social Networks (OSNs) are multi-billion dollar enterprises. Surprisingly, little is known about the mechanisms that drive them to growth, stability, or death. This study sheds light on these mechanisms. We are particularly interested in OSNs where current subscribers can invite new users to join the network (e.g., Facebook, LinkedIn). Measuring the relationship between subscriber activity and network growth of a large OSN over five years, we formulate three hypotheses that together describe the observed OSN subscriber behavior. We then provide a model (and extensions) that simultaneously satisfies all three hypotheses. Our model provides deep insights into the dynamics of subscriber activity, inactivity, and network growth rates, even predicting four types of OSNs with respect to subscriber activity evolution. Finally, we present activity data of nearly thirty OSN websites, measured over five years, and show that the observed activity is well described by one of the four activity time series predicted...
Modeling gene regulatory network motifs using Statecharts.
Fioravanti, Fabio; Helmer-Citterich, Manuela; Nardelli, Enrico
2012-03-28
Gene regulatory networks are widely used by biologists to describe the interactions among genes, proteins and other components at the intra-cellular level. Recently, a great effort has been devoted to give gene regulatory networks a formal semantics based on existing computational frameworks.For this purpose, we consider Statecharts, which are a modular, hierarchical and executable formal model widely used to represent software systems. We use Statecharts for modeling small and recurring patterns of interactions in gene regulatory networks, called motifs. We present an improved method for modeling gene regulatory network motifs using Statecharts and we describe the successful modeling of several motifs, including those which could not be modeled or whose models could not be distinguished using the method of a previous proposal.We model motifs in an easy and intuitive way by taking advantage of the visual features of Statecharts. Our modeling approach is able to simulate some interesting temporal properties of gene regulatory network motifs: the delay in the activation and the deactivation of the "output" gene in the coherent type-1 feedforward loop, the pulse in the incoherent type-1 feedforward loop, the bistability nature of double positive and double negative feedback loops, the oscillatory behavior of the negative feedback loop, and the "lock-in" effect of positive autoregulation. We present a Statecharts-based approach for the modeling of gene regulatory network motifs in biological systems. The basic motifs used to build more complex networks (that is, simple regulation, reciprocal regulation, feedback loop, feedforward loop, and autoregulation) can be faithfully described and their temporal dynamics can be analyzed.
A quantum-implementable neural network model
Chen, Jialin; Wang, Lingli; Charbon, Edoardo
2017-10-01
A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.
Telestroke network business model strategies.
Fanale, Christopher V; Demaerschalk, Bart M
2012-10-01
Our objective is to summarize the evidence that supports the reliability of telemedicine for diagnosis and efficacy in acute stroke treatment, identify strategies for funding the development of a telestroke network, and to present issues with respect to economic sustainability, cost effectiveness, and the status of reimbursement for telestroke. Copyright © 2012 National Stroke Association. Published by Elsevier Inc. All rights reserved.
ICA model order selection of task co-activation networks.
Ray, Kimberly L; McKay, D Reese; Fox, Peter M; Riedel, Michael C; Uecker, Angela M; Beckmann, Christian F; Smith, Stephen M; Fox, Peter T; Laird, Angela R
2013-01-01
Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders.
Complex networks under dynamic repair model
Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao
2018-01-01
Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.
Natural Models for Evolution on Networks
Mertzios, George B; Raptopoulos, Christoforos; Spirakis, Paul G
2011-01-01
Evolutionary dynamics have been traditionally studied in the context of homogeneous populations, mainly described my the Moran process. Recently, this approach has been generalized in \\cite{LHN} by arranging individuals on the nodes of a network. Undirected networks seem to have a smoother behavior than directed ones, and thus it is more challenging to find suppressors/amplifiers of selection. In this paper we present the first class of undirected graphs which act as suppressors of selection, by achieving a fixation probability that is at most one half of that of the complete graph, as the number of vertices increases. Moreover, we provide some generic upper and lower bounds for the fixation probability of general undirected graphs. As our main contribution, we introduce the natural alternative of the model proposed in \\cite{LHN}, where all individuals interact simultaneously and the result is a compromise between aggressive and non-aggressive individuals. That is, the behavior of the individuals in our new m...
Neural Networks and Their Application to Air Force Personnel Modeling
1991-11-01
breadth of techniques provides fertile ground against which to compare the results obtained with neural networks. ", Most of the models in reenlistment or...Specialties (MOSs) receiving SRBs were taken from the 1980 and 1981 Enlisted Master Files ( EMFs ). These 98 MOSs were then aggregated into 15 Career Management... mechanisms , and architectures. Neural Networks, 1(1), 17-62. Hagiwara, M. (1990). Accelerated backpropagation using unlearning based on a Hebb rule
Modeling acquaintance networks based on balance theory
Directory of Open Access Journals (Sweden)
Vukašinović Vida
2014-09-01
Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models
A growing social network model in geographical space
Antonioni, Alberto; Tomassini, Marco
2017-09-01
In this work we propose a new model for the generation of social networks that includes their often ignored spatial aspects. The model is a growing one and links are created either taking space into account, or disregarding space and only considering the degree of target nodes. These two effects can be mixed linearly in arbitrary proportions through a parameter. We numerically show that for a given range of the combination parameter, and for given mean degree, the generated network class shares many important statistical features with those observed in actual social networks, including the spatial dependence of connections. Moreover, we show that the model provides a good qualitative fit to some measured social networks.
Flood routing modelling with Artificial Neural Networks
Directory of Open Access Journals (Sweden)
R. Peters
2006-01-01
Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.
A Transfer Learning Approach for Network Modeling
Huang, Shuai; Li, Jing; Chen, Kewei; Wu, Teresa; Ye, Jieping; Wu, Xia; Yao, Li
2012-01-01
Networks models have been widely used in many domains to characterize the interacting relationship between physical entities. A typical problem faced is to identify the networks of multiple related tasks that share some similarities. In this case, a transfer learning approach that can leverage the knowledge gained during the modeling of one task to help better model another task is highly desirable. In this paper, we propose a transfer learning approach, which adopts a Bayesian hierarchical model framework to characterize task relatedness and additionally uses the L1-regularization to ensure robust learning of the networks with limited sample sizes. A method based on the Expectation-Maximization (EM) algorithm is further developed to learn the networks from data. Simulation studies are performed, which demonstrate the superiority of the proposed transfer learning approach over single task learning that learns the network of each task in isolation. The proposed approach is also applied to identification of brain connectivity networks of Alzheimer’s disease (AD) from functional magnetic resonance image (fMRI) data. The findings are consistent with the AD literature. PMID:24526804
Clustering network layers with the strata multilayer stochastic block model.
Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J
2016-01-01
Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the "strata multilayer stochastic block model" (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called "strata", which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project.
Vehicle Scheduling with Network Flow Models
Directory of Open Access Journals (Sweden)
Gustavo P. Silva
2010-04-01
Full Text Available
Este trabalho retrata a primeira fase de uma pesquisa de doutorado voltada para a utilização de modelos de fluxo em redes para programação de veículos (de ônibus, em particular. A utilização de modelos deste tipo ainda e muito pouco explorada na literatura, principalmente pela dificuldade imposta pelo grande numero de variáveis resultante. Neste trabalho são apresentadas formulações para tratamento do problema de programação de veículos associados a um único depósito (ou garagem como problema de fluxo em redes, incluindo duas técnicas para reduzir o numero de arcos na rede criada e, conseqüentemente, o numero de variáveis a tratar. Uma destas técnicas de redução de arcos foi implementada e o problema de fluxo resultante foi direcionado para ser resolvido, nesta fase da pesquisa, por uma versão disponível do algoritmo Simplex para redes. Problemas teste baseados em dados reais da cidade de Reading, UK, foram resolvidos com a utilização da formulação de fluxo em redes adotada, e os resultados comparados com aqueles obtidos pelo método heurístico BOOST, o qual tem sido largamente testado e comercializado pela School of Computer Studies da Universidade de Leeds, UK. Os resultados alcançados demonstram a possibilidade de tratamento de problemas reais com a técnica de redução de arcos.
ABSTRACT
This paper presents the successful results of a first phase of a doctoral research addressed to solving vehicle (bus, in particular scheduling problems through network flow formulations. Network flow modeling for this kind of problem is a promising, but not a well explored approach, mainly because of the large number of variables related to number of arcs of real case networks. The paper presents and discusses some network flow formulations for the single depot bus vehicle scheduling problem, along with two techniques of arc reduction. One of these arc reduction techniques has been implemented and the underlying
Applying Model Based Systems Engineering to NASA's Space Communications Networks
Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert
2013-01-01
System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its
Modelling complex networks by random hierarchical graphs
Directory of Open Access Journals (Sweden)
M.Wróbel
2008-06-01
Full Text Available Numerous complex networks contain special patterns, called network motifs. These are specific subgraphs, which occur oftener than in randomized networks of Erdős-Rényi type. We choose one of them, the triangle, and build a family of random hierarchical graphs, being Sierpiński gasket-based graphs with random "decorations". We calculate the important characteristics of these graphs - average degree, average shortest path length, small-world graph family characteristics. They depend on probability of decorations. We analyze the Ising model on our graphs and describe its critical properties using a renormalization-group technique.
A Network Model of Credit Risk Contagion
Directory of Open Access Journals (Sweden)
Ting-Qiang Chen
2012-01-01
Full Text Available A network model of credit risk contagion is presented, in which the effect of behaviors of credit risk holders and the financial market regulators and the network structure are considered. By introducing the stochastic dominance theory, we discussed, respectively, the effect mechanisms of the degree of individual relationship, individual attitude to credit risk contagion, the individual ability to resist credit risk contagion, the monitoring strength of the financial market regulators, and the network structure on credit risk contagion. Then some derived and proofed propositions were verified through numerical simulations.
Social Insects: A Model System for Network Dynamics
Charbonneau, Daniel; Blonder, Benjamin; Dornhaus, Anna
Social insect colonies (ants, bees, wasps, and termites) show sophisticated collective problem-solving in the face of variable constraints. Individuals exchange information and materials such as food. The resulting network structure and dynamics can inform us about the mechanisms by which the insects achieve particular collective behaviors and these can be transposed to man-made and social networks. We discuss how network analysis can answer important questions about social insects, such as how effective task allocation or information flow is realized. We put forward the idea that network analysis methods are under-utilized in social insect research, and that they can provide novel ways to view the complexity of collective behavior, particularly if network dynamics are taken into account. To illustrate this, we present an example of network tasks performed by ant workers, linked by instances of workers switching from one task to another. We show how temporal network analysis can propose and test new hypotheses on mechanisms of task allocation, and how adding temporal elements to static networks can drastically change results. We discuss the benefits of using social insects as models for complex systems in general. There are multiple opportunities emergent technologies and analysis methods in facilitating research on social insect network. The potential for interdisciplinary work could significantly advance diverse fields such as behavioral ecology, computer sciences, and engineering.
Deep space network software cost estimation model
Tausworthe, R. C.
1981-01-01
A parametric software cost estimation model prepared for Jet PRopulsion Laboratory (JPL) Deep Space Network (DSN) Data System implementation tasks is described. The resource estimation mdel modifies and combines a number of existing models. The model calibrates the task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit JPL software life-cycle statistics.
Stochastic modeling and analysis of telecoms networks
Decreusefond, Laurent
2012-01-01
This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an
Decomposed Implicit Models of Piecewise - Linear Networks
Directory of Open Access Journals (Sweden)
J. Brzobohaty
1992-05-01
Full Text Available The general matrix form of the implicit description of a piecewise-linear (PWL network and the symbolic block diagram of the corresponding circuit model are proposed. Their decomposed forms enable us to determine quite separately the existence of the individual breakpoints of the resultant PWL characteristic and their coordinates using independent network parameters. For the two-diode and three-diode cases all the attainable types of the PWL characteristic are introduced.
Modelling of word usage frequency dynamics using artificial neural network
Maslennikova, Yu S.; Bochkarev, V. V.; Voloskov, D. S.
2014-03-01
In this paper the method for modelling of word usage frequency time series is proposed. An artificial feedforward neural network was used to predict word usage frequencies. The neural network was trained using the maximum likelihood criterion. The Google Books Ngram corpus was used for the analysis. This database provides a large amount of data on frequency of specific word forms for 7 languages. Statistical modelling of word usage frequency time series allows finding optimal fitting and filtering algorithm for subsequent lexicographic analysis and verification of frequency trend models.
Levels of Interaction Provided by Online Distance Education Models
Alhih, Mohammed; Ossiannilsson, Ebba; Berigel, Muhammet
2017-01-01
Interaction plays a significant role to foster usability and quality in online education. It is one of the quality standard to reveal the evidence of practice in online distance education models. This research study aims to evaluate levels of interaction in the practices of distance education centres. It is aimed to provide online distance…
Modeling and simulation of the USAVRE network and radiology operations
Martinez, Ralph; Bradford, Daniel Q.; Hatch, Jay; Sochan, John; Chimiak, William J.
1998-07-01
. There are three levels to the model: (1) Network model of the Cable Bundling Initiative (CBI) network and base networks (CUITIN), (2) Protocol model, including network, transport, and middleware protocols, such TCP/IP and Common Object Request Broker Architecture (CORBA) protocols, and (3) USAVRE Application layer model, including database archive systems, acquisition equipment, viewing workstations, and operations and management. The Network layer of the model contains the ATM-based backbone network provided by the CBI, interfaces into the RMC regional networks and the PACS networks at the medical centers and RMC sites. The CBI network currently is a DS-3 (45 Mbps) backbone consisting of three major hubs, at Ft. Leavenworth, KS, Ft. Belvoir, VA, and Ft. McPherson, GA. The medical center PACS networks are 100 Mbps and 1 Gbps networks. The RMC site networks are 100 Mbps speeds. The model is very beneficial in studying the multimedia transfer and operations characteristics of the USAVRE before it is completely built and deployed.
Green Network Planning Model for Optical Backbones
DEFF Research Database (Denmark)
Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael
2010-01-01
on the environment in general. In network planning there are existing planning models focused on QoS provisioning, investment minimization or combinations of both and other parameters. But there is a lack of a model for designing green optical backbones. This paper presents novel ideas to be able to define...
Empirical generalization assessment of neural network models
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai
1995-01-01
This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model...
Evaluation of EOR Processes Using Network Models
DEFF Research Database (Denmark)
Larsen, Jens Kjell; Krogsbøll, Anette
1998-01-01
The report consists of the following parts: 1) Studies of wetting properties of model fluids and fluid mixtures aimed at an optimal selection of candidates for micromodel experiments. 2) Experimental studies of multiphase transport properties using physical models of porous networks (micromodels...
Phenomenological network models: Lessons for epilepsy surgery.
Hebbink, Jurgen; Meijer, Hil; Huiskamp, Geertjan; van Gils, Stephan; Leijten, Frans
2017-10-01
The current opinion in epilepsy surgery is that successful surgery is about removing pathological cortex in the anatomic sense. This contrasts with recent developments in epilepsy research, where epilepsy is seen as a network disease. Computational models offer a framework to investigate the influence of networks, as well as local tissue properties, and to explore alternative resection strategies. Here we study, using such a model, the influence of connections on seizures and how this might change our traditional views of epilepsy surgery. We use a simple network model consisting of four interconnected neuronal populations. One of these populations can be made hyperexcitable, modeling a pathological region of cortex. Using model simulations, the effect of surgery on the seizure rate is studied. We find that removal of the hyperexcitable population is, in most cases, not the best approach to reduce the seizure rate. Removal of normal populations located at a crucial spot in the network, the "driver," is typically more effective in reducing seizure rate. This work strengthens the idea that network structure and connections may be more important than localizing the pathological node. This can explain why lesionectomy may not always be sufficient. © 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
Social Network Analyses and Nutritional Behavior: An Integrated Modeling Approach
Directory of Open Access Journals (Sweden)
Alistair McNair Senior
2016-01-01
Full Text Available Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent advances in nutrition research, combining state-space models of nutritional geometry with agent-based models of systems biology, show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a tangible and practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit agent-based models that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition. Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interaction in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.
The new challenges of multiplex networks: Measures and models
Battiston, Federico; Nicosia, Vincenzo; Latora, Vito
2017-02-01
What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.
A mixture copula Bayesian network model for multimodal genomic data
Directory of Open Access Journals (Sweden)
Qingyang Zhang
2017-04-01
Full Text Available Gaussian Bayesian networks have become a widely used framework to estimate directed associations between joint Gaussian variables, where the network structure encodes the decomposition of multivariate normal density into local terms. However, the resulting estimates can be inaccurate when the normality assumption is moderately or severely violated, making it unsuitable for dealing with recent genomic data such as the Cancer Genome Atlas data. In the present paper, we propose a mixture copula Bayesian network model which provides great flexibility in modeling non-Gaussian and multimodal data for causal inference. The parameters in mixture copula functions can be efficiently estimated by a routine expectation–maximization algorithm. A heuristic search algorithm based on Bayesian information criterion is developed to estimate the network structure, and prediction can be further improved by the best-scoring network out of multiple predictions from random initial values. Our method outperforms Gaussian Bayesian networks and regular copula Bayesian networks in terms of modeling flexibility and prediction accuracy, as demonstrated using a cell signaling data set. We apply the proposed methods to the Cancer Genome Atlas data to study the genetic and epigenetic pathways that underlie serous ovarian cancer.
A mixture copula Bayesian network model for multimodal genomic data.
Zhang, Qingyang; Shi, Xuan
2017-01-01
Gaussian Bayesian networks have become a widely used framework to estimate directed associations between joint Gaussian variables, where the network structure encodes the decomposition of multivariate normal density into local terms. However, the resulting estimates can be inaccurate when the normality assumption is moderately or severely violated, making it unsuitable for dealing with recent genomic data such as the Cancer Genome Atlas data. In the present paper, we propose a mixture copula Bayesian network model which provides great flexibility in modeling non-Gaussian and multimodal data for causal inference. The parameters in mixture copula functions can be efficiently estimated by a routine expectation-maximization algorithm. A heuristic search algorithm based on Bayesian information criterion is developed to estimate the network structure, and prediction can be further improved by the best-scoring network out of multiple predictions from random initial values. Our method outperforms Gaussian Bayesian networks and regular copula Bayesian networks in terms of modeling flexibility and prediction accuracy, as demonstrated using a cell signaling data set. We apply the proposed methods to the Cancer Genome Atlas data to study the genetic and epigenetic pathways that underlie serous ovarian cancer.
Personalized Learning Network Teaching Model
Feng, Zhou
Adaptive learning system on the salient features, expounded personalized learning is adaptive learning system adaptive to learners key to learning. From the perspective of design theory, put forward an adaptive learning system to learn design thinking individual model, and using data mining techniques, the initial establishment of personalized adaptive systems model of learning.
WDM Systems and Networks Modeling, Simulation, Design and Engineering
Ellinas, Georgios; Roudas, Ioannis
2012-01-01
WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...
Models and algorithms for biomolecules and molecular networks
DasGupta, Bhaskar
2016-01-01
By providing expositions to modeling principles, theories, computational solutions, and open problems, this reference presents a full scope on relevant biological phenomena, modeling frameworks, technical challenges, and algorithms. * Up-to-date developments of structures of biomolecules, systems biology, advanced models, and algorithms * Sampling techniques for estimating evolutionary rates and generating molecular structures * Accurate computation of probability landscape of stochastic networks, solving discrete chemical master equations * End-of-chapter exercises
Directory of Open Access Journals (Sweden)
Salih Börteçine Avci
2017-06-01
Full Text Available This study focuses on the impact of corporate governance, supply chain network governance and competencies such as sales and logistics competence on buyers’ intention to relationship continuity. A total number of 258 questionnaires were distributed to Turkish manufacturing firms, selected using cross-sectional sampling method from the Istanbul and Edirne Chamber of Commerce and Industry in Turkey. The data of survey was analysed using PLS-SEM model with WARP PLS 5.0 software. Our findings indicate that corporate governance and supply chain network governance seem to have a positive effect on sales competence and logistics competence, and together, they influence buyers’ intention to relationship continuity. In this respect, the outcomes of this study may provide valuable insights for the third-party logistics (3PL literature in terms of buyers’ intention to relationship continuity.
Modelling Users` Trust in Online Social Networks
Directory of Open Access Journals (Sweden)
Iacob Cătoiu
2014-02-01
Full Text Available Previous studies (McKnight, Lankton and Tripp, 2011; Liao, Lui and Chen, 2011 have shown the crucial role of trust when choosing to disclose sensitive information online. This is the case of online social networks users, who must disclose a certain amount of personal data in order to gain access to these online services. Taking into account privacy calculus model and the risk/benefit ratio, we propose a model of users’ trust in online social networks with four variables. We have adapted metrics for the purpose of our study and we have assessed their reliability and validity. We use a Partial Least Squares (PLS based structural equation modelling analysis, which validated all our initial assumptions, indicating that our three predictors (privacy concerns, perceived benefits and perceived risks explain 48% of the variation of users’ trust in online social networks, the resulting variable of our study. We also discuss the implications and further research opportunities of our study.
Model Microvascular Networks Can Have Many Equilibria.
Karst, Nathaniel J; Geddes, John B; Carr, Russell T
2017-03-01
We show that large microvascular networks with realistic topologies, geometries, boundary conditions, and constitutive laws can exhibit many steady-state flow configurations. This is in direct contrast to most previous studies which have assumed, implicitly or explicitly, that a given network can only possess one equilibrium state. While our techniques are general and can be applied to any network, we focus on two distinct network types that model human tissues: perturbed honeycomb networks and random networks generated from Voronoi diagrams. We demonstrate that the disparity between observed and predicted flow directions reported in previous studies might be attributable to the presence of multiple equilibria. We show that the pathway effect, in which hematocrit is steadily increased along a series of diverging junctions, has important implications for equilibrium discovery, and that our estimates of the number of equilibria supported by these networks are conservative. If a more complete description of the plasma skimming effect that captures red blood cell allocation at junctions with high feed hematocrit were to be obtained empirically, then the number of equilibria found by our approach would at worst remain the same and would in all likelihood increase significantly.
PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK
Directory of Open Access Journals (Sweden)
R. Hadapiningradja Kusumodestoni
2015-11-01
Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.
HyberLoc: Providing Physical Layer Location Privacy in Hybrid Sensor Networks
El-Badry, Rania; Youssef, Moustafa
2010-01-01
In many hybrid wireless sensor networks' applications, sensor nodes are deployed in hostile environments where trusted and un-trusted nodes co-exist. In anchor-based hybrid networks, it becomes important to allow trusted nodes to gain full access to the location information transmitted in beacon frames while, at the same time, prevent un-trusted nodes from using this information. The main challenge is that un-trusted nodes can measure the physical signal transmitted from anchor nodes, even if these nodes encrypt their transmission. Using the measured signal strength, un-trusted nodes can still tri-laterate the location of anchor nodes. In this paper, we propose HyberLoc, an algorithm that provides anchor physical layer location privacy in anchor-based hybrid sensor networks. The idea is for anchor nodes to dynamically change their transmission power following a certain probability distribution, degrading the localization accuracy at un-trusted nodes while maintaining high localization accuracy at trusted node...
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, Lars J.; Keller, Paul E.
1997-01-01
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.
Modeling of Multihop Wireless Sensor Networks with MAC, Queuing, and Cooperation
Jian Lin; Mary Ann Weitnauer
2016-01-01
We present a Markovian decision process (MDP) framework for multihop wireless sensor networks (MHWSNs) to bound the network performance of both energy constrained (EC) networks and energy harvesting (EH) networks, both with and without relay cooperation. The model provides the fundamental performance limit that a MHWSN can theoretically achieve, under the general constraints from medium access control, routing, and energy harvesting. We observe that the analyses for EC and EH networks fall in...
Artificial neural networks modeling gene-environment interaction
Directory of Open Access Journals (Sweden)
Günther Frauke
2012-05-01
Full Text Available Abstract Background Gene-environment interactions play an important role in the etiological pathway of complex diseases. An appropriate statistical method for handling a wide variety of complex situations involving interactions between variables is still lacking, especially when continuous variables are involved. The aim of this paper is to explore the ability of neural networks to model different structures of gene-environment interactions. A simulation study is set up to compare neural networks with standard logistic regression models. Eight different structures of gene-environment interactions are investigated. These structures are characterized by penetrance functions that are based on sigmoid functions or on combinations of linear and non-linear effects of a continuous environmental factor and a genetic factor with main effect or with a masking effect only. Results In our simulation study, neural networks are more successful in modeling gene-environment interactions than logistic regression models. This outperfomance is especially pronounced when modeling sigmoid penetrance functions, when distinguishing between linear and nonlinear components, and when modeling masking effects of the genetic factor. Conclusion Our study shows that neural networks are a promising approach for analyzing gene-environment interactions. Especially, if no prior knowledge of the correct nature of the relationship between co-variables and response variable is present, neural networks provide a valuable alternative to regression methods that are limited to the analysis of linearly separable data.
Spiking modular neural networks: A neural network modeling approach for hydrological processes
National Research Council Canada - National Science Library
Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey
2006-01-01
.... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...
Richardson, Magnus J. E.
2014-01-01
Although the patterns of activity produced by neocortical networks are now better understood, how these states are activated, sustained, and terminated still remains unclear. Negative feedback by the endogenous neuromodulator adenosine may potentially play an important role, as it can be released by activity and there is dense A1 receptor expression in the neocortex. Using electrophysiology, biosensors, and modeling, we have investigated the properties of adenosine signaling during physiological and pathological network activity in rat neocortical slices. Both low- and high-rate network activities were reduced by A1 receptor activation and enhanced by block of A1 receptors, consistent with activity-dependent adenosine release. Since the A1 receptors were neither saturated nor completely unoccupied during either low- or high-rate activity, adenosine signaling provides a negative-feedback mechanism with a wide dynamic range. Modeling and biosensor experiments show that during high-rate activity increases in extracellular adenosine concentration are highly localized and are uncorrelated over short distances that are certainly adenosine release during low-rate activity, although it is present, is probably a consequence of small localized increases in adenosine concentration that are rapidly diminished by diffusion and active removal mechanisms. Saturation of such removal mechanisms when higher concentrations of adenosine are released results in the accumulation of inosine, explaining the strong purine signal during high-rate activity. PMID:25392170
PROJECT ACTIVITY ANALYSIS WITHOUT THE NETWORK MODEL
Directory of Open Access Journals (Sweden)
S. Munapo
2012-01-01
Full Text Available
ENGLISH ABSTRACT: This paper presents a new procedure for analysing and managing activity sequences in projects. The new procedure determines critical activities, critical path, start times, free floats, crash limits, and other useful information without the use of the network model. Even though network models have been successfully used in project management so far, there are weaknesses associated with the use. A network is not easy to generate, and dummies that are usually associated with it make the network diagram complex – and dummy activities have no meaning in the original project management problem. The network model for projects can be avoided while still obtaining all the useful information that is required for project management. What are required are the activities, their accurate durations, and their predecessors.
AFRIKAANSE OPSOMMING: Die navorsing beskryf ’n nuwerwetse metode vir die ontleding en bestuur van die sekwensiële aktiwiteite van projekte. Die voorgestelde metode bepaal kritiese aktiwiteite, die kritieke pad, aanvangstye, speling, verhasing, en ander groothede sonder die gebruik van ’n netwerkmodel. Die metode funksioneer bevredigend in die praktyk, en omseil die administratiewe rompslomp van die tradisionele netwerkmodelle.
Fracture Network Modeling and GoldSim Simulation Support
杉田 健一郎; Dershowiz, W.
2003-01-01
During Heisei-14, Golder Associates provided support for JNC Tokai through data analysis and simulation of the MIU Underground Rock Laboratory, participation in Task 6 of the Aspo Task Force on Modelling of Groundwater Flow and Transport, and analysis of repository safety assessment technologies including cell networks for evaluation of the disturbed rock zone (DRZ) and total systems performance assessment (TSPA).
Algebraic Statistics for Network Models
2014-02-19
use algebra, combinatorics and Markov bases to give a constructing way of answering this question for ERGMs of interest. Question 2: How do we model...for every function. 06/06/13 Petrović. Manuscripts 8, 10. Invited lecture at the Scientific Session on Commutative Algebra and Combinatorics at the
Network Modeling and Simulation (NEMSE)
2013-07-01
Prioritized Packet Fragmentation", IEEE Trans. Multimedia , Oct. 2012. [13 SYSENG] . Defense Acquisition Guidebook, Chapter 4 System Engineering, and...2012 IEEE High Performance Extreme Computing Conference (HPEC) poster session [1 Ross]. Motivation Air Force Research Lab needs o Capability...is virtual. These eight virtualizations were: System-in-the-Loop (SITL) using OPNET Modeler, COPE, Field Programmable Gate Array ( FPGA Physical
Conceptual Models of the Individual Public Service Provider
DEFF Research Database (Denmark)
Andersen, Lotte Bøgh; Bhatti, Yosef; Petersen, Ole Helby
Individual public service providers’ motivation can be conceptualized as either extrinsic, autonomous or prosocial, and the question is how we can best theoretically understand this complexity without losing too much coherence and parsimony. Drawing on Allison’s approach (1969), three perspectives...... are used to gain insight on the motivation of public service providers; namely principal-agent theory, self-determination theory and public service motivation theory. We situate the theoretical discussions in the context of public service providers being transferred to private organizations...... theoretical – to develop a coherent model of individual public service providers – but the empirical illustration also contributes to our understanding of motivation in the context of public sector outsourcing....
An evolving model of online bipartite networks
Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang
2013-12-01
Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.
Lan Liu; Ryan K. L. Ko; Guangming Ren; Xiaoping Xu
2017-01-01
As the adoption of Software Defined Networks (SDNs) grows, the security of SDN still has several unaddressed limitations. A key network security research area is in the study of malware propagation across the SDN-enabled networks. To analyze the spreading processes of network malware (e.g., viruses) in SDN, we propose a dynamic model with a time-varying community network, inspired by research models on the spread of epidemics in complex networks across communities. We assume subnets of the ne...
Modelling catchment areas for secondary care providers: a case study.
Jones, Simon; Wardlaw, Jessica; Crouch, Susan; Carolan, Michelle
2011-09-01
Hospitals need to understand patient flows in an increasingly competitive health economy. New initiatives like Patient Choice and the Darzi Review further increase this demand. Essential to understanding patient flows are demographic and geographic profiles of health care service providers, known as 'catchment areas' and 'catchment populations'. This information helps Primary Care Trusts (PCTs) to review how their populations are accessing services, measure inequalities and commission services; likewise it assists Secondary Care Providers (SCPs) to measure and assess potential gains in market share, redesign services, evaluate admission thresholds and plan financial budgets. Unlike PCTs, SCPs do not operate within fixed geographic boundaries. Traditionally, SCPs have used administrative boundaries or arbitrary drive times to model catchment areas. Neither approach satisfactorily represents current patient flows. Furthermore, these techniques are time-consuming and can be challenging for healthcare managers to exploit. This paper presents three different approaches to define catchment areas, each more detailed than the previous method. The first approach 'First Past the Post' defines catchment areas by allocating a dominant SCP to each Census Output Area (OA). The SCP with the highest proportion of activity within each OA is considered the dominant SCP. The second approach 'Proportional Flow' allocates activity proportionally to each OA. This approach allows for cross-boundary flows to be captured in a catchment area. The third and final approach uses a gravity model to define a catchment area, which incorporates drive or travel time into the analysis. Comparing approaches helps healthcare providers to understand whether using more traditional and simplistic approaches to define catchment areas and populations achieves the same or similar results as complex mathematical modelling. This paper has demonstrated, using a case study of Manchester, that when estimating
An autocatalytic network model for stock markets
Caetano, Marco Antonio Leonel; Yoneyama, Takashi
2015-02-01
The stock prices of companies with businesses that are closely related within a specific sector of economy might exhibit movement patterns and correlations in their dynamics. The idea in this work is to use the concept of autocatalytic network to model such correlations and patterns in the trends exhibited by the expected returns. The trends are expressed in terms of positive or negative returns within each fixed time interval. The time series derived from these trends is then used to represent the movement patterns by a probabilistic boolean network with transitions modeled as an autocatalytic network. The proposed method might be of value in short term forecasting and identification of dependencies. The method is illustrated with a case study based on four stocks of companies in the field of natural resource and technology.
Computer-Supported Modelling of Multi modal Transportation Networks Rationalization
Directory of Open Access Journals (Sweden)
Ratko Zelenika
2007-09-01
Full Text Available This paper deals with issues of shaping and functioning ofcomputer programs in the modelling and solving of multimoda Itransportation network problems. A methodology of an integrateduse of a programming language for mathematical modellingis defined, as well as spreadsheets for the solving of complexmultimodal transportation network problems. The papercontains a comparison of the partial and integral methods ofsolving multimodal transportation networks. The basic hypothesisset forth in this paper is that the integral method results inbetter multimodal transportation network rationalization effects,whereas a multimodal transportation network modelbased on the integral method, once built, can be used as the basisfor all kinds of transportation problems within multimodaltransport. As opposed to linear transport problems, multimodaltransport network can assume very complex shapes. This papercontains a comparison of the partial and integral approach totransp01tation network solving. In the partial approach, astraightforward model of a transp01tation network, which canbe solved through the use of the Solver computer tool within theExcel spreadsheet inteiface, is quite sufficient. In the solving ofa multimodal transportation problem through the integralmethod, it is necessmy to apply sophisticated mathematicalmodelling programming languages which supp01t the use ofcomplex matrix functions and the processing of a vast amountof variables and limitations. The LINGO programming languageis more abstract than the Excel spreadsheet, and it requiresa certain programming knowledge. The definition andpresentation of a problem logic within Excel, in a manner whichis acceptable to computer software, is an ideal basis for modellingin the LINGO programming language, as well as a fasterand more effective implementation of the mathematical model.This paper provides proof for the fact that it is more rational tosolve the problem of multimodal transportation networks by
Reif, Carrie; Much, Kari
2017-01-01
The social networking use of university and college counseling center (UCCC) mental health providers has not been widely researched. Most of the 20 providers surveyed in this preliminary study reported engaging in social networking despite identifying pros and cons to its use. Participants' reported use of social media may indicate that social…
3D data model of transportation network in city
Zuo, Xiao-qing; Li, Qing-quan; Yang, Bi-sheng
2005-10-01
Modern data-capture technology, especially digital photogrammetry technology, provides abundant data resources for digital city. Transportation network, forming framework of city, is an important component of city and a vital fundamental data of ITS and LBS (Location-based Services). Therefore, developing a data model is very valuable and significant which can describe 3D feature of city road network and support 3D navigation. Nowadays existing 3D GIS data models pay less attention to the support of transportation application, such as 3D vehicle navigation and traffic simulation, and previous GIS for transportation (GIS-T) data models failed to support 3D visualization. In view of it, we developed a 3D data model for transportation network that (1) supports of linear referencing system (LRS) and dynamic segmentation, (2) makes network topology build on the basis of 3D geometry network, and (3) realizes the transformation between linear coordinate and spatial coordinate. A performance study depicts that the proposed model can not only realize 3D visualization but also have transportation analysis (such 3D Vehicle navigation) more efficiently and conveniently.
A Model of Mental State Transition Network
Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo
Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.
UAV Trajectory Modeling Using Neural Networks
Xue, Min
2017-01-01
Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.
Propagation models for computing biochemical reaction networks
Henzinger, Thomas A; Mateescu, Maria
2011-01-01
We introduce propagation models, a formalism designed to support general and efficient data structures for the transient analysis of biochemical reaction networks. We give two use cases for propagation abstract data types: the uniformization method and numerical integration. We also sketch an implementation of a propagation abstract data type, which uses abstraction to approximate states.
Modelling crime linkage with Bayesian networks
de Zoete, J.; Sjerps, M.; Lagnado, D.; Fenton, N.
2015-01-01
When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model
Lagrangian modeling of switching electrical networks
Scherpen, Jacquelien M.A.; Jeltsema, Dimitri; Klaassens, J. Ben
2003-01-01
In this paper, a general and systematic method is presented to model topologically complete electrical networks, with or without multiple or single switches, within the Euler–Lagrange framework. Apart from the physical insight that can be obtained in this way, the framework has proven to be useful
Computational Modeling of Complex Protein Activity Networks
Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude
2017-01-01
Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a
Modeling Network Transition Constraints with Hypergraphs
DEFF Research Database (Denmark)
Harrod, Steven
2011-01-01
values. A directed hypergraph formulation is derived to address railway network sequencing constraints, and an experimental problem sample solved to estimate the magnitude of objective inflation when interaction effects are ignored. The model is used to demonstrate the value of advance scheduling...
A neural network model for texture discrimination.
Xing, J; Gerstein, G L
1993-01-01
A model of texture discrimination in visual cortex was built using a feedforward network with lateral interactions among relatively realistic spiking neural elements. The elements have various membrane currents, equilibrium potentials and time constants, with action potentials and synapses. The model is derived from the modified programs of MacGregor (1987). Gabor-like filters are applied to overlapping regions in the original image; the neural network with lateral excitatory and inhibitory interactions then compares and adjusts the Gabor amplitudes in order to produce the actual texture discrimination. Finally, a combination layer selects and groups various representations in the output of the network to form the final transformed image material. We show that both texture segmentation and detection of texture boundaries can be represented in the firing activity of such a network for a wide variety of synthetic to natural images. Performance details depend most strongly on the global balance of strengths of the excitatory and inhibitory lateral interconnections. The spatial distribution of lateral connective strengths has relatively little effect. Detailed temporal firing activities of single elements in the lateral connected network were examined under various stimulus conditions. Results show (as in area 17 of cortex) that a single element's response to image features local to its receptive field can be altered by changes in the global context.
DEFF Research Database (Denmark)
Huang, Qian; Huang, Yue-Cai; Ko, King-Tim
2011-01-01
A hierarchical overlay structure is an alternative solution that integrates existing and future heterogeneous wireless networks to provide subscribers with better mobile broadband services. Traffic loss performance in such integrated heterogeneous networks is necessary for an operator's network...... dimensioning and planning. This paper investigates the computationally efficient loss performance modeling for multiservice in hierarchical heterogeneous wireless networks. A speed-sensitive call admission control (CAC) scheme is considered in our model to assign overflowed calls to appropriate tiers...
National Research Council Canada - National Science Library
Krischer, Jeffrey
2001-01-01
The Moffitt Cancer Network's (MCN) goal is to provide up-to-date oncology related information, resources, and education to oncology health care providers and researchers for the prevention and cure of cancer...
National Research Council Canada - National Science Library
Krischer, Jeffrey
2002-01-01
The Moffitt Cancer Network's (MCN) goal is to provide up-to-date oncology related information, resources, and education to oncology health care providers and researchers for the prevention and cure of cancer...
Propagating semantic information in biochemical network models
Directory of Open Access Journals (Sweden)
Schulz Marvin
2012-01-01
Full Text Available Abstract Background To enable automatic searches, alignments, and model combination, the elements of systems biology models need to be compared and matched across models. Elements can be identified by machine-readable biological annotations, but assigning such annotations and matching non-annotated elements is tedious work and calls for automation. Results A new method called "semantic propagation" allows the comparison of model elements based not only on their own annotations, but also on annotations of surrounding elements in the network. One may either propagate feature vectors, describing the annotations of individual elements, or quantitative similarities between elements from different models. Based on semantic propagation, we align partially annotated models and find annotations for non-annotated model elements. Conclusions Semantic propagation and model alignment are included in the open-source library semanticSBML, available on sourceforge. Online services for model alignment and for annotation prediction can be used at http://www.semanticsbml.org.
Network traffic model using GIPP and GIBP
Lee, Yong Duk; Van de Liefvoort, Appie; Wallace, Victor L.
1998-10-01
In telecommunication networks, the correlated nature of teletraffic patterns can have significant impact on queuing measures such as queue length, blocking and delay. There is, however, not yet a good general analytical description which can easily incorporate the correlation effect of the traffic, while at the same time maintaining the ease of modeling. The authors have shown elsewhere, that the covariance structures of the generalized Interrupted Poisson Process (GIPP) and the generalized Interrupted Bernoulli Process (GIBP) have an invariance property which makes them reasonably general, yet algebraically manageable, models for representing correlated network traffic. The GIPP and GIBP have a surprisingly rich sets of parameters, yet these invariance properties enable us to easily incorporate the covariance function as well as the interarrival time distribution into the model to better matchobservations. In this paper, we show an application of GIPP and GIBP for matching an analytical model to observed or experimental data.
Model Predictive Control of Sewer Networks
DEFF Research Database (Denmark)
Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik
2016-01-01
The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and cont...... benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control....
Optimization Models for Flexible and Adaptive SDN Network Virtualization Layers
Zerwas, Johannes; Blenk, Andreas; Kellerer, Wolfgang
2016-01-01
Network hypervisors provide the network virtualization layer for Software Defined Networking (SDN). They enable virtual network (VN) tenants to bring their SDN controllers to program their logical networks individually according to their demands. In order to make use of the high flexibility of virtual SDN networks and to provide high performance, the deployment of the virtualization layer needs to adapt to changing VN demands. This paper initializes the study of the optimization of dynamic SD...
de la Mata, Tamara; Llano, Carlos
2013-07-01
Recent literature on border effect has fostered research on informal barriers to trade and the role played by network dependencies. In relation to social networks, it has been shown that intensity of trade in goods is positively correlated with migration flows between pairs of countries/regions. In this article, we investigate whether such a relation also holds for interregional trade of services. We also consider whether interregional trade flows in services linked with tourism exhibit spatial and/or social network dependence. Conventional empirical gravity models assume the magnitude of bilateral flows between regions is independent of flows to/from regions located nearby in space, or flows to/from regions related through social/cultural/ethic network connections. With this aim, we provide estimates from a set of gravity models showing evidence of statistically significant spatial and network (demographic) dependence in the bilateral flows of the trade of services considered. The analysis has been applied to the Spanish intra- and interregional monetary flows of services from the accommodation, restaurants and travel agencies for the period 2000-2009, using alternative datasets for the migration stocks and definitions of network effects.
Spatial Models and Networks of Living Systems
DEFF Research Database (Denmark)
Juul, Jeppe Søgaard
When studying the dynamics of living systems, insight can often be gained by developing a mathematical model that can predict future behaviour of the system or help classify system characteristics. However, in living cells, organisms, and especially groups of interacting individuals, a large number....... Such systems are known to be stabilized by spatial structure. Finally, I analyse data from a large mobile phone network and show that people who are topologically close in the network have similar communication patterns. This main part of the thesis is based on six different articles, which I have co...
On traffic modelling in GPRS networks
DEFF Research Database (Denmark)
Madsen, Tatiana Kozlova; Schwefel, Hans-Peter; Prasad, Ramjee
2005-01-01
Optimal design and dimensioning of wireless data networks, such as GPRS, requires the knowledge of traffic characteristics of different data services. This paper presents an in-detail analysis of an IP-level traffic measurements taken in an operational GPRS network. The data measurements reported...... here are done at the Gi interface. The aim of this paper is to reveal some key statistics of GPRS data applications and to validate if the existing traffic models can adequately describe traffic volume and inter-arrival time distribution for different services. Additionally, we present a method of user...
Network modelling of fluid retention behaviour in unsaturated soils
Directory of Open Access Journals (Sweden)
Athanasiadis Ignatios
2016-01-01
Full Text Available The paper describes discrete modelling of the retention behaviour of unsaturated porous materials. A network approach is used within a statistical volume element (SVE, suitable for subsequent use in hydro-mechanical analysis and incorporation within multi-scale numerical modelling. The soil pore structure is modelled by a network of cylindrical pipes connecting spheres, with the spheres representing soil voids and the pipes representing inter-connecting throats. The locations of pipes and spheres are determined by a Voronoi tessellation of the domain. Original aspects of the modelling include a form of periodic boundary condition implementation applied for the first time to this type of network, a new pore volume scaling technique to provide more realistic modelling and a new procedure for initiating drying or wetting paths in a network model employing periodic boundary conditions. Model simulations, employing two linear cumulative probability distributions to represent the distributions of sphere and pipe radii, are presented for the retention behaviour reported from a mercury porosimetry test on a sandstone.
Neural Network Model of memory retrieval
Directory of Open Access Journals (Sweden)
Stefano eRecanatesi
2015-12-01
Full Text Available Human memory can store large amount of information. Nevertheless, recalling is often achallenging task. In a classical free recall paradigm, where participants are asked to repeat abriefly presented list of words, people make mistakes for lists as short as 5 words. We present amodel for memory retrieval based on a Hopfield neural network where transition between itemsare determined by similarities in their long-term memory representations. Meanfield analysis ofthe model reveals stable states of the network corresponding (1 to single memory representationsand (2 intersection between memory representations. We show that oscillating feedback inhibitionin the presence of noise induces transitions between these states triggering the retrieval ofdifferent memories. The network dynamics qualitatively predicts the distribution of time intervalsrequired to recall new memory items observed in experiments. It shows that items having largernumber of neurons in their representation are statistically easier to recall and reveals possiblebottlenecks in our ability of retrieving memories. Overall, we propose a neural network model ofinformation retrieval broadly compatible with experimental observations and is consistent with ourrecent graphical model (Romani et al., 2013.
Hydrometeorological network for flood monitoring and modeling
Efstratiadis, Andreas; Koussis, Antonis D.; Lykoudis, Spyros; Koukouvinos, Antonis; Christofides, Antonis; Karavokiros, George; Kappos, Nikos; Mamassis, Nikos; Koutsoyiannis, Demetris
2013-08-01
Due to its highly fragmented geomorphology, Greece comprises hundreds of small- to medium-size hydrological basins, in which often the terrain is fairly steep and the streamflow regime ephemeral. These are typically affected by flash floods, occasionally causing severe damages. Yet, the vast majority of them lack flow-gauging infrastructure providing systematic hydrometric data at fine time scales. This has obvious impacts on the quality and reliability of flood studies, which typically use simplistic approaches for ungauged basins that do not consider local peculiarities in sufficient detail. In order to provide a consistent framework for flood design and to ensure realistic predictions of the flood risk -a key issue of the 2007/60/EC Directive- it is essential to improve the monitoring infrastructures by taking advantage of modern technologies for remote control and data management. In this context and in the research project DEUCALION, we have recently installed and are operating, in four pilot river basins, a telemetry-based hydro-meteorological network that comprises automatic stations and is linked to and supported by relevant software. The hydrometric stations measure stage, using 50-kHz ultrasonic pulses or piezometric sensors, or both stage (piezometric) and velocity via acoustic Doppler radar; all measurements are being temperature-corrected. The meteorological stations record air temperature, pressure, relative humidity, wind speed and direction, and precipitation. Data transfer is made via GPRS or mobile telephony modems. The monitoring network is supported by a web-based application for storage, visualization and management of geographical and hydro-meteorological data (ENHYDRIS), a software tool for data analysis and processing (HYDROGNOMON), as well as an advanced model for flood simulation (HYDROGEIOS). The recorded hydro-meteorological observations are accessible over the Internet through the www-application. The system is operational and its
A Fluid Model for Performance Analysis in Cellular Networks
Directory of Open Access Journals (Sweden)
Coupechoux Marceau
2010-01-01
Full Text Available We propose a new framework to study the performance of cellular networks using a fluid model and we derive from this model analytical formulas for interference, outage probability, and spatial outage probability. The key idea of the fluid model is to consider the discrete base station (BS entities as a continuum of transmitters that are spatially distributed in the network. This model allows us to obtain simple analytical expressions to reveal main characteristics of the network. In this paper, we focus on the downlink other-cell interference factor (OCIF, which is defined for a given user as the ratio of its outer cell received power to its inner cell received power. A closed-form formula of the OCIF is provided in this paper. From this formula, we are able to obtain the global outage probability as well as the spatial outage probability, which depends on the location of a mobile station (MS initiating a new call. Our analytical results are compared to Monte Carlo simulations performed in a traditional hexagonal network. Furthermore, we demonstrate an application of the outage probability related to cell breathing and densification of cellular networks.
A Dynamic Evolutionary Game Model of Modular Production Network
Directory of Open Access Journals (Sweden)
Wei He
2016-01-01
Full Text Available As a new organization mode of production in the 21st century, modular production network is deemed extensively to be a source of competitiveness for lead firms in manufacturing industries. However, despite the abundant studies on the modular production network, there are very few studies from a dynamic perspective to discuss the conditions on which a modular production network develops. Based on the dynamic evolutionary game theory, this paper constructs a model, which incorporates several main factors influencing the development of modular production network. By calculating the replicator dynamics equations and analyzing the evolutionary stable strategies, this paper discusses the evolution process of cooperation strategies of member enterprises in a modular production network. Furthermore, by using NetLogo software to simulate the model, this paper verifies the effectiveness of the model. From the model, we can find that the final stable equilibrium strategy is related to such factors as the initial cost, the extra payoff, the cooperation willingness of both parties, the cooperation efforts, and the proportion each party can get from the extra payoff. To encourage the cooperation of production integrator and modular supplier, some suggestions are also provided.
A improved Network Security Situation Awareness Model
Directory of Open Access Journals (Sweden)
Li Fangwei
2015-08-01
Full Text Available In order to reflect the situation of network security assessment performance fully and accurately, a new network security situation awareness model based on information fusion was proposed. Network security situation is the result of fusion three aspects evaluation. In terms of attack, to improve the accuracy of evaluation, a situation assessment method of DDoS attack based on the information of data packet was proposed. In terms of vulnerability, a improved Common Vulnerability Scoring System (CVSS was raised and maked the assessment more comprehensive. In terms of node weights, the method of calculating the combined weights and optimizing the result by Sequence Quadratic Program (SQP algorithm which reduced the uncertainty of fusion was raised. To verify the validity and necessity of the method, a testing platform was built and used to test through evaluating 2000 DAPRA data sets. Experiments show that the method can improve the accuracy of evaluation results.
Small-World and Scale-Free Network Models for IoT Systems
Directory of Open Access Journals (Sweden)
Insoo Sohn
2017-01-01
Full Text Available It is expected that Internet of Things (IoT revolution will enable new solutions and business for consumers and entrepreneurs by connecting billions of physical world devices with varying capabilities. However, for successful realization of IoT, challenges such as heterogeneous connectivity, ubiquitous coverage, reduced network and device complexity, enhanced power savings, and enhanced resource management have to be solved. All these challenges are heavily impacted by the IoT network topology supported by massive number of connected devices. Small-world networks and scale-free networks are important complex network models with massive number of nodes and have been actively used to study the network topology of brain networks, social networks, and wireless networks. These models, also, have been applied to IoT networks to enhance synchronization, error tolerance, and more. However, due to interdisciplinary nature of the network science, with heavy emphasis on graph theory, it is not easy to study the various tools provided by complex network models. Therefore, in this paper, we attempt to introduce basic concepts of graph theory, including small-world networks and scale-free networks, and provide system models that can be easily implemented to be used as a powerful tool in solving various research problems related to IoT.
Can quantum probability provide a new direction for cognitive modeling?
Pothos, Emmanuel M; Busemeyer, Jerome R
2013-06-01
Classical (Bayesian) probability (CP) theory has led to an influential research tradition for modeling cognitive processes. Cognitive scientists have been trained to work with CP principles for so long that it is hard even to imagine alternative ways to formalize probabilities. However, in physics, quantum probability (QP) theory has been the dominant probabilistic approach for nearly 100 years. Could QP theory provide us with any advantages in cognitive modeling as well? Note first that both CP and QP theory share the fundamental assumption that it is possible to model cognition on the basis of formal, probabilistic principles. But why consider a QP approach? The answers are that (1) there are many well-established empirical findings (e.g., from the influential Tversky, Kahneman research tradition) that are hard to reconcile with CP principles; and (2) these same findings have natural and straightforward explanations with quantum principles. In QP theory, probabilistic assessment is often strongly context- and order-dependent, individual states can be superposition states (that are impossible to associate with specific values), and composite systems can be entangled (they cannot be decomposed into their subsystems). All these characteristics appear perplexing from a classical perspective. However, our thesis is that they provide a more accurate and powerful account of certain cognitive processes. We first introduce QP theory and illustrate its application with psychological examples. We then review empirical findings that motivate the use of quantum theory in cognitive theory, but also discuss ways in which QP and CP theories converge. Finally, we consider the implications of a QP theory approach to cognition for human rationality.
Modeling of methane emissions using artificial neural network approach
Directory of Open Access Journals (Sweden)
Stamenković Lidija J.
2015-01-01
Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007
Measuring and modelling of application flow length in commercial GPRS networks
Kalden, Roger; Haverkort, Boudewijn R.H.M.
2006-01-01
New mobile access networks provide reasonable high bandwidth to allow true internet access. This paper models two dominant applications of those networks. One application, WAP, is novel and specific to mobile networks, the other is HTTP, which is already dominantly present in the internet. However,
Governance, Government, and the Search for New Provider Models
Directory of Open Access Journals (Sweden)
Richard B. Saltman
2016-01-01
Full Text Available A central problem in designing effective models of provider governance in health systems has been to ensure an appropriate balance between the concerns of public sector and/or government decision-makers, on the one hand, and of non-governmental health services actors in civil society and private life, on the other. In tax-funded European health systems up to the 1980s, the state and other public sector decision-makers played a dominant role over health service provision, typically operating hospitals through national or regional governments on a command-and-control basis. In a number of countries, however, this state role has started to change, with governments first stepping out of direct service provision and now de facto pushed to focus more on steering provider organizations rather than on direct public management. In this new approach to provider governance, the state has pulled back into a regulatory role that introduces market-like incentives and management structures, which then apply to both public and private sector providers alike. This article examines some of the main operational complexities in implementing this new governance reality/strategy, specifically from a service provision (as opposed to mostly a financing or even regulatory perspective. After briefly reviewing some of the key theoretical dilemmas, the paper presents two case studies where this new approach was put into practice: primary care in Sweden and hospitals in Spain. The article concludes that good governance today needs to reflect practical operational realities if it is to have the desired effect on health sector reform outcome.
A source-controlled data center network model.
Directory of Open Access Journals (Sweden)
Yang Yu
Full Text Available The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1 The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2 Vector switches (VS developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3 The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4 We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS.
A source-controlled data center network model.
Yu, Yang; Liang, Mangui; Wang, Zhe
2017-01-01
The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS.
A source-controlled data center network model
Yu, Yang; Liang, Mangui; Wang, Zhe
2017-01-01
The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS. PMID:28328925
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Proposition of a multicriteria model to select logistics services providers
Directory of Open Access Journals (Sweden)
Miriam Catarina Soares Aharonovitz
2014-06-01
Full Text Available This study aims to propose a multicriteria model to select logistics service providers by the development of a decision tree. The methodology consists of a survey, which resulted in a sample of 181 responses. The sample was analyzed using statistic methods, descriptive statistics among them, multivariate analysis, variance analysis, and parametric tests to compare means. Based on these results, it was possible to obtain the decision tree and information to support the multicriteria analysis. The AHP (Analytic Hierarchy Process was applied to determine the data influence and thus ensure better consistency in the analysis. The decision tree categorizes the criteria according to the decision levels (strategic, tactical and operational. Furthermore, it allows to generically evaluate the importance of each criterion in the supplier selection process from the point of view of logistics services contractors.
UAV Trajectory Modeling Using Neural Networks
Xue, Min
2017-01-01
Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural
Mahseredjian, Jean; Haddadi, Aboutaleb; HOOSHYAR, Hossein; Vanfretti, Luigi; Dufour, Christian
2017-01-01
This paper presents the implementation of an Active Distribution Network (ADN) model and its qualitative assessment using different off-line and real-time simulation tools. The objective is to provide software-to-software verification for the establishment of the model as a potential benchmark. Expanding upon the authors’ previous work [7], this paper provides additional simulation results, cross-examination of the models, and presents the latest modifications incorporated to address practica...
Applications of spatial statistical network models to stream data
Isaak, Daniel J.; Peterson, Erin E.; Ver Hoef, Jay M.; Wenger, Seth J.; Falke, Jeffrey A.; Torgersen, Christian E.; Sowder, Colin; Steel, E. Ashley; Fortin, Marie-Josée; Jordan, Chris E.; Ruesch, Aaron S.; Som, Nicholas; Monestiez, Pascal
2014-01-01
Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for terrestrial applications and are not optimized for streams. A new class of spatial statistical model, based on valid covariance structures for stream networks, can be used with many common types of stream data (e.g., water quality attributes, habitat conditions, biological surveys) through application of appropriate distributions (e.g., Gaussian, binomial, Poisson). The spatial statistical network models account for spatial autocorrelation (i.e., nonindependence) among measurements, which allows their application to databases with clustered measurement locations. Large amounts of stream data exist in many areas where spatial statistical analyses could be used to develop novel insights, improve predictions at unsampled sites, and aid in the design of efficient monitoring strategies at relatively low cost. We review the topic of spatial autocorrelation and its effects on statistical inference, demonstrate the use of spatial statistics with stream datasets relevant to common research and management questions, and discuss additional applications and development potential for spatial statistics on stream networks. Free software for implementing the spatial statistical network models has been developed that enables custom applications with many stream databases.
Modelling electric trains energy consumption using Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Martinez Fernandez, P.; Garcia Roman, C.; Insa Franco, R.
2016-07-01
Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last years as they present an inherent efficiency compared to other transport means. However, in order to further expand their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of different variables and alternatives. With this need in mind, this paper presents the development of consumption models based on neural networks that calculate the energy consumption of electric trains. These networks have been trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective of reducing the costs and environmental impact associated to railways. (Author)
Kinematic Structural Modelling in Bayesian Networks
Schaaf, Alexander; de la Varga, Miguel; Florian Wellmann, J.
2017-04-01
We commonly capture our knowledge about the spatial distribution of distinct geological lithologies in the form of 3-D geological models. Several methods exist to create these models, each with its own strengths and limitations. We present here an approach to combine the functionalities of two modeling approaches - implicit interpolation and kinematic modelling methods - into one framework, while explicitly considering parameter uncertainties and thus model uncertainty. In recent work, we proposed an approach to implement implicit modelling algorithms into Bayesian networks. This was done to address the issues of input data uncertainty and integration of geological information from varying sources in the form of geological likelihood functions. However, one general shortcoming of implicit methods is that they usually do not take any physical constraints into consideration, which can result in unrealistic model outcomes and artifacts. On the other hand, kinematic structural modelling intends to reconstruct the history of a geological system based on physically driven kinematic events. This type of modelling incorporates simplified, physical laws into the model, at the cost of a substantial increment of usable uncertain parameters. In the work presented here, we show an integration of these two different modelling methodologies, taking advantage of the strengths of both of them. First, we treat the two types of models separately, capturing the information contained in the kinematic models and their specific parameters in the form of likelihood functions, in order to use them in the implicit modelling scheme. We then go further and combine the two modelling approaches into one single Bayesian network. This enables the direct flow of information between the parameters of the kinematic modelling step and the implicit modelling step and links the exclusive input data and likelihoods of the two different modelling algorithms into one probabilistic inference framework. In
Systems biology of plant molecular networks: from networks to models
Valentim, F.L.
2015-01-01
Developmental processes are controlled by regulatory networks (GRNs), which are tightly coordinated networks of transcription factors (TFs) that activate and repress gene expression within a spatial and temporal context. In Arabidopsis thaliana, the key components and network structures of the GRNs
The Healthy Aging Research Network: Modeling Collaboration for Community Impact.
Belza, Basia; Altpeter, Mary; Smith, Matthew Lee; Ory, Marcia G
2017-03-01
As the first Centers for Disease Control and Prevention (CDC) Prevention Research Centers Program thematic network, the Healthy Aging Research Network was established to better understand the determinants of healthy aging within older adult populations, identify interventions that promote healthy aging, and assist in translating research into sustainable community-based programs throughout the nation. To achieve these goals requires concerted efforts of a collaborative network of academic, community, and public health organizational partnerships. For the 2001-2014 Prevention Research Center funding cycles, the Healthy Aging Research Network conducted prevention research and promoted the wide use of practices known to foster optimal health. Organized around components necessary for successful collaborations (i.e., governance and infrastructure, shaping focus, community involvement, and evaluation and improvement), this commentary highlights exemplars that demonstrate the Healthy Aging Research Network's unique contributions to the field. The Healthy Aging Research Network's collaboration provided a means to collectively build capacity for practice and policy, reduce fragmentation and duplication in health promotion and aging research efforts, maximize the efficient use of existing resources and generate additional resources, and ultimately, create synergies for advancing the healthy aging agenda. This collaborative model was built upon a backbone organization (coordinating center); setting of common agendas and mutually reinforcing activities; and continuous communications. Given its successes, the Healthy Aging Research Network model could be used to create new and evaluate existing thematic networks to guide the translation of research into policy and practice. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Perry, B L; Pullen, E; Pescosolido, B A
2016-01-01
The therapeutic alliance is a critical determinant of individuals' persistence and outcomes in mental health treatment. Simultaneously, individuals' community networks shape decisions about whether, when, and what kind of treatment are used. Despite the similar focus on social relationship influence for individuals with serious mental illness, each line of research has maintained an almost exclusive focus on either 'inside' (i.e. treatment) networks or 'outside' (i.e. community) networks, respectively. For this study, we integrate these important insights by employing a network-embedded approach to understand the therapeutic alliance. Using data from the Indianapolis Network Mental Health Study (INMHS, n = 169, obs = 2206), we target patients experiencing their first major contact with the mental health treatment system. We compare patients' perceptions of support resources available through treatment providers and lay people, and ask whether evaluations of interpersonal dimensions of the therapeutic alliance are contingent on characteristics of community networks. Analyses reveal that providers make up only 9% of the whole social network, but are generally perceived positively. However, when community networks are characterized by close relationships and frequent contact, patients are significantly more likely to report that treatment providers offer useful advice and information. Conversely, when community networks are in conflict, perceptions of treatment providers are more negative. Community-based social networks are critical for understanding facilitators of and barriers to effective networks inside treatment, including the therapeutic alliance. Implications for community-based systems of care are discussed in the context of the USA and global patterns of deinstitutionalization and community reintegration.
Advances in dynamic network modeling in complex transportation systems
Ukkusuri, Satish V
2013-01-01
This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.
A NEURAL OSCILLATOR-NETWORK MODEL OF TEMPORAL PATTERN GENERATION
Schomaker, Lambert
Most contemporary neural network models deal with essentially static, perceptual problems of classification and transformation. Models such as multi-layer feedforward perceptrons generally do not incorporate time as an essential dimension, whereas biological neural networks are inherently temporal
Modelling Altitude Information in Two-Dimensional Traffic Networks for Electric Mobility Simulation
Diogo Santos; José Pinto; Rossetti, Rosaldo J. F.; Eugénio Oliveira
2016-01-01
Elevation data is important for electric vehicle simulation. However, traffic simulators are often two-dimensional and do not offer the capability of modelling urban networks taking elevation into account. Specifically, SUMO - Simulation of Urban Mobility, a popular microscopic traffic simulator, relies on networks previously modelled with elevation data as to provide this information during simulations. This work tackles the problem of adding elevation data to urban network models - particul...
Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks.
Vértes, Petra E; Alexander-Bloch, Aaron; Bullmore, Edward T
2014-10-05
Rich clubs arise when nodes that are 'rich' in connections also form an elite, densely connected 'club'. In brain networks, rich clubs incur high physical connection costs but also appear to be especially valuable to brain function. However, little is known about the selection pressures that drive their formation. Here, we take two complementary approaches to this question: firstly we show, using generative modelling, that the emergence of rich clubs in large-scale human brain networks can be driven by an economic trade-off between connection costs and a second, competing topological term. Secondly we show, using simulated neural networks, that Hebbian learning rules also drive the emergence of rich clubs at the microscopic level, and that the prominence of these features increases with learning time. These results suggest that Hebbian learning may provide a neuronal mechanism for the selection of complex features such as rich clubs. The neural networks that we investigate are explicitly Hebbian, and we argue that the topological term in our model of large-scale brain connectivity may represent an analogous connection rule. This putative link between learning and rich clubs is also consistent with predictions that integrative aspects of brain network organization are especially important for adaptive behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
k-Degree Anonymity Model for Social Network Data Publishing
Directory of Open Access Journals (Sweden)
MACWAN, K. R.
2017-11-01
Full Text Available Publicly accessible platform for social networking has gained special attraction because of its easy data sharing. Data generated on such social network is analyzed for various activities like marketing, social psychology, etc. This requires preservation of sensitive attributes before it becomes easily accessible. Simply removing the personal identities of the users before publishing data is not enough to maintain the privacy of the individuals. The structure of the social network data itself reveals much information regarding its users and their connections. To resolve this problem, k-degree anonymous method is adopted. It emphasizes on the modification of the graph to provide at least k number of nodes that contain the same degree. However, this approach is not efficient on a huge amount of social data and the modification of the original data fails to maintain data usefulness. In addition to this, the current anonymization approaches focus on a degree sequence-based graph model which leads to major modification of the graph topological properties. In this paper, we have proposed an improved k-degree anonymity model that retain the social network structural properties and also to provide privacy to the individuals. Utility measurement approach for community based graph model is used to verify the performance of the proposed technique.
Model of Opinion Spreading in Social Networks
Kanovsky, Igor
2011-01-01
We proposed a new model, which capture the main difference between information and opinion spreading. In information spreading additional exposure to certain information has a small effect. Contrary, when an actor is exposed to 2 opinioned actors the probability to adopt the opinion is significant higher than in the case of contact with one such actor (called by J. Kleinberg "the 0-1-2 effect"). In each time step if an actor does not have an opinion, we randomly choose 2 his network neighbors. If one of them has an opinion, the actor adopts opinion with some low probability, if two - with a higher probability. Opinion spreading was simulated on different real world social networks and similar random scale-free networks. The results show that small world structure has a crucial impact on tipping point time. The "0-1-2" effect causes a significant difference between ability of the actors to start opinion spreading. Actor is an influencer according to his topological position in the network.
Network motif identification and structure detection with exponential random graph models
Directory of Open Access Journals (Sweden)
Munni Begum
2014-12-01
Full Text Available Local regulatory motifs are identified in the transcription regulatory network of the most studied model organism Escherichia coli (E. coli through graphical models. Network motifs are small structures in a network that appear more frequently than expected by chance alone. We apply social network methodologies such as p* models, also known as Exponential Random Graph Models (ERGMs, to identify statistically significant network motifs. In particular, we generate directed graphical models that can be applied to study interaction networks in a broad range of databases. The Markov Chain Monte Carlo (MCMC computational algorithms are implemented to obtain the estimates of model parameters to the corresponding network statistics. A variety of ERGMs are fitted to identify statistically significant network motifs in transcription regulatory networks of E. coli. A total of nine ERGMs are fitted to study the transcription factor - transcription factor interactions and eleven ERGMs are fitted for the transcription factor-operon interactions. For both of these interaction networks, arc (a directed edge in a directed network and k-istar (or incoming star structures, for values of k between 2 and 10, are found to be statistically significant local structures or network motifs. The goodness of fit statistics are provided to determine the quality of these models.
Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher
2005-01-01
This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.
Mathematical model for spreading dynamics of social network worms
Sun, Xin; Liu, Yan-Heng; Li, Bin; Li, Jin; Han, Jia-Wei; Liu, Xue-Jie
2012-04-01
In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks.
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...
Modeling social influence through network autocorrelation : constructing the weight matrix
Leenders, Roger Th. A. J.
Many physical and social phenomena are embedded within networks of interdependencies, the so-called 'context' of these phenomena. In network analysis, this type of process is typically modeled as a network autocorrelation model. Parameter estimates and inferences based on autocorrelation models,
Hsieh, Chih-Sheng; Lee, Lung fei
2017-01-01
In this paper, we model network formation and network interactions under a unified framework. The key feature of our model is to allow individuals to respond to incentives stemming from interaction benefits on certain activities when they choose friends (network links), while capturing homophily in terms of unobserved characteristic variables in network formation and activities. There are two advantages of this modeling approach: first, one can evaluate whether incentives from certain interac...
Solitary mammals provide an animal model for autism spectrum disorders.
Reser, Jared Edward
2014-02-01
Species of solitary mammals are known to exhibit specialized, neurological adaptations that prepare them to focus working memory on food procurement and survival rather than on social interaction. Solitary and nonmonogamous mammals, which do not form strong social bonds, have been documented to exhibit behaviors and biomarkers that are similar to endophenotypes in autism. Both individuals on the autism spectrum and certain solitary mammals have been reported to be low on measures of affiliative need, bodily expressiveness, bonding and attachment, direct and shared gazing, emotional engagement, conspecific recognition, partner preference, separation distress, and social approach behavior. Solitary mammals also exhibit certain biomarkers that are characteristic of autism, including diminished oxytocin and vasopressin signaling, dysregulation of the endogenous opioid system, increased Hypothalamic-pituitary-adrenal axis (HPA) activity to social encounters, and reduced HPA activity to separation and isolation. The extent of these similarities suggests that solitary mammals may offer a useful model of autism spectrum disorders and an opportunity for investigating genetic and epigenetic etiological factors. If the brain in autism can be shown to exhibit distinct homologous or homoplastic similarities to the brains of solitary animals, it will reveal that they may be central to the phenotype and should be targeted for further investigation. Research of the neurological, cellular, and molecular basis of these specializations in other mammals may provide insight for behavioral analysis, communication intervention, and psychopharmacology for autism.
Importance of demand modelling in network water quality models: a review
Directory of Open Access Journals (Sweden)
J. C. van Dijk
2008-09-01
Full Text Available Today, there is a growing interest in network water quality modelling. The water quality issues of interest relate to both dissolved and particulate substances. For dissolved substances the main interest is in residual chlorine and (microbiological contaminant propagation; for particulate substances it is in sediment leading to discolouration. There is a strong influence of flows and velocities on transport, mixing, production and decay of these substances in the network. This imposes a different approach to demand modelling which is reviewed in this article.
For the large diameter lines that comprise the transport portion of a typical municipal pipe system, a skeletonised network model with a top-down approach of demand pattern allocation, a hydraulic time step of 1 h, and a pure advection-reaction water quality model will usually suffice. For the smaller diameter lines that comprise the distribution portion of a municipal pipe system, an all-pipes network model with a bottom-up approach of demand pattern allocation, a hydraulic time step of 1 min or less, and a water quality model that considers dispersion and transients may be needed.
Demand models that provide stochastic residential demands per individual home and on a one-second time scale are available. A stochastic demands based network water quality model needs to be developed and validated with field measurements. Such a model will be probabilistic in nature and will offer a new perspective for assessing water quality in the drinking water distribution system.
Challenges on Probabilistic Modeling for Evolving Networks
Ding, Jianguo; Bouvry, Pascal
2013-01-01
With the emerging of new networks, such as wireless sensor networks, vehicle networks, P2P networks, cloud computing, mobile Internet, or social networks, the network dynamics and complexity expands from system design, hardware, software, protocols, structures, integration, evolution, application, even to business goals. Thus the dynamics and uncertainty are unavoidable characteristics, which come from the regular network evolution and unexpected hardware defects, unavoidable software errors,...
Modeling region-based interconnection for interdependent networks
Wang, X.; Kooij, R.E.; Mieghem, P. van
2016-01-01
Various real-world networks interact with and depend on each other. The design of the interconnection between interacting networks is one of the main challenges to achieve a robust interdependent network. Due to cost considerations, network providers are inclined to interconnect nodes that are
Directory of Open Access Journals (Sweden)
Yan eWang
2014-05-01
Full Text Available Recent neuroimaging studies have revealed normal aging-related alterations in functional and structural brain networks such as the default mode network (DMN. However, less is understood about specific brain structural dependencies or interactions between brain regions within the DMN in the normal aging process. In this study, using Bayesian network (BN modeling, we analyzed grey matter volume data from 109 young and 82 old subjects to characterize the influence of aging on associations between core brain regions within the DMN. Furthermore, we investigated the discriminability of the aging-associated BN models for the young and old groups. Compared to their young counterparts, the old subjects showed significant reductions in connections from right inferior temporal cortex (ITC to medial prefrontal cortex (mPFC, right hippocampus (HP to right ITC, and mPFC to posterior cingulate cortex (PCC and increases in connections from left HP to mPFC and right inferior parietal cortex (IPC to right ITC. Moreover, the classification results showed that the aging-related BN models could predict group membership with 88.48% accuracy, 88.07% sensitivity and 89.02% specificity. Our findings suggest that structural associations within the DMN may be affected by normal aging and provide crucial information about aging effects on brain structural networks.
Neural Network Program Package for Prosody Modeling
Directory of Open Access Journals (Sweden)
J. Santarius
2004-04-01
Full Text Available This contribution describes the programme for one part of theautomatic Text-to-Speech (TTS synthesis. Some experiments (for example[14] documented the considerable improvement of the naturalness ofsynthetic speech, but this approach requires completing the inputfeature values by hand. This completing takes a lot of time for bigfiles. We need to improve the prosody by other approaches which useonly automatically classified features (input parameters. Theartificial neural network (ANN approach is used for the modeling ofprosody parameters. The program package contains all modules necessaryfor the text and speech signal pre-processing, neural network training,sensitivity analysis, result processing and a module for the creationof the input data protocol for Czech speech synthesizer ARTIC [1].
Towards an evolutionary model of transcription networks.
Directory of Open Access Journals (Sweden)
Dan Xie
2011-06-01
Full Text Available DNA evolution models made invaluable contributions to comparative genomics, although it seemed formidable to include non-genomic features into these models. In order to build an evolutionary model of transcription networks (TNs, we had to forfeit the substitution model used in DNA evolution and to start from modeling the evolution of the regulatory relationships. We present a quantitative evolutionary model of TNs, subjecting the phylogenetic distance and the evolutionary changes of cis-regulatory sequence, gene expression and network structure to one probabilistic framework. Using the genome sequences and gene expression data from multiple species, this model can predict regulatory relationships between a transcription factor (TF and its target genes in all species, and thus identify TN re-wiring events. Applying this model to analyze the pre-implantation development of three mammalian species, we identified the conserved and re-wired components of the TNs downstream to a set of TFs including Oct4, Gata3/4/6, cMyc and nMyc. Evolutionary events on the DNA sequence that led to turnover of TF binding sites were identified, including a birth of an Oct4 binding site by a 2nt deletion. In contrast to recent reports of large interspecies differences of TF binding sites and gene expression patterns, the interspecies difference in TF-target relationship is much smaller. The data showed increasing conservation levels from genomic sequences to TF-DNA interaction, gene expression, TN, and finally to morphology, suggesting that evolutionary changes are larger at molecular levels and smaller at functional levels. The data also showed that evolutionarily older TFs are more likely to have conserved target genes, whereas younger TFs tend to have larger re-wiring rates.
An Observational Study of Provider Perspectives on Alternative Payment Models.
Harris, Drew; Puskarz, Katherine
2017-10-01
Over the past decade, reimbursement in the US health care system has undergone rapid transformation. The Affordable Care Act and the Medicare Access and CHIP Reauthorization Act are some of the many changes challenging traditional modes of practice and raising concerns about practitioners' ability to adapt. Recently, physician satisfaction was proposed as an addition to the Triple Aim in acknowledgment of how the physician's attitude can affect outcomes. To understand how physicians perceive alternative payment models (APMs) and how those perceptions may vary by their organizational role, non-leader physicians (N = 31), physician leaders (N = 67), and health system leaders (N = 49) were surveyed using a mixed-methods approach. Respondents to the electronic survey, who were identified from a Jefferson College of Population Health program participant database, rated their organizations' responses to APMs and provided commentary. Analysis of the Likert scale quantitative data indicates a significant difference in ratings between the 3 groups, particularly between health system leaders and non-leader physicians. The aggregated Attitudes Toward APMs Scale indicates that health system leaders were statistically significantly more likely to rate themselves and their organizations as better prepared for APMs compared to non-leader physicians and physician leaders. Qualitative analysis of comments indicates that non-leader physicians are more negative of APMs, often expressing frustration at added administrative burdens, barriers to implementation, and inconsistent or unclear measurement requirements. These findings indicate that the negative feelings non-leader physicians and physician leaders, in particular, expressed could contribute to physician burnout and decreased professional satisfaction, and impede the effective implementation of APMs.
Using structural equation modeling for network meta-analysis.
Tu, Yu-Kang; Wu, Yun-Chun
2017-07-14
Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison
Adaptive model predictive process control using neural networks
Buescher, K.L.; Baum, C.C.; Jones, R.D.
1997-08-19
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.
Optimizing neural network models: motivation and case studies
Harp, S A; T. Samad
2012-01-01
Practical successes have been achieved with neural network models in a variety of domains, including energy-related industry. The large, complex design space presented by neural networks is only minimally explored in current practice. The satisfactory results that nevertheless have been obtained testify that neural networks are a robust modeling technology; at the same time, however, the lack of a systematic design approach implies that the best neural network models generally rem...
Khawaja, Sajid Gul; Mushtaq, Mian Hamza; Khan, Shoab A; Akram, M Usman; Jamal, Habib Ullah
2015-01-01
With the increase of transistors' density, popularity of System on Chip (SoC) has increased exponentially. As a communication module for SoC, Network on Chip (NoC) framework has been adapted as its backbone. In this paper, we propose a methodology for designing area-optimized application specific NoC while providing hard Quality of Service (QoS) guarantees for real time flows. The novelty of the proposed system lies in derivation of a Mixed Integer Linear Programming model which is then used to generate a resource optimal Network on Chip (NoC) topology and architecture while considering traffic and QoS requirements. We also present the micro-architectural design features used for enabling traffic and latency guarantees and discuss how the solution adapts for dynamic variations in the application traffic. The paper highlights the effectiveness of proposed method by generating resource efficient NoC solutions for both industrial and benchmark applications. The area-optimized results are generated in few seconds by proposed technique, without resorting to heuristics, even for an application with 48 traffic flows.
Directory of Open Access Journals (Sweden)
Sajid Gul Khawaja
Full Text Available With the increase of transistors' density, popularity of System on Chip (SoC has increased exponentially. As a communication module for SoC, Network on Chip (NoC framework has been adapted as its backbone. In this paper, we propose a methodology for designing area-optimized application specific NoC while providing hard Quality of Service (QoS guarantees for real time flows. The novelty of the proposed system lies in derivation of a Mixed Integer Linear Programming model which is then used to generate a resource optimal Network on Chip (NoC topology and architecture while considering traffic and QoS requirements. We also present the micro-architectural design features used for enabling traffic and latency guarantees and discuss how the solution adapts for dynamic variations in the application traffic. The paper highlights the effectiveness of proposed method by generating resource efficient NoC solutions for both industrial and benchmark applications. The area-optimized results are generated in few seconds by proposed technique, without resorting to heuristics, even for an application with 48 traffic flows.
Analyzing, Modeling, and Simulation for Human Dynamics in Social Network
Directory of Open Access Journals (Sweden)
Yunpeng Xiao
2012-01-01
Full Text Available This paper studies the human behavior in the top-one social network system in China (Sina Microblog system. By analyzing real-life data at a large scale, we find that the message releasing interval (intermessage time obeys power law distribution both at individual level and at group level. Statistical analysis also reveals that human behavior in social network is mainly driven by four basic elements: social pressure, social identity, social participation, and social relation between individuals. Empirical results present the four elements' impact on the human behavior and the relation between these elements. To further understand the mechanism of such dynamic phenomena, a hybrid human dynamic model which combines “interest” of individual and “interaction” among people is introduced, incorporating the four elements simultaneously. To provide a solid evaluation, we simulate both two-agent and multiagent interactions with real-life social network topology. We achieve the consistent results between empirical studies and the simulations. The model can provide a good understanding of human dynamics in social network.
Inferring gene regression networks with model trees
Directory of Open Access Journals (Sweden)
Aguilar-Ruiz Jesus S
2010-10-01
Full Text Available Abstract Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear
Two stage neural network modelling for robust model predictive control.
Patan, Krzysztof
2017-11-02
The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Fractal modeling of natural fracture networks. Final report, June 1994--June 1995
Energy Technology Data Exchange (ETDEWEB)
Ferer, M.V.; Dean, B.H.; Mick, C.
1996-04-01
Recovery from naturally fractured, tight-gas reservoirs is controlled by the fracture network. Reliable characterization of the actual fracture network in the reservoir is severely limited. The location and orientation of fractures intersecting the borehole can be determined, but the length of these fractures cannot be unambiguously determined. Fracture networks can be determined for outcrops, but there is little reason to believe that the network in the reservoir should be identical because of the differences in stresses and history. Because of the lack of detailed information about the actual fracture network, modeling methods must represent the porosity and permeability associated with the fracture network, as accurately as possible with very little apriori information. Three rather different types of approaches have been used: (1) dual porosity simulations; (2) `stochastic` modeling of fracture networks, and (3) fractal modeling of fracture networks. Stochastic models which assume a variety of probability distributions of fracture characteristics have been used with some success in modeling fracture networks. The advantage of these stochastic models over the dual porosity simulations is that real fracture heterogeneities are included in the modeling process. In the sections provided in this paper the authors will present fractal analysis of the MWX site, using the box-counting procedure; (2) review evidence testing the fractal nature of fracture distributions and discuss the advantages of using their fractal analysis over a stochastic analysis; (3) present an efficient algorithm for producing a self-similar fracture networks which mimic the real MWX outcrop fracture network.
Burk, William J.; Steglich, Christian E. G.; Snijders, Tom A. B.
2007-01-01
Actor-oriented models are described as a longitudinal strategy for examining the co-evolution of social networks and individual behaviors. We argue that these models provide advantages over conventional approaches due to their ability to account for inherent dependencies between individuals embedded in a social network (i.e., reciprocity,…
Marsman, M; Borsboom, D; Kruis, J; Epskamp, S; van Bork, R; Waldorp, L J; Maas, H L J van der; Maris, G
2017-11-07
In recent years, network models have been proposed as an alternative representation of psychometric constructs such as depression. In such models, the covariance between observables (e.g., symptoms like depressed mood, feelings of worthlessness, and guilt) is explained in terms of a pattern of causal interactions between these observables, which contrasts with classical interpretations in which the observables are conceptualized as the effects of a reflective latent variable. However, few investigations have been directed at the question how these different models relate to each other. To shed light on this issue, the current paper explores the relation between one of the most important network models-the Ising model from physics-and one of the most important latent variable models-the Item Response Theory (IRT) model from psychometrics. The Ising model describes the interaction between states of particles that are connected in a network, whereas the IRT model describes the probability distribution associated with item responses in a psychometric test as a function of a latent variable. Despite the divergent backgrounds of the models, we show a broad equivalence between them and also illustrate several opportunities that arise from this connection.
A hierarchical network modeling method for railway tunnels safety assessment
Zhou, Jin; Xu, Weixiang; Guo, Xin; Liu, Xumin
2017-02-01
Using network theory to model risk-related knowledge on accidents is regarded as potential very helpful in risk management. A large amount of defects detection data for railway tunnels is collected in autumn every year in China. It is extremely important to discover the regularities knowledge in database. In this paper, based on network theories and by using data mining techniques, a new method is proposed for mining risk-related regularities to support risk management in railway tunnel projects. A hierarchical network (HN) model which takes into account the tunnel structures, tunnel defects, potential failures and accidents is established. An improved Apriori algorithm is designed to rapidly and effectively mine correlations between tunnel structures and tunnel defects. Then an algorithm is presented in order to mine the risk-related regularities table (RRT) from the frequent patterns. At last, a safety assessment method is proposed by consideration of actual defects and possible risks of defects gained from the RRT. This method cannot only generate the quantitative risk results but also reveal the key defects and critical risks of defects. This paper is further development on accident causation network modeling methods which can provide guidance for specific maintenance measure.
Neural Networks For Electrohydrodynamic Effect Modelling
Directory of Open Access Journals (Sweden)
Wiesław Wajs
2004-01-01
Full Text Available This paper presents currently achieved results concerning methods of electrohydrodynamiceffect used in geophysics simulated with feedforward networks trained with backpropagation algorithm, radial basis function networks and generalized regression networks.
Do Lumped-Parameter Models Provide the Correct Geometrical Damping?
DEFF Research Database (Denmark)
Andersen, Lars
2007-01-01
This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil with focus on the horizontal sliding and rocking. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and ......-parameter models with respect to the prediction of the maximum response during excitation and the geometrical damping related to free vibrations of a footing....
Compartmentalization analysis using discrete fracture network models
Energy Technology Data Exchange (ETDEWEB)
La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)
1997-08-01
This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.
Some queuing network models of computer systems
Herndon, E. S.
1980-01-01
Queuing network models of a computer system operating with a single workload type are presented. Program algorithms are adapted for use on the Texas Instruments SR-52 programmable calculator. By slightly altering the algorithm to process the G and H matrices row by row instead of column by column, six devices and an unlimited job/terminal population could be handled on the SR-52. Techniques are also introduced for handling a simple load dependent server and for studying interactive systems with fixed multiprogramming limits.
Networks model of the East Turkistan terrorism
Li, Ben-xian; Zhu, Jun-fang; Wang, Shun-guo
2015-02-01
The presence of the East Turkistan terrorist network in China can be traced back to the rebellions on the BAREN region in Xinjiang in April 1990. This article intends to research the East Turkistan networks in China and offer a panoramic view. The events, terrorists and their relationship are described using matrices. Then social network analysis is adopted to reveal the network type and the network structure characteristics. We also find the crucial terrorist leader. Ultimately, some results show that the East Turkistan network has big hub nodes and small shortest path, and that the network follows a pattern of small world network with hierarchical structure.
Optimized green operation of LTE networks in the presence of multiple electricity providers
Ghazzai, Hakim
2012-12-01
Energy efficiency aspects in cellular networks can significantly contribute to the reduction of greenhouse gas emissions and help to save the environment. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off redundant BSs mainly for lightly loaded networks. Besides, introducing renewable energies as alternative power sources becomes a real challenge to network operators. In this paper, we propose a method that reduces the energy consumption of BSs by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from different retailers (Renewable energy and electricity retailers). We formulate an optimization problem that leads to the maximization of the profit of a Long-Term Evolution (LTE) cellular operator, and at the same time to the minimization of CO2 emissions in green wireless cellular networks without affecting the desired Quality of Service. © 2012 IEEE.
Modeling the evolution of complex genetic systems: the gene network family tree.
Fierst, Janna L; Phillips, Patrick C
2015-01-01
In 1994 and 1996, Andreas Wagner introduced a novel model in two papers addressing the evolution of genetic regulatory networks. This work, and a suite of papers that followed using similar models, helped integrate network thinking into biology and motivate research focused on the evolution of genetic networks. The Wagner network has its mathematical roots in the Ising model, a statistical physics model describing the activity of atoms on a lattice, and in neural networks. These models have given rise to two branches of applications, one in physics and biology and one in artificial intelligence and machine learning. Here, we review development along these branches, outline similarities and differences between biological models of genetic regulatory circuits and neural circuits models used in machine learning, and identify ways in which these models can provide novel insights into biological systems. © 2014 Wiley Periodicals, Inc.
Stochastic simulation of HIV population dynamics through complex network modelling
Sloot, P. M. A.; Ivanov, S. V.; Boukhanovsky, A. V.; van de Vijver, D. A. M. C.; Boucher, C. A. B.
We propose a new way to model HIV infection spreading through the use of dynamic complex networks. The heterogeneous population of HIV exposure groups is described through a unique network degree probability distribution. The time evolution of the network nodes is modelled by a Markov process and
A Search Model with a Quasi-Network
DEFF Research Database (Denmark)
Ejarque, Joao Miguel
This paper adds a quasi-network to a search model of the labor market. Fitting the model to an average unemployment rate and to other moments in the data implies the presence of the network is not noticeable in the basic properties of the unemployment and job finding rates. However, the network c...
Stochastic simulation of HIV population dynamics through complex network modelling
Sloot, P.M.A.; Ivanov, S.V.; Boukhanovsky, A.V.; van de Vijver, D.A.M.C.; Boucher, C.A.B.
2008-01-01
We propose a new way to model HIV infection spreading through the use of dynamic complex networks. The heterogeneous population of HIV exposure groups is described through a unique network degree probability distribution. The time evolution of the network nodes is modelled by a Markov process and
MODEL OF PROVIDING WITH DEVELOPMENT STRATEGY FOR INFORMATION TECHNOLOGIES IN AN ORGANIZATION
Directory of Open Access Journals (Sweden)
A. A. Kuzkin
2015-03-01
Full Text Available Subject of research. The paper presents research and instructional tools for assessment of providing with the development strategy for information technologies in an organization. Method. The corresponding assessment model is developed which takes into consideration IT-processes equilibrium according to selected efficiency factors of information technologies application. Basic results. The model peculiarity resides in applying neuro-fuzzy approximators where the conclusion is drawn upon fuzzy logic, and membership functions are adjusted through the use of neural networks. For the adequacy testing of the suggested model, due diligence result analysis has been carried out for the IT-strategy executed in the “Navigator” group of companies at the stage of implementation and support of new technologies and production methods. Data visualization with a circle diagram is applied for the comparative evaluation of the analysis results. The chosen model adequacy is proved by the agreement between predictive assessments for IT-strategy performance targets derived by means of the fuzzy cognitive model over 12 months planning horizon and the real values of these targets upon the expiry of the given planning term. Practical significance. The developed model application gives the possibility to solve the problem of sustainability assessment for the process of providing the required IT-strategy realization level based upon the fuzzy cognitive map analysis and to reveal IT-objectives changing tendencies for an organization over the stated planning interval.
Quantum-Like Bayesian Networks for Modeling Decision Making
Directory of Open Access Journals (Sweden)
Catarina eMoreira
2016-01-01
Full Text Available In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.
Distributed Global Function Model Finding for Wireless Sensor Network Data
Directory of Open Access Journals (Sweden)
Song Deng
2016-01-01
Full Text Available Function model finding has become an important tool for analysis of data collected from wireless sensor networks (WSNs. With the development of WSNs, a large number of sensors have been widely deployed so that the collected data show the characteristics of distribution and mass. For distributed and massive sensor data, traditional centralized function model finding algorithms would lead to a significant decrease in performance. To solve this problem, this paper proposes a distributed global function model finding algorithm for wireless sensor network data (DGFMF-WSND. In DGFMF-WSND, on the basis of gene expression programming (GEP, an adaptive population generation strategy based on sub-population associated evolution is applied to improve the convergence speed of GEP. Secondly, to solve the generation of global function model in distributed wireless sensor networks data, this paper provides a global model generation algorithm based on unconstrained nonlinear least squares. Four representative datasets are used to evaluate the performance of the proposed algorithm. The comparative results show that the improved GEP with adaptive population generation strategy outperforms all other algorithms on the average convergence speed, time-consumption, value of R-square, and prediction accuracy. Meanwhile, experimental results also show that DGFMF-WSND has a clear advantage in terms of time-consumption and error of fitting. Moreover, with increasing of dataset size, DGFMF-WSND also demonstrates good speed-up ratio and scale-up ratio.
Active patterning and asymmetric transport in a model actomyosin network
Energy Technology Data Exchange (ETDEWEB)
Wang, Shenshen [Department of Chemical Engineering and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Wolynes, Peter G. [Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)
2013-12-21
Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.
QSAR modelling using combined simple competitive learning networks and RBF neural networks.
Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E
2018-04-01
The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.
VEPCO network model reconciliation of LANL and MZA model data
Energy Technology Data Exchange (ETDEWEB)
NONE
1992-12-15
The LANL DC load flow model of the VEPCO transmission network shows 210 more substations than the AC load flow model produced by MZA utility Consultants. MZA was requested to determine the source of the difference. The AC load flow model used for this study utilizes 2 standard network algorithms (Decoupled or Newton). The solution time of each is affected by the number of substations. The more substations included, the longer the model will take to solve. In addition, the ability of the algorithms to converge to a solution is affected by line loadings and characteristics. Convergence is inhibited by numerous lightly loaded and electrically short lines. The MZA model reduces the total substations to 343 by creating equivalent loads and generation. Most of the omitted substations are lightly loaded and rated at 115 kV. The MZA model includes 16 substations not included in the LANL model. These represent new generation including Non-Utility Generator (NUG) sites, additional substations and an intertie (Wake, to CP and L). This report also contains data from the Italian State AC power flow model and the Duke Power Company AC flow model.
A Model of Genetic Variation in Human Social Networks
Fowler, James H; Christakis, Nicholas A
2008-01-01
Social networks influence the evolution of cooperation and they exhibit strikingly systematic patterns across a wide range of human contexts. Both of these facts suggest that variation in the topological attributes of human social networks might have a genetic basis. While genetic variation accounts for a significant portion of the variation in many complex social behaviors, the heritability of egocentric social network attributes is unknown. Here we show that three of these attributes (in-degree, transitivity, and centrality) are heritable. We then develop a "mirror network" method to test extant network models and show that none accounts for observed genetic variation in human social networks. We propose an alternative "attract and introduce" model that generates significant heritability as well as other important network features, and we show that this model with two simple forms of heterogeneity is well suited to the modeling of real social networks in humans. These results suggest that natural selection ...
A financing model for Spanish retail electricity providers
National Research Council Canada - National Science Library
Isabel Vela Cantalapiedra; José Luís Calvo González
2018-01-01
...; and the definition and structure of the future-flow securitization process. Due to the lack of liquidity and the difficulty of obtaining funds in the financial sector, new electricity providers have to search for alternative financing...
Frank, Laurence Emmanuelle
2006-01-01
Feature Network Models (FNM) are graphical structures that represent proximity data in a discrete space with the use of features. A statistical inference theory is introduced, based on the additivity properties of networks and the linear regression framework. Considering features as predictor
PageRank model of opinion formation on Ulam networks
Chakhmakhchyan, L.; Shepelyansky, D.
2013-12-01
We consider a PageRank model of opinion formation on Ulam networks, generated by the intermittency map and the typical Chirikov map. The Ulam networks generated by these maps have certain similarities with such scale-free networks as the World Wide Web (WWW), showing an algebraic decay of the PageRank probability. We find that the opinion formation process on Ulam networks has certain similarities but also distinct features comparing to the WWW. We attribute these distinctions to internal differences in network structure of the Ulam and WWW networks. We also analyze the process of opinion formation in the frame of generalized Sznajd model which protects opinion of small communities.
A scale-free neural network for modelling neurogenesis
Perotti, Juan I.; Tamarit, Francisco A.; Cannas, Sergio A.
2006-11-01
In this work we introduce a neural network model for associative memory based on a diluted Hopfield model, which grows through a neurogenesis algorithm that guarantees that the final network is a small-world and scale-free one. We also analyze the storage capacity of the network and prove that its performance is larger than that measured in a randomly dilute network with the same connectivity.
A graph model for opportunistic network coding
Sorour, Sameh
2015-08-12
© 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.
Marketing communications model for innovation networks
Directory of Open Access Journals (Sweden)
Tiago João Freitas Correia
2015-10-01
Full Text Available Innovation is an increasingly relevant concept for the success of any organization, but it also represents a set of internal and external considerations, barriers and challenges to overcome. Along the concept of innovation, new paradigms emerge such as open innovation and co-creation that are simultaneously innovation modifiers and intensifiers in organizations, promoting organizational openness and stakeholder integration within the value creation process. Innovation networks composed by a multiplicity of agents in co-creative work perform as innovation mechanisms to face the increasingly complexity of products, services and markets. Technology, especially the Internet, is an enabler of all process among organizations supported by co-creative platforms for innovation. The definition of marketing communication strategies that promote motivation and involvement of all stakeholders in synergic creation and external promotion is the central aspect of this research. The implementation of the projects is performed by participative workshops with stakeholders from Madan Parque through IDEAS(REVOLUTION methodology and the operational model LinkUp parameterized for the project. The project is divided into the first part, the theoretical framework, and the second part where a model is developed for the marketing communication strategies that appeal to the Madan Parque case study. Keywords: Marketing Communication; Open Innovation, Technology; Innovation Networks; Incubator; Co-Creation.
Determining Application Runtimes Using Queueing Network Modeling
Energy Technology Data Exchange (ETDEWEB)
Elliott, Michael L. [Univ. of San Francisco, CA (United States)
2006-12-14
Determination of application times-to-solution for large-scale clustered computers continues to be a difficult problem in high-end computing, which will only become more challenging as multi-core consumer machines become more prevalent in the market. Both researchers and consumers of these multi-core systems desire reasonable estimates of how long their programs will take to run (time-to-solution, or TTS), and how many resources will be consumed in the execution. Currently there are few methods of determining these values, and those that do exist are either overly simplistic in their assumptions or require great amounts of effort to parameterize and understand. One previously untried method is queuing network modeling (QNM), which is easy to parameterize and solve, and produces results that typically fall within 10 to 30% of the actual TTS for our test cases. Using characteristics of the computer network (bandwidth, latency) and communication patterns (number of messages, message length, time spent in communication), the QNM model of the NAS-PB CG application was applied to MCR and ALC, supercomputers at LLNL, and the Keck Cluster at USF, with average errors of 2.41%, 3.61%, and -10.73%, respectively, compared to the actual TTS observed. While additional work is necessary to improve the predictive capabilities of QNM, current results show that QNM has a great deal of promise for determining application TTS for multi-processor computer systems.
A Collaborative Network Model for Agrifood Transactions on Regional Base
Volpentesta, Antonio P.; Ammirato, Salvatore
The paper deals with a collaborative agrifood network in a regional scenario where producers of high typical and quality goods and consumer groups are involved in agrifood transactions as well as information and knowledge exchanges through an e-business platform. While producers are engaged in providing consumers with useful and timely information about healthiness, environmentally friendliness and most importantly, food quality of their products, consumers are engaged in giving prompt and understandable feedbacks to the producers. In this sense, the network is a form of proactive learning community. Starting from some basic socio-economic assumptions on a reference territory, we present an organizational model that can be adopted to foster the development of the regional area where it is applied. An instantiation of the model for a selected territory (the District of High Quality Productions in Sibari, Calabria, Italy) and first results, coming from two pilot tests, have been summarized as well.
Yang, Shiju; Li, Chuandong; Huang, Tingwen
2016-03-01
The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Health care provider social network analysis: A systematic review.
Bae, Sung-Heui; Nikolaev, Alexander; Seo, Jin Young; Castner, Jessica
2015-01-01
Although considerable progress has been made in understanding networks, their structure, and their development, little has been known about their effectiveness in the health care setting and their contributions to quality of care and patient safety.The purpose of this study was to examine studies using social network analysis (SNA) in the health care workforce and assess factors contributing to social network and their relationships with care processes and patient outcomes. We identified all published peer-reviewed SNA articles in CINAHL, PubMed, PsycINFO, JSTOR, Medline (OVID), and Web of Science databases up to April 2013. Twenty-nine published articles met the inclusion criteria. Current evidence of the health care workforce's social networks reveals the nature of social ties are related to personal characteristics, practice setting, and types of patients. A few studies also revealed the social network effects adoption and the use of a health information system, patient outcomes, and coordination. Current studies on the social ties of health care workforce professionals include several assessments of inefficiencies. The level of technical sophistication in these studies tended to be low. Future study using enhanced sophistication in study design, analysis, and patient outcome testing are warranted to fully leverage the potential of SNA in health care studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Modelling of A Trust and Reputation Model in Wireless Networks
Directory of Open Access Journals (Sweden)
Saurabh Mishra
2015-09-01
Full Text Available Security is the major challenge for Wireless Sensor Networks (WSNs. The sensor nodes are deployed in non controlled environment, facing the danger of information leakage, adversary attacks and other threats. Trust and Reputation models are solutions for this problem and to identify malicious, selfish and compromised nodes. This paper aims to evaluate varying collusion effect with respect to static (SW, dynamic (DW, static with collusion (SWC, dynamic with collusion (DWC and oscillating wireless sensor networks to derive the joint resultant of Eigen Trust Model. An attempt has been made for the same by comparing aforementioned networks that are purely dedicated to protect the WSNs from adversary attacks and maintain the security issues. The comparison has been made with respect to accuracy and path length and founded that, collusion for wireless sensor networks seems intractable with the static and dynamic WSNs when varied with specified number of fraudulent nodes in the scenario. Additionally, it consumes more energy and resources in oscillating and collusive environments.
DEFF Research Database (Denmark)
Ding, Tao; Li, Cheng; Huang, Can
2017-01-01
function of the slave model for the master model, which reflects the impacts of each slave model. Second, the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master......–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost...
Innovation Network Development Model in Telemedicine: A Change in Participation.
Goodarzi, Maryam; Torabi, Mashallah; Safdari, Reza; Dargahi, Hossein; Naeimi, Sara
2015-10-01
This paper introduces a telemedicine innovation network and reports its implementation in Tehran University of Medical Sciences. The required conditions for the development of future projects in the field of telemedicine are also discussed; such projects should be based on the common needs and opportunities in the areas of healthcare, education, and technology. The development of the telemedicine innovation network in Tehran University of Medical Sciences was carried out in two phases: identifying the beneficiaries of telemedicine, and codification of the innovation network memorandum; and brainstorming of three workgroup members, and completion and clustering ideas. The present study employed a qualitative survey by using brain storming method. Thus, the ideas of the innovation network members were gathered, and by using Freeplane software, all of them were clustered and innovation projects were defined. In the services workgroup, 87 and 25 ideas were confirmed in phase 1 and phase 2, respectively. In the education workgroup, 8 new programs in the areas of telemedicine, tele-education and teleconsultation were codified. In the technology workgroup, 101 and 11 ideas were registered in phase 1 and phase 2, respectively. Today, innovation is considered a major infrastructural element of any change or progress. Thus, the successful implementation of a telemedicine project not only needs funding, human resources, and full equipment. It also requires the use of innovation models to cover several different aspects of change and progress. The results of the study can provide a basis for the implementation of future telemedicine projects using new participatory, creative, and innovative models.
A Network of SCOP Hidden Markov Models and Its Analysis
Directory of Open Access Journals (Sweden)
Watson Layne T
2011-05-01
Full Text Available Abstract Background The Structural Classification of Proteins (SCOP database uses a large number of hidden Markov models (HMMs to represent families and superfamilies composed of proteins that presumably share the same evolutionary origin. However, how the HMMs are related to one another has not been examined before. Results In this work, taking into account the processes used to build the HMMs, we propose a working hypothesis to examine the relationships between HMMs and the families and superfamilies that they represent. Specifically, we perform an all-against-all HMM comparison using the HHsearch program (similar to BLAST and construct a network where the nodes are HMMs and the edges connect similar HMMs. We hypothesize that the HMMs in a connected component belong to the same family or superfamily more often than expected under a random network connection model. Results show a pattern consistent with this working hypothesis. Moreover, the HMM network possesses features distinctly different from the previously documented biological networks, exemplified by the exceptionally high clustering coefficient and the large number of connected components. Conclusions The current finding may provide guidance in devising computational methods to reduce the degree of overlaps between the HMMs representing the same superfamilies, which may in turn enable more efficient large-scale sequence searches against the database of HMMs.
Multiplicative Attribute Graph Model of Real-World Networks
Energy Technology Data Exchange (ETDEWEB)
Kim, Myunghwan [Stanford Univ., CA (United States); Leskovec, Jure [Stanford Univ., CA (United States)
2010-10-20
Large scale real-world network data, such as social networks, Internet andWeb graphs, is ubiquitous in a variety of scientific domains. The study of such social and information networks commonly finds patterns and explain their emergence through tractable models. In most networks, especially in social networks, nodes also have a rich set of attributes (e.g., age, gender) associatedwith them. However, most of the existing network models focus only on modeling the network structure while ignoring the features of nodes in the network. Here we present a class of network models that we refer to as the Multiplicative Attribute Graphs (MAG), which naturally captures the interactions between the network structure and node attributes. We consider a model where each node has a vector of categorical features associated with it. The probability of an edge between a pair of nodes then depends on the product of individual attributeattribute similarities. The model yields itself to mathematical analysis as well as fit to real data. We derive thresholds for the connectivity, the emergence of the giant connected component, and show that the model gives rise to graphs with a constant diameter. Moreover, we analyze the degree distribution to show that the model can produce networks with either lognormal or power-law degree distribution depending on certain conditions.
Preferred provider organizations: today's models and tomorrow's prospects.
de Lissovoy, G; Rice, T; Ermann, D; Gabel, J
1986-01-01
Preferred provider organizations (PPOs) have recently attracted much attention as an alternative to both traditional fee-for-service medicine and health maintenance organizations. To examine their development and structure, we conducted a telephone survey with executives of more than 130 operational PPOs. We describe typical examples of the three most common types of PPOs-those sponsored by providers, insurers, and entrepreneurs-and identify problems each faces in the increasingly competitive health care environment. We then cite approaches that innovative PPOs are using to deal expressly with these problems.
Multilevel method for modeling large-scale networks.
Energy Technology Data Exchange (ETDEWEB)
Safro, I. M. (Mathematics and Computer Science)
2012-02-24
Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from
Using models to provide a virtual test of forest treatments
Janet Sullivan; Kevin Hyde
2007-01-01
BEMRP's participation in the Bitterroot National Forest's proposed Trapper Bunkhouse Land Stewardship Project (Trapper-Bunkhouse Project) consists of two parts. One is the field study mentioned elsewhere in this ECO-Report that is looking into the effects of thinning and burning on various resources. The other part involves modeling to determine where...
Do Lumped-Parameter Models Provide the Correct Geometrical Damping?
DEFF Research Database (Denmark)
Andersen, Lars
response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...
CNMO: Towards the Construction of a Communication Network Modelling Ontology
Rahman, Muhammad Azizur; Pakstas, Algirdas; Wang, Frank Zhigang
Ontologies that explicitly identify objects, properties, and relationships in specific domains are essential for collaboration that involves sharing of data, knowledge or resources. A communications network modelling ontology (CNMO) has been designed to represent a network model as well as aspects related to its development and actual network operation. Network nodes/sites, link, traffic sources, protocols as well as aspects of the modeling/simulation scenario and operational aspects are defined with their formal representation. A CNMO may be beneficial for various network design/simulation/research communities due to the uniform representation of network models. This ontology is designed using terminology and concepts from various network modeling, simulation and topology generation tools.
Topological evolution of virtual social networks by modeling social activities
Sun, Xin; Dong, Junyu; Tang, Ruichun; Xu, Mantao; Qi, Lin; Cai, Yang
2015-09-01
With the development of Internet and wireless communication, virtual social networks are becoming increasingly important in the formation of nowadays' social communities. Topological evolution model is foundational and critical for social network related researches. Up to present most of the related research experiments are carried out on artificial networks, however, a study of incorporating the actual social activities into the network topology model is ignored. This paper first formalizes two mathematical abstract concepts of hobbies search and friend recommendation to model the social actions people exhibit. Then a social activities based topology evolution simulation model is developed to satisfy some well-known properties that have been discovered in real-world social networks. Empirical results show that the proposed topology evolution model has embraced several key network topological properties of concern, which can be envisioned as signatures of real social networks.
Boutilier, Jordan K.; Taylor, Rhonda L.; Mann, Tracy; McNamara, Elyshia; Hoffman, Gary J.; Kenny, Jacob; Dilley, Rodney J.; Henry, Peter; Morahan, Grant; Laing, Nigel G.; Nowak, Kristen J.
2017-01-01
The pulmonary myocardium is a muscular coat surrounding the pulmonary and caval veins. Although its definitive physiological function is unknown, it may have a pathological role as the source of ectopic beats initiating atrial fibrillation. How the pulmonary myocardium gains pacemaker function is not clearly defined, although recent evidence indicates that changed transcriptional gene expression networks are at fault. The gene expression profile of this distinct cell type in situ was examined to investigate underlying molecular events that might contribute to atrial fibrillation. Via systems genetics, a whole-lung transcriptome data set from the BXD recombinant inbred mouse resource was analyzed, uncovering a pulmonary cardiomyocyte gene network of 24 transcripts, coordinately regulated by chromosome 1 and 2 loci. Promoter enrichment analysis and interrogation of publicly available ChIP-seq data suggested that transcription of this gene network may be regulated by the concerted activity of NKX2-5, serum response factor, myocyte enhancer factor 2, and also, at a post-transcriptional level, by RNA binding protein motif 20. Gene ontology terms indicate that this gene network overlaps with molecular markers of the stressed heart. Therefore, we propose that perturbed regulation of this gene network might lead to altered calcium handling, myocyte growth, and contractile force contributing to the aberrant electrophysiological properties observed in atrial fibrillation. We reveal novel molecular interactions and pathways representing possible therapeutic targets for atrial fibrillation. In addition, we highlight the utility of recombinant inbred mouse resources in detecting and characterizing gene expression networks of relatively small populations of cells that have a pathological significance. PMID:28720711
An Efficient Multitask Scheduling Model for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Hongsheng Yin
2014-01-01
Full Text Available The sensor nodes of multitask wireless network are constrained in performance-driven computation. Theoretical studies on the data processing model of wireless sensor nodes suggest satisfying the requirements of high qualities of service (QoS of multiple application networks, thus improving the efficiency of network. In this paper, we present the priority based data processing model for multitask sensor nodes in the architecture of multitask wireless sensor network. The proposed model is deduced with the M/M/1 queuing model based on the queuing theory where the average delay of data packets passing by sensor nodes is estimated. The model is validated with the real data from the Huoerxinhe Coal Mine. By applying the proposed priority based data processing model in the multitask wireless sensor network, the average delay of data packets in a sensor nodes is reduced nearly to 50%. The simulation results show that the proposed model can improve the throughput of network efficiently.
Bicriteria Models of Vehicles Recycling Network Facility Location
Merkisz-Guranowska, Agnieszka
2012-06-01
The paper presents the issues related to modeling of a vehicle recycling network. The functioning of the recycling network is within the realm of interest of a variety of government agendas, companies participating in the network, vehicle manufacturers and vehicle end users. The interests of these groups need to be considered when deciding about the network organization. The paper presents bicriteria models of network entity location that take into account the preferences of the vehicle owners and network participants related to the network construction and reorganization. A mathematical formulation of the optimization tasks has been presented including the objective functions and limitations that the solutions have to comply with. Then, the models were used for the network optimization in Poland.
Models as Tools of Analysis of a Network Organisation
Directory of Open Access Journals (Sweden)
Wojciech Pająk
2013-06-01
Full Text Available The paper presents models which may be applied as tools of analysis of a network organisation. The starting point of the discussion is defining the following terms: supply chain and network organisation. Further parts of the paper present basic assumptions analysis of a network organisation. Then the study characterises the best known models utilised in analysis of a network organisation. The purpose of the article is to define the notion and the essence of network organizations and to present the models used for their analysis.
Centralised gaming models: providing optimal gambling behaviour controls
Griffiths, M.; Wood, RTA
2009-01-01
The expansion in the gaming industry and its widening attraction points to the need for ever more verifiable means of controlling problem gambling. Various strategies have been built into casino venue operations to address this, but recently, following a new focus on social responsibility, a group of experts considered the possibilities of a centralised gaming model as a more effective control mechanism for dealing with gambling behaviours.
A Framework to Implement IoT Network Performance Modelling Techniques for Network Solution Selection
Directory of Open Access Journals (Sweden)
Declan T. Delaney
2016-12-01
Full Text Available No single network solution for Internet of Things (IoT networks can provide the required level of Quality of Service (QoS for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.
Delaney, Declan T.; O’Hare, Gregory M. P.
2016-01-01
No single network solution for Internet of Things (IoT) networks can provide the required level of Quality of Service (QoS) for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks. PMID:27916929
Delaney, Declan T; O'Hare, Gregory M P
2016-12-01
No single network solution for Internet of Things (IoT) networks can provide the required level of Quality of Service (QoS) for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.
Research on quasi-dynamic calibration model of plastic sensitive element based on neural networks
Wang, Fang; Kong, Deren; Yang, Lixia; Zhang, Zouzou
2017-08-01
Quasi-dynamic calibration accuracy of the plastic sensitive element depends on the accuracy of the fitting model between pressure and deformation. By using the excellent nonlinear mapping ability of RBF (Radial Basis Function) neural network, a calibration model is established which use the peak pressure as the input and use the deformation of the plastic sensitive element as the output in this paper. The calibration experiments of a batch of copper cylinders are carried out on the quasi-dynamic pressure calibration device, which pressure range is within the range of 200MPa to 700MPa. The experiment data are acquired according to the standard pressure monitoring system. The network train and study are done to quasi dynamic calibration model based on neural network by using MATLAB neural network toolbox. Taking the testing samples as the research object, the prediction accuracy of neural network model is compared with the exponential fitting model and the second-order polynomial fitting model. The results show that prediction of the neural network model is most close to the testing samples, and the accuracy of prediction model based on neural network is better than 0.5%, respectively one order higher than the second-order polynomial fitting model and two orders higher than the exponential fitting model. The quasi-dynamic calibration model between pressure peak and deformation of plastic sensitive element, which is based on neural network, provides important basis for creating higher accuracy quasi-dynamic calibration table.
Internet Service Provider Network Evolution in the Presence of Changing Environmental Conditions
2010-03-01
290). New York, NY: Springer. Fortz, B., & Thorup, M. (2000). Internet traffic engineering by optimizing OSPF weights. Proceedings of the IEEE...press). Robust Network Planning. Sridharan, A., Gurin, R., & Diot, C. (2005). Achieving near-optimal traffic engineering solutions for current OSPF
SUNSEED - An evolutionary path to smart grid comms over converged telco and energy provider networks
Stefanovic, C.; Popovski, P.; Jorguseski, L.; Sernec, R.
2014-01-01
SUNSEED, 'Sustainable and robust networking for smart electricity distribution', is a 3-year project started in 2014 and partially funded under call FP7-ICT-2013-11. The project objective is to research, design and implement methods for exploitation of existing communication infrastructure of energy
Stewart, Sarah
2016-01-01
Thirty-two Catholic Cristo Rey schools, all independently owned and operated, serve 9,953 students in grades 9-12. Cristo Rey calls itself "the largest network of high schools in the United States whose enrollment is limited to low-income youth." Students' average family income is $35,000; 97 percent are students of color. To fund the…
Dutra, Jayne E.; Smith, Lisa
2006-01-01
The goal of this plan is to briefly describe new technologies available to us in the arenas of information discovery and discuss the strategic value they have for the NASA enterprise with some considerations and suggestions for near term implementations using the NASA Engineering Network (NEN) as a delivery venue.
First experiences with Personal Networks as an enabling platform for service providers
Hartog, F.T.H. den; Blom, M.A.; Lageweg, C.R.; Peeters, E.M.; Schmidt, J.R.; Veer, R. van der; Veldhuis, R.N.J.; Baken, N.H.G.; Selgert, F.; Vries, A. de; Werff, M.R. van der; Tao, Q.
2007-01-01
By developing demonstrators and performing small-scale user trials, we found various opportunities and pitfalls for deploying Personal Networks (PNs) on a commercial basis. The demonstrators were created using as many as possible legacy devices and proven technologies. They deal with applications in
A model of traffic signs recognition with convolutional neural network
Hu, Haihe; Li, Yujian; Zhang, Ting; Huo, Yi; Kuang, Wenqing
2016-10-01
In real traffic scenes, the quality of captured images are generally low due to some factors such as lighting conditions, and occlusion on. All of these factors are challengeable for automated recognition algorithms of traffic signs. Deep learning has provided a new way to solve this kind of problems recently. The deep network can automatically learn features from a large number of data samples and obtain an excellent recognition performance. We therefore approach this task of recognition of traffic signs as a general vision problem, with few assumptions related to road signs. We propose a model of Convolutional Neural Network (CNN) and apply the model to the task of traffic signs recognition. The proposed model adopts deep CNN as the supervised learning model, directly takes the collected traffic signs image as the input, alternates the convolutional layer and subsampling layer, and automatically extracts the features for the recognition of the traffic signs images. The proposed model includes an input layer, three convolutional layers, three subsampling layers, a fully-connected layer, and an output layer. To validate the proposed model, the experiments are implemented using the public dataset of China competition of fuzzy image processing. Experimental results show that the proposed model produces a recognition accuracy of 99.01 % on the training dataset, and yield a record of 92% on the preliminary contest within the fourth best.
Modeling Nitrogen Processing in Northeast US River Networks
Whittinghill, K. A.; Stewart, R.; Mineau, M.; Wollheim, W. M.; Lammers, R. B.
2013-12-01
Due to increased nitrogen (N) pollution from anthropogenic sources, the need for aquatic ecosystem services such as N removal has also increased. River networks provide a buffering mechanism that retains or removes anthropogenic N inputs. However, the effectiveness of N removal in rivers may decline with increased loading and, consequently, excess N is eventually delivered to estuaries. We used a spatially distributed river network N removal model developed within the Framework for Aquatic Modeling in the Earth System (FrAMES) to examine the geography of N removal capacity of Northeast river systems under various land use and climate conditions. FrAMES accounts for accumulation and routing of runoff, water temperatures, and serial biogeochemical processing using reactivity derived from the Lotic Intersite Nitrogen Experiment (LINX2). Nonpoint N loading is driven by empirical relationships with land cover developed from previous research in Northeast watersheds. Point source N loading from wastewater treatment plants is estimated as a function of the population served and the volume of water discharged. We tested model results using historical USGS discharge data and N data from historical grab samples and recently initiated continuous measurements from in-situ aquatic sensors. Model results for major Northeast watersheds illustrate hot spots of ecosystem service activity (i.e. N removal) using high-resolution maps and basin profiles. As expected, N loading increases with increasing suburban or agricultural land use area. Network scale N removal is highest during summer and autumn when discharge is low and river temperatures are high. N removal as the % of N loading increases with catchment size and decreases with increasing N loading, suburban land use, or agricultural land use. Catchments experiencing the highest network scale N removal generally have N inputs (both point and non-point sources) located in lower order streams. Model results can be used to better
Ni, Jingchao; Koyuturk, Mehmet; Tong, Hanghang; Haines, Jonathan; Xu, Rong; Zhang, Xiang
2016-11-10
Accurately prioritizing candidate disease genes is an important and challenging problem. Various network-based methods have been developed to predict potential disease genes by utilizing the disease similarity network and molecular networks such as protein interaction or gene co-expression networks. Although successful, a common limitation of the existing methods is that they assume all diseases share the same molecular network and a single generic molecular network is used to predict candidate genes for all diseases. However, different diseases tend to manifest in different tissues, and the molecular networks in different tissues are usually different. An ideal method should be able to incorporate tissue-specific molecular networks for different diseases. In this paper, we develop a robust and flexible method to integrate tissue-specific molecular networks for disease gene prioritization. Our method allows each disease to have its own tissue-specific network(s). We formulate the problem of candidate gene prioritization as an optimization problem based on network propagation. When there are multiple tissue-specific networks available for a disease, our method can automatically infer the relative importance of each tissue-specific network. Thus it is robust to the noisy and incomplete network data. To solve the optimization problem, we develop fast algorithms which have linear time complexities in the number of nodes in the molecular networks. We also provide rigorous theoretical foundations for our algorithms in terms of their optimality and convergence properties. Extensive experimental results show that our method can significantly improve the accuracy of candidate gene prioritization compared with the state-of-the-art methods. In our experiments, we compare our methods with 7 popular network-based disease gene prioritization algorithms on diseases from Online Mendelian Inheritance in Man (OMIM) database. The experimental results demonstrate that our methods
Validating neural-network refinements of nuclear mass models
Utama, R.; Piekarewicz, J.
2018-01-01
Background: Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. Purpose: We aim to test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. Methods: The basic paradigm underlining the recently refined nuclear mass models is based on existing state-of-the-art models that are subsequently refined through the training of an artificial neural network. Bayesian inference is used to determine the parameters of the neural network so that statistical uncertainties are provided for all model predictions. Results: We observe a significant improvement in the Bayesian neural network (BNN) predictions relative to the corresponding "bare" models when compared to the nearly 50 new masses reported in the AME2016 compilation. Further, AME2016 estimates for the handful of impactful isotopes in the determination of r -process abundances are found to be in fairly good agreement with our theoretical predictions. Indeed, the BNN-improved Duflo-Zuker model predicts a root-mean-square deviation relative to experiment of σrms≃400 keV. Conclusions: Given the excellent performance of the BNN refinement in confronting the recently published AME2016 compilation, we are confident of its critical role in our quest for mass models of the highest quality. Moreover, as uncertainty quantification is at the core of the BNN approach, the improved mass models are in a unique position to identify those nuclei that will have the strongest impact in resolving some of the outstanding questions in nuclear astrophysics.
Bildirici, Melike; Ersin, Özgür
2014-01-01
The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications.
Directory of Open Access Journals (Sweden)
Melike Bildirici
2014-01-01
Full Text Available The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100. Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications.
Experimental studies on power transformer model winding provided with MOVs
Directory of Open Access Journals (Sweden)
G.H. Kusumadevi
2017-05-01
Full Text Available Surge voltage distribution across a HV transformer winding due to appearance of very fast rise time (rise time of order 1 μs transient voltages is highly non-uniform along the length of the winding for initial time instant of occurrence of surge. In order to achieve nearly uniform initial time instant voltage distribution along the length of the HV winding, investigations have been carried out on transformer model winding. By connecting similar type of metal oxide varistors across sections of HV transformer model winding, it is possible to improve initial time instant surge voltage distribution across length of the HV transformer winding. Transformer windings with α values 5.3, 9.5 and 19 have been analyzed. The experimental studies have been carried out using high speed oscilloscope of good accuracy. The initial time instant voltage distribution across sections of winding with MOV remains nearly uniform along length of the winding. Also results of fault diagnostics carried out with and without connection of MOVs across sections of winding are reported.
A last updating evolution model for online social networks
Bu, Zhan; Xia, Zhengyou; Wang, Jiandong; Zhang, Chengcui
2013-05-01
As information technology has advanced, people are turning to electronic media more frequently for communication, and social relationships are increasingly found on online channels. However, there is very limited knowledge about the actual evolution of the online social networks. In this paper, we propose and study a novel evolution network model with the new concept of “last updating time”, which exists in many real-life online social networks. The last updating evolution network model can maintain the robustness of scale-free networks and can improve the network reliance against intentional attacks. What is more, we also found that it has the “small-world effect”, which is the inherent property of most social networks. Simulation experiment based on this model show that the results and the real-life data are consistent, which means that our model is valid.
A Novel Stackelberg-Bertrand Game Model for Pricing Content Provider
Directory of Open Access Journals (Sweden)
Cheng Zhang
2015-11-01
Full Text Available With the popularity of smart devices such as smartphone, tablet, contents that traditionally be viewed on a personal computer, can also be viewed on these smart devices. The demand for contents thus is increasing year by year, which makes the content providers (CPs get great revenue from either users’ subscription or advertisement. On the other hand, Internet service providers (ISPs, who keep investing in the network technology or capacity capacity to support the huge traffic generated by contents, do not benefit directly from the content traffic. One choice for ISPs is to charge CPs to share the revenue from the huge content traffic. Then ISPs have enough incentives to invest in network infrastructure to improve quality of services (QoS, which eventually benefit CPs and users. This paper presents a novel economic model called Stackelberg-Bertrand game to capture the interaction and competitions among ISPs, CPs and users when ISPs charge CPs. A generic user demand function is assumed to capture the sensitivity of demand to prices of ISPs and CPs. The numerical results show that the price elasticity of ISP and CP plays an important part on the payoff of the ISP and CP.
Ong, Mei-Sing; Olson, Karen L; Chadwick, Laura; Liu, Chunfu; Mandl, Kenneth D
2017-03-01
Multiple provider prescribing of interacting drugs is a preventable cause of morbidity and mortality, and fragmented care is a major contributing factor. We applied social network analysis to examine the impact of provider patient-sharing networks on the risk of multiple provider prescribing of interacting drugs. We performed a retrospective analysis of commercial healthcare claims (years 2008-2011), including all non-elderly adult beneficiaries (n = 88,494) and their constellation of care providers. Patient-sharing networks were derived based on shared patients, and care constellation cohesion was quantified using care density, defined as the ratio between the total number of patients shared by provider pairs and the total number of provider pairs within the care constellation around each patient. In our study, 2% (n = 1796) of patients were co-prescribed interacting drugs by multiple providers. Multiple provider prescribing of interacting drugs was associated with care density (odds ratio per unit increase in the natural logarithm of the value for care density 0.78; 95% confidence interval 0.74-0.83; p < 0.0001). The effect of care density was more pronounced with increasing constellation size: when constellation size exceeded ten providers, the risk of multiple provider prescribing of interacting drugs decreased by nearly 37% with each unit increase in the natural logarithm of care density (p < 0.0001). Other predictors included increasing age of patients, increasing number of providers, and greater morbidity. Improved care cohesion may mitigate unsafe prescribing practices, especially in larger care constellations. There is further potential to leverage network analytics to implement large-scale surveillance applications for monitoring prescribing safety.
Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models
DEFF Research Database (Denmark)
Mazzoni, Alberto; Linden, Henrik; Cuntz, Hermann
2015-01-01
Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local...... time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations...... point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected...
Capabilities of stochastic rainfall models as data providers for urban hydrology
Haberlandt, Uwe
2017-04-01
For planning of urban drainage systems using hydrological models, long, continuous precipitation series with high temporal resolution are needed. Since observed time series are often too short or not available everywhere, the use of synthetic precipitation is a common alternative. This contribution compares three precipitation models regarding their suitability to provide 5 minute continuous rainfall time series for a) sizing of drainage networks for urban flood protection and b) dimensioning of combined sewage systems for pollution reduction. The rainfall models are a parametric stochastic model (Haberlandt et al., 2008), a non-parametric probabilistic approach (Bárdossy, 1998) and a stochastic downscaling of dynamically simulated rainfall (Berg et al., 2013); all models are operated both as single site and multi-site generators. The models are applied with regionalised parameters assuming that there is no station at the target location. Rainfall and discharge characteristics are utilised for evaluation of the model performance. The simulation results are compared against results obtained from reference rainfall stations not used for parameter estimation. The rainfall simulations are carried out for the federal states of Baden-Württemberg and Lower Saxony in Germany and the discharge simulations for the drainage networks of the cities of Hamburg, Brunswick and Freiburg. Altogether, the results show comparable simulation performance for the three models, good capabilities for single site simulations but low skills for multi-site simulations. Remarkably, there is no significant difference in simulation performance comparing the tasks flood protection with pollution reduction, so the models are finally able to simulate both the extremes and the long term characteristics of rainfall equally well. Bárdossy, A., 1998. Generating precipitation time series using simulated annealing. Wat. Resour. Res., 34(7): 1737-1744. Berg, P., Wagner, S., Kunstmann, H., Schädler, G
MODELS AND METHODS FOR LOGISTICS HUB LOCATION: A REVIEW TOWARDS TRANSPORTATION NETWORKS DESIGN
Directory of Open Access Journals (Sweden)
Carolina Luisa dos Santos Vieira
Full Text Available ABSTRACT Logistics hubs affect the distribution patterns in transportation networks since they are flow-concentrating structures. Indeed, the efficient moving of goods throughout supply chains depends on the design of such networks. This paper presents a literature review on the logistics hub location problem, providing an outline of modeling approaches, solving techniques, and their applicability to such context. Two categories of models were identified. While multi-criteria models may seem best suited to find optimal locations, they do not allow an assessment of the impact of new hubs on goods flow and on the transportation network. On the other hand, single-criterion models, which provide location and flow allocation information, adopt network simplifications that hinder an accurate representation of the relationshipbetween origins, destinations, and hubs. In view of these limitations we propose future research directions for addressing real challenges of logistics hubs location regarding transportation networks design.
Statistical mechanics of network models of macroevolution and extinction
Solé, Ricard V.
The fossil record of life has been shown to provide evidence for scaling laws in both time series and in some statistical features. This evidence was suggested to be linked with a self-organized critical phenomenon by several authors. In this paper we review some of these models and their specific predictions. It is shown that most of the observed statistical properties of the evolutionary process on the long time scale can be reproduced by means of a simple model involving a network of interactions among species. The model is able to capture the essential features of the extinction and diversification process and gives power law distributions for (i) extinction events, (ii) taxonomy of species-genera data, (iii) lifetime distribution of genus close to those reported from paleontological databases. It also provides a natural decoupling between micro- and macroevolutionary processes.
Multiple Social Networks, Data Models and Measures for
DEFF Research Database (Denmark)
Magnani, Matteo; Rossi, Luca
2017-01-01
Multiple Social Network Analysis is a discipline defining models, measures, methodologies, and algorithms to study multiple social networks together as a single social system. It is particularly valuable when the networks are interconnected, e.g., the same actors are present in more than one...
Throughput capacity computation model for hybrid wireless networks
African Journals Online (AJOL)
wireless networks. We present in this paper, a computational model for obtaining throughput capacity for hybrid wireless networks. For a hybrid network with n nodes and m base stations, we observe through simulation that the throughput capacity increases linearly with the base station infrastructure connected by the wired ...
Modelling crime linkage with Bayesian networks.
de Zoete, Jacob; Sjerps, Marjan; Lagnado, David; Fenton, Norman
2015-05-01
When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model different evidential structures that can occur when linking crimes, and how they assist in understanding the complex underlying dependencies. That is, how evidence that is obtained in one case can be used in another and vice versa. The flip side of this is that the intuitive decision to "unlink" a case in which exculpatory evidence is obtained leads to serious overestimation of the strength of the remaining cases. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Structural equation models from paths to networks
Westland, J Christopher
2015-01-01
This compact reference surveys the full range of available structural equation modeling (SEM) methodologies. It reviews applications in a broad range of disciplines, particularly in the social sciences where many key concepts are not directly observable. This is the first book to present SEM’s development in its proper historical context–essential to understanding the application, strengths and weaknesses of each particular method. This book also surveys the emerging path and network approaches that complement and enhance SEM, and that will grow in importance in the near future. SEM’s ability to accommodate unobservable theory constructs through latent variables is of significant importance to social scientists. Latent variable theory and application are comprehensively explained, and methods are presented for extending their power, including guidelines for data preparation, sample size calculation, and the special treatment of Likert scale data. Tables of software, methodologies and fit st...
A mathematical model for networks with structures in the mesoscale
Criado, Regino; Flores, Julio; Gacia Del Amo, Alejandro Jose; Gómez, Jesus; Romance, Miguel
2011-01-01
Abstract The new concept of multilevel network is introduced in order to embody some topological properties of complex systems with structures in the mesoscale which are not completely captured by the classical models. This new model, which generalizes the hyper-network and hyper-structure models, fits perfectly with several real-life complex systems, including social and public transportation networks. We present an analysis of the structural properties of the mu...
Agent Based Modeling on Organizational Dynamics of Terrorist Network
Bo Li; Duoyong Sun; Renqi Zhu; Ze Li
2015-01-01
Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model ...
Adaptive Networks Theory, Models and Applications
Gross, Thilo
2009-01-01
With adaptive, complex networks, the evolution of the network topology and the dynamical processes on the network are equally important and often fundamentally entangled. Recent research has shown that such networks can exhibit a plethora of new phenomena which are ultimately required to describe many real-world networks. Some of those phenomena include robust self-organization towards dynamical criticality, formation of complex global topologies based on simple, local rules, and the spontaneous division of "labor" in which an initially homogenous population of network nodes self-organizes into functionally distinct classes. These are just a few. This book is a state-of-the-art survey of those unique networks. In it, leading researchers set out to define the future scope and direction of some of the most advanced developments in the vast field of complex network science and its applications.
Directory of Open Access Journals (Sweden)
Blinova Tatiana
2016-01-01
Full Text Available Among the priorities it is important to highlight the modernization and improvement of energy efficiency of housing and communal services, as well as the transition to the principle of using the most efficient technologies used in reproduction (construction, creation of objects of municipal infrastructure and housing modernization. The main hypothesis of this study lies in the fact that in modern conditions the realization of the most important priorities of the state policy in the sphere of housing and communal services, is possible in the conditions of use of the most effective control technologies for the reproduction of thermal networks. It is possible to raise the level of information security Heat Distribution Company, and other market participants by improving business processes through the development of organizational and economic mechanism in the conditions of complex monitoring of heat network operation processes
SUNSEED — An evolutionary path to smart grid comms over converged telco and energy provider networks
DEFF Research Database (Denmark)
Stefanovic, Cedomir; Popovski, Petar; Jorguseski, Ljupco
2014-01-01
of energy distribution service operators (DSO) and telecom operators (telco) for the future smart grid operations and services. To achieve this objective, SUNSEED proposes an evolutionary approach to converge existing DSO and telco networks, consisting of six steps: overlap, interconnect, interoperate......, manage, plan and open. Each step involves identification of the related smart grid service requirements and implementation of the appropriate solutions. The promise of SUNSEED approach lies in potentially much lower investments and total cost of ownership of future smart energy grids within dense......SUNSEED, “Sustainable and robust networking for smart electricity distribution”, is a 3-year project started in 2014 and partially funded under call FP7-ICT-2013-11. The project objective is to research, design and implement methods for exploitation of existing communication infrastructure...
Computational social network modeling of terrorist recruitment.
Energy Technology Data Exchange (ETDEWEB)
Berry, Nina M.; Turnley, Jessica Glicken (Sandia National Laboratories, Albuquerque, NM); Smrcka, Julianne D. (Sandia National Laboratories, Albuquerque, NM); Ko, Teresa H.; Moy, Timothy David (Sandia National Laboratories, Albuquerque, NM); Wu, Benjamin C.
2004-10-01
The Seldon terrorist model represents a multi-disciplinary approach to developing organization software for the study of terrorist recruitment and group formation. The need to incorporate aspects of social science added a significant contribution to the vision of the resulting Seldon toolkit. The unique addition of and abstract agent category provided a means for capturing social concepts like cliques, mosque, etc. in a manner that represents their social conceptualization and not simply as a physical or economical institution. This paper provides an overview of the Seldon terrorist model developed to study the formation of cliques, which are used as the major recruitment entity for terrorist organizations.
Integrating public transort networks in the axial model
Gil, J.
2012-01-01
This study presents a first step in the development of a model that integrates public transport networks with the space syntax axial model, towards a network model that can describe the multi?modal movement structure of a city and study its patterns and flows. It describes the method for building an
An intercausal cancellation model for Bayesian-network engineering
Woudenberg, Steven P D; Van Der Gaag, Linda C.; Rademaker, Carin M A
2015-01-01
When constructing Bayesian networks with domain experts, network engineers often use the noisy-OR model, and causal interaction models more generally, to alleviate the burden of probability elicitation: the use of such a model serves to reduce the number of probabilities to be elicited on the one
Common quandaries and their practical solutions in Bayesian network modeling
Bruce G. Marcot
2017-01-01
Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many common problems remain. Here, I summarize key problems in BN model construction and interpretation,along with suggested practical solutions. Problems in BN model construction include parameterizing probability values, variable definition, complex network structures,...
Evaluating ALWadHA for providing secure localisation for wireless sensor networks
CSIR Research Space (South Africa)
Abu-Mahfouz, Adnan M
2013-09-01
Full Text Available estimation. Because of the strong relationship between them, any of these components can be targeted by an attack on a localisation system, making these systems very fragile and hard to secure [1]. Different approaches can be used for distance... in a 200m x 200m field. A. Dishonest Reference Nodes Four malicious nodes were distributed randomly in the network. These malicious nodes pretended to be honest references and sent incorrect location references. The error of their location...
Modeling the reemergence of information diffusion in social network
Yang, Dingda; Liao, Xiangwen; Shen, Huawei; Cheng, Xueqi; Chen, Guolong
2018-01-01
Information diffusion in networks is an important research topic in various fields. Existing studies either focus on modeling the process of information diffusion, e.g., independent cascade model and linear threshold model, or investigate information diffusion in networks with certain structural characteristics such as scale-free networks and small world networks. However, there are still several phenomena that have not been captured by existing information diffusion models. One of the prominent phenomena is the reemergence of information diffusion, i.e., a piece of information reemerges after the completion of its initial diffusion process. In this paper, we propose an optimized information diffusion model by introducing a new informed state into traditional susceptible-infected-removed model. We verify the proposed model via simulations in real-world social networks, and the results indicate that the model can reproduce the reemergence of information during the diffusion process.
Shape Synthesis from Sketches via Procedural Models and Convolutional Networks.
Huang, Haibin; Kalogerakis, Evangelos; Yumer, Ersin; Mech, Radomir
2017-08-01
Procedural modeling techniques can produce high quality visual content through complex rule sets. However, controlling the outputs of these techniques for design purposes is often notoriously difficult for users due to the large number of parameters involved in these rule sets and also their non-linear relationship to the resulting content. To circumvent this problem, we present a sketch-based approach to procedural modeling. Given an approximate and abstract hand-drawn 2D sketch provided by a user, our algorithm automatically computes a set of procedural model parameters, which in turn yield multiple, detailed output shapes that resemble the user's input sketch. The user can then select an output shape, or further modify the sketch to explore alternative ones. At the heart of our approach is a deep Convolutional Neural Network (CNN) that is trained to map sketches to procedural model parameters. The network is trained by large amounts of automatically generated synthetic line drawings. By using an intuitive medium, i.e., freehand sketching as input, users are set free from manually adjusting procedural model parameters, yet they are still able to create high quality content. We demonstrate the accuracy and efficacy of our method in a variety of procedural modeling scenarios including design of man-made and organic shapes.
Drosophila provides rapid modeling of renal development, function, and disease
Romero, Michael F.
2010-01-01
The evolution of specialized excretory cells is a cornerstone of the metazoan radiation, and the basic tasks performed by Drosophila and human renal systems are similar. The development of the Drosophila renal (Malpighian) tubule is a classic example of branched tubular morphogenesis, allowing study of mesenchymal-to-epithelial transitions, stem cell-mediated regeneration, and the evolution of a glomerular kidney. Tubule function employs conserved transport proteins, such as the Na+, K+-ATPase and V-ATPase, aquaporins, inward rectifier K+ channels, and organic solute transporters, regulated by cAMP, cGMP, nitric oxide, and calcium. In addition to generation and selective reabsorption of primary urine, the tubule plays roles in metabolism and excretion of xenobiotics, and in innate immunity. The gene expression resource FlyAtlas.org shows that the tubule is an ideal tissue for the modeling of renal diseases, such as nephrolithiasis and Bartter syndrome, or for inborn errors of metabolism. Studies are assisted by uniquely powerful genetic and transgenic resources, the widespread availability of mutant stocks, and low-cost, rapid deployment of new transgenics to allow manipulation of renal function in an organotypic context. PMID:20926630
Providing QoS for Networked Peers in Distributed Haptic Virtual Environments
Directory of Open Access Journals (Sweden)
Alan Marshall
2008-01-01
Full Text Available Haptic information originates from a different human sense (touch, therefore the quality of service (QoS required to support haptic traffic is significantly different from that used to support conventional real-time traffic such as voice or video. Each type of network impairment has different (and severe impacts on the user's haptic experience. There has been no specific provision of QoS parameters for haptic interaction. Previous research into distributed haptic virtual environments (DHVEs have concentrated on synchronization of positions (haptic device or virtual objects, and are based on client-server architectures. We present a new peer-to-peer DHVE architecture that further extends this to enable force interactions between two users whereby force data are sent to the remote peer in addition to positional information. The work presented involves both simulation and practical experimentation where multimodal data is transmitted over a QoS-enabled IP network. Both forms of experiment produce consistent results which show that the use of specific QoS classes for haptic traffic will reduce network delay and jitter, leading to improvements in users' haptic experiences with these types of applications.
A portable dental image viewer using a mobile network to provide a tele-dental service.
Park, Wonse; Kim, Dong-Keun; Kim, Jung-Chae; Kim, Kee-Deog; Yoo, Sun K
2009-01-01
We tested three imaging devices for suitability in emergency dental situations for telemedicine. The three devices were a special-purpose oral camera, a digital single lens reflex (DSLR) camera, and the built-in camera of a mobile phone. A total of 20 subjects volunteered to take part in the study. We simulated five different conditions which could affect the quality of the image and measured image transmission times across two widely available mobile networks (a CDMA-based 3G network and a Wireless Broadband Network, WiBRO). The DSLR produced the best quality images, although it was a relatively large device and not easy to use. The oral camera failed to give satisfactory images under certain conditions (i.e. without extra lighting, out of focus and head motion). In contrast, the mobile phone based camera was very easy to use and to handle, and it gave good information for initial diagnosis, even at high compression ratios. If the image acquisition conditions are carefully set up, this device might be the best for emergency dental trauma situations.
Spectral Modelling for Spatial Network Analysis
Nourian, P.; Rezvani, S.; Sariyildiz, I.S.; van der Hoeven, F.D.; Attar, Ramtin; Chronis, Angelos; Hanna, Sean; Turrin, Michela
2016-01-01
Spatial Networks represent the connectivity structure between units of space as a weighted graph whose links are weighted as to the strength of connections. In case of urban spatial networks, the units of space correspond closely to streets and in architectural spatial networks the units correspond
Infinite Multiple Membership Relational Modeling for Complex Networks
DEFF Research Database (Denmark)
Mørup, Morten; Schmidt, Mikkel Nørgaard; Hansen, Lars Kai
Learning latent structure in complex networks has become an important problem fueled by many types of networked data originating from practically all fields of science. In this paper, we propose a new non-parametric Bayesian multiplemembership latent feature model for networks. Contrary to existing...... multiplemembership models that scale quadratically in the number of vertices the proposedmodel scales linearly in the number of links admittingmultiple-membership analysis in large scale networks. We demonstrate a connection between the single membership relational model and multiple membership models and show...
Accessing Wireless Sensor Networks Via Dynamically Reconfigurable Interaction Models
Directory of Open Access Journals (Sweden)
Maria Cecília Gomes
2012-12-01
Full Text Available The Wireless Sensor Networks (WSNs technology is already perceived as fundamental for science across many domains, since it provides a low cost solution for environment monitoring. WSNs representation via the service concept and its inclusion in Web environments, e.g. through Web services, supports particularly their open/standard access and integration. Although such Web enabled WSNs simplify data access, network parameterization and aggregation, the existing interaction models and run-time adaptation mechanisms available to clients are still scarce. Nevertheless, applications increasingly demand richer and more flexible accesses besides the traditional client/server. For instance, applications may require a streaming model in order to avoid sequential data requests, or the asynchronous notification of subscribed data through the publish/subscriber. Moreover, the possibility to automatically switch between such models at runtime allows applications to define flexible context-based data acquisition. To this extent, this paper discusses the relevance of the session and pattern abstractions on the design of a middleware prototype providing richer and dynamically reconfigurable interaction models to Web enabled WSNs.
A Network Traffic Generator Model for Fast Network-on-Chip Simulation
DEFF Research Database (Denmark)
Mahadevan, Shankar; Angiolini, Frederico; Storgaard, Michael
2005-01-01
and effective Network-on-Chip (NoC) development and debugging environment. By capturing the type and the timestamp of communication events at the boundary of an IP core in a reference environment, the TG can subsequently emulate the core's communication behavior in different environments. Access patterns......For Systems-on-Chip (SoCs) development, a predominant part of the design time is the simulation time. Performance evaluation and design space exploration of such systems in bit- and cycle-true fashion is becoming prohibitive. We propose a traffic generation (TG) model that provides a fast...
Network Traffic Generator Model for Fast Network-on-Chip Simulation
DEFF Research Database (Denmark)
Mahadevan, Shankar; Ang, Frederico; Olsen, Rasmus G.
2008-01-01
and effective Network-on-Chip (NoC) development and debugging environment. By capturing the type and the timestamp of communication events at the boundary of an IP core in a reference environment, the TG can subsequently emulate the core's communication behavior in different environments. Access patterns......For Systems-on-Chip (SoCs) development, a predominant part of the design time is the simulation time. Performance evaluation and design space exploration of such systems in bit- and cycle-true fashion is becoming prohibitive. We propose a traffic generation (TG) model that provides a fast...
Performance Modeling for Heterogeneous Wireless Networks with Multiservice Overflow Traffic
DEFF Research Database (Denmark)
Huang, Qian; Ko, King-Tim; Iversen, Villy Bæk
2009-01-01
Performance modeling is important for the purpose of developing efficient dimensioning tools for large complicated networks. But it is difficult to achieve in heterogeneous wireless networks, where different networks have different statistical characteristics in service and traffic models....... Multiservice loss analysis based on multi-dimensional Markov chain becomes intractable in these networks due to intensive computations required. This paper focuses on performance modeling for heterogeneous wireless networks based on a hierarchical overlay infrastructure. A method based on decomposition...... of the correlated traffic is used to achieve an approximate performance modeling for multiservice in hierarchical heterogeneous wireless networks with overflow traffic. The accuracy of the approximate performance obtained by our proposed modeling is verified by simulations....
Directory of Open Access Journals (Sweden)
Mohammad Taghi Ameli
2012-01-01
Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.
Liu, Chen-Chung; Hong, Yi-Ching
2007-01-01
Although computers and network technology have been widely utilised to assist students learn, few technical supports have been developed to help hearing-impaired students learn in Taiwan. A significant challenge for teachers is to provide after-class learning care and assistance to hearing-impaired students that sustain their motivation to…
Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks.
Samaga, Regina; Klamt, Steffen
2013-06-26
A central goal of systems biology is the construction of predictive models of bio-molecular networks. Cellular networks of moderate size have been modeled successfully in a quantitative way based on differential equations. However, in large-scale networks, knowledge of mechanistic details and kinetic parameters is often too limited to allow for the set-up of predictive quantitative models.Here, we review methodologies for qualitative and semi-quantitative modeling of cellular signal transduction networks. In particular, we focus on three different but related formalisms facilitating modeling of signaling processes with different levels of detail: interaction graphs, logical/Boolean networks, and logic-based ordinary differential equations (ODEs). Albeit the simplest models possible, interaction graphs allow the identification of important network properties such as signaling paths, feedback loops, or global interdependencies. Logical or Boolean models can be derived from interaction graphs by constraining the logical combination of edges. Logical models can be used to study the basic input-output behavior of the system under investigation and to analyze its qualitative dynamic properties by discrete simulations. They also provide a suitable framework to identify proper intervention strategies enforcing or repressing certain behaviors. Finally, as a third formalism, Boolean networks can be transformed into logic-based ODEs enabling studies on essential quantitative and dynamic features of a signaling network, where time and states are continuous.We describe and illustrate key methods and applications of the different modeling formalisms and discuss their relationships. In particular, as one important aspect for model reuse, we will show how these three modeling approaches can be combined to a modeling pipeline (or model hierarchy) allowing one to start with the simplest representation of a signaling network (interaction graph), which can later be refined to logical
Pusuluri, Sai Teja
Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features
Modeling and Analysis of Mobility Management in Mobile Communication Networks
Directory of Open Access Journals (Sweden)
Woon Min Baek
2014-01-01
Full Text Available Many strategies have been proposed to reduce the mobility management cost in mobile communication networks. This paper studies the zone-based registration methods that have been adopted by most mobile communication networks. We focus on two special zone-based registration methods, called two-zone registration (2Z and two-zone registration with implicit registration by outgoing calls (2Zi. We provide a new mathematical model to analyze the exact performance of 2Z and 2Zi. We also present various numerical results, to compare the performance of 2Zi with those of 2Z and one-zone registration (1Z, and show that 2Zi is superior to 2Z as well as 1Z in most cases.
Oscillatory Behavior on a Three-Node Neural Network Model with Discrete and Distributed Delays
Directory of Open Access Journals (Sweden)
Chunhua Feng
2014-01-01
Full Text Available This paper investigates the oscillatory behavior of the solutions for a three-node neural network with discrete and distributed delays. Two theorems are provided to determine the conditions for oscillating solutions of the model. The criteria for selecting the parameters in this network are derived. Some simulation examples are presented to illustrate the effectiveness of the results.
A social network-based organizational model for improving knowledge management in supply chains
Capó-Vicedo, Josep; Mula, Josefa; Capó i Vicedo, Jordi
2011-01-01
Purpose: This paper aims to provide a social network-based model for improving knowledge management in multi-level supply chains formed by small and medium-sized enterprises (SMEs). Design/methodology/approach: This approach uses social network analysis techniques to propose and represent a knowledge network for supply chains. Also, an empirical experience from an exploratory case study in the construction sector is presented. Findings: This proposal improves the establishment of inter-organi...
Modeling Land-Use Decision Behavior with Bayesian Belief Networks
Directory of Open Access Journals (Sweden)
Inge Aalders
2008-06-01
Full Text Available The ability to incorporate and manage the different drivers of land-use change in a modeling process is one of the key challenges because they are complex and are both quantitative and qualitative in nature. This paper uses Bayesian belief networks (BBN to incorporate characteristics of land managers in the modeling process and to enhance our understanding of land-use change based on the limited and disparate sources of information. One of the two models based on spatial data represented land managers in the form of a quantitative variable, the area of individual holdings, whereas the other model included qualitative data from a survey of land managers. Random samples from the spatial data provided evidence of the relationship between the different variables, which I used to develop the BBN structure. The model was tested for four different posterior probability distributions, and results showed that the trained and learned models are better at predicting land use than the uniform and random models. The inference from the model demonstrated the constraints that biophysical characteristics impose on land managers; for older land managers without heirs, there is a higher probability of the land use being arable agriculture. The results show the benefits of incorporating a more complex notion of land managers in land-use models, and of using different empirical data sources in the modeling process. Future research should focus on incorporating more complex social processes into the modeling structure, as well as incorporating spatio-temporal dynamics in a BBN.
Heterogeneous information network model for equipment-standard system
Yin, Liang; Shi, Li-Chen; Zhao, Jun-Yan; Du, Song-Yang; Xie, Wen-Bo; Yuan, Fei; Chen, Duan-Bing
2018-01-01
Entity information network is used to describe structural relationships between entities. Taking advantage of its extension and heterogeneity, entity information network is more and more widely applied to relationship modeling. Recent years, lots of researches about entity information network modeling have been proposed, while seldom of them concentrate on equipment-standard system with properties of multi-layer, multi-dimension and multi-scale. In order to efficiently deal with some complex issues in equipment-standard system such as standard revising, standard controlling, and production designing, a heterogeneous information network model for equipment-standard system is proposed in this paper. Three types of entities and six types of relationships are considered in the proposed model. Correspondingly, several different similarity-measuring methods are used in the modeling process. The experiments show that the heterogeneous information network model established in this paper can reflect relationships between entities accurately. Meanwhile, the modeling process has a good performance on time consumption.
Modified Penna bit-string network evolution model for scale-free networks with assortative mixing
Kim, Yup; Choi, Woosik; Yook, Soon-Hyung
2012-02-01
Motivated by biological aging dynamics, we introduce a network evolution model for social interaction networks. In order to study the effect of social interactions originating from biological and sociological reasons on the topological properties of networks, we introduce the activitydependent rewiring process. From the numerical simulations, we show that the degree distribution of the obtained networks follows a power-law distribution with an exponentially decaying tail, P( k) ˜ ( k + c)- γ exp(- k/k 0). The obtained value of γ is in the range 2 networks. Moreover, we also show that the degree-degree correlation of the network is positive, which is a characteristic of social interaction networks. The possible applications of our model to real systems are also discussed.
Homologous Basal Ganglia Network Models in Physiological and Parkinsonian Conditions
Directory of Open Access Journals (Sweden)
Jyotika Bahuguna
2017-08-01
diversity in basal ganglia networks. We propose that our approach of generating and analyzing an ensemble of multiple solutions to an underdetermined network model provides greater confidence in its predictions than those derived from a unique solution, and that projecting such homologous networks on a lower dimensional space of sensibly chosen dynamical features gives a better chance than a purely structural analysis at understanding complex pathologies such as Parkinson's disease.
A joint model of regulatory and metabolic networks
Directory of Open Access Journals (Sweden)
Vingron Martin
2006-07-01
Full Text Available Abstract Background Gene regulation and metabolic reactions are two primary activities of life. Although many works have been dedicated to study each system, the coupling between them is less well understood. To bridge this gap, we propose a joint model of gene regulation and metabolic reactions. Results We integrate regulatory and metabolic networks by adding links specifying the feedback control from the substrates of metabolic reactions to enzyme gene expressions. We adopt two alternative approaches to build those links: inferring the links between metabolites and transcription factors to fit the data or explicitly encoding the general hypotheses of feedback control as links between metabolites and enzyme expressions. A perturbation data is explained by paths in the joint network if the predicted response along the paths is consistent with the observed response. The consistency requirement for explaining the perturbation data imposes constraints on the attributes in the network such as the functions of links and the activities of paths. We build a probabilistic graphical model over the attributes to specify these constraints, and apply an inference algorithm to identify the attribute values which optimally explain the data. The inferred models allow us to 1 identify the feedback links between metabolites and regulators and their functions, 2 identify the active paths responsible for relaying perturbation effects, 3 computationally test the general hypotheses pertaining to the feedback control of enzyme expressions, 4 evaluate the advantage of an integrated model over separate systems. Conclusion The modeling results provide insight about the mechanisms of the coupling between the two systems and possible "design rules" pertaining to enzyme gene regulation. The model can be used to investigate the less well-probed systems and generate consistent hypotheses and predictions for further validation.
A nonaffine network model for elastomers undergoing finite deformations
Davidson, Jacob D.; Goulbourne, N. C.
2013-08-01
In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.
Ripple-Spreading Network Model Optimization by Genetic Algorithm
Directory of Open Access Journals (Sweden)
Xiao-Bing Hu
2013-01-01
Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.
Modeling fMRI signals can provide insights into neural processing in the cerebral cortex
Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo
2015-01-01
Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. PMID:25972586
Signalling network construction for modelling plant defence response.
Directory of Open Access Journals (Sweden)
Dragana Miljkovic
Full Text Available Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2 triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be
Impact of Loss Synchronization on Reliable High Speed Networks: A Model Based Simulation
Directory of Open Access Journals (Sweden)
Suman Kumar
2014-01-01
Full Text Available Contemporary nature of network evolution demands for simulation models which are flexible, scalable, and easily implementable. In this paper, we propose a fluid based model for performance analysis of reliable high speed networks. In particular, this paper aims to study the dynamic relationship between congestion control algorithms and queue management schemes, in order to develop a better understanding of the causal linkages between the two. We propose a loss synchronization module which is user configurable. We validate our model through simulations under controlled settings. Also, we present a performance analysis to provide insights into two important issues concerning 10 Gbps high speed networks: (i impact of bottleneck buffer size on the performance of 10 Gbps high speed network and (ii impact of level of loss synchronization on link utilization-fairness tradeoffs. The practical impact of the proposed work is to provide design guidelines along with a powerful simulation tool to protocol designers and network developers.
Online social network use by health care providers in a high traffic patient care environment.
Black, Erik; Light, Jennifer; Paradise Black, Nicole; Thompson, Lindsay
2013-05-17
The majority of workers, regardless of age or occupational status, report engaging in personal Internet use in the workplace. There is little understanding of the impact that personal Internet use may have on patient care in acute clinical settings. The objective of this study was to investigate the volume of one form of personal Internet use-online social networking (Facebook)-generated by workstations in the emergency department (ED) in contrast to measures of clinical volume and severity. The research team analyzed anonymous network utilization records for 68 workstations located in the emergency medicine department within one academic medical center for 15 consecutive days (12/29/2009 to 1/12/2010). This data was compared to ED work index (EDWIN) data derived by the hospital information systems. Health care workers spent an accumulated 4349 minutes (72.5 hours) browsing Facebook, staff cumulatively visited Facebook 9369 times and spent, on average, 12.0 minutes per hour browsing Facebook. There was a statistically significant difference in the time spent on Facebook according to time of day (19.8 minutes per hour versus 4.3 minutes per hour, P<.001). There was a significant, positive correlation between EDWIN scores and time spent on Facebook (r=.266, P<.001). Facebook use constituted a substantive percentage of staff time during the 15-day observation period. Facebook use increased with increased patient volume and severity within the ED.
Model for the integrated network? Rehabilitation makes a good candidate.
Fowler, F J; Baum, C S
1995-01-01
Rehabilitation is a good model for an integrated delivery network (IDN). Because it is an integral part of the treatment plans of a diverse group of medical specialties, rehab often plays a pivotal role in patients' recovery. Since its focus is on functional outcomes, rehab is compatible with a capitated payment system. In addition, rehab entered the managed care arena before other "product lines," so rehab providers have experience with diverse reimbursement conditions. And although rehab encompasses all levels of care, it is not too large to function as a model for a full-scale IDN. There are four key stages in the development of a rehab IDN: A strong leader with a clear vision organizes a working committee composed of the key leaders of each entity involved in rehab: hospitals, nursing homes, home health, and others. The committee begins to design the proposed network. Though the committee may study other IDNs, its focus is on its own organization's needs and objectives. A master plan addressing systems gaps and opportunities throughout the IDN is drawn up. Integral to the plan is a schedule according to which each of the network's components will be integrated. The master plan is implemented. The working committee determines the IDN's final structure and names the members of the management team.
Network models of frugivory and seed dispersal: Challenges and opportunities
Carlo, Tomás A.; Yang, Suann
2011-11-01
Network analyses have emerged as a new tool to study frugivory and seed dispersal (FSD) mutualisms because networks can model and simplify the complexity of multiple community-wide species interactions. Moreover, network theory suggests that structural properties, such as the presence of highly generalist species, are linked to the stability of mutualistic communities. However, we still lack empirical validation of network model predictions. Here we outline new research avenues to connect network models to FSD processes, and illustrate the challenges and opportunities of this tool with a field study. We hypothesized that generalist frugivores would be important for forest stability by dispersing seeds into deforested areas and initiating reforestation. We then constructed a network of plant-frugivore interactions using published data and identified the most generalist frugivores. To test the importance of generalists we measured: 1) the frequency with which frugivores moved between pasture and forest, 2) the bird-generated seed rain under perches in the pasture, and 3) the perching frequency of birds above seed traps. The generalist frugivores in the forest network were not important for seed dispersal into pastures, and thus for forest recovery, because the forest network excluded habitat heterogeneities, frugivore behavior, and movements. More research is needed to develop ways to incorporate relevant FSD processes into network models in order for these models to be more useful to community ecology and conservation. The network framework can serve to spark and renew interest in FSD and further our understanding of plant-animal communities.
Hybrid neural network bushing model for vehicle dynamics simulation
Energy Technology Data Exchange (ETDEWEB)
Sohn, Jeong Hyun [Pukyong National University, Busan (Korea, Republic of); Lee, Seung Kyu [Hyosung Corporation, Changwon (Korea, Republic of); Yoo, Wan Suk [Pusan National University, Busan (Korea, Republic of)
2008-12-15
Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers
An image segmentation method based on network clustering model
Jiao, Yang; Wu, Jianshe; Jiao, Licheng
2018-01-01
Network clustering phenomena are ubiquitous in nature and human society. In this paper, a method involving a network clustering model is proposed for mass segmentation in mammograms. First, the watershed transform is used to divide an image into regions, and features of the image are computed. Then a graph is constructed from the obtained regions and features. The network clustering model is applied to realize clustering of nodes in the graph. Compared with two classic methods, the algorithm based on the network clustering model performs more effectively in experiments.
Small is beautiful: models of small neuronal networks.
Lamb, Damon G; Calabrese, Ronald L
2012-08-01
Modeling has contributed a great deal to our understanding of how individual neurons and neuronal networks function. In this review, we focus on models of the small neuronal networks of invertebrates, especially rhythmically active CPG networks. Models have elucidated many aspects of these networks, from identifying key interacting membrane properties to pointing out gaps in our understanding, for example missing neurons. Even the complex CPGs of vertebrates, such as those that underlie respiration, have been reduced to small network models to great effect. Modeling of these networks spans from simplified models, which are amenable to mathematical analyses, to very complicated biophysical models. Some researchers have now adopted a population approach, where they generate and analyze many related models that differ in a few to several judiciously chosen free parameters; often these parameters show variability across animals and thus justify the approach. Models of small neuronal networks will continue to expand and refine our understanding of how neuronal networks in all animals program motor output, process sensory information and learn. Copyright © 2012 Elsevier Ltd. All rights reserved.
Stochastic Online Learning in Dynamic Networks under Unknown Models
2016-08-02
Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for...12211 Research Triangle Park, NC 27709-2211 Online learning , multi-armed bandit, dynamic networks REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S... Online Learning in Dynamic Networks under Unknown Models Report Title This research aims to develop fundamental theories and practical algorithms for
A Cellular Automata Models of Evolution of Transportation Networks
Directory of Open Access Journals (Sweden)
Mariusz Paszkowski
2002-01-01
Full Text Available We present a new approach to modelling of transportation networks. Supply of resources and their influence on the evolution of the consuming environment is a princqral problem considered. ne present two concepts, which are based on cellular automata paradigm. In the first model SCAM4N (Simple Cellular Automata Model of Anastomosing Network, the system is represented by a 2D mesh of elementary cells. The rules of interaction between them are introduced for modelling ofthe water flow and other phenomena connected with anastomosing river: Due to limitations of SCAMAN model, we introduce a supplementary model. The MANGraCA (Model of Anastomosing Network with Graph of Cellular Automata model beside the classical mesh of automata, introduces an additional structure: the graph of cellular automata, which represents the network pattern. Finally we discuss the prospective applications ofthe models. The concepts of juture implementation are also presented.
Genetic Algorithm Optimization of Artificial Neural Networks for Hydrological Modelling
Abrahart, R. J.
2004-05-01
This paper will consider the case for genetic algorithm optimization in the development of an artificial neural network model. It will provide a methodological evaluation of reported investigations with respect to hydrological forecasting and prediction. The intention in such operations is to develop a superior modelling solution that will be: \\begin{itemize} more accurate in terms of output precision and model estimation skill; more tractable in terms of personal requirements and end-user control; and/or more robust in terms of conceptual and mechanical power with respect to adverse conditions. The genetic algorithm optimization toolbox could be used to perform a number of specific roles or purposes and it is the harmonious and supportive relationship between neural networks and genetic algorithms that will be highlighted and assessed. There are several neural network mechanisms and procedures that could be enhanced and potential benefits are possible at different stages in the design and construction of an operational hydrological model e.g. division of inputs; identification of structure; initialization of connection weights; calibration of connection weights; breeding operations between successful models; and output fusion associated with the development of ensemble solutions. Each set of opportunities will be discussed and evaluated. Two strategic questions will also be considered: [i] should optimization be conducted as a set of small individual procedures or as one large holistic operation; [ii] what specific function or set of weighted vectors should be optimized in a complex software product e.g. timings, volumes, or quintessential hydrological attributes related to the 'problem situation' - that might require the development flood forecasting, drought estimation, or record infilling applications. The paper will conclude with a consideration of hydrological forecasting solutions developed on the combined methodologies of co-operative co-evolution and
Routing in Vehicular Networks: Feasibility, Modeling, and Security
Directory of Open Access Journals (Sweden)
Ioannis Broustis
2008-01-01
Full Text Available Vehicular networks are sets of surface transportation systems that have the ability to communicate with each other. There are several possible network architectures to organize their in-vehicle computing systems. Potential schemes may include vehicle-to-vehicle ad hoc networks, wired backbone with wireless last hops, or hybrid architectures using vehicle-to-vehicle communications to augment roadside communication infrastructures. Some special properties of these networks, such as high mobility, network partitioning, and constrained topology, differentiate them from other types of wireless networks. We provide an in-depth discussion on the important studies related to architectural design and routing for such networks. Moreover, we discuss the major security concerns appearing in vehicular networks.
Reliability Analysis of Wireless Sensor Networks Using Markovian Model
Directory of Open Access Journals (Sweden)
Jin Zhu
2012-01-01
Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.
Runoff Modelling in Urban Storm Drainage by Neural Networks
DEFF Research Database (Denmark)
Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld
1995-01-01
A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....
Castet, Jean-Francois; Saleh, Joseph H
2013-01-01
This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the
Directory of Open Access Journals (Sweden)
Jean-Francois Castet
Full Text Available This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
MICHAEL
modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological decomposition of pollutants in the reactor. The neural network has been trained with experimental data obtained from an inverse fluidized bed reactor treating the starch industry wastewater.
A control model for district heating networks with storage
Scholten, Tjeert; De Persis, Claudio; Tesi, Pietro
2014-01-01
In [1] pressure control of hydraulic networks is investigated. We extend this work to district heating systems with storage capabilities and derive a model taking the topology of the network into account. The goal for the derived model is that it should allow for control of the storage level and
Modelling Altitude Information in Two-Dimensional Traffic Networks for Electric Mobility Simulation
Directory of Open Access Journals (Sweden)
Diogo Santos
2016-06-01
Full Text Available Elevation data is important for electric vehicle simulation. However, traffic simulators are often two-dimensional and do not offer the capability of modelling urban networks taking elevation into account. Specifically, SUMO - Simulation of Urban Mobility, a popular microscopic traffic simulator, relies on networks previously modelled with elevation data as to provide this information during simulations. This work tackles the problem of adding elevation data to urban network models - particularly for the case of the Porto urban network, in Portugal. With this goal in mind, a comparison between different altitude information retrieval approaches is made and a simple tool to annotate network models with altitude data is proposed. The work starts by describing the methodological approach followed during research and development, then describing and analysing its main findings. This description includes an in-depth explanation of the proposed tool. Lastly, this work reviews some related work to the subject.
Inhomogeneous Long-Range Percolation for Real-Life Network Modeling
Directory of Open Access Journals (Sweden)
Philippe Deprez
2015-01-01
Full Text Available The study of random graphs has become very popular for real-life network modeling, such as social networks or financial networks. Inhomogeneous long-range percolation (or scale-free percolation on the lattice Zd, d ≥ 1, is a particular attractive example of a random graph model because it fulfills several stylized facts of real-life networks. For this model, various geometric properties, such as the percolation behavior, the degree distribution and graph distances, have been analyzed. In the present paper, we complement the picture of graph distances and we prove continuity of the percolation probability in the phase transition point. We also provide an illustration of the model connected to financial networks.
Cooperative cognitive radio networking system model, enabling techniques, and performance
Cao, Bin; Mark, Jon W
2016-01-01
This SpringerBrief examines the active cooperation between users of Cooperative Cognitive Radio Networking (CCRN), exploring the system model, enabling techniques, and performance. The brief provides a systematic study on active cooperation between primary users and secondary users, i.e., (CCRN), followed by the discussions on research issues and challenges in designing spectrum-energy efficient CCRN. As an effort to shed light on the design of spectrum-energy efficient CCRN, they model the CCRN based on orthogonal modulation and orthogonally dual-polarized antenna (ODPA). The resource allocation issues are detailed with respect to both models, in terms of problem formulation, solution approach, and numerical results. Finally, the optimal communication strategies for both primary and secondary users to achieve spectrum-energy efficient CCRN are analyzed.
Analysis of deterministic cyclic gene regulatory network models with delays
Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian
2015-01-01
This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.
A small-world network model of facial emotion recognition.
Takehara, Takuma; Ochiai, Fumio; Suzuki, Naoto
2016-01-01
Various models have been proposed to increase understanding of the cognitive basis of facial emotions. Despite those efforts, interactions between facial emotions have received minimal attention. If collective behaviours relating to each facial emotion in the comprehensive cognitive system could be assumed, specific facial emotion relationship patterns might emerge. In this study, we demonstrate that the frameworks of complex networks can effectively capture those patterns. We generate 81 facial emotion images (6 prototypes and 75 morphs) and then ask participants to rate degrees of similarity in 3240 facial emotion pairs in a paired comparison task. A facial emotion network constructed on the basis of similarity clearly forms a small-world network, which features an extremely short average network distance and close connectivity. Further, even if two facial emotions have opposing valences, they are connected within only two steps. In addition, we show that intermediary morphs are crucial for maintaining full network integration, whereas prototypes are not at all important. These results suggest the existence of collective behaviours in the cognitive systems of facial emotions and also describe why people can efficiently recognize facial emotions in terms of information transmission and propagation. For comparison, we construct three simulated networks--one based on the categorical model, one based on the dimensional model, and one random network. The results reveal that small-world connectivity in facial emotion networks is apparently different from those networks, suggesting that a small-world network is the most suitable model for capturing the cognitive basis of facial emotions.
Systems and methods for modeling and analyzing networks
Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W
2013-10-29
The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.
Slow dynamics in a primitive tetrahedral network model.
De Michele, Cristiano; Tartaglia, Piero; Sciortino, Francesco
2006-11-28
We report extensive Monte Carlo and event-driven molecular dynamics simulations of the fluid and liquid phase of a primitive model for silica recently introduced by Ford et al. [J. Chem. Phys. 121, 8415 (2004)]. We evaluate the isodiffusivity lines in the temperature-density plane to provide an indication of the shape of the glass transition line. Except for large densities, arrest is driven by the onset of the tetrahedral bonding pattern and the resulting dynamics is strong in Angell's classification scheme [J. Non-Cryst. Solids 131-133, 13 (1991)]. We compare structural and dynamic properties with corresponding results of two recently studied primitive models of network forming liquids-a primitive model for water and an angular-constraint-free model of four-coordinated particles-to pin down the role of the geometric constraints associated with bonding. Eventually we discuss the similarities between "glass" formation in network forming liquids and "gel" formation in colloidal dispersions of patchy particles.
FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model.
Yaghini Bonabi, Safa; Asgharian, Hassan; Safari, Saeed; Nili Ahmadabadi, Majid
2014-01-01
A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of a neural network on FPGA (Field Programmable Gate Array) is presented. The central implementation challenge is H-H model complexity that puts limits on the network size and on the execution speed. However, basics of the original model cannot be compromised when effect of synaptic specifications on the network behavior is the subject of study. To solve the problem, we used computational techniques such as CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the implementation of arithmetic circuits. In addition, we employed different techniques such as sharing resources to preserve the details of model as well as increasing the network size in addition to keeping the network execution speed close to real time while having high precision. Implementation of a two mini-columns network with 120/30 excitatory/inhibitory neurons is provided to investigate the characteristic of our method in practice. The implementation techniques provide an opportunity to construct large FPGA-based network models to investigate the effect of different neurophysiological mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a neural network in an appropriate execution time. Additional to inherent properties of FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system a proper candidate for study on neural control of cognitive robots and systems as well.
Datta, Niloy Ranjan; Heuser, Michael; Samiei, Massoud; Shah, Ragesh; Lutters, Gerd; Bodis, Stephan
2015-07-01
Globally, new cancer cases will rise by 57% within the next two decades, with the majority in the low- and middle-income countries (LMICs). Consequently, a steep increase of about 40% in cancer deaths is expected there, mainly because of lack of treatment facilities, especially radiotherapy. Radiotherapy is required for more than 50% of patients, but the capital cost for equipment often deters establishment of such facilities in LMICs. Presently, of the 139 LMICs, 55 do not even have a radiotherapy facility, whereas the remaining 84 have a deficit of 61.4% of their required radiotherapy units. Networking between centers could enhance the effectiveness and reach of existing radiotherapy in LMICs. A teleradiotherapy network could enable centers to share and optimally utilize their resources, both infrastructure and staffing. This could be in the form of a three-tier radiotherapy service consisting of primary, secondary, and tertiary radiotherapy centers interlinked through a network. The concept has been adopted in some LMICs and could also be used as a "service provider model," thereby reducing the investments to set up such a network. Teleradiotherapy networks could be a part of the multipronged approach to address the enormous gap in radiotherapy services in a cost-effective manner and to support better accessibility to radiotherapy facilities, especially for LMICs.
Mithani, Aziz; Hein, Jotun; Preston, Gail M
2011-01-01
Plant pathogenic pseudomonads such as Pseudomonas syringae colonize plant surfaces and tissues and have been reported to be nutritionally specialized relative to nonpathogenic pseudomonads. We performed comparative analyses of metabolic networks reconstructed from genome sequence data in order to investigate the hypothesis that P. syringae has evolved to be metabolically specialized for a plant pathogenic lifestyle. We used the metabolic network comparison tool Rahnuma and complementary bioinformatic analyses to compare the distribution of 1,299 metabolic reactions across nine genome-sequenced strains of Pseudomonas, including three strains of P. syringae. The two pathogenic Pseudomonas species analyzed, P. syringae and the opportunistic human pathogen P. aeruginosa, each displayed a high level of intraspecies metabolic similarity compared with nonpathogenic Pseudomonas. The three P. syringae strains lacked a significant number of reactions predicted to be present in all other Pseudomonas strains analyzed, which is consistent with the hypothesis that P. syringae is adapted for growth in a nutritionally constrained environment. Pathway predictions demonstrated that some of the differences detected in metabolic network comparisons could account for differences in amino acid assimilation ability reported in experimental analyses. Parsimony analysis and reaction neighborhood approaches were used to model the evolution of metabolic networks and amino acid assimilation pathways in pseudomonads. Both methods supported a model of Pseudomonas evolution in which the common ancestor of P. syringae had experienced a significant number of deletion events relative to other nonpathogenic pseudomonads. We discuss how the characteristic metabolic features of P. syringae could reflect adaptation to a pathogenic lifestyle.
Ocean wave prediction using numerical and neural network models
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...
Piao, Chunhui; Han, Xufang; Wu, Harris
2010-08-01
We provide a formal definition of an e-commerce transaction network. Agent-based modelling is used to simulate e-commerce transaction networks. For real-world analysis, we studied the open application programming interfaces (APIs) from eBay and Taobao e-commerce websites and captured real transaction data. Pajek is used to visualise the agent relationships in the transaction network. We derived one-mode networks from the transaction network and analysed them using degree and betweenness centrality. Integrating multi-agent modelling, open APIs and social network analysis, we propose a new way to study large-scale e-commerce systems.
A Real-World Network Modeling Project
2014-02-12
topic of a Master’s thesis, and then developed into a full decision support system for missile defense (Brown et al., 2005). The project also provides...questions to help them proceed, and this could easily overwhelm the instructor. Accordingly, operations research faculty at NPS fluent in model...Optimization for Theater Ballistic Missile Defense. Operations Research, 53(5):745–763, 2005. G. G. Brown, W. M. Carlyle, R. Harney, E. Skroch, and R. K. Wood
An information spreading model based on online social networks
Wang, Tao; He, Juanjuan; Wang, Xiaoxia
2018-01-01
Online social platforms are very popular in recent years. In addition to spreading information, users could review or collect information on online social platforms. According to the information spreading rules of online social network, a new information spreading model, namely IRCSS model, is proposed in this paper. It includes sharing mechanism, reviewing mechanism, collecting mechanism and stifling mechanism. Mean-field equations are derived to describe the dynamics of the IRCSS model. Moreover, the steady states of reviewers, collectors and stiflers and the effects of parameters on the peak values of reviewers, collectors and sharers are analyzed. Finally, numerical simulations are performed on different networks. Results show that collecting mechanism and reviewing mechanism, as well as the connectivity of the network, make information travel wider and faster, and compared to WS network and ER network, the speed of reviewing, sharing and collecting information is fastest on BA network.
Completely random measures for modelling block-structured sparse networks
DEFF Research Database (Denmark)
Herlau, Tue; Schmidt, Mikkel Nørgaard; Mørup, Morten
2016-01-01
Many statistical methods for network data parameterize the edge-probability by attributing latent traits to the vertices such as block structure and assume exchangeability in the sense of the Aldous-Hoover representation theorem. Empirical studies of networks indicate that many real-world networks...... [2014] proposed the use of a different notion of exchangeability due to Kallenberg [2006] and obtained a network model which admits power-law behaviour while retaining desirable statistical properties, however this model does not capture latent vertex traits such as block-structure. In this work we re......-introduce the use of block-structure for network models obeying allenberg’s notion of exchangeability and thereby obtain a model which admits the inference of block-structure and edge inhomogeneity. We derive a simple expression for the likelihood and an efficient sampling method. The obtained model...
A Network Contention Model for the Extreme-scale Simulator
Energy Technology Data Exchange (ETDEWEB)
Engelmann, Christian [ORNL; Naughton III, Thomas J [ORNL
2015-01-01
The Extreme-scale Simulator (xSim) is a performance investigation toolkit for high-performance computing (HPC) hardware/software co-design. It permits running a HPC application with millions of concurrent execution threads, while observing its performance in a simulated extreme-scale system. This paper details a newly developed network modeling feature for xSim, eliminating the shortcomings of the existing network modeling capabilities. The approach takes a different path for implementing network contention and bandwidth capacity modeling using a less synchronous and accurate enough model design. With the new network modeling feature, xSim is able to simulate on-chip and on-node networks with reasonable accuracy and overheads.
Application Interaction Model for Opportunistic Networking
de Souza Schwartz, Ramon; van Dijk, H.W.; Scholten, Johan
In Opportunistic Networks, autonomous nodes discover, assess and potentially seize opportunities for communication and distributed processing whenever these emerge. In this paper, we consider prerequisites for a successful implementation of such a way of processing in networks that consist mainly of
A Model for Telestrok Network Evaluation
DEFF Research Database (Denmark)
Storm, Anna; Günzel, Franziska; Theiss, Stephan
2011-01-01
Different telestroke network concepts have been implemented worldwide to enable fast and efficient treatment of stroke patients in underserved rural areas. Networks could demonstrate the improvement in clinical outcome, but have so far excluded a cost-effectiveness analysis. With health economic ...
Model and simulation of Krause model in dynamic open network
Zhu, Meixia; Xie, Guangqiang
2017-08-01
The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.
Networks and Models with Heterogeneous Population Structure in Epidemiology
Kao, R. R.
Heterogeneous population structure can have a profound effect on infectious disease dynamics, and is particularly important when investigating “tactical” disease control questions. At times, the nature of the network involved in the transmission of the pathogen (bacteria, virus, macro-parasite, etc.) appears to be clear; however, the nature of the network involved is dependent on the scale (e.g. within-host, between-host, or between-population), the nature of the contact, which ranges from the highly specific (e.g. sexual acts or needle sharing at the person-to-person level) to almost completely non-specific (e.g. aerosol transmission, often over long distances as can occur with the highly infectious livestock pathogen foot-and-mouth disease virus—FMDv—at the farm-to-farm level, e.g. Schley et al. in J. R. Soc. Interface 6:455-462, 2008), and the timescale of interest (e.g. at the scale of the individual, the typical infectious period of the host). Theoretical approaches to examining the implications of particular network structures on disease transmission have provided critical insight; however, a greater challenge is the integration of network approaches with data on real population structures. In this chapter, some concepts in disease modelling will be introduced, the relevance of selected network phenomena discussed, and then results from real data and their relationship to network analyses summarised. These include examinations of the patterns of air traffic and its relation to the spread of SARS in 2003 (Colizza et al. in BMC Med., 2007; Hufnagel et al. in Proc. Natl. Acad. Sci. USA 101:15124-15129, 2004), the use of the extensively documented Great Britain livestock movements network (Green et al. in J. Theor. Biol. 239:289-297, 2008; Robinson et al. in J. R. Soc. Interface 4:669-674, 2007; Vernon and Keeling in Proc. R. Soc. Lond. B, Biol. Sci. 276:469-476, 2009) and the growing interest in combining contact structure data with phylogenetics to
Rumor spreading model with noise interference in complex social networks
Zhu, Liang; Wang, Youguo
2017-03-01
In this paper, a modified susceptible-infected-removed (SIR) model has been proposed to explore rumor diffusion on complex social networks. We take variation of connectivity into consideration and assume the variation as noise. On the basis of related literature on virus networks, the noise is described as standard Brownian motion while stochastic differential equations (SDE) have been derived to characterize dynamics of rumor diffusion both on homogeneous networks and heterogeneous networks. Then, theoretical analysis on homogeneous networks has been demonstrated to investigate the solution of SDE model and the steady state of rumor diffusion. Simulations both on Barabási-Albert (BA) network and Watts-Strogatz (WS) network display that the addition of noise accelerates rumor diffusion and expands diffusion size, meanwhile, the spreading speed on BA network is much faster than on WS network under the same noise intensity. In addition, there exists a rumor diffusion threshold in statistical average meaning on homogeneous network which is absent on heterogeneous network. Finally, we find a positive correlation between peak value of infected individuals and noise intensity while a negative correlation between rumor lifecycle and noise intensity overall.
A neural network model of ventriloquism effect and aftereffect.
Directory of Open Access Journals (Sweden)
Elisa Magosso
Full Text Available Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli. By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.
A computational model of hemodynamic parameters in cortical capillary networks.
Safaeian, Navid; Sellier, Mathieu; David, Tim
2011-02-21
The analysis of hemodynamic parameters and functional reactivity of cerebral capillaries is still controversial. To assess the hemodynamic parameters in the cortical capillary network, a generic model was created using 2D voronoi tessellation in which each edge represents a capillary segment. This method is capable of creating an appropriate generic model of cerebral capillary network relating to each part of the brain cortex because the geometric model is able to vary the capillary density. The modeling presented here is based on morphometric parameters extracted from physiological data of the human cortex. The pertinent hemodynamic parameters were obtained by numerical simulation based on effective blood viscosity as a function of hematocrit and microvessel diameter, phase separation and plasma skimming effects. The hemodynamic parameters of capillary networks with two different densities (consistent with the variation of the morphometric data in the human cortical capillary network) were analyzed. The results show pertinent hemodynamic parameters for each model. The heterogeneity (coefficient variation) and the mean value of hematocrits, flow rates and velocities of the both network models were specified. The distributions of blood flow throughout the both models seem to confirm the hypothesis in which all capillaries in a cortical network are recruited at rest (normal condition). The results also demonstrate a discrepancy of the network resistance between two models, which are derived from the difference in the number density of capillary segments between the models. Copyright Â© 2010 Elsevier Ltd. All rights reserved.
Heijmans, Naomi; van Lieshout, Jan; Wensing, Michel
2017-01-13
Although a wide range of preventive and clinical interventions has targeted cardiovascular risk management (CVRM), outcomes remain suboptimal. Therefore, the question is what additional determinants of CVRM and outcomes can be identified and addressed to optimize CVRM. In this study, we aimed to identify new perspectives for improving healthcare delivery and explored associations between information exchange networks of health care providers and evidence-based CVRM. This observational study was performed parallel to a randomized clinical trial which aimed to improve professional performance of practice nurses in the Netherlands. Information exchange on medical policy for CVRM ("general information networks") and CVRM for individual patients ("specific information networks") of 180 health professionals in 31 general practices was measured with personalized questionnaires. Medical record audit was performed concerning 1620 patients in these practices to document quality of care delivery and two risk factors (systolic blood pressure (SBP) and LDL cholesterol level). Hypothesized effects of five network characteristics (density, frequency of contact, centrality of CVRM-coordinators, homophily on positive attitudes for treatment target achievement, and presence of an opinion leader for CVRM) constructed on both general and specific information exchange networks were tested and controlled for practice and patient factors using logistic multilevel analyses. Odds for adequate performance were enhanced in practices with an opinion leader for CVRM (OR 2.75, p based CVRM is associated with homophily of clinical attitudes and presence of opinion leaders in primary care teams. These results signal the potential of social networks to be taken into account in further attempts to improve the implementation of evidence-based care for CVRM. Future research is needed to identify and formulate optimal strategies for using opinion leaders to improve CVRM. Future interventions may be
Jacobs, Elizabeth A; Leos, Ginelle Sanchez; Rathouz, Paul J; Fu, Paul
2011-10-01
Language barriers in health care-a large and growing problem in the United States-contribute to disparities in health care quality and outcomes in populations with limited English proficiency. Providing access to adequate interpreter services has been shown to reduce health disparities in these populations. However, many health care organizations do not provide such services because of the perceived high cost. In this observational study we calculated the costs incurred by a group of California public hospitals that formed a network to make trained interpreters available via videoconference and telephone. We found that encounters in this network where interpreters helped patients and providers communicate lasted an average of 10.6 minutes and cost an average of $24.86 per encounter. Such costs should be weighed against the likely alternatives, such as the opportunity costs of having other hospital staff act as ad hoc interpreters; medical errors that could result from inadequate interpretation; and the fact that not providing such services may leave providers out of compliance with federal law. We also discuss ways in which providers could be compensated for providing interpreter services.
The climate4impact platform: Providing, tailoring and facilitating climate model data access
Pagé, Christian; Pagani, Andrea; Plieger, Maarten; Som de Cerff, Wim; Mihajlovski, Andrej; de Vreede, Ernst; Spinuso, Alessandro; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Vega, Manuel; Cofiño, Antonio; d'Anca, Alessandro; Fiore, Sandro; Kolax, Michael
2017-04-01
One of the main objectives of climate4impact is to provide standardized web services and tools that are reusable in other portals. These services include web processing services, web coverage services and web mapping services (WPS, WCS and WMS). Tailored portals can be targeted to specific communities and/or countries/regions while making use of those services. Easier access to climate data is very important for the climate change impact communities. To fulfill this objective, the climate4impact (http://climate4impact.eu/) web portal and services has been developed, targeting climate change impact modellers, impact and adaptation consultants, as well as other experts using climate change data. It provides to users harmonized access to climate model data through tailored services. It features static and dynamic documentation, Use Cases and best practice examples, an advanced search interface, an integrated authentication and authorization system with the Earth System Grid Federation (ESGF), a visualization interface with ADAGUC web mapping tools. In the latest version, statistical downscaling services, provided by the Santander Meteorology Group Downscaling Portal, were integrated. An innovative interface to integrate statistical downscaling services will be released in the upcoming version. The latter will be a big step in bridging the gap between climate scientists and the climate change impact communities. The climate4impact portal builds on the infrastructure of an international distributed database that has been set to disseminate the results from the global climate model results of the Coupled Model Intercomparison project Phase 5 (CMIP5). This database, the ESGF, is an international collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of climate model data. The European FP7 project IS-ENES, Infrastructure for the European Network for Earth System modelling, supports the European
Directory of Open Access Journals (Sweden)
Gilbert E. Pérez
2014-12-01
Full Text Available To avoid the high cost and arduous effort usually associated with field analysis of Wireless Sensor Network (WSN, Modeling and Simulation (M&S is used to predict the behavior and performance of the network. However, the simulation models utilized to imitate real life networks are often used for general purpose. Therefore, they are less likely to provide accurate predictions for different real life networks. In this paper, a comparison methodology based on hypothesis testing is proposed to evaluate and compare simulation output versus real-life network measurements. Performance related parameters such as traffic generation rates and goodput rates for a small WSN are considered. To execute the comparison methodology, a "Comparison Tool", composed of MATLAB scripts is developed and used. The comparison tool demonstrates the need for model verification and the analysis of good agreements between the simulation and empirical measurements.
Rolls, David A.; Wang, Peng; McBryde, Emma; Pattison, Philippa; Robins, Garry
2015-01-01
We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR) epidemic dynamics. The types of network models are exponential random graph models (ERGMs) and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a “hidden population”. In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model) and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure. PMID:26555701
Constitutive Modelling of INCONEL 718 using Artificial Neural Network
Abiriand Bhekisipho Twala, Olufunminiyi
2017-08-01
Artificial neural network is used to model INCONEL 718 in this paper. The model accounts for precipitate hardening in the alloy. The input variables for the neural network model are strain, strain rate, temperature and microstructure state. The output variable is the flow stress. The early stopping technique is combined with Bayesian regularization process in training the network. Sample and non-sample measurement data were taken from the literature. The model predictions of flow stress of the alloy are in good agreement with experimental measurements.
Modeling Temporal Evolution and Multiscale Structure in Networks
DEFF Research Database (Denmark)
Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard
2013-01-01
-point model to account for the temporal evolution of each vertex. We demonstrate that our model is able to infer time-varying multiscale structure in synthetic as well as three real world time-evolving complex networks. Our modeling of the temporal evolution of hierarchies brings new insights......Many real-world networks exhibit both temporal evolution and multiscale structure. We propose a model for temporally correlated multifurcating hierarchies in complex networks which jointly capture both effects. We use the Gibbs fragmentation tree as prior over multifurcating trees and a change...
Gallagher, H. Colin; Robins, Garry
2015-01-01
As part of the shift within second language acquisition (SLA) research toward complex systems thinking, researchers have called for investigations of social network structure. One strand of social network analysis yet to receive attention in SLA is network statistical models, whereby networks are explained in terms of smaller substructures of…
Cache-enabled small cell networks: modeling and tradeoffs.
Baştuǧ, Ejder; Bennis, Mehdi; Kountouris, Marios; Debbah, Mérouane
We consider a network model where small base stations (SBSs) have caching capabilities as a means to alleviate the backhaul load and satisfy users' demand. The SBSs are stochastically distributed over the plane according to a Poisson point process (PPP) and serve their users either (i) by bringing the content from the Internet through a finite rate backhaul or (ii) by serving them from the local caches. We derive closed-form expressions for the outage probability and the average delivery rate as a function of the signal-to-interference-plus-noise ratio (SINR), SBS density, target file bitrate, storage size, file length, and file popularity. We then analyze the impact of key operating parameters on the system performance. It is shown that a certain outage probability can be achieved either by increasing the number of base stations or the total storage size. Our results and analysis provide key insights into the deployment of cache-enabled small cell networks (SCNs), which are seen as a promising solution for future heterogeneous cellular networks.
A Survey of Access Control Models in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Htoo Aung Maw
2014-06-01
Full Text Available Wireless sensor networks (WSNs have attracted considerable interest in the research community, because of their wide range of applications. However, due to the distributed nature of WSNs and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. Resource constraints in sensor nodes mean that security mechanisms with a large overhead of computation and communication are impractical to use in WSNs; security in sensor networks is, therefore, a challenge. Access control is a critical security service that offers the appropriate access privileges to legitimate users and prevents illegitimate users from unauthorized access. However, access control has not received much attention in the context of WSNs. This paper provides an overview of security threats and attacks, outlines the security requirements and presents a state-of-the-art survey on access control models, including a comparison and evaluation based on their characteristics in WSNs. Potential challenging issues for access control schemes in WSNs are also discussed.
Optical Neural Network Models Applied To Logic Program Execution
Stormon, Charles D.
1988-05-01
Logic programming is being used extensively by Artificial Intelligence researchers to solve problems including natural language processing and expert systems. These languages, of which Prolog is the most widely used, promise to revolutionize software engineering, but much greater performance is needed. Researchers have demonstrated the applicability of neural network models to the solution of certain NP-complete problems, but these methods are not obviously applicable to the execution of logic programs. This paper outlines the use of neural networks in four aspects of the logic program execution cycle, and discusses results of a simulation of three of these. Four neural network functional units are described, called the substitution agent, the clause filter, the structure processor, and the heuristics generator, respectively. Simulation results suggest that the system described may provide several orders of magnitude improvement in execution speed for large logic programs. However, practical implementation of the proposed architecture will require the application of optical computing techniques due to the large number of neurons required, and the need for massive, adaptive connectivity.
Modeling the propagation of mobile malware on complex networks
Liu, Wanping; Liu, Chao; Yang, Zheng; Liu, Xiaoyang; Zhang, Yihao; Wei, Zuxue
2016-08-01
In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.
Multi-Stratum Networks: toward a unified model of on-line identities
DEFF Research Database (Denmark)
Rossi, Luca; Magnani, Matteo
2012-01-01
interacting to several communities active on various technological infrastructures like Twitter, Facebook, YouTube or FourSquare and with distinct social objectives. This constitutes a complex network of interconnected networks where users' identities are spread and where information propagates navigating...... through different communities and social platforms. In this article we introduce a model for this layered scenario that we call multi-stratum network. Through a theoretical discussion and the analysis of real-world data we show how not only focusing on a single network may provide a very partial...
Zhang, Yan; Zheng, Hongmei; Chen, Bin; Yang, Naijin
2013-06-01
An important and practical pattern of industrial symbiosis is rapidly developing: eco-industrial parks. In this study, we used social network analysis to study the network connectedness (i.e., the proportion of the theoretical number of connections that had been achieved) and related attributes of these hybrid ecological and industrial symbiotic systems. This approach provided insights into details of the network's interior and analyzed the overall degree of connectedness and the relationships among the nodes within the network. We then characterized the structural attributes of the network and subnetwork nodes at two levels (core and periphery), thereby providing insights into the operational problems within each eco-industrial park. We chose ten typical ecoindustrial parks in China and around the world and compared the degree of network connectedness of these systems that resulted from exchanges of products, byproducts, and wastes. By analyzing the density and nodal degree, we determined the relative power and status of the nodes in these networks, as well as other structural attributes such as the core-periphery structure and the degree of sub-network connectedness. The results reveal the operational problems created by the structure of the industrial networks and provide a basis for improving the degree of completeness, thereby increasing their potential for sustainable development and enriching the methods available for the study of industrial symbiosis.
Queueing network model for obstetric patient flow in a hospital.
Takagi, Hideaki; Kanai, Yuta; Misue, Kazuo
2016-03-03
A queueing network is used to model the flow of patients in a hospital using the observed admission rate of patients and the histogram for the length of stay for patients in each ward. A complete log of orders for every movement of all patients from room to room covering two years was provided to us by the Medical Information Department of the University of Tsukuba Hospital in Japan. We focused on obstetric patients, who are generally hospitalized at random times throughout the year, and we analyzed the patient flow probabilistically. On admission, each obstetric patient is assigned to a bed in one of the two wards: one for normal delivery and the other for high-risk delivery. Then, the patient may be transferred between the two wards before discharge. We confirm Little's law of queueing theory for the patient flow in each ward. Next, we propose a new network model of M/G/ ∞ and M/M/ m queues to represent the flow of these patients, which is used to predict the probability distribution for the number of patients staying in each ward at the nightly census time. Although our model is a very rough and simplistic approximation of the real patient flow, the predicted probability distribution shows good agreement with the observed data. The proposed method can be used for capacity planning of hospital wards to predict future patient load in each ward.
Mashup Model and Verification Using Mashup Processing Network
Zahoor, Ehtesham; Perrin, Olivier; Godart, Claude
Mashups are defined to be lightweight Web applications aggregating data from different Web services, built using ad-hoc composition and being not concerned with long term stability and robustness. In this paper we present a pattern based approach, called Mashup Processing Network (MPN). The idea is based on Event Processing Network and is supposed to facilitate the creation, modeling and the verification of mashups. MPN provides a view of how different actors interact for the mashup development namely the producer, consumer, mashup processing agent and the communication channels. It also supports modeling transformations and validations of data and offers validation of both functional and non-functional requirements, such as reliable messaging and security, that are key issues within the enterprise context. We have enriched the model with a set of processing operations and categorize them into data composition, transformation and validation categories. These processing operations can be seen as a set of patterns for facilitating the mashup development process. MPN also paves a way for realizing Mashup Oriented Architecture where mashups along with services are used as building blocks for application development.
A Markov model for the temporal dynamics of balanced random networks of finite size
Lagzi, Fereshteh; Rotter, Stefan
2014-01-01
The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between
Petropoulos, G.; Willems, Bert
2017-01-01
Coordinating the timing of new production facilities is one of the challenges of liberalized power sectors. It is complicated by the presence of transmission bottlenecks, oligopolistic competition and the unknown prospects of low-carbon technologies. We build a model encompassing a late and early
Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons
Rigatos, Gerasimos G
2015-01-01
This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.
The Everglades Depth Estimation Network (EDEN) surface-water model, version 2
Telis, Pamela A.; Xie, Zhixiao; Liu, Zhongwei; Li, Yingru; Conrads, Paul
2015-01-01
The Everglades Depth Estimation Network (EDEN) is an integrated network of water-level gages, interpolation models that generate daily water-level and water-depth data, and applications that compute derived hydrologic data across the freshwater part of the greater Everglades landscape. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN in order for EDEN to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan.
Dynamical complexity in the perception-based network formation model
Jo, Hang-Hyun; Moon, Eunyoung
2016-12-01
Many link formation mechanisms for the evolution of social networks have been successful to reproduce various empirical findings in social networks. However, they have largely ignored the fact that individuals make decisions on whether to create links to other individuals based on cost and benefit of linking, and the fact that individuals may use perception of the network in their decision making. In this paper, we study the evolution of social networks in terms of perception-based strategic link formation. Here each individual has her own perception of the actual network, and uses it to decide whether to create a link to another individual. An individual with the least perception accuracy can benefit from updating her perception using that of the most accurate individual via a new link. This benefit is compared to the cost of linking in decision making. Once a new link is created, it affects the accuracies of other individuals' perceptions, leading to a further evolution of the actual network. As for initial actual networks, we consider both homogeneous and heterogeneous cases. The homogeneous initial actual network is modeled by Erdős-Rényi (ER) random networks, while we take a star network for the heterogeneous case. In any cases, individual perceptions of the actual network are modeled by ER random networks with controllable linking probability. Then the stable link density of the actual network is found to show discontinuous transitions or jumps according to the cost of linking. As the number of jumps is the consequence of the dynamical complexity, we discuss the effect of initial conditions on the number of jumps to find that the dynamical complexity strongly depends on how much individuals initially overestimate or underestimate the link density of the actual network. For the heterogeneous case, the role of the highly connected individual as an information spreader is also discussed.
Directory of Open Access Journals (Sweden)
Taimoor Khan
2014-01-01
Full Text Available In the last one decade, neural networks-based modeling has been used for computing different performance parameters of microstrip antennas because of learning and generalization features. Most of the created neural models are based on software simulation. As the neural networks show massive parallelism inherently, a parallel hardware needs to be created for creating faster computing machine by taking the advantages of the parallelism of the neural networks. This paper demonstrates a generalized neural networks model created on field programmable gate array- (FPGA- based reconfigurable hardware platform for computing different performance parameters of microstrip antennas. Thus, the proposed approach provides a platform for developing low-cost neural network-based FPGA simulators for microwave applications. Also, the results obtained by this approach are in very good agreement with the measured results available in the literature.
Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming
2015-11-17
This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.
A mathematical model for optimization of an integrated network logistic design
Directory of Open Access Journals (Sweden)
Lida Tafaghodi
2011-10-01
Full Text Available In this study, the integrated forward/reverse logistics network is investigated, and a capacitated multi-stage, multi-product logistics network design is proposed by formulating a generalized logistics network problem into a mixed-integer nonlinear programming model (MINLP for minimizing the total cost of the closed-loop supply chain network. Moreover, the proposed model is solved by using optimization solver, which provides the decisions related to the facility location problem, optimum quantity of shipped product, and facility capacity. Numerical results show the power of the proposed MINLP model to avoid th sub-optimality caused by separate design of forward and reverse logistics networks and to handle various transportation modes and periodic demand.
Directory of Open Access Journals (Sweden)
Wei Zhang
2015-11-01
Full Text Available This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.
Huisman, Tijs; Boucherie, Richardus J.; van Dijk, N.M.
2002-01-01
The performance of new railway networks cannot be measured or simulated, as no detailed train schedules are available. Railway infrastructure and capacities are to be determined long before the actual traffic is known. This paper therefore proposes a solvable queueing network model to compute
Multiple-membership multiple-classification models for social network and group dependences.
Tranmer, Mark; Steel, David; Browne, William J
2014-02-01
The social network literature on network dependences has largely ignored other sources of dependence, such as the school that a student attends, or the area in which an individual lives. The multilevel modelling literature on school and area dependences has, in turn, largely ignored social networks. To bridge this divide, a multiple-membership multiple-classification modelling approach for jointly investigating social network and group dependences is presented. This allows social network and group dependences on individual responses to be investigated and compared. The approach is used to analyse a subsample of the Adolescent Health Study data set from the USA, where the response variable of interest is individual level educational attainment, and the three individual level covariates are sex, ethnic group and age. Individual, network, school and area dependences are accounted for in the analysis. The network dependences can be accounted for by including the network as a classification in the model, using various network configurations, such as ego-nets and cliques. The results suggest that ignoring the network affects the estimates of variation for the classifications that are included in the random part of the model (school, area and individual), as well as having some influence on the point estimates and standard errors of the estimates of regression coefficients for covariates in the fixed part of the model. From a substantive perspective, this approach provides a flexible and practical way of investigating variation in an individual level response due to social network dependences, and estimating the share of variation of an individual response for network, school and area classifications.
Stochastic modelling and control of communication networks
Zuraniewski, P.W.
2011-01-01
The unprecedented growth of the Information Technologies sector observed within the past years creates an excellent opportunity to conduct new, exciting and interdisciplinary research. Increasing complexity of the communication networks calls for incorporating rigorously developed and reliable
Analysis and Comparison of Typical Models within Distribution Network Design
DEFF Research Database (Denmark)
Jørgensen, Hans Jacob; Larsen, Allan; Madsen, Oli B.G.
This paper investigates the characteristics of typical optimisation models within Distribution Network Design. During the paper fourteen models known from the literature will be thoroughly analysed. Through this analysis a schematic approach to categorisation of distribution network design models...... for educational purposes. Furthermore, the paper can be seen as a practical introduction to network design modelling as well as a being an art manual or recipe when constructing such a model....... are covered in the categorisation include fixed vs. general networks, specialised vs. general nodes, linear vs. nonlinear costs, single vs. multi commodity, uncapacitated vs. capacitated activities, single vs. multi modal and static vs. dynamic. The models examined address both strategic and tactical planning...
Modeling and interpreting mesoscale network dynamics.
Khambhati, Ankit N; Sizemore, Ann E; Betzel, Richard F; Bassett, Danielle S
2017-06-20
Recent advances in brain imaging techniques, measurement approaches, and storage capacities have provided an unprecedented supply of high temporal resolution neural data. These data present a remarkable opportunity to gain a mechanistic understanding not just of circuit structure, but also of circuit dynamics, and its role in cognition and disease. Such understanding necessitates a description of the raw observations, and a delineation of computational models and mathematical theories that accurately capture fundamental principles behind the observations. Here we review recent advances in a range of modeling approaches that embrace the temporally-evolving interconnected structure of the brain and summarize that structure in a dynamic graph. We describe recent efforts to model dynamic patterns of connectivity, dynamic patterns of activity, and patterns of activity atop connectivity. In the context of these models, we review important considerations in statistical testing, including parametric and non-parametric approaches. Finally, we offer thoughts on careful and accurate interpretation of dynamic graph architecture, and outline important future directions for method development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Improved estimation of energy expenditure by artificial neural network modeling.
Hay, Dean Charles; Wakayama, Akinobu; Sakamura, Ken; Fukashiro, Senshi
2008-12-01
Estimation of energy expenditure in daily living conditions can be a tool for clinical assessment of health status, as well as a self-measure of lifestyle and general activity levels. Criterion measures are either prohibitively expensive or restricted to laboratory settings. Portable devices (heart rate monitors, pedometers) have gained recent popularity, but accuracy of the prediction equations remains questionable. This study applied an artificial neural network modeling approach to the problem of estimating energy expenditure with different dynamic inputs (accelerometry, heart rate above resting (HRar), and electromyography (EMG)). Nine feed-forward back-propagation models were trained, with the goal of minimizing the mean squared error (MSE) of the training datasets. Model 1 (accelerometry only) and model 2 (HRar only) performed poorly and had significantly greater MSE than all other models (p energy expenditure for models 3 to 9 ranged from 0.745 to 0.817. Analysis of mean error within specific movement categories indicates that EMG models may be better at predicting higher-intensity energy expenditure, but combined accelerometry and HRar provides an economical solution, with sufficient accuracy.
Bridging groundwater models and decision support with a Bayesian network
Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert
2013-01-01
Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.
Information Dynamics in Networks: Models and Algorithms
2016-09-13
ICDCS). 29-JUN-15, Columbus, OH, USA. : , . Value-Based Network Externalities and Optimal Auction Design, Conference on Web and Internet Economics...NAME Total Number: NAME Total Number: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: ...... ...... Inventions (DD882) Scientific Progress In...Value-based network externalities and optimal auction design. In Web and Internet Economics - 10th International Conference, WINE 2014, Beijing, China, December 14-17, pages 147–160, 2014. 6
Home-Network Security Model in Ubiquitous Environment
Dong-Young Yoo; Jong-Whoi Shin; Jin-Young Choi
2007-01-01
Social interest and demand on Home-Network has been increasing greatly. Although various services are being introduced to respond to such demands, they can cause serious security problems when linked to the open network such as Internet. This paper reviews the security requirements to protect the service users with assumption that the Home-Network environment is connected to Internet and then proposes the security model based on the requirement. The proposed security mode...
A Three-Dimensional Computational Model of Collagen Network Mechanics
Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi
2014-01-01
Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649