WorldWideScience

Sample records for network learn activities

  1. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  2. Learning Networks, Networked Learning

    NARCIS (Netherlands)

    Sloep, Peter; Berlanga, Adriana

    2010-01-01

    Sloep, P. B., & Berlanga, A. J. (2011). Learning Networks, Networked Learning [Redes de Aprendizaje, Aprendizaje en Red]. Comunicar, XIX(37), 55-63. Retrieved from http://dx.doi.org/10.3916/C37-2011-02-05

  3. Recommending Learning Activities in Social Network Using Data Mining Algorithms

    Science.gov (United States)

    Mahnane, Lamia

    2017-01-01

    In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). "NSN-AP-CF" processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the…

  4. A review of active learning approaches to experimental design for uncovering biological networks

    Science.gov (United States)

    2017-01-01

    Various types of biological knowledge describe networks of interactions among elementary entities. For example, transcriptional regulatory networks consist of interactions among proteins and genes. Current knowledge about the exact structure of such networks is highly incomplete, and laboratory experiments that manipulate the entities involved are conducted to test hypotheses about these networks. In recent years, various automated approaches to experiment selection have been proposed. Many of these approaches can be characterized as active machine learning algorithms. Active learning is an iterative process in which a model is learned from data, hypotheses are generated from the model to propose informative experiments, and the experiments yield new data that is used to update the model. This review describes the various models, experiment selection strategies, validation techniques, and successful applications described in the literature; highlights common themes and notable distinctions among methods; and identifies likely directions of future research and open problems in the area. PMID:28570593

  5. Investigating the social configuration of a community to understand how networked learning activities take place: The OERu case study

    NARCIS (Netherlands)

    Schreurs, Bieke; Van den Beemt, Antoine; Prinsen, Fleur; De Laat, Maarten; Witthaus, Gaby; Conole, Grainne

    2015-01-01

    Examining how OER (Open Educational Resources) communities come to live, function or learn can support in empowering educators in the use of open educational resources. In this paper we investigate how an OER community functions through its networked learning activities. Networked learning

  6. Homework through a network: designing technologies to support learning activities within the home and between home and school

    OpenAIRE

    Fraser, Katie C.

    2009-01-01

    Government policy and academic research both talk about transforming learning through networked technologies – sharing newly available information about the learning context with new partners to support lifelong learning activities, and giving learners increased power and autonomy. This thesis examines how such learning opportunities might be supported. In order to ground these learning opportunities in current educational activity it studies homework, which is an example of a learning activi...

  7. Learning Networks for Lifelong Learning

    OpenAIRE

    Sloep, Peter

    2009-01-01

    Presentation in a seminar organized by Christopher Hoadley at Penn State University, October 2004.Contains general introduction into the Learning Network Programme and a demonstration of the Netlogo Simulation of a Learning Network.

  8. A Model of Active Ageing through Elder Learning: The Elder Academy Network in Hong Kong

    Science.gov (United States)

    Tam, Maureen

    2013-01-01

    This article presents the Elder Academy (EA) Network as the policy and practice in promoting active ageing through elder learning in Hong Kong. First, the article examines how the change in demographics and the prevalent trend of an ageing population have propelled the government in Hong Kong to tackle issues and challenges brought about by an…

  9. Active semi-supervised learning method with hybrid deep belief networks.

    Science.gov (United States)

    Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong

    2014-01-01

    In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.

  10. Social Learning Networks: From Data Analytics to Active Sensing

    Science.gov (United States)

    2017-10-13

    infeasible for a teaching staff to manage itself. This motivated our more specific investigations into identifying factors associated with these...retweeted sources, 232,000 etc Publication Identifier Type: Issue: 8 Date Published: 8/2/16 2:25PM Peer Reviewed: Publication Status: 1...Power of Networks Publication Identifier Type: ISBN Peer Reviewed: Y Publication Status: 1-Published CONFERENCE PAPERS: Date Received: 02-Nov-2016 Date

  11. Constrained Active Learning for Anchor Link Prediction Across Multiple Heterogeneous Social Networks.

    Science.gov (United States)

    Zhu, Junxing; Zhang, Jiawei; Wu, Quanyuan; Jia, Yan; Zhou, Bin; Wei, Xiaokai; Yu, Philip S

    2017-08-03

    Nowadays, people are usually involved in multiple heterogeneous social networks simultaneously. Discovering the anchor links between the accounts owned by the same users across different social networks is crucial for many important inter-network applications, e.g., cross-network link transfer and cross-network recommendation. Many different supervised models have been proposed to predict anchor links so far, but they are effective only when the labeled anchor links are abundant. However, in real scenarios, such a requirement can hardly be met and most anchor links are unlabeled, since manually labeling the inter-network anchor links is quite costly and tedious. To overcome such a problem and utilize the numerous unlabeled anchor links in model building, in this paper, we introduce the active learning based anchor link prediction problem. Different from the traditional active learning problems, due to the one-to-one constraint on anchor links, if an unlabeled anchor link a = ( u , v ) is identified as positive (i.e., existing), all the other unlabeled anchor links incident to account u or account v will be negative (i.e., non-existing) automatically. Viewed in such a perspective, asking for the labels of potential positive anchor links in the unlabeled set will be rewarding in the active anchor link prediction problem. Various novel anchor link information gain measures are defined in this paper, based on which several constraint active anchor link prediction methods are introduced. Extensive experiments have been done on real-world social network datasets to compare the performance of these methods with state-of-art anchor link prediction methods. The experimental results show that the proposed Mean-entropy-based Constrained Active Learning (MC) method can outperform other methods with significant advantages.

  12. Growth hormone biases amygdala network activation after fear learning

    OpenAIRE

    Gisabella, Barbara; Farah, Shadia; Peng, Xiaoyu; Burgos-Robles, Anthony Noel; Lim, Seh Hong; Goosens, Ki Ann

    2016-01-01

    Prolonged stress exposure is a risk factor for developing posttraumatic stress disorder, a disorder characterized by the ?over-encoding' of a traumatic experience. A potential mechanism by which this occurs is through upregulation of growth hormone (GH) in the amygdala. Here we test the hypotheses that GH promotes the over-encoding of fearful memories by increasing the number of neurons activated during memory encoding and biasing the allocation of neuronal activation, one aspect of the proce...

  13. Growth hormone biases amygdala network activation after fear learning.

    Science.gov (United States)

    Gisabella, B; Farah, S; Peng, X; Burgos-Robles, A; Lim, S H; Goosens, K A

    2016-11-29

    Prolonged stress exposure is a risk factor for developing posttraumatic stress disorder, a disorder characterized by the 'over-encoding' of a traumatic experience. A potential mechanism by which this occurs is through upregulation of growth hormone (GH) in the amygdala. Here we test the hypotheses that GH promotes the over-encoding of fearful memories by increasing the number of neurons activated during memory encoding and biasing the allocation of neuronal activation, one aspect of the process by which neurons compete to encode memories, to favor neurons that have stronger inputs. Viral overexpression of GH in the amygdala increased the number of amygdala cells activated by fear memory formation. GH-overexpressing cells were especially biased to express the immediate early gene c-Fos after fear conditioning, revealing strong autocrine actions of GH in the amygdala. In addition, we observed dramatically enhanced dendritic spine density in GH-overexpressing neurons. These data elucidate a previously unrecognized autocrine role for GH in the regulation of amygdala neuron function and identify specific mechanisms by which chronic stress, by enhancing GH in the amygdala, may predispose an individual to excessive fear memory formation.

  14. Networked professional learning

    NARCIS (Netherlands)

    Sloep, Peter

    2013-01-01

    Sloep, P. B. (2013). Networked professional learning. In A. Littlejohn, & A. Margaryan (Eds.), Technology-enhanced Professional Learning: Processes, Practices and Tools (pp. 97–108). London: Routledge.

  15. Language experience differentiates prefrontal and subcortical activation of the cognitive control network in novel word learning.

    Science.gov (United States)

    Bradley, Kailyn A L; King, Kelly E; Hernandez, Arturo E

    2013-02-15

    The purpose of this study was to examine the cognitive control mechanisms in adult English speaking monolinguals compared to early sequential Spanish-English bilinguals during the initial stages of novel word learning. Functional magnetic resonance imaging during a lexico-semantic task after only 2h of exposure to novel German vocabulary flashcards showed that monolinguals activated a broader set of cortical control regions associated with higher-level cognitive processes, including the supplementary motor area (SMA), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC), as well as the caudate, implicated in cognitive control of language. However, bilinguals recruited a more localized subcortical network that included the putamen, associated more with motor control of language. These results suggest that experience managing multiple languages may differentiate the learning strategy and subsequent neural mechanisms of cognitive control used by bilinguals compared to monolinguals in the early stages of novel word learning. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Classification of ECG beats using deep belief network and active learning.

    Science.gov (United States)

    G, Sayantan; T, Kien P; V, Kadambari K

    2018-04-12

    A new semi-supervised approach based on deep learning and active learning for classification of electrocardiogram signals (ECG) is proposed. The objective of the proposed work is to model a scientific method for classification of cardiac irregularities using electrocardiogram beats. The model follows the Association for the Advancement of medical instrumentation (AAMI) standards and consists of three phases. In phase I, feature representation of ECG is learnt using Gaussian-Bernoulli deep belief network followed by a linear support vector machine (SVM) training in the consecutive phase. It yields three deep models which are based on AAMI-defined classes, namely N, V, S, and F. In the last phase, a query generator is introduced to interact with the expert to label few beats to improve accuracy and sensitivity. The proposed approach depicts significant improvement in accuracy with minimal queries posed to the expert and fast online training as tested on the MIT-BIH Arrhythmia Database and the MIT-BIH Supra-ventricular Arrhythmia Database (SVDB). With 100 queries labeled by the expert in phase III, the method achieves an accuracy of 99.5% in "S" versus all classifications (SVEB) and 99.4% accuracy in "V " versus all classifications (VEB) on MIT-BIH Arrhythmia Database. In a similar manner, it is attributed that an accuracy of 97.5% for SVEB and 98.6% for VEB on SVDB database is achieved respectively. Graphical Abstract Reply- Deep belief network augmented by active learning for efficient prediction of arrhythmia.

  17. Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks

    Science.gov (United States)

    Tsakmalis, Anestis; Chatzinotas, Symeon; Ottersten, Bjorn

    2018-02-01

    In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work.

  18. MGluR5 mediates the interaction between late-LTP, network activity, and learning.

    Directory of Open Access Journals (Sweden)

    Arthur Bikbaev

    2008-05-01

    Full Text Available Hippocampal synaptic plasticity and learning are strongly regulated by metabotropic glutamate receptors (mGluRs and particularly by mGluR5. Here, we investigated the mechanisms underlying mGluR5-modulation of these phenomena. Prolonged pharmacological blockade of mGluR5 with MPEP produced a profound impairment of spatial memory. Effects were associated with 1 a reduction of mGluR1a-expression in the dentate gyrus; 2 impaired dentate gyrus LTP; 3 enhanced CA1-LTP and 4 suppressed theta (5-10 Hz and gamma (30-100 Hz oscillations in the dentate gyrus. Allosteric potentiation of mGluR1 after mGluR5 blockade significantly ameliorated dentate gyrus LTP, as well as suppression of gamma oscillatory activity. CA3-lesioning prevented MPEP effects on CA1-LTP, suggesting that plasticity levels in CA1 are driven by mGluR5-dependent synaptic and network activity in the dentate gyrus. These data support the hypothesis that prolonged mGluR5-inactivation causes altered hippocampal LTP levels and network activity, which is mediated in part by impaired mGluR1-expression in the dentate gyrus. The consequence is impairment of long-term learning.

  19. Learning Networks Distributed Environment

    NARCIS (Netherlands)

    Martens, Harrie; Vogten, Hubert; Koper, Rob; Tattersall, Colin; Van Rosmalen, Peter; Sloep, Peter; Van Bruggen, Jan; Spoelstra, Howard

    2005-01-01

    Learning Networks Distributed Environment is a prototype of an architecture that allows the sharing and modification of learning materials through a number of transport protocols. The prototype implements a p2p protcol using JXTA.

  20. Learning conditional Gaussian networks

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard

    This paper considers conditional Gaussian networks. The parameters in the network are learned by using conjugate Bayesian analysis. As conjugate local priors, we apply the Dirichlet distribution for discrete variables and the Gaussian-inverse gamma distribution for continuous variables, given...... a configuration of the discrete parents. We assume parameter independence and complete data. Further, to learn the structure of the network, the network score is deduced. We then develop a local master prior procedure, for deriving parameter priors in these networks. This procedure satisfies parameter...... independence, parameter modularity and likelihood equivalence. Bayes factors to be used in model search are introduced. Finally the methods derived are illustrated by a simple example....

  1. Where's the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network.

    Directory of Open Access Journals (Sweden)

    Christoph Hartmann

    2015-12-01

    Full Text Available Even in the absence of sensory stimulation the brain is spontaneously active. This background "noise" seems to be the dominant cause of the notoriously high trial-to-trial variability of neural recordings. Recent experimental observations have extended our knowledge of trial-to-trial variability and spontaneous activity in several directions: 1. Trial-to-trial variability systematically decreases following the onset of a sensory stimulus or the start of a motor act. 2. Spontaneous activity states in sensory cortex outline the region of evoked sensory responses. 3. Across development, spontaneous activity aligns itself with typical evoked activity patterns. 4. The spontaneous brain activity prior to the presentation of an ambiguous stimulus predicts how the stimulus will be interpreted. At present it is unclear how these observations relate to each other and how they arise in cortical circuits. Here we demonstrate that all of these phenomena can be accounted for by a deterministic self-organizing recurrent neural network model (SORN, which learns a predictive model of its sensory environment. The SORN comprises recurrently coupled populations of excitatory and inhibitory threshold units and learns via a combination of spike-timing dependent plasticity (STDP and homeostatic plasticity mechanisms. Similar to balanced network architectures, units in the network show irregular activity and variable responses to inputs. Additionally, however, the SORN exhibits sequence learning abilities matching recent findings from visual cortex and the network's spontaneous activity reproduces the experimental findings mentioned above. Intriguingly, the network's behaviour is reminiscent of sampling-based probabilistic inference, suggesting that correlates of sampling-based inference can develop from the interaction of STDP and homeostasis in deterministic networks. We conclude that key observations on spontaneous brain activity and the variability of neural

  2. Micro-Doppler Based Classification of Human Aquatic Activities via Transfer Learning of Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Jinhee Park

    2016-11-01

    Full Text Available Accurate classification of human aquatic activities using radar has a variety of potential applications such as rescue operations and border patrols. Nevertheless, the classification of activities on water using radar has not been extensively studied, unlike the case on dry ground, due to its unique challenge. Namely, not only is the radar cross section of a human on water small, but the micro-Doppler signatures are much noisier due to water drops and waves. In this paper, we first investigate whether discriminative signatures could be obtained for activities on water through a simulation study. Then, we show how we can effectively achieve high classification accuracy by applying deep convolutional neural networks (DCNN directly to the spectrogram of real measurement data. From the five-fold cross-validation on our dataset, which consists of five aquatic activities, we report that the conventional feature-based scheme only achieves an accuracy of 45.1%. In contrast, the DCNN trained using only the collected data attains 66.7%, and the transfer learned DCNN, which takes a DCNN pre-trained on a RGB image dataset and fine-tunes the parameters using the collected data, achieves a much higher 80.3%, which is a significant performance boost.

  3. Causal Learning and Explanation of Deep Neural Networks via Autoencoded Activations

    OpenAIRE

    Harradon, Michael; Druce, Jeff; Ruttenberg, Brian

    2018-01-01

    Deep neural networks are complex and opaque. As they enter application in a variety of important and safety critical domains, users seek methods to explain their output predictions. We develop an approach to explaining deep neural networks by constructing causal models on salient concepts contained in a CNN. We develop methods to extract salient concepts throughout a target network by using autoencoders trained to extract human-understandable representations of network activations. We then bu...

  4. Learning strategies, study habits and social networking activity of undergraduate medical students.

    Science.gov (United States)

    Bickerdike, Andrea; O'Deasmhunaigh, Conall; O'Flynn, Siun; O'Tuathaigh, Colm

    2016-07-17

    To determine learning strategies, study habits, and online social networking use of undergraduates at an Irish medical school, and their relationship with academic performance. A cross-sectional study was conducted in Year 2 and final year undergraduate-entry and graduate-entry students at an Irish medical school. Data about participants' demographics and educational background, study habits (including time management), and use of online media was collected using a self-report questionnaire. Participants' learning strategies were measured using the 18-item Approaches to Learning and Studying Inventory (ALSI). Year score percentage was the measure of academic achievement. The association between demographic/educational factors, learning strategies, study habits, and academic achievement was statistically analysed using regression analysis. Forty-two percent of students were included in this analysis (n=376). A last-minute "cramming" time management study strategy was associated with increased use of online social networks. Learning strategies differed between undergraduate- and graduate-entrants, with the latter less likely to adopt a 'surface approach' and more likely adopt a 'study monitoring' approach. Year score percentage was positively correlated with the 'effort management/organised studying' learning style. Poorer academic performance was associated with a poor time management approach to studying ("cramming") and increased use of the 'surface learning' strategy. Our study demonstrates that effort management and organised studying should be promoted, and surface learning discouraged, as part of any effort to optimise academic performance in medical school. Excessive use of social networking contributes to poor study habits, which are associated with reduced academic achievement.

  5. The Integration of Personal Learning Environments & Open Network Learning Environments

    Science.gov (United States)

    Tu, Chih-Hsiung; Sujo-Montes, Laura; Yen, Cherng-Jyh; Chan, Junn-Yih; Blocher, Michael

    2012-01-01

    Learning management systems traditionally provide structures to guide online learners to achieve their learning goals. Web 2.0 technology empowers learners to create, share, and organize their personal learning environments in open network environments; and allows learners to engage in social networking and collaborating activities. Advanced…

  6. Learning Analytics for Networked Learning Models

    Science.gov (United States)

    Joksimovic, Srecko; Hatala, Marek; Gaševic, Dragan

    2014-01-01

    Teaching and learning in networked settings has attracted significant attention recently. The central topic of networked learning research is human-human and human-information interactions occurring within a networked learning environment. The nature of these interactions is highly complex and usually requires a multi-dimensional approach to…

  7. Research, Boundaries, and Policy in Networked Learning

    DEFF Research Database (Denmark)

    This book presents cutting-edge, peer reviewed research on networked learning organized by three themes: policy in networked learning, researching networked learning, and boundaries in networked learning. The "policy in networked learning" section explores networked learning in relation to policy...... networks, spaces of algorithmic governance and more. The "boundaries in networked learning" section investigates frameworks of students' digital literacy practices, among other important frameworks in digital learning. Lastly, the "research in networked learning" section delves into new research methods...

  8. Language Choice & Global Learning Networks

    Directory of Open Access Journals (Sweden)

    Dennis Sayers

    1995-05-01

    Full Text Available How can other languages be used in conjunction with English to further intercultural and multilingual learning when teachers and students participate in computer-based global learning networks? Two portraits are presented of multilingual activities in the Orillas and I*EARN learning networks, and are discussed as examples of the principal modalities of communication employed in networking projects between distant classes. Next, an important historical precedent --the social controversy which accompanied the introduction of telephone technology at the end of the last century-- is examined in terms of its implications for language choice in contemporary classroom telecomputing projects. Finally, recommendations are offered to guide decision making concerning the role of language choice in promoting collaborative critical inquiry.

  9. Sticking with the nice guy: trait warmth information impairs learning and modulates person perception brain network activity.

    Science.gov (United States)

    Lee, Victoria K; Harris, Lasana T

    2014-12-01

    Social learning requires inferring social information about another person, as well as evaluating outcomes. Previous research shows that prior social information biases decision making and reduces reliance on striatal activity during learning (Delgado, Frank, & Phelps, Nature Neuroscience 8 (11): 1611-1618, 2005). A rich literature in social psychology on person perception demonstrates that people spontaneously infer social information when viewing another person (Fiske & Taylor, 2013) and engage a network of brain regions, including the medial prefrontal cortex, temporal parietal junction, superior temporal sulcus, and precuneus (Amodio & Frith, Nature Reviews Neuroscience, 7(4), 268-277, 2006; Haxby, Gobbini, & Montgomery, 2004; van Overwalle Human Brain Mapping, 30, 829-858, 2009). We investigate the role of these brain regions during social learning about well-established dimensions of person perception-trait warmth and trait competence. We test the hypothesis that activity in person perception brain regions interacts with learning structures during social learning. Participants play an investment game where they must choose an agent to invest on their behalf. This choice is guided by cues signaling trait warmth or trait competence based on framing of monetary returns. Trait warmth information impairs learning about human but not computer agents, while trait competence information produces similar learning rates for human and computer agents. We see increased activation to warmth information about human agents in person perception brain regions. Interestingly, activity in person perception brain regions during the decision phase negatively predicts activity in the striatum during feedback for trait competence inferences about humans. These results suggest that social learning may engage additional processing within person perception brain regions that hampers learning in economic contexts.

  10. Social Interaction in Learning Networks

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    The original publication is available from www.springerlink.com. Sloep, P. (2009). Social Interaction in Learning Networks. In R. Koper (Ed.), Learning Network Services for Professional Development (pp 13-15). Berlin, Germany: Springer Verlag.

  11. Learning Networks for Professional Development & Lifelong Learning

    NARCIS (Netherlands)

    Brouns, Francis; Sloep, Peter

    2009-01-01

    Brouns, F., & Sloep, P. B. (2009). Learning Networks for Professional Development & Lifelong Learning. Presentation of the Learning Network Programme for a Korean delegation of Chonnam National University and Dankook University (researchers dr. Jeeheon Ryu and dr. Minjeong Kim and a Group of PhD and

  12. Network anomaly detection a machine learning perspective

    CERN Document Server

    Bhattacharyya, Dhruba Kumar

    2013-01-01

    With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents mach

  13. Lessons learned from SONOPA : (SOcial Networks for Older adults to Promote an Active life)

    NARCIS (Netherlands)

    Allouch, S. Ben; Jaschinski, C.; Deboeverie, F.; Aghajan, Hamid; Philips, Wilfried

    This paper describes the development and testing of an Ambient Assisted Living (AAL) solution that combines state-of-the- art sensor technology with a social network application to empower elders to stay active, autonomous and socially connected and consequently support and unburden family

  14. Learning Networks for Professional Development & Lifelong Learning

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    Sloep, P. B. (2009). Learning Networks for Professional Development & Lifelong Learning. Presentation at a NeLLL seminar with Etienne Wenger held at the Open Universiteit Nederland. September, 10, 2009, Heerlen, The Netherlands.

  15. Networks of Learning

    Science.gov (United States)

    Bettencourt, Luis; Kaiser, David

    2004-03-01

    Based on an a historically documented example of scientific discovery - Feynman diagrams as the main calculational tool of theoretical high energy Physics - we map the time evolution of the social network of early adopters through in the US, UK, Japan and the USSR. The spread of the technique for total number of users in each region is then modelled in terms of epidemic models, highlighting parallel and divergent aspects of this analogy. We also show that transient social arrangements develop as the idea is introduced and learned, which later disappear as the technique becomes common knowledge. Such early transient is characterized by abnormally low connectivity distribution powers and by high clustering. This interesting early non-equilibrium stage of network evolution is captured by a new dynamical model for network evolution, which coincides in its long time limit with familiar preferential aggregation dynamics.

  16. Lessons learned from SONOPA: (SOcial Networks for Older adults to Promote an Active life)

    OpenAIRE

    Allouch, S. Ben; Jaschinski, C.; Deboeverie, F.; Aghajan, Hamid; Philips, Wilfried

    2016-01-01

    This paper describes the development and testing of an Ambient Assisted Living (AAL) solution that combines state-of-the- art sensor technology with a social network application to empower elders to stay active, autonomous and socially connected and consequently support and unburden family caregivers. From a very early development phase both social scientists and engineers worked together to ensure a holistic approach to the development of the technology. To get a better insight into the need...

  17. Learning in innovation networks: Some simulation experiments

    Science.gov (United States)

    Gilbert, Nigel; Ahrweiler, Petra; Pyka, Andreas

    2007-05-01

    According to the organizational learning literature, the greatest competitive advantage a firm has is its ability to learn. In this paper, a framework for modeling learning competence in firms is presented to improve the understanding of managing innovation. Firms with different knowledge stocks attempt to improve their economic performance by engaging in radical or incremental innovation activities and through partnerships and networking with other firms. In trying to vary and/or to stabilize their knowledge stocks by organizational learning, they attempt to adapt to environmental requirements while the market strongly selects on the results. The simulation experiments show the impact of different learning activities, underlining the importance of innovation and learning.

  18. The Enforcement Of The E-Learning Activities Under The Framework Of ANENT (Asian Network For Education In Nuclear Technology): Blended Leaning And E-Learning

    Energy Technology Data Exchange (ETDEWEB)

    Rho, Sipyo; Nam, Youngmi; Hwang, Hyeseon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The IAEA (International Atomic Energy Agency) had declared the nuclear Knowledge should be managed and reserved to well to prevent cutting form old generation just retiring to young generation who had little interest about nuclear technology. In this background, ANENT (Asian Network for Education in Nuclear Technology)1), supported by the IAEA, had been organized as a partnership among Asian countries in 2004. Presently, including China, Japan, and Korea 19 Member states are joined and it does various activities to share the nuclear science and technology through the yearly coordination meeting, train the trainer workshop for to enforce e-Learning activities among member states. The IAEA (International Atomic Energy Agency) had declared the nuclear Knowledge should be managed and reserved to well to prevent cutting form old generation just retiring to young generation who had little interest about nuclear technology. In this background, ANENT (Asian Network for Education in Nuclear Technology)1), supported by the IAEA, had been organized as a partnership among Asian countries in 2004. Presently, including China, Japan, and Korea 19 Member states are joined and it does various activities to share the nuclear science and technology through the yearly coordination meeting, train the trainer workshop for to enforce e-Learning activities among member states.

  19. The Enforcement Of The E-Learning Activities Under The Framework Of ANENT (Asian Network For Education In Nuclear Technology): Blended Leaning And E-Learning

    International Nuclear Information System (INIS)

    Rho, Sipyo; Nam, Youngmi; Hwang, Hyeseon

    2016-01-01

    The IAEA (International Atomic Energy Agency) had declared the nuclear Knowledge should be managed and reserved to well to prevent cutting form old generation just retiring to young generation who had little interest about nuclear technology. In this background, ANENT (Asian Network for Education in Nuclear Technology)1), supported by the IAEA, had been organized as a partnership among Asian countries in 2004. Presently, including China, Japan, and Korea 19 Member states are joined and it does various activities to share the nuclear science and technology through the yearly coordination meeting, train the trainer workshop for to enforce e-Learning activities among member states. The IAEA (International Atomic Energy Agency) had declared the nuclear Knowledge should be managed and reserved to well to prevent cutting form old generation just retiring to young generation who had little interest about nuclear technology. In this background, ANENT (Asian Network for Education in Nuclear Technology)1), supported by the IAEA, had been organized as a partnership among Asian countries in 2004. Presently, including China, Japan, and Korea 19 Member states are joined and it does various activities to share the nuclear science and technology through the yearly coordination meeting, train the trainer workshop for to enforce e-Learning activities among member states

  20. Redes de aprendizaje, aprendizaje en red Learning Networks, Networked Learning

    Directory of Open Access Journals (Sweden)

    Peter Sloep

    2011-10-01

    Full Text Available Las redes de aprendizaje (Learning Networks son redes sociales en línea mediante las cuales los participantes comparten información y colaboran para crear conocimiento. De esta manera, estas redes enriquecen la experiencia de aprendizaje en cualquier contexto de aprendizaje, ya sea de educación formal (en escuelas o universidades o educación no-formal (formación profesional. Aunque el concepto de aprendizaje en red suscita el interés de diferentes actores del ámbito educativo, aún existen muchos interrogantes sobre cómo debe diseñarse el aprendizaje en red para facilitar adecuadamente la educación y la formación. El artículo toma este interrogante como punto de partida, y posteriormente aborda cuestiones como la dinámica de la evolución de las redes de aprendizaje, la importancia de fomentar la confianza entre los participantes y el papel central que desempeña el perfil de usuario en la construcción de la confianza, así como el apoyo entre compañeros. Además, se elabora el proceso de diseño de una red de aprendizaje, y se describe un ejemplo en el contexto universitario. Basándonos en la investigación que actualmente se lleva a cabo en nuestro propio centro y en otros lugares, el capítulo concluye con una visión del futuro de las redes de aprendizaje.Learning Networks are on-line social networks through which users share knowledge with each other and jointly develop new knowledge. This way, Learning Networks may enrich the experience of formal, school-based learning and form a viable setting for professional development. Although networked learning enjoys an increasing interest, many questions remain on how exactly learning in such networked contexts can contribute to successful education and training. Put differently, how should networked learning be designed best to facilitate education and training? Taking this as its point of departure, the chapter addresses such issues as the dynamic evolution of Learning Networks

  1. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  2. Q-Learning and p-persistent CSMA based rendezvous protocol for cognitive radio networks operating with shared spectrum activity

    Science.gov (United States)

    Watson, Clifton L.; Biswas, Subir

    2014-06-01

    With an increasing demand for spectrum, dynamic spectrum access (DSA) has been proposed as viable means for providing the flexibility and greater access to spectrum necessary to meet this demand. Within the DSA concept, unlicensed secondary users temporarily "borrow" or access licensed spectrum, while respecting the licensed primary user's rights to that spectrum. As key enablers for DSA, cognitive radios (CRs) are based on software-defined radios which allow them to sense, learn, and adapt to the spectrum environment. These radios can operate independently and rapidly switch channels. Thus, the initial setup and maintenance of cognitive radio networks are dependent upon the ability of CR nodes to find each other, in a process known as rendezvous, and create a link on a common channel for the exchange of data and control information. In this paper, we propose a novel rendezvous protocol, known as QLP, which is based on Q-learning and the p-persistent CSMA protocol. With the QLP protocol, CR nodes learn which channels are best for rendezvous and thus adapt their behavior to visit those channels more frequently. We demonstrate through simulation that the QLP protocol provides a rendevous capability for DSA environments with different dynamics of PU activity, while attempting to achieve the following performance goals: (1) minimize the average time-to-rendezvous, (2) maximize system throughput, (3) minimize primary user interference, and (4) minimize collisions among CR nodes.

  3. Edmodo social learning network for elementary school mathematics learning

    Science.gov (United States)

    Ariani, Y.; Helsa, Y.; Ahmad, S.; Prahmana, RCI

    2017-12-01

    A developed instructional media can be as printed media, visual media, audio media, and multimedia. The development of instructional media can also take advantage of technological development by utilizing Edmodo social network. This research aims to develop a digital classroom learning model using Edmodo social learning network for elementary school mathematics learning which is practical, valid and effective in order to improve the quality of learning activities. The result of this research showed that the prototype of mathematics learning device for elementary school students using Edmodo was in good category. There were 72% of students passed the assessment as a result of Edmodo learning. Edmodo has become a promising way to engage students in a collaborative learning process.

  4. Learning and coding in biological neural networks

    Science.gov (United States)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and

  5. Entropy Learning in Neural Network

    Directory of Open Access Journals (Sweden)

    Geok See Ng

    2017-12-01

    Full Text Available In this paper, entropy term is used in the learning phase of a neural network.  As learning progresses, more hidden nodes get into saturation.  The early creation of such hidden nodes may impair generalisation.  Hence entropy approach is proposed to dampen the early creation of such nodes.  The entropy learning also helps to increase the importance of relevant nodes while dampening the less important nodes.  At the end of learning, the less important nodes can then be eliminated to reduce the memory requirements of the neural network.

  6. Contingent factors affecting network learning

    OpenAIRE

    Peters, Linda D.; Pressey, Andrew D.; Johnston, Wesley J.

    2016-01-01

    To increase understanding of the impact of individuals on organizational learning processes, this paper explores the impact of individual cognition and action on the absorptive capacity process of the wider network. In particular this study shows how contingent factors such as social integration mechanisms and power relationships influence how network members engage in, and benefit from, learning. The use of cognitive consistency and sensemaking theory enables examination of how these conting...

  7. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.

    Science.gov (United States)

    Zhang, Xu; Foderaro, Greg; Henriquez, Craig; Ferrari, Silvia

    2018-03-01

    Recent developments in neural stimulation and recording technologies are providing scientists with the ability of recording and controlling the activity of individual neurons in vitro or in vivo, with very high spatial and temporal resolution. Tools such as optogenetics, for example, are having a significant impact in the neuroscience field by delivering optical firing control with the precision and spatiotemporal resolution required for investigating information processing and plasticity in biological brains. While a number of training algorithms have been developed to date for spiking neural network (SNN) models of biological neuronal circuits, exiting methods rely on learning rules that adjust the synaptic strengths (or weights) directly, in order to obtain the desired network-level (or functional-level) performance. As such, they are not applicable to modifying plasticity in biological neuronal circuits, in which synaptic strengths only change as a result of pre- and post-synaptic neuron firings or biological mechanisms beyond our control. This paper presents a weight-free training algorithm that relies solely on adjusting the spatiotemporal delivery of neuron firings in order to optimize the network performance. The proposed weight-free algorithm does not require any knowledge of the SNN model or its plasticity mechanisms. As a result, this training approach is potentially realizable in vitro or in vivo via neural stimulation and recording technologies, such as optogenetics and multielectrode arrays, and could be utilized to control plasticity at multiple scales of biological neuronal circuits. The approach is demonstrated by training SNNs with hundreds of units to control a virtual insect navigating in an unknown environment.

  8. Reflections on Active Networking

    Science.gov (United States)

    2005-01-01

    with a Software Switch for Active Networks ”. We had initially called the project “ SoftSwitch ”, but after some concerns David Farber raised that this...Reflections on Active Networking Jonathan M. Smith CIS Department, University of Pennsylvania jms@cis.upenn.edu Abstract Interactions among...telecommunications networks , computers, and other peripheral devices have been of interest since the earliest distributed computing systems. A key

  9. Changing Conditions for Networked Learning?

    DEFF Research Database (Denmark)

    Ryberg, Thomas

    2011-01-01

    in describing the novel pedagogical potentials of these new technologies and practices (e.g. in debates around virtual learning environments versus personal learning environment). Likewise, I shall briefly discuss the notions of ‘digital natives’ or ‘the net generation’ from a critical perspective...... of social technologies. I argue that we are seeing the emergence of new architectures and scales of participation, collaboration and networking e.g. through interesting formations of learning networks at different levels of scale, for different purposes and often bridging boundaries such as formal...

  10. Interconnecting Networks of Practice for Professional Learning

    Directory of Open Access Journals (Sweden)

    Julie Mackey

    2011-03-01

    Full Text Available The article explores the complementary connections between communities of practice and the ways in which individuals orchestrate their engagement with others to further their professional learning. It does so by reporting on part of a research project conducted in New Zealand on teachers’ online professional learning in a university graduate diploma program on ICT education. Evolving from social constructivist pedagogy for online professional development, the research describes how teachers create their own networks of practice as they blend online and offline interactions with fellow learners and workplace colleagues. Teachers’ perspectives of their professional learning activities challenge the way universities design formal online learning communities and highlight the potential for networked learning in the zones and intersections between professional practice and study.The article extends the concepts of Lave and Wenger’s (1991 communities of practice social theory of learning by considering the role participants play in determining their engagement and connections in and across boundaries between online learning communities and professional practice. It provides insights into the applicability of connectivist concepts for developing online pedagogies to promote socially networked learning and for emphasising the role of the learner in defining their learning pathways.

  11. Interpretable Active Learning

    OpenAIRE

    Phillips, Richard L.; Chang, Kyu Hyun; Friedler, Sorelle A.

    2017-01-01

    Active learning has long been a topic of study in machine learning. However, as increasingly complex and opaque models have become standard practice, the process of active learning, too, has become more opaque. There has been little investigation into interpreting what specific trends and patterns an active learning strategy may be exploring. This work expands on the Local Interpretable Model-agnostic Explanations framework (LIME) to provide explanations for active learning recommendations. W...

  12. Distance learning, problem based learning and dynamic knowledge networks.

    Science.gov (United States)

    Giani, U; Martone, P

    1998-06-01

    This paper is an attempt to develop a distance learning model grounded upon a strict integration of problem based learning (PBL), dynamic knowledge networks (DKN) and web tools, such as hypermedia documents, synchronous and asynchronous communication facilities, etc. The main objective is to develop a theory of distance learning based upon the idea that learning is a highly dynamic cognitive process aimed at connecting different concepts in a network of mutually supporting concepts. Moreover, this process is supposed to be the result of a social interaction that has to be facilitated by the web. The model was tested by creating a virtual classroom of medical and nursing students and activating a learning session on the concept of knowledge representation in health sciences.

  13. Learning Python network programming

    CERN Document Server

    Sarker, M O Faruque

    2015-01-01

    If you're a Python developer or a system administrator with Python experience and you're looking to take your first steps in network programming, then this book is for you. Basic knowledge of Python is assumed.

  14. Unraveling networked learning initiatives: an analytic framework

    NARCIS (Netherlands)

    Rusman, Ellen; Prinsen, Fleur; Vermeulen, Marjan

    2016-01-01

    Networked learning happens naturally within the social systems of which we are all part. However, in certain circumstances individuals may want to actively take initiative to initiate interaction with others they are not yet regularly in exchange with. This may be the case when external influences

  15. Active Learning Methods

    Science.gov (United States)

    Zayapragassarazan, Z.; Kumar, Santosh

    2012-01-01

    Present generation students are primarily active learners with varied learning experiences and lecture courses may not suit all their learning needs. Effective learning involves providing students with a sense of progress and control over their own learning. This requires creating a situation where learners have a chance to try out or test their…

  16. Blending Formal and Informal Learning Networks for Online Learning

    Science.gov (United States)

    Czerkawski, Betül C.

    2016-01-01

    With the emergence of social software and the advance of web-based technologies, online learning networks provide invaluable opportunities for learning, whether formal or informal. Unlike top-down, instructor-centered, and carefully planned formal learning settings, informal learning networks offer more bottom-up, student-centered participatory…

  17. Personalizing Access to Learning Networks

    DEFF Research Database (Denmark)

    Dolog, Peter; Simon, Bernd; Nejdl, Wolfgang

    2008-01-01

    In this article, we describe a Smart Space for Learning™ (SS4L) framework and infrastructure that enables personalized access to distributed heterogeneous knowledge repositories. Helping a learner to choose an appropriate learning resource or activity is a key problem which we address in this fra......In this article, we describe a Smart Space for Learning™ (SS4L) framework and infrastructure that enables personalized access to distributed heterogeneous knowledge repositories. Helping a learner to choose an appropriate learning resource or activity is a key problem which we address...... in this framework, enabling personalized access to federated learning repositories with a vast number of learning offers. Our infrastructure includes personalization strategies both at the query and the query results level. Query rewriting is based on learning and language preferences; rule-based and ranking...

  18. Collaborative Supervised Learning for Sensor Networks

    Science.gov (United States)

    Wagstaff, Kiri L.; Rebbapragada, Umaa; Lane, Terran

    2011-01-01

    Collaboration methods for distributed machine-learning algorithms involve the specification of communication protocols for the learners, which can query other learners and/or broadcast their findings preemptively. Each learner incorporates information from its neighbors into its own training set, and they are thereby able to bootstrap each other to higher performance. Each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. After being seeded with an initial labeled training set, each learner proceeds to learn in an iterative fashion. New data is collected and classified. The learner can then either broadcast its most confident classifications for use by other learners, or can query neighbors for their classifications of its least confident items. As such, collaborative learning combines elements of both passive (broadcast) and active (query) learning. It also uses ideas from ensemble learning to combine the multiple responses to a given query into a single useful label. This approach has been evaluated against current non-collaborative alternatives, including training a single classifier and deploying it at all nodes with no further learning possible, and permitting learners to learn from their own most confident judgments, absent interaction with their neighbors. On several data sets, it has been consistently found that active collaboration is the best strategy for a distributed learner network. The main advantages include the ability for learning to take place autonomously by collaboration rather than by requiring intervention from an oracle (usually human), and also the ability to learn in a distributed environment, permitting decisions to be made in situ and to yield faster response time.

  19. Building and Sustaining Learning Networks.

    OpenAIRE

    Bessant, John; Barnes, Justin; Morris, Mike; Kaplinsky, Raphael

    2003-01-01

    Research suggests that there are a number of potential advantages to learning in some form of network which include being able to benefit from other’s experience, being able to reduce the risks in experimentation, being able to engage in challenging reflection and in making use of peer group support. Examples of such configurations can be found in regional clusters, in sector groupings, in heterogeneous groups sharing a common topic of interest, in user groups concerned with le...

  20. Adaptive competitive learning neural networks

    Directory of Open Access Journals (Sweden)

    Ahmed R. Abas

    2013-11-01

    Full Text Available In this paper, the adaptive competitive learning (ACL neural network algorithm is proposed. This neural network not only groups similar input feature vectors together but also determines the appropriate number of groups of these vectors. This algorithm uses a new proposed criterion referred to as the ACL criterion. This criterion evaluates different clustering structures produced by the ACL neural network for an input data set. Then, it selects the best clustering structure and the corresponding network architecture for this data set. The selected structure is composed of the minimum number of clusters that are compact and balanced in their sizes. The selected network architecture is efficient, in terms of its complexity, as it contains the minimum number of neurons. Synaptic weight vectors of these neurons represent well-separated, compact and balanced clusters in the input data set. The performance of the ACL algorithm is evaluated and compared with the performance of a recently proposed algorithm in the literature in clustering an input data set and determining its number of clusters. Results show that the ACL algorithm is more accurate and robust in both determining the number of clusters and allocating input feature vectors into these clusters than the other algorithm especially with data sets that are sparsely distributed.

  1. Collective Learning in Games through Social Networks

    NARCIS (Netherlands)

    Kosterman, S.; Gierasimczuk, N.; Armentano, M.G.; Monteserin, A.; Tang, J.; Yannibelli, V.

    2015-01-01

    This paper argues that combining social networks communication and games can positively influence the learning behavior of players. We propose a computational model that combines features of social network learning (communication) and game-based learning (strategy reinforcement). The focus is on

  2. Learning Bayesian networks for discrete data

    KAUST Repository

    Liang, Faming; Zhang, Jian

    2009-01-01

    Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly

  3. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    van den Bergh, J.; Schutz, J.; Chirayath, V.; Li, A.

    2017-12-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Net's convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign.Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users' input against pre-classified coral imagery to gauge their accuracy and utilizes in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  4. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    van den Bergh, Jarrett; Schutz, Joey; Li, Alan; Chirayath, Ved

    2017-01-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Nets convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign. Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users input against pre-classified coral imagery to gauge their accuracy and utilize in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  5. Identifying Gatekeepers in Online Learning Networks

    Science.gov (United States)

    Gursakal, Necmi; Bozkurt, Aras

    2017-01-01

    The rise of the networked society has not only changed our perceptions but also the definitions, roles, processes and dynamics of online learning networks. From offline to online worlds, networks are everywhere and gatekeepers are an important entity in these networks. In this context, the purpose of this paper is to explore gatekeeping and…

  6. Networks and learning in game theory

    NARCIS (Netherlands)

    Kets, W.

    2008-01-01

    This work concentrates on two topics, networks and game theory, and learning in games. The first part of this thesis looks at network games and the role of incomplete information in such games. It is assumed that players are located on a network and interact with their neighbors in the network.

  7. Co-Operative Learning and Development Networks.

    Science.gov (United States)

    Hodgson, V.; McConnell, D.

    1995-01-01

    Discusses the theory, nature, and benefits of cooperative learning. Considers the Cooperative Learning and Development Network (CLDN) trial in the JITOL (Just in Time Open Learning) project and examines the relationship between theories about cooperative learning and the reality of a group of professionals participating in a virtual cooperative…

  8. From learning objects to learning activities

    DEFF Research Database (Denmark)

    Dalsgaard, Christian

    2005-01-01

    This paper discusses and questions the current metadata standards for learning objects from a pedagogical point of view. From a social constructivist approach, the paper discusses how learning objects can support problem based, self-governed learning activities. In order to support this approach......, it is argued that it is necessary to focus on learning activities rather than on learning objects. Further, it is argued that descriptions of learning objectives and learning activities should be separated from learning objects. The paper presents a new conception of learning objects which supports problem...... based, self-governed activities. Further, a new way of thinking pedagogy into learning objects is introduced. It is argued that a lack of pedagogical thinking in learning objects is not solved through pedagogical metadata. Instead, the paper suggests the concept of references as an alternative...

  9. Learning of N-layers neural network

    Directory of Open Access Journals (Sweden)

    Vladimír Konečný

    2005-01-01

    Full Text Available In the last decade we can observe increasing number of applications based on the Artificial Intelligence that are designed to solve problems from different areas of human activity. The reason why there is so much interest in these technologies is that the classical way of solutions does not exist or these technologies are not suitable because of their robustness. They are often used in applications like Business Intelligence that enable to obtain useful information for high-quality decision-making and to increase competitive advantage.One of the most widespread tools for the Artificial Intelligence are the artificial neural networks. Their high advantage is relative simplicity and the possibility of self-learning based on set of pattern situations.For the learning phase is the most commonly used algorithm back-propagation error (BPE. The base of BPE is the method minima of error function representing the sum of squared errors on outputs of neural net, for all patterns of the learning set. However, while performing BPE and in the first usage, we can find out that it is necessary to complete the handling of the learning factor by suitable method. The stability of the learning process and the rate of convergence depend on the selected method. In the article there are derived two functions: one function for the learning process management by the relative great error function value and the second function when the value of error function approximates to global minimum.The aim of the article is to introduce the BPE algorithm in compact matrix form for multilayer neural networks, the derivation of the learning factor handling method and the presentation of the results.

  10. Active Learning in Engineering Education: A (Re)Introduction

    Science.gov (United States)

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network "Active Learning in Engineering Education" (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE are centred on the vision that learners…

  11. Theoretical Foundations of Active Learning

    Science.gov (United States)

    2009-05-01

    I study the informational complexity of active learning in a statistical learning theory framework. Specifically, I derive bounds on the rates of...convergence achievable by active learning , under various noise models and under general conditions on the hypothesis class. I also study the theoretical...advantages of active learning over passive learning, and develop procedures for transforming passive learning algorithms into active learning algorithms

  12. Networking for Learning The role of Networking in a Lifelong Learner's Professional Development

    OpenAIRE

    Rajagopal, Kamakshi

    2016-01-01

    This dissertation discusses the role the social activity of networking plays in lifelong learners’ professional and personal continuous development. The main hypothesis of this thesis is that networking is a learning strategy for lifelong learners, in which conversations are key activities through which they reassess their held thoughts and make sense of their experiences together with others.

  13. Networking for Learning The role of Networking in a Lifelong Learner's Professional Development

    NARCIS (Netherlands)

    Rajagopal, Kamakshi

    2016-01-01

    This dissertation discusses the role the social activity of networking plays in lifelong learners’ professional and personal continuous development. The main hypothesis of this thesis is that networking is a learning strategy for lifelong learners, in which conversations are key activities through

  14. QSAR modelling using combined simple competitive learning networks and RBF neural networks.

    Science.gov (United States)

    Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E

    2018-04-01

    The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.

  15. Learning and structure of neuronal networks

    Indian Academy of Sciences (India)

    We study the effect of learning dynamics on network topology. Firstly, a network of discrete dynamical systems is considered for this purpose and the coupling strengths are made to evolve according to a temporal learning rule that is based on the paradigm of spike-time-dependent plasticity (STDP). This incorporates ...

  16. Learning dynamic Bayesian networks with mixed variables

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard

    This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learned...

  17. Minimax bounds for active learning

    NARCIS (Netherlands)

    Castro, R.M.; Nowak, R.

    2008-01-01

    This paper analyzes the potential advantages and theoretical challenges of "active learning" algorithms. Active learning involves sequential sampling procedures that use information gleaned from previous samples in order to focus the sampling and accelerate the learning process relative to "passive

  18. THE IMPACTS OF SOCIAL NETWORKING SITES IN HIGHER LEARNING

    Directory of Open Access Journals (Sweden)

    Mohd Ishak Bin Ismail

    2016-02-01

    Full Text Available Social networking sites, a web-based application have permeated the boundary between personal lives and student lives. Nowadays, students in higher learning used social networking site such as Facebook to facilitate their learning through the academic collaboration which it further enhances students’ social capital. Social networking site has many advantages to improve students’ learning. To date, Facebook is the leading social networking sites at this time which it being widely used by students in higher learning to communicate to each other, to carry out academic collaboration and sharing resources. Learning through social networking sites is based on the social interaction which learning are emphasizing on students, real world resources, active students` participation, diversity of learning resources and the use of digital tools to deliver meaningful learning. Many studies found the positive, neutral and negative impact of social networking sites on academic performance. Thus, this study will determine the relationship between Facebook usage and academic achievement. Also, it will investigate the association of social capital and academic collaboration to Facebook usage.

  19. Modulation of neuronal network activity with ghrelin

    NARCIS (Netherlands)

    Stoyanova, Irina; Rutten, Wim; le Feber, Jakob

    2012-01-01

    Ghrelin is a neuropeptide regulating multiple physiological processes, including high brain functions such as learning and memory formation. However, the effect of ghrelin on network activity patterns and developments has not been studied yet. Therefore, we used dissociated cortical neurons plated

  20. Learning-parameter adjustment in neural networks

    Science.gov (United States)

    Heskes, Tom M.; Kappen, Bert

    1992-06-01

    We present a learning-parameter adjustment algorithm, valid for a large class of learning rules in neural-network literature. The algorithm follows directly from a consideration of the statistics of the weights in the network. The characteristic behavior of the algorithm is calculated, both in a fixed and a changing environment. A simple example, Widrow-Hoff learning for statistical classification, serves as an illustration.

  1. Conditions for Productive Learning in Network Learning Environments

    DEFF Research Database (Denmark)

    Ponti, M.; Dirckinck-Holmfeld, Lone; Lindström, B.

    2004-01-01

    are designed without a deep understanding of the pedagogical, communicative and collaborative conditions embedded in networked learning. Despite the existence of good theoretical views pointing to a social understanding of learning, rather than a traditional individualistic and information processing approach......The Kaleidoscope1 Jointly Executed Integrating Research Project (JEIRP) on Conditions for Productive Networked Learning Environments is developing and elaborating conceptual understandings of Computer Supported Collaborative Learning (CSCL) emphasizing the use of cross-cultural comparative......: Pedagogical design and the dialectics of the digital artefacts, the concept of collaboration, ethics/trust, identity and the role of scaffolding of networked learning environments.   The JEIRP is motivated by the fact that many networked learning environments in various European educational settings...

  2. Active Versus Passive Academic Networking

    DEFF Research Database (Denmark)

    Goel, Rajeev K.; Grimpe, Christoph

    2013-01-01

    This paper examines determinants of networking by academics. Using information from a unique large survey of German researchers, the key contribution focuses on the active versus passive networking distinction. Is active networking by researchers a substitute or a complement to passive networking......? Other contributions include examining the role of geographic factors in networking and whether research bottlenecks affect a researcher's propensity to network. Are the determinants of European conference participation by German researchers different from conferences in rest of the world? Results show...... that some types of passive academic networking are complementary to active networking, while others are substitute. Further, we find differences in factors promoting participation in European conferences versus conferences in rest of the world. Finally, publishing bottlenecks as a group generally do...

  3. A Collaborative Learning Network Approach to Improvement: The CUSP Learning Network.

    Science.gov (United States)

    Weaver, Sallie J; Lofthus, Jennifer; Sawyer, Melinda; Greer, Lee; Opett, Kristin; Reynolds, Catherine; Wyskiel, Rhonda; Peditto, Stephanie; Pronovost, Peter J

    2015-04-01

    Collaborative improvement networks draw on the science of collaborative organizational learning and communities of practice to facilitate peer-to-peer learning, coaching, and local adaption. Although significant improvements in patient safety and quality have been achieved through collaborative methods, insight regarding how collaborative networks are used by members is needed. Improvement Strategy: The Comprehensive Unit-based Safety Program (CUSP) Learning Network is a multi-institutional collaborative network that is designed to facilitate peer-to-peer learning and coaching specifically related to CUSP. Member organizations implement all or part of the CUSP methodology to improve organizational safety culture, patient safety, and care quality. Qualitative case studies developed by participating members examine the impact of network participation across three levels of analysis (unit, hospital, health system). In addition, results of a satisfaction survey designed to evaluate member experiences were collected to inform network development. Common themes across case studies suggest that members found value in collaborative learning and sharing strategies across organizational boundaries related to a specific improvement strategy. The CUSP Learning Network is an example of network-based collaborative learning in action. Although this learning network focuses on a particular improvement methodology-CUSP-there is clear potential for member-driven learning networks to grow around other methods or topic areas. Such collaborative learning networks may offer a way to develop an infrastructure for longer-term support of improvement efforts and to more quickly diffuse creative sustainment strategies.

  4. Stochastic Variational Learning in Recurrent Spiking Networks

    Directory of Open Access Journals (Sweden)

    Danilo eJimenez Rezende

    2014-04-01

    Full Text Available The ability to learn and perform statistical inference with biologically plausible recurrent network of spiking neurons is an important step towards understanding perception and reasoning. Here we derive and investigate a new learning rule for recurrent spiking networks with hidden neurons, combining principles from variational learning and reinforcement learning. Our network defines a generative model over spike train histories and the derived learning rule has the form of a local Spike Timing Dependent Plasticity rule modulated by global factors (neuromodulators conveying information about ``novelty on a statistically rigorous ground.Simulations show that our model is able to learn bothstationary and non-stationary patterns of spike trains.We also propose one experiment that could potentially be performed with animals in order to test the dynamics of the predicted novelty signal.

  5. Stochastic variational learning in recurrent spiking networks.

    Science.gov (United States)

    Jimenez Rezende, Danilo; Gerstner, Wulfram

    2014-01-01

    The ability to learn and perform statistical inference with biologically plausible recurrent networks of spiking neurons is an important step toward understanding perception and reasoning. Here we derive and investigate a new learning rule for recurrent spiking networks with hidden neurons, combining principles from variational learning and reinforcement learning. Our network defines a generative model over spike train histories and the derived learning rule has the form of a local Spike Timing Dependent Plasticity rule modulated by global factors (neuromodulators) conveying information about "novelty" on a statistically rigorous ground. Simulations show that our model is able to learn both stationary and non-stationary patterns of spike trains. We also propose one experiment that could potentially be performed with animals in order to test the dynamics of the predicted novelty signal.

  6. Quantitative learning strategies based on word networks

    Science.gov (United States)

    Zhao, Yue-Tian-Yi; Jia, Zi-Yang; Tang, Yong; Xiong, Jason Jie; Zhang, Yi-Cheng

    2018-02-01

    Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network.

  7. Active Math Learning

    DEFF Research Database (Denmark)

    The presentation is concerned with general course planning philosophy and a specific case study (boomerang flight geometro-dynamics) for active learning of mathematics via computer assisted and hands-on unfolding of first principles - in this case the understanding of rotations and Eulers equatio...

  8. Flipped Classroom, active Learning?

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Levinsen, Henrik; Philipps, Morten

    2015-01-01

    Action research is conducted in three physics classes over a period of eighteen weeks with the aim of studying the effect of flipped classroom on the pupils agency and learning processes. The hypothesis is that flipped classroom teaching will potentially allocate more time to work actively...

  9. Learning Activity Package, Algebra.

    Science.gov (United States)

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

  10. Grooming. Learning Activity Package.

    Science.gov (United States)

    Stark, Pamela

    This learning activity package on grooming for health workers is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…

  11. Network Learning and Innovation in SME Formal Networks

    Directory of Open Access Journals (Sweden)

    Jivka Deiters

    2013-02-01

    Full Text Available The driver for this paper is the need to better understand the potential for learning and innovation that networks canprovide especially for small and medium sized enterprises (SMEs which comprise by far the majority of enterprises in the food sector. With the challenges the food sector is facing in the near future, learning and innovation or more focused, as it is being discussed in the paper, ‘learning for innovation’ are not just opportunities but pre‐conditions for the sustainability of the sector. Network initiatives that could provide appropriate support involve social interaction and knowledge exchange, learning, competence development, and coordination (organization and management of implementation. The analysis identifies case studies in any of these orientations which serve different stages of the innovation process: invention and implementation. The variety of network case studies cover networks linked to a focus group for training, research, orconsulting, networks dealing with focused market oriented product or process development, promotional networks, and networks for open exchange and social networking.

  12. Deep learning in neural networks: an overview.

    Science.gov (United States)

    Schmidhuber, Jürgen

    2015-01-01

    In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

  13. Learning Bayesian networks for discrete data

    KAUST Repository

    Liang, Faming

    2009-02-01

    Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.

  14. Social Networking Sites and Language Learning

    Science.gov (United States)

    Brick, Billy

    2011-01-01

    This article examines a study of seven learners who logged their experiences on the language leaning social networking site Livemocha over a period of three months. The features of the site are described and the likelihood of their future success is considered. The learners were introduced to the Social Networking Site (SNS) and asked to learn a…

  15. Adaptive Learning in Weighted Network Games

    NARCIS (Netherlands)

    Bayer, Péter; Herings, P. Jean-Jacques; Peeters, Ronald; Thuijsman, Frank

    2017-01-01

    This paper studies adaptive learning in the class of weighted network games. This class of games includes applications like research and development within interlinked firms, crime within social networks, the economics of pollution, and defense expenditures within allied nations. We show that for

  16. Learning drifting concepts with neural networks

    NARCIS (Netherlands)

    Biehl, Michael; Schwarze, Holm

    1993-01-01

    The learning of time-dependent concepts with a neural network is studied analytically and numerically. The linearly separable target rule is represented by an N-vector, whose time dependence is modelled by a random or deterministic drift process. A single-layer network is trained online using

  17. Gamification of learning deactivates the Default Mode Network

    Directory of Open Access Journals (Sweden)

    Paul Alexander Howard-Jones

    2016-01-01

    Full Text Available We hypothesised that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN and deactivation of Default Mode Network (DMN regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer, Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards. DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

  18. Gamification of Learning Deactivates the Default Mode Network.

    Science.gov (United States)

    Howard-Jones, Paul A; Jay, Tim; Mason, Alice; Jones, Harvey

    2015-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

  19. Logic Learning in Hopfield Networks

    OpenAIRE

    Sathasivam, Saratha; Abdullah, Wan Ahmad Tajuddin Wan

    2008-01-01

    Synaptic weights for neurons in logic programming can be calculated either by using Hebbian learning or by Wan Abdullah's method. In other words, Hebbian learning for governing events corresponding to some respective program clauses is equivalent with learning using Wan Abdullah's method for the same respective program clauses. In this paper we will evaluate experimentally the equivalence between these two types of learning through computer simulations.

  20. Functionality for learning networks: lessons learned from social web applications

    NARCIS (Netherlands)

    Berlanga, Adriana; Sloep, Peter; Brouns, Francis; Van Rosmalen, Peter; Bitter-Rijpkema, Marlies; Koper, Rob

    2007-01-01

    Berlanga, A. J., Sloep, P., Brouns, F., Van Rosmalen, P., Bitter-Rijpkema, M., & Koper, R. (2007). Functionality for learning networks: lessons learned from social web applications. Proceedings of the ePortfolio 2007 Conference. October, 18-19, 2007, Maastricht, The Netherlands. [See also

  1. Learning Latent Structure in Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    such as the Modularity, it has recently been shown that latent structure in complex networks is learnable by Bayesian generative link distribution models (Airoldi et al., 2008, Hofman and Wiggins, 2008). In this paper we propose a new generative model that allows representation of latent community structure......Latent structure in complex networks, e.g., in the form of community structure, can help understand network dynamics, identify heterogeneities in network properties, and predict ‘missing’ links. While most community detection algorithms are based on optimizing heuristic clustering objectives...... as in the previous Bayesian approaches and in addition allows learning of node specific link properties similar to that in the modularity objective. We employ a new relaxation method for efficient inference in these generative models that allows us to learn the behavior of very large networks. We compare the link...

  2. Machine Learning Topological Invariants with Neural Networks

    Science.gov (United States)

    Zhang, Pengfei; Shen, Huitao; Zhai, Hui

    2018-02-01

    In this Letter we supervisedly train neural networks to distinguish different topological phases in the context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with chiral symmetry, the neural network can predict their topological winding numbers with nearly 100% accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data. These results show a remarkable success that the neural network can capture the global and nonlinear topological features of quantum phases from local inputs. By opening up the neural network, we confirm that the network does learn the discrete version of the winding number formula. We also make a couple of remarks regarding the role of the symmetry and the opposite effect of regularization techniques when applying machine learning to physical systems.

  3. Active Learning Using Hint Information.

    Science.gov (United States)

    Li, Chun-Liang; Ferng, Chun-Sung; Lin, Hsuan-Tien

    2015-08-01

    The abundance of real-world data and limited labeling budget calls for active learning, an important learning paradigm for reducing human labeling efforts. Many recently developed active learning algorithms consider both uncertainty and representativeness when making querying decisions. However, exploiting representativeness with uncertainty concurrently usually requires tackling sophisticated and challenging learning tasks, such as clustering. In this letter, we propose a new active learning framework, called hinted sampling, which takes both uncertainty and representativeness into account in a simpler way. We design a novel active learning algorithm within the hinted sampling framework with an extended support vector machine. Experimental results validate that the novel active learning algorithm can result in a better and more stable performance than that achieved by state-of-the-art algorithms. We also show that the hinted sampling framework allows improving another active learning algorithm designed from the transductive support vector machine.

  4. Active Learning in Engineering Education: a (re)introduction

    DEFF Research Database (Denmark)

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal networkActive Learning in Engineering Education’ (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE...... were reviewed by the European Journal of Engineering Education community and this theme issue ended up with eight contributions, which are different both in their research and Active Learning approaches. These different Active Learning approaches are aligned with the different approaches that can...

  5. SUSTAIN: a network model of category learning.

    Science.gov (United States)

    Love, Bradley C; Medin, Douglas L; Gureckis, Todd M

    2004-04-01

    SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes-attractors-rules. SUSTAIN's discovery of category substructure is affected not only by the structure of the world but by the nature of the learning task and the learner's goals. SUSTAIN successfully extends category learning models to studies of inference learning, unsupervised learning, category construction, and contexts in which identification learning is faster than classification learning.

  6. Active Learning with Statistical Models.

    Science.gov (United States)

    1995-01-01

    Active Learning with Statistical Models ASC-9217041, NSF CDA-9309300 6. AUTHOR(S) David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan 7. PERFORMING...TERMS 15. NUMBER OF PAGES Al, MIT, Artificial Intelligence, active learning , queries, locally weighted 6 regression, LOESS, mixtures of gaussians...COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES A.I. Memo No. 1522 January 9. 1995 C.B.C.L. Paper No. 110 Active Learning with

  7. Active inference and learning.

    Science.gov (United States)

    Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; O Doherty, John; Pezzulo, Giovanni

    2016-09-01

    This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Social Learning Network Analysis Model to Identify Learning Patterns Using Ontology Clustering Techniques and Meaningful Learning

    Science.gov (United States)

    Firdausiah Mansur, Andi Besse; Yusof, Norazah

    2013-01-01

    Clustering on Social Learning Network still not explored widely, especially when the network focuses on e-learning system. Any conventional methods are not really suitable for the e-learning data. SNA requires content analysis, which involves human intervention and need to be carried out manually. Some of the previous clustering techniques need…

  9. Lessons Learned from the Young Breast Cancer Survivorship Network.

    Science.gov (United States)

    Gisiger-Camata, Silvia; Nolan, Timiya S; Vo, Jacqueline B; Bail, Jennifer R; Lewis, Kayla A; Meneses, Karen

    2017-11-30

    The Young Breast Cancer Survivors Network (Network) is an academic and community-based partnership dedicated to education, support, and networking. The Network used a multi-pronged approach via monthly support and networking, annual education seminars, website networking, and individual survivor consultation. Formative and summative evaluations were conducted using group survey and individual survivor interviews for monthly gatherings, annual education meetings, and individual consultation. Google Analytics was applied to evaluate website use. The Network began with 4 initial partnerships and grew to 38 in the period from 2011 to 2017. During this 5-year period, 5 annual meetings (598 attendees), 23 support and networking meetings (373), and 115 individual survivor consultations were conducted. The Network website had nearly 12,000 individual users and more than 25,000 page views. Lessons learned include active community engagement, survivor empowerment, capacity building, social media outreach, and network sustainability. The 5-year experiences with the Network demonstrated that a regional program dedicated to the education, support, networking, and needs of young breast cancer survivors and their families can become a vital part of cancer survivorship services in a community. Strong community support, engagement, and encouragement were vital components to sustain the program.

  10. A Decomposition Algorithm for Learning Bayesian Network Structures from Data

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Cordero Hernandez, Jorge

    2008-01-01

    It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...... the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks....

  11. Rapid learning in visual cortical networks.

    Science.gov (United States)

    Wang, Ye; Dragoi, Valentin

    2015-08-26

    Although changes in brain activity during learning have been extensively examined at the single neuron level, the coding strategies employed by cell populations remain mysterious. We examined cell populations in macaque area V4 during a rapid form of perceptual learning that emerges within tens of minutes. Multiple single units and LFP responses were recorded as monkeys improved their performance in an image discrimination task. We show that the increase in behavioral performance during learning is predicted by a tight coordination of spike timing with local population activity. More spike-LFP theta synchronization is correlated with higher learning performance, while high-frequency synchronization is unrelated with changes in performance, but these changes were absent once learning had stabilized and stimuli became familiar, or in the absence of learning. These findings reveal a novel mechanism of plasticity in visual cortex by which elevated low-frequency synchronization between individual neurons and local population activity accompanies the improvement in performance during learning.

  12. Sparse dictionary learning of resting state fMRI networks.

    Science.gov (United States)

    Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C

    2012-07-02

    Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.

  13. The TENCompetence Infrastructure: A Learning Network Implementation

    Science.gov (United States)

    Vogten, Hubert; Martens, Harrie; Lemmers, Ruud

    The TENCompetence project developed a first release of a Learning Network infrastructure to support individuals, groups and organisations in professional competence development. This infrastructure Learning Network infrastructure was released as open source to the community thereby allowing users and organisations to use and contribute to this development as they see fit. The infrastructure consists of client applications providing the user experience and server components that provide the services to these clients. These services implement the domain model (Koper 2006) by provisioning the entities of the domain model (see also Sect. 18.4) and henceforth will be referenced as domain entity services.

  14. Social Networks: Rational Learning and Information Aggregation

    Science.gov (United States)

    2009-09-01

    predecessor, Gale and Kariv (2003) who generalize the payoff equalization result of Bala and Goyal (1998) in connected social networks (discussed below...requires more notation. Using Bayes’ Rule and the assumption of equal priors on the state θ, we have that the social belief given by observing... Social Networks: Rational Learning and Information Aggregation by Ilan Lobel B.Sc., Pontif́ıcia Universidade Católica do Rio de Janeiro (2004

  15. Learning Transferable Features with Deep Adaptation Networks

    OpenAIRE

    Long, Mingsheng; Cao, Yue; Wang, Jianmin; Jordan, Michael I.

    2015-01-01

    Recent studies reveal that a deep neural network can learn transferable features which generalize well to novel tasks for domain adaptation. However, as deep features eventually transition from general to specific along the network, the feature transferability drops significantly in higher layers with increasing domain discrepancy. Hence, it is important to formally reduce the dataset bias and enhance the transferability in task-specific layers. In this paper, we propose a new Deep Adaptation...

  16. Active learning for Corsika

    Energy Technology Data Exchange (ETDEWEB)

    Baack, Dominik; Temme, Fabian; Buss, Jens; Noethe, Max; Bruegge, Kai [TU Dortmund, Dortmund (Germany); Collaboration: FACT-Collaboration

    2016-07-01

    Modern Cosmic-Ray experiments need a huge amount of simulated data. In many cases, only a portion of the data is actually needed for following steps in the analysis chain, for example training of different machine learning algorithms. The other parts are thrown away by the trigger simulation of the experiment or so not increase the quality of following analysis steps. In this talk, I present a new developed package for the air shower simulation software CORSIKA. This extension includes different approaches to reduce the amount of unnecessary computation. One approach is a new internal particle stack implementation that allows to priorize the processing of special intermediate shower particles and the removal of not needed shower particles. The second approach is the possibility to sent various information of the initial particle and parameters of the status of the partial simulated event to an external application to approximate the information gain of the current simulator event. If the information gain is to low, the current event simulation gets terminated and all information get stored into a central database. For the Simulation - Server communication a simple network protocol has been developed.

  17. Design of a Networked Learning Master Environment for Professionals

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Lone

    2010-01-01

    The paper is presenting the overall learning design of MIL (Master in ICT and Learning). The learning design is integrating a number of principles: 1. Principles of problem and project based learning 2. Networked learning / learning in communities of practice. The paper will discuss how these pri......The paper is presenting the overall learning design of MIL (Master in ICT and Learning). The learning design is integrating a number of principles: 1. Principles of problem and project based learning 2. Networked learning / learning in communities of practice. The paper will discuss how...

  18. Logarithmic learning for generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2014-12-01

    Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Distributed Extreme Learning Machine for Nonlinear Learning over Network

    Directory of Open Access Journals (Sweden)

    Songyan Huang

    2015-02-01

    Full Text Available Distributed data collection and analysis over a network are ubiquitous, especially over a wireless sensor network (WSN. To our knowledge, the data model used in most of the distributed algorithms is linear. However, in real applications, the linearity of systems is not always guaranteed. In nonlinear cases, the single hidden layer feedforward neural network (SLFN with radial basis function (RBF hidden neurons has the ability to approximate any continuous functions and, thus, may be used as the nonlinear learning system. However, confined by the communication cost, using the distributed version of the conventional algorithms to train the neural network directly is usually prohibited. Fortunately, based on the theorems provided in the extreme learning machine (ELM literature, we only need to compute the output weights of the SLFN. Computing the output weights itself is a linear learning problem, although the input-output mapping of the overall SLFN is still nonlinear. Using the distributed algorithmto cooperatively compute the output weights of the SLFN, we obtain a distributed extreme learning machine (dELM for nonlinear learning in this paper. This dELM is applied to the regression problem and classification problem to demonstrate its effectiveness and advantages.

  20. Reinforcement learning account of network reciprocity.

    Science.gov (United States)

    Ezaki, Takahiro; Masuda, Naoki

    2017-01-01

    Evolutionary game theory predicts that cooperation in social dilemma games is promoted when agents are connected as a network. However, when networks are fixed over time, humans do not necessarily show enhanced mutual cooperation. Here we show that reinforcement learning (specifically, the so-called Bush-Mosteller model) approximately explains the experimentally observed network reciprocity and the lack thereof in a parameter region spanned by the benefit-to-cost ratio and the node's degree. Thus, we significantly extend previously obtained numerical results.

  1. Reinforcement learning account of network reciprocity.

    Directory of Open Access Journals (Sweden)

    Takahiro Ezaki

    Full Text Available Evolutionary game theory predicts that cooperation in social dilemma games is promoted when agents are connected as a network. However, when networks are fixed over time, humans do not necessarily show enhanced mutual cooperation. Here we show that reinforcement learning (specifically, the so-called Bush-Mosteller model approximately explains the experimentally observed network reciprocity and the lack thereof in a parameter region spanned by the benefit-to-cost ratio and the node's degree. Thus, we significantly extend previously obtained numerical results.

  2. Application of Student Book Based On Integrated Learning Model Of Networked Type With Heart Electrical Activity Theme For Junior High School

    Science.gov (United States)

    Gusnedi, G.; Ratnawulan, R.; Triana, L.

    2018-04-01

    The purpose of this study is to determine the effect of the use of Integrated Science IPA books Using Networked Learning Model of knowledge competence through improved learning outcomes obtained. The experimental design used is one group pre test post test design to know the results before and after being treated. The number of samples used is one class that is divided into two categories of initial ability to see the improvement of knowledge competence. The sample used was taken from the students of grade VIII SMPN 2 Sawahlunto, Indonesia. The results of this study indicate that most students have increased knowledge competence.

  3. Learning State Space Dynamics in Recurrent Networks

    Science.gov (United States)

    Simard, Patrice Yvon

    Fully recurrent (asymmetrical) networks can be used to learn temporal trajectories. The network is unfolded in time, and backpropagation is used to train the weights. The presence of recurrent connections creates internal states in the system which vary as a function of time. The resulting dynamics can provide interesting additional computing power but learning is made more difficult by the existence of internal memories. This study first exhibits the properties of recurrent networks in terms of convergence when the internal states of the system are unknown. A new energy functional is provided to change the weights of the units in order to the control the stability of the fixed points of the network's dynamics. The power of the resultant algorithm is illustrated with the simulation of a content addressable memory. Next, the more general case of time trajectories on a recurrent network is studied. An application is proposed in which trajectories are generated to draw letters as a function of an input. In another application of recurrent systems, a neural network certain temporal properties observed in human callosally sectioned brains. Finally the proposed algorithm for stabilizing dynamics around fixed points is extended to one for stabilizing dynamics around time trajectories. Its effects are illustrated on a network which generates Lisajous curves.

  4. Networked Learning in 70001 Programs.

    Science.gov (United States)

    Fine, Marija Futchs

    The 7000l Training and Employment Institute offers self-paced instruction through the use of computers and audiovisual materials to young people to improve opportunities for success in the work force. In 1988, four sites were equipped with Apple stand-alone software in an integrated learning system that included courses in reading and math, test…

  5. Evolving autonomous learning in cognitive networks.

    Science.gov (United States)

    Sheneman, Leigh; Hintze, Arend

    2017-12-01

    There are two common approaches for optimizing the performance of a machine: genetic algorithms and machine learning. A genetic algorithm is applied over many generations whereas machine learning works by applying feedback until the system meets a performance threshold. These methods have been previously combined, particularly in artificial neural networks using an external objective feedback mechanism. We adapt this approach to Markov Brains, which are evolvable networks of probabilistic and deterministic logic gates. Prior to this work MB could only adapt from one generation to the other, so we introduce feedback gates which augment their ability to learn during their lifetime. We show that Markov Brains can incorporate these feedback gates in such a way that they do not rely on an external objective feedback signal, but instead can generate internal feedback that is then used to learn. This results in a more biologically accurate model of the evolution of learning, which will enable us to study the interplay between evolution and learning and could be another step towards autonomously learning machines.

  6. Advanced Learning Technologies and Learning Networks and Their Impact on Future Aerospace Workforce

    Science.gov (United States)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    This document contains the proceedings of the training workshop on Advanced Learning Technologies and Learning Networks and their impact on Future Aerospace Workforce. The workshop was held at the Peninsula Workforce Development Center, Hampton, Virginia, April 2 3, 2003. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to: 1) provide broad overviews of the diverse activities related to advanced learning technologies and learning environments, and 2) identify future directions for research that have high potential for aerospace workforce development. Eighteen half-hour overviewtype presentations were made at the workshop.

  7. Reversal Learning in Humans and Gerbils: Dynamic Control Network Facilitates Learning.

    Science.gov (United States)

    Jarvers, Christian; Brosch, Tobias; Brechmann, André; Woldeit, Marie L; Schulz, Andreas L; Ohl, Frank W; Lommerzheim, Marcel; Neumann, Heiko

    2016-01-01

    Biologically plausible modeling of behavioral reinforcement learning tasks has seen great improvements over the past decades. Less work has been dedicated to tasks involving contingency reversals, i.e., tasks in which the original behavioral goal is reversed one or multiple times. The ability to adjust to such reversals is a key element of behavioral flexibility. Here, we investigate the neural mechanisms underlying contingency-reversal tasks. We first conduct experiments with humans and gerbils to demonstrate memory effects, including multiple reversals in which subjects (humans and animals) show a faster learning rate when a previously learned contingency re-appears. Motivated by recurrent mechanisms of learning and memory for object categories, we propose a network architecture which involves reinforcement learning to steer an orienting system that monitors the success in reward acquisition. We suggest that a model sensory system provides feature representations which are further processed by category-related subnetworks which constitute a neural analog of expert networks. Categories are selected dynamically in a competitive field and predict the expected reward. Learning occurs in sequentialized phases to selectively focus the weight adaptation to synapses in the hierarchical network and modulate their weight changes by a global modulator signal. The orienting subsystem itself learns to bias the competition in the presence of continuous monotonic reward accumulation. In case of sudden changes in the discrepancy of predicted and acquired reward the activated motor category can be switched. We suggest that this subsystem is composed of a hierarchically organized network of dis-inhibitory mechanisms, dubbed a dynamic control network (DCN), which resembles components of the basal ganglia. The DCN selectively activates an expert network, corresponding to the current behavioral strategy. The trace of the accumulated reward is monitored such that large sudden

  8. Social Networking Sites as a Learning Tool

    Science.gov (United States)

    Sanchez-Casado, Noelia; Cegarra Navarro, Juan Gabriel; Wensley, Anthony; Tomaseti-Solano, Eva

    2016-01-01

    Purpose: Over the past few years, social networking sites (SNSs) have become very useful for firms, allowing companies to manage the customer-brand relationships. In this context, SNSs can be considered as a learning tool because of the brand knowledge that customers develop from these relationships. Because of the fact that knowledge in…

  9. Social Networking Services in E-Learning

    Science.gov (United States)

    Weber, Peter; Rothe, Hannes

    2016-01-01

    This paper is a report on the findings of a study conducted on the use of the social networking service NING in a cross-location e-learning setting named "Net Economy." We describe how we implemented NING as a fundamental part of the setting through a special phase concept and team building approach. With the help of user statistics, we…

  10. Learning to trust : network effects through time.

    NARCIS (Netherlands)

    Barrera, D.; Bunt, G. van de

    2009-01-01

    This article investigates the effects of information originating from social networks on the development of interpersonal trust relations in the context of a dialysis department of a Dutch medium-sized hospital. Hypotheses on learning effects are developed from existing theories and tested using

  11. Learning to trust: network effects through time

    NARCIS (Netherlands)

    Barrera, D.; van de Bunt, G

    2009-01-01

    This article investigates the effects of information originating from social networks on the development of interpersonal trust relations in the context of a dialysis department of a Dutch medium-sized hospital. Hypotheses on learning effects are developed from existing theories and tested using

  12. Learning in Networks for Sustainable Development

    NARCIS (Netherlands)

    Lansu, Angelique; Boon, Jo; Sloep, Peter; Van Dam-Mieras, Rietje

    2010-01-01

    The didactic model of remote internships described in this study provides the flexibility needed to support networked learners, i.e. to facilitate the development and subsequent assessment of their competences. The heterogeneity of the participants (students, employers, tutors) in the learning

  13. Networking activism: implications for Greece

    Directory of Open Access Journals (Sweden)

    Pantelis Vatikiotis

    2011-12-01

    Full Text Available The outbreak of December 2008 against police brutality through a wave of demonstrations and street protests in Athens, which was strongly advocated by protest activities and practices across the world, addresses several issues in relation to the transformative potentials of mediated collective action. The paper critically evaluates different accounts of December events, probing then into thevery networking of that movement. From this perspective, it points out another aspect of the local-global interplay in protest culture along new mediating practices (beyond the creation of transnational publics, that of the implications of transnational networking for local social activism and identification, addressing relevant questions in the Greek context.

  14. Theorizing Network-Centric Activity in Education

    Science.gov (United States)

    HaLevi, Andrew

    2011-01-01

    Networks and network-centric activity are increasingly prevalent in schools and school districts. In addition to ubiquitous social network tools like Facebook and Twitter, educational leaders deal with a wide variety of network organizational forms that include professional development, advocacy, informational networks and network-centric reforms.…

  15. Re-imagining Active Learning

    DEFF Research Database (Denmark)

    Dall'Alba, Gloria; Bengtsen, Søren Smedegaard

    2018-01-01

    is largely lacking in the literature on active learning. In this article, we explore the possibility of re-imagining, or at least extending, the meaning of active learning by drawing out dimensions that are neither readily visible nor instrumental, as much of this literature implies. Drawing from educational......Ample attention is being paid in the higher education literature to promoting active learning among students. Where studies on active learning report student outcomes, they indicate improved or equivalent outcomes when compared with traditional lectures, which are considered more passive...... philosophy and, in particular, existential philosophies, we argue that active learning may also be partly invisible, unfocused, unsettling, and not at all instrumentalsometimes even leaving the learner more confused and (temporarily) incompetent. However, such forms of undisclosed or ‘dark’ learning, we...

  16. Researching Design, Experience and Practice of Networked Learning

    DEFF Research Database (Denmark)

    Hodgson, Vivien; de Laat, Maarten; McConnell, David

    2014-01-01

    and final section draws attention to a growing topic of interest within networked learning: that of networked learning in informal practices. In addition, we provide a reflection on the theories, methods and settings featured in the networked learning research of the chapters. We conclude the introduction...

  17. Factors that influence cooperation in networks for innovation and learning

    NARCIS (Netherlands)

    Sie, Rory; Bitter-Rijpkema, Marlies; Stoyanov, Slavi; Sloep, Peter

    2018-01-01

    Networked cooperation fails if the available partnerships remain opaque. A literature review and Delphi study uncovered the elements of a fruitful partnership. They relate to personality, diversity, cooperation, and management. Innovation networks and learning networks share the same cooperative

  18. Student Perceptions of Active Learning

    Science.gov (United States)

    Lumpkin, Angela; Achen, Rebecca M.; Dodd, Regan K.

    2015-01-01

    A paradigm shift from lecture-based courses to interactive classes punctuated with engaging, student-centered learning activities has begun to characterize the work of some teachers in higher education. Convinced through the literature of the values of using active learning strategies, we assessed through an action research project in five college…

  19. Globally Networked Collaborative Learning in Industrial Design

    Science.gov (United States)

    Bohemia, Erik; Ghassan, Aysar

    2012-01-01

    This article explores project-based cross-cultural and cross-institutional learning. Using Web 2.0 technologies, this project involved more than 240 students and eighteen academic staff from seven international universities. The focus of this article relates to a project-based learning activity named "The Gift". At each institution the…

  20. PARTNERS IN LEARNING NETWORK FOR UKRAINIAN TEACHERS

    Directory of Open Access Journals (Sweden)

    K. Sereda

    2011-05-01

    Full Text Available The network «Partners in Learning Network» is presented in the article – the Ukrainian segment of global educational community. PILN is created with support of the Microsoft company for teachers who use information communication technology in their professional work. The PILN's purpose and value for Ukrainian teachers, for their professional dialogue and collaboration are described in the article. Functions of PILN's communities for teacher’s cooperation, the joint decision of questions and an exchange of ideas and of technique, teaching tools for increase of level of ICT introduction in educational process are described.

  1. Bayesian Inference and Online Learning in Poisson Neuronal Networks.

    Science.gov (United States)

    Huang, Yanping; Rao, Rajesh P N

    2016-08-01

    Motivated by the growing evidence for Bayesian computation in the brain, we show how a two-layer recurrent network of Poisson neurons can perform both approximate Bayesian inference and learning for any hidden Markov model. The lower-layer sensory neurons receive noisy measurements of hidden world states. The higher-layer neurons infer a posterior distribution over world states via Bayesian inference from inputs generated by sensory neurons. We demonstrate how such a neuronal network with synaptic plasticity can implement a form of Bayesian inference similar to Monte Carlo methods such as particle filtering. Each spike in a higher-layer neuron represents a sample of a particular hidden world state. The spiking activity across the neural population approximates the posterior distribution over hidden states. In this model, variability in spiking is regarded not as a nuisance but as an integral feature that provides the variability necessary for sampling during inference. We demonstrate how the network can learn the likelihood model, as well as the transition probabilities underlying the dynamics, using a Hebbian learning rule. We present results illustrating the ability of the network to perform inference and learning for arbitrary hidden Markov models.

  2. Learning and Active Aging

    Science.gov (United States)

    Boulton-Lewis, Gillian M.; Buys, Laurie; Lovie-Kitchin, Jan

    2006-01-01

    Learning is an important aspect of aging productively. This paper describes results from 2645 respondents (aged from 50 to 74+ years) to a 165-variable postal survey in Australia. The focus is on learning and its relation to work; social, spiritual, and emotional status; health; vision; home; life events; and demographic details. Clustering…

  3. Perspectives on Advanced Learning Technologies and Learning Networks and Future Aerospace Workforce Environments

    Science.gov (United States)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    An overview of the advanced learning technologies is given in this presentation along with a brief description of their impact on future aerospace workforce development. The presentation is divided into five parts (see Figure 1). In the first part, a brief historical account of the evolution of learning technologies is given. The second part describes the current learning activities. The third part describes some of the future aerospace systems, as examples of high-tech engineering systems, and lists their enabling technologies. The fourth part focuses on future aerospace research, learning and design environments. The fifth part lists the objectives of the workshop and some of the sources of information on learning technologies and learning networks.

  4. Machine Learning for ATLAS DDM Network Metrics

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Vamosi, Ralf

    2016-01-01

    The increasing volume of physics data is posing a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from our ongoing automation efforts. First, we describe our framework for distributed data management and network metrics, automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  5. Learning in Neural Networks: VLSI Implementation Strategies

    Science.gov (United States)

    Duong, Tuan Anh

    1995-01-01

    Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.

  6. Characteristic imsets for learning Bayesian network structure

    Czech Academy of Sciences Publication Activity Database

    Hemmecke, R.; Lindner, S.; Studený, Milan

    2012-01-01

    Roč. 53, č. 9 (2012), s. 1336-1349 ISSN 0888-613X R&D Projects: GA MŠk(CZ) 1M0572; GA ČR GA201/08/0539 Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * essential graph * standard imset * characteristic imset * LP relaxation of a polytope Subject RIV: BA - General Mathematics Impact factor: 1.729, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/studeny-0382596.pdf

  7. Learning Methods for Radial Basis Functions Networks

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Kudová, Petra

    2005-01-01

    Roč. 21, - (2005), s. 1131-1142 ISSN 0167-739X R&D Projects: GA ČR GP201/03/P163; GA ČR GA201/02/0428 Institutional research plan: CEZ:AV0Z10300504 Keywords : radial basis function networks * hybrid supervised learning * genetic algorithms * benchmarking Subject RIV: BA - General Mathematics Impact factor: 0.555, year: 2005

  8. Fastest learning in small-world neural networks

    International Nuclear Information System (INIS)

    Simard, D.; Nadeau, L.; Kroeger, H.

    2005-01-01

    We investigate supervised learning in neural networks. We consider a multi-layered feed-forward network with back propagation. We find that the network of small-world connectivity reduces the learning error and learning time when compared to the networks of regular or random connectivity. Our study has potential applications in the domain of data-mining, image processing, speech recognition, and pattern recognition

  9. THE IMPACTS OF SOCIAL NETWORKING SITES IN HIGHER LEARNING

    OpenAIRE

    Mohd Ishak Bin Ismail; Ruzaini Bin Abdullah Arshah

    2016-01-01

    Social networking sites, a web-based application have permeated the boundary between personal lives and student lives. Nowadays, students in higher learning used social networking site such as Facebook to facilitate their learning through the academic collaboration which it further enhances students’ social capital. Social networking site has many advantages to improve students’ learning. To date, Facebook is the leading social networking sites at this time which it being widely used by stude...

  10. Agnostic Active Learning Without Constraints

    OpenAIRE

    Beygelzimer, Alina; Hsu, Daniel; Langford, John; Zhang, Tong

    2010-01-01

    We present and analyze an agnostic active learning algorithm that works without keeping a version space. This is unlike all previous approaches where a restricted set of candidate hypotheses is maintained throughout learning, and only hypotheses from this set are ever returned. By avoiding this version space approach, our algorithm sheds the computational burden and brittleness associated with maintaining version spaces, yet still allows for substantial improvements over supervised learning f...

  11. Learning Control Over Emotion Networks Through Connectivity-Based Neurofeedback.

    Science.gov (United States)

    Koush, Yury; Meskaldji, Djalel-E; Pichon, Swann; Rey, Gwladys; Rieger, Sebastian W; Linden, David E J; Van De Ville, Dimitri; Vuilleumier, Patrik; Scharnowski, Frank

    2017-02-01

    Most mental functions are associated with dynamic interactions within functional brain networks. Thus, training individuals to alter functional brain networks might provide novel and powerful means to improve cognitive performance and emotions. Using a novel connectivity-neurofeedback approach based on functional magnetic resonance imaging (fMRI), we show for the first time that participants can learn to change functional brain networks. Specifically, we taught participants control over a key component of the emotion regulation network, in that they learned to increase top-down connectivity from the dorsomedial prefrontal cortex, which is involved in cognitive control, onto the amygdala, which is involved in emotion processing. After training, participants successfully self-regulated the top-down connectivity between these brain areas even without neurofeedback, and this was associated with concomitant increases in subjective valence ratings of emotional stimuli of the participants. Connectivity-based neurofeedback goes beyond previous neurofeedback approaches, which were limited to training localized activity within a brain region. It allows to noninvasively and nonpharmacologically change interconnected functional brain networks directly, thereby resulting in specific behavioral changes. Our results demonstrate that connectivity-based neurofeedback training of emotion regulation networks enhances emotion regulation capabilities. This approach can potentially lead to powerful therapeutic emotion regulation protocols for neuropsychiatric disorders. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Effects of the ISIS Recommender System for Navigation Support in Self-Organised Learning Networks

    Science.gov (United States)

    Drachsler, Hendrik; Hummel, Hans; van den Berg, Bert; Eshuis, Jannes; Waterink, Wim; Nadolski, Rob; Berlanga, Adriana; Boers, Nanda; Koper, Rob

    2009-01-01

    The need to support users of the Internet with the selection of information is becoming more important. Learners in complex, self-organising Learning Networks have similar problems and need guidance to find and select most suitable learning activities, in order to attain their lifelong learning goals in the most efficient way. Several research…

  13. Sequence learning in differentially activated dendrites

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2003-01-01

    . It is proposed that the neural machinery required in such a learning/retrieval mechanism could involve the NMDA receptor, in conjunction with the ability of dendrites to maintain differentially activated regions. In particular, it is suggested that such a parcellation of the dendrite allows the neuron......Differentially activated areas of a dendrite permit the existence of zones with distinct rates of synaptic modification, and such areas can be individually accessed using a reference signal which localizes synaptic plasticity and memory trace retrieval to certain subregions of the dendrite...... to participate in multiple sequences, which can be learned without suffering from the 'wash-out' of synaptic efficacy associated with superimposition of training patterns. This is a biologically plausible solution to the stability-plasticity dilemma of learning in neural networks....

  14. Machine learning for identifying botnet network traffic

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2013-01-01

    . Due to promise of non-invasive and resilient detection, botnet detection based on network traffic analysis has drawn a special attention of the research community. Furthermore, many authors have turned their attention to the use of machine learning algorithms as the mean of inferring botnet......-related knowledge from the monitored traffic. This paper presents a review of contemporary botnet detection methods that use machine learning as a tool of identifying botnet-related traffic. The main goal of the paper is to provide a comprehensive overview on the field by summarizing current scientific efforts....... The contribution of the paper is three-fold. First, the paper provides a detailed insight on the existing detection methods by investigating which bot-related heuristic were assumed by the detection systems and how different machine learning techniques were adapted in order to capture botnet-related knowledge...

  15. Active Learning Using Arbitrary Binary Valued Queries

    Science.gov (United States)

    1990-10-01

    active learning in the sense that the learner has complete choice in the information received. Specifically, we allow the learner to ask arbitrary yes...no questions. We consider both active learning under a fixed distribution and distribution-free active learning . In the case of active learning , the...a concept class is actively learnable iff it is finite, so that active learning is in fact less powerful than the usual passive learning model. We

  16. Analog memristive synapse in spiking networks implementing unsupervised learning

    Directory of Open Access Journals (Sweden)

    Erika Covi

    2016-10-01

    Full Text Available Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e. the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity. This implies a device able to change its resistance (synaptic strength, or weight upon proper electrical stimuli (synaptic activity and showing several stable resistive states throughout its dynamic range (analog behavior. Moreover, it should be able to perform spike timing dependent plasticity (STDP, an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO2-based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy characters are displayed and it is robust to a device-to-device variability of up to +/-30%.

  17. Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning.

    Science.gov (United States)

    Covi, Erika; Brivio, Stefano; Serb, Alexander; Prodromakis, Themis; Fanciulli, Marco; Spiga, Sabina

    2016-01-01

    Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e., the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity). This implies a device able to change its resistance (synaptic strength, or weight) upon proper electrical stimuli (synaptic activity) and showing several stable resistive states throughout its dynamic range (analog behavior). Moreover, it should be able to perform spike timing dependent plasticity (STDP), an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO 2 -based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy images are displayed and it is robust to a device-to-device variability of up to ±30%.

  18. Exploring Representativeness and Informativeness for Active Learning.

    Science.gov (United States)

    Du, Bo; Wang, Zengmao; Zhang, Lefei; Zhang, Liangpei; Liu, Wei; Shen, Jialie; Tao, Dacheng

    2017-01-01

    How can we find a general way to choose the most suitable samples for training a classifier? Even with very limited prior information? Active learning, which can be regarded as an iterative optimization procedure, plays a key role to construct a refined training set to improve the classification performance in a variety of applications, such as text analysis, image recognition, social network modeling, etc. Although combining representativeness and informativeness of samples has been proven promising for active sampling, state-of-the-art methods perform well under certain data structures. Then can we find a way to fuse the two active sampling criteria without any assumption on data? This paper proposes a general active learning framework that effectively fuses the two criteria. Inspired by a two-sample discrepancy problem, triple measures are elaborately designed to guarantee that the query samples not only possess the representativeness of the unlabeled data but also reveal the diversity of the labeled data. Any appropriate similarity measure can be employed to construct the triple measures. Meanwhile, an uncertain measure is leveraged to generate the informativeness criterion, which can be carried out in different ways. Rooted in this framework, a practical active learning algorithm is proposed, which exploits a radial basis function together with the estimated probabilities to construct the triple measures and a modified best-versus-second-best strategy to construct the uncertain measure, respectively. Experimental results on benchmark datasets demonstrate that our algorithm consistently achieves superior performance over the state-of-the-art active learning algorithms.

  19. Threshold Learning Dynamics in Social Networks

    Science.gov (United States)

    González-Avella, Juan Carlos; Eguíluz, Victor M.; Marsili, Matteo; Vega-Redondo, Fernado; San Miguel, Maxi

    2011-01-01

    Social learning is defined as the ability of a population to aggregate information, a process which must crucially depend on the mechanisms of social interaction. Consumers choosing which product to buy, or voters deciding which option to take with respect to an important issue, typically confront external signals to the information gathered from their contacts. Economic models typically predict that correct social learning occurs in large populations unless some individuals display unbounded influence. We challenge this conclusion by showing that an intuitive threshold process of individual adjustment does not always lead to such social learning. We find, specifically, that three generic regimes exist separated by sharp discontinuous transitions. And only in one of them, where the threshold is within a suitable intermediate range, the population learns the correct information. In the other two, where the threshold is either too high or too low, the system either freezes or enters into persistent flux, respectively. These regimes are generally observed in different social networks (both complex or regular), but limited interaction is found to promote correct learning by enlarging the parameter region where it occurs. PMID:21637714

  20. Learning as Issue Framing in Agricultural Innovation Networks

    Science.gov (United States)

    Tisenkopfs, Talis; Kunda, Ilona; Šumane, Sandra

    2014-01-01

    Purpose: Networks are increasingly viewed as entities of learning and innovation in agriculture. In this article we explore learning as issue framing in two agricultural innovation networks. Design/methodology/approach: We combine frame analysis and social learning theories to analyse the processes and factors contributing to frame convergence and…

  1. Bayesian network learning for natural hazard assessments

    Science.gov (United States)

    Vogel, Kristin

    2016-04-01

    Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables

  2. Active Learning Through Discussion in E-Learning

    OpenAIRE

    Daru Wahyuningsih

    2016-01-01

    Active learning is generally made by a lecturer in learning face to face. In the face to face learning, lecturer can implement a variety of teaching methods to make students actively involved in learning. This is different from learning that is actuating in e-learning. The main characteristic of e-learning is learning that can take place anytime and anywhere. Special strategies are needed so that lecturer can make students play an active role in the course of e-learning. Research in order to ...

  3. Learning network theory : its contribution to our understanding of work-based learning projects and learning climate

    OpenAIRE

    Poell, R.F.; Moorsel, M.A.A.H. van

    1996-01-01

    This paper discusses the relevance of Van der Krogt's learning network theory (1995) for our understanding of the concepts of work-related learning projects and learning climate in organisations. The main assumptions of the learning network theory are presented and transferred to the level of learning groups in organisations. Four theoretical types of learning projects are distinguished. Four different approaches to the learning climate of work groups are compared to the approach offered by t...

  4. A Team Formation and Project-based Learning Support Service for Social Learning Networks

    NARCIS (Netherlands)

    Spoelstra, Howard; Van Rosmalen, Peter; Van de Vrie, Evert; Obreza, Matija; Sloep, Peter

    2014-01-01

    The Internet affords new approaches to learning. Geographically dispersed self-directed learners can learn in computer-supported communities, forming social learning networks. However, self-directed learners can suffer from a lack of continuous motivation. And surprisingly, social learning networks

  5. Structure Learning in Power Distribution Networks

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-13

    Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as these related to demand response, outage detection and management, and improved load-monitoring. Here, inspired by proliferation of the metering technology, we discuss statistical estimation problems in structurally loopy but operationally radial distribution grids consisting in learning operational layout of the network from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time – which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.

  6. A fully connected network of Bernoulli units with correlation learning

    Science.gov (United States)

    Dente, J. A.; Vilela Mendes, R.

    1996-02-01

    Biological evidence suggests that pattern recognition and associative memory in the mammalian nervous system operates through the establishment of spatio-temporal patterns of activity and not by the evolution towards an equilibrium point as in attractor neural networks. Information is carried by the space-time correlation of the activity intensities rather than by the details of individual neuron signals. Furthermore the fast recognition times that are achieved with relatively slow biological neurons seem to be associated to the chaotic nature of the basal nervous activity. To copy the biology hardware may not be technologically sound, but to look for inspiration in the efficient biological information processing methods is an idea that deserves consideration. Inspired by the mechanisms at work in the mammalian olfactory system we study a network where, in the absence of external inputs, the units have a dynamics of the Bernoulli shift type. When an external signal is presented, the pattern of excitation bursts depends on the learning history of the network. Association and pattern identification in the network operates by the selection, by the external stimulus, of distinct invariant measures in the chaotic system. The simplicity of the node dynamics, that is chosen, allows a reasonable analytical control of the network behavior.

  7. Ensemble Network Architecture for Deep Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Xi-liang Chen

    2018-01-01

    Full Text Available The popular deep Q learning algorithm is known to be instability because of the Q-value’s shake and overestimation action values under certain conditions. These issues tend to adversely affect their performance. In this paper, we develop the ensemble network architecture for deep reinforcement learning which is based on value function approximation. The temporal ensemble stabilizes the training process by reducing the variance of target approximation error and the ensemble of target values reduces the overestimate and makes better performance by estimating more accurate Q-value. Our results show that this architecture leads to statistically significant better value evaluation and more stable and better performance on several classical control tasks at OpenAI Gym environment.

  8. On local optima in learning bayesian networks

    DEFF Research Database (Denmark)

    Dalgaard, Jens; Kocka, Tomas; Pena, Jose

    2003-01-01

    This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness...... is set at maximum, KES corresponds to the greedy equivalence search algorithm (GES). When greediness is kept at minimum, we prove that under mild assumptions KES asymptotically returns any inclusion optimal BN with nonzero probability. Experimental results for both synthetic and real data are reported...

  9. Learning Reproducibility with a Yearly Networking Contest

    KAUST Repository

    Canini, Marco

    2017-08-10

    Better reproducibility of networking research results is currently a major goal that the academic community is striving towards. This position paper makes the case that improving the extent and pervasiveness of reproducible research can be greatly fostered by organizing a yearly international contest. We argue that holding a contest undertaken by a plurality of students will have benefits that are two-fold. First, it will promote hands-on learning of skills that are helpful in producing artifacts at the replicable-research level. Second, it will advance the best practices regarding environments, testbeds, and tools that will aid the tasks of reproducibility evaluation committees by and large.

  10. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  11. Learning Bayesian Networks with Incomplete Data by Augmentation

    OpenAIRE

    Adel, Tameem; de Campos, Cassio P.

    2016-01-01

    We present new algorithms for learning Bayesian networks from data with missing values using a data augmentation approach. An exact Bayesian network learning algorithm is obtained by recasting the problem into a standard Bayesian network learning problem without missing data. To the best of our knowledge, this is the first exact algorithm for this problem. As expected, the exact algorithm does not scale to large domains. We build on the exact method to create an approximate algorithm using a ...

  12. Exploring Practice-Research Networks for Critical Professional Learning

    Science.gov (United States)

    Appleby, Yvon; Hillier, Yvonne

    2012-01-01

    This paper discusses the contribution that practice-research networks can make to support critical professional development in the Learning and Skills sector in England. By practice-research networks we mean groups or networks which maintain a connection between research and professional practice. These networks stem from the philosophy of…

  13. The International Active Learning Space

    DEFF Research Database (Denmark)

    Manners, Ian James

    2015-01-01

    -Danish students receive the basic international and intercultural skills and knowledge they need in current society. The English-language masters’ seminars I teach at the Department of Political Science are international in terms of students and teacher, but they are also Active Learning seminars......-Danish students (and sometimes teachers) rarely speak to each other or learn each other’s names. In the international AL spaces I create, students must work together on joint tasks which require interaction to address tasks and integration in order to benefit from the multinational activity groups. Planning AL...... that complete the seminar soon become vocal advocates of international AL. Ultimately, enriching student learning through immersing Danish and international students in an international AL space is, for me, the best way of ensuring an internationalised learning outcome, rather than just international mobility....

  14. Active learning of Pareto fronts.

    Science.gov (United States)

    Campigotto, Paolo; Passerini, Andrea; Battiti, Roberto

    2014-03-01

    This paper introduces the active learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multiobjective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learned from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art estimation of distribution algorithms and widely known genetic techniques.

  15. Active Learning for Player Modeling

    DEFF Research Database (Denmark)

    Shaker, Noor; Abou-Zleikha, Mohamed; Shaker, Mohammad

    2015-01-01

    Learning models of player behavior has been the focus of several studies. This work is motivated by better understanding of player behavior, a knowledge that can ultimately be employed to provide player-adapted or personalized content. In this paper, we propose the use of active learning for player...... experience modeling. We use a dataset from hundreds of players playing Infinite Mario Bros. as a case study and we employ the random forest method to learn mod- els of player experience through the active learning approach. The results obtained suggest that only part of the dataset (up to half the size...... that the method can be used online during the content generation process where the mod- els can improve and better content can be presented as the game is being played....

  16. THE USE OF SOCIAL NETWORKS IN THE PROCESS OF LEARNING ENGLISH AS A SECOND LANGUAGE

    Directory of Open Access Journals (Sweden)

    Halyna I. Sotska

    2018-02-01

    Full Text Available In the recent decade many changes in the process of education took place because of the development of information and communication technologies. Online social groups tend to be used by teachers and students for formal (study and informal (personal communication purposes. An efficient teacher may turn social networks into an effective tool, encouraging students to communicate in the target language. With the help of social networks the teacher can activate students in the process of learning, create situations for better understanding and perceiving the material. The use of such approaches as blended learning, corporative learning and active learning helps make the classes more attractive and effective. Moreover, social networks can help in the development of students’ creativity, provision of feedback and cooperative learning. The article deals with the question of influence of Massive online open courses on effectiveness of the educational process for students who learn English as a second language.

  17. Robust Learning of High-dimensional Biological Networks with Bayesian Networks

    Science.gov (United States)

    Nägele, Andreas; Dejori, Mathäus; Stetter, Martin

    Structure learning of Bayesian networks applied to gene expression data has become a potentially useful method to estimate interactions between genes. However, the NP-hardness of Bayesian network structure learning renders the reconstruction of the full genetic network with thousands of genes unfeasible. Consequently, the maximal network size is usually restricted dramatically to a small set of genes (corresponding with variables in the Bayesian network). Although this feature reduction step makes structure learning computationally tractable, on the downside, the learned structure might be adversely affected due to the introduction of missing genes. Additionally, gene expression data are usually very sparse with respect to the number of samples, i.e., the number of genes is much greater than the number of different observations. Given these problems, learning robust network features from microarray data is a challenging task. This chapter presents several approaches tackling the robustness issue in order to obtain a more reliable estimation of learned network features.

  18. Delta Learning Rule for the Active Sites Model

    OpenAIRE

    Lingashetty, Krishna Chaithanya

    2010-01-01

    This paper reports the results on methods of comparing the memory retrieval capacity of the Hebbian neural network which implements the B-Matrix approach, by using the Widrow-Hoff rule of learning. We then, extend the recently proposed Active Sites model by developing a delta rule to increase memory capacity. Also, this paper extends the binary neural network to a multi-level (non-binary) neural network.

  19. Active Learning versus Traditional Teaching

    Directory of Open Access Journals (Sweden)

    L.A. Azzalis

    2009-05-01

    Full Text Available In traditional teaching most of the class time is spent with the professor lecturing and the students watching and listening. The students work individually, and cooperation is discouraged. On the other hand,  active learning  changes the focus of activity from the teacher to the learners, in which students solve problems, answer questions, formulate questions of their own, discuss, explain, debate during class;  moreover, students work in teams on problems and projects under conditions that assure positive interdependence and individual accountability. Although student-centered methods have repeatedly been shown to be superior to the traditional teacher-centered approach to instruction, the literature regarding the efficacy of various teaching methods is inconclusive. The purpose of this study was to compare the student perceptions of course and instructor effectiveness, course difficulty, and amount learned between the active learning and lecture sections  in Health Sciences´ courses by statistical data from Anhembi Morumbi University. Results indicated significant  difference between active  learning and traditional  teaching. Our conclusions were that strategies promoting  active  learning to  traditional lectures could increase knowledge and understanding.

  20. New designing of E-Learning systems with using network learning

    OpenAIRE

    Malayeri, Amin Daneshmand; Abdollahi, Jalal

    2010-01-01

    One of the most applied learning in virtual spaces is using E-Learning systems. Some E-Learning methodologies has been introduced, but the main subject is the most positive feedback from E-Learning systems. In this paper, we introduce a new methodology of E-Learning systems entitle "Network Learning" with review of another aspects of E-Learning systems. Also, we present benefits and advantages of using these systems in educating and fast learning programs. Network Learning can be programmable...

  1. Learning network theory : its contribution to our understanding of work-based learning projects and learning climate

    NARCIS (Netherlands)

    Poell, R.F.; Moorsel, M.A.A.H. van

    1996-01-01

    This paper discusses the relevance of Van der Krogt's learning network theory (1995) for our understanding of the concepts of work-related learning projects and learning climate in organisations. The main assumptions of the learning network theory are presented and transferred to the level of

  2. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  3. Social Networks as Learning Environments for Higher Education

    Directory of Open Access Journals (Sweden)

    J.A.Cortés

    2014-09-01

    Full Text Available Learning is considered as a social activity, a student does not learn only of the teacher and the textbook or only in the classroom, learn also from many other agents related to the media, peers and society in general. And since the explosion of the Internet, the information is within the reach of everyone, is there where the main area of opportunity in new technologies applied to education, as well as taking advantage of recent socialization trends that can be leveraged to improve not only informing of their daily practices, but rather as a tool that explore different branches of education research. One can foresee the future of higher education as a social learning environment, open and collaborative, where people construct knowledge in interaction with others, in a comprehensive manner. The mobility and ubiquity that provide mobile devices enable the connection from anywhere and at any time. In modern educational environments can be expected to facilitate mobile devices in the classroom expansion in digital environments, so that students and teachers can build the teaching-learning process collectively, this partial derivative results in the development of draft research approved by the CONADI in “Universidad Cooperativa de Colombia”, "Social Networks: A teaching strategy in learning environments in higher education."

  4. Learning gene regulatory networks from only positive and unlabeled data

    Directory of Open Access Journals (Sweden)

    Elkan Charles

    2010-05-01

    Full Text Available Abstract Background Recently, supervised learning methods have been exploited to reconstruct gene regulatory networks from gene expression data. The reconstruction of a network is modeled as a binary classification problem for each pair of genes. A statistical classifier is trained to recognize the relationships between the activation profiles of gene pairs. This approach has been proven to outperform previous unsupervised methods. However, the supervised approach raises open questions. In particular, although known regulatory connections can safely be assumed to be positive training examples, obtaining negative examples is not straightforward, because definite knowledge is typically not available that a given pair of genes do not interact. Results A recent advance in research on data mining is a method capable of learning a classifier from only positive and unlabeled examples, that does not need labeled negative examples. Applied to the reconstruction of gene regulatory networks, we show that this method significantly outperforms the current state of the art of machine learning methods. We assess the new method using both simulated and experimental data, and obtain major performance improvement. Conclusions Compared to unsupervised methods for gene network inference, supervised methods are potentially more accurate, but for training they need a complete set of known regulatory connections. A supervised method that can be trained using only positive and unlabeled data, as presented in this paper, is especially beneficial for the task of inferring gene regulatory networks, because only an incomplete set of known regulatory connections is available in public databases such as RegulonDB, TRRD, KEGG, Transfac, and IPA.

  5. Disseminating Innovations in Teaching Value-Based Care Through an Online Learning Network.

    Science.gov (United States)

    Gupta, Reshma; Shah, Neel T; Moriates, Christopher; Wallingford, September; Arora, Vineet M

    2017-08-01

    A national imperative to provide value-based care requires new strategies to teach clinicians about high-value care. We developed a virtual online learning network aimed at disseminating emerging strategies in teaching value-based care. The online Teaching Value in Health Care Learning Network includes monthly webinars that feature selected innovators, online discussion forums, and a repository for sharing tools. The learning network comprises clinician-educators and health system leaders across North America. We conducted a cross-sectional online survey of all webinar presenters and the active members of the network, and we assessed program feasibility. Six months after the program launched, there were 277 learning community members in 22 US states. Of the 74 active members, 50 (68%) completed the evaluation. Active members represented independently practicing physicians and trainees in 7 specialties, nurses, educators, and health system leaders. Nearly all speakers reported that the learning network provided them with a unique opportunity to connect with a different audience and achieve greater recognition for their work. Of the members who were active in the learning network, most reported that strategies gleaned from the network were helpful, and some adopted or adapted these innovations at their home institutions. One year after the program launched, the learning network had grown to 364 total members. The learning network helped participants share and implement innovations to promote high-value care. The model can help disseminate innovations in emerging areas of health care transformation, and is sustainable without ongoing support after a period of start-up funding.

  6. Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System

    Directory of Open Access Journals (Sweden)

    A. A. Salama

    2015-03-01

    Full Text Available In this paper, we present a review of different recommender system algorithms that are utilized in social networks based e-Learning systems. Future research will include our proposed our e-Learning system that utilizes Recommender System and Social Network. Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache in [21, 22, 23] and Salama et al. in [24-66].The purpose of this paper is to utilize a neutrosophic set to analyze social networks data conducted through learning activities.

  7. RELATION BETWEEN COOPERATION AND ORGANIZATIONAL LEARNING WITH THE COMPETITIVENESS IN AN INTERORGANIZATIONAL NETWORK

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Zonta

    2015-05-01

    Full Text Available The study analyzed the relationship between cooperation and organizational learning with competitiveness in a small and medium enterprises (SME network, with business of the groups of the Commercial and Industrial Association of Chapecó (ACIC. The methodology used was quantitative, with the factorial analysis. Currently, ACIC has 14 groups and 236 SME´s nucleated, developing joint activities of economic and social sustainability in Chapecó. The theoretical study raised concepts already endorsed by the scientific community on interorganizational networks, competitiveness, cooperation and organizational learning. The results demonstrated that indicators related to cooperation and learning in horizontal networks are characterized as antecedents of competitiveness in organizational networks, and that there is a positive correlation between the constructs cooperation and organizational learning with competitiveness construct. The study confirms the belief that small businesses associated in networks can increase their competitiveness, thus contributing to regional development.

  8. Cooperative Learning for Distributed In-Network Traffic Classification

    Science.gov (United States)

    Joseph, S. B.; Loo, H. R.; Ismail, I.; Andromeda, T.; Marsono, M. N.

    2017-04-01

    Inspired by the concept of autonomic distributed/decentralized network management schemes, we consider the issue of information exchange among distributed network nodes to network performance and promote scalability for in-network monitoring. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among autonomic distributed network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of 89.21% (sharing data) and 88.37% (sharing clusters) compared to 88.06% for nodes without cooperative learning capability. The overall performance indicates that cooperative learning is promising for distributed in-network traffic classification.

  9. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    Directory of Open Access Journals (Sweden)

    Chernoded Andrey

    2017-01-01

    Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  10. Hybrid Collaborative Learning for Classification and Clustering in Sensor Networks

    Science.gov (United States)

    Wagstaff, Kiri L.; Sosnowski, Scott; Lane, Terran

    2012-01-01

    Traditionally, nodes in a sensor network simply collect data and then pass it on to a centralized node that archives, distributes, and possibly analyzes the data. However, analysis at the individual nodes could enable faster detection of anomalies or other interesting events as well as faster responses, such as sending out alerts or increasing the data collection rate. There is an additional opportunity for increased performance if learners at individual nodes can communicate with their neighbors. In previous work, methods were developed by which classification algorithms deployed at sensor nodes can communicate information about event labels to each other, building on prior work with co-training, self-training, and active learning. The idea of collaborative learning was extended to function for clustering algorithms as well, similar to ideas from penta-training and consensus clustering. However, collaboration between these learner types had not been explored. A new protocol was developed by which classifiers and clusterers can share key information about their observations and conclusions as they learn. This is an active collaboration in which learners of either type can query their neighbors for information that they then use to re-train or re-learn the concept they are studying. The protocol also supports broadcasts from the classifiers and clusterers to the rest of the network to announce new discoveries. Classifiers observe an event and assign it a label (type). Clusterers instead group observations into clusters without assigning them a label, and they collaborate in terms of pairwise constraints between two events [same-cluster (mustlink) or different-cluster (cannot-link)]. Fundamentally, these two learner types speak different languages. To bridge this gap, the new communication protocol provides four types of exchanges: hybrid queries for information, hybrid "broadcasts" of learned information, each specified for classifiers-to-clusterers, and clusterers

  11. The Relationships Between Policy, Boundaries and Research in Networked Learning

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Sinclair, Christine

    2016-01-01

    the books that include a selection of reworked and peer-reviewed papers from the conference. The 2014 Networked Learning Conference which was held in Edinburgh was characterised by animated dialogue on emergent influences affecting networked teaching and learning building on work established in earlier...

  12. Social networks as ICT collaborative and supportive learning media ...

    African Journals Online (AJOL)

    ... ICT collaborative and supportive learning media utilisation within the Nigerian educational system. The concept of ICT was concisely explained vis-à-vis the social network concept, theory and collaborative and supportive learning media utilisation. Different types of social network are highlighted among which Facebook, ...

  13. The Practices of Student Network as Cooperative Learning in Ethiopia

    Science.gov (United States)

    Reda, Weldemariam Nigusse; Hagos, Girmay Tsegay

    2015-01-01

    Student network is a teaching strategy introduced as cooperative learning to all educational levels above the upper primary schools (grade 5 and above) in Ethiopia. The study was, therefore, aimed at investigating to what extent the student network in Ethiopia is actually practiced in line with the principles of cooperative learning. Consequently,…

  14. Towards a Social Networks Model for Online Learning & Performance

    Science.gov (United States)

    Chung, Kon Shing Kenneth; Paredes, Walter Christian

    2015-01-01

    In this study, we develop a theoretical model to investigate the association between social network properties, "content richness" (CR) in academic learning discourse, and performance. CR is the extent to which one contributes content that is meaningful, insightful and constructive to aid learning and by social network properties we…

  15. Dialogue, Language and Identity: Critical Issues for Networked Management Learning

    Science.gov (United States)

    Ferreday, Debra; Hodgson, Vivien; Jones, Chris

    2006-01-01

    This paper draws on the work of Mikhail Bakhtin and Norman Fairclough to show how dialogue is central to the construction of identity in networked management learning. The paper is based on a case study of a networked management learning course in higher education and attempts to illustrate how participants negotiate issues of difference,…

  16. "Getting Practical" and the National Network of Science Learning Centres

    Science.gov (United States)

    Chapman, Georgina; Langley, Mark; Skilling, Gus; Walker, John

    2011-01-01

    The national network of Science Learning Centres is a co-ordinating partner in the Getting Practical--Improving Practical Work in Science programme. The principle of training provision for the "Getting Practical" programme is a cascade model. Regional trainers employed by the national network of Science Learning Centres trained the cohort of local…

  17. Problems in the Deployment of Learning Networks In Small Organizations

    NARCIS (Netherlands)

    Shankle, Dean E.; Shankle, Jeremy P.

    2006-01-01

    Please, cite this publication as: Shankle, D.E., & Shankle, J.P. (2006). Problems in the Deployment of Learning Networks In Small Organizations. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence Conference. March 30th-31st, Sofia, Bulgaria:

  18. Lectures Abandoned: Active Learning by Active Seminars

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Corry, Aino Vonge

    2012-01-01

    Traditional lecture-based courses are widely criticised for be- ing less eective in teaching. The question is of course what should replace the lectures and various active learning tech- niques have been suggested and studied. In this paper, we report on our experiences of redesigning a software ......- tive seminars as a replacement of traditional lectures, an activity template for the contents of active seminars, an ac- count on how storytelling supported the seminars, as well as reports on our and the students' experiences....

  19. Monitoring of Students' Interaction in Online Learning Settings by Structural Network Analysis and Indicators.

    Science.gov (United States)

    Ammenwerth, Elske; Hackl, Werner O

    2017-01-01

    Learning as a constructive process works best in interaction with other learners. Support of social interaction processes is a particular challenge within online learning settings due to the spatial and temporal distribution of participants. It should thus be carefully monitored. We present structural network analysis and related indicators to analyse and visualize interaction patterns of participants in online learning settings. We validate this approach in two online courses and show how the visualization helps to monitor interaction and to identify activity profiles of learners. Structural network analysis is a feasible approach for an analysis of the intensity and direction of interaction in online learning settings.

  20. Patterns recognition of electric brain activity using artificial neural networks

    Science.gov (United States)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  1. Active Learning in Introductory Climatology.

    Science.gov (United States)

    Dewey, Kenneth F.; Meyer, Steven J.

    2000-01-01

    Introduces a software package available for the climatology curriculum that determines possible climatic events according to a long-term climate history. Describes the integration of the software into the curriculum and presents examples of active learning. (Contains 19 references.) (YDS)

  2. Oral Hygiene. Learning Activity Package.

    Science.gov (United States)

    Hime, Kirsten

    This learning activity package on oral hygiene is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  3. Minimax bounds for active learning

    NARCIS (Netherlands)

    Castro, R.M.; Nowak, R.; Bshouty, N.H.; Gentile, C.

    2007-01-01

    This paper aims to shed light on achievable limits in active learning. Using minimax analysis techniques, we study the achievable rates of classification error convergence for broad classes of distributions characterized by decision boundary regularity and noise conditions. The results clearly

  4. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network.

    Science.gov (United States)

    Gilra, Aditya; Gerstner, Wulfram

    2017-11-27

    The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically.

  5. The Emergence of the Open Networked ``i-Learning'' Model

    Science.gov (United States)

    Elia, Gianluca

    The most significant forces that are changing the business world and the society behaviors in this beginning of the twenty-first century can be identified into the globalization of the economy, technological evolution and convergence, change of the workers' expectations, workplace diversity and mobility, and mostly, knowledge and learning as major organizational assets. But which type of ­learning dynamics must be nurtured and pursued within the organizations, today, in order to generate valuable knowledge and its effective applications? After a brief discussion on the main changes observable in management, ICT and society/workplace in the last years, this chapter aims to answer to this question, through the proposition of the “Π-shaped” profile (a new professional archetype for leading change), and through the discussion of the open networked “i-Learning” model (a new framework to “incubate” innovation in learning processes). Actually, the “i” stands for “innovation” (to highlight the nature of the impact on traditional ­learning model), but also it stands for “incubation” (to underline the urgency to have new environments in which incubating new professional profiles). Specifically, the main key characteristics at the basis of the innovation of the learning processes will be ­presented and described, by highlighting the managerial, technological and societal aspects of their nature. A set of operational guidelines will be also ­provided to ­activate and sustain the innovation process, so implementing changes in the strategic dimensions of the model. Finally, the “i-Learning Radar” is presented as an operational tool to design, communicate and control an “i-Learning experience”. This tool is represented by a radar diagram with six strategic dimensions of a ­learning initiative.

  6. Knitted Patterns or Contagious Hotspots?: Linking Views on Knowledge and Organizational Networked Learning

    Science.gov (United States)

    Cornelissen, Frank; de Jong, Tjip; Kessels, Joseph

    2012-01-01

    Purpose: This paper aims to propose a framework which connects perspectives on knowledge and learning to various approaches of social networks studies. The purpose is twofold: providing input for the discourse in organizational studies about the way different views on knowledge and networks drive design choices and activities of researchers,…

  7. Engaging Students' Learning Through Active Learning

    Directory of Open Access Journals (Sweden)

    Margaret Fitzsimons

    2014-06-01

    Full Text Available This paper discusses a project carried out with thirty six final year undergraduate students, studying the Bachelor of Science in Business and Management and taking the module Small Business Management during the academic year 2012 and 2013 in Dublin Institute of Technology. The research had two separate objectives, 1 to engage in active learning by having students work on a consulting project in groups for a real life business and 2 to improve student learning. The Small Business Management previously had a group assignment that was to choose an article related to entrepreneurship and critic it and present it to the class. Anecdotally, from student feedback, it was felt that this process did not engage students and also did not contribute to the key competencies necessary in order to be an entrepreneur. The desire was for students on successful completion of this module to have better understood how business is conducted and equip them with core skills such as innovation, critical thinking, problem solving and decision making .Student buy in was achieved by getting the students to select their own groups and also work out between each group from a one page brief provided by the businesses which business they would like to work with. It was important for the businesses to also feel their time spent with students was worthwhile so they were presented with a report from the students at the end of the twelve weeks and invited into the College to hear the presentations from students. Students were asked to provide a reflection on their three key learning points from the assignment and to answer specific questions designed to understand what they learnt and how and their strengths and weaknesses. A survey was sent to the businesses that took part to understand their experiences. The results were positive with student engagement and learning rating very highly and feedback from the businesses demonstrated an appreciation of having a different

  8. Supervised Learning with Complex-valued Neural Networks

    CERN Document Server

    Suresh, Sundaram; Savitha, Ramasamy

    2013-01-01

    Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks.  Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computati...

  9. Dynamic functional brain networks involved in simple visual discrimination learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Designing for Learning: Online Social Networks as a Classroom Environment

    Directory of Open Access Journals (Sweden)

    Gail Casey

    2011-11-01

    Full Text Available This paper deploys notions of emergence, connections, and designs for learning to conceptualize high school students’ interactions when using online social media as a learning environment. It makes links to chaos and complexity theories and to fractal patterns as it reports on a part of the first author’s action research study, conducted while she was a teacher working in an Australian public high school and completing her PhD. The study investigates the use of a Ning online social network as a learning environment shared by seven classes, and it examines students’ reactions and online activity while using a range of social media and Web 2.0 tools.The authors use Graham Nuthall’s (2007 “lens on learning” to explore the social processes and culture of this shared online classroom. The paper uses his extensive body of research and analyses of classroom learning processes to conceptualize and analyze data throughout the action research cycle. It discusses the pedagogical implications that arise from the use of social media and, in so doing, challenges traditional models of teaching and learning.

  11. Multi-modal Social Networks: A MRF Learning Approach

    Science.gov (United States)

    2016-06-20

    Network forensics: random infection vs spreading epidemic , Proceedings of ACM Sigmetrics. 11-JUN-12, London, UK. : , TOTAL: 4 06/09/2016 Received Paper...Multi-modal Social Networks A MRF Learning Approach The work primarily focused on two lines of research. 1. We propose new greedy algorithms...Box 12211 Research Triangle Park, NC 27709-2211 social networks , learning and inference REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT

  12. Social networks and performance in distributed learning communities

    OpenAIRE

    Cadima, Rita; Ojeda Rodríguez, Jordi; Monguet Fierro, José María

    2012-01-01

    Social networks play an essential role in learning environments as a key channel for knowledge sharing and students' support. In distributed learning communities, knowledge sharing does not occur as spontaneously as when a working group shares the same physical space; knowledge sharing depends even more on student informal connections. In this study we analyse two distributed learning communities' social networks in order to understand how characteristics of the social structure can enhance s...

  13. On-line learning in radial basis functions networks

    OpenAIRE

    Freeman, Jason; Saad, David

    1997-01-01

    An analytic investigation of the average case learning and generalization properties of Radial Basis Function Networks (RBFs) is presented, utilising on-line gradient descent as the learning rule. The analytic method employed allows both the calculation of generalization error and the examination of the internal dynamics of the network. The generalization error and internal dynamics are then used to examine the role of the learning rate and the specialization of the hidden units, which gives ...

  14. Robust Learning of Fixed-Structure Bayesian Networks

    OpenAIRE

    Diakonikolas, Ilias; Kane, Daniel; Stewart, Alistair

    2016-01-01

    We investigate the problem of learning Bayesian networks in an agnostic model where an $\\epsilon$-fraction of the samples are adversarially corrupted. Our agnostic learning model is similar to -- in fact, stronger than -- Huber's contamination model in robust statistics. In this work, we study the fully observable Bernoulli case where the structure of the network is given. Even in this basic setting, previous learning algorithms either run in exponential time or lose dimension-dependent facto...

  15. Do Convolutional Neural Networks Learn Class Hierarchy?

    Science.gov (United States)

    Bilal, Alsallakh; Jourabloo, Amin; Ye, Mao; Liu, Xiaoming; Ren, Liu

    2018-01-01

    Convolutional Neural Networks (CNNs) currently achieve state-of-the-art accuracy in image classification. With a growing number of classes, the accuracy usually drops as the possibilities of confusion increase. Interestingly, the class confusion patterns follow a hierarchical structure over the classes. We present visual-analytics methods to reveal and analyze this hierarchy of similar classes in relation with CNN-internal data. We found that this hierarchy not only dictates the confusion patterns between the classes, it furthermore dictates the learning behavior of CNNs. In particular, the early layers in these networks develop feature detectors that can separate high-level groups of classes quite well, even after a few training epochs. In contrast, the latter layers require substantially more epochs to develop specialized feature detectors that can separate individual classes. We demonstrate how these insights are key to significant improvement in accuracy by designing hierarchy-aware CNNs that accelerate model convergence and alleviate overfitting. We further demonstrate how our methods help in identifying various quality issues in the training data.

  16. Structure of Small World Innovation Network and Learning Performance

    Directory of Open Access Journals (Sweden)

    Shuang Song

    2014-01-01

    Full Text Available This paper examines the differences of learning performance of 5 MNCs (multinational corporations that filed the largest number of patents in China. We establish the innovation network with the patent coauthorship data by these 5 MNCs and classify the networks by the tail of distribution curve of connections. To make a comparison of the learning performance of these 5 MNCs with differing network structures, we develop an organization learning model by regarding the reality as having m dimensions, which denotes the heterogeneous knowledge about the reality. We further set n innovative individuals that are mutually interactive and own unique knowledge about the reality. A longer (shorter distance between the knowledge of the individual and the reality denotes a lower (higher knowledge level of that individual. Individuals interact with and learn from each other within the small-world network. By making 1,000 numerical simulations and averaging the simulated results, we find that the differing structure of the small-world network leads to the differences of learning performance between these 5 MNCs. The network monopolization negatively impacts and network connectivity positively impacts learning performance. Policy implications in the conclusion section suggest that to improve firm learning performance, it is necessary to establish a flat and connective network.

  17. Active Learning with Irrelevant Examples

    Science.gov (United States)

    Wagstaff, Kiri; Mazzoni, Dominic

    2009-01-01

    An improved active learning method has been devised for training data classifiers. One example of a data classifier is the algorithm used by the United States Postal Service since the 1960s to recognize scans of handwritten digits for processing zip codes. Active learning algorithms enable rapid training with minimal investment of time on the part of human experts to provide training examples consisting of correctly classified (labeled) input data. They function by identifying which examples would be most profitable for a human expert to label. The goal is to maximize classifier accuracy while minimizing the number of examples the expert must label. Although there are several well-established methods for active learning, they may not operate well when irrelevant examples are present in the data set. That is, they may select an item for labeling that the expert simply cannot assign to any of the valid classes. In the context of classifying handwritten digits, the irrelevant items may include stray marks, smudges, and mis-scans. Querying the expert about these items results in wasted time or erroneous labels, if the expert is forced to assign the item to one of the valid classes. In contrast, the new algorithm provides a specific mechanism for avoiding querying the irrelevant items. This algorithm has two components: an active learner (which could be a conventional active learning algorithm) and a relevance classifier. The combination of these components yields a method, denoted Relevance Bias, that enables the active learner to avoid querying irrelevant data so as to increase its learning rate and efficiency when irrelevant items are present. The algorithm collects irrelevant data in a set of rejected examples, then trains the relevance classifier to distinguish between labeled (relevant) training examples and the rejected ones. The active learner combines its ranking of the items with the probability that they are relevant to yield a final decision about which item

  18. Stimulating Deep Learning Using Active Learning Techniques

    Science.gov (United States)

    Yew, Tee Meng; Dawood, Fauziah K. P.; a/p S. Narayansany, Kannaki; a/p Palaniappa Manickam, M. Kamala; Jen, Leong Siok; Hoay, Kuan Chin

    2016-01-01

    When students and teachers behave in ways that reinforce learning as a spectator sport, the result can often be a classroom and overall learning environment that is mostly limited to transmission of information and rote learning rather than deep approaches towards meaningful construction and application of knowledge. A group of college instructors…

  19. Boltzmann learning of parameters in cellular neural networks

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    1992-01-01

    The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...

  20. Stochastic Online Learning in Dynamic Networks under Unknown Models

    Science.gov (United States)

    2016-08-02

    The key is to develop online learning strategies at each individual node. Specifically, through local information exchange with its neighbors, each...infinitely repeated game with incomplete information and developed a dynamic pricing strategy referred to as Competitive and Cooperative Demand Learning...Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for

  1. Enhancing Formal E-Learning with Edutainment on Social Networks

    Science.gov (United States)

    Labus, A.; Despotovic-Zrakic, M.; Radenkovic, B.; Bogdanovic, Z.; Radenkovic, M.

    2015-01-01

    This paper reports on the investigation of the possibilities of enhancing the formal e-learning process by harnessing the potential of informal game-based learning on social networks. The goal of the research is to improve the outcomes of the formal learning process through the design and implementation of an educational game on a social network…

  2. Stochastic cycle selection in active flow networks

    Science.gov (United States)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

    2016-11-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  3. Using IMS Learning Design to model collaborative learning activities

    NARCIS (Netherlands)

    Tattersall, Colin

    2006-01-01

    IMS Learning Design provides a counter to the trend towards designing for lone-learners reading from screens. It guides staff and educational developers to start not with content, but with learning activities and the achievement of learning objectives. It recognises that learning can happen without

  4. Social networks and participation with others for youth with learning, attention, and autism spectrum disorders.

    Science.gov (United States)

    Kreider, Consuelo M; Bendixen, Roxanna M; Young, Mary Ellen; Prudencio, Stephanie M; McCarty, Christopher; Mann, William C

    2016-02-01

    Social participation involves activities and roles providing interactions with others, including those within their social networks. This study sought to characterize social networks and participation with others for 36 youth, ages 11 to 16 years, with (n = 19) and without (n = 17) learning disability, attention disorder, or high-functioning autism. Social networks were measured using methods of personal network analysis. The Children's Assessment of Participation and Enjoyment With Whom dimension scores were used to measure participation with others. Youth from the clinical group were interviewed regarding their experiences within their social networks. Group differences were observed for six social network variables and in the proportion of overall, physical, recreational, social, and informal activities engaged with family and/or friends. Qualitative findings explicated strategies used in building, shaping, and maintaining social networks. Social network factors should be considered when seeking to understand social participation. © CAOT 2015.

  5. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James

    2014-01-01

    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  6. Instructional Utility and Learning Efficacy of Common Active Learning Strategies

    Science.gov (United States)

    McConell, David A.; Chapman, LeeAnna; Czaijka, C. Douglas; Jones, Jason P.; Ryker, Katherine D.; Wiggen, Jennifer

    2017-01-01

    The adoption of active learning instructional practices in college science, technology, engineering, and mathematics (STEM) courses has been shown to result in improvements in student learning, contribute to increased retention rates, and reduce the achievement gap among different student populations. Descriptions of active learning strategies…

  7. Theoretical framework on selected core issues on conditions for productive learning in networked learning environments

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Lone; Svendsen, Brian Møller; Ponti, Marisa

    The report documents and summarises the elements and dimensions that have been identified to describe and analyse the case studies collected in the Kaleidoscope Jointly Executed Integrating Research Project (JEIRP) on Conditions for productive learning in network learning environments.......The report documents and summarises the elements and dimensions that have been identified to describe and analyse the case studies collected in the Kaleidoscope Jointly Executed Integrating Research Project (JEIRP) on Conditions for productive learning in network learning environments....

  8. IMPROVING CAUSE DETECTION SYSTEMS WITH ACTIVE LEARNING

    Data.gov (United States)

    National Aeronautics and Space Administration — IMPROVING CAUSE DETECTION SYSTEMS WITH ACTIVE LEARNING ISAAC PERSING AND VINCENT NG Abstract. Active learning has been successfully applied to many natural language...

  9. History and Evolution of Active Learning Spaces

    Science.gov (United States)

    Beichner, Robert J.

    2014-01-01

    This chapter examines active learning spaces as they have developed over the years. Consistently well-designed classrooms can facilitate active learning even though the details of implementing pedagogies may differ.

  10. Monitoring Malware Activity on the LAN Network

    Science.gov (United States)

    Skrzewski, Mirosław

    Many security related organizations periodically publish current network and systems security information, with the lists of top malware programs. These lists raises the question how these threats spreads out, if the worms (the only threat with own communication abilities) are low or missing on these lists. The paper discuss the research on malware network activity, aimed to deliver the answer to the question, what is the main infection channel of modern malware, done with the usage of virtual honeypot systems on dedicated, unprotected network. Systems setup, network and systems monitoring solutions, results of over three months of network traffic and malware monitoring are presented, along with the proposed answer to our research question.

  11. Active Learning for Text Classification

    OpenAIRE

    Hu, Rong

    2011-01-01

    Text classification approaches are used extensively to solve real-world challenges. The success or failure of text classification systems hangs on the datasets used to train them, without a good dataset it is impossible to build a quality system. This thesis examines the applicability of active learning in text classification for the rapid and economical creation of labelled training data. Four main contributions are made in this thesis. First, we present two novel selection strategies to cho...

  12. Developing 21st century skills through the use of student personal learning networks

    Science.gov (United States)

    Miller, Robert D.

    This research was conducted to study the development of 21st century communication, collaboration, and digital literacy skills of students at the high school level through the use of online social network tools. The importance of this study was based on evidence high school and college students are not graduating with the requisite skills of communication, collaboration, and digital literacy skills yet employers see these skills important to the success of their employees. The challenge addressed through this study was how high schools can integrate social network tools into traditional learning environments to foster the development of these 21st century skills. A qualitative research study was completed through the use of case study. One high school class in a suburban high performing town in Connecticut was selected as the research site and the sample population of eleven student participants engaged in two sets of interviews and learned through the use social network tools for one semester of the school year. The primary social network tools used were Facebook, Diigo, Google Sites, Google Docs, and Twitter. The data collected and analyzed partially supported the transfer of the theory of connectivism at the high school level. The students actively engaged in collaborative learning and research. Key results indicated a heightened engagement in learning, the development of collaborative learning and research skills, and a greater understanding of how to use social network tools for effective public communication. The use of social network tools with high school students was a positive experience that led to an increased awareness of the students as to the benefits social network tools have as a learning tool. The data supported the continued use of social network tools to develop 21st century communication, collaboration, and digital literacy skills. Future research in this area may explore emerging social network tools as well as the long term impact these tools

  13. Learning oncogenetic networks by reducing to mixed integer linear programming.

    Science.gov (United States)

    Shahrabi Farahani, Hossein; Lagergren, Jens

    2013-01-01

    Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.

  14. Create a good learning environment and motivate active learning enthusiasm

    Science.gov (United States)

    Bi, Weihong; Fu, Guangwei; Fu, Xinghu; Zhang, Baojun; Liu, Qiang; Jin, Wa

    2017-08-01

    In view of the current poor learning initiative of undergraduates, the idea of creating a good learning environment and motivating active learning enthusiasm is proposed. In practice, the professional tutor is allocated and professional introduction course is opened for college freshman. It can promote communication between the professional teachers and students as early as possible, and guide students to know and devote the professional knowledge by the preconceived form. Practice results show that these solutions can improve the students interest in learning initiative, so that the active learning and self-learning has become a habit in the classroom.

  15. ENERGY-NET (Energy, Environment and Society Learning Network): Best Practices to Enhance Informal Geoscience Learning

    Science.gov (United States)

    Rossi, R.; Elliott, E. M.; Bain, D.; Crowley, K. J.; Steiner, M. A.; Divers, M. T.; Hopkins, K. G.; Giarratani, L.; Gilmore, M. E.

    2014-12-01

    While energy links all living and non-living systems, the integration of energy, the environment, and society is often not clearly represented in 9 - 12 classrooms and informal learning venues. However, objective public learning that integrates these components is essential for improving public environmental literacy. ENERGY-NET (Energy, Environment and Society Learning Network) is a National Science Foundation funded initiative that uses an Earth Systems Science framework to guide experimental learning for high school students and to improve public learning opportunities regarding the energy-environment-society nexus in a Museum setting. One of the primary objectives of the ENERGY-NET project is to develop a rich set of experimental learning activities that are presented as exhibits at the Carnegie Museum of Natural History in Pittsburgh, Pennsylvania (USA). Here we detail the evolution of the ENERGY-NET exhibit building process and the subsequent evolution of exhibit content over the past three years. While preliminary plans included the development of five "exploration stations" (i.e., traveling activity carts) per calendar year, the opportunity arose to create a single, larger topical exhibit per semester, which was assumed to have a greater impact on museum visitors. Evaluative assessments conducted to date reveal important practices to be incorporated into ongoing exhibit development: 1) Undergraduate mentors and teen exhibit developers should receive additional content training to allow richer exhibit materials. 2) The development process should be distributed over as long a time period as possible and emphasize iteration. This project can serve as a model for other collaborations between geoscience departments and museums. In particular, these practices may streamline development of public presentations and increase the effectiveness of experimental learning activities.

  16. The Political Activity in the Network Environment

    Directory of Open Access Journals (Sweden)

    Марианна Юрьевна Павлютенкова

    2015-12-01

    Full Text Available The rapid development and deep penetration into all areas of modern society of information and communication technologies significantly increase the role of network interactions. Network structures represented primarily social networks, embedded in the public policy process and became one of the key political actors. Online communities take the form of public policy, where the formation of public opinion and political decision-making plays the main role. Networking environment opens up new opportunities for the opposition and protest movements, civic participation, and control of public policy in general. The article gives an insight on the political aspects of social networking, concludes on the trend formation and network's strengthening of the political activity in a wide distribution of e-networking and e-communications.

  17. Spontaneous brain activity predicts learning ability of foreign sounds.

    Science.gov (United States)

    Ventura-Campos, Noelia; Sanjuán, Ana; González, Julio; Palomar-García, María-Ángeles; Rodríguez-Pujadas, Aina; Sebastián-Gallés, Núria; Deco, Gustavo; Ávila, César

    2013-05-29

    Can learning capacity of the human brain be predicted from initial spontaneous functional connectivity (FC) between brain areas involved in a task? We combined task-related functional magnetic resonance imaging (fMRI) and resting-state fMRI (rs-fMRI) before and after training with a Hindi dental-retroflex nonnative contrast. Previous fMRI results were replicated, demonstrating that this learning recruited the left insula/frontal operculum and the left superior parietal lobe, among other areas of the brain. Crucially, resting-state FC (rs-FC) between these two areas at pretraining predicted individual differences in learning outcomes after distributed (Experiment 1) and intensive training (Experiment 2). Furthermore, this rs-FC was reduced at posttraining, a change that may also account for learning. Finally, resting-state network analyses showed that the mechanism underlying this reduction of rs-FC was mainly a transfer in intrinsic activity of the left frontal operculum/anterior insula from the left frontoparietal network to the salience network. Thus, rs-FC may contribute to predict learning ability and to understand how learning modifies the functioning of the brain. The discovery of this correspondence between initial spontaneous brain activity in task-related areas and posttraining performance opens new avenues to find predictors of learning capacities in the brain using task-related fMRI and rs-fMRI combined.

  18. Learning Networks: connecting people, organizations, autonomous agents and learning resources to establish the emergence of effective lifelong learning

    NARCIS (Netherlands)

    Koper, Rob; Sloep, Peter

    2003-01-01

    Koper, E.J.R., Sloep, P.B. (2002) Learning Networks connecting people, organizations, autonomous agents and learning resources to establish the emergence of effective lifelong learning. RTD Programma into Learning Technologies 2003-2008. More is different… Heerlen, Nederland: Open Universiteit

  19. Hybrid E-Learning Tool TransLearning: Video Storytelling to Foster Vicarious Learning within Multi-Stakeholder Collaboration Networks

    Science.gov (United States)

    van der Meij, Marjoleine G.; Kupper, Frank; Beers, Pieter J.; Broerse, Jacqueline E. W.

    2016-01-01

    E-learning and storytelling approaches can support informal vicarious learning within geographically widely distributed multi-stakeholder collaboration networks. This case study evaluates hybrid e-learning and video-storytelling approach "TransLearning" by investigation into how its storytelling e-tool supported informal vicarious…

  20. Efficient learning strategy of Chinese characters based on network approach.

    Directory of Open Access Journals (Sweden)

    Xiaoyong Yan

    Full Text Available We develop an efficient learning strategy of Chinese characters based on the network of the hierarchical structural relations between Chinese characters. A more efficient strategy is that of learning the same number of useful Chinese characters in less effort or time. We construct a node-weighted network of Chinese characters, where character usage frequencies are used as node weights. Using this hierarchical node-weighted network, we propose a new learning method, the distributed node weight (DNW strategy, which is based on a new measure of nodes' importance that considers both the weight of the nodes and its location in the network hierarchical structure. Chinese character learning strategies, particularly their learning order, are analyzed as dynamical processes over the network. We compare the efficiency of three theoretical learning methods and two commonly used methods from mainstream Chinese textbooks, one for Chinese elementary school students and the other for students learning Chinese as a second language. We find that the DNW method significantly outperforms the others, implying that the efficiency of current learning methods of major textbooks can be greatly improved.

  1. A Multiobjective Sparse Feature Learning Model for Deep Neural Networks.

    Science.gov (United States)

    Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi

    2015-12-01

    Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features.

  2. Learning activism, acting with phronesis

    Science.gov (United States)

    Lee, Yew-Jin

    2015-12-01

    The article "Socio-political development of private school children mobilising for disadvantaged others" by Darren Hoeg, Natalie Lemelin, and Lawrence Bencze described a language-learning curriculum that drew on elements of Socioscientific issues and Science, Technology, Society and Environment. Results showed that with a number of enabling factors acting in concert, learning about and engagement in practical action for social justice and equity are possible. An alternative but highly compatible framework is now introduced—phronetic social research—as an action-oriented, wisdom-seeking research stance for the social sciences. By so doing, it is hoped that forms of phronetic social research can gain wider currency among those that promote activism as one of many valued outcomes of an education in science.

  3. Developing metacognition: a basis for active learning

    NARCIS (Netherlands)

    Vos, Henk; de Graaff, E.

    2004-01-01

    The reasons to introduce formats of Active Learning in Engineering (ALE) like project work, problem based learning, use of cases, etc., are mostly based on practical experience and sometimes from applied research on teaching and learning. Such research shows that students learn more and different

  4. Using machine learning, neural networks and statistics to predict bankruptcy

    NARCIS (Netherlands)

    Pompe, P.P.M.; Feelders, A.J.; Feelders, A.J.

    1997-01-01

    Recent literature strongly suggests that machine learning approaches to classification outperform "classical" statistical methods. We make a comparison between the performance of linear discriminant analysis, classification trees, and neural networks in predicting corporate bankruptcy. Linear

  5. The Design, Experience and Practice of Networked Learning

    DEFF Research Database (Denmark)

    . The Design, Experience and Practice of Networked Learning will prove indispensable reading for researchers, teachers, consultants, and instructional designers in higher and continuing education; for those involved in staff and educational development, and for those studying post graduate qualifications...

  6. Stochastic sensitivity analysis and Langevin simulation for neural network learning

    International Nuclear Information System (INIS)

    Koda, Masato

    1997-01-01

    A comprehensive theoretical framework is proposed for the learning of a class of gradient-type neural networks with an additive Gaussian white noise process. The study is based on stochastic sensitivity analysis techniques, and formal expressions are obtained for stochastic learning laws in terms of functional derivative sensitivity coefficients. The present method, based on Langevin simulation techniques, uses only the internal states of the network and ubiquitous noise to compute the learning information inherent in the stochastic correlation between noise signals and the performance functional. In particular, the method does not require the solution of adjoint equations of the back-propagation type. Thus, the present algorithm has the potential for efficiently learning network weights with significantly fewer computations. Application to an unfolded multi-layered network is described, and the results are compared with those obtained by using a back-propagation method

  7. Personal Profiles: Enhancing Social Interaction in Learning Networks

    NARCIS (Netherlands)

    Berlanga, Adriana; Bitter-Rijpkema, Marlies; Brouns, Francis; Sloep, Peter; Fetter, Sibren

    2009-01-01

    Berlanga, A. J., Bitter-Rijpkema, M., Brouns, F., Sloep, P. B., & Fetter, S. (2011). Personal Profiles: Enhancing Social Interaction in Learning Networks. International Journal of Web Based Communities, 7(1), 66-82.

  8. Learning Initiatives for Network Economies in Asia (LIRNEasia ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Learning Initiatives for Network Economies in Asia (LIRNEasia) : Building Capacity in ICT Policy ... LIRNEasia seeks to build capacity for evidence-based interventions in the public policy process by persons attuned to the ... Project status.

  9. Deep Recurrent Neural Networks for Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Abdulmajid Murad

    2017-11-01

    Full Text Available Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM and k-nearest neighbors (KNN. Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs and CNNs.

  10. Deep Recurrent Neural Networks for Human Activity Recognition.

    Science.gov (United States)

    Murad, Abdulmajid; Pyun, Jae-Young

    2017-11-06

    Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.

  11. Thermodynamic efficiency of learning a rule in neural networks

    Science.gov (United States)

    Goldt, Sebastian; Seifert, Udo

    2017-11-01

    Biological systems have to build models from their sensory input data that allow them to efficiently process previously unseen inputs. Here, we study a neural network learning a binary classification rule for these inputs from examples provided by a teacher. We analyse the ability of the network to apply the rule to new inputs, that is to generalise from past experience. Using stochastic thermodynamics, we show that the thermodynamic costs of the learning process provide an upper bound on the amount of information that the network is able to learn from its teacher for both batch and online learning. This allows us to introduce a thermodynamic efficiency of learning. We analytically compute the dynamics and the efficiency of a noisy neural network performing online learning in the thermodynamic limit. In particular, we analyse three popular learning algorithms, namely Hebbian, Perceptron and AdaTron learning. Our work extends the methods of stochastic thermodynamics to a new type of learning problem and might form a suitable basis for investigating the thermodynamics of decision-making.

  12. How to Trigger Emergence and Self-Organisation in Learning Networks

    Science.gov (United States)

    Brouns, Francis; Fetter, Sibren; van Rosmalen, Peter

    The previous chapters of this section discussed why the social structure of Learning Networks is important and present guidelines on how to maintain and allow the emergence of communities in Learning Networks. Chapter 2 explains how Learning Networks rely on social interaction and active participations of the participants. Chapter 3 then continues by presenting guidelines and policies that should be incorporated into Learning Network Services in order to maintain existing communities by creating conditions that promote social interaction and knowledge sharing. Chapter 4 discusses the necessary conditions required for knowledge sharing to occur and to trigger communities to self-organise and emerge. As pointed out in Chap. 4, ad-hoc transient communities facilitate the emergence of social interaction in Learning Networks, self-organising them into communities, taking into account personal characteristics, community characteristics and general guidelines. As explained in Chap. 4 community members would benefit from a service that brings suitable people together for a specific purpose, because it will allow the participant to focus on the knowledge sharing process by reducing the effort or costs. In the current chapter, we describe an example of a peer support Learning Network Service based on the mechanism of peer tutoring in ad-hoc transient communities.

  13. Learning Local Components to Understand Large Bayesian Networks

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Xiang, Yanping; Cordero, Jorge

    2009-01-01

    (domain experts) to extract accurate information from a large Bayesian network due to dimensional difficulty. We define a formulation of local components and propose a clustering algorithm to learn such local components given complete data. The algorithm groups together most inter-relevant attributes......Bayesian networks are known for providing an intuitive and compact representation of probabilistic information and allowing the creation of models over a large and complex domain. Bayesian learning and reasoning are nontrivial for a large Bayesian network. In parallel, it is a tough job for users...... in a domain. We evaluate its performance on three benchmark Bayesian networks and provide results in support. We further show that the learned components may represent local knowledge more precisely in comparison to the full Bayesian networks when working with a small amount of data....

  14. Research and Practice of Active Learning in Engineering Education

    NARCIS (Netherlands)

    Graaf, de Erik; Saunders-Smits, Gillian; Nieweg, Michael

    2005-01-01

    Since 2001, the international network Active Learning in Engineering education (ALE) organized a series of international workshops on innovation of engineering education. The papers in this book are selected to reflect the state of the art, based on contributions to the 2005 ALE workshop in Holland.

  15. Learning and forgetting on asymmetric, diluted neural networks

    International Nuclear Information System (INIS)

    Derrida, B.; Nadal, J.P.

    1987-01-01

    It is possible to construct diluted asymmetric models of neural networks for which the dynamics can be calculated exactly. The authors test several learning schemes, in particular, models for which the values of the synapses remain bounded and depend on the history. Our analytical results on the relative efficiencies of the various learning schemes are qualitatively similar to the corresponding ones obtained numerically on fully connected symmetric networks

  16. A learning algorithm for oscillatory cellular neural networks.

    Science.gov (United States)

    Ho, C Y.; Kurokawa, H

    1999-07-01

    We present a cellular type oscillatory neural network for temporal segregation of stationary input patterns. The model comprises an array of locally connected neural oscillators with connections limited to a 4-connected neighborhood. The architecture is reminiscent of the well-known cellular neural network that consists of local connection for feature extraction. By means of a novel learning rule and an initialization scheme, global synchronization can be accomplished without incurring any erroneous synchrony among uncorrelated objects. Each oscillator comprises two mutually coupled neurons, and neurons share a piecewise-linear activation function characteristic. The dynamics of traditional oscillatory models is simplified by using only one plastic synapse, and the overall complexity for hardware implementation is reduced. Based on the connectedness of image segments, it is shown that global synchronization and desynchronization can be achieved by means of locally connected synapses, and this opens up a tremendous application potential for the proposed architecture. Furthermore, by using special grouping synapses it is demonstrated that temporal segregation of overlapping gray-level and color segments can also be achieved. Finally, simulation results show that the learning rule proposed circumvents the problem of component mismatches, and hence facilitates a large-scale integration.

  17. Prefrontal Cortex Networks Shift from External to Internal Modes during Learning

    Science.gov (United States)

    Brincat, Scott L.

    2016-01-01

    As we learn about items in our environment, their neural representations become increasingly enriched with our acquired knowledge. But there is little understanding of how network dynamics and neural processing related to external information changes as it becomes laden with “internal” memories. We sampled spiking and local field potential activity simultaneously from multiple sites in the lateral prefrontal cortex (PFC) and the hippocampus (HPC)—regions critical for sensory associations—of monkeys performing an object paired-associate learning task. We found that in the PFC, evoked potentials to, and neural information about, external sensory stimulation decreased while induced beta-band (∼11–27 Hz) oscillatory power and synchrony associated with “top-down” or internal processing increased. By contrast, the HPC showed little evidence of learning-related changes in either spiking activity or network dynamics. The results suggest that during associative learning, PFC networks shift their resources from external to internal processing. SIGNIFICANCE STATEMENT As we learn about items in our environment, their representations in our brain become increasingly enriched with our acquired “top-down” knowledge. We found that in the prefrontal cortex, but not the hippocampus, processing of external sensory inputs decreased while internal network dynamics related to top-down processing increased. The results suggest that during learning, prefrontal cortex networks shift their resources from external (sensory) to internal (memory) processing. PMID:27629722

  18. The interchangeability of learning rate and gain in backpropagation neural networks

    NARCIS (Netherlands)

    Thimm, G.; Moerland, P.; Fiesler, E.

    1996-01-01

    The backpropagation algorithm is widely used for training multilayer neural networks. In this publication the gain of its activation function(s) is investigated. In specific, it is proven that changing the gain of the activation function is equivalent to changing the learning rate and the weights.

  19. Journaling; an active learning technique.

    Science.gov (United States)

    Blake, Tim K

    2005-01-01

    Journaling is a method frequently discussed in nursing literature and educational literature as an active learning technique that is meant to enhance reflective practice. Reflective practice is a means of self-examination that involves looking back over what has happened in practice in an effort to improve, or encourage professional growth. Some of the benefits of reflective practice include discovering meaning, making connections between experiences and the classroom, instilling values of the profession, gaining the perspective of others, reflection on professional roles, and development of critical thinking. A review of theory and research is discussed, as well as suggestions for implementation of journaling into coursework.

  20. Reinforcement learning or active inference?

    Science.gov (United States)

    Friston, Karl J; Daunizeau, Jean; Kiebel, Stefan J

    2009-07-29

    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.

  1. Reinforcement learning or active inference?

    Directory of Open Access Journals (Sweden)

    Karl J Friston

    2009-07-01

    Full Text Available This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.

  2. Research on Mobile Learning Activities Applying Tablets

    Science.gov (United States)

    Kurilovas, Eugenijus; Juskeviciene, Anita; Bireniene, Virginija

    2015-01-01

    The paper aims to present current research on mobile learning activities in Lithuania while implementing flagship EU-funded CCL project on application of tablet computers in education. In the paper, the quality of modern mobile learning activities based on learning personalisation, problem solving, collaboration, and flipped class methods is…

  3. Active Learning in the Middle Grades

    Science.gov (United States)

    Edwards, Susan

    2015-01-01

    What is active learning and what does it look like in the classroom? If students are participating in active learning, they are playing a more engaged role in the learning process and are not overly reliant on the teacher (Bransford, Brown, & Cocking, 2003; Petress, 2008). The purpose of this article is to propose a framework to describe and…

  4. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  5. Incorporating active learning in psychiatry education.

    Science.gov (United States)

    Kumar, Sonia; McLean, Loyola; Nash, Louise; Trigwell, Keith

    2017-06-01

    We aim to summarise the active learning literature in higher education and consider its relevance for postgraduate psychiatry trainees, to inform the development of a new Formal Education Course (FEC): the Master of Medicine (Psychiatry) at the University of Sydney. We undertook a literature search on 'active learning', 'flipped classroom', 'problem-based learning' and 'psychiatry education'. The effectiveness of active learning pedagogy in higher education is well supported by evidence; however, there have been few psychiatry-specific studies. A new 'flipped classroom' format was developed for the Master of Medicine (Psychiatry). Postgraduate psychiatry training is an active learning environment; the pedagogical approach to FECs requires further evaluation.

  6. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Social Software: Participants' Experience Using Social Networking for Learning

    Science.gov (United States)

    Batchelder, Cecil W.

    2010-01-01

    Social networking tools used in learning provides instructional design with tools for transformative change in education. This study focused on defining the meanings and essences of social networking through the lived common experiences of 7 college students. The problem of the study was a lack of learner voice in understanding the value of social…

  8. Social Media and Social Networking Applications for Teaching and Learning

    Science.gov (United States)

    Yeo, Michelle Mei Ling

    2014-01-01

    This paper aims to better understand the experiences of the youth and the educators with the tapping of social media like YouTube videos and the social networking application of Facebook for teaching and learning. This paper is interested in appropriating the benefits of leveraging of social media and networking applications like YouTube and…

  9. Learning and structure of neuronal networks

    Indian Academy of Sciences (India)

    structures, protein–protein interaction networks, social interactions, the Internet, and so on can be described by complex networks [1–5]. Recent developments in the understanding of complex networks has led to deeper insights about their origin and other properties [1–5]. One common realization that emerges from these ...

  10. Cortical electrophysiological network dynamics of feedback learning

    NARCIS (Netherlands)

    Cohen, M.X.; Wilmes, K.A.; van de Vijver, I.

    2011-01-01

    Understanding the neurophysiological mechanisms of learning is important for both fundamental and clinical neuroscience. We present a neurophysiologically inspired framework for understanding cortical mechanisms of feedback-guided learning. This framework is based on dynamic changes in systems-level

  11. Networking for English Literature Class: Cooperative Learning in Chinese Context

    Science.gov (United States)

    Li, Huiyin

    2017-01-01

    This action research was conducted to investigate the efficacy of networking, an adjusted cooperative learning method employed in an English literature class for non-English majors in China. Questionnaire was administered online anonymously to college students after a 14-week cooperative learning in literature class in a Chinese university, aiming…

  12. Informal Learning and Identity Formation in Online Social Networks

    Science.gov (United States)

    Greenhow, Christine; Robelia, Beth

    2009-01-01

    All students today are increasingly expected to develop technological fluency, digital citizenship, and other twenty-first century competencies despite wide variability in the quality of learning opportunities schools provide. Social network sites (SNSs) available via the internet may provide promising contexts for learning to supplement…

  13. Social Networks and Performance in Distributed Learning Communities

    Science.gov (United States)

    Cadima, Rita; Ojeda, Jordi; Monguet, Josep M.

    2012-01-01

    Social networks play an essential role in learning environments as a key channel for knowledge sharing and students' support. In distributed learning communities, knowledge sharing does not occur as spontaneously as when a working group shares the same physical space; knowledge sharing depends even more on student informal connections. In this…

  14. Optimizing Knowledge Sharing In Learning Networks Through Peer Tutoring

    NARCIS (Netherlands)

    Hsiao, Amy; Brouns, Francis; Kester, Liesbeth; Sloep, Peter

    2009-01-01

    Hsiao, Y. P., Brouns, F., Kester, L., & Sloep, P. B. (2009). Optimizing Knowledge Sharing In Learning Networks Through Peer Tutoring. In D. Kinshuk, J. Sampson, J. Spector, P. Isaías, P. Barbosa & D. Ifenthaler (Eds.). Proceedings of IADIS International Conference Cognition and Exploratory Learning

  15. Language Learning through Social Networks: Perceptions and Reality

    Science.gov (United States)

    Lin, Chin-Hsi; Warschauer, Mark; Blake, Robert

    2016-01-01

    Language Learning Social Network Sites (LLSNSs) have attracted millions of users around the world. However, little is known about how people participate in these sites and what they learn from them. This study investigated learners' attitudes, usage, and progress in a major LLSNS through a survey of 4,174 as well as 20 individual case studies. The…

  16. A Newton-type neural network learning algorithm

    International Nuclear Information System (INIS)

    Ivanov, V.V.; Puzynin, I.V.; Purehvdorzh, B.

    1993-01-01

    First- and second-order learning methods for feed-forward multilayer networks are considered. A Newton-type algorithm is proposed and compared with the common back-propagation algorithm. It is shown that the proposed algorithm provides better learning quality. Some recommendations for their usage are given. 11 refs.; 1 fig.; 1 tab

  17. Self-teaching neural network learns difficult reactor control problem

    International Nuclear Information System (INIS)

    Jouse, W.C.

    1989-01-01

    A self-teaching neural network used as an adaptive controller quickly learns to control an unstable reactor configuration. The network models the behavior of a human operator. It is trained by allowing it to operate the reactivity control impulsively. It is punished whenever either the power or fuel temperature stray outside technical limits. Using a simple paradigm, the network constructs an internal representation of the punishment and of the reactor system. The reactor is constrained to small power orbits

  18. Cluster analysis of activity-time series in motor learning

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Årup; Frutiger, Sally A.

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel...... practice-related activity in a fronto-parieto-cerebellar network, in agreement with previous studies of motor learning. These voxels were separated from a group of voxels showing an unspecific time-effect and another group of voxels, whose activation was an artifact from smoothing. Hum. Brain Mapping 15...

  19. Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity

    Science.gov (United States)

    Mizusaki, Beatriz E. P.; Agnes, Everton J.; Erichsen, Rubem; Brunnet, Leonardo G.

    2017-08-01

    The plastic character of brain synapses is considered to be one of the foundations for the formation of memories. There are numerous kinds of such phenomenon currently described in the literature, but their role in the development of information pathways in neural networks with recurrent architectures is still not completely clear. In this paper we study the role of an activity-based process, called pre-synaptic dependent homeostatic scaling, in the organization of networks that yield precise-timed spiking patterns. It encodes spatio-temporal information in the synaptic weights as it associates a learned input with a specific response. We introduce a correlation measure to evaluate the precision of the spiking patterns and explore the effects of different inhibitory interactions and learning parameters. We find that large learning periods are important in order to improve the network learning capacity and discuss this ability in the presence of distinct inhibitory currents.

  20. A Contextualised Multi-Platform Framework to Support Blended Learning Scenarios in Learning Networks

    NARCIS (Netherlands)

    De Jong, Tim; Fuertes, Alba; Schmeits, Tally; Specht, Marcus; Koper, Rob

    2008-01-01

    De Jong, T., Fuertes, A., Schmeits, T., Specht, M., & Koper, R. (2009). A Contextualised Multi-Platform Framework to Support Blended Learning Scenarios in Learning Networks. In D. Goh (Ed.), Multiplatform E-Learning Systems and Technologies: Mobile Devices for Ubiquitous ICT-Based Education (pp.

  1. The Mobile Learning Network: Getting Serious about Games Technologies for Learning

    Science.gov (United States)

    Petley, Rebecca; Parker, Guy; Attewell, Jill

    2011-01-01

    The Mobile Learning Network currently in its third year, is a unique collaborative initiative encouraging and enabling the introduction of mobile learning in English post-14 education. The programme, funded jointly by the Learning and Skills Council and participating colleges and schools and supported by LSN has involved nearly 40,000 learners and…

  2. Learning shapes spontaneous activity itinerating over memorized states.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Learning is a process that helps create neural dynamical systems so that an appropriate output pattern is generated for a given input. Often, such a memory is considered to be included in one of the attractors in neural dynamical systems, depending on the initial neural state specified by an input. Neither neural activities observed in the absence of inputs nor changes caused in the neural activity when an input is provided were studied extensively in the past. However, recent experimental studies have reported existence of structured spontaneous neural activity and its changes when an input is provided. With this background, we propose that memory recall occurs when the spontaneous neural activity changes to an appropriate output activity upon the application of an input, and this phenomenon is known as bifurcation in the dynamical systems theory. We introduce a reinforcement-learning-based layered neural network model with two synaptic time scales; in this network, I/O relations are successively memorized when the difference between the time scales is appropriate. After the learning process is complete, the neural dynamics are shaped so that it changes appropriately with each input. As the number of memorized patterns is increased, the generated spontaneous neural activity after learning shows itineration over the previously learned output patterns. This theoretical finding also shows remarkable agreement with recent experimental reports, where spontaneous neural activity in the visual cortex without stimuli itinerate over evoked patterns by previously applied signals. Our results suggest that itinerant spontaneous activity can be a natural outcome of successive learning of several patterns, and it facilitates bifurcation of the network when an input is provided.

  3. Understanding the Context of Learning in an Online Social Network for Health Professionals' Informal Learning.

    Science.gov (United States)

    Li, Xin; Gray, Kathleen; Verspoor, Karin; Barnett, Stephen

    2017-01-01

    Online social networks (OSN) enable health professionals to learn informally, for example by sharing medical knowledge, or discussing practice management challenges and clinical issues. Understanding the learning context in OSN is necessary to get a complete picture of the learning process, in order to better support this type of learning. This study proposes critical contextual factors for understanding the learning context in OSN for health professionals, and demonstrates how these contextual factors can be used to analyse the learning context in a designated online learning environment for health professionals.

  4. Deep learning with convolutional neural network in radiology.

    Science.gov (United States)

    Yasaka, Koichiro; Akai, Hiroyuki; Kunimatsu, Akira; Kiryu, Shigeru; Abe, Osamu

    2018-04-01

    Deep learning with a convolutional neural network (CNN) is gaining attention recently for its high performance in image recognition. Images themselves can be utilized in a learning process with this technique, and feature extraction in advance of the learning process is not required. Important features can be automatically learned. Thanks to the development of hardware and software in addition to techniques regarding deep learning, application of this technique to radiological images for predicting clinically useful information, such as the detection and the evaluation of lesions, etc., are beginning to be investigated. This article illustrates basic technical knowledge regarding deep learning with CNNs along the actual course (collecting data, implementing CNNs, and training and testing phases). Pitfalls regarding this technique and how to manage them are also illustrated. We also described some advanced topics of deep learning, results of recent clinical studies, and the future directions of clinical application of deep learning techniques.

  5. Learning, memory, and the role of neural network architecture.

    Directory of Open Access Journals (Sweden)

    Ann M Hermundstad

    2011-06-01

    Full Text Available The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.

  6. Learning related modulation of functional retrieval networks in man.

    Science.gov (United States)

    Petersson, K M; Sandblom, J; Gisselgård, J; Ingvar, M

    2001-07-01

    The medial temporal lobe has been implicated in studies of episodic memory tasks involving spatio-temporal context and object-location conjunctions. We have previously demonstrated that an increased level of practice in a free-recall task parallels a decrease in the functional activity of several brain regions, including the medial temporal lobe, the prefrontal, the anterior cingulate, the anterior insular, and the posterior parietal cortices, that in concert demonstrate a move from elaborate controlled processing towards a higher degree of automaticity. Here we report data from two experiments that extend these initial observations. We used a similar experimental approach but probed for effects of retrieval paradigms and stimulus material. In the first experiment we investigated practice related changes during recognition of object-location conjunctions and in the second during free-recall of pseudo-words. Learning in a neural network is a dynamic consequence of information processing and network plasticity. The present and previous PET results indicate that practice can induce a learning related functional restructuring of information processing. Different adaptive processes likely subserve the functional re-organisation observed. These may in part be related to different demands for attentional and working memory processing. It appears that the role(s) of the prefrontal cortex and the medial temporal lobe in memory retrieval are complex, perhaps reflecting several different interacting processes or cognitive components. We suggest that an integrative interactive perspective on the role of the prefrontal and medial temporal lobe is necessary for an understanding of the processing significance of these regions in learning and memory. It appears necessary to develop elaborated and explicit computational models for prefrontal and medial temporal functions in order to derive detailed empirical predictions, and in combination with an efficient use and development of

  7. Teachers' Self-Initiated Professional Learning through Personal Learning Networks

    Science.gov (United States)

    Tour, Ekaterina

    2017-01-01

    It is widely acknowledged that to be able to teach language and literacy with digital technologies, teachers need to engage in relevant professional learning. Existing formal models of professional learning are often criticised for being ineffective. In contrast, informal and self-initiated forms of learning have been recently recognised as…

  8. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the `biologically-inspired' approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks. We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  9. Evolution of individual versus social learning on social networks.

    Science.gov (United States)

    Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo

    2015-03-06

    A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of 'cultural models' exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Creating a peer-driven learning network in higher education – using Web 2.0 tools to facilitate online dialogue and collaboration

    DEFF Research Database (Denmark)

    Nicolajsen, Hanne Westh; Ryberg, Thomas

    2014-01-01

    learning networks or engaging in web-based activities particularly related to learning or academia (Clark et al. 2009, Luckin et al. 2009). We argue that learning networks based on social media and employed for academic purposes may challenge the traditional norms and practices for both teachers...

  11. Approximation methods for efficient learning of Bayesian networks

    CERN Document Server

    Riggelsen, C

    2008-01-01

    This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order to provide a coherent treatment of matters, thereby helping the reader to gain a thorough understanding of the whole concept of learning Bayesian networks from (in)complete data, this publication combines in a clarifying way all the issues presented in the papers with previously unpublished work.

  12. Learning Effectiveness of the NASA Digital Learning Network

    Science.gov (United States)

    Hix, Billy

    2005-01-01

    Student participation in actual investigations which develop inquiry and intellectual skills has long been regarded as an essential component of science instructions (Schwab, 1962; White, 1999). Such investigations give students an opportunity to appreciate the spirit of science and promote an understanding of the nature of science. However, classroom research conducted over the past 20 years describes science teaching as primarily teacher centered. Typical instruction consists of whole class, noninteractive activities in which individual seatwork has constituted the bulk of classroom interactions (Tobin and Gallagher, 1997). Students typically learn science from textbooks and lectures. Their main motivation is to do reasonably well on tests and examinations (Layman, 1999). During the past five years, infrastructure constraints have reduced to the point that many schools systems can now afford low cost, high quality video conferencing equipment (International Society for Technology in Education, 2003). This study investigates the use of interactive video conferencing vs. face to face interaction with hands-on, inquiry based activities. Some basic questions to be addressed are: How does the delivery method impact the students understanding of the goals of the experiment? Are students explanation of the strategies of experimentation different based on the method of instruction that was provided. Do students engaged in a workshop with the instructor in the room vs. an instructor over video conferencing have different perception of the understanding of the subject materials?

  13. A Cluster- Based Secure Active Network Environment

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-lin; ZHOU Jing-yang; DAI Han; LU Sang-lu; CHEN Gui-hai

    2005-01-01

    We introduce a cluster-based secure active network environment (CSANE) which separates the processing of IP packets from that of active packets in active routers. In this environment, the active code authorized or trusted by privileged users is executed in the secure execution environment (EE) of the active router, while others are executed in the secure EE of the nodes in the distributed shared memory (DSM) cluster. With the supports of a multi-process Java virtual machine and KeyNote, untrusted active packets are controlled to securely consume resource. The DSM consistency management makes that active packets can be parallelly processed in the DSM cluster as if they were processed one by one in ANTS (Active Network Transport System). We demonstrate that CSANE has good security and scalability, but imposing little changes on traditional routers.

  14. Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks.

    Science.gov (United States)

    Carpenter, Gail A.

    1997-11-01

    A class of adaptive resonance theory (ART) models for learning, recognition, and prediction with arbitrarily distributed code representations is introduced. Distributed ART neural networks combine the stable fast learning capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multilayer perceptrons. With a winner-take-all code, the unsupervised model dART reduces to fuzzy ART and the supervised model dARTMAP reduces to fuzzy ARTMAP. With a distributed code, these networks automatically apportion learned changes according to the degree of activation of each coding node, which permits fast as well as slow learning without catastrophic forgetting. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Thresholds increase monotonically during learning according to a principle of atrophy due to disuse. However, monotonic change at the synaptic level manifests itself as bidirectional change at the dynamic level, where the result of adaptation resembles long-term potentiation (LTP) for single-pulse or low frequency test inputs but can resemble long-term depression (LTD) for higher frequency test inputs. This paradoxical behavior is traced to dual computational properties of phasic and tonic coding signal components. A parallel distributed match-reset-search process also helps stabilize memory. Without the match-reset-search system, dART becomes a type of distributed competitive learning network.

  15. Flexibility and Balancing in Active Distribution Networks

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi

    . Chapter 4 presents the details of the analysis, as well as the details of the MV network. To generalize the analysis, a standard MV network has been used for the studies. The MV network is also an active network, i.e. it involves MV wind turbines and decentralized combined heat and power (DCHP). DCHP...... units play an important role in Danish power system, and they contribute to electricity production as well. Modeling of wind turbines is done considering real data of a Vestas wind turbine. For wind speed, a modified wind speed model has been used for wind turbines, considering the available wind...... measurement. Also, a detailed model of DCHP units has been used in this thesis. Details of wind turbine model, as well as details of DCHP are presented in the thesis. The third objective of the research is to include the LV and MV networks in frequency response of the power system. Considering the increasing...

  16. Management of synchronized network activity by highly active neurons

    International Nuclear Information System (INIS)

    Shein, Mark; Raichman, Nadav; Ben-Jacob, Eshel; Volman, Vladislav; Hanein, Yael

    2008-01-01

    Increasing evidence supports the idea that spontaneous brain activity may have an important functional role. Cultured neuronal networks provide a suitable model system to search for the mechanisms by which neuronal spontaneous activity is maintained and regulated. This activity is marked by synchronized bursting events (SBEs)—short time windows (hundreds of milliseconds) of rapid neuronal firing separated by long quiescent periods (seconds). However, there exists a special subset of rapidly firing neurons whose activity also persists between SBEs. It has been proposed that these highly active (HA) neurons play an important role in the management (i.e. establishment, maintenance and regulation) of the synchronized network activity. Here, we studied the dynamical properties and the functional role of HA neurons in homogeneous and engineered networks, during early network development, upon recovery from chemical inhibition and in response to electrical stimulations. We found that their sequences of inter-spike intervals (ISI) exhibit long time correlations and a unimodal distribution. During the network's development and under intense inhibition, the observed activity follows a transition period during which mostly HA neurons are active. Studying networks with engineered geometry, we found that HA neurons are precursors (the first to fire) of the spontaneous SBEs and are more responsive to electrical stimulations

  17. Aberrant Network Activity in Schizophrenia.

    Science.gov (United States)

    Hunt, Mark J; Kopell, Nancy J; Traub, Roger D; Whittington, Miles A

    2017-06-01

    Brain dynamic changes associated with schizophrenia are largely equivocal, with interpretation complicated by many factors, such as the presence of therapeutic agents and the complex nature of the syndrome itself. Evidence for a brain-wide change in individual network oscillations, shared by all patients, is largely equivocal, but stronger for lower (delta) than for higher (gamma) bands. However, region-specific changes in rhythms across multiple, interdependent, nested frequencies may correlate better with pathology. Changes in synaptic excitation and inhibition in schizophrenia disrupt delta rhythm-mediated cortico-cortical communication, while enhancing thalamocortical communication in this frequency band. The contrasting relationships between delta and higher frequencies in thalamus and cortex generate frequency mismatches in inter-regional connectivity, leading to a disruption in temporal communication between higher-order brain regions associated with mental time travel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Deep Learning Neural Networks in Cybersecurity - Managing Malware with AI

    OpenAIRE

    Rayle, Keith

    2017-01-01

    There’s a lot of talk about the benefits of deep learning (neural networks) and how it’s the new electricity that will power us into the future. Medical diagnosis, computer vision and speech recognition are all examples of use-cases where neural networks are being applied in our everyday business environment. This begs the question…what are the uses of neural-network applications for cyber security? How does the AI process work when applying neural networks to detect malicious software bombar...

  19. Adaptive intelligent power systems: Active distribution networks

    International Nuclear Information System (INIS)

    McDonald, Jim

    2008-01-01

    Electricity networks are extensive and well established. They form a key part of the infrastructure that supports industrialised society. These networks are moving from a period of stability to a time of potentially major transition, driven by a need for old equipment to be replaced, by government policy commitments to cleaner and renewable sources of electricity generation, and by change in the power industry. This paper looks at moves towards active distribution networks. The novel transmission and distribution systems of the future will challenge today's system designs. They will cope with variable voltages and frequencies, and will offer more flexible, sustainable options. Intelligent power networks will need innovation in several key areas of information technology. Active control of flexible, large-scale electrical power systems is required. Protection and control systems will have to react to faults and unusual transient behaviour and ensure recovery after such events. Real-time network simulation and performance analysis will be needed to provide decision support for system operators, and the inputs to energy and distribution management systems. Advanced sensors and measurement will be used to achieve higher degrees of network automation and better system control, while pervasive communications will allow networks to be reconfigured by intelligent systems

  20. Transfer Learning for Video Recognition with Scarce Training Data for Deep Convolutional Neural Network

    OpenAIRE

    Su, Yu-Chuan; Chiu, Tzu-Hsuan; Yeh, Chun-Yen; Huang, Hsin-Fu; Hsu, Winston H.

    2014-01-01

    Unconstrained video recognition and Deep Convolution Network (DCN) are two active topics in computer vision recently. In this work, we apply DCNs as frame-based recognizers for video recognition. Our preliminary studies, however, show that video corpora with complete ground truth are usually not large and diverse enough to learn a robust model. The networks trained directly on the video data set suffer from significant overfitting and have poor recognition rate on the test set. The same lack-...

  1. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.

    Science.gov (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff

    2016-09-14

    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  2. Single-hidden-layer feed-forward quantum neural network based on Grover learning.

    Science.gov (United States)

    Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min

    2013-09-01

    In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Phonological Networks and New Word Learning

    Science.gov (United States)

    Service, Elisabet

    2006-01-01

    The first report of a connection between vocabulary learning and phonological short-term memory was published in 1988 (Baddeley, Papagno, & Vallar, 1988). At that time, both Susan Gathercole and I were involved in longitudinal studies, investigating the relation between nonword repetition and language learning. We both found a connection. Now,…

  4. "Follow" Me: Networked Professional Learning for Teachers

    Science.gov (United States)

    Holmes, Kathryn; Preston, Greg; Shaw, Kylie; Buchanan, Rachel

    2013-01-01

    Effective professional learning for teachers is fundamental for any school system aiming to make transformative and sustainable change to teacher practice. This paper investigates the efficacy of Twitter as a medium for teachers to participate in professional learning by analysing the tweets of 30 influential users of the popular medium. We find…

  5. Learning Orthographic Structure With Sequential Generative Neural Networks.

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-04-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain. Copyright © 2015 Cognitive Science Society, Inc.

  6. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.

    Science.gov (United States)

    MacInnes, Jeff J; Dickerson, Kathryn C; Chen, Nan-Kuei; Adcock, R Alison

    2016-03-16

    Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants' motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Reinforcement Learning for Routing in Cognitive Radio Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Hasan A. A. Al-Rawi

    2014-01-01

    Full Text Available Cognitive radio (CR enables unlicensed users (or secondary users, SUs to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs. Reinforcement learning (RL is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables a source node to search for a least-cost route to its destination node. While there have been increasing efforts to enhance the traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function, exploitation, and exploration, as well as learning rate through simulation. New approaches and recommendations are proposed to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and the new approaches proposed in this paper improves SUs’ network performance without significantly jeopardizing PUs’ network performance, specifically SUs’ interference to PUs.

  8. What Online Networks Offer: "Online Network Compositions and Online Learning Experiences of Three Ethnic Groups"

    Science.gov (United States)

    Lecluijze, Suzanne Elisabeth; de Haan, Mariëtte; Ünlüsoy, Asli

    2015-01-01

    This exploratory study examines ethno-cultural diversity in youth's narratives regarding their "online" learning experiences while also investigating how these narratives can be understood from the analysis of their online network structure and composition. Based on ego-network data of 79 respondents this study compared the…

  9. Learning Errors by Radial Basis Function Neural Networks and Regularization Networks

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Vidnerová, Petra

    2009-01-01

    Roč. 1, č. 2 (2009), s. 49-57 ISSN 2005-4262 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : neural network * RBF networks * regularization * learning Subject RIV: IN - Informatics, Computer Science http://www.sersc.org/journals/IJGDC/vol2_no1/5.pdf

  10. Helping Children Actively Design How They Learn about Health and Wellness: The Institute of Play Tests an Online Social Networking Tool within a Game-Based School Curriculum. Program Results Report

    Science.gov (United States)

    Parker, Susan

    2011-01-01

    Youth rarely receive opportunities to craft their own strategies around health and wellness within contexts relevant to them. From 2009 to 2010, the Institute of Play, based in New York, developed Being Me, a social networking site, to enable sixth-graders at the Quest to Learn public school to explore, discover and document a range of ideas…

  11. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.

    Science.gov (United States)

    Burbank, Kendra S

    2015-12-01

    The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field's Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.

  12. Teachers' Motives for Learning in Networks: Costs, Rewards and Community Interest

    Science.gov (United States)

    van den Beemt, Antoine; Ketelaar, Evelien; Diepstraten, Isabelle; de Laat, Maarten

    2018-01-01

    Background: This paper discusses teachers' perspectives on learning networks and their motives for participating in these networks. Although it is widely held that teachers' learning may be developed through learning networks, not all teachers participate in such networks. Purpose: The theme of reciprocity, central to studies in the area of…

  13. Teachers’ motives for learning in networks : costs, rewards and community interest

    NARCIS (Netherlands)

    van den Beemt, A.A.J.; Ketelaar, E.; Diepstraten, I.; de Laat, M.

    2018-01-01

    Background: This paper discusses teachers’ perspectives on learning networks and their motives for participating in these networks. Although it is widely held that teachers’ learning may be developed through learning networks, not all teachers participate in such networks. Purpose: The theme of

  14. PROJECT ACTIVITY ANALYSIS WITHOUT THE NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    S. Munapo

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper presents a new procedure for analysing and managing activity sequences in projects. The new procedure determines critical activities, critical path, start times, free floats, crash limits, and other useful information without the use of the network model. Even though network models have been successfully used in project management so far, there are weaknesses associated with the use. A network is not easy to generate, and dummies that are usually associated with it make the network diagram complex – and dummy activities have no meaning in the original project management problem. The network model for projects can be avoided while still obtaining all the useful information that is required for project management. What are required are the activities, their accurate durations, and their predecessors.

    AFRIKAANSE OPSOMMING: Die navorsing beskryf ’n nuwerwetse metode vir die ontleding en bestuur van die sekwensiële aktiwiteite van projekte. Die voorgestelde metode bepaal kritiese aktiwiteite, die kritieke pad, aanvangstye, speling, verhasing, en ander groothede sonder die gebruik van ’n netwerkmodel. Die metode funksioneer bevredigend in die praktyk, en omseil die administratiewe rompslomp van die tradisionele netwerkmodelle.

  15. A theoretical design for learning model addressing the networked society

    DEFF Research Database (Denmark)

    Levinsen, Karin; Nielsen, Janni; Sørensen, Birgitte Holm

    2010-01-01

    The transition from the industrial to the networked society produces contradictions that challenges the educational system and force it to adapt to new conditions. In a Danish virtual Master in Information and Communication Technologies and Learning (MIL) these contradictions appear as a field of...... which enables students to develop Networked Society competencies and maintain progression in the learning process also during the online periods. Additionally we suggest that our model contributes to the innovation of a networked society's design for learning....... is continuously decreasing. We teach for deep learning but are confronted by students' cost-benefit strategies when they navigate through the study programme under time pressure. To meet these challenges a Design for Learning Model has been developed. The aim is to provide a scaffold that ensures students......' acquisition of the subject matter within a time limit and at a learning quality that support their deep learning process during a subsequent period of on-line study work. In the process of moving from theory to application the model passes through three stages: 1) Conceptual modelling; 2) Orchestration, and 3...

  16. Architecture for Collaborative Learning Activities in Hybrid Learning Environments

    OpenAIRE

    Ibáñez, María Blanca; Maroto, David; García Rueda, José Jesús; Leony, Derick; Delgado Kloos, Carlos

    2012-01-01

    3D virtual worlds are recognized as collaborative learning environments. However, the underlying technology is not sufficiently mature and the virtual worlds look cartoonish, unlinked to reality. Thus, it is important to enrich them with elements from the real world to enhance student engagement in learning activities. Our approach is to build learning environments where participants can either be in the real world or in its mirror world while sharing the same hybrid space in a collaborative ...

  17. Students' Framing of Language Learning Practices in Social Networking Sites

    Science.gov (United States)

    Lantz-Andersson, Annika; Vigmo, Sylvi; Bowen, Rhonwen

    2012-01-01

    The amount of time that people, especially young people, spend on communicative activities in social media is rapidly increasing. We are facing new arenas with great potential for learning in general and for language learning in particular, but their impact on learning is not yet acknowledged as such in educational practice (e.g., Conole, 2010;…

  18. Automated Library Networking in American Public Community College Learning Resources Centers.

    Science.gov (United States)

    Miah, Adbul J.

    1994-01-01

    Discusses the need for community colleges to assess their participation in automated library networking systems (ALNs). Presents results of questionnaires sent to 253 community college learning resource center directors to determine their use of ALNs. Reviews benefits of automation and ALN activities, planning and communications, institution size,…

  19. Learning-induced pattern classification in a chaotic neural network

    International Nuclear Information System (INIS)

    Li, Yang; Zhu, Ping; Xie, Xiaoping; He, Guoguang; Aihara, Kazuyuki

    2012-01-01

    In this Letter, we propose a Hebbian learning rule with passive forgetting (HLRPF) for use in a chaotic neural network (CNN). We then define the indices based on the Euclidean distance to investigate the evolution of the weights in a simplified way. Numerical simulations demonstrate that, under suitable external stimulations, the CNN with the proposed HLRPF acts as a fuzzy-like pattern classifier that performs much better than an ordinary CNN. The results imply relationship between learning and recognition. -- Highlights: ► Proposing a Hebbian learning rule with passive forgetting (HLRPF). ► Defining indices to investigate the evolution of the weights simply. ► The chaotic neural network with HLRPF acts as a fuzzy-like pattern classifier. ► The pattern classifier ability of the network is improved much.

  20. Doing physical activity – not learning

    DEFF Research Database (Denmark)

    Jensen, Jens-Ole

    2017-01-01

    Introduction In recent years there have been a raising critique concerning PE as a subject which is more concerned with keeping pupils physically active than insuring that they learn something (Annerstedt, 2008). In Denmark, this issue has been actualized in a new sense. In 2014, a new school...... reform with 45 minutes of daily physical activity was introduced to enhance the pupils’ health, well-being and learning capabilities. Instead of focusing on learning bodily skills, physical activities has become an instrument to improve learning in the academic subjects. Physical activities.......g. Biesta, 2010; Standal, 2015) I will argue that the focus on learning outcome and effects on physical activity has gone too far in order to reach the objectives. If the notion of ‘keeping pupils physically active’ is understood as a representation of the core quality of physical activity, it seems...

  1. Lifelong learning networks for sustainable regional development

    NARCIS (Netherlands)

    De Kraker, Joop; Cörvers, Ron; Ruelle, Christine; Valkering, Pieter

    2010-01-01

    Sustainable regional development is a participatory, multi-actor process, involving a diversity of societal stakeholders, administrators, policy makers, practitioners and scientific experts. In this process, mutual and collective learning plays a major role as participants have to exchange and

  2. Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Atsushi Usami

    2008-01-01

    Full Text Available Using functional multineuron imaging with single-cell resolution, we examined how hippocampal networks by themselves change the spatiotemporal patterns of spontaneous activity during the course of emitting spontaneous activity. When extracellular ionic concentrations were changed to those that mimicked in vivo conditions, spontaneous activity was increased in active cell number and activity frequency. When ionic compositions were restored to the control conditions, the activity level returned to baseline, but the weighted spatial dispersion of active cells, as assessed by entropy-based metrics, did not. Thus, the networks can modify themselves by altering the internal structure of their correlated activity, even though they as a whole maintained the same level of activity in space and time.

  3. Community and Social Network Sites as Technology Enhanced Learning Environments

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Christiansen, Ellen

    2008-01-01

    This paper examines the affordance of the Danish social networking site Mingler.dk for peer-to-peer learning and development. With inspiration from different theoretical frameworks, the authors argue how learning and development in such social online systems can be conceptualised and analysed....... Theoretically the paper defines development in accordance with Vygotsky's concept of the zone of proximal development, and learning in accordance with Wenger's concept of communities of practice. The authors suggest analysing the learning and development taking place on Mingler.dk by using these concepts...... supplemented by the notion of horizontal learning adopted from Engestrm and Wenger. Their analysis shows how horizontal learning happens by crossing boundaries between several sites of engagement, and how the actors' multiple membership enables the community members to draw on a vast amount of resources from...

  4. Networked Learning and Network Science: Potential Applications to Health Professionals' Continuing Education and Development.

    Science.gov (United States)

    Margolis, Alvaro; Parboosingh, John

    2015-01-01

    Prior interpersonal relationships and interactivity among members of professional associations may impact the learning process in continuing medical education (CME). On the other hand, CME programs that encourage interactivity between participants may impact structures and behaviors in these professional associations. With the advent of information and communication technologies, new communication spaces have emerged that have the potential to enhance networked learning in national and international professional associations and increase the effectiveness of CME for health professionals. In this article, network science, based on the application of network theory and other theories, is proposed as an approach to better understand the contribution networking and interactivity between health professionals in professional communities make to their learning and adoption of new practices over time. © 2015 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.

  5. Student Activity and Learning Outcomes in a Virtual Learning Environment

    Science.gov (United States)

    Romanov, Kalle; Nevgi, Anne

    2008-01-01

    The aim of the study was to explore the relationship between degree of participation and learning outcomes in an e-learning course on medical informatics. Overall activity in using course materials and degree of participation in the discussion forums of an online course were studied among 39 medical students. Students were able to utilise the…

  6. Network Enabled - Unresolved Residual Analysis and Learning (NEURAL)

    Science.gov (United States)

    Temple, D.; Poole, M.; Camp, M.

    Since the advent of modern computational capacity, machine learning algorithms and techniques have served as a method through which to solve numerous challenging problems. However, for machine learning methods to be effective and robust, sufficient data sets must be available; specifically, in the space domain, these are generally difficult to acquire. Rapidly evolving commercial space-situational awareness companies boast the capability to collect hundreds of thousands nightly observations of resident space objects (RSOs) using a ground-based optical sensor network. This provides the ability to maintain custody of and characterize thousands of objects persistently. With this information available, novel deep learning techniques can be implemented. The technique discussed in this paper utilizes deep learning to make distinctions between nightly data collects with and without maneuvers. Implementation of these techniques will allow the data collected from optical ground-based networks to enable well informed and timely the space domain decision making.

  7. Captivate: Building Blocks for Implementing Active Learning

    Science.gov (United States)

    Kitchens, Brent; Means, Tawnya; Tan, Yinliang

    2018-01-01

    In this study, the authors propose a set of key elements that impact the success of an active learning implementation: content delivery, active learning methods, physical environment, technology enhancement, incentive alignment, and educator investment. Through a range of metrics the authors present preliminary evidence that students in courses…

  8. Faculty Perceptions about Barriers to Active Learning

    Science.gov (United States)

    Michael, Joel

    2007-01-01

    Faculty may perceive many barriers to active learning in their classrooms. Four groups of participants in a faculty development workshop were asked to list their perceived barriers to active learning. Many of the problems identified were present on more than one list. The barriers fall into three categories: student characteristics, issues…

  9. Active teaching methods, studying responses and learning

    DEFF Research Database (Denmark)

    Christensen, Hans Peter; Vigild, Martin Etchells; Thomsen, Erik Vilain

    2010-01-01

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed.......Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed....

  10. Active hippocampal networks undergo spontaneous synaptic modification.

    Directory of Open Access Journals (Sweden)

    Masako Tsukamoto-Yasui

    Full Text Available The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone.

  11. Active Ageing, Active Learning: Policy and Provision in Hong Kong

    Science.gov (United States)

    Tam, M.

    2011-01-01

    This paper discusses the relationship between ageing and learning, previous literature having confirmed that participation in continued learning in old age contributes to good health, satisfaction with life, independence and self-esteem. Realizing that learning is vital to active ageing, the Hong Kong government has implemented policies and…

  12. Deep learning classification in asteroseismology using an improved neural network

    DEFF Research Database (Denmark)

    Hon, Marc; Stello, Dennis; Yu, Jie

    2018-01-01

    Deep learning in the form of 1D convolutional neural networks have previously been shown to be capable of efficiently classifying the evolutionary state of oscillating red giants into red giant branch stars and helium-core burning stars by recognizing visual features in their asteroseismic...... frequency spectra. We elaborate further on the deep learning method by developing an improved convolutional neural network classifier. To make our method useful for current and future space missions such as K2, TESS, and PLATO, we train classifiers that are able to classify the evolutionary states of lower...

  13. Machine learning using a higher order correlation network

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.C.; Doolen, G.; Chen, H.H.; Sun, G.Z.; Maxwell, T.; Lee, H.Y.

    1986-01-01

    A high-order correlation tensor formalism for neural networks is described. The model can simulate auto associative, heteroassociative, as well as multiassociative memory. For the autoassociative model, simulation results show a drastic increase in the memory capacity and speed over that of the standard Hopfield-like correlation matrix methods. The possibility of using multiassociative memory for a learning universal inference network is also discussed. 9 refs., 5 figs.

  14. Social Networking Sites and Addiction: Ten Lessons Learned

    OpenAIRE

    Kuss, Daria J.; Griffiths, Mark D.

    2017-01-01

    Online social networking sites (SNSs) have gained increasing popularity in the last decade, with individuals engaging in SNSs to connect with others who share similar interests. The perceived need to be online may result in compulsive use of SNSs, which in extreme cases may result in symptoms and consequences traditionally associated with substance-related addictions. In order to present new insights into online social networking and addiction, in this paper, 10 lessons learned concerning onl...

  15. Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks

    OpenAIRE

    Shen, Li; Lin, Zhouchen; Huang, Qingming

    2015-01-01

    Learning deeper convolutional neural networks becomes a tendency in recent years. However, many empirical evidences suggest that performance improvement cannot be gained by simply stacking more layers. In this paper, we consider the issue from an information theoretical perspective, and propose a novel method Relay Backpropagation, that encourages the propagation of effective information through the network in training stage. By virtue of the method, we achieved the first place in ILSVRC 2015...

  16. Overcoming uncertainty for within-network relational machine learning

    OpenAIRE

    Pfeiffer, Joseph J.

    2015-01-01

    People increasingly communicate through email and social networks to maintain friendships and conduct business, as well as share online content such as pictures, videos and products. Relational machine learning (RML) utilizes a set of observed attributes and network structure to predict corresponding labels for items; for example, to predict individuals engaged in securities fraud, we can utilize phone calls and workplace information to make joint predictions over the individuals. However, in...

  17. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.

    Science.gov (United States)

    Zenke, Friedemann; Ganguli, Surya

    2018-04-13

    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.

  18. The Use Of Social Networking Sites For Learning In Institutions Of Higher Learning

    Directory of Open Access Journals (Sweden)

    Mange Gladys Nkatha

    2015-08-01

    Full Text Available Abstract Institutions of higher learning are facing greater challenges to change and subjected to various transformations in the surrounding environment including technology. These challenge and motivate them to explore new ways to improve their teaching approaches. This study sought to investigate the use of social networking site in institutions of higher learning. To this end two objectives were formulated 1 to investigate the current state of the use of social networking sites by the students 2 investigate how social networking sites can be used to promote authentic learning in institutions of higher learning. The study adopted exploratory approach using descriptive survey design where a sample of 10 67 students were picked from Jomo Kenyatta University of Agriculture and Technology JKUAT main campus. The findings indicate the use of social networking sites is a viable option as the students are not only members of social networking sites but also that majority have access to the requisite technological devices. Additionally recommendations for ensuring authentic learning were presented. The researcher recommends the exploration of the leveraging of the existing social networking sites for learning in conjunction with key stakeholders.

  19. "FORCE" learning in recurrent neural networks as data assimilation

    Science.gov (United States)

    Duane, Gregory S.

    2017-12-01

    It is shown that the "FORCE" algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning algorithm, leads to an extension to include interactions between the weight updates for different neurons, and can represent relationships within groups of multiple target output signals.

  20. Learning and Generalisation in Neural Networks with Local Preprocessing

    OpenAIRE

    Kutsia, Merab

    2007-01-01

    We study learning and generalisation ability of a specific two-layer feed-forward neural network and compare its properties to that of a simple perceptron. The input patterns are mapped nonlinearly onto a hidden layer, much larger than the input layer, and this mapping is either fixed or may result from an unsupervised learning process. Such preprocessing of initially uncorrelated random patterns results in the correlated patterns in the hidden layer. The hidden-to-output mapping of the net...

  1. Learning Based on CC1 and CC4 Neural Networks

    OpenAIRE

    Kak, Subhash

    2017-01-01

    We propose that a general learning system should have three kinds of agents corresponding to sensory, short-term, and long-term memory that implicitly will facilitate context-free and context-sensitive aspects of learning. These three agents perform mututally complementary functions that capture aspects of the human cognition system. We investigate the use of CC1 and CC4 networks for use as models of short-term and sensory memory.

  2. Facebook, Twitter Activities Sites, Location and Students' Interest in Learning

    Science.gov (United States)

    Igbo, J. N.; Ezenwaji, Ifeyinwa; Ajuziogu, Christiana U.

    2018-01-01

    This study was carried out to ascertain the influence of social networking sites activities (twitter and Facebook) on secondary school students' interest in learning It also considered the impact of these social networking sites activities on location of the students. Two research questions and two null hypotheses guided the study. Mean and…

  3. The Role of Electronic Learning Technology in Networks Systems

    International Nuclear Information System (INIS)

    Abd ELhamid, A.; Ayad, N.M.A.; Fouad, Y.; Abdelkader, T.

    2016-01-01

    Recently, Electronic Learning Technology (ELT) has been widely spread as one of the new technologies in the world through using Information and Communication Technology (ICT). One of the strategies of ELT is Simulation, for instance Military and Medical simulations that are used to avoid risks and reduce Costs. A wireless communication network refers to any network not physically connected by cables, which enables the desired convenience and mobility for the user. Wireless communication networks have been useful in areas such as commerce, education and defense. According to the nature of a particular application, they can be used in home-based and industrial systems or in commercial and military environments. Historically, Mobile Ad-hoc Networks (MANET) have primarily been used for tactical military network related applications to improve battlefield communications/ survivability. MANET is a collection of wireless nodes that can dynamically be set up anywhere and anytime without using any pre-existing network infrastructure. Mobility in wireless networks basically refers to nodes changing its point of attachment to the network. Also, how the end terminals can move, there are many mobility models described the movement of nodes, many researchers use the Random Way point Mobility Model (RWPM). In this paper, a Graphical User Interface (GUI) for RWPM simulation is introduced as a proposal to be used through ELT Project. In the research area of computer and communications networks, simulation is a very useful technique for the behavior of networks

  4. The Philosophical and Pedagogical Underpinnings of Active Learning in Engineering Education

    Science.gov (United States)

    Christie, Michael; de Graaff, Erik

    2017-01-01

    In this paper the authors draw on three sequential keynote addresses that they gave at Active Learning in Engineering Education (ALE) workshops in Copenhagen (2012), Caxias do Sol (2014) and San Sebastian (2015). Active Learning in Engineering Education is an informal international network of engineering educators dedicated to improving…

  5. Learning Spatiotemporally Encoded Pattern Transformations in Structured Spiking Neural Networks.

    Science.gov (United States)

    Gardner, Brian; Sporea, Ioana; Grüning, André

    2015-12-01

    Information encoding in the nervous system is supported through the precise spike timings of neurons; however, an understanding of the underlying processes by which such representations are formed in the first place remains an open question. Here we examine how multilayered networks of spiking neurons can learn to encode for input patterns using a fully temporal coding scheme. To this end, we introduce a new supervised learning rule, MultilayerSpiker, that can train spiking networks containing hidden layer neurons to perform transformations between spatiotemporal input and output spike patterns. The performance of the proposed learning rule is demonstrated in terms of the number of pattern mappings it can learn, the complexity of network structures it can be used on, and its classification accuracy when using multispike-based encodings. In particular, the learning rule displays robustness against input noise and can generalize well on an example data set. Our approach contributes to both a systematic understanding of how computations might take place in the nervous system and a learning rule that displays strong technical capability.

  6. Language, Learning, and Identity in Social Networking Sites for Language Learning: The Case of Busuu

    Science.gov (United States)

    Alvarez Valencia, Jose Aldemar

    2014-01-01

    Recent progress in the discipline of computer applications such as the advent of web-based communication, afforded by the Web 2.0, has paved the way for novel applications in language learning, namely, social networking. Social networking has challenged the area of Computer Mediated Communication (CMC) to expand its research palette in order to…

  7. Learning about knowledge: A complex network approach

    International Nuclear Information System (INIS)

    Fontoura Costa, Luciano da

    2006-01-01

    An approach to modeling knowledge acquisition in terms of walks along complex networks is described. Each subset of knowledge is represented as a node, and relations between such knowledge are expressed as edges. Two types of edges are considered, corresponding to free and conditional transitions. The latter case implies that a node can only be reached after visiting previously a set of nodes (the required conditions). The process of knowledge acquisition can then be simulated by considering the number of nodes visited as a single agent moves along the network, starting from its lowest layer. It is shown that hierarchical networks--i.e., networks composed of successive interconnected layers--are related to compositions of the prerequisite relationships between the nodes. In order to avoid deadlocks--i.e., unreachable nodes--the subnetwork in each layer is assumed to be a connected component. Several configurations of such hierarchical knowledge networks are simulated and the performance of the moving agent quantified in terms of the percentage of visited nodes after each movement. The Barabasi-Albert and random models are considered for the layer and interconnecting subnetworks. Although all subnetworks in each realization have the same number of nodes, several interconnectivities, defined by the average node degree of the interconnection networks, have been considered. Two visiting strategies are investigated: random choice among the existing edges and preferential choice to so far untracked edges. A series of interesting results are obtained, including the identification of a series of plateaus of knowledge stagnation in the case of the preferential movement strategy in the presence of conditional edges

  8. CosmoQuest Collaborative: Galvanizing a Dynamic Professional Learning Network

    Science.gov (United States)

    Cobb, Whitney; Bracey, Georgia; Buxner, Sanlyn; Gay, Pamela L.; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    The CosmoQuest Collaboration offers in-depth experiences to diverse audiences around the nation and the world through pioneering citizen science in a virtual research facility. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and citizens of all ages—to explore and make sense of our solar system and beyond. Leveraging human networks to expand NASA science, scaffolded by an educational framework that inspires lifelong learners, CosmoQuest engages citizens in analyzing and interpreting real NASA data, inspiring questions and defining problems.The QuestionLinda Darling-Hammond calls for professional development to be: "focused on the learning and teaching of specific curriculum content [i.e. NGSS disciplinary core ideas]; organized around real problems of practice [i.e. NGSS science and engineering practices] … [and] connected to teachers' collaborative work in professional learning community...." (2012) In light of that, what is the unique role CosmoQuest's virtual research facility can offer NASA STEM education?A Few AnswersThe CosmoQuest Collaboration actively engages scientists in education, and educators (and learners) in science. CosmoQuest uses social channels to empower and expand NASA's learning community through a variety of media, including science and education-focused hangouts, virtual star parties, and social media. In addition to creating its own supportive, standards-aligned materials, CosmoQuest offers a hub for excellent resources and materials throughout NASA and the larger astronomy community.In support of CosmoQuest citizen science opportunities, CQ initiatives (Learning Space, S-ROSES, IDEASS, Educator Zone) will be leveraged and shared through the CQPLN. CosmoQuest can be present and alive in the awareness its growing learning community.Finally, to make the CosmoQuest PLN truly relevant, it aims to encourage partnerships between scientists

  9. Assessment of Learning in Digital Interactive Social Networks: A Learning Analytics Approach

    Science.gov (United States)

    Wilson, Mark; Gochyyev, Perman; Scalise, Kathleen

    2016-01-01

    This paper summarizes initial field-test results from data analytics used in the work of the Assessment and Teaching of 21st Century Skills (ATC21S) project, on the "ICT Literacy--Learning in digital networks" learning progression. This project, sponsored by Cisco, Intel and Microsoft, aims to help educators around the world enable…

  10. Using Social Networks to Enhance Teaching and Learning Experiences in Higher Learning Institutions

    Science.gov (United States)

    Balakrishnan, Vimala

    2014-01-01

    The paper first explores the factors that affect the use of social networks to enhance teaching and learning experiences among students and lecturers, using structured questionnaires prepared based on the Push-Pull-Mooring framework. A total of 455 students and lecturers from higher learning institutions in Malaysia participated in this study.…

  11. White blood cells identification system based on convolutional deep neural learning networks.

    Science.gov (United States)

    Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A

    2017-11-16

    White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.

  12. Italian retail gasoline activities: inadequate distribution network

    International Nuclear Information System (INIS)

    Verde, Stefano

    2005-01-01

    It is common belief that competition in the Italian retail gasoline activities is hindered by oil companies' collusive behaviour. However, when developing a broader analysis of the sector, low efficiency and scarce competition could results as the consequences coming from an inadequate distribution network and from the recognition of international markets and focal point [it

  13. Noise-driven manifestation of learning in mature neural networks

    International Nuclear Information System (INIS)

    Monterola, Christopher; Saloma, Caesar

    2002-01-01

    We show that the generalization capability of a mature thresholding neural network to process above-threshold disturbances in a noise-free environment is extended to subthreshold disturbances by ambient noise without retraining. The ability to benefit from noise is intrinsic and does not have to be learned separately. Nonlinear dependence of sensitivity with noise strength is significantly narrower than in individual threshold systems. Noise has a minimal effect on network performance for above-threshold signals. We resolve two seemingly contradictory responses of trained networks to noise--their ability to benefit from its presence and their robustness against noisy strong disturbances

  14. Impact of censoring on learning Bayesian networks in survival modelling.

    Science.gov (United States)

    Stajduhar, Ivan; Dalbelo-Basić, Bojana; Bogunović, Nikola

    2009-11-01

    Bayesian networks are commonly used for presenting uncertainty and covariate interactions in an easily interpretable way. Because of their efficient inference and ability to represent causal relationships, they are an excellent choice for medical decision support systems in diagnosis, treatment, and prognosis. Although good procedures for learning Bayesian networks from data have been defined, their performance in learning from censored survival data has not been widely studied. In this paper, we explore how to use these procedures to learn about possible interactions between prognostic factors and their influence on the variate of interest. We study how censoring affects the probability of learning correct Bayesian network structures. Additionally, we analyse the potential usefulness of the learnt models for predicting the time-independent probability of an event of interest. We analysed the influence of censoring with a simulation on synthetic data sampled from randomly generated Bayesian networks. We used two well-known methods for learning Bayesian networks from data: a constraint-based method and a score-based method. We compared the performance of each method under different levels of censoring to those of the naive Bayes classifier and the proportional hazards model. We did additional experiments on several datasets from real-world medical domains. The machine-learning methods treated censored cases in the data as event-free. We report and compare results for several commonly used model evaluation metrics. On average, the proportional hazards method outperformed other methods in most censoring setups. As part of the simulation study, we also analysed structural similarities of the learnt networks. Heavy censoring, as opposed to no censoring, produces up to a 5% surplus and up to 10% missing total arcs. It also produces up to 50% missing arcs that should originally be connected to the variate of interest. Presented methods for learning Bayesian networks from

  15. Alumni Activities : International Alumni Network for TUAS

    OpenAIRE

    Saarinen, Riikka-Maria

    2013-01-01

    Turku University of Applied Sciences is currently planning on creating an International Alumni Network for the former exchange students who had their exchange period at TUAS. In this thesis, alumni functions are divided into three sections, i.e. the purpose of the alumni, the activities of the alumni and the management of the communication of the alumni. The research of the alumni functions was conducted by introduction of alumni activities in general and introducing three examples of Amer...

  16. Image Classification, Deep Learning and Convolutional Neural Networks : A Comparative Study of Machine Learning Frameworks

    OpenAIRE

    Airola, Rasmus; Hager, Kristoffer

    2017-01-01

    The use of machine learning and specifically neural networks is a growing trend in software development, and has grown immensely in the last couple of years in the light of an increasing need to handle big data and large information flows. Machine learning has a broad area of application, such as human-computer interaction, predicting stock prices, real-time translation, and self driving vehicles. Large companies such as Microsoft and Google have already implemented machine learning in some o...

  17. Experiment in Collaborative Learning Network for Enhanced ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... process and results of collaborative networking in a particular region and on a specific theme. They will share knowledge in the form of thematic information, best practices, policy analysis, practical methodologies and tools, online courses and seminars, coaching and mentoring, face-to-face exchanges, and workshops.

  18. Understanding Knowledge Network, Learning and Connectivism

    Science.gov (United States)

    AlDahdouh, Alaa A.; Osório, António J.; Caires, Susana

    2015-01-01

    Behaviorism, Cognitivism, Constructivism and other growing theories such as Actor-Network and Connectivism are circulating in the educational field. For each, there are allies who stand behind research evidence and consistency of observation. Meantime, those existing theories dominate the field until the background is changed or new concrete…

  19. Will Learning Social Inclusion Assist Rural Networks

    Science.gov (United States)

    Marchant, Jillian

    2013-01-01

    Current research on social networks in some rural communities reports continuing demise despite efforts to build resilient communities. Several factors are identified as contributing to social decline including globalisation and rural social characteristics. Particular rural social characteristics, such as strong social bonds among members of…

  20. Supervised learning in spiking neural networks with FORCE training.

    Science.gov (United States)

    Nicola, Wilten; Clopath, Claudia

    2017-12-20

    Populations of neurons display an extraordinary diversity in the behaviors they affect and display. Machine learning techniques have recently emerged that allow us to create networks of model neurons that display behaviors of similar complexity. Here we demonstrate the direct applicability of one such technique, the FORCE method, to spiking neural networks. We train these networks to mimic dynamical systems, classify inputs, and store discrete sequences that correspond to the notes of a song. Finally, we use FORCE training to create two biologically motivated model circuits. One is inspired by the zebra finch and successfully reproduces songbird singing. The second network is motivated by the hippocampus and is trained to store and replay a movie scene. FORCE trained networks reproduce behaviors comparable in complexity to their inspired circuits and yield information not easily obtainable with other techniques, such as behavioral responses to pharmacological manipulations and spike timing statistics.

  1. Markov Chain Monte Carlo Bayesian Learning for Neural Networks

    Science.gov (United States)

    Goodrich, Michael S.

    2011-01-01

    Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.

  2. Learning Reproducibility with a Yearly Networking Contest

    KAUST Repository

    Canini, Marco; Crowcroft, Jon

    2017-01-01

    fostered by organizing a yearly international contest. We argue that holding a contest undertaken by a plurality of students will have benefits that are two-fold. First, it will promote hands-on learning of skills that are helpful in producing artifacts

  3. Virtual learning networks for sustainable development

    NARCIS (Netherlands)

    De Kraker, Joop; Cörvers, Ron

    2010-01-01

    Sustainable development is a participatory, multi-actor process. In this process, learning plays a major role as participants have to exchange and integrate a diversity of perspectives and types of knowledge and expertise in order to arrive at innovative, jointly supported solutions. Virtual

  4. Learning Networks for Lifelong Competence Development

    NARCIS (Netherlands)

    Koper, Rob

    2006-01-01

    Contribution to Prolearn Summerschool, 7-6-2006; Bled; Slovenia. Slides of the lecture and the 'user questions' we produced in the workshop. The task in the workshop was to identify learning questions that a user could have for the TENCompetence system. These questions should be a) hard to answer

  5. Reflections and challenges in Networked Learning

    DEFF Research Database (Denmark)

    Bonderup Dohn, Nina; Sime, Julie-Ann; Cranmer, Susan

    2018-01-01

    with a short presentation of each of the chapters. This leads us to identify broader themes which point out significant perspectives and challenges for future research and practice. Among these are social justice, criticality, mobility, new forms of openness and learning in the public arena (all leading themes...

  6. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    Science.gov (United States)

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  7. Scene recognition based on integrating active learning with dictionary learning

    Science.gov (United States)

    Wang, Chengxi; Yin, Xueyan; Yang, Lin; Gong, Chengrong; Zheng, Caixia; Yi, Yugen

    2018-04-01

    Scene recognition is a significant topic in the field of computer vision. Most of the existing scene recognition models require a large amount of labeled training samples to achieve a good performance. However, labeling image manually is a time consuming task and often unrealistic in practice. In order to gain satisfying recognition results when labeled samples are insufficient, this paper proposed a scene recognition algorithm named Integrating Active Learning and Dictionary Leaning (IALDL). IALDL adopts projective dictionary pair learning (DPL) as classifier and introduces active learning mechanism into DPL for improving its performance. When constructing sampling criterion in active learning, IALDL considers both the uncertainty and representativeness as the sampling criteria to effectively select the useful unlabeled samples from a given sample set for expanding the training dataset. Experiment results on three standard databases demonstrate the feasibility and validity of the proposed IALDL.

  8. Differential theory of learning for efficient neural network pattern recognition

    Science.gov (United States)

    Hampshire, John B., II; Vijaya Kumar, Bhagavatula

    1993-09-01

    We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generate well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.

  9. Ad Hoc Transient Groups: Instruments for Awareness in Learning Networks

    NARCIS (Netherlands)

    Fetter, Sibren; Rajagopal, Kamakshi; Berlanga, Adriana; Sloep, Peter

    2011-01-01

    Fetter, S., Rajagopal, K., Berlanga, A. J., & Sloep, P. B. (2011). Ad Hoc Transient Groups: Instruments for Awareness in Learning Networks. In W. Reinhardt, T. D. Ullmann, P. Scott, V. Pammer, O. Conlan, & A. J. Berlanga (Eds.), Proceedings of the 1st European Workshop on Awareness and Reflection in

  10. Machine learning for network-based malware detection

    DEFF Research Database (Denmark)

    Stevanovic, Matija

    and based on different, mutually complementary, principles of traffic analysis. The proposed approaches rely on machine learning algorithms (MLAs) for automated and resource-efficient identification of the patterns of malicious network traffic. We evaluated the proposed methods through extensive evaluations...

  11. Social Capital Theory: Implications for Women's Networking and Learning

    Science.gov (United States)

    Alfred, Mary V.

    2009-01-01

    This chapter describes social capital theory as a framework for exploring women's networking and social capital resources. It presents the foundational assumptions of the theory, the benefits and risks of social capital engagement, a feminist critique of social capital, and the role of social capital in adult learning.

  12. Idea Management: Perspectives from Leadership, Learning, and Network Theory

    NARCIS (Netherlands)

    D. Deichmann (Dirk)

    2012-01-01

    textabstractIn this dissertation, we focus on how leadership styles, individual learning behaviors, and social network structures drive or inhibit organizational members to repeatedly generate and develop innovative ideas. Taking the idea management programs of three multinational companies as the

  13. Learning Networks and the Journey of "Becoming Doctor"

    Science.gov (United States)

    Barnacle, Robyn; Mewburn, Inger

    2010-01-01

    Scholars such as Kamler and Thompson argue that identity formation has a key role to play in doctoral learning, particularly the process of thesis writing. This article builds on these insights to address other sites in which scholarly identity is performed within doctoral candidature. Drawing on actor-network theory, the authors examine the role…

  14. Networking and distance learning for teachers: A classification of possibilities

    NARCIS (Netherlands)

    Collis, Betty

    1995-01-01

    Computer based communication technologies, or what could be more conveniently called networking, are bringing new possibilities into teacher education in many different ways. As with distance education more generally they can facilitate flexibility in time and place of learning, but the range of

  15. Optimizing Knowledge Sharing in Learning Networks through Peer Tutoring

    NARCIS (Netherlands)

    Hsiao, Amy; Brouns, Francis; Kester, Liesbeth; Sloep, Peter

    2009-01-01

    Hsiao, Y. P., Brouns, F., Kester, L., & Sloep, P. (2009). Optimizing Knowledge Sharing in Learning Networks through Peer Tutoring. Presentation at the IADIS international conference on Cognition and Exploratory in Digital Age (CELDA 2009). November, 20-22, 2009, Rome, Italy.

  16. Home-School Links: Networking the Learning Community.

    Science.gov (United States)

    1996

    The topic of networking the learning community with home-school links is addressed in four papers: "Internet Access via School: Expectations of Students and Parents" (Roy Crotty); "The School Library as Community Information Gateway" (Megan Perry); "Rural Access to the Internet" (Ken Eustace); and "NetDay '96:…

  17. Competitive Learning Neural Network Ensemble Weighted by Predicted Performance

    Science.gov (United States)

    Ye, Qiang

    2010-01-01

    Ensemble approaches have been shown to enhance classification by combining the outputs from a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble performance. Multi-task learning is an important characteristic for Neural Network classifiers. Introducing a secondary output unit that receives different…

  18. Learner Views about Cooperative Learning in Social Learning Networks

    Science.gov (United States)

    Cankaya, Serkan; Yunkul, Eyup

    2018-01-01

    The purpose of this study was to reveal the attitudes and views of university students about the use of Edmodo as a cooperative learning environment. In the research process, the students were divided into groups of 4 or 5 within the scope of a course given in the department of Computer Education and Instructional Technology. For each group,…

  19. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  20. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    International Nuclear Information System (INIS)

    Bornholdt, S.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback

  1. A Studi on High Plant Systems Course with Active Learning in Higher Education Through Outdoor Learning to Increase Student Learning Activities

    OpenAIRE

    Nur Rokhimah Hanik, Anwari Adi Nugroho

    2015-01-01

    Biology learning especially high plant system courses needs to be applied to active learning centered on the student (Active Learning In Higher Education) to enhance the students' learning activities so that the quality of learning for the better. Outdoor Learning is one of the active learning invites students to learn outside of the classroom by exploring the surrounding environment. This research aims to improve the students' learning activities in the course of high plant systems through t...

  2. Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task.

    Directory of Open Access Journals (Sweden)

    Pavel Sanda

    2017-09-01

    Full Text Available Neural networks with a single plastic layer employing reward modulated spike time dependent plasticity (STDP are capable of learning simple foraging tasks. Here we demonstrate advanced pattern discrimination and continuous learning in a network of spiking neurons with multiple plastic layers. The network utilized both reward modulated and non-reward modulated STDP and implemented multiple mechanisms for homeostatic regulation of synaptic efficacy, including heterosynaptic plasticity, gain control, output balancing, activity normalization of rewarded STDP and hard limits on synaptic strength. We found that addition of a hidden layer of neurons employing non-rewarded STDP created neurons that responded to the specific combinations of inputs and thus performed basic classification of the input patterns. When combined with a following layer of neurons implementing rewarded STDP, the network was able to learn, despite the absence of labeled training data, discrimination between rewarding patterns and the patterns designated as punishing. Synaptic noise allowed for trial-and-error learning that helped to identify the goal-oriented strategies which were effective in task solving. The study predicts a critical set of properties of the spiking neuronal network with STDP that was sufficient to solve a complex foraging task involving pattern classification and decision making.

  3. A distributed lumped active all-pass network configuration.

    Science.gov (United States)

    Huelsman, L. P.; Raghunath, S.

    1972-01-01

    In this correspondence a new and interesting distributed lumped active network configuration that realizes an all-pass network function is described. A design chart for determining the values of the network elements is included.

  4. Finite time convergent learning law for continuous neural networks.

    Science.gov (United States)

    Chairez, Isaac

    2014-02-01

    This paper addresses the design of a discontinuous finite time convergent learning law for neural networks with continuous dynamics. The neural network was used here to obtain a non-parametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties was the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on discontinuous algorithms was used to adjust the weights of the neural network. The adaptive algorithm was derived by means of a non-standard Lyapunov function that is lower semi-continuous and differentiable in almost the whole space. A compensator term was included in the identifier to reject some specific perturbations using a nonlinear robust algorithm. Two numerical examples demonstrated the improvements achieved by the learning algorithm introduced in this paper compared to classical schemes with continuous learning methods. The first one dealt with a benchmark problem used in the paper to explain how the discontinuous learning law works. The second one used the methane production model to show the benefits in engineering applications of the learning law proposed in this paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. LeaRN: A Collaborative Learning-Research Network for a WLCG Tier-3 Centre

    Science.gov (United States)

    Pérez Calle, Elio

    2011-12-01

    The Department of Modern Physics of the University of Science and Technology of China is hosting a Tier-3 centre for the ATLAS experiment. A interdisciplinary team of researchers, engineers and students are devoted to the task of receiving, storing and analysing the scientific data produced by the LHC. In order to achieve the highest performance and to develop a knowledge base shared by all members of the team, the research activities and their coordination are being supported by an array of computing systems. These systems have been designed to foster communication, collaboration and coordination among the members of the team, both face-to-face and remotely, and both in synchronous and asynchronous ways. The result is a collaborative learning-research network whose main objectives are awareness (to get shared knowledge about other's activities and therefore obtain synergies), articulation (to allow a project to be divided, work units to be assigned and then reintegrated) and adaptation (to adapt information technologies to the needs of the group). The main technologies involved are Communication Tools such as web publishing, revision control and wikis, Conferencing Tools such as forums, instant messaging and video conferencing and Coordination Tools, such as time management, project management and social networks. The software toolkit has been deployed by the members of the team and it has been based on free and open source software.

  6. LeaRN: A Collaborative Learning-Research Network for a WLCG Tier-3 Centre

    International Nuclear Information System (INIS)

    Calle, Elio Pérez

    2011-01-01

    The Department of Modern Physics of the University of Science and Technology of China is hosting a Tier-3 centre for the ATLAS experiment. A interdisciplinary team of researchers, engineers and students are devoted to the task of receiving, storing and analysing the scientific data produced by the LHC. In order to achieve the highest performance and to develop a knowledge base shared by all members of the team, the research activities and their coordination are being supported by an array of computing systems. These systems have been designed to foster communication, collaboration and coordination among the members of the team, both face-to-face and remotely, and both in synchronous and asynchronous ways. The result is a collaborative learning-research network whose main objectives are awareness (to get shared knowledge about other's activities and therefore obtain synergies), articulation (to allow a project to be divided, work units to be assigned and then reintegrated) and adaptation (to adapt information technologies to the needs of the group). The main technologies involved are Communication Tools such as web publishing, revision control and wikis, Conferencing Tools such as forums, instant messaging and video conferencing and Coordination Tools, such as time management, project management and social networks. The software toolkit has been deployed by the members of the team and it has been based on free and open source software.

  7. Using human brain activity to guide machine learning.

    Science.gov (United States)

    Fong, Ruth C; Scheirer, Walter J; Cox, David D

    2018-03-29

    Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.

  8. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    Science.gov (United States)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  9. Unsupervised active learning based on hierarchical graph-theoretic clustering.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve

    2009-10-01

    Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.

  10. Students’ mathematical learning in modelling activities

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts i...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....

  11. Students' Feedback of mDPBL Approach and the Learning Impact towards Computer Networks Teaching and Learning

    Science.gov (United States)

    Winarno, Sri; Muthu, Kalaiarasi Sonai; Ling, Lew Sook

    2018-01-01

    This study presents students' feedback and learning impact on design and development of a multimedia learning in Direct Problem-Based Learning approach (mDPBL) for Computer Networks in Dian Nuswantoro University, Indonesia. This study examined the usefulness, contents and navigation of the multimedia learning as well as learning impacts towards…

  12. Machine learning of network metrics in ATLAS Distributed Data Management

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00218873; The ATLAS collaboration; Toler, Wesley; Vamosi, Ralf; Bogado Garcia, Joaquin Ignacio

    2017-01-01

    The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our m...

  13. Learning in neural networks based on a generalized fluctuation theorem

    Science.gov (United States)

    Hayakawa, Takashi; Aoyagi, Toshio

    2015-11-01

    Information maximization has been investigated as a possible mechanism of learning governing the self-organization that occurs within the neural systems of animals. Within the general context of models of neural systems bidirectionally interacting with environments, however, the role of information maximization remains to be elucidated. For bidirectionally interacting physical systems, universal laws describing the fluctuation they exhibit and the information they possess have recently been discovered. These laws are termed fluctuation theorems. In the present study, we formulate a theory of learning in neural networks bidirectionally interacting with environments based on the principle of information maximization. Our formulation begins with the introduction of a generalized fluctuation theorem, employing an interpretation appropriate for the present application, which differs from the original thermodynamic interpretation. We analytically and numerically demonstrate that the learning mechanism presented in our theory allows neural networks to efficiently explore their environments and optimally encode information about them.

  14. Generalized activity equations for spiking neural network dynamics

    Directory of Open Access Journals (Sweden)

    Michael A Buice

    2013-11-01

    Full Text Available Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales - the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances.

  15. Gender differences in collaborative learning over online social networks: Epistemological beliefs and behaviors

    Directory of Open Access Journals (Sweden)

    Rosanna Y.-Y. Chan

    2013-09-01

    Full Text Available Online social networks are popular venues for computer-supported collaborative work and computer-supported collaborative learning. Professionals within the same discipline, such as software developers, often interact over various social network sites for knowledge updates and collective understandings. The current study aims at gathering empirical evidences concerning gender differences in online social network beliefs and behaviors. A total of 53 engineering postgraduate students were engaged in a blogging community for collaborative learning. Participants’ beliefs about collaboration and nature of knowledge and knowing (i.e. epistemological beliefs are investigated. More specifically, social network analysis metrics including in-degree, out-degree, closeness centrality, and betweenness centrality are obtained from an 8-interval longitudinal SNA. Methodologically speaking, the current work puts forward mixed methods of longitudinal SNA and quantitative beliefs survey to explore online social network participants’ beliefs and behaviors. The study’s findings demonstrate significant gender differences in collaborative learning through online social networks, including (1 female engineering postgraduate students engage significantly more actively in online communications, (2 male engineering postgraduate students are more likely to be the potential controllers of information flows, and (3 gender differences exist in belief gains related to social aspects, but not individual's epistemic aspects. Overall, participants in both genders demonstrated enhanced beliefs in collaboration as well as the nature of knowledge and knowing.

  16. The Activity Theory Approach to Learning

    Directory of Open Access Journals (Sweden)

    Ritva Engeström

    2014-12-01

    Full Text Available In this paper the author offers a practical view of the theory-grounded research on education action. She draws on studies carried out at the Center for Research on Activity, Development and Learning (CRADLE at the University of Helsinki in Finland. In its work, the Center draws on cultural-historical activity theory (CHAT and is well-known for the theory of Expansive Learning and its more practical application called Developmental Work Research (DWR. These approaches are widely used to understand professional learning and have served as a theoreticaland methodological foundation for studies examining change and professional development in various human activities.

  17. Active learning methods for interactive image retrieval.

    Science.gov (United States)

    Gosselin, Philippe Henri; Cord, Matthieu

    2008-07-01

    Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.

  18. Child Development: An Active Learning Approach

    Science.gov (United States)

    Levine, Laura E.; Munsch, Joyce

    2010-01-01

    Within each chapter of this innovative topical text, the authors engage students by demonstrating the wide range of real-world applications of psychological research connected to child development. In particular, the distinctive Active Learning features incorporated throughout the book foster a dynamic and personal learning process for students.…

  19. Discussing Active Learning from the Practitioner's Perspective

    Science.gov (United States)

    Bamba, Priscilla

    2015-01-01

    The purpose of this paper is to present an overview of how active learning took place in a class containing specific readings,cooperative and collaborative group work, and a writing assignment for college students at a Northern Virginia Community College campus (NVCC). Requisite knowledge, skills, learner characteristics, brain-based learning, and…

  20. Learning models of activities involving interacting objects

    DEFF Research Database (Denmark)

    Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.

    2013-01-01

    We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were t...

  1. Networking activities in technology-based entrepreneurial teams

    DEFF Research Database (Denmark)

    Neergaard, Helle

    2005-01-01

    Based on social network theoy, this article investigates the distribution of networking roles and responsibilities in entrepreneurial founding teams. Its focus is on the team as a collection of individuals, thus allowing the research to address differences in networking patterns. It identifies six...... central networking activities and shows that not all founding team members are equally active 'networkers'. The analyses show that team members prioritize different networking activities and that one member in particular has extensive networking activities whereas other memebrs of the team are more...

  2. Some Learning Properties of Modular Network SOMs

    Science.gov (United States)

    Takeda, Manabu; Ikeda, Kazushi; Furukawa, Tetsuo

    The Modular Network Self-Organizing Map (mnSOM) is a generalization of the SOM, where each node represents a parametric function such as a multi-layer perceptron or another SOM. Since given datasets are, in general, fewer than nodes, some nodes never win in competition and have to update their parameters from the winners in the neighborhood. This is a process that can be regarded as interpolation. This study derives the interpolation curve between winners in simple cases and discusses the distribution of winners based on the neighborhood function.

  3. Learning outcomes between Socioscientific Issues-Based Learning and Conventional Learning Activities

    OpenAIRE

    Piyaluk Wongsri; Prasart Nuangchalerm

    2010-01-01

    Problem statement: Socioscientific issues-based learning activity is essential for scientific reasoning skills and it could be used for analyzing problems be applied to each situation for more successful and suitable. The purposes of this research aimed to compare learning achievement, analytical thinking and moral reasoning of seventh grade students who were organized between socioscientific issues-based learning and conventional learning activities. Approach: The samples used in research we...

  4. Students' Personal Networks in Virtual and Personal Learning Environments: A Case Study in Higher Education Using Learning Analytics Approach

    Science.gov (United States)

    Casquero, Oskar; Ovelar, Ramón; Romo, Jesús; Benito, Manuel; Alberdi, Mikel

    2016-01-01

    The main objective of this paper is to analyse the effect of the affordances of a virtual learning environment and a personal learning environment (PLE) in the configuration of the students' personal networks in a higher education context. The results are discussed in light of the adaptation of the students to the learning network made up by two…

  5. Point-of-Purchase Advertising. Learning Activity.

    Science.gov (United States)

    Shackelford, Ray

    1998-01-01

    In this technology education activity, students learn the importance of advertising, conduct a day-long survey of advertising strategies, and design and produce a tabletop point-of-purchase advertisement. (JOW)

  6. Activating teaching methods, studying responses and learning

    OpenAIRE

    Christensen, Hans Peter; Vigild, Martin E.; Thomsen, Erik; Szabo, Peter; Horsewell, Andy

    2009-01-01

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed. Peer Reviewed

  7. Introduction to spiking neural networks: Information processing, learning and applications.

    Science.gov (United States)

    Ponulak, Filip; Kasinski, Andrzej

    2011-01-01

    The concept that neural information is encoded in the firing rate of neurons has been the dominant paradigm in neurobiology for many years. This paradigm has also been adopted by the theory of artificial neural networks. Recent physiological experiments demonstrate, however, that in many parts of the nervous system, neural code is founded on the timing of individual action potentials. This finding has given rise to the emergence of a new class of neural models, called spiking neural networks. In this paper we summarize basic properties of spiking neurons and spiking networks. Our focus is, specifically, on models of spike-based information coding, synaptic plasticity and learning. We also survey real-life applications of spiking models. The paper is meant to be an introduction to spiking neural networks for scientists from various disciplines interested in spike-based neural processing.

  8. Learning Activities in a Sociable Smart City

    Directory of Open Access Journals (Sweden)

    Dimitrios Ringas

    2013-08-01

    Full Text Available We present our approach on how smart city technologies may enhance the learning process. We have developed the CLIO urban computing system, which invites people to share personal memories and interact the collective city memory. Various educational scenarios and activities were performed exploiting CLIO; in this paper we present the methodology we followed and the experience we gained. Learning has always been the cognitive process of acquiring skills or knowledge, while teachers are often eager to experiment with novel technological means and methods; our aim was to explore the effect that urban computing could have to the learning process. We applied our methodology in the city of Corfu inviting schools to engage their students in learning through the collective city memory while exploiting urban computing. Results from our experience demonstrate the potential of exploiting urban computing in the learning process and the benefits of learning out of the classroom.

  9. Dopamine, reward learning, and active inference

    Directory of Open Access Journals (Sweden)

    Thomas eFitzgerald

    2015-11-01

    Full Text Available Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behaviour. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  10. Dopamine, reward learning, and active inference.

    Science.gov (United States)

    FitzGerald, Thomas H B; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  11. Supervised dictionary learning for inferring concurrent brain networks.

    Science.gov (United States)

    Zhao, Shijie; Han, Junwei; Lv, Jinglei; Jiang, Xi; Hu, Xintao; Zhao, Yu; Ge, Bao; Guo, Lei; Liu, Tianming

    2015-10-01

    Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.

  12. Mimicking Nature´s way of organizing in industry: a network learning perspective

    DEFF Research Database (Denmark)

    Ulhøi, John Parm; Madsen, Henning

    to reconsider organisational learning as being both an internal as well as an external phenomenon. By bringing network learning into an existing interorganisational setting (such as industrial ecology) new potentials for increased learning emerge for the participating companies. The concept of network learning...

  13. Learning Negotiation Policies Using IB3 and Bayesian Networks

    Science.gov (United States)

    Nalepa, Gislaine M.; Ávila, Bráulio C.; Enembreck, Fabrício; Scalabrin, Edson E.

    This paper presents an intelligent offer policy in a negotiation environment, in which each agent involved learns the preferences of its opponent in order to improve its own performance. Each agent must also be able to detect drifts in the opponent's preferences so as to quickly adjust itself to their new offer policy. For this purpose, two simple learning techniques were first evaluated: (i) based on instances (IB3) and (ii) based on Bayesian Networks. Additionally, as its known that in theory group learning produces better results than individual/single learning, the efficiency of IB3 and Bayesian classifier groups were also analyzed. Finally, each decision model was evaluated in moments of concept drift, being the drift gradual, moderate or abrupt. Results showed that both groups of classifiers were able to effectively detect drifts in the opponent's preferences.

  14. Outsmarting neural networks: an alternative paradigm for machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Protopopescu, V.; Rao, N.S.V.

    1996-10-01

    We address three problems in machine learning, namely: (i) function learning, (ii) regression estimation, and (iii) sensor fusion, in the Probably and Approximately Correct (PAC) framework. We show that, under certain conditions, one can reduce the three problems above to the regression estimation. The latter is usually tackled with artificial neural networks (ANNs) that satisfy the PAC criteria, but have high computational complexity. We propose several computationally efficient PAC alternatives to ANNs to solve the regression estimation. Thereby we also provide efficient PAC solutions to the function learning and sensor fusion problems. The approach is based on cross-fertilizing concepts and methods from statistical estimation, nonlinear algorithms, and the theory of computational complexity, and is designed as part of a new, coherent paradigm for machine learning.

  15. People with Learning Disabilities and "Active Ageing"

    Science.gov (United States)

    Foster, Liam; Boxall, Kathy

    2015-01-01

    Background: People (with and without learning disabilities) are living longer. Demographic ageing creates challenges and the leading policy response to these challenges is "active ageing". "Active" does not just refer to the ability to be physically and economically active, but also includes ongoing social and civic engagement…

  16. Teaching Engineering with Autonomous Learning Activities

    Science.gov (United States)

    Otero, Beatriz; Rodríguez, Eva; Royo, Pablo

    2015-01-01

    This paper proposes several activities that encourage self-learning in engineering courses. For each activity, the context and the pedagogical issues addressed are described emphasizing strengths and weaknesses. Specifically, this work describes and implements five activities, which are: questionnaires, conceptual maps, videos, jigsaw and…

  17. Active Learning through Online Instruction

    Science.gov (United States)

    Gulbahar, Yasemin; Kalelioglu, Filiz

    2010-01-01

    This article explores the use of proper instructional techniques in online discussions that lead to meaningful learning. The research study looks at the effective use of two instructional techniques within online environments, based on qualitative measures. "Brainstorming" and "Six Thinking Hats" were selected and implemented…

  18. Dictionary Networking in an LSP Learning Context

    DEFF Research Database (Denmark)

    Nielsen, Sandro

    2007-01-01

    text production, but discusses an individual dictionary for a particular function. It is shown that in a general context of learning accounting and its relevant LSP with a view to writing or translating financial reporting texts, the modern theory of dictionary functions provides a good theoretical...... and usage of a subject-field, particularly when they have to read, write or translate domain-specific texts. The modern theory of dictionary functions presented in Bergenholtz and Tarp (2002) opens up exciting new possibilities for theoretical and practical lexicography and encourages lexicographers......-lexicographic environment, i.e. what happens outside the dictionary when users write or translate texts, and relate these findings to the lexicographic environment represented by the theoretical basis and the dictionary itself. Nielsen (2006) gives a preliminary discussion of monolingual accounting dictionaries for EFL...

  19. Learning by Knowledge Networking across Cultures

    DEFF Research Database (Denmark)

    Wangel, Arne; Stærdahl, Jens; Bransholm Pedersen, Kirsten

    2005-01-01

    Engineers and planners working in trans-national production and aid project interventions in Third World countries must be able to 're-invent' technological systems across cultures and plan and build the capacities of their counterparts. A series of joint courses on cleaner production (CP......) and environmental impact assessment (EIA) in Malaysia 1998-2003 has sought to address these needs for new competences. Differences in educational background and the work culture of the participants have presented difficulties during these courses, in particular in terms of achieving a mixed team building to turn...... some of the obstacles into resources for knowledge sharing. However, students have stressed their positive experience of cross-cultural communication. While a joint course of three week duration by itself may involve only limited cross-cultural learning, serving primarily as an introduction to a long...

  20. Functional networks inference from rule-based machine learning models.

    Science.gov (United States)

    Lazzarini, Nicola; Widera, Paweł; Williamson, Stuart; Heer, Rakesh; Krasnogor, Natalio; Bacardit, Jaume

    2016-01-01

    Functional networks play an important role in the analysis of biological processes and systems. The inference of these networks from high-throughput (-omics) data is an area of intense research. So far, the similarity-based inference paradigm (e.g. gene co-expression) has been the most popular approach. It assumes a functional relationship between genes which are expressed at similar levels across different samples. An alternative to this paradigm is the inference of relationships from the structure of machine learning models. These models are able to capture complex relationships between variables, that often are different/complementary to the similarity-based methods. We propose a protocol to infer functional networks from machine learning models, called FuNeL. It assumes, that genes used together within a rule-based machine learning model to classify the samples, might also be functionally related at a biological level. The protocol is first tested on synthetic datasets and then evaluated on a test suite of 8 real-world datasets related to human cancer. The networks inferred from the real-world data are compared against gene co-expression networks of equal size, generated with 3 different methods. The comparison is performed from two different points of view. We analyse the enriched biological terms in the set of network nodes and the relationships between known disease-associated genes in a context of the network topology. The comparison confirms both the biological relevance and the complementary character of the knowledge captured by the FuNeL networks in relation to similarity-based methods and demonstrates its potential to identify known disease associations as core elements of the network. Finally, using a prostate cancer dataset as a case study, we confirm that the biological knowledge captured by our method is relevant to the disease and consistent with the specialised literature and with an independent dataset not used in the inference process. The

  1. Automatic Earthquake Detection by Active Learning

    Science.gov (United States)

    Bergen, K.; Beroza, G. C.

    2017-12-01

    In recent years, advances in machine learning have transformed fields such as image recognition, natural language processing and recommender systems. Many of these performance gains have relied on the availability of large, labeled data sets to train high-accuracy models; labeled data sets are those for which each sample includes a target class label, such as waveforms tagged as either earthquakes or noise. Earthquake seismologists are increasingly leveraging machine learning and data mining techniques to detect and analyze weak earthquake signals in large seismic data sets. One of the challenges in applying machine learning to seismic data sets is the limited labeled data problem; learning algorithms need to be given examples of earthquake waveforms, but the number of known events, taken from earthquake catalogs, may be insufficient to build an accurate detector. Furthermore, earthquake catalogs are known to be incomplete, resulting in training data that may be biased towards larger events and contain inaccurate labels. This challenge is compounded by the class imbalance problem; the events of interest, earthquakes, are infrequent relative to noise in continuous data sets, and many learning algorithms perform poorly on rare classes. In this work, we investigate the use of active learning for automatic earthquake detection. Active learning is a type of semi-supervised machine learning that uses a human-in-the-loop approach to strategically supplement a small initial training set. The learning algorithm incorporates domain expertise through interaction between a human expert and the algorithm, with the algorithm actively posing queries to the user to improve detection performance. We demonstrate the potential of active machine learning to improve earthquake detection performance with limited available training data.

  2. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  3. Social Networking Sites and Addiction: Ten Lessons Learned

    Science.gov (United States)

    Kuss, Daria J.; Griffiths, Mark D.

    2017-01-01

    Online social networking sites (SNSs) have gained increasing popularity in the last decade, with individuals engaging in SNSs to connect with others who share similar interests. The perceived need to be online may result in compulsive use of SNSs, which in extreme cases may result in symptoms and consequences traditionally associated with substance-related addictions. In order to present new insights into online social networking and addiction, in this paper, 10 lessons learned concerning online social networking sites and addiction based on the insights derived from recent empirical research will be presented. These are: (i) social networking and social media use are not the same; (ii) social networking is eclectic; (iii) social networking is a way of being; (iv) individuals can become addicted to using social networking sites; (v) Facebook addiction is only one example of SNS addiction; (vi) fear of missing out (FOMO) may be part of SNS addiction; (vii) smartphone addiction may be part of SNS addiction; (viii) nomophobia may be part of SNS addiction; (ix) there are sociodemographic differences in SNS addiction; and (x) there are methodological problems with research to date. These are discussed in turn. Recommendations for research and clinical applications are provided. PMID:28304359

  4. Social Networking Sites and Addiction: Ten Lessons Learned

    Directory of Open Access Journals (Sweden)

    Daria J. Kuss

    2017-03-01

    Full Text Available Online social networking sites (SNSs have gained increasing popularity in the last decade, with individuals engaging in SNSs to connect with others who share similar interests. The perceived need to be online may result in compulsive use of SNSs, which in extreme cases may result in symptoms and consequences traditionally associated with substance-related addictions. In order to present new insights into online social networking and addiction, in this paper, 10 lessons learned concerning online social networking sites and addiction based on the insights derived from recent empirical research will be presented. These are: (i social networking and social media use are not the same; (ii social networking is eclectic; (iii social networking is a way of being; (iv individuals can become addicted to using social networking sites; (v Facebook addiction is only one example of SNS addiction; (vi fear of missing out (FOMO may be part of SNS addiction; (vii smartphone addiction may be part of SNS addiction; (viii nomophobia may be part of SNS addiction; (ix there are sociodemographic differences in SNS addiction; and (x there are methodological problems with research to date. These are discussed in turn. Recommendations for research and clinical applications are provided.

  5. Social Networking Sites and Addiction: Ten Lessons Learned.

    Science.gov (United States)

    Kuss, Daria J; Griffiths, Mark D

    2017-03-17

    Online social networking sites (SNSs) have gained increasing popularity in the last decade, with individuals engaging in SNSs to connect with others who share similar interests. The perceived need to be online may result in compulsive use of SNSs, which in extreme cases may result in symptoms and consequences traditionally associated with substance-related addictions. In order to present new insights into online social networking and addiction, in this paper, 10 lessons learned concerning online social networking sites and addiction based on the insights derived from recent empirical research will be presented. These are: (i) social networking and social media use are not the same; (ii) social networking is eclectic; (iii) social networking is a way of being; (iv) individuals can become addicted to using social networking sites; (v) Facebook addiction is only one example of SNS addiction; (vi) fear of missing out (FOMO) may be part of SNS addiction; (vii) smartphone addiction may be part of SNS addiction; (viii) nomophobia may be part of SNS addiction; (ix) there are sociodemographic differences in SNS addiction; and (x) there are methodological problems with research to date. These are discussed in turn. Recommendations for research and clinical applications are provided.

  6. Validating module network learning algorithms using simulated data.

    Science.gov (United States)

    Michoel, Tom; Maere, Steven; Bonnet, Eric; Joshi, Anagha; Saeys, Yvan; Van den Bulcke, Tim; Van Leemput, Koenraad; van Remortel, Piet; Kuiper, Martin; Marchal, Kathleen; Van de Peer, Yves

    2007-05-03

    In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators. We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing and improving module network

  7. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    Science.gov (United States)

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  8. Analytical reasoning task reveals limits of social learning in networks.

    Science.gov (United States)

    Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François

    2014-04-06

    Social learning-by observing and copying others-is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an 'unreflective copying bias', which limits their social learning to the output, rather than the process, of their peers' reasoning-even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behaviour through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning.

  9. Learning spectrum's selection in OLAM network for analysis cement samples

    International Nuclear Information System (INIS)

    Huang Ning; Wang Peng; Tang Daiquan; Hu Renlan

    2010-01-01

    It uses OLAM artificial neural network to analyze the samples of cement raw material. Two kinds of spectrums are used for network learning: pure-element spectrum and mix-element spectrum. The output of pure-element method can be used to construct a simulate spectrum, which can be compared with the original spectrum and judge the shift of spectrum; the mix-element method can store more message and correct the matrix effect, but the multicollinearity among spectrums can cause some side effect to the results. (authors)

  10. Parameter learning in MTE networks using incomplete data

    DEFF Research Database (Denmark)

    Fernández, Antonio; Langseth, Helge; Nielsen, Thomas Dyhre

    a considerable computational burden as well as the inability to handle missing values in the training data. In this paper we describe an EM-based algorithm for learning the maximum likelihood parameters of an MTE network when confronted with incomplete data. In order to overcome the computational difficulties we......Bayesian networks with mixtures of truncated exponentials (MTEs) are gaining popularity as a flexible modelling framework for hybrid domains. MTEs support efficient and exact inference algorithms, but estimating an MTE from data has turned out to be a difficult task. Current methods suffer from...

  11. Rethinking learning networks collaborative possibilities for a Deleuzian century

    CERN Document Server

    Kamp, Annelies

    2013-01-01

    In the face of today's complex policy challenges, various forms of 'joining-up' - networking, collaborating, partnering - have become key responses. However, institutions often fail to take advantage of the full benefits that joining-up offers. In this book, the author draws on ethnographic research into learning networks in post compulsory education and training in the state of Victoria, Australia, to explore why this might be the case and presents an argument for rethinking how joining-up works in practice. Throughout the book, Deleuzian concepts are engaged to forge a 'little complicating m

  12. Self-learning Monte Carlo with deep neural networks

    Science.gov (United States)

    Shen, Huitao; Liu, Junwei; Fu, Liang

    2018-05-01

    The self-learning Monte Carlo (SLMC) method is a general algorithm to speedup MC simulations. Its efficiency has been demonstrated in various systems by introducing an effective model to propose global moves in the configuration space. In this paper, we show that deep neural networks can be naturally incorporated into SLMC, and without any prior knowledge can learn the original model accurately and efficiently. Demonstrated in quantum impurity models, we reduce the complexity for a local update from O (β2) in Hirsch-Fye algorithm to O (β lnβ ) , which is a significant speedup especially for systems at low temperatures.

  13. Music Learning with Long Short Term Memory Networks

    OpenAIRE

    Colombo, Florian François

    2015-01-01

    Humans are able to learn and compose complex, yet beautiful, pieces of music as seen in e.g. the highly complicated works of J.S. Bach. However, how our brain is able to store and produce these very long temporal sequences is still an open question. Long short-term memory (LSTM) artificial neural networks have been shown to be efficient in sequence learning tasks thanks to their inherent ability to bridge long time lags between input events and their target signals. Here, I investigate the po...

  14. Using Active Learning for Speeding up Calibration in Simulation Models.

    Science.gov (United States)

    Cevik, Mucahit; Ergun, Mehmet Ali; Stout, Natasha K; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan

    2016-07-01

    Most cancer simulation models include unobservable parameters that determine disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality, and their values are typically estimated via a lengthy calibration procedure, which involves evaluating a large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We developed an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs and therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using the previously developed University of Wisconsin breast cancer simulation model (UWBCS). In a recent study, calibration of the UWBCS required the evaluation of 378 000 input parameter combinations to build a race-specific model, and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378 000 combinations. Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. © The Author(s) 2015.

  15. Manifold Regularized Experimental Design for Active Learning.

    Science.gov (United States)

    Zhang, Lining; Shum, Hubert P H; Shao, Ling

    2016-12-02

    Various machine learning and data mining tasks in classification require abundant data samples to be labeled for training. Conventional active learning methods aim at labeling the most informative samples for alleviating the labor of the user. Many previous studies in active learning select one sample after another in a greedy manner. However, this is not very effective because the classification models has to be retrained for each newly labeled sample. Moreover, many popular active learning approaches utilize the most uncertain samples by leveraging the classification hyperplane of the classifier, which is not appropriate since the classification hyperplane is inaccurate when the training data are small-sized. The problem of insufficient training data in real-world systems limits the potential applications of these approaches. This paper presents a novel method of active learning called manifold regularized experimental design (MRED), which can label multiple informative samples at one time for training. In addition, MRED gives an explicit geometric explanation for the selected samples to be labeled by the user. Different from existing active learning methods, our method avoids the intrinsic problems caused by insufficiently labeled samples in real-world applications. Various experiments on synthetic datasets, the Yale face database and the Corel image database have been carried out to show how MRED outperforms existing methods.

  16. A Novel Wearable Sensor-Based Human Activity Recognition Approach Using Artificial Hydrocarbon Networks.

    Science.gov (United States)

    Ponce, Hiram; Martínez-Villaseñor, María de Lourdes; Miralles-Pechuán, Luis

    2016-07-05

    Human activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearable sensors data frequently hamper the human activity recognition classification process. In order to develop a successful activity recognition system, it is necessary to use stable and robust machine learning techniques capable of dealing with noisy data. In this paper, we presented the artificial hydrocarbon networks (AHN) technique to the human activity recognition community. Our artificial hydrocarbon networks novel approach is suitable for physical activity recognition, noise tolerance of corrupted data sensors and robust in terms of different issues on data sensors. We proved that the AHN classifier is very competitive for physical activity recognition and is very robust in comparison with other well-known machine learning methods.

  17. Statistical learning problem of artificial neural network to control roofing process

    Directory of Open Access Journals (Sweden)

    Lapidus Azariy

    2017-01-01

    Full Text Available Now software developed on the basis of artificial neural networks (ANN has been actively implemented in construction companies to support decision-making in organization and management of construction processes. ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy. Also designing of ANN architecture is related to learning problem known as “curse of dimensionality”. This problem is important for the study of construction process management because of the difficulty to get training data from construction sites. In previous studies the authors have designed a 4-layer feedforward ANN with a unit model of 12-5-4-1 to approximate estimation and prediction of roofing process. This paper presented the statistical learning side of created ANN with simple-error-minimization algorithm. The sample size to efficient training and the confidence interval of network outputs defined. In conclusion the authors predicted successful ANN learning in a large construction business company within a short space of time.

  18. Coordinated Voltage Control of Active Distribution Network

    Directory of Open Access Journals (Sweden)

    Xie Jiang

    2016-01-01

    Full Text Available This paper presents a centralized coordinated voltage control method for active distribution network to solve off-limit problem of voltage after incorporation of distributed generation (DG. The proposed method consists of two parts, it coordinated primal-dual interior point method-based voltage regulation schemes of DG reactive powers and capacitors with centralized on-load tap changer (OLTC controlling method which utilizes system’s maximum and minimum voltages, to improve the qualified rate of voltage and reduce the operation numbers of OLTC. The proposed coordination has considered the cost of capacitors. The method is tested using a radial edited IEEE-33 nodes distribution network which is modelled using MATLAB.

  19. Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis.

    Science.gov (United States)

    López-Barroso, Diana; Ripollés, Pablo; Marco-Pallarés, Josep; Mohammadi, Bahram; Münte, Thomas F; Bachoud-Lévi, Anne-Catherine; Rodriguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2015-04-15

    Although neuroimaging studies using standard subtraction-based analysis from functional magnetic resonance imaging (fMRI) have suggested that frontal and temporal regions are involved in word learning from fluent speech, the possible contribution of different brain networks during this type of learning is still largely unknown. Indeed, univariate fMRI analyses cannot identify the full extent of distributed networks that are engaged by a complex task such as word learning. Here we used Independent Component Analysis (ICA) to characterize the different brain networks subserving word learning from an artificial language speech stream. Results were replicated in a second cohort of participants with a different linguistic background. Four spatially independent networks were associated with the task in both cohorts: (i) a dorsal Auditory-Premotor network; (ii) a dorsal Sensory-Motor network; (iii) a dorsal Fronto-Parietal network; and (iv) a ventral Fronto-Temporal network. The level of engagement of these networks varied through the learning period with only the dorsal Auditory-Premotor network being engaged across all blocks. In addition, the connectivity strength of this network in the second block of the learning phase correlated with the individual variability in word learning performance. These findings suggest that: (i) word learning relies on segregated connectivity patterns involving dorsal and ventral networks; and (ii) specifically, the dorsal auditory-premotor network connectivity strength is directly correlated with word learning performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Machine learning based Intelligent cognitive network using fog computing

    Science.gov (United States)

    Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik

    2017-05-01

    In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.

  1. Application of neural networks to seismic active control

    International Nuclear Information System (INIS)

    Tang, Yu.

    1995-01-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads

  2. Neural network representation and learning of mappings and their derivatives

    Science.gov (United States)

    White, Halbert; Hornik, Kurt; Stinchcombe, Maxwell; Gallant, A. Ronald

    1991-01-01

    Discussed here are recent theorems proving that artificial neural networks are capable of approximating an arbitrary mapping and its derivatives as accurately as desired. This fact forms the basis for further results establishing the learnability of the desired approximations, using results from non-parametric statistics. These results have potential applications in robotics, chaotic dynamics, control, and sensitivity analysis. An example involving learning the transfer function and its derivatives for a chaotic map is discussed.

  3. Quantum Speedup for Active Learning Agents

    Directory of Open Access Journals (Sweden)

    Giuseppe Davide Paparo

    2014-07-01

    Full Text Available Can quantum mechanics help us build intelligent learning agents? A defining signature of intelligent behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in real-life situations is the size and complexity of the corresponding task environment. Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation. If the environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all. Here, we show that quantum physics can help and provide a quadratic speedup for active learning as a genuine problem of artificial intelligence. This result will be particularly relevant for applications involving complex task environments.

  4. Neural Network Machine Learning and Dimension Reduction for Data Visualization

    Science.gov (United States)

    Liles, Charles A.

    2014-01-01

    Neural network machine learning in computer science is a continuously developing field of study. Although neural network models have been developed which can accurately predict a numeric value or nominal classification, a general purpose method for constructing neural network architecture has yet to be developed. Computer scientists are often forced to rely on a trial-and-error process of developing and improving accurate neural network models. In many cases, models are constructed from a large number of input parameters. Understanding which input parameters have the greatest impact on the prediction of the model is often difficult to surmise, especially when the number of input variables is very high. This challenge is often labeled the "curse of dimensionality" in scientific fields. However, techniques exist for reducing the dimensionality of problems to just two dimensions. Once a problem's dimensions have been mapped to two dimensions, it can be easily plotted and understood by humans. The ability to visualize a multi-dimensional dataset can provide a means of identifying which input variables have the highest effect on determining a nominal or numeric output. Identifying these variables can provide a better means of training neural network models; models can be more easily and quickly trained using only input variables which appear to affect the outcome variable. The purpose of this project is to explore varying means of training neural networks and to utilize dimensional reduction for visualizing and understanding complex datasets.

  5. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.

    Science.gov (United States)

    Sohn, Insoo; Liu, Huaping; Ansari, Nirwan

    2015-01-01

    An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction.

  6. Learning, Learning Analytics, Activity Visualisation and Open learner Model

    DEFF Research Database (Denmark)

    Bull, Susan; Kickmeier-Rust, Michael; Vatrapu, Ravi

    2013-01-01

    This paper draws on visualisation approaches in learning analytics, considering how classroom visualisations can come together in practice. We suggest an open learner model in situations where many tools and activity visualisations produce more visual information than can be readily interpreted....

  7. A Learning Activity Design Framework for Supporting Mobile Learning

    Directory of Open Access Journals (Sweden)

    Jalal Nouri

    2016-01-01

    Full Text Available This article introduces the Learning Activity Design (LEAD framework for the development and implementation of mobile learning activities in primary schools. The LEAD framework draws on methodological perspectives suggested by design-based research and interaction design in the specific field of technology-enhanced learning (TEL. The LEAD framework is grounded in four design projects conducted over a period of six years. It contributes a new understanding of the intricacies and multifaceted aspects of the design-process characterizing the development and implementation of mobile devices (i.e. smart phones and tablets in curricular activities conducted in Swedish primary schools. This framework is intended to provide both designers and researchers with methodological tools that take account of the pedagogical foundations of technologically-based educational interventions, usability issues related to the interaction with the mobile application developed, multiple data streams generated during the design project, multiple stakeholders involved in the design process and sustainability aspects of the mobile learning activities implemented in the school classroom.

  8. Bifurcation and category learning in network models of oscillating cortex

    Science.gov (United States)

    Baird, Bill

    1990-06-01

    A genetic model of oscillating cortex, which assumes “minimal” coupling justified by known anatomy, is shown to function as an associative memory, using previously developed theory. The network has explicit excitatory neurons with local inhibitory interneuron feedback that forms a set of nonlinear oscillators coupled only by long-range excitatory connections. Using a local Hebb-like learning rule for primary and higher-order synapses at the ends of the long-range connections, the system learns to store the kinds of oscillation amplitude patterns observed in olfactory and visual cortex. In olfaction, these patterns “emerge” during respiration by a pattern forming phase transition which we characterize in the model as a multiple Hopf bifurcation. We argue that these bifurcations play an important role in the operation of real digital computers and neural networks, and we use bifurcation theory to derive learning rules which analytically guarantee CAM storage of continuous periodic sequences-capacity: N/2 Fourier components for an N-node network-no “spurious” attractors.

  9. Exploring the Peer Interaction Effects on Learning Achievement in a Social Learning Platform Based on Social Network Analysis

    Science.gov (United States)

    Lin, Yu-Tzu; Chen, Ming-Puu; Chang, Chia-Hu; Chang, Pu-Chen

    2017-01-01

    The benefits of social learning have been recognized by existing research. To explore knowledge distribution in social learning and its effects on learning achievement, we developed a social learning platform and explored students' behaviors of peer interactions by the proposed algorithms based on social network analysis. An empirical study was…

  10. Practice of Connectivism As Learning Theory: Enhancing Learning Process Through Social Networking Site (Facebook

    Directory of Open Access Journals (Sweden)

    Fahriye Altınay Aksal

    2013-12-01

    Full Text Available The impact of the digital age within learning and social interaction has been growing rapidly. The realm of digital age and computer mediated communication requires reconsidering instruction based on collaborative interactive learning process and socio-contextual experience for learning. Social networking sites such as facebook can help create group space for digital dialogue to inform, question and challenge within a frame of connectivism as learning theory within the digital age. The aim of this study is to elaborate the practice of connectivism as learning theory in terms of internship course. Facebook group space provided social learning platform for dialogue and negotiation beside the classroom learning and teaching process in this study. The 35 internship students provided self-reports within a frame of this qualitative research. This showed how principles of theory practiced and how this theory and facebook group space contribute learning, selfleadership, decision making and reflection skills. As the research reflects a practice of new theory based on action research, learning is not individualistic attempt in the digital age as regards the debate on learning in digital age within a frame of connectivism

  11. Oral Hygiene. Instructor's Packet. Learning Activity Package.

    Science.gov (United States)

    Hime, Kirsten

    This instructor's packet accompanies the learning activity package (LAP) on oral hygiene. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, additional resources (student handouts), student performance checklists for both…

  12. Building Maintenance. Math Learning Activity Packet.

    Science.gov (United States)

    Grant, Shelia I.

    This collection of learning activities is intended for use in reinforcing mathematics instruction as it relates to building maintenance. Fifty activity sheets are provided. These are organized into units on the following topics: numeration, adding whole numbers, subtracting whole numbers, multiplying whole numbers, dividing whole numbers,…

  13. Grooming. Instructor's Packet. Learning Activity Package.

    Science.gov (United States)

    Stark, Pamela

    This instructor's packet accompanies the learning activity package (LAP) on grooming. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, an additional resources list, and student completion cards to issue to students as an…

  14. Activating Teaching for Quality Learning

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2013-01-01

    Activating teaching is an educational concept which is based on active participation of students in the study process. It is becoming an alternative to more typical approach where the teacher will just lecture and the students will take notes. The study described in this paper considers student...... activating teaching methods focusing on those based on knowledge dissemination. The practical aspects of the implemented teaching method are considered, and employed assessment methods and tools are discussed....

  15. Implementing e-network-supported inquiry learning in science

    DEFF Research Database (Denmark)

    Williams, John; Cowie, Bronwen; Khoo, Elaine

    2013-01-01

    The successful implementation of electronically networked (e-networked) tools to support an inquiry-learning approach in secondary science classrooms is dependent on a range of factors spread between teachers, schools, and students. The teacher must have a clear understanding of the nature......-construct knowledge using a wide range of resources for meaning making and expression of ideas. These outcomes were, however, contingent on the interplay of teacher understanding of the nature of science inquiry and school provision of an effective technological infrastructure and support for flexible curriculum...... of inquiry, the school must provide effective technological infrastructure and sympathetic curriculum parameters, and the students need to be carefully scaffolded to the point of engaging with the inquiry process. Within this study, e-networks supported students to exercise agency, collaborate, and co...

  16. A stochastic learning algorithm for layered neural networks

    International Nuclear Information System (INIS)

    Bartlett, E.B.; Uhrig, R.E.

    1992-01-01

    The random optimization method typically uses a Gaussian probability density function (PDF) to generate a random search vector. In this paper the random search technique is applied to the neural network training problem and is modified to dynamically seek out the optimal probability density function (OPDF) from which to select the search vector. The dynamic OPDF search process, combined with an auto-adaptive stratified sampling technique and a dynamic node architecture (DNA) learning scheme, completes the modifications of the basic method. The DNA technique determines the appropriate number of hidden nodes needed for a given training problem. By using DNA, researchers do not have to set the neural network architectures before training is initiated. The approach is applied to networks of generalized, fully interconnected, continuous perceptions. Computer simulation results are given

  17. Active learning in practice: Implementation of the principles of active learning in an engineering course

    DEFF Research Database (Denmark)

    Rützou, C.

    2017-01-01

    The most common form of teaching is still the form where a teacher presents the subject of the lecture to a listening audience. During teaching history this has proved to be an effective way of teaching, however the probability of students being inactive is high and the learning outcome may...... through the same curriculum as usual during a term? • Will Active Learning reduce failure rate? • Will Active Learning give a higher learning outcome than traditional teaching? This paper deals with the results of this experiment, answers the mentioned questions and presents a way to implement Active...

  18. Empirical Models of Social Learning in a Large, Evolving Network.

    Directory of Open Access Journals (Sweden)

    Ayşe Başar Bener

    Full Text Available This paper advances theories of social learning through an empirical examination of how social networks change over time. Social networks are important for learning because they constrain individuals' access to information about the behaviors and cognitions of other people. Using data on a large social network of mobile device users over a one-month time period, we test three hypotheses: 1 attraction homophily causes individuals to form ties on the basis of attribute similarity, 2 aversion homophily causes individuals to delete existing ties on the basis of attribute dissimilarity, and 3 social influence causes individuals to adopt the attributes of others they share direct ties with. Statistical models offer varied degrees of support for all three hypotheses and show that these mechanisms are more complex than assumed in prior work. Although homophily is normally thought of as a process of attraction, people also avoid relationships with others who are different. These mechanisms have distinct effects on network structure. While social influence does help explain behavior, people tend to follow global trends more than they follow their friends.

  19. A smart-pixel holographic competitive learning network

    Science.gov (United States)

    Slagle, Timothy Michael

    Neural networks are adaptive classifiers which modify their decision boundaries based on feedback from externally- or internally-generated error signals. Optics is an attractive technology for neural network implementation because it offers the possibility of parallel, nearly instantaneous computation of the weighted neuron inputs by the propagation of light through the optical system. Using current optical device technology, system performance levels of 3 × 1011 connection updates per second can be achieved. This thesis presents an architecture for an optical competitive learning network which offers advantages over previous optical implementations, including smart-pixel-based optical neurons, phase- conjugate self-alignment of a single neuron plane, and high-density, parallel-access weight storage, interconnection, and learning in a volume hologram. The competitive learning algorithm with modifications for optical implementation is described, and algorithm simulations are performed for an example problem. The optical competitive learning architecture is then introduced. The optical system is simulated using the ``beamprop'' algorithm at the level of light propagating through the system components, and results showing competitive learning operation in agreement with the algorithm simulations are presented. The optical competitive learning requires a non-linear, non-local ``winner-take-all'' (WTA) neuron function. Custom-designed smart-pixel WTA neuron arrays were fabricated using CMOS VLSI/liquid crystal technology. Results of laboratory tests of the WTA arrays' switching characteristics, time response, and uniformity are then presented. The system uses a phase-conjugate mirror to write the self-aligning interconnection weight holograms, and energy gain is required from the reflection to minimize erasure of the existing weights. An experimental system for characterizing the PCM response is described. Useful gains of 20 were obtained with a polarization

  20. Innovating Design for Learning in the Networked Society

    DEFF Research Database (Denmark)

    Levinsen, Karin Tweddell; Nielsen, Janni

    2012-01-01

    The transition from the industrial to the knowledge or networked society has, together with the worldwide digitalization and e-permeation of our social, political and economic lives, brought challenges to the educational systems. The changes call for new key competences in terms of self-initiated......The transition from the industrial to the knowledge or networked society has, together with the worldwide digitalization and e-permeation of our social, political and economic lives, brought challenges to the educational systems. The changes call for new key competences in terms of self......-initiated and lifelong learning and digital literacy. At the same time, the implementation of new public management in educational institutions put pressure on students’ available time for studying and the qualitative outcome of learning processes. These conditions give birth to emerging tensions at the organizational...... in their practice are students who are (if at all) only familiar with the curriculum at a surface level and who expect the teachers to present digested versions of the curriculum. This chapter presents a design for teaching and learning approach in the shape of a design for learning model that aims to scaffold...

  1. Networked learning in, for, and with the world

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft; Mor, Yishay; Bengtsen, Søren Smedegaard

    2018-01-01

    With the so-called ‘Mode 3’ university as overarching framework (Barnett, 2004; Bengtsen & Nørgård, 2016; Barnett & Bengtsen, 2017; Nørgård, Olesen & Toft-Nielsen, 2018) this chapter considers how traditional forms of and formats for teaching and learning within higher education can be rethought,......’ in higher education. In the following sections, we will describe these transformations of university being, before considering some of the new challenges, opportunities, and potentials of teaching and learning in and through hybrid networks in the Mode 3 institution......., opportunities, and potentials to the teaching and learning that takes place at the university. Through history, and across different present national contexts and cultures, the ‘being’ of the university and its livelihood and mandate has changed (Wright, 2016; Barnett, 2018). Through these transformations where......, reconfigured, and redesigned in order to facilitate valuable, meaningful and relevant hybrid networked learning in, for, and with the world. What it means to ‘be’ a university is changing and the university is a ‘being’ that in itself is changing (Barnett, 2011), something also offering challenges...

  2. Deep learning for steganalysis via convolutional neural networks

    Science.gov (United States)

    Qian, Yinlong; Dong, Jing; Wang, Wei; Tan, Tieniu

    2015-03-01

    Current work on steganalysis for digital images is focused on the construction of complex handcrafted features. This paper proposes a new paradigm for steganalysis to learn features automatically via deep learning models. We novelly propose a customized Convolutional Neural Network for steganalysis. The proposed model can capture the complex dependencies that are useful for steganalysis. Compared with existing schemes, this model can automatically learn feature representations with several convolutional layers. The feature extraction and classification steps are unified under a single architecture, which means the guidance of classification can be used during the feature extraction step. We demonstrate the effectiveness of the proposed model on three state-of-theart spatial domain steganographic algorithms - HUGO, WOW, and S-UNIWARD. Compared to the Spatial Rich Model (SRM), our model achieves comparable performance on BOSSbase and the realistic and large ImageNet database.

  3. Machine learning of network metrics in ATLAS Distributed Data Management

    Science.gov (United States)

    Lassnig, Mario; Toler, Wesley; Vamosi, Ralf; Bogado, Joaquin; ATLAS Collaboration

    2017-10-01

    The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for networkaware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  4. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  5. Active learning of cortical connectivity from two-photon imaging data.

    Directory of Open Access Journals (Sweden)

    Martín A Bertrán

    Full Text Available Understanding how groups of neurons interact within a network is a fundamental question in system neuroscience. Instead of passively observing the ongoing activity of a network, we can typically perturb its activity, either by external sensory stimulation or directly via techniques such as two-photon optogenetics. A natural question is how to use such perturbations to identify the connectivity of the network efficiently. Here we introduce a method to infer sparse connectivity graphs from in-vivo, two-photon imaging of population activity in response to external stimuli. A novel aspect of the work is the introduction of a recommended distribution, incrementally learned from the data, to optimally refine the inferred network. Unlike existing system identification techniques, this "active learning" method automatically focuses its attention on key undiscovered areas of the network, instead of targeting global uncertainty indicators like parameter variance. We show how active learning leads to faster inference while, at the same time, provides confidence intervals for the network parameters. We present simulations on artificial small-world networks to validate the methods and apply the method to real data. Analysis of frequency of motifs recovered show that cortical networks are consistent with a small-world topology model.

  6. Modeling a Neural Network as a Teaching Tool for the Learning of the Structure-Function Relationship

    Science.gov (United States)

    Salinas, Dino G.; Acevedo, Cristian; Gomez, Christian R.

    2010-01-01

    The authors describe an activity they have created in which students can visualize a theoretical neural network whose states evolve according to a well-known simple law. This activity provided an uncomplicated approach to a paradigm commonly represented through complex mathematical formulation. From their observations, students learned many basic…

  7. Neural networks involved in learning lexical-semantic and syntactic information in a second language.

    Science.gov (United States)

    Mueller, Jutta L; Rueschemeyer, Shirley-Ann; Ono, Kentaro; Sugiura, Motoaki; Sadato, Norihiro; Nakamura, Akinori

    2014-01-01

    The present study used functional magnetic resonance imaging (fMRI) to investigate the neural correlates of language acquisition in a realistic learning environment. Japanese native speakers were trained in a miniature version of German prior to fMRI scanning. During scanning they listened to (1) familiar sentences, (2) sentences including a novel sentence structure, and (3) sentences containing a novel word while visual context provided referential information. Learning-related decreases of brain activation over time were found in a mainly left-hemispheric network comprising classical frontal and temporal language areas as well as parietal and subcortical regions and were largely overlapping for novel words and the novel sentence structure in initial stages of learning. Differences occurred at later stages of learning during which content-specific activation patterns in prefrontal, parietal and temporal cortices emerged. The results are taken as evidence for a domain-general network supporting the initial stages of language learning which dynamically adapts as learners become proficient.

  8. Is Peer Interaction Necessary for Optimal Active Learning?

    Science.gov (United States)

    Linton, Debra L.; Farmer, Jan Keith; Peterson, Ernie

    2014-01-01

    Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of…

  9. Partner network communities – a resource of universities’ activities

    Directory of Open Access Journals (Sweden)

    Romm Mark V.

    2016-01-01

    Full Text Available The network activity is not only part and parcel of the modern university, but it also demonstrates the level of its success. There appeared an urgent need for understanding the nature of universities’ network interactions and finding the most effective models of their network cooperation. The article analyzes partnership network communities with higher educational establishments (universities’ participation, which are being actively created nowadays. The conditions for successful network activities of a university in scientific, academic and professional network communities are presented.

  10. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.

    Science.gov (United States)

    Kulkarni, Shruti R; Rajendran, Bipin

    2018-07-01

    We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Late Departures from Paper-Based to Supported Networked Learning in South Africa: Lessons Learned

    Science.gov (United States)

    Kok, Illasha; Beter, Petra; Esterhuizen, Hennie

    2018-01-01

    Fragmented connectivity in South Africa is the dominant barrier for digitising initiatives. New insights surfaced when a university-based nursing programme introduced tablets within a supportive network learning environment. A qualitative, explorative design investigated adult nurses' experiences of the realities when moving from paper-based…

  12. Home and away : learning in and learning from organisational networks in Europe

    NARCIS (Netherlands)

    Docherty, P.; Huzzard, T.; Leede, J. de

    2003-01-01

    This report is a comparative analysis of the various learning networks established within the Innoflex Project. The report recaps on the central argument underpinning Innoflex, namely that traditional ways of organising workplaces and traditional styles of management cannot achieve the commitment,

  13. Network Supervision of Adult Experience and Learning Dependent Sensory Cortical Plasticity.

    Science.gov (United States)

    Blake, David T

    2017-06-18

    The brain is capable of remodeling throughout life. The sensory cortices provide a useful preparation for studying neuroplasticity both during development and thereafter. In adulthood, sensory cortices change in the cortical area activated by behaviorally relevant stimuli, by the strength of response within that activated area, and by the temporal profiles of those responses. Evidence supports forms of unsupervised, reinforcement, and fully supervised network learning rules. Studies on experience-dependent plasticity have mostly not controlled for learning, and they find support for unsupervised learning mechanisms. Changes occur with greatest ease in neurons containing α-CamKII, which are pyramidal neurons in layers II/III and layers V/VI. These changes use synaptic mechanisms including long term depression. Synaptic strengthening at NMDA-containing synapses does occur, but its weak association with activity suggests other factors also initiate changes. Studies that control learning find support of reinforcement learning rules and limited evidence of other forms of supervised learning. Behaviorally associating a stimulus with reinforcement leads to a strengthening of cortical response strength and enlarging of response area with poor selectivity. Associating a stimulus with omission of reinforcement leads to a selective weakening of responses. In some preparations in which these associations are not as clearly made, neurons with the most informative discharges are relatively stronger after training. Studies analyzing the temporal profile of responses associated with omission of reward, or of plasticity in studies with different discriminanda but statistically matched stimuli, support the existence of limited supervised network learning. © 2017 American Physiological Society. Compr Physiol 7:977-1008, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  14. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.

    Science.gov (United States)

    Gobel, Eric W; Parrish, Todd B; Reber, Paul J

    2011-10-15

    Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Learning plan applicability through active mental entities

    International Nuclear Information System (INIS)

    Baroni, Pietro; Fogli, Daniela; Guida, Giovanni

    1999-01-01

    This paper aims at laying down the foundations of a new approach to learning in autonomous mobile robots. It is based on the assumption that robots can be provided with built-in action plans and with mechanisms to modify and improve such plans. This requires that robots are equipped with some form of high-level reasoning capabilities. Therefore, the proposed learning technique is embedded in a novel distributed control architecture featuring an explicit model of robot's cognitive activity. In particular, cognitive activity is obtained by the interaction of active mental entities, such as intentions, persuasions and expectations. Learning capabilities are implemented starting from the interaction of such mental entities. The proposal is illustrated through an example concerning a robot in charge of reaching a target in an unknown environment cluttered with obstacles

  16. Continuous Learning of a Multilayered Network Topology in a Video Camera Network

    Directory of Open Access Journals (Sweden)

    Zou Xiaotao

    2009-01-01

    Full Text Available Abstract A multilayered camera network architecture with nodes as entry/exit points, cameras, and clusters of cameras at different layers is proposed. Unlike existing methods that used discrete events or appearance information to infer the network topology at a single level, this paper integrates face recognition that provides robustness to appearance changes and better models the time-varying traffic patterns in the network. The statistical dependence between the nodes, indicating the connectivity and traffic patterns of the camera network, is represented by a weighted directed graph and transition times that may have multimodal distributions. The traffic patterns and the network topology may be changing in the dynamic environment. We propose a Monte Carlo Expectation-Maximization algorithm-based continuous learning mechanism to capture the latent dynamically changing characteristics of the network topology. In the experiments, a nine-camera network with twenty-five nodes (at the lowest level is analyzed both in simulation and in real-life experiments and compared with previous approaches.

  17. Continuous Learning of a Multilayered Network Topology in a Video Camera Network

    Directory of Open Access Journals (Sweden)

    Xiaotao Zou

    2009-01-01

    Full Text Available A multilayered camera network architecture with nodes as entry/exit points, cameras, and clusters of cameras at different layers is proposed. Unlike existing methods that used discrete events or appearance information to infer the network topology at a single level, this paper integrates face recognition that provides robustness to appearance changes and better models the time-varying traffic patterns in the network. The statistical dependence between the nodes, indicating the connectivity and traffic patterns of the camera network, is represented by a weighted directed graph and transition times that may have multimodal distributions. The traffic patterns and the network topology may be changing in the dynamic environment. We propose a Monte Carlo Expectation-Maximization algorithm-based continuous learning mechanism to capture the latent dynamically changing characteristics of the network topology. In the experiments, a nine-camera network with twenty-five nodes (at the lowest level is analyzed both in simulation and in real-life experiments and compared with previous approaches.

  18. Academic Activities Transaction Extraction Based on Deep Belief Network

    Directory of Open Access Journals (Sweden)

    Xiangqian Wang

    2017-01-01

    Full Text Available Extracting information about academic activity transactions from unstructured documents is a key problem in the analysis of academic behaviors of researchers. The academic activities transaction includes five elements: person, activities, objects, attributes, and time phrases. The traditional method of information extraction is to extract shallow text features and then to recognize advanced features from text with supervision. Since the information processing of different levels is completed in steps, the error generated from various steps will be accumulated and affect the accuracy of final results. However, because Deep Belief Network (DBN model has the ability to automatically unsupervise learning of the advanced features from shallow text features, the model is employed to extract the academic activities transaction. In addition, we use character-based feature to describe the raw features of named entities of academic activity, so as to improve the accuracy of named entity recognition. In this paper, the accuracy of the academic activities extraction is compared by using character-based feature vector and word-based feature vector to express the text features, respectively, and with the traditional text information extraction based on Conditional Random Fields. The results show that DBN model is more effective for the extraction of academic activities transaction information.

  19. Predicting Solar Activity Using Machine-Learning Methods

    Science.gov (United States)

    Bobra, M.

    2017-12-01

    Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections. However, we do not, as of yet, fully understand the physical mechanism that triggers solar eruptions. A machine-learning algorithm, which is favorable in cases where the amount of data is large, is one way to [1] empirically determine the signatures of this mechanism in solar image data and [2] use them to predict solar activity. In this talk, we discuss the application of various machine learning algorithms - specifically, a Support Vector Machine, a sparse linear regression (Lasso), and Convolutional Neural Network - to image data from the photosphere, chromosphere, transition region, and corona taken by instruments aboard the Solar Dynamics Observatory in order to predict solar activity on a variety of time scales. Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We discuss our results (Bobra and Couvidat, 2015; Bobra and Ilonidis, 2016; Jonas et al., 2017) as well as other attempts to predict flares using machine-learning (e.g. Ahmed et al., 2013; Nishizuka et al. 2017) and compare these results with the more traditional techniques used by the NOAA Space Weather Prediction Center (Crown, 2012). We also discuss some of the challenges in using machine-learning algorithms for space science applications.

  20. From Tootsie Rolls to Composites: Assessing a Spectrum of Active Learning Activities in Engineering Mechanics

    Science.gov (United States)

    2009-05-01

    The introduction of active learning exercises into a traditional lecture has been shown to improve students’ learning. Hands-on learning...opportunities in labs and projects provide are additional tools in the active learning toolbox. This paper presents a series of innovative hands-on active ... learning activities for mechanics of materials topics. These activities are based on a Methodology for Developing Hands-on Active Learning Activities, a

  1. Managing CSCL Activity through networking models

    Directory of Open Access Journals (Sweden)

    Luis Casillas

    2014-04-01

    Full Text Available This study aims at managing activity carried out in Computer-Supported Collaborative Learning (CSCL environments. We apply an approach that gathers and manages the knowledge underlying huge data structures, resulting from collaborative interaction among participants and stored as activity logs. Our method comprises a variety of important issues and aspects, such as: deep understanding of collaboration among participants in workgroups, definition of an ontology for providing meaning to isolated data manifestations, discovering of knowledge structures built in huge amounts of data stored in log files, and development of high-semantic indicators to describe diverse primitive collaborative acts, and binding these indicators to formal descriptions defined in the collaboration ontology; besides our method includes gathering collaboration indicators from web forums using natural language processing (NLP techniques.

  2. Machine learning of molecular properties: Locality and active learning

    Science.gov (United States)

    Gubaev, Konstantin; Podryabinkin, Evgeny V.; Shapeev, Alexander V.

    2018-06-01

    In recent years, the machine learning techniques have shown great potent1ial in various problems from a multitude of disciplines, including materials design and drug discovery. The high computational speed on the one hand and the accuracy comparable to that of density functional theory on another hand make machine learning algorithms efficient for high-throughput screening through chemical and configurational space. However, the machine learning algorithms available in the literature require large training datasets to reach the chemical accuracy and also show large errors for the so-called outliers—the out-of-sample molecules, not well-represented in the training set. In the present paper, we propose a new machine learning algorithm for predicting molecular properties that addresses these two issues: it is based on a local model of interatomic interactions providing high accuracy when trained on relatively small training sets and an active learning algorithm of optimally choosing the training set that significantly reduces the errors for the outliers. We compare our model to the other state-of-the-art algorithms from the literature on the widely used benchmark tests.

  3. Working memory training mostly engages general-purpose large-scale networks for learning.

    Science.gov (United States)

    Salmi, Juha; Nyberg, Lars; Laine, Matti

    2018-03-21

    The present meta-analytic study examined brain activation changes following working memory (WM) training, a form of cognitive training that has attracted considerable interest. Comparisons with perceptual-motor (PM) learning revealed that WM training engages domain-general large-scale networks for learning encompassing the dorsal attention and salience networks, sensory areas, and striatum. Also the dynamics of the training-induced brain activation changes within these networks showed a high overlap between WM and PM training. The distinguishing feature for WM training was the consistent modulation of the dorso- and ventrolateral prefrontal cortex (DLPFC/VLPFC) activity. The strongest candidate for mediating transfer to similar untrained WM tasks was the frontostriatal system, showing higher striatal and VLPFC activations, and lower DLPFC activations after training. Modulation of transfer-related areas occurred mostly with longer training periods. Overall, our findings place WM training effects into a general perception-action cycle, where some modulations may depend on the specific cognitive demands of a training task. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Mind and activity. Psychic mechanism of learning

    Directory of Open Access Journals (Sweden)

    Zoya A. Reshetova

    2017-09-01

    Full Text Available The paper is devoted to the issue of mechanisms of learning for understanding the nature of the human mind. Learning is regarded as a special activity that is important for developing the human mind in a specific cultural and historical setting and indirect activity. The author’s understanding of the ideas developed by the psychological theory of activity for establishing the principles of developing the human mind is highlighted. Interpretation of dialectical connections of brain processes and mind, and also the objective activity that emerges them is provided. According to the activity theory, the causes of the students’ psychological difficulties and the low efficacy of learning within predominant reproductive method or the use of the trial and error method are revealed. Thus, a new understanding of the renowned didactic principles of scientific rigour, accessibility, objectivity, the connection of learning with life and others is offered. The contribution of the psychological theory in organizing and managing the studies, increasing teaching activity and awareness, and the growth of the internal causes of motivation are shown. Particular attention is paid to the issue of intellectual development and creative abilities. The author believes the creative abilities of the student and the way the latter are taught are interconnected. At the same time, the developers and educators should make efforts to develop in the students a systemic orientation in the subject, primarily mastering the method of system analysis. Once the method of system analysis has been mastered, it becomes a general intellectual and developing tool through which activities are organized to solve any teaching problems with whatever type of content and difficulty level. Summing up, the organization and disclosure to the student of the process of learning as an activity with its social, consciously transformative and sense shaping meaning, the conditions of its development

  5. Signs of learning in kinaesthetic science activities

    DEFF Research Database (Denmark)

    Bruun, Jesper; Johannsen, Bjørn Friis

    that students use bodily explorations to construct meaning and understanding from kinaesthetic learning that is relevant to school physics? To answer the question, we employ a semiotics perspective to analyse data from a 1-hour lesson for 8-9th graders which introduced students to kinaesthetic activities, where......?”). The analysis is conducted by searching the data to find episodes that illustrate student activity which can serve as a sign of the object that the ‘experiential gestalt of causation’ is employed in the construction of the intended learning outcome. In essence, we study a chaotic but authentic teaching...

  6. Active learning techniques for librarians practical examples

    CERN Document Server

    Walsh, Andrew

    2010-01-01

    A practical work outlining the theory and practice of using active learning techniques in library settings. It explains the theory of active learning and argues for its importance in our teaching and is illustrated using a large number of examples of techniques that can be easily transferred and used in teaching library and information skills to a range of learners within all library sectors. These practical examples recognise that for most of us involved in teaching library and information skills the one off session is the norm, so we need techniques that allow us to quickly grab and hold our

  7. Construction of Neural Networks for Realization of Localized Deep Learning

    Directory of Open Access Journals (Sweden)

    Charles K. Chui

    2018-05-01

    Full Text Available The subject of deep learning has recently attracted users of machine learning from various disciplines, including: medical diagnosis and bioinformatics, financial market analysis and online advertisement, speech and handwriting recognition, computer vision and natural language processing, time series forecasting, and search engines. However, theoretical development of deep learning is still at its infancy. The objective of this paper is to introduce a deep neural network (also called deep-net approach to localized manifold learning, with each hidden layer endowed with a specific learning task. For the purpose of illustrations, we only focus on deep-nets with three hidden layers, with the first layer for dimensionality reduction, the second layer for bias reduction, and the third layer for variance reduction. A feedback component is also designed to deal with outliers. The main theoretical result in this paper is the order O(m-2s/(2s+d of approximation of the regression function with regularity s, in terms of the number m of sample points, where the (unknown manifold dimension d replaces the dimension D of the sampling (Euclidean space for shallow nets.

  8. Transfer Learning with Convolutional Neural Networks for SAR Ship Recognition

    Science.gov (United States)

    Zhang, Di; Liu, Jia; Heng, Wang; Ren, Kaijun; Song, Junqiang

    2018-03-01

    Ship recognition is the backbone of marine surveillance systems. Recent deep learning methods, e.g. Convolutional Neural Networks (CNNs), have shown high performance for optical images. Learning CNNs, however, requires a number of annotated samples to estimate numerous model parameters, which prevents its application to Synthetic Aperture Radar (SAR) images due to the limited annotated training samples. Transfer learning has been a promising technique for applications with limited data. To this end, a novel SAR ship recognition method based on CNNs with transfer learning has been developed. In this work, we firstly start with a CNNs model that has been trained in advance on Moving and Stationary Target Acquisition and Recognition (MSTAR) database. Next, based on the knowledge gained from this image recognition task, we fine-tune the CNNs on a new task to recognize three types of ships in the OpenSARShip database. The experimental results show that our proposed approach can obviously increase the recognition rate comparing with the result of merely applying CNNs. In addition, compared to existing methods, the proposed method proves to be very competitive and can learn discriminative features directly from training data instead of requiring pre-specification or pre-selection manually.

  9. Astronomy Learning Activities for Tablets

    Science.gov (United States)

    Pilachowski, Catherine A.; Morris, Frank

    2015-08-01

    Four web-based tools allow students to manipulate astronomical data to learn concepts in astronomy. The tools are HTML5, CSS3, Javascript-based applications that provide access to the content on iPad and Android tablets. The first tool “Three Color” allows students to combine monochrome astronomical images taken through different color filters or in different wavelength regions into a single color image. The second tool “Star Clusters” allows students to compare images of stars in clusters with a pre-defined template of colors and sizes in order to produce color-magnitude diagrams to determine cluster ages. The third tool adapts Travis Rector’s “NovaSearch” to allow students to examine images of the central regions of the Andromeda Galaxy to find novae. After students find a nova, they are able to measure the time over which the nova fades away. A fourth tool, Proper Pair, allows students to interact with Hipparcos data to evaluate close double stars are physical binaries or chance superpositions. Further information and access to these web-based tools are available at www.astro.indiana.edu/ala/.

  10. Personal Learning Network Clusters: A Comparison between Mathematics and Computer Science Students

    Science.gov (United States)

    Harding, Ansie; Engelbrecht, Johann

    2015-01-01

    "Personal learning environments" (PLEs) and "personal learning networks" (PLNs) are well-known concepts. A personal learning network "cluster" is a small group of people who regularly interact academically and whose PLNs have a non-empty intersection that includes all the other members. At university level PLN…

  11. Language Views on Social Networking Sites for Language Learning: The Case of Busuu

    Science.gov (United States)

    Álvarez Valencia, José Aldemar

    2016-01-01

    Social networking has compelled the area of computer-assisted language learning (CALL) to expand its research palette and account for new virtual ecologies that afford language learning and socialization. This study focuses on Busuu, a social networking site for language learning (SNSLL), and analyzes the views of language that are enacted through…

  12. Comparison between extreme learning machine and wavelet neural networks in data classification

    Science.gov (United States)

    Yahia, Siwar; Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2017-03-01

    Extreme learning Machine is a well known learning algorithm in the field of machine learning. It's about a feed forward neural network with a single-hidden layer. It is an extremely fast learning algorithm with good generalization performance. In this paper, we aim to compare the Extreme learning Machine with wavelet neural networks, which is a very used algorithm. We have used six benchmark data sets to evaluate each technique. These datasets Including Wisconsin Breast Cancer, Glass Identification, Ionosphere, Pima Indians Diabetes, Wine Recognition and Iris Plant. Experimental results have shown that both extreme learning machine and wavelet neural networks have reached good results.

  13. Learning and Model-checking Networks of I/O Automata

    DEFF Research Database (Denmark)

    Mao, Hua; Jaeger, Manfred

    2012-01-01

    We introduce a new statistical relational learning (SRL) approach in which models for structured data, especially network data, are constructed as networks of communicating nite probabilistic automata. Leveraging existing automata learning methods from the area of grammatical inference, we can...... learn generic models for network entities in the form of automata templates. As is characteristic for SRL techniques, the abstraction level aorded by learning generic templates enables one to apply the learned model to new domains. A main benet of learning models based on nite automata lies in the fact...

  14. Circumpolar Active Layer Monitoring (CALM) Program Network, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CALM network includes 168 active sites in both hemispheres with 15 participating countries. This network represents the only coordinated and standardized program...

  15. Self-Learning Power Control in Wireless Sensor Networks.

    Science.gov (United States)

    Chincoli, Michele; Liotta, Antonio

    2018-01-27

    Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This aggravates the already over-congested unlicensed radio bands, calling for new mechanisms to improve spectrum management and energy efficiency, such as transmission power control. Existing protocols are based on simplistic heuristics that often approach interference problems (i.e., packet loss, delay and energy waste) by increasing power, leading to detrimental results. The scope of this work is to investigate how machine learning may be used to bring wireless nodes to the lowest possible transmission power level and, in turn, to respect the quality requirements of the overall network. Lowering transmission power has benefits in terms of both energy consumption and interference. We propose a protocol of transmission power control through a reinforcement learning process that we have set in a multi-agent system. The agents are independent learners using the same exploration strategy and reward structure, leading to an overall cooperative network. The simulation results show that the system converges to an equilibrium where each node transmits at the minimum power while respecting high packet reception ratio constraints. Consequently, the system benefits from low energy consumption and packet delay.

  16. A Reinforcement Learning Framework for Spiking Networks with Dynamic Synapses

    Directory of Open Access Journals (Sweden)

    Karim El-Laithy

    2011-01-01

    Full Text Available An integration of both the Hebbian-based and reinforcement learning (RL rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.

  17. Convolutional neural network with transfer learning for rice type classification

    Science.gov (United States)

    Patel, Vaibhav Amit; Joshi, Manjunath V.

    2018-04-01

    Presently, rice type is identified manually by humans, which is time consuming and error prone. Therefore, there is a need to do this by machine which makes it faster with greater accuracy. This paper proposes a deep learning based method for classification of rice types. We propose two methods to classify the rice types. In the first method, we train a deep convolutional neural network (CNN) using the given segmented rice images. In the second method, we train a combination of a pretrained VGG16 network and the proposed method, while using transfer learning in which the weights of a pretrained network are used to achieve better accuracy. Our approach can also be used for classification of rice grain as broken or fine. We train a 5-class model for classifying rice types using 4000 training images and another 2- class model for the classification of broken and normal rice using 1600 training images. We observe that despite having distinct rice images, our architecture, pretrained on ImageNet data boosts classification accuracy significantly.

  18. Elements of learning technologies designing of engineering networks heat

    Directory of Open Access Journals (Sweden)

    Sidorkina Irina G.

    2016-01-01

    Full Text Available Modern educational systems function as a medium fast analysis of shared information that defines them as analytical. The purpose of analytical information processing systems: working with distributed data on a global computer networks, mining and processing of semi structured information, knowledge. Existing mathematical and heuristic methods for the automated synthesis of electronic courses and their corresponding algorithms do not allow the full compliance of development realized in the form of adequate criteria for the totality of the properties distributed educational systems within acceptable time limits and characteristic. Therefore, the development of electronic educational applications must be accompanied by a variety of software support intelligent and adaptive functions. In addition, there is no theoretical justification for integrative aspects and their practical applications for intelligent and adaptive systems of designing distance learning courses. Currently, this type of problem may be considered as a potentially promising. The article presents the functionality of the e-learning course on the design engineering of thermal networks, process modeling in engineering networks with the solution of energy efficiency, detection of problem areas; identify the irrational layout of heaters and others.

  19. The Impacts of Network Centrality and Self-Regulation on an E-Learning Environment with the Support of Social Network Awareness

    Science.gov (United States)

    Lin, Jian-Wei; Huang, Hsieh-Hong; Chuang, Yuh-Shy

    2015-01-01

    An e-learning environment that supports social network awareness (SNA) is a highly effective means of increasing peer interaction and assisting student learning by raising awareness of social and learning contexts of peers. Network centrality profoundly impacts student learning in an SNA-related e-learning environment. Additionally,…

  20. Forecasting financial asset processes: stochastic dynamics via learning neural networks.

    Science.gov (United States)

    Giebel, S; Rainer, M

    2010-01-01

    Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.