WorldWideScience

Sample records for network functional connectivity

  1. Dynamic functional network connectivity using distance correlation

    Science.gov (United States)

    Rudas, Jorge; Guaje, Javier; Demertzi, Athena; Heine, Lizette; Tshibanda, Luaba; Soddu, Andrea; Laureys, Steven; Gómez, Francisco

    2015-01-01

    Investigations about the intrinsic brain organization in resting-state are critical for the understanding of healthy, pathological and pharmacological cerebral states. Recent studies on fMRI suggest that resting state activity is organized on large scale networks of coordinated activity, in the so called, Resting State Networks (RSNs). The assessment of the interactions among these functional networks plays an important role for the understanding of different brain pathologies. Current methods to quantify these interactions commonly assume that the underlying coordination mechanisms are stationary and linear through the whole recording of the resting state phenomena. Nevertheless, recent evidence suggests that rather than stationary, these mechanisms may exhibit a rich set of time-varying repertoires. In addition, these approaches do not consider possible non-linear relationships maybe linked to feed-back communication mechanisms between RSNs. In this work, we introduce a novel approach for dynamical functional network connectivity for functional magnetic resonance imaging (fMRI) resting activity, which accounts for non-linear dynamic relationships between RSNs. The proposed method is based on a windowed distance correlations computed on resting state time-courses extracted at single subject level. We showed that this strategy is complementary to the current approaches for dynamic functional connectivity and will help to enhance the discrimination capacity of patients with disorder of consciousness.

  2. Functional network connectivity alterations in schizophrenia and depression.

    Science.gov (United States)

    Wu, Xing-Jie; Zeng, Ling-Li; Shen, Hui; Yuan, Lin; Qin, Jian; Zhang, Peng; Hu, Dewen

    2017-05-30

    There is a high degree of overlap between the symptoms of major depressive disorder (MDD) and schizophrenia, but it remains unclear whether the similar symptoms are derived from convergent alterations in functional network connectivity. In this study, we performed a group independent component analysis on resting-state functional MRI data from 20 MDD patients, 24 schizophrenia patients, and 43 matched healthy controls. The functional network connectivity analysis revealed that, compared to healthy controls, the MDD and schizophrenia patients exhibited convergent decreased positive connectivity between the left and right fronto-parietal control network and decreased negative connectivity between the left control and medial visual networks. Furthermore, the MDD patients showed decreased negative connectivity between the left control and auditory networks, and the schizophrenia patients showed decreased positive connectivity between the bilateral control and language networks and decreased negative connectivity between the right control and dorsal attention networks. The convergent network connectivity alterations may underlie the common primary control and regulation disorders, and the divergent connectivity alterations may enable the distinction between the two disorders. All of the convergent and divergent network connectivity alterations were relevant to the control network, suggesting an important role of the network in the pathophysiology of MDD and schizophrenia. Copyright © 2017. Published by Elsevier B.V.

  3. Light Manipulation in Metallic Nanowire Networks with Functional Connectivity

    KAUST Repository

    Galinski, Henning

    2016-12-27

    Guided by ideas from complex systems, a new class of network metamaterials is introduced for light manipulation, which are based on the functional connectivity among heterogeneous subwavelength components arranged in complex networks. The model system is a nanonetwork formed by dealloying a metallic thin film. The connectivity of the network is deterministically controlled, enabling the formation of tunable absorbing states.

  4. Scholastic performance and functional connectivity of brain networks in children.

    Directory of Open Access Journals (Sweden)

    Laura Chaddock-Heyman

    Full Text Available One of the keys to understanding scholastic success is to determine the neural processes involved in school performance. The present study is the first to use a whole-brain connectivity approach to explore whether functional connectivity of resting state brain networks is associated with scholastic performance in seventy-four 7- to 9-year-old children. We demonstrate that children with higher scholastic performance across reading, math and language have more integrated and interconnected resting state networks, specifically the default mode network, salience network, and frontoparietal network. To add specificity, core regions of the dorsal attention and visual networks did not relate to scholastic performance. The results extend the cognitive role of brain networks in children as well as suggest the importance of network connectivity in scholastic success.

  5. Abnormal functional network connectivity among resting-state networks in children with frontal lobe epilepsy.

    Science.gov (United States)

    Widjaja, E; Zamyadi, M; Raybaud, C; Snead, O C; Smith, M L

    2013-12-01

    Epilepsy is considered a disorder of neural networks. The aims of this study were to assess functional connectivity within resting-state networks and functional network connectivity across resting-state networks by use of resting-state fMRI in children with frontal lobe epilepsy and to relate changes in resting-state networks with neuropsychological function. Fifteen patients with frontal lobe epilepsy and normal MR imaging and 14 healthy control subjects were recruited. Spatial independent component analysis was used to identify the resting-state networks, including frontal, attention, default mode network, sensorimotor, visual, and auditory networks. The Z-maps of resting-state networks were compared between patients and control subjects. The relation between abnormal connectivity and neuropsychological function was assessed. Correlations from all pair-wise combinations of independent components were performed for each group and compared between groups. The frontal network was the only network that showed reduced connectivity in patients relative to control subjects. The remaining 5 networks demonstrated both reduced and increased functional connectivity within resting-state networks in patients. There was a weak association between connectivity in frontal network and executive function (P = .029) and a significant association between sensorimotor network and fine motor function (P = .004). Control subjects had 79 pair-wise independent components that showed significant temporal coherence across all resting-state networks except for default mode network-auditory network. Patients had 66 pairs of independent components that showed significant temporal coherence across all resting-state networks. Group comparison showed reduced functional network connectivity between default mode network-attention, frontal-sensorimotor, and frontal-visual networks and increased functional network connectivity between frontal-attention, default mode network-sensorimotor, and frontal

  6. Altered networks in bothersome tinnitus: a functional connectivity study

    Directory of Open Access Journals (Sweden)

    Burton Harold

    2012-01-01

    Full Text Available Abstract Background The objective was to examine functional connectivity linked to the auditory system in patients with bothersome tinnitus. Activity was low frequency (3 brain volumes in 17 patients with moderate-severe bothersome tinnitus (Tinnitus Handicap Index: average 53.5 ± 3.6 (range 38-76 and 17 age-matched controls. Results In bothersome tinnitus, negative correlations reciprocally characterized functional connectivity between auditory and occipital/visual cortex. Negative correlations indicate that when BOLD response magnitudes increased in auditory or visual cortex they decreased in the linked visual or auditory cortex, suggesting reciprocally phase reversed activity between functionally connected locations in tinnitus. Both groups showed similar connectivity with positive correlations within the auditory network. Connectivity for primary visual cortex in tinnitus included extensive negative correlations in the ventral attention temporoparietal junction and in the inferior frontal gyrus and rostral insula - executive control network components. Rostral insula and inferior frontal gyrus connectivity in tinnitus also showed greater negative correlations in occipital cortex. Conclusions These results imply that in bothersome tinnitus there is dissociation between activity in auditory cortex and visual, attention and control networks. The reciprocal negative correlations in connectivity between these networks might be maladaptive or reflect adaptations to reduce phantom noise salience and conflict with attention to non-auditory tasks.

  7. Selectively disrupted functional connectivity networks in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Yaojing eChen

    2015-12-01

    Full Text Available Background: The high prevalence of type 2 diabetes mellitus (T2DM in individuals over 65 years old and cognitive deficits caused by T2DM have attracted broad attention. The pathophysiological mechanism of T2DM induced cognitive impairments, however, remains poorly understood. Previous studies have suggested that the cognitive impairments can be attributed not merely to local functional and structural abnormalities but also to specific brain networks. Thus, we aimed to investigate the changes of global networks selectively affected by T2DM. Methods: A resting state functional network analysis was conducted to investigate the intrinsic functional connectivity in 37 patients with diabetes and 40 healthy controls which were recruited from local communities in Beijing, China. Results: We found that patients with T2DM exhibited cognitive function declines and functional connectivity disruptions within the default mode network, left frontal parietal network, and sensorimotor network. More importantly, the fasting glucose level was correlated with abnormal functional connectivity.Conclusions: These findings could help to understand the neural mechanisms of cognitive impairments in T2DM and provide potential neuroimaging biomarkers that may be used for early diagnosis and intervention in cognitive decline.

  8. Genes2FANs: connecting genes through functional association networks

    Directory of Open Access Journals (Sweden)

    Dannenfelser Ruth

    2012-07-01

    Full Text Available Abstract Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs, researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our

  9. Graph theoretical analysis of resting magnetoencephalographic functional connectivity networks

    Directory of Open Access Journals (Sweden)

    Lindsay eRutter

    2013-07-01

    Full Text Available Complex networks have been observed to comprise small-world properties, believed to represent an optimal organization of local specialization and global integration of information processing at reduced wiring cost. Here, we applied magnitude squared coherence to resting magnetoencephalographic time series in reconstructed source space, acquired from controls and patients with schizophrenia, and generated frequency-dependent adjacency matrices modeling functional connectivity between virtual channels. After configuring undirected binary and weighted graphs, we found that all human networks demonstrated highly localized clustering and short characteristic path lengths. The most conservatively thresholded networks showed efficient wiring, with topographical distance between connected vertices amounting to one-third as observed in surrogate randomized topologies. Nodal degrees of the human networks conformed to a heavy-tailed exponentially truncated power-law, compatible with the existence of hubs, which included theta and alpha bilateral cerebellar tonsil, beta and gamma bilateral posterior cingulate, and bilateral thalamus across all frequencies. We conclude that all networks showed small-worldness, minimal physical connection distance, and skewed degree distributions characteristic of physically-embedded networks, and that these calculations derived from graph theoretical mathematics did not quantifiably distinguish between subject populations, independent of bandwidth. However, post-hoc measurements of edge computations at the scale of the individual vertex revealed trends of reduced gamma connectivity across the posterior medial parietal cortex in patients, an observation consistent with our prior resting activation study that found significant reduction of synthetic aperture magnetometry gamma power across similar regions. The basis of these small differences remains unclear.

  10. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2008-06-01

    Full Text Available Functional brain networks detected in task-free ("resting-state" functional magnetic resonance imaging (fMRI have a small-world architecture that reflects a robust functional organization of the brain. Here, we examined whether this functional organization is disrupted in Alzheimer's disease (AD. Task-free fMRI data from 21 AD subjects and 18 age-matched controls were obtained. Wavelet analysis was applied to the fMRI data to compute frequency-dependent correlation matrices. Correlation matrices were thresholded to create 90-node undirected-graphs of functional brain networks. Small-world metrics (characteristic path length and clustering coefficient were computed using graph analytical methods. In the low frequency interval 0.01 to 0.05 Hz, functional brain networks in controls showed small-world organization of brain activity, characterized by a high clustering coefficient and a low characteristic path length. In contrast, functional brain networks in AD showed loss of small-world properties, characterized by a significantly lower clustering coefficient (p<0.01, indicative of disrupted local connectivity. Clustering coefficients for the left and right hippocampus were significantly lower (p<0.01 in the AD group compared to the control group. Furthermore, the clustering coefficient distinguished AD participants from the controls with a sensitivity of 72% and specificity of 78%. Our study provides new evidence that there is disrupted organization of functional brain networks in AD. Small-world metrics can characterize the functional organization of the brain in AD, and our findings further suggest that these network measures may be useful as an imaging-based biomarker to distinguish AD from healthy aging.

  11. Functional connectivity changes in the language network during stroke recovery.

    Science.gov (United States)

    Nair, Veena A; Young, Brittany M; La, Christian; Reiter, Peter; Nadkarni, Tanvi N; Song, Jie; Vergun, Svyatoslav; Addepally, Naga Saranya; Mylavarapu, Krishna; Swartz, Jennifer L; Jensen, Matthew B; Chacon, Marcus R; Sattin, Justin A; Prabhakaran, Vivek

    2015-02-01

    Several neuroimaging studies have examined language reorganization in stroke patients with aphasia. However, few studies have examined language reorganization in stroke patients without aphasia. Here, we investigated functional connectivity (FC) changes after stroke in the language network using resting-state fMRI and performance on a verbal fluency (VF) task in patients without clinically documented language deficits. Early-stage ischemic stroke patients (N = 26) (average 5 days from onset), 14 of whom were tested at a later stage (average 4.5 months from onset), 26 age-matched healthy control subjects (HCs), and 12 patients with cerebrovascular risk factors (patients at risk, PR) participated in this study. We examined FC of the language network with 23 seed regions based on a previous study. We evaluated patients' behavioral performance on a VF task and correlation between brain resting-state FC (rsFC) and behavior. Compared to HCs, early stroke patients showed significantly decreased rsFC in the language network but no difference with respect to PR. Early stroke patients showed significant differences in performance on the VF task compared to HCs but not PR. Late-stage patients compared to HCs and PR showed no differences in brain rsFC in the language network and significantly stronger connections compared to early-stage patients. Behavioral differences persisted in the late stage compared to HCs. Change in specific connection strengths correlated with changes in behavior from early to late stage. These results show decreased rsFC in the language network and verbal fluency deficits in early stroke patients without clinically documented language deficits.

  12. Quetiapine modulates functional connectivity in brain aggression networks.

    Science.gov (United States)

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Li Liu

    Full Text Available BACKGROUND: Numerous studies have demonstrated the higher-order functions of the cerebellum, including emotion regulation and cognitive processing, and have indicated that the cerebellum should therefore be included in the pathophysiological models of major depressive disorder. The aim of this study was to compare the resting-state functional connectivity of the cerebellum in adults with major depression and healthy controls. METHODS: Twenty adults with major depression and 20 gender-, age-, and education-matched controls were investigated using seed-based resting-state functional connectivity magnetic resonance imaging. RESULTS: Compared with the controls, depressed patients showed significantly increased functional connectivity between the cerebellum and the temporal poles. However, significantly reduced cerebellar functional connectivity was observed in the patient group in relation to both the default-mode network, mainly including the ventromedial prefrontal cortex and the posterior cingulate cortex/precuneus, and the executive control network, mainly including the superior frontal cortex and orbitofrontal cortex. Moreover, the Hamilton Depression Rating Scale score was negatively correlated with the functional connectivity between the bilateral Lobule VIIb and the right superior frontal gyrus in depressed patients. CONCLUSIONS: This study demonstrated increased cerebellar coupling with the temporal poles and reduced coupling with the regions in the default-mode and executive control networks in adults with major depression. These differences between patients and controls could be associated with the emotional disturbances and cognitive control function deficits that accompany major depression. Aberrant cerebellar connectivity during major depression may also imply a substantial role for the cerebellum in the pathophysiological models of depression.

  14. Mutual connectivity analysis (MCA) using generalized radial basis function neural networks for nonlinear functional connectivity network recovery in resting-state functional MRI

    Science.gov (United States)

    D'Souza, Adora M.; Abidin, Anas Zainul; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 +/- 0.037) as well as the underlying network structure (Rand index = 0.87 +/- 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  15. Functional Connectivity of the Cortical Swallowing Network in Humans

    Science.gov (United States)

    Babaei, Arash; Ward, B. Douglas; Siwiec, Robert; Ahmad, Shahryar; Kern, Mark; Nencka, Andrew; Li, Shi-Jiang; Shaker, Reza

    2014-01-01

    Introduction Coherent fluctuations of blood oxygenation level dependent (BOLD) signal have been referred as “functional connectivity” (FC). Our aim was to systematically characterize FC of underlying neural network involved in swallowing, and to evaluate its reproducibility and modulation during rest or task performance. Methods Activated seed regions within known areas of the cortical swallowing network (CSN) were independently identified in 16 healthy volunteers. Subjects swallowed using a paradigm driven protocol, and the data analyzed using an event-related technique. Then, in the same 16 volunteers, resting and active state data were obtained for 540 seconds in three conditions: 1) swallowing task; 2) control visual task; and 3) resting state; all scans were performed twice. Data was preprocessed according to standard FC pipeline. We determined the correlation coefficient values of member regions of the CSN across the three aforementioned conditions and compared between two sessions using linear regression. Average FC matrices across conditions were then compared. Results Swallow activated twenty-two positive BOLD and eighteen negative BOLD regions distributed bilaterally within cingulate, insula, sensorimotor cortex, prefrontal and parietal cortices. We found that: 1) Positive BOLD regions were highly connected to each other during all test conditions while negative BOLD regions were tightly connected amongst themselves; 2) Positive and negative BOLD regions were anti-correlated at rest and during task performance; 3) Across all three test conditions, FC among the regions was reproducible (r > 0.96, p<10-5); and 4) The FC of sensorimotor region to other regions of the CSN increased during swallowing scan. Conclusions 1) Swallow activated cortical substrates maintain a consistent pattern of functional connectivity; 2) FC of sensorimotor region is significantly higher during swallow scan than that observed during a non-swallow visual task or at rest. PMID

  16. Default mode, executive function, and language functional connectivity networks are compromised in mild Alzheimer's disease.

    Science.gov (United States)

    Weiler, Marina; Fukuda, Aya; Massabki, Lilian H P; Lopes, Tatila M; Franco, Alexandre R; Damasceno, Benito P; Cendes, Fernando; Balthazar, Marcio L F

    2014-03-01

    Alzheimer's disease (AD) is characterized by mental and cognitive problems, particularly with memory, language, visuospatial skills (VS), and executive functions (EF). Advances in the neuroimaging of AD have highlighted dysfunctions in functional connectivity networks (FCNs), especially in the memory related default mode network (DMN). However, little is known about the integrity and clinical significance of FNCs that process other cognitive functions than memory. We evaluated 22 patients with mild AD and 26 healthy controls through a resting state functional MRI scan. We aimed to identify different FCNs: the DMN, language, EF, and VS. Seed-based functional connectivity was calculated by placing a seed in the DMN (posterior cingulate cortex), language (Broca's and Wernicke's areas), EF (right and left dorsolateral prefrontal cortex), and VS networks (right and left associative visual cortex). We also performed regression analyses between individual connectivity maps for the different FCNs and the scores on cognitive tests. We found areas with significant decreases in functional connectivity in patients with mild AD in the DMN and Wernicke's area compared with controls. Increased connectivity in patients was observed in the EF network. Regarding multiple linear regression analyses, a significant correlation was only observed between the connectivity of the DMN and episodic memory (delayed recall) scores. In conclusion, functional connectivity alterations in mild AD are not restricted to the DMN. Other FCNs related to language and EF may be altered. However, we only found significant correlations between cognition and functional connectivity in the DMN and episodic memory performance.

  17. Mentor's brain functional connectivity network during robotic assisted surgery mentorship.

    Science.gov (United States)

    Shafiei, Somayeh B; Doyle, Scott T; Guru, Khurshid A

    2016-08-01

    In many complicated cognitive-motor tasks mentoring is inevitable during the learning process. Although mentors are expert in doing the task, trainee's operation might be new for a mentor. This makes mentoring a very difficult task which demands not only the knowledge and experience of a mentor, but also his/her ability to follow trainee's movements and patiently advise him/her during the operation. We hypothesize that information binding throughout the mentor's brain areas, contributed to the task, changes as the expertise level of the trainee improves from novice to intermediate and expert. This can result in the change of mentor's level of satisfaction. The brain functional connectivity network is extracted by using brain activity of a mentor during mentoring novice and intermediate surgeons, watching expert surgeon operation, and doing Urethrovesical Anasthomosis (UVA) procedure by himself. By using the extracted network, we investigate the role of modularity and neural activity efficiency in mentoring. Brain activity is measured by using a 24-channel ABM Neuro-headset with the frequency of 256 Hz. One mentor operates 26 UVA procedures and three trainees with the expertise level of novice, intermediate, and expert perform 26 UVA procedures under the supervision of mentor. Our results indicate that the modularity of functional connectivity network is higher when mentor performs the task or watches the expert operation comparing mentoring the novice and intermediate surgeons. At the end of each operation, mentor subjectively assesses the quality of operation by giving scores to NASA-TLX indexes. Performance score is used to discuss our results. The extracted significant positive correlation between performance level and modularity (r = 0.38, p - value <; 0.005) shows the increase of automaticity and decrease in neural activity cost by improving the performance.

  18. Shyness and Trajectories of Functional Network Connectivity Over Early Adolescence.

    Science.gov (United States)

    Sylvester, Chad M; Whalen, Diana J; Belden, Andy C; Sanchez, Shana L; Luby, Joan L; Barch, Deanna M

    2017-12-08

    High shyness during early adolescence is associated with impaired peer relationships and risk for psychiatric disorders. Little is known, however, about the relation between shyness and trajectories of brain development over early adolescence. The current study longitudinally examined trajectories of resting-state functional connectivity (rs-fc) within four brain networks in 147 adolescents. Subjects underwent functional magnetic resonance imaging at three different time points, at average ages 10.5 (range = 7.8-13.0), 11.7 (range = 9.3-14.1), and 12.9 years (range = 10.1-15.2). Multilevel linear modeling indicated that high shyness was associated with a less steep negative slope of default mode network (DMN) rs-fc over early adolescence relative to low shyness. Less steep decreases in DMN rs-fc may relate to increased self-focus in adolescents with high shyness. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  19. A Network Analysis Approach to fMRI Condition-Specific Functional Connectivity

    CERN Document Server

    Shinkareva, Svetlana V; Wang, Jing

    2010-01-01

    In this work we focus on examination and comparison of whole-brain functional connectivity patterns measured with fMRI across experimental conditions. Direct examination and comparison of condition-specific matrices is challenging due to the large number of elements in a connectivity matrix. We present a framework that uses network analysis to describe condition-specific functional connectivity. Treating the brain as a complex system in terms of a network, we extract the most relevant connectivity information by partitioning each network into clusters representing functionally connected brain regions. Extracted clusters are used as features for predicting experimental condition in a new data set. The approach is illustrated on fMRI data examining functional connectivity patterns during processing of abstract and concrete concepts. Topological (brain regions) and functional (level of connectivity and information flow) systematic differences in the ROI-based functional networks were identified across participan...

  20. Task-dependent reorganization of functional connectivity networks during visual semantic decision making.

    Science.gov (United States)

    DeSalvo, Matthew N; Douw, Linda; Takaya, Shigetoshi; Liu, Hesheng; Stufflebeam, Steven M

    2014-01-01

    Functional MRI is widely used to study task-related changes in neuronal activity as well as resting-state functional connectivity. In this study, we explore task-related changes in functional connectivity networks using fMRI. Dynamic connectivity may represent a new measure of neural network robustness that would impact both clinical and research efforts. However, prior studies of task-related changes in functional connectivity have shown apparently conflicting results, leading to several competing hypotheses regarding the relationship between task-related and resting-state brain networks. We used a graph theory-based network approach to compare functional connectivity in healthy subjects between the resting state and when performing a clinically used semantic decision task. We analyzed fMRI data from 21 healthy, right-handed subjects. While three nonoverlapping, highly intraconnected functional modules were observed in the resting state, an additional language-related module emerged during the semantic decision task. Both overall and within-module connectivity were greater in default mode network (DMN) and classical language areas during semantic decision making compared to rest, while between-module connectivity was diffusely greater at rest, revealing a more widely distributed pattern of functional connectivity at rest. The results of this study suggest that there are differences in network topology between resting and task states. Specifically, semantic decision making is associated with a reduction in distributed connectivity through hub areas of the DMN as well as an increase in connectivity within both default and language networks.

  1. Impaired Long Distance Functional Connectivity and Weighted Network Architecture in Alzheimer's Disease

    National Research Council Canada - National Science Library

    Liu, Yong; Yu, Chunshui; Zhang, Xinqing; Liu, Jieqiong; Duan, Yunyun; Alexander-Bloch, Aaron F; Liu, Bing; Jiang, Tianzi; Bullmore, Ed

    2014-01-01

    .... We explored abnormal functional magnetic resonance imaging (fMRI) resting-state dynamics, functional connectivity, and weighted functional networks, in a sample of patients with severe AD (N = 18...

  2. Multimodal functional network connectivity: an EEG-fMRI fusion in network space.

    Directory of Open Access Journals (Sweden)

    Xu Lei

    Full Text Available EEG and fMRI recordings measure the functional activity of multiple coherent networks distributed in the cerebral cortex. Identifying network interaction from the complementary neuroelectric and hemodynamic signals may help to explain the complex relationships between different brain regions. In this paper, multimodal functional network connectivity (mFNC is proposed for the fusion of EEG and fMRI in network space. First, functional networks (FNs are extracted using spatial independent component analysis (ICA in each modality separately. Then the interactions among FNs in each modality are explored by Granger causality analysis (GCA. Finally, fMRI FNs are matched to EEG FNs in the spatial domain using network-based source imaging (NESOI. Investigations of both synthetic and real data demonstrate that mFNC has the potential to reveal the underlying neural networks of each modality separately and in their combination. With mFNC, comprehensive relationships among FNs might be unveiled for the deep exploration of neural activities and metabolic responses in a specific task or neurological state.

  3. Complex network analysis of brain functional connectivity under a multi-step cognitive task

    OpenAIRE

    Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun

    2017-01-01

    Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a \\emph{multi-step} cognitive task involving with consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed base on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based ...

  4. Connectivity of communication networks

    CERN Document Server

    Mao, Guoqiang

    2017-01-01

    This book introduces a number of recent developments on connectivity of communication networks, ranging from connectivity of large static networks and connectivity of highly dynamic networks to connectivity of small to medium sized networks. This book also introduces some applications of connectivity studies in network optimization, in network localization, and in estimating distances between nodes. The book starts with an overview of the fundamental concepts, models, tools, and methodologies used for connectivity studies. The rest of the chapters are divided into four parts: connectivity of large static networks, connectivity of highly dynamic networks, connectivity of small to medium sized networks, and applications of connectivity studies.

  5. Default mode network connectivity as a function of familial and environmental risk for psychotic disorder.

    Directory of Open Access Journals (Sweden)

    Sanne C T Peeters

    Full Text Available Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN, is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder.Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk, group × environmental exposure (to cannabis, developmental trauma and urbanicity and symptomatology.There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL, the precuneus (PCu and the medial prefrontal cortex (MPFC. Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity.Increased functional connectivity in individuals with (increased risk for psychotic disorder may reflect trait-related network alterations. The within-network "connectivity at rest" intermediate phenotype was not associated with (subclinical psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure.

  6. Influence of Resting-State Network on Lateralization of Functional Connectivity in Mesial Temporal Lobe Epilepsy.

    Science.gov (United States)

    Su, L; An, J; Ma, Q; Qiu, S; Hu, D

    2015-08-01

    Although most studies on epilepsy have focused on the epileptogenic zone, epilepsy is a system-level disease characterized by aberrant neuronal synchronization among groups of neurons. Increasingly, studies have indicated that mesial temporal lobe epilepsy may be a network-level disease; however, few investigations have examined resting-state functional connectivity of the entire brain, particularly in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. This study primarily investigated whole-brain resting-state functional connectivity abnormality in patients with mesial temporal lobe epilepsy and right hippocampal sclerosis during the interictal period. We investigated resting-state functional connectivity of 21 patients with mesial temporal lobe epilepsy with right hippocampal sclerosis and 21 neurologically healthy controls. A multivariate pattern analysis was used to identify the functional connections that most clearly differentiated patients with mesial temporal lobe epilepsy with right hippocampal sclerosis from controls. Discriminative analysis of functional connections indicated that the patients with mesial temporal lobe epilepsy with right hippocampal sclerosis exhibited decreased resting-state functional connectivity within the right hemisphere and increased resting-state functional connectivity within the left hemisphere. Resting-state network analysis suggested that the internetwork connections typically obey the hemispheric lateralization trend and most of the functional connections that disturb the lateralization trend are the intranetwork ones. The current findings suggest that weakening of the resting-state functional connectivity associated with the right hemisphere appears to strengthen resting-state functional connectivity on the contralateral side, which may be related to the seizure-induced damage and underlying compensatory mechanisms. Resting-state network-based analysis indicated that the compensatory mechanism among

  7. Impaired long distance functional connectivity and weighted network architecture in Alzheimer's disease.

    Science.gov (United States)

    Liu, Yong; Yu, Chunshui; Zhang, Xinqing; Liu, Jieqiong; Duan, Yunyun; Alexander-Bloch, Aaron F; Liu, Bing; Jiang, Tianzi; Bullmore, Ed

    2014-06-01

    Alzheimer's disease (AD) is increasingly recognized as a disconnection syndrome, which leads to cognitive impairment due to the disruption of functional activity across large networks or systems of interconnected brain regions. We explored abnormal functional magnetic resonance imaging (fMRI) resting-state dynamics, functional connectivity, and weighted functional networks, in a sample of patients with severe AD (N = 18) and age-matched healthy volunteers (N = 21). We found that patients had reduced amplitude and regional homogeneity of low-frequency fMRI oscillations, and reduced the strength of functional connectivity, in several regions previously described as components of the default mode network, for example, medial posterior parietal cortex and dorsal medial prefrontal cortex. In patients with severe AD, functional connectivity was particularly attenuated between regions that were separated by a greater physical distance; and loss of long distance connectivity was associated with less efficient global and nodal network topology. This profile of functional abnormality in severe AD was consistent with the results of a comparable analysis of data on 2 additional groups of patients with mild AD (N = 17) and amnestic mild cognitive impairment (MCI; N = 18). A greater degree of cognitive impairment, measured by the mini-mental state examination across all patient groups, was correlated with greater attenuation of functional connectivity, particularly over long connection distances, for example, between anterior and posterior components of the default mode network, and greater reduction of global and nodal network efficiency. These results indicate that neurodegenerative disruption of fMRI oscillations and connectivity in AD affects long-distance connections to hub nodes, with the consequent loss of network efficiency. This profile was evident also to a lesser degree in the patients with less severe cognitive impairment, indicating that the potential of resting

  8. Neuropsychiatric symptoms in Alzheimer's disease are related to functional connectivity alterations in the salience network.

    Science.gov (United States)

    Balthazar, Marcio L F; Pereira, Fabrício R S; Lopes, Tátila M; da Silva, Elvis L; Coan, Ana Carolina; Campos, Brunno M; Duncan, Niall W; Stella, Florindo; Northoff, Georg; Damasceno, Benito P; Cendes, Fernando

    2014-04-01

    Neuropsychiatric syndromes are highly prevalent in Alzheimer's disease (AD), but their neurobiology is not completely understood. New methods in functional magnetic resonance imaging, such as intrinsic functional connectivity or "resting-state" analysis, may help to clarify this issue. Using such approaches, alterations in the default-mode and salience networks (SNs) have been described in Alzheimer's, although their relationship with specific symptoms remains unclear. We therefore carried out resting-state functional connectivity analysis with 20 patients with mild to moderate AD, and correlated their scores on neuropsychiatric inventory syndromes (apathy, hyperactivity, affective syndrome, and psychosis) with maps of connectivity in the default mode network and SN. In addition, we compared network connectivity in these patients with that in 17 healthy elderly control subjects. All analyses were controlled for gray matter density and other potential confounds. Alzheimer's patients showed increased functional connectivity within the SN compared with controls (right anterior cingulate cortex and left medial frontal gyrus), along with reduced functional connectivity in the default-mode network (bilateral precuneus). A correlation between increased connectivity in anterior cingulate cortex and right insula areas of the SN and hyperactivity syndrome (agitation, irritability, aberrant motor behavior, euphoria, and disinhibition) was found. These findings demonstrate an association between specific network changes in AD and particular neuropsychiatric symptom types. This underlines the potential clinical significance of resting state alterations in future diagnosis and therapy. Copyright © 2013 Wiley Periodicals, Inc.

  9. Salience, central executive, and sensorimotor network functional connectivity alterations in failed back surgery syndrome.

    Science.gov (United States)

    Kolesar, Tiffany A; Bilevicius, Elena; Kornelsen, Jennifer

    2017-07-01

    This study examined the altered patterns of functional connectivity in task-positive resting state networks in failed back surgery syndrome (FBSS) patients compared to healthy controls using functional magnetic resonance imaging (fMRI). This work stems from a previous study in which alterations in the task-negative default mode network were investigated. Participants underwent a 7-minute resting state fMRI scan in which they lay still, with eyes closed, in the absence of a task. Scanning took place at the National Research Council's 3Tesla MRI magnet in Winnipeg, Canada. Fourteen patients with FBSS and age- and gender-matched controls participated in this study. Three patients were removed from the analyses due to image artefact (n=1) and effective pain treatment (n=2). Eleven patients (5 female, mean age 52.7 years) and their matched controls were included in the final analyses. Resting state fMRI data were analyzed using an independent component analysis, yielding three resting state networks of interest: the salience network (SN), involved in detection of external stimuli, central executive network (CEN), involved in cognitions, and sensorimotor network (SeN), involved in sensory and motor integration. Analysis of Variance contrasts were performed for each network, comparing functional connectivity differences between FBSS patients and healthy controls. Alterations were observed in all three resting state networks, primarily relating to pain and its processing in the FBSS group. Specifically, compared to healthy controls, FBSS patients demonstrated increased functional connectivity in the anterior cingulate cortex within the SN, medial frontal gyrus in the CEN, and precentral gyrus within the SeN. FBSS patients also demonstrated decreased functional connectivity in the medial frontal gyrus in the SeN compared to healthy controls. Interestingly, we also observed internetwork functional connectivity in the SN and SeN. FBSS is associated with altered patterns of

  10. Early Age-Related Functional Connectivity Decline in High-Order Cognitive Networks

    OpenAIRE

    Siman-Tov, Tali; Bosak, Noam; Sprecher, Elliot; Paz, Rotem; Eran, Ayelet; Aharon-Peretz, Judith; Kahn, Itamar

    2017-01-01

    As the world ages, it becomes urgent to unravel the mechanisms underlying brain aging and find ways of intervening with them. While for decades cognitive aging has been related to localized brain changes, growing attention is now being paid to alterations in distributed brain networks. Functional connectivity magnetic resonance imaging (fcMRI) has become a particularly useful tool to explore large-scale brain networks; yet, the temporal course of connectivity lifetime changes has not been est...

  11. Network organization is globally atypical in autism: A graph theory study of intrinsic functional connectivity.

    Science.gov (United States)

    Keown, Christopher L; Datko, Michael C; Chen, Colleen P; Maximo, José Omar; Jahedi, Afrooz; Müller, Ralph-Axel

    2017-01-01

    Despite abundant evidence of brain network anomalies in autism spectrum disorder (ASD), findings have varied from broad functional underconnectivity to broad overconnectivity. Rather than pursuing overly simplifying general hypotheses ('under' vs. 'over'), we tested the hypothesis of atypical network distribution in ASD (i.e., participation of unusual loci in distributed functional networks). We used a selective high-quality data subset from the ABIDE datashare (including 111 ASD and 174 typically developing [TD] participants) and several graph theory metrics. Resting state functional MRI data were preprocessed and analyzed for detection of low-frequency intrinsic signal correlations. Groups were tightly matched for available demographics and head motion. As hypothesized, the Rand Index (reflecting how similar network organization was to a normative set of networks) was significantly lower in ASD than TD participants. This was accounted for by globally reduced cohesion and density, but increased dispersion of networks. While differences in hub architecture did not survive correction, rich club connectivity (among the hubs) was increased in the ASD group. Our findings support the model of reduced network integration (connectivity with networks) and differentiation (or segregation; based on connectivity outside network boundaries) in ASD. While the findings applied at the global level, they were not equally robust across all networks and in one case (greater cohesion within ventral attention network in ASD) even reversed.

  12. Functional Network Connectivity Patterns between Idiopathic Generalized Epilepsy with Myoclonic and Absence Seizures

    Directory of Open Access Journals (Sweden)

    Qifu Li

    2017-05-01

    Full Text Available The extensive cerebral cortex and subcortical structures are considered as the major regions related to the generalized epileptiform discharges in idiopathic generalized epilepsy. However, various clinical syndromes and electroencephalogram (EEG signs exist across generalized seizures, such as the loss of consciousness during absence seizures (AS and the jerk of limbs during myoclonic seizures (MS. It is presumed that various functional systems affected by discharges lead to the difference in syndromes of these seizures. Twenty epileptic patients with MS, 21 patients with AS, and 21 healthy controls were recruited in this study. The functional network connectivity was analyzed based on the resting-state functional magnetic resonance imaging scans. The statistical analysis was performed in three groups to assess the difference in the functional brain networks in two types of generalized seizures. Twelve resting-state networks were identified in three groups. Both patient groups showed common abnormalities, including decreased functional connectivity in salience network (SN, cerebellum network, and primary perceptional networks and decreased connection between SN and visual network, compared with healthy controls. Interestingly, the frontal part of high-level cognitive resting-state networks showed increased functional connectivity (FC in patients with MS, but decreased FC in patients with AS. Moreover, patients with MS showed decreased negative connections between high-level cognitive networks and primary system. The common alteration in both patient groups, including SN, might reflect a similar mechanism associated with the loss of consciousness during generalized seizures. This study provided the evidence of brain network in generalized epilepsy to understand the difference between MS and AS.

  13. Altered Functional Connectivity of the Default Mode Network in Low-Empathy Subjects.

    Science.gov (United States)

    Kim, Seung Jun; Kim, Sung Eun; Kim, Hyo Eun; Han, Kiwan; Jeong, Bumseok; Kim, Jae Jin; Namkoong, Kee; Kim, Ji Woong

    2017-09-01

    Empathy is the ability to identify with or make a vicariously experience of another person's feelings or thoughts based on memory and/or self-referential mental simulation. The default mode network in particular is related to self-referential empathy. In order to elucidate the possible neural mechanisms underlying empathy, we investigated the functional connectivity of the default mode network in subjects from a general population. Resting state functional magnetic resonance imaging data were acquired from 19 low-empathy subjects and 18 medium-empathy subjects. An independent component analysis was used to identify the default mode network, and differences in functional connectivity strength were compared between the two groups. The low-empathy group showed lower functional connectivity of the medial prefrontal cortex and anterior cingulate cortex (Brodmann areas 9 and 32) within the default mode network, compared to the medium-empathy group. The results of the present study suggest that empathy is related to functional connectivity of the medial prefrontal cortex/anterior cingulate cortex within the default mode network. Functional decreases in connectivity among low-empathy subjects may reflect an impairment of self-referential mental simulation. © Copyright: Yonsei University College of Medicine 2017.

  14. Basal functional connectivity within the anterior temporal network is associated with performance on declarative memory tasks.

    Science.gov (United States)

    Gour, Natalina; Ranjeva, Jean-Philippe; Ceccaldi, Mathieu; Confort-Gouny, Sylviane; Barbeau, Emmanuel; Soulier, Elisabeth; Guye, Maxime; Didic, Mira; Felician, Olivier

    2011-09-15

    Spontaneous fluctuations in the blood oxygenation level-dependent (BOLD) signal, as measured by functional magnetic resonance imaging (fMRI) at rest, exhibit a temporally coherent activity thought to reflect functionally relevant networks. Antero-mesial temporal structures are the site of early pathological changes in Alzheimer's disease and have been shown to be critical for declarative memory. Our study aimed at exploring the functional impact of basal connectivity of an anterior temporal network (ATN) on declarative memory. A heterogeneous group of subjects with varying performance on tasks assessing memory was therefore selected, including healthy subjects and patients with isolated memory complaint, amnestic Mild Cognitive Impairment (aMCI) and mild Alzheimer's disease (AD). Using Independent Component Analysis on resting-state fMRI, we extracted a relevant anterior temporal network (ATN) composed of the perirhinal and entorhinal cortex, the hippocampal head, the amygdala and the lateral temporal cortex extending to the temporal pole. A default mode network and an executive-control network were also selected to serve as control networks. We first compared basal functional connectivity of the ATN between patients and control subjects. Relative to controls, patients exhibited significantly increased functional connectivity in the ATN during rest. Specifically, voxel-based analysis revealed an increase within the inferior and superior temporal gyrus and the uncus. In the patient group, positive correlations between averaged connectivity values of ATN and performance on anterograde and retrograde object-based memory tasks were observed, while no correlation was found with other evaluated cognitive measures. These correlations were specific to the ATN, as no correlation between performance on memory tasks and the other selected networks was found. Taken together, these findings provide evidence that basal connectivity inside the ATN network has a functional role in

  15. Aberrant Resting-State Functional Connectivity in the Salience Network of Adolescent Chronic Fatigue Syndrome.

    Directory of Open Access Journals (Sweden)

    Laura Anne Wortinger

    Full Text Available Neural network investigations are currently absent in adolescent chronic fatigue syndrome (CFS. In this study, we examine whether the core intrinsic connectivity networks (ICNs are altered in adolescent CFS patients. Eighteen adolescent patients with CFS and 18 aged matched healthy adolescent control subjects underwent resting-state functional magnetic resonance imaging (rfMRI. Data was analyzed using dual-regression independent components analysis, which is a data-driven approach for the identification of independent brain networks. Intrinsic connectivity was evaluated in the default mode network (DMN, salience network (SN, and central executive network (CEN. Associations between network characteristics and symptoms of CFS were also explored. Adolescent CFS patients displayed a significant decrease in SN functional connectivity to the right posterior insula compared to healthy comparison participants, which was related to fatigue symptoms. Additionally, there was an association between pain intensity and SN functional connectivity to the left middle insula and caudate that differed between adolescent patients and healthy comparison participants. Our findings of insula dysfunction and its association with fatigue severity and pain intensity in adolescent CFS demonstrate an aberration of the salience network which might play a role in CFS pathophysiology.

  16. Age Differences in the Intrinsic Functional Connectivity of Default Network Subsystems

    Directory of Open Access Journals (Sweden)

    Karen eCampbell

    2013-11-01

    Full Text Available Recent work suggests that the default mode network (DMN includes two core regions, the ventromedial prefrontal cortex (vmPFC and posterior cingulate cortex (PCC, and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL subsystem, active during remembering and future projection, and a dorsomedial PFC (dmPFC subsystem, active during self-reference. The PCC has been further subdivided into ventral (vPCC and dorsal (dPCC regions that are more strongly connected with the DMN and cognitive control networks, respectively. The goal of this study was to examine age differences in resting state functional connectivity within these subsystems. After applying a rigorous procedure to reduce the effects of head motion, we used a multivariate technique to identify both common and unique patterns of functional connectivity in the MTL vs. the dmPFC, and in vPCC vs. dPCC. All four areas had robust functional connectivity with other DMN regions, and each also showed distinct connectivity patterns in both age groups. Young and older adults had equivalent functional connectivity in the MTL subsystem. Older adults showed weaker connectivity in the vPCC and dmPFC subsystems, particularly with other DMN areas, but stronger connectivity than younger adults in the dPCC subsystem, which included areas involved in cognitive control. Our data provide evidence for distinct subsystems involving DMN nodes, which are maintained with age. Nevertheless, there are age differences in the strength of functional connectivity within these subsystems, supporting prior evidence that DMN connectivity is particularly vulnerable to age, whereas connectivity involving cognitive control regions is relatively maintained. These results suggest an age difference in the integrated activity among brain networks that can have implications for cognition in older adults.

  17. Data for default network reduced functional connectivity in meditators, negatively correlated with meditation expertise

    Directory of Open Access Journals (Sweden)

    Aviva Berkovich-Ohana

    2016-09-01

    Full Text Available FMRI data described here was recorded during resting-state in Mindfulness Meditators (MM and control participants (see “Task-induced activity and resting-state fluctuations undergo similar alterations in visual and DMN areas of long-term meditators” Berkovich-Ohana et al. (2016 [1] for details. MM participants were also scanned during meditation. Analyses focused on functional connectivity within and between the default mode network (DMN and visual network (Vis. Here we show data demonstrating that: 1 Functional connectivity within the DMN and the Visual networks were higher in the control group than in the meditators; 2 Data show an increase for the functional connectivity between the DMN and the Visual networks in the meditators compared to controls; 3 Data demonstrate that functional connectivity both within and between networks reduces during meditation, compared to the resting-state; and 4 A significant negative correlation was found between DMN functional connectivity and meditation expertise. The reader is referred to Berkovich-Ohana et al. (2016 [1] for further interpretation and discussion.

  18. Network functional connectivity and whole-brain functional connectomics to investigate cognitive decline in neurodegenerative conditions.

    Science.gov (United States)

    Dipasquale, O; Cercignani, Mara

    Non-invasive mapping of brain functional connectivity (FC) has played a fundamental role in neuroscience, and numerous scientists have been fascinated by its ability to reveal the brain's intricate morphology and functional properties. In recent years, two different techniques have been developed that are able to explore FC in pathophysiological conditions and to provide simple and non-invasive biomarkers for the detection of disease onset, severity and progression. These techniques are independent component analysis, which allows a network-based functional exploration of the brain, and graph theory, which provides a quantitative characterization of the whole-brain FC. In this paper we provide an overview of these two techniques and some examples of their clinical applications in the most common neurodegenerative disorders associated with cognitive decline, including mild cognitive impairment, Alzheimer's disease, Parkinson's disease, dementia with Lewy Bodies and behavioral variant frontotemporal dementia.

  19. Increased functional connectivity in intrinsic neural networks in individuals with aniridia

    Science.gov (United States)

    Pierce, Jordan E.; Krafft, Cynthia E.; Rodrigue, Amanda L.; Bobilev, Anastasia M.; Lauderdale, James D.; McDowell, Jennifer E.

    2014-01-01

    Mutations affecting the PAX6 gene result in aniridia, a condition characterized by the lack of an iris and other panocular defects. Among humans with aniridia, structural abnormalities also have been reported within the brain. The current study examined the functional implications of these deficits through “resting state” or task-free functional magnetic resonance imaging (fMRI) in 12 individuals with aniridia and 12 healthy age- and gender-matched controls. Using independent components analysis (ICA) and dual regression, individual patterns of functional connectivity associated with three intrinsic connectivity networks (ICNs; executive control, primary visual, and default mode) were compared across groups. In all three analyses, the aniridia group exhibited regions of greater connectivity correlated with the network, while the controls did not show any such regions. These differences suggest that individuals with aniridia recruit additional neural regions to supplement function in critical intrinsic networks, possibly due to inherent structural or sensory abnormalities related to the disorder. PMID:25566032

  20. Increased functional connectivity in intrinsic neural networks in individuals with aniridia

    Directory of Open Access Journals (Sweden)

    Jordan Elisabeth Pierce

    2014-12-01

    Full Text Available Mutations affecting the PAX6 gene result in aniridia, a condition characterized by the lack of an iris and other panocular defects. Among humans with aniridia, structural abnormalities also have been reported within the brain. The current study examined the functional implications of these deficits through resting state or task-free functional magnetic resonance imaging in 12 individuals with aniridia and 12 healthy age- and gender-matched controls. Using independent components analysis and dual regression, individual patterns of functional connectivity associated with three intrinsic connectivity networks (executive control, primary visual, and default mode were compared across groups. In all three analyses, the aniridia group exhibited regions of greater connectivity correlated with the network, while the controls did not show any such regions. These differences suggest that individuals with aniridia recruit additional neural regions to supplement function in critical intrinsic networks, possibly due to inherent structural or sensory abnormalities related to the disorder.

  1. Network topology and functional connectivity disturbances precede the onset of Huntington's disease.

    Science.gov (United States)

    Harrington, Deborah L; Rubinov, Mikail; Durgerian, Sally; Mourany, Lyla; Reece, Christine; Koenig, Katherine; Bullmore, Ed; Long, Jeffrey D; Paulsen, Jane S; Rao, Stephen M

    2015-08-01

    Cognitive, motor and psychiatric changes in prodromal Huntington's disease have nurtured the emergent need for early interventions. Preventive clinical trials for Huntington's disease, however, are limited by a shortage of suitable measures that could serve as surrogate outcomes. Measures of intrinsic functional connectivity from resting-state functional magnetic resonance imaging are of keen interest. Yet recent studies suggest circumscribed abnormalities in resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease, despite the spectrum of behavioural changes preceding a manifest diagnosis. The present study used two complementary analytical approaches to examine whole-brain resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease. Network topology was studied using graph theory and simple functional connectivity amongst brain regions was explored using the network-based statistic. Participants consisted of gene-negative controls (n = 16) and prodromal Huntington's disease individuals (n = 48) with various stages of disease progression to examine the influence of disease burden on intrinsic connectivity. Graph theory analyses showed that global network interconnectivity approximated a random network topology as proximity to diagnosis neared and this was associated with decreased connectivity amongst highly-connected rich-club network hubs, which integrate processing from diverse brain regions. However, functional segregation within the global network (average clustering) was preserved. Functional segregation was also largely maintained at the local level, except for the notable decrease in the diversity of anterior insula intermodular-interconnections (participation coefficient), irrespective of disease burden. In contrast, network-based statistic analyses revealed patterns of weakened frontostriatal connections and strengthened frontal-posterior connections that evolved as disease

  2. Network topology and functional connectivity disturbances precede the onset of Huntington’s disease

    Science.gov (United States)

    Harrington, Deborah L.; Rubinov, Mikail; Durgerian, Sally; Mourany, Lyla; Reece, Christine; Koenig, Katherine; Bullmore, Ed; Long, Jeffrey D.; Paulsen, Jane S.

    2015-01-01

    Cognitive, motor and psychiatric changes in prodromal Huntington’s disease have nurtured the emergent need for early interventions. Preventive clinical trials for Huntington’s disease, however, are limited by a shortage of suitable measures that could serve as surrogate outcomes. Measures of intrinsic functional connectivity from resting-state functional magnetic resonance imaging are of keen interest. Yet recent studies suggest circumscribed abnormalities in resting-state functional magnetic resonance imaging connectivity in prodromal Huntington’s disease, despite the spectrum of behavioural changes preceding a manifest diagnosis. The present study used two complementary analytical approaches to examine whole-brain resting-state functional magnetic resonance imaging connectivity in prodromal Huntington’s disease. Network topology was studied using graph theory and simple functional connectivity amongst brain regions was explored using the network-based statistic. Participants consisted of gene-negative controls (n = 16) and prodromal Huntington’s disease individuals (n = 48) with various stages of disease progression to examine the influence of disease burden on intrinsic connectivity. Graph theory analyses showed that global network interconnectivity approximated a random network topology as proximity to diagnosis neared and this was associated with decreased connectivity amongst highly-connected rich-club network hubs, which integrate processing from diverse brain regions. However, functional segregation within the global network (average clustering) was preserved. Functional segregation was also largely maintained at the local level, except for the notable decrease in the diversity of anterior insula intermodular-interconnections (participation coefficient), irrespective of disease burden. In contrast, network-based statistic analyses revealed patterns of weakened frontostriatal connections and strengthened frontal-posterior connections that evolved

  3. Dynamic Functional Network Connectivity Reveals Unique and Overlapping Profiles of Insula Subdivisions

    Science.gov (United States)

    Nomi, Jason S.; Farrant, Kristafor; Damaraju, Eswar; Rachakonda, Srinivas; Calhoun, Vince D.; Uddin, Lucina Q.

    2016-01-01

    The human insular cortex consists of functionally diverse subdivisions that engage during tasks ranging from interoception to cognitive control. The multiplicity of functions subserved by insular subdivisions calls for a nuanced investigation of their functional connectivity profiles. Four insula subdivisions (dorsal anterior, dAI; ventral, VI; posterior, PI; middle, MI) derived using a data-driven approach were subjected to static- and dynamic-functional network connectivity (s-FNC and d-FNC) analyses. Static-FNC analyses replicated previous work demonstrating a cognition-emotion-interoception division of the insula, where the dAI is functionally connected to frontal areas, the VI to limbic areas, and the PI and MI to sensorimotor areas. Dynamic-FNC analyses consisted of k-means clustering of sliding windows to identify variable insula connectivity states. The d-FNC analysis revealed that the most frequently occurring dynamic state mirrored the cognition-emotion-interoception division observed from the s-FNC analysis, with less frequently occurring states showing overlapping and unique subdivision connectivity profiles. In two of the states, all subdivisions exhibited largely overlapping profiles, consisting of subcortical, sensory, motor, and frontal connections. Two other states showed the dAI exhibited a unique connectivity profile compared with other insula subdivisions. Additionally, the dAI exhibited the most variable functional connections across the s-FNC and d-FNC analyses, and was the only subdivision to exhibit dynamic functional connections with regions of the default mode network. These results highlight how a d-FNC approach can capture functional dynamics masked by s-FNC approaches, and reveal dynamic functional connections enabling the functional flexibility of the insula across time. PMID:26880689

  4. Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold.

    Science.gov (United States)

    Bordier, Cécile; Nicolini, Carlo; Bifone, Angelo

    2017-01-01

    Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls.

  5. Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold

    Directory of Open Access Journals (Sweden)

    Cécile Bordier

    2017-08-01

    Full Text Available Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls.

  6. Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero

    Directory of Open Access Journals (Sweden)

    Moriah E. Thomason

    2015-02-01

    Full Text Available Formation of operational neural networks is one of the most significant accomplishments of human fetal brain growth. Recent advances in functional magnetic resonance imaging (fMRI have made it possible to obtain information about brain function during fetal development. Specifically, resting-state fMRI and novel signal covariation approaches have opened up a new avenue for non-invasive assessment of neural functional connectivity (FC before birth. Early studies in this area have unearthed new insights about principles of prenatal brain function. However, very little is known about the emergence and maturation of neural networks during fetal life. Here, we obtained cross-sectional rs-fMRI data from 39 fetuses between 24 and 38 weeks postconceptual age to examine patterns of connectivity across ten neural FC networks. We identified primitive forms of motor, visual, default mode, thalamic, and temporal networks in the human fetal brain. We discovered the first evidence of increased long-range, cerebral-cerebellar, cortical-subcortical, and intra-hemispheric FC with advancing fetal age. Continued aggregation of data about fundamental neural connectivity systems in utero is essential to establishing principles of connectomics at the beginning of human life. Normative data provides a vital context against which to compare instances of abnormal neurobiological development.

  7. Multiple-network classification of childhood autism using functional connectivity dynamics.

    Science.gov (United States)

    Price, True; Wee, Chong-Yaw; Gao, Wei; Shen, Dinggang

    2014-01-01

    Characterization of disease using stationary resting-state functional connectivity (FC) has provided important hallmarks of abnormal brain activation in many domains. Recent studies of resting-state functional magnetic resonance imaging (fMRI), however, suggest there is a considerable amount of additional knowledge to be gained by investigating the variability in FC over the course of a scan. While a few studies have begun to explore the properties of dynamic FC for characterizing disease, the analysis of dynamic FC over multiple networks at multiple time scales has yet to be fully examined. In this study, we combine dynamic connectivity features in a multi-network, multi-scale approach to evaluate the method's potential in better classifying childhood autism. Specifically, from a set of group-level intrinsic connectivity networks (ICNs), we use sliding window correlations to compute intra-network connectivity on the subject level. We derive dynamic FC features for all ICNs over a large range of window sizes and then use a multiple kernel support vector machine (MK-SVM) model to combine a subset of these features for classification. We compare the performance our multi-network, dynamic approach to the best results obtained from single-network dynamic FC features and those obtained from both single- and multi-network static FC features. Our experiments show that integrating multiple networks on different dynamic scales has a clear superiority over these existing methods.

  8. Creativity and the default network: A functional connectivity analysis of the creative brain at rest.

    Science.gov (United States)

    Beaty, Roger E; Benedek, Mathias; Wilkins, Robin W; Jauk, Emanuel; Fink, Andreas; Silvia, Paul J; Hodges, Donald A; Koschutnig, Karl; Neubauer, Aljoscha C

    2014-11-01

    The present research used resting-state functional magnetic resonance imaging (fMRI) to examine whether the ability to generate creative ideas corresponds to differences in the intrinsic organization of functional networks in the brain. We examined the functional connectivity between regions commonly implicated in neuroimaging studies of divergent thinking, including the inferior prefrontal cortex and the core hubs of the default network. Participants were prescreened on a battery of divergent thinking tests and assigned to high- and low-creative groups based on task performance. Seed-based functional connectivity analysis revealed greater connectivity between the left inferior frontal gyrus (IFG) and the entire default mode network in the high-creative group. The right IFG also showed greater functional connectivity with bilateral inferior parietal cortex and the left dorsolateral prefrontal cortex in the high-creative group. The results suggest that the ability to generate creative ideas is characterized by increased functional connectivity between the inferior prefrontal cortex and the default network, pointing to a greater cooperation between brain regions associated with cognitive control and low-level imaginative processes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Creativity and the default network: A functional connectivity analysis of the creative brain at rest☆

    Science.gov (United States)

    Beaty, Roger E.; Benedek, Mathias; Wilkins, Robin W.; Jauk, Emanuel; Fink, Andreas; Silvia, Paul J.; Hodges, Donald A.; Koschutnig, Karl; Neubauer, Aljoscha C.

    2014-01-01

    The present research used resting-state functional magnetic resonance imaging (fMRI) to examine whether the ability to generate creative ideas corresponds to differences in the intrinsic organization of functional networks in the brain. We examined the functional connectivity between regions commonly implicated in neuroimaging studies of divergent thinking, including the inferior prefrontal cortex and the core hubs of the default network. Participants were prescreened on a battery of divergent thinking tests and assigned to high- and low-creative groups based on task performance. Seed-based functional connectivity analysis revealed greater connectivity between the left inferior frontal gyrus (IFG) and the entire default mode network in the high-creative group. The right IFG also showed greater functional connectivity with bilateral inferior parietal cortex and the left dorsolateral prefrontal cortex in the high-creative group. The results suggest that the ability to generate creative ideas is characterized by increased functional connectivity between the inferior prefrontal cortex and the default network, pointing to a greater cooperation between brain regions associated with cognitive control and low-level imaginative processes. PMID:25245940

  10. Functional connectivity analysis of resting-state fMRI networks in nicotine dependent patients

    Science.gov (United States)

    Smith, Aria; Ehtemami, Anahid; Fratte, Daniel; Meyer-Baese, Anke; Zavala-Romero, Olmo; Goudriaan, Anna E.; Schmaal, Lianne; Schulte, Mieke H. J.

    2016-03-01

    Brain imaging studies identified brain networks that play a key role in nicotine dependence-related behavior. Functional connectivity of the brain is dynamic; it changes over time due to different causes such as learning, or quitting a habit. Functional connectivity analysis is useful in discovering and comparing patterns between functional magnetic resonance imaging (fMRI) scans of patients' brains. In the resting state, the patient is asked to remain calm and not do any task to minimize the contribution of external stimuli. The study of resting-state fMRI networks have shown functionally connected brain regions that have a high level of activity during this state. In this project, we are interested in the relationship between these functionally connected brain regions to identify nicotine dependent patients, who underwent a smoking cessation treatment. Our approach is on the comparison of the set of connections between the fMRI scans before and after treatment. We applied support vector machines, a machine learning technique, to classify patients based on receiving the treatment or the placebo. Using the functional connectivity (CONN) toolbox, we were able to form a correlation matrix based on the functional connectivity between different regions of the brain. The experimental results show that there is inadequate predictive information to classify nicotine dependent patients using the SVM classifier. We propose other classification methods be explored to better classify the nicotine dependent patients.

  11. Default-Mode Network Functional Connectivity in Aphasia: Therapy-Induced Neuroplasticity

    Science.gov (United States)

    Marcotte, Karine; Perlbarg, Vincent; Marrelec, Guillaume; Benali, Habib; Ansaldo, Ana Ines

    2013-01-01

    Previous research on participants with aphasia has mainly been based on standard functional neuroimaging analysis. Recent studies have shown that functional connectivity analysis can detect compensatory activity, not revealed by standard analysis. Little is known, however, about the default-mode network in aphasia. In the current study, we studied…

  12. Broca's area network in language function.Broca's area network in language function: A pooling-data connectivity study

    Directory of Open Access Journals (Sweden)

    Byron eBernal

    2015-05-01

    Full Text Available Background and Objective. Modern neuroimaging developments have demonstrated that cognitive functions correlate with brain networks rather than specific areas. The purpose of this paper was to analyze the connectivity of Broca's area based on language tasks. Methods. A connectivity modeling study was performed by pooling data of Broca's activation in language tasks. Fifty-seven papers that included 883 subjects in 84 experiments were analyzed. Analysis of Likelihood Estimates of pooled data was utilized to generate the map; thresholds at p < 0.01 were corrected for multiple comparisons and false discovery rate. Resulting images were co-registered into MNI standard space. Results. A network consisting of 16 clusters of activation was obtained. Main clusters were located in the frontal operculum, left posterior temporal region, supplementary motor area, and the parietal lobe. Less common clusters were seen in the sub-cortical structures including the left thalamus, left putamen, secondary visual areas and the right cerebellum. Conclusions. BA44-related networks involved in language processing were demonstrated utilizing a pooling-data connectivity study. Significance, interpretation and limitations of the results are discussed.

  13. Complex network analysis of brain functional connectivity under a multi-step cognitive task

    Science.gov (United States)

    Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun

    2017-01-01

    Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.

  14. Independent functional connectivity networks underpin food and monetary reward sensitivity in excess weight.

    Science.gov (United States)

    Verdejo-Román, Juan; Fornito, Alex; Soriano-Mas, Carles; Vilar-López, Raquel; Verdejo-García, Antonio

    2017-02-01

    Overvaluation of palatable food is a primary driver of obesity, and is associated with brain regions of the reward system. However, it remains unclear if this network is specialized in food reward, or generally involved in reward processing. We used functional magnetic resonance imaging (fMRI) to characterize functional connectivity during processing of food and monetary rewards. Thirty-nine adults with excess weight and 37 adults with normal weight performed the Willingness to Pay for Food task and the Monetary Incentive Delay task in the fMRI scanner. A data-driven graph approach was applied to compare whole-brain, task-related functional connectivity between groups. Excess weight was associated with decreased functional connectivity during the processing of food rewards in a network involving primarily frontal and striatal areas, and increased functional connectivity during the processing of monetary rewards in a network involving principally frontal and parietal areas. These two networks were topologically and anatomically distinct, and were independently associated with BMI. The processing of food and monetary rewards involve segregated neural networks, and both are altered in individuals with excess weight. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Local GABA concentration is related to network-level resting functional connectivity.

    Science.gov (United States)

    Stagg, Charlotte J; Bachtiar, Velicia; Amadi, Ugwechi; Gudberg, Christel A; Ilie, Andrei S; Sampaio-Baptista, Cassandra; O'Shea, Jacinta; Woolrich, Mark; Smith, Stephen M; Filippini, Nicola; Near, Jamie; Johansen-Berg, Heidi

    2014-03-25

    Anatomically plausible networks of functionally inter-connected regions have been reliably demonstrated at rest, although the neurochemical basis of these 'resting state networks' is not well understood. In this study, we combined magnetic resonance spectroscopy (MRS) and resting state fMRI and demonstrated an inverse relationship between levels of the inhibitory neurotransmitter GABA within the primary motor cortex (M1) and the strength of functional connectivity across the resting motor network. This relationship was both neurochemically and anatomically specific. We then went on to show that anodal transcranial direct current stimulation (tDCS), an intervention previously shown to decrease GABA levels within M1, increased resting motor network connectivity. We therefore suggest that network-level functional connectivity within the motor system is related to the degree of inhibition in M1, a major node within the motor network, a finding in line with converging evidence from both simulation and empirical studies. DOI: http://dx.doi.org/10.7554/eLife.01465.001.

  16. Distinct functional connectivity of limbic network in the washing type obsessive-compulsive disorder.

    Science.gov (United States)

    Jhung, Kyungun; Ku, Jeonghun; Kim, Se Joo; Lee, Hyeongrae; Kim, Kyung Ran; An, Suk Kyoon; Kim, Sun I; Yoon, Kang-Jun; Lee, Eun

    2014-08-04

    Neurobiological models of obsessive-compulsive disorder (OCD) emphasize disturbances of the corticostriatal circuit, but it remains unclear as to how these complex network dysfunctions correspond to heterogeneous OCD phenotypes. We aimed to investigate corticostriatal functional connectivity alterations distinct to OCD characterized predominantly by contamination/washing symptoms. Functional connectivity strengths of the striatal seed regions with remaining brain regions during the resting condition and the contamination symptom provocation condition were compared among 13 OCD patients with predominant contamination/washing symptoms (CON), 13 OCD patients without these symptoms (NCON), and 18 healthy controls. The CON group showed distinctively altered functional connectivity between the ventral striatum and the insula during both the resting and symptom-provoking conditions. Also, the connectivity strength between the ventral striatum and the insula significantly correlated with contamination/washing symptom severity. As common connectivity alterations of the whole OCD subjects, corticostriatal circuits involving the orbitofrontal and temporal cortices were again confirmed. To our knowledge, this is the first study that examined specific abnormalities in functional connectivity of contamination/washing symptom dimension OCD. The findings suggest limbic network dysfunctions to play a pivotal role in contamination/washing symptoms, possibly associated with emotionally salient error awareness. Our study sample allowed us to evaluate the corticostriatal network dysfunction underlying the contamination/washing symptom dimension, which leaves other major symptom dimensions to be explored in the future. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Algebraic Topology of Multi-Brain Connectivity Networks Reveals Dissimilarity in Functional Patterns during Spoken Communications.

    Science.gov (United States)

    Tadić, Bosiljka; Andjelković, Miroslav; Boshkoska, Biljana Mileva; Levnajić, Zoran

    2016-01-01

    Human behaviour in various circumstances mirrors the corresponding brain connectivity patterns, which are suitably represented by functional brain networks. While the objective analysis of these networks by graph theory tools deepened our understanding of brain functions, the multi-brain structures and connections underlying human social behaviour remain largely unexplored. In this study, we analyse the aggregate graph that maps coordination of EEG signals previously recorded during spoken communications in two groups of six listeners and two speakers. Applying an innovative approach based on the algebraic topology of graphs, we analyse higher-order topological complexes consisting of mutually interwoven cliques of a high order to which the identified functional connections organise. Our results reveal that the topological quantifiers provide new suitable measures for differences in the brain activity patterns and inter-brain synchronisation between speakers and listeners. Moreover, the higher topological complexity correlates with the listener's concentration to the story, confirmed by self-rating, and closeness to the speaker's brain activity pattern, which is measured by network-to-network distance. The connectivity structures of the frontal and parietal lobe consistently constitute distinct clusters, which extend across the listener's group. Formally, the topology quantifiers of the multi-brain communities exceed the sum of those of the participating individuals and also reflect the listener's rated attributes of the speaker and the narrated subject. In the broader context, the presented study exposes the relevance of higher topological structures (besides standard graph measures) for characterising functional brain networks under different stimuli.

  18. Algebraic Topology of Multi-Brain Connectivity Networks Reveals Dissimilarity in Functional Patterns during Spoken Communications.

    Directory of Open Access Journals (Sweden)

    Bosiljka Tadić

    Full Text Available Human behaviour in various circumstances mirrors the corresponding brain connectivity patterns, which are suitably represented by functional brain networks. While the objective analysis of these networks by graph theory tools deepened our understanding of brain functions, the multi-brain structures and connections underlying human social behaviour remain largely unexplored. In this study, we analyse the aggregate graph that maps coordination of EEG signals previously recorded during spoken communications in two groups of six listeners and two speakers. Applying an innovative approach based on the algebraic topology of graphs, we analyse higher-order topological complexes consisting of mutually interwoven cliques of a high order to which the identified functional connections organise. Our results reveal that the topological quantifiers provide new suitable measures for differences in the brain activity patterns and inter-brain synchronisation between speakers and listeners. Moreover, the higher topological complexity correlates with the listener's concentration to the story, confirmed by self-rating, and closeness to the speaker's brain activity pattern, which is measured by network-to-network distance. The connectivity structures of the frontal and parietal lobe consistently constitute distinct clusters, which extend across the listener's group. Formally, the topology quantifiers of the multi-brain communities exceed the sum of those of the participating individuals and also reflect the listener's rated attributes of the speaker and the narrated subject. In the broader context, the presented study exposes the relevance of higher topological structures (besides standard graph measures for characterising functional brain networks under different stimuli.

  19. Network-based analysis reveals functional connectivity related to internet addiction tendency

    Directory of Open Access Journals (Sweden)

    Tanya eWen

    2016-02-01

    Full Text Available IntroductionPreoccupation and compulsive use of the internet can have negative psychological effects, such that it is increasingly being recognized as a mental disorder. The present study employed network-based statistics to explore how whole-brain functional connections at rest is related to the extent of individual’s level of internet addiction, indexed by a self-rated questionnaire. We identified two topologically significant networks, one with connections that are positively correlated with internet addiction tendency, and one with connections negatively correlated with internet addiction tendency. The two networks are interconnected mostly at frontal regions, which might reflect alterations in the frontal region for different aspects of cognitive control (i.e., for control of internet usage and gaming skills. Next, we categorized the brain into several large regional subgroupings, and found that the majority of proportions of connections in the two networks correspond to the cerebellar model of addiction which encompasses the four-circuit model. Lastly, we observed that the brain regions with the most inter-regional connections associated with internet addiction tendency replicate those often seen in addiction literature, and is corroborated by our meta-analysis of internet addiction studies. This research provides a better understanding of large-scale networks involved in internet addiction tendency and shows that pre-clinical levels of internet addiction are associated with similar regions and connections as clinical cases of addiction.

  20. Inferring the physical connectivity of complex networks from their functional dynamics

    Directory of Open Access Journals (Sweden)

    Holm Liisa

    2010-05-01

    Full Text Available Abstract Background Biological networks, such as protein-protein interactions, metabolic, signalling, transcription-regulatory networks and neural synapses, are representations of large-scale dynamic systems. The relationship between the network structure and functions remains one of the central problems in current multidisciplinary research. Significant progress has been made toward understanding the implication of topological features for the network dynamics and functions, especially in biological networks. Given observations of a network system's behaviours or measurements of its functional dynamics, what can we conclude of the details of physical connectivity of the underlying structure? Results We modelled the network system by employing a scale-free network of coupled phase oscillators. Pairwise phase coherence (PPC was calculated for all the pairs of oscillators to present functional dynamics induced by the system. At the regime of global incoherence, we observed a Significant pairwise synchronization only between two nodes that are physically connected. Right after the onset of global synchronization, disconnected nodes begin to oscillate in a correlated fashion and the PPC of two nodes, either connected or disconnected, depends on their degrees. Based on the observation of PPCs, we built a weighted network of synchronization (WNS, an all-to-all functionally connected network where each link is weighted by the PPC of two oscillators at the ends of the link. In the regime of strong coupling, we observed a Significant similarity in the organization of WNSs induced by systems sharing the same substrate network but different configurations of initial phases and intrinsic frequencies of oscillators. We reconstruct physical network from the WNS by choosing the links whose weights are higher than a given threshold. We observed an optimal reconstruction just before the onset of global synchronization. Finally, we correlated the topology of the

  1. Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network

    Directory of Open Access Journals (Sweden)

    Fukuda eMegumi

    2015-03-01

    Full Text Available Motor or perceptual learning is known to influence functional connectivity between brain regions and induce short-term changes in the intrinsic functional networks revealed as correlations in slow blood-oxygen-level dependent (BOLD signal fluctuations. However, no cause-and-effect relationship has been elucidated between a specific change in connectivity and a long-term change in global networks. Here, we examine the hypothesis that functional connectivity (i.e. temporal correlation between two regions is increased and preserved for a long time when two regions are simultaneously activated or deactivated. Using the connectivity-neurofeedback training paradigm, subjects successfully learned to increase the correlation of activity between the lateral parietal and primary motor areas, regions that belong to different intrinsic networks and negatively correlated before training under the resting conditions. Furthermore, whole-brain hypothesis-free analysis as well as functional network analyses demonstrated that the correlation in the resting state between these areas as well as the correlation between the intrinsic networks that include the areas increased for at least two months. These findings indicate that the connectivity-neurofeedback training can cause long-term changes in intrinsic connectivity and that intrinsic networks can be shaped by experience-driven modulation of regional correlation.

  2. Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network

    Science.gov (United States)

    Megumi, Fukuda; Yamashita, Ayumu; Kawato, Mitsuo; Imamizu, Hiroshi

    2015-01-01

    Motor or perceptual learning is known to influence functional connectivity between brain regions and induce short-term changes in the intrinsic functional networks revealed as correlations in slow blood-oxygen-level dependent (BOLD) signal fluctuations. However, no cause-and-effect relationship has been elucidated between a specific change in connectivity and a long-term change in global networks. Here, we examine the hypothesis that functional connectivity (i.e., temporal correlation between two regions) is increased and preserved for a long time when two regions are simultaneously activated or deactivated. Using the connectivity-neurofeedback training paradigm, subjects successfully learned to increase the correlation of activity between the lateral parietal and primary motor areas, regions that belong to different intrinsic networks and negatively correlated before training under the resting conditions. Furthermore, whole-brain hypothesis-free analysis as well as functional network analyses demonstrated that the correlation in the resting state between these areas as well as the correlation between the intrinsic networks that include the areas increased for at least 2 months. These findings indicate that the connectivity-neurofeedback training can cause long-term changes in intrinsic connectivity and that intrinsic networks can be shaped by experience-driven modulation of regional correlation. PMID:25870552

  3. Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development.

    Science.gov (United States)

    Uddin, Lucina Q; Supekar, Kaustubh S; Ryali, Srikanth; Menon, Vinod

    2011-12-14

    Brain structural and functional development, throughout childhood and into adulthood, underlies the maturation of increasingly sophisticated cognitive abilities. High-level attentional and cognitive control processes rely on the integrity of, and dynamic interactions between, core neurocognitive networks. The right fronto-insular cortex (rFIC) is a critical component of a salience network (SN) that mediates interactions between large-scale brain networks involved in externally oriented attention [central executive network (CEN)] and internally oriented cognition [default mode network (DMN)]. How these systems reconfigure and mature with development is a critical question for cognitive neuroscience, with implications for neurodevelopmental pathologies affecting brain connectivity. Using functional and effective connectivity measures applied to fMRI data, we examine interactions within and between the SN, CEN, and DMN. We find that functional coupling between key network nodes is stronger in adults than in children, as are causal links emanating from the rFIC. Specifically, the causal influence of the rFIC on nodes of the SN and CEN was significantly greater in adults compared with children. Notably, these results were entirely replicated on an independent dataset of matched children and adults. Developmental changes in functional and effective connectivity were related to structural connectivity along these links. Diffusion tensor imaging tractography revealed increased structural integrity in adults compared with children along both within- and between-network pathways associated with the rFIC. These results suggest that structural and functional maturation of rFIC pathways is a critical component of the process by which human brain networks mature during development to support complex, flexible cognitive processes in adulthood.

  4. Functional connectivity within and between intrinsic brain networks correlates with trait mind wandering.

    Science.gov (United States)

    Godwin, Christine A; Hunter, Michael A; Bezdek, Matthew A; Lieberman, Gregory; Elkin-Frankston, Seth; Romero, Victoria L; Witkiewitz, Katie; Clark, Vincent P; Schumacher, Eric H

    2017-08-01

    Individual differences across a variety of cognitive processes are functionally associated with individual differences in intrinsic networks such as the default mode network (DMN). The extent to which these networks correlate or anticorrelate has been associated with performance in a variety of circumstances. Despite the established role of the DMN in mind wandering processes, little research has investigated how large-scale brain networks at rest relate to mind wandering tendencies outside the laboratory. Here we examine the extent to which the DMN, along with the dorsal attention network (DAN) and frontoparietal control network (FPCN) correlate with the tendency to mind wander in daily life. Participants completed the Mind Wandering Questionnaire and a 5-min resting state fMRI scan. In addition, participants completed measures of executive function, fluid intelligence, and creativity. We observed significant positive correlations between trait mind wandering and 1) increased DMN connectivity at rest and 2) increased connectivity between the DMN and FPCN at rest. Lastly, we found significant positive correlations between trait mind wandering and fluid intelligence (Ravens) and creativity (Remote Associates Task). We interpret these findings within the context of current theories of mind wandering and executive function and discuss the possibility that certain instances of mind wandering may not be inherently harmful. Due to the controversial nature of global signal regression (GSReg) in functional connectivity analyses, we performed our analyses with and without GSReg and contrast the results from each set of analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Increased functional connectivity within memory networks following memory rehabilitation in multiple sclerosis.

    Science.gov (United States)

    Leavitt, Victoria M; Wylie, Glenn R; Girgis, Peter A; DeLuca, John; Chiaravalloti, Nancy D

    2014-09-01

    Identifying effective behavioral treatments to improve memory in persons with learning and memory impairment is a primary goal for neurorehabilitation researchers. Memory deficits are the most common cognitive symptom in multiple sclerosis (MS), and hold negative professional and personal consequences for people who are often in the prime of their lives when diagnosed. A 10-session behavioral treatment, the modified Story Memory Technique (mSMT), was studied in a randomized, placebo-controlled clinical trial. Behavioral improvements and increased fMRI activation were shown after treatment. Here, connectivity within the neural networks underlying memory function was examined with resting-state functional connectivity (RSFC) in a subset of participants from the clinical trial. We hypothesized that the treatment would result in increased integrity of connections within two primary memory networks of the brain, the hippocampal memory network, and the default network (DN). Seeds were placed in left and right hippocampus, and the posterior cingulate cortex. Increased connectivity was found between left hippocampus and cortical regions specifically involved in memory for visual imagery, as well as among critical hubs of the DN. These results represent the first evidence for efficacy of a behavioral intervention to impact the integrity of neural networks subserving memory functions in persons with MS.

  6. Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia.

    Science.gov (United States)

    Alexander-Bloch, Aaron F; Gogtay, Nitin; Meunier, David; Birn, Rasmus; Clasen, Liv; Lalonde, Francois; Lenroot, Rhoshel; Giedd, Jay; Bullmore, Edward T

    2010-01-01

    Modularity is a fundamental concept in systems neuroscience, referring to the formation of local cliques or modules of densely intra-connected nodes that are sparsely inter-connected with nodes in other modules. Topological modularity of brain functional networks can quantify theoretically anticipated abnormality of brain network community structure - so-called dysmodularity - in developmental disorders such as childhood-onset schizophrenia (COS). We used graph theory to investigate topology of networks derived from resting-state fMRI data on 13 COS patients and 19 healthy volunteers. We measured functional connectivity between each pair of 100 regional nodes, focusing on wavelet correlation in the frequency interval 0.05-0.1 Hz, then applied global and local thresholding rules to construct graphs from each individual association matrix over the full range of possible connection densities. We show how local thresholding based on the minimum spanning tree facilitates group comparisons of networks by forcing the connectedness of sparse graphs. Threshold-dependent graph theoretical results are compatible with the results of a k-means unsupervised learning algorithm and a multi-resolution (spin glass) approach to modularity, both of which also find community structure but do not require thresholding of the association matrix. In general modularity of brain functional networks was significantly reduced in COS, due to a relatively reduced density of intra-modular connections between neighboring regions. Other network measures of local organization such as clustering were also decreased, while complementary measures of global efficiency and robustness were increased, in the COS group. The group differences in complex network properties were mirrored by differences in simpler statistical properties of the data, such as the variability of the global time series and the internal homogeneity of the time series within anatomical regions of interest.

  7. Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia

    Directory of Open Access Journals (Sweden)

    Aaron F Alexander-Bloch

    2010-10-01

    Full Text Available Modularity is a fundamental concept in systems neuroscience, referring to the formation of local cliques or modules of densely intra-connected nodes that are sparsely inter-connected with nodes in other modules. Topological modularity of brain functional networks can quantify theoretically anticipated abnormality of brain network community structure--so called dysmodularity--in developmental disorders such as childhood-onset schizophrenia (COS. We used graph theory to investigate topology of networks derived from resting-state fMRI data on 13 COS patients and 19 healthy volunteers. We measured functional connectivity between each pair of 100 regional nodes, focusing on wavelet correlation in the frequency interval 0.05-0.1 Hz, then applied global and local thresholding rules to construct graphs from each individual association matrix over the full range of possible connection densities. We show how local thresholding based on the minimum spanning tree facilitates group comparisons of networks by forcing the connectedness of sparse graphs. Threshold-dependent graph theoretical results are compatible with the results of a k-means unsupervised learning algorithm and a multi-resolution (spin glass approach to modularity, both of which also find community structure but do not require thresholding of the association matrix. In general modularity of brain functional networks was significantly reduced in COS, due to a relatively reduced density of intra-modular connections between neighboring regions. Other network measures of local organization such as clustering were also decreased, while complementary measures of global efficiency and robustness were increased, in the COS group. The group differences in complex network properties were mirrored by differences in simpler statistical properties of the data, such as the variability of the global time series and the internal homogeneity of the time series within anatomical regions of interest.

  8. Aberrant limbic and salience network resting-state functional connectivity in panic disorder without comorbidity

    NARCIS (Netherlands)

    Pannekoek, Justine Nienke; Veer, Ilya M.; van Tol, Marie-Jose; van der Werff, Steven J. A.; Demenescu, Liliana R.; Aleman, Andre; Veltman, Dick J.; Zitman, Frans G.; Rombouts, Serge A. R. B.; van der wee, Nic J. A.

    2013-01-01

    Background: Panic disorder (PD) is a prevalent and debilitating disorder but its neurobiology is still poorly understood. We investigated resting-state functional connectivity (RSFC) in PD without comorbidity in three networks that have been linked to PD before. This could provide new insights in

  9. Aberrant functional connectivity of default-mode network in type 2 diabetes patients

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ying; Jiao, Yun; Chen, Hua-Jun; Ding, Jie; Luo, Bing; Peng, Cheng-Yu; Ju, Sheng-Hong; Teng, Gao-Jun [Medical School of Southeast University, Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Nanjing, Jiangsu (China)

    2015-11-15

    Type 2 diabetes mellitus is associated with increased risk for dementia. Patients with impaired cognition often show default-mode network disruption. We aimed to investigate the integrity of a default-mode network in diabetic patients by using independent component analysis, and to explore the relationship between network abnormalities, neurocognitive performance and diabetic variables. Forty-two patients with type 2 diabetes and 42 well-matched healthy controls were included and underwent resting-state functional MRI in a 3 Tesla unit. Independent component analysis was adopted to extract the default-mode network, including its anterior and posterior components. Z-maps of both sub-networks were compared between the two groups and correlated with each clinical variable. Patients showed increased connectivity around the medial prefrontal cortex in the anterior sub-network, but decreased connectivity around the posterior cingulate cortex in the posterior sub-network. The decreased connectivity in the posterior part was significantly correlated with the score on Complex Figure Test-delay recall test (r = 0.359, p = 0.020), the time spent on Trail-Making Test-part B (r = -0.346, p = 0.025) and the insulin resistance level (r = -0.404, p = 0.024). Dissociation pattern in the default-mode network was found in diabetic patients, which might provide powerful new insights into the neural mechanisms that underlie the diabetes-related cognitive decline. (orig.)

  10. Interferon-α acutely impairs whole-brain functional connectivity network architecture - A preliminary study.

    Science.gov (United States)

    Dipasquale, Ottavia; Cooper, Ella A; Tibble, Jeremy; Voon, Valerie; Baglio, Francesca; Baselli, Giuseppe; Cercignani, Mara; Harrison, Neil A

    2016-11-01

    Interferon-alpha (IFN-α) is a key mediator of antiviral immune responses used to treat Hepatitis C infection. Though clinically effective, IFN-α rapidly impairs mood, motivation and cognition, effects that can appear indistinguishable from major depression and provide powerful empirical support for the inflammation theory of depression. Though inflammation has been shown to modulate activity within discrete brain regions, how it affects distributed information processing and the architecture of whole brain functional connectivity networks have not previously been investigated. Here we use a graph theoretic analysis of resting state functional magnetic resonance imaging (rfMRI) to investigate acute effects of systemic interferon-alpha (IFN-α) on whole brain functional connectivity architecture and its relationship to IFN-α-induced mood change. Twenty-two patients with Hepatitis-C infection, initiating IFN-α-based therapy were scanned at baseline and 4h after their first IFN-α dose. The whole brain network was parcellated into 110 cortical and sub-cortical nodes based on the Oxford-Harvard Atlas and effects assessed on higher-level graph metrics, including node degree, betweenness centrality, global and local efficiency. IFN-α was associated with a significant reduction in global network connectivity (node degree) (p=0.033) and efficiency (p=0.013), indicating a global reduction of information transfer among the nodes forming the whole brain network. Effects were similar for highly connected (hub) and non-hub nodes, with no effect on betweenness centrality (p>0.1). At a local level, we identified regions with reduced efficiency of information exchange and a sub-network with decreased functional connectivity after IFN-α. Changes in local and particularly global functional connectivity correlated with associated changes in mood measured on the Profile of Mood States (POMS) questionnaire. IFN-α rapidly induced a profound shift in whole brain network structure

  11. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Kim, Ho Sung; Kim, Sang Joon; Shim, Woo Hyun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-Gu, Seoul (Korea, Republic of); Kim, Jeong Hoon [University of Ulsan College of Medicine, Department of Neurosurgery, Asan Medical Center, Seoul (Korea, Republic of)

    2016-03-15

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  12. Complex networks of functional connectivity in a wetland reconnected to its floodplain

    Science.gov (United States)

    Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson

    2017-01-01

    Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a “biotic filter,” shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.

  13. Reduced functional connectivity of fronto-parietal sustained attention networks in severe childhood abuse.

    Directory of Open Access Journals (Sweden)

    Heledd Hart

    Full Text Available Childhood maltreatment is associated with attention deficits. We examined the effect of childhood abuse and abuse-by-gene (5-HTTLPR, MAOA, FKBP5 interaction on functional brain connectivity during sustained attention in medication/drug-free adolescents. Functional connectivity was compared, using generalised psychophysiological interaction (gPPI analysis of functional magnetic resonance imaging (fMRI data, between 21 age-and gender-matched adolescents exposed to severe childhood abuse and 27 healthy controls, while they performed a parametrically modulated vigilance task requiring target detection with a progressively increasing load of sustained attention. Behaviourally, participants exposed to childhood abuse had increased omission errors compared to healthy controls. During the most challenging attention condition abused participants relative to controls exhibited reduced connectivity, with a left-hemispheric bias, in typical fronto-parietal attention networks, including dorsolateral, rostromedial and inferior prefrontal and inferior parietal regions. Abuse-related connectivity abnormalities were exacerbated in individuals homozygous for the risky C-allele of the single nucleotide polymorphism rs3800373 of the FK506 Binding Protein 5 (FKBP5 gene. Findings suggest that childhood abuse is associated with decreased functional connectivity in fronto-parietal attention networks and that the FKBP5 genotype moderates neurobiological vulnerability to abuse. These findings represent a first step towards the delineation of abuse-related neurofunctional connectivity abnormalities, which hopefully will facilitate the development of specific treatment strategies for victims of childhood maltreatment.

  14. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience.

    Science.gov (United States)

    Wijngaarden, M A; Veer, I M; Rombouts, S A R B; van Buchem, M A; Willems van Dijk, K; Pijl, H; van der Grond, J

    2015-01-01

    We hypothesized that brain circuits involved in reward and salience respond differently to fasting in obese versus lean individuals. We compared functional connectivity networks related to food reward and saliency after an overnight fast (baseline) and after a prolonged fast of 48 h in lean versus obese subjects. We included 13 obese (2 males, 11 females, BMI 35.4 ± 1.2 kg/m(2), age 31 ± 3 years) and 11 lean subjects (2 males, 9 females, BMI 23.2 ± 0.5 kg/m(2), age 28 ± 3 years). Resting-state functional magnetic resonance imaging scans were made after an overnight fast (baseline) and after a prolonged 48 h fast. Functional connectivity of the amygdala, hypothalamus and posterior cingulate cortex (default-mode) networks was assessed using seed-based correlations. At baseline, we found a stronger connectivity between hypothalamus and left insula in the obese subjects. This effect diminished upon the prolonged fast. After prolonged fasting, connectivity of the hypothalamus with the dorsal anterior cingulate cortex (dACC) increased in lean subjects and decreased in obese subjects. Amygdala connectivity with the ventromedial prefrontal cortex was stronger in lean subjects at baseline, which did not change upon the prolonged fast. No differences in posterior cingulate cortex connectivity were observed. In conclusion, obesity is marked by alterations in functional connectivity networks involved in food reward and salience. Prolonged fasting differentially affected hypothalamic connections with the dACC and the insula between obese and lean subjects. Our data support the idea that food reward and nutrient deprivation are differently perceived and/or processed in obesity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A Multimodal Approach for Determining Brain Networks by Jointly Modeling Functional and Structural Connectivity

    Directory of Open Access Journals (Sweden)

    Wenqiong eXue

    2015-02-01

    Full Text Available Recent innovations in neuroimaging technology have provided opportunities for researchers to investigate connectivity in the human brain by examining the anatomical circuitry as well as functional relationships between brain regions. Existing statistical approaches for connectivity generally examine resting-state or task-related functional connectivity (FC between brain regions or separately examine structural linkages. As a means to determine brain networks, we present a unified Bayesian framework for analyzing FC utilizing the knowledge of associated structural connections, which extends an approach by Patel et al.(2006a that considers only functional data. We introduce an FC measure that rests upon assessments of functional coherence between regional brain activity identified from functional magnetic resonance imaging (fMRI data. Our structural connectivity (SC information is drawn from diffusion tensor imaging (DTI data, which is used to quantify probabilities of SC between brain regions. We formulate a prior distribution for FC that depends upon the probability of SC between brain regions, with this dependence adhering to structural-functional links revealed by our fMRI and DTI data. We further characterize the functional hierarchy of functionally connected brain regions by defining an ascendancy measure that compares the marginal probabilities of elevated activity between regions. In addition, we describe topological properties of the network, which is composed of connected region pairs, by performing graph theoretic analyses. We demonstrate the use of our Bayesian model using fMRI and DTI data from a study of auditory processing. We further illustrate the advantages of our method by comparisons to methods that only incorporate functional information.

  16. A multimodal approach for determining brain networks by jointly modeling functional and structural connectivity.

    Science.gov (United States)

    Xue, Wenqiong; Bowman, F DuBois; Pileggi, Anthony V; Mayer, Andrew R

    2015-01-01

    Recent innovations in neuroimaging technology have provided opportunities for researchers to investigate connectivity in the human brain by examining the anatomical circuitry as well as functional relationships between brain regions. Existing statistical approaches for connectivity generally examine resting-state or task-related functional connectivity (FC) between brain regions or separately examine structural linkages. As a means to determine brain networks, we present a unified Bayesian framework for analyzing FC utilizing the knowledge of associated structural connections, which extends an approach by Patel et al. (2006a) that considers only functional data. We introduce an FC measure that rests upon assessments of functional coherence between regional brain activity identified from functional magnetic resonance imaging (fMRI) data. Our structural connectivity (SC) information is drawn from diffusion tensor imaging (DTI) data, which is used to quantify probabilities of SC between brain regions. We formulate a prior distribution for FC that depends upon the probability of SC between brain regions, with this dependence adhering to structural-functional links revealed by our fMRI and DTI data. We further characterize the functional hierarchy of functionally connected brain regions by defining an ascendancy measure that compares the marginal probabilities of elevated activity between regions. In addition, we describe topological properties of the network, which is composed of connected region pairs, by performing graph theoretic analyses. We demonstrate the use of our Bayesian model using fMRI and DTI data from a study of auditory processing. We further illustrate the advantages of our method by comparisons to methods that only incorporate functional information.

  17. Whole-brain functional connectivity during acquisition of novel grammar: Distinct functional networks depend on language learning abilities.

    Science.gov (United States)

    Kepinska, Olga; de Rover, Mischa; Caspers, Johanneke; Schiller, Niels O

    2017-03-01

    In an effort to advance the understanding of brain function and organisation accompanying second language learning, we investigate the neural substrates of novel grammar learning in a group of healthy adults, consisting of participants with high and average language analytical abilities (LAA). By means of an Independent Components Analysis, a data-driven approach to functional connectivity of the brain, the fMRI data collected during a grammar-learning task were decomposed into maps representing separate cognitive processes. These included the default mode, task-positive, working memory, visual, cerebellar and emotional networks. We further tested for differences within the components, representing individual differences between the High and Average LAA learners. We found high analytical abilities to be coupled with stronger contributions to the task-positive network from areas adjacent to bilateral Broca's region, stronger connectivity within the working memory network and within the emotional network. Average LAA participants displayed stronger engagement within the task-positive network from areas adjacent to the right-hemisphere homologue of Broca's region and typical to lower level processing (visual word recognition), and increased connectivity within the default mode network. The significance of each of the identified networks for the grammar learning process is presented next to a discussion on the established markers of inter-individual learners' differences. We conclude that in terms of functional connectivity, the engagement of brain's networks during grammar acquisition is coupled with one's language learning abilities. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum☆

    Science.gov (United States)

    Verly, Marjolein; Verhoeven, Judith; Zink, Inge; Mantini, Dante; Peeters, Ronald; Deprez, Sabine; Emsell, Louise; Boets, Bart; Noens, Ilse; Steyaert, Jean; Lagae, Lieven; De Cock, Paul; Rommel, Nathalie; Sunaert, Stefan

    2014-01-01

    The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD). Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19) and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI. PMID:24567909

  19. Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum

    Directory of Open Access Journals (Sweden)

    Marjolein Verly

    2014-01-01

    Full Text Available The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD. Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19 and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI.

  20. Hyperthermia-induced disruption of functional connectivity in the human brain network.

    Directory of Open Access Journals (Sweden)

    Gang Sun

    Full Text Available BACKGROUND: Passive hyperthermia is a potential risk factor to human cognitive performance and work behavior in many extreme work environments. Previous studies have demonstrated significant effects of passive hyperthermia on human cognitive performance and work behavior. However, there is a lack of a clear understanding of the exact affected brain regions and inter-regional connectivities. METHODOLOGY AND PRINCIPAL FINDINGS: We simulated 1 hour environmental heat exposure to thirty-six participants under two environmental temperature conditions (25 °C and 50 °C, and collected resting-state functional brain activity. The functional connectivities with a preselected region of interest (ROI in the posterior cingulate cortex and precuneus (PCC/PCu, furthermore, inter-regional connectivities throughout the entire brain using a prior Anatomical Automatic Labeling (AAL atlas were calculated. We identified decreased correlations of a set of regions with the PCC/PCu, including the medial orbitofrontal cortex (mOFC and bilateral medial temporal cortex, as well as increased correlations with the partial orbitofrontal cortex particularly in the bilateral orbital superior frontal gyrus. Compared with the normal control (NC group, the hyperthermia (HT group showed 65 disturbed functional connectivities with 50 of them being decreased and 15 of them being increased. While the decreased correlations mainly involved with the mOFC, temporal lobe and occipital lobe, increased correlations were mainly located within the limbic system. In consideration of physiological system changes, we explored the correlations of the number of significantly altered inter-regional connectivities with differential rectal temperatures and weight loss, but failed to obtain significant correlations. More importantly, during the attention network test (ANT we found that the number of significantly altered functional connectivities was positively correlated with an increase in

  1. Reduced functional connectivity between salience and visual networks in migraine with aura.

    Science.gov (United States)

    Niddam, David M; Lai, Kuan-Lin; Fuh, Jong-Ling; Chuang, Chih-Ying Naomi; Chen, Wei-Ta; Wang, Shuu-Jiun

    2016-01-01

    Migraine with visual aura (MA) is associated with distinct visual disturbances preceding migraine attacks, but shares other visual deficits in between attacks with migraine without aura (MO). Here, we seek to determine if abnormalities specific to interictal MA patients exist in functional brain connectivity of intrinsic cognitive networks. In particular, these networks are involved in top-down modulation of visual processing. Using resting-state functional magnetic resonance imaging, whole-brain functional connectivity maps were derived from seeds placed in the anterior insula and the middle frontal gyrus, key nodes of the salience and dorsal attention networks, respectively. Twenty-six interictal MA patients were compared with 26 matched MO patients and 26 healthy matched controls. The major findings were: connectivity between the anterior insula and occipital areas, including area V3A, was reduced in MA but not in MO. Connectivity changes between the anterior insula and occipital areas further correlated with the headache severity in MA only. The unique pattern of connectivity changes found in interictal MA patients involved area V3A, an area previously implicated in aura generation. Hypoconnectivity to this and other occipital regions may either represent a compensatory response to occipital dysfunctions or predispose MA patients to the development of aura. © International Headache Society 2015.

  2. Aberrant functional connectivity of resting state networks associated with trait anxiety.

    Science.gov (United States)

    Modi, Shilpi; Kumar, Mukesh; Kumar, Pawan; Khushu, Subash

    2015-10-30

    Trait anxiety, a personality dimension, has been characterized by functional consequences such as increased distractibility, attentional bias in favor of threat-related information and hyper-responsive amygdala. However, literature on the association between resting state brain functional connectivity, as studied using resting state functional magnetic resonance imaging (rs-fMRI), and reported anxiety levels in the sub-clinical population is limited. In the present study, we employed rs-fMRI to investigate the possible alterations in the functional integrity of Resting State Networks (RSNs) associated with trait anxiety of the healthy subjects (15 high anxious and 14 low anxious). The rs-fMRI data was analyzed using independent component analysis and a dual regression approach that was applied on 12 RSNs that were identified using FSL. High anxious subjects showed significantly reduced functional connectivity in regions of the default mode network (posterior cingulate gyrus, middle and superior temporal gyrus, planum polare, supramarginal gyrus, temporal pole, angular gyrus and lateral occipital gyrus) which has been suggested to be involved in episodic memory, theory of mind, self-evaluation, and introspection, and perceptual systems including medial visual network, auditory network and another network involving temporal, parieto-occipital and frontal regions. Reduction in resting state connectivity in regions of the perceptual networks might underlie the perceptual, attentional and working memory deficits associated with trait anxiety. To our knowledge, this is the first study to relate trait anxiety to resting state connectivity using independent component analysis. Copyright © 2015. Published by Elsevier Ireland Ltd.

  3. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    In the present paper we consider the allocation of cost in connection networks. Agents have connection demands in form of pairs of locations they want to be connected. Connections between locations are costly to build. The problem is to allocate costs of networks satisfying all connection demands....... We use three axioms to characterize allocation rules that truthfully implement cost minimizing networks satisfying all connection demands in a game where: (1) a central planner announces an allocation rule and a cost estimation rule; (2) every agent reports her own connection demand as well as all...... connection costs; and, (3) the central planner selects a cost minimizing network satisfying reported connection demands based on estimated connection costs and allocates true connection costs of the selected network....

  4. Mindfulness Meditation Training and Executive Control Network Resting State Functional Connectivity: A Randomized Controlled Trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Creswell, J David

    Mindfulness meditation training has been previously shown to enhance behavioral measures of executive control (e.g., attention, working memory, cognitive control), but the neural mechanisms underlying these improvements are largely unknown. Here, we test whether mindfulness training interventions foster executive control by strengthening functional connections between dorsolateral prefrontal cortex (dlPFC)-a hub of the executive control network-and frontoparietal regions that coordinate executive function. Thirty-five adults with elevated levels of psychological distress participated in a 3-day randomized controlled trial of intensive mindfulness meditation or relaxation training. Participants completed a resting state functional magnetic resonance imaging scan before and after the intervention. We tested whether mindfulness meditation training increased resting state functional connectivity (rsFC) between dlPFC and frontoparietal control network regions. Left dlPFC showed increased connectivity to the right inferior frontal gyrus (T = 3.74), right middle frontal gyrus (MFG) (T = 3.98), right supplementary eye field (T = 4.29), right parietal cortex (T = 4.44), and left middle temporal gyrus (T = 3.97, all p < .05) after mindfulness training relative to the relaxation control. Right dlPFC showed increased connectivity to right MFG (T = 4.97, p < .05). We report that mindfulness training increases rsFC between dlPFC and dorsal network (superior parietal lobule, supplementary eye field, MFG) and ventral network (right IFG, middle temporal/angular gyrus) regions. These findings extend previous work showing increased functional connectivity among brain regions associated with executive function during active meditation by identifying specific neural circuits in which rsFC is enhanced by a mindfulness intervention in individuals with high levels of psychological distress. Clinicaltrials.gov,NCT01628809.

  5. Functional connectivity in task-negative network of the Deaf: effects of sign language experience.

    Science.gov (United States)

    Malaia, Evie; Talavage, Thomas M; Wilbur, Ronnie B

    2014-01-01

    Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain's anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud et al., 2013 inter alia). We report the first investigation of the task-negative network in Deaf signers and its functional connectivity-the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG), but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal.

  6. Effects of meditation experience on functional connectivity of distributed brain networks

    Directory of Open Access Journals (Sweden)

    Wendy eHasenkamp

    2012-03-01

    Full Text Available This study sought to examine the effect of meditation experience on brain networks underlying cognitive actions employed during contemplative practice. In a previous study, we proposed a basic model of naturalistic cognitive fluctuations that occur during the practice of focused attention meditation. This model specifies four intervals in a cognitive cycle: mind wandering, awareness of mind wandering, shifting of attention, and sustained attention. Using subjective input from experienced practitioners during meditation, we identified activity in salience network regions during awareness of mind wandering and executive network regions during shifting and sustained attention. Brain regions associated with the default mode were active during mind wandering. In the present study, we reasoned that repeated activation of attentional brain networks over years of practice may induce lasting functional connectivity changes within relevant circuits. To investigate this possibility, we created seeds representing the networks that were active during the four phases of the earlier study, and examined functional connectivity during the resting state in the same participants. Connectivity maps were then contrasted between participants with high vs. low meditation experience. Participants with more meditation experience exhibited increased connectivity within attentional networks, as well as between attentional regions and medial frontal regions. These neural relationships may be involved in the development of cognitive skills, such as maintaining attention and disengaging from distraction, that are often reported with meditation practice. Furthermore, because altered connectivity of brain regions in experienced meditators was observed in a non-meditative (resting state, this may represent a transference of cognitive abilities off the cushion into daily life.

  7. Increase of posterior connectivity in aging within the Ventral Attention Network: A functional connectivity analysis using independent component analysis.

    Science.gov (United States)

    Deslauriers, Johnathan; Ansado, Jennyfer; Marrelec, Guillaume; Provost, Jean-Sébastien; Joanette, Yves

    2017-02-15

    Multiple studies have found neurofunctional changes in normal aging in a context of selective attention. Furthermore, many articles report intrahemispheric alteration in functional networks. However, little is known about age-related changes within the Ventral Attention Network (VAN), which underlies selective attention. The aim of this study is to examine age-related changes within the VAN, focusing on connectivity between its regions. Here we report our findings on the analysis of 27 participants' (13 younger and 14 older healthy adults) BOLD signals as well as their performance on a letter-matching task. We identified the VAN independently for both groups using spatial independent component analysis. Three main findings emerged: First, younger adults were faster and more accurate on the task. Second, older adults had greater connectivity among posterior regions (right temporoparietal junction, right superior parietal lobule, right middle temporal gyrus and left cerebellum crus I) than younger adults but lower connectivity among anterior regions (right anterior insula, right medial superior frontal gyrus and right middle frontal gyrus). Older adults also had more connectivity between anterior and posterior regions than younger adults. Finally, correlations between connectivity and response time on the task showed a trend toward connectivity in posterior regions for the older group and in anterior regions for the younger group. Thus, this study shows that intrahemispheric neurofunctional changes in aging also affect the VAN. The results suggest that, in contexts of selective attention, posterior regions increased in importance for older adults, while anterior regions had reduced centrality. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Disruption to control network function correlates with altered dynamic connectivity in the wider autism spectrum

    Directory of Open Access Journals (Sweden)

    N. de Lacy

    2017-01-01

    Full Text Available Autism is a common developmental condition with a wide, variable range of co-occurring neuropsychiatric symptoms. Contrasting with most extant studies, we explored whole-brain functional organization at multiple levels simultaneously in a large subject group reflecting autism's clinical diversity, and present the first network-based analysis of transient brain states, or dynamic connectivity, in autism. Disruption to inter-network and inter-system connectivity, rather than within individual networks, predominated. We identified coupling disruption in the anterior-posterior default mode axis, and among specific control networks specialized for task start cues and the maintenance of domain-independent task positive status, specifically between the right fronto-parietal and cingulo-opercular networks and default mode network subsystems. These appear to propagate downstream in autism, with significantly dampened subject oscillations between brain states, and dynamic connectivity configuration differences. Our account proposes specific motifs that may provide candidates for neuroimaging biomarkers within heterogeneous clinical populations in this diverse condition.

  9. Broca's area network in language function: a pooling-data connectivity study.

    Science.gov (United States)

    Bernal, Byron; Ardila, Alfredo; Rosselli, Monica

    2015-01-01

    Modern neuroimaging developments have demonstrated that cognitive functions correlate with brain networks rather than specific areas. The purpose of this paper was to analyze the connectivity of Broca's area based on language tasks. A connectivity modeling study was performed by pooling data of Broca's activation in language tasks. Fifty-seven papers that included 883 subjects in 84 experiments were analyzed. Analysis of Likelihood Estimates of pooled data was utilized to generate the map; thresholds at p area, and the parietal lobe. Less common clusters were seen in the sub-cortical structures including the left thalamus, left putamen, secondary visual areas, and the right cerebellum. Broca's area-44-related networks involved in language processing were demonstrated utilizing a pooling-data connectivity study. Significance, interpretation, and limitations of the results are discussed.

  10. The brain network reflecting bodily self-consciousness: a functional connectivity study

    Science.gov (United States)

    Ionta, Silvio; Martuzzi, Roberto; Salomon, Roy

    2014-01-01

    Several brain regions are important for processing self-location and first-person perspective, two important aspects of bodily self-consciousness. However, the interplay between these regions has not been clarified. In addition, while self-location and first-person perspective in healthy subjects are associated with bilateral activity in temporoparietal junction (TPJ), disturbed self-location and first-person perspective result from damage of only the right TPJ. Identifying the involved brain network and understanding the role of hemispheric specializations in encoding self-location and first-person perspective, will provide important information on system-level interactions neurally mediating bodily self-consciousness. Here, we used functional connectivity and showed that right and left TPJ are bilaterally connected to supplementary motor area, ventral premotor cortex, insula, intraparietal sulcus and occipitotemporal cortex. Furthermore, the functional connectivity between right TPJ and right insula had the highest selectivity for changes in self-location and first-person perspective. Finally, functional connectivity revealed hemispheric differences showing that self-location and first-person perspective modulated the connectivity between right TPJ, right posterior insula, and right supplementary motor area, and between left TPJ and right anterior insula. The present data extend previous evidence on healthy populations and clinical observations in neurological deficits, supporting a bilateral, but right-hemispheric dominant, network for bodily self-consciousness. PMID:24396007

  11. Switching between executive and default mode networks in posttraumatic stress disorder: alterations in functional connectivity

    Science.gov (United States)

    Daniels, Judith K.; McFarlane, Alexander C.; Bluhm, Robyn L.; Moores, Kathryn A.; Clark, C. Richard; Shaw, Marnie E.; Williamson, Peter C.; Densmore, Maria; Lanius, Ruth A.

    2010-01-01

    Background Working memory processing and resting-state connectivity in the default mode network are altered in patients with post-traumatic stress disorder (PTSD). Because the ability to effortlessly switch between concentration on a task and an idling state during rest is implicated in both these alterations, we undertook a functional magnetic resonance imaging study with a block design to analyze task-induced modulations in connectivity. Methods We performed a working memory task and psychophysiologic interaction analyses with the posterior cingulate cortex and the medial prefrontal cortex as seed regions during fixation in 12 patients with severe, chronic PTSD and 12 healthy controls. Results During the working memory task, the control group showed significantly stronger connectivity with areas implicated in the salience and executive networks, including the right inferior frontal gyrus and the right inferior parietal lobule. The PTSD group showed stronger connectivity with areas implicated in the default mode network, namely enhanced connectivity between the posterior cingulate cortex and the right superior frontal gyrus and between the medial prefrontal cortex and the left parahip-pocampal gyrus. Limitations Because we were studying alterations in patients with severe, chronic PTSD, we could not exclude patients taking medication. The small sample size may have limited the power of our analyses. To avoid multiple testing in a small sample, we only used 2 seed regions for our analyses. Conclusion The different patterns of connectivity imply significant group differences with task-induced switches (i.e., engaging and disengaging the default mode network and the central-executive network). PMID:20569651

  12. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    2015-01-01

    In the present paper we consider the allocation of costs in connection networks. Agents have connection demands in form of pairs of locations they want to have connected. Connections between locations are costly to build. The problem is to allocate costs of networks satisfying all connection...... demands. We use a few axioms to characterize allocation rules that truthfully implement cost minimizing networks satisfying all connection demands in a game where: (1) a central planner announces an allocation rule and a cost estimation rule; (2) every agent reports her own connection demand as well...... as all connection costs; (3) the central planner selects a cost minimizing network satisfying reported connection demands based on the estimated costs; and, (4) the planner allocates the true costs of the selected network. It turns out that an allocation rule satisfies the axioms if and only if relative...

  13. Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas.

    Science.gov (United States)

    Castillo, Jessica A; Epps, Clinton W; Jeffress, Mackenzie R; Ray, Chris; Rodhouse, Thomas J; Schwalm, Donelle

    2016-09-01

    Landscape connectivity is essential for maintaining viable populations, particularly for species restricted to fragmented habitats or naturally arrayed in metapopulations and facing rapid climate change. The importance of assessing both structural connectivity (physical distribution of favorable habitat patches) and functional connectivity (how species move among habitat patches) for managing such species is well understood. However, the degree to which functional connectivity for a species varies among landscapes, and the resulting implications for conservation, have rarely been assessed. We used a landscape genetics approach to evaluate resistance to gene flow and, thus, to determine how landscape and climate-related variables influence gene flow for American pikas (Ochotona princeps) in eight federally managed sites in the western United States. We used empirically derived, individual-based landscape resistance models in conjunction with predictive occupancy models to generate patch-based network models describing functional landscape connectivity. Metareplication across landscapes enabled identification of limiting factors for dispersal that would not otherwise have been apparent. Despite the cool microclimates characteristic of pika habitat, south-facing aspects consistently represented higher resistance to movement, supporting the previous hypothesis that exposure to relatively high temperatures may limit dispersal in American pikas. We found that other barriers to dispersal included areas with a high degree of topographic relief, such as cliffs and ravines, as well as streams and distances greater than 1-4 km depending on the site. Using the empirically derived network models of habitat patch connectivity, we identified habitat patches that were likely disproportionately important for maintaining functional connectivity, areas in which habitat appeared fragmented, and locations that could be targeted for management actions to improve functional connectivity

  14. Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action.

    Directory of Open Access Journals (Sweden)

    Milan Scheidegger

    Full Text Available Increasing preclinical and clinical evidence underscores the strong and rapid antidepressant properties of the glutamate-modulating NMDA receptor antagonist ketamine. Targeting the glutamatergic system might thus provide a novel molecular strategy for antidepressant treatment. Since glutamate is the most abundant and major excitatory neurotransmitter in the brain, pathophysiological changes in glutamatergic signaling are likely to affect neurobehavioral plasticity, information processing and large-scale changes in functional brain connectivity underlying certain symptoms of major depressive disorder. Using resting state functional magnetic resonance imaging (rsfMRI, the "dorsal nexus "(DN was recently identified as a bilateral dorsal medial prefrontal cortex region showing dramatically increased depression-associated functional connectivity with large portions of a cognitive control network (CCN, the default mode network (DMN, and a rostral affective network (AN. Hence, Sheline and colleagues (2010 proposed that reducing increased connectivity of the DN might play a critical role in reducing depression symptomatology and thus represent a potential therapy target for affective disorders. Here, using a randomized, placebo-controlled, double-blind, crossover rsfMRI challenge in healthy subjects we demonstrate that ketamine decreases functional connectivity of the DMN to the DN and to the pregenual anterior cingulate (PACC and medioprefrontal cortex (MPFC via its representative hub, the posterior cingulate cortex (PCC. These findings in healthy subjects may serve as a model to elucidate potential biomechanisms that are addressed by successful treatment of major depression. This notion is further supported by the temporal overlap of our observation of subacute functional network modulation after 24 hours with the peak of efficacy following an intravenous ketamine administration in treatment-resistant depression.

  15. Functional connectivity in task-negative network of the Deaf: effects of sign language experience

    Directory of Open Access Journals (Sweden)

    Evie Malaia

    2014-06-01

    Full Text Available Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain’s anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud et al., 2013 inter alia. We report the first investigation of the task-negative network in Deaf signers and its functional connectivity—the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG, but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal.

  16. Resting-state network disruption and APOE genotype in Alzheimer's disease: a lagged functional connectivity study.

    Directory of Open Access Journals (Sweden)

    Leonides Canuet

    Full Text Available BACKGROUND: The apolipoprotein E epsilon 4 (APOE-4 is associated with a genetic vulnerability to Alzheimer's disease (AD and with AD-related abnormalities in cortical rhythms. However, it is unclear whether APOE-4 is linked to a specific pattern of intrinsic functional disintegration of the brain after the development of the disease or during its different stages. This study aimed at identifying spatial patterns and effects of APOE genotype on resting-state oscillations and functional connectivity in patients with AD, using a physiological connectivity index called "lagged phase synchronization". METHODOLOGY/PRINCIPAL FINDINGS: Resting EEG was recorded during awake, eyes-closed state in 125 patients with AD and 60 elderly controls. Source current density and functional connectivity were determined using eLORETA. Patients with AD exhibited reduced parieto-occipital alpha oscillations compared with controls, and those carrying the APOE-4 allele had reduced alpha activity in the left inferior parietal and temporo-occipital cortex relative to noncarriers. There was a decreased alpha2 connectivity pattern in AD, involving the left temporal and bilateral parietal cortex. Several brain regions exhibited increased lagged phase synchronization in low frequencies, specifically in the theta band, across and within hemispheres, where temporal lobe connections were particularly compromised. Areas with abnormal theta connectivity correlated with cognitive scores. In patients with early AD, we found an APOE-4-related decrease in interhemispheric alpha connectivity in frontal and parieto-temporal regions. CONCLUSIONS/SIGNIFICANCE: In addition to regional cortical dysfunction, as indicated by abnormal alpha oscillations, there are patterns of functional network disruption affecting theta and alpha bands in AD that associate with the level of cognitive disturbance or with the APOE genotype. These functional patterns of nonlinear connectivity may potentially

  17. Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity

    Science.gov (United States)

    Finn, Emily S.; Shen, Xilin; Holahan, John M.; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E.; Shaywitz, Bennett A.; Constable, R. Todd

    2013-01-01

    Background Functional connectivity analyses of fMRI data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which may result in mixing distinct activation timecourses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Methods Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Results Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Conclusions Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words based on their visual properties, while DYS readers recruit altered reading circuits and rely on laborious phonology-based “sounding out” strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. PMID:24124929

  18. A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks

    Science.gov (United States)

    Messé, Arnaud; Hütt, Marc-Thorsten; König, Peter; Hilgetag, Claus C.

    2015-01-01

    The relationship between the structural connectivity (SC) and functional connectivity (FC) of neural systems is a central focus in brain network science. It is an open question, however, how strongly the SC-FC relationship depends on specific topological features of brain networks or the models used for describing excitable dynamics. Using a basic model of discrete excitable units that follow a susceptible - excited - refractory dynamic cycle (SER model), we here analyze how functional connectivity is shaped by the topological features of a neural network, in particular its modularity. We compared the results obtained by the SER model with corresponding simulations by another well established dynamic mechanism, the Fitzhugh-Nagumo model, in order to explore general features of the SC-FC relationship. We showed that apparent discrepancies between the results produced by the two models can be resolved by adjusting the time window of integration of co-activations from which the FC is derived, providing a clearer distinction between co-activations and sequential activations. Thus, network modularity appears as an important factor shaping the FC-SC relationship across different dynamic models.

  19. Increased resting state functional connectivity in the default mode network in recovered anorexia nervosa.

    Science.gov (United States)

    Cowdrey, Felicity A; Filippini, Nicola; Park, Rebecca J; Smith, Stephen M; McCabe, Ciara

    2014-02-01

    Functional brain imaging studies have shown abnormal neural activity in individuals recovered from anorexia nervosa (AN) during both cognitive and emotional task paradigms. It has been suggested that this abnormal activity which persists into recovery might underpin the neurobiology of the disorder and constitute a neural biomarker for AN. However, no study to date has assessed functional changes in neural networks in the absence of task-induced activity in those recovered from AN. Therefore, the aim of this study was to investigate whole brain resting state functional connectivity in nonmedicated women recovered from anorexia nervosa. Functional magnetic resonance imaging scans were obtained from 16 nonmedicated participants recovered from anorexia nervosa and 15 healthy control participants. Independent component analysis revealed functionally relevant resting state networks. Dual regression analysis revealed increased temporal correlation (coherence) in the default mode network (DMN) which is thought to be involved in self-referential processing. Specifically, compared to healthy control participants the recovered anorexia nervosa participants showed increased temporal coherence between the DMN and the precuneus and the dorsolateral prefrontal cortex/inferior frontal gyrus. The findings support the view that dysfunction in resting state functional connectivity in regions involved in self-referential processing and cognitive control might be a vulnerability marker for the development of anorexia nervosa. Copyright © 2012 Wiley Periodicals, Inc.

  20. Temporal Sequence of Hemispheric Network Activation during Semantic Processing: A Functional Network Connectivity Analysis

    Science.gov (United States)

    Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince; Kraut, Michael; Hart, John, Jr.; Pearlson, Godfrey

    2009-01-01

    To explore the temporal sequence of, and the relationship between, the left and right hemispheres (LH and RH) during semantic memory (SM) processing we identified the neural networks involved in the performance of functional MRI semantic object retrieval task (SORT) using group independent component analysis (ICA) in 47 healthy individuals. SORT…

  1. Early math achievement and functional connectivity in the fronto-parietal network.

    Science.gov (United States)

    Emerson, Robert W; Cantlon, Jessica F

    2012-02-15

    In this study we test the hypothesis that the functional connectivity of the frontal and parietal regions that children recruit during a basic numerical task (matching Arabic numerals to arrays of dots) is predictive of their math test scores (TEMA-3; Ginsburg, 2003). Specifically, we tested 4-11-year-old children on a matching task during fMRI to localize a fronto-parietal network that responds more strongly during numerical matching than matching faces, words, or shapes. We then tested the functional connectivity between those regions during an independent task: natural viewing of an educational video that included math topics. Using this novel natural viewing method, we found that the connectivity between frontal and parietal regions during task-independent free-viewing of educational material is correlated with children's basic number matching ability, as well as their scores on the standardized test of mathematical ability (the TEMA). The correlation between children's mathematics scores and fronto-parietal connectivity is math-specific in the sense that it is independent of children's verbal IQ scores. Moreover, a control network, selective for faces, showed no correlation with mathematics performance. Finally, brain regions that correlate with subjects' overall response times in the matching task do not account for our number- and math-related effects. We suggest that the functional intersection of number-related frontal and parietal regions is math-specific. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Decreased functional connectivity in schizophrenia: The relationship between social functioning, social cognition and graph theoretical network measures.

    Science.gov (United States)

    Erdeniz, Burak; Serin, Emin; İbadi, Yelda; Taş, Cumhur

    2017-12-30

    Schizophrenia is a complex disorder in which abnormalities in brain connectivity and social functioning play a central role. The aim of this study is to explore small-world network properties, and understand their relationship with social functioning and social cognition in the context of schizophrenia, by testing functional connectivity differences in network properties and its relation to clinical behavioral measures. Resting-state fMRI time series data were acquired from 23 patients diagnosed with schizophrenia and 23 healthy volunteers. The results revealed that patients with schizophrenia show significantly decreased connectivity between a range of brain regions, particularly involving connections among the right orbitofrontal cortex, bilateral putamen and left amygdala. Furthermore, topological properties of functional brain networks in patients with schizophrenia were characterized by reduced path length compared to healthy controls; however, no significant difference was found for clustering coefficient, local efficiency or global efficiency. Additionally, we found that nodal efficiency of the amygdala and the putamen were significantly correlated with the independence-performance subscale of social functioning scale (SFC), and Reading the Mind in the Eyes test; however, the correlations do not survive correction for multiple comparison. The current results help to clarify the relationship between social functioning deficits and topological brain measures in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Decreased functional connectivity of insula-based network in young adults with internet gaming disorder.

    Science.gov (United States)

    Zhang, Yanzhen; Mei, Wei; Zhang, John X; Wu, Qiulin; Zhang, Wei

    2016-09-01

    The insula is a region that integrates interoception and drug urges, but little is known about its role in behavioral addiction such as internet addiction. We investigated insula-based functional connectivity in participants with internet gaming disorder (IGD) and healthy controls (HC) using resting-state functional MRI. The right and left insula subregions (posterior, ventroanterior, and dorsoanterior) were used as seed regions in a connectivity analysis. Compared with the HC group, the IGD group showed decreased functional connectivity between left posterior insula and bilateral supplementary motor area and middle cingulated cortex, between right posterior insula and right superior frontal gyrus, and decreased functional integration between insular subregions. The finding of reduced functional connectivity between the interoception and the motor/executive control regions is interpreted to reflect reduced ability to inhibit motor responses to internet gaming or diminished executive control over craving for internet gaming in IGD. The results support the hypothesis that IGD is associated with altered insula-based network, similar to substance addiction such as smoking.

  4. Handbook of networking & connectivity

    CERN Document Server

    McClain, Gary R

    1994-01-01

    Handbook of Networking & Connectivity focuses on connectivity standards in use, including hardware and software options. The book serves as a guide for solving specific problems that arise in designing and maintaining organizational networks.The selection first tackles open systems interconnection, guide to digital communications, and implementing TCP/IP in an SNA environment. Discussions focus on elimination of the SNA backbone, routing SNA over internets, connectionless versus connection-oriented networks, internet concepts, application program interfaces, basic principles of layering, proto

  5. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Joana [Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Fernandes, Henrique M.; Van Hartevelt, Tim J.; Kringelbach, Morten L. [Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus (Denmark); James, Anthony C. [Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Highfield Unit, Warneford Hospital, Oxford OX3 7JX (United Kingdom); Deco, Gustavo [Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010 (Spain)

    2013-12-15

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.

  6. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    Science.gov (United States)

    Cabral, Joana; Fernandes, Henrique M.; Van Hartevelt, Tim J.; James, Anthony C.; Kringelbach, Morten L.; Deco, Gustavo

    2013-12-01

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.

  7. Thalamocortical functional connectivity in Lennox-Gastaut syndrome is abnormally enhanced in executive-control and default-mode networks.

    Science.gov (United States)

    Warren, Aaron E L; Abbott, David F; Jackson, Graeme D; Archer, John S

    2017-12-01

    To identify abnormal thalamocortical circuits in the severe epilepsy of Lennox-Gastaut syndrome (LGS) that may explain the shared electroclinical phenotype and provide potential treatment targets. Twenty patients with a diagnosis of LGS (mean age = 28.5 years) and 26 healthy controls (mean age = 27.6 years) were compared using task-free functional magnetic resonance imaging (MRI). The thalamus was parcellated according to functional connectivity with 10 cortical networks derived using group-level independent component analysis. For each cortical network, we assessed between-group differences in thalamic functional connectivity strength using nonparametric permutation-based tests. Anatomical locations were identified by quantifying spatial overlap with a histologically informed thalamic MRI atlas. In both groups, posterior thalamic regions showed functional connectivity with visual, auditory, and sensorimotor networks, whereas anterior, medial, and dorsal thalamic regions were connected with networks of distributed association cortex (including the default-mode, anterior-salience, and executive-control networks). Four cortical networks (left and right executive-control network; ventral and dorsal default-mode network) showed significantly enhanced thalamic functional connectivity strength in patients relative to controls. Abnormal connectivity was maximal in mediodorsal and ventrolateral thalamic nuclei. Specific thalamocortical circuits are affected in LGS. Functional connectivity is abnormally enhanced between the mediodorsal and ventrolateral thalamus and the default-mode and executive-control networks, thalamocortical circuits that normally support diverse cognitive processes. In contrast, thalamic regions connecting with primary and sensory cortical networks appear to be less affected. Our previous neuroimaging studies show that epileptic activity in LGS is expressed via the default-mode and executive-control networks. Results of the present study suggest that

  8. Resting-state functional connectivity of the default mode network associated with happiness.

    Science.gov (United States)

    Luo, Yangmei; Kong, Feng; Qi, Senqing; You, Xuqun; Huang, Xiting

    2016-03-01

    Happiness refers to people's cognitive and affective evaluation of their life. Why are some people happier than others? One reason might be that unhappy people are prone to ruminate more than happy people. The default mode network (DMN) is normally active during rest and is implicated in rumination. We hypothesized that unhappiness may be associated with increased default-mode functional connectivity during rest, including the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC) and inferior parietal lobule (IPL). The hyperconnectivity of these areas may be associated with higher levels of rumination. One hundred forty-eight healthy participants underwent a resting-state fMRI scan. A group-independent component analysis identified the DMNs. Results indicated increased functional connectivity in the DMN was associated with lower levels of happiness. Specifically, relative to happy people, unhappy people exhibited greater functional connectivity in the anterior medial cortex (bilateral MPFC), posterior medial cortex regions (bilateral PCC) and posterior parietal cortex (left IPL). Moreover, the increased functional connectivity of the MPFC, PCC and IPL, correlated positively with the inclination to ruminate. These results highlight the important role of the DMN in the neural correlates of happiness, and suggest that rumination may play an important role in people's perceived happiness. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Resting state functional MRI reveals abnormal network connectivity in neurofibromatosis 1.

    Science.gov (United States)

    Tomson, Steffie N; Schreiner, Matthew J; Narayan, Manjari; Rosser, Tena; Enrique, Nicole; Silva, Alcino J; Allen, Genevera I; Bookheimer, Susan Y; Bearden, Carrie E

    2015-11-01

    Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits, and autism spectrum disorders. As a single-gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity magnetic resonance imaging (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain connectivity; further investigation into the functional consequences of these alterations in both humans and in animal models is warranted. © 2015 Wiley Periodicals, Inc.

  10. Network-based characterization of brain functional connectivity in Zen practitioners

    Directory of Open Access Journals (Sweden)

    Phebe Brenne Kemmer

    2015-05-01

    Full Text Available In the last decade, a number of neuroimaging studies have investigated the neurophysiological effects associated with contemplative practices. Meditation-related changes in resting state functional connectivity (rsFC have been previously reported, particularly in the default mode network, frontoparietal (FP attentional circuits, saliency-related regions, and primary sensory cortices. We collected fMRI data from a sample of 12 experienced Zen meditators and 12 meditation-naïve matched controls during a basic attention-to-breathing protocol, together with behavioral performance outside the scanner on a set of computerized neuropsychological tests. We adopted a network system of 209 nodes, classified into 9 functional modules, and a multi-stage approach to identify rsFC differences in meditators and controls. Between-group comparisons of modulewise FC, summarized by the first principal component of the relevant set of edges, revealed important connections of FP circuits with early visual and executive control areas. We also identified several group differences in positive and negative edgewise FC, often involving the visual or FP regions. Multivariate pattern analysis of modulewise FC, using Support Vector Machine (SVM, classified meditators and controls with 79% accuracy and selected 10 modulewise connections that were jointly prominent in distinguishing meditators and controls; a similar SVM procedure based on the subjects' scores on the neuropsychological battery yielded a slightly weaker accuracy (75%. Finally, we observed a good correlation between the across-subject variation in strength of modulewise connections among FP, executive, and visual circuits, on the one hand, and in the performance on a rapid visual information processing (RVIP test of sustained attention, on the other. Taken together, these findings highlight the usefulness of employing network analysis techniques in investigating the neural correlates of contemplative practices.

  11. Altered functional connectivity in default mode network in Internet gaming disorder: Influence of childhood ADHD.

    Science.gov (United States)

    Lee, Deokjong; Lee, Junghan; Lee, Jung Eun; Jung, Young-Chul

    2017-04-03

    Internet gaming disorder (IGD) is a type of behavioral addiction characterized by abnormal executive control, leading to loss of control over excessive gaming. Attention deficit and hyperactivity disorder (ADHD) is one of the most common comorbid disorders in IGD, involving delayed development of the executive control system, which could predispose individuals to gaming addiction. We investigated the influence of childhood ADHD on neural network features of IGD. Resting-state functional magnetic resonance imaging analysis was performed on 44 young, male IGD subjects with and without childhood ADHD and 19 age-matched, healthy male controls. Posterior cingulate cortex (PCC)-seeded connectivity was evaluated to assess abnormalities in default mode network (DMN) connectivity, which is associated with deficits in executive control. IGD subjects without childhood ADHD showed expanded functional connectivity (FC) between DMN-related regions (PCC, medial prefrontal cortex, thalamus) compared with controls. These subjects also exhibited expanded FC between the PCC and brain regions implicated in salience processing (anterior insula, orbitofrontal cortex) compared with IGD subjects with childhood ADHD. IGD subjects with childhood ADHD showed expanded FC between the PCC and cerebellum (crus II), a region involved in executive control. The strength of connectivity between the PCC and cerebellum (crus II) was positively correlated with self-reporting scales reflecting impulsiveness. Individuals with IGD showed altered PCC-based FC, the characteristics of which might be dependent upon history of childhood ADHD. Our findings suggest that altered neural networks for executive control in ADHD would be a predisposition for developing IGD. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa

    Science.gov (United States)

    Boehm, Ilka; Geisler, Daniel; King, Joseph A.; Ritschel, Franziska; Seidel, Maria; Deza Araujo, Yacila; Petermann, Juliane; Lohmeier, Heidi; Weiss, Jessika; Walter, Martin; Roessner, Veit; Ehrlich, Stefan

    2014-01-01

    The etiology of anorexia nervosa (AN) is poorly understood. Results from functional brain imaging studies investigating the neural profile of AN using cognitive and emotional task paradigms are difficult to reconcile. Task-related imaging studies often require a high level of compliance and can only partially explore the distributed nature and complexity of brain function. In this study, resting state functional connectivity imaging was used to investigate well-characterized brain networks potentially relevant to understand the neural mechanisms underlying the symptomatology and etiology of AN. Resting state functional magnetic resonance imaging data was obtained from 35 unmedicated female acute AN patients and 35 closely matched healthy controls female participants (HC) and decomposed using spatial group independent component analyses (ICA). Using validated templates, we identified components covering the fronto-parietal “control” network, the default mode network (DMN), the salience network, the visual and the sensory-motor network. Group comparison revealed an increased functional connectivity between the angular gyrus and the other parts of the fronto-parietal network in patients with AN in comparison to HC. Connectivity of the angular gyrus was positively associated with self-reported persistence in HC. In the DMN, AN patients also showed an increased functional connectivity strength in the anterior insula in comparison to HC. Anterior insula connectivity was associated with self-reported problems with interoceptive awareness. This study, with one of the largest sample to date, shows that acute AN is associated with abnormal brain connectivity in two major resting state networks (RSN). The finding of an increased functional connectivity in the fronto-parietal network adds novel support for the notion of AN as a disorder of excessive cognitive control, whereas the elevated functional connectivity of the anterior insula with the DMN may reflect the high

  13. Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Ilka eBoehm

    2014-10-01

    Full Text Available The etiology of anorexia nervosa (AN is poorly understood. Results from functional brain imaging studies investigating the neural profile of AN using cognitive and emotional task paradigms are difficult to reconcile. Task-related imaging studies often require a high level of compliance and can only partially explore the distributed nature and complexity of brain function. In this study, resting state functional connectivity imaging was used to investigate well-characterized brain networks potentially relevant to understand the neural mechanisms underlying the symptomatology and etiology of AN. Resting state functional magnetic resonance imaging data was obtained from 35 unmedicated female acute AN patients and 35 closely matched healthy female participants (HC and decomposed using spatial group independent component analyses. Using validated templates, we identified components covering the fronto-parietal control network, the default mode network (DMN, the salience network, the visual and the sensory-motor network. Group comparison revealed an increased functional connectivity between the angular gyrus and the other parts of the fronto-parietal network in patients with AN in comparison to HC. Connectivity of the angular gyrus was positively associated with self-reported persistence in HC. In the DMN, AN patients also showed an increased functional connectivity strength in the anterior insula in comparison to HC. Anterior insula connectivity was associated with self-reported problems with interoceptive awareness. This study, with one of the largest sample to date, shows that acute AN is associated with abnormal brain connectivity in two major resting state networks. The finding of an increased functional connectivity in the fronto-parietal network adds novel support for the notion of AN as a disorder of excessive cognitive control, whereas the elevated functional connectivity of the anterior insula with the DMN may reflect the high levels of self

  14. Network science and the effects of music preference on functional brain connectivity: from Beethoven to Eminem.

    Science.gov (United States)

    Wilkins, R W; Hodges, D A; Laurienti, P J; Steen, M; Burdette, J H

    2014-08-28

    Most people choose to listen to music that they prefer or 'like' such as classical, country or rock. Previous research has focused on how different characteristics of music (i.e., classical versus country) affect the brain. Yet, when listening to preferred music--regardless of the type--people report they often experience personal thoughts and memories. To date, understanding how this occurs in the brain has remained elusive. Using network science methods, we evaluated differences in functional brain connectivity when individuals listened to complete songs. We show that a circuit important for internally-focused thoughts, known as the default mode network, was most connected when listening to preferred music. We also show that listening to a favorite song alters the connectivity between auditory brain areas and the hippocampus, a region responsible for memory and social emotion consolidation. Given that musical preferences are uniquely individualized phenomena and that music can vary in acoustic complexity and the presence or absence of lyrics, the consistency of our results was unexpected. These findings may explain why comparable emotional and mental states can be experienced by people listening to music that differs as widely as Beethoven and Eminem. The neurobiological and neurorehabilitation implications of these results are discussed.

  15. Network Science and the Effects of Music Preference on Functional Brain Connectivity: From Beethoven to Eminem

    Science.gov (United States)

    Wilkins, R. W.; Hodges, D. A.; Laurienti, P. J.; Steen, M.; Burdette, J. H.

    2014-01-01

    Most people choose to listen to music that they prefer or ‘like’ such as classical, country or rock. Previous research has focused on how different characteristics of music (i.e., classical versus country) affect the brain. Yet, when listening to preferred music—regardless of the type—people report they often experience personal thoughts and memories. To date, understanding how this occurs in the brain has remained elusive. Using network science methods, we evaluated differences in functional brain connectivity when individuals listened to complete songs. We show that a circuit important for internally-focused thoughts, known as the default mode network, was most connected when listening to preferred music. We also show that listening to a favorite song alters the connectivity between auditory brain areas and the hippocampus, a region responsible for memory and social emotion consolidation. Given that musical preferences are uniquely individualized phenomena and that music can vary in acoustic complexity and the presence or absence of lyrics, the consistency of our results was unexpected. These findings may explain why comparable emotional and mental states can be experienced by people listening to music that differs as widely as Beethoven and Eminem. The neurobiological and neurorehabilitation implications of these results are discussed. PMID:25167363

  16. Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Syed, Maleeha F; Lindquist, Martin A; Pillai, Jay J; Agarwal, Shruti; Gujar, Sachin K; Choe, Ann S; Caffo, Brian; Sair, Haris I

    2017-12-01

    Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.

  17. Modulation of Functional Connectivity in Auditory-Motor Networks in Musicians Compared with Nonmusicians.

    Science.gov (United States)

    Palomar-García, María-Ángeles; Zatorre, Robert J; Ventura-Campos, Noelia; Bueichekú, Elisenda; Ávila, César

    2017-05-01

    Correlation of spontaneous fluctuations at rest between anatomically distinct brain areas are proposed to reflect the profile of individual a priori cognitive biases, coded as synaptic efficacies in cortical networks. Here, we investigate functional connectivity at rest (rs-FC) in musicians and nonmusicians to test for differences in auditory, motor, and audiomotor connectivity. As expected, musicians had stronger rs-FC between the right auditory cortex (AC) and the right ventral premotor cortex than nonmusicians, and this stronger rs-FC was greater in musicians with more years of practice. We also found reduced rs-FC between the motor areas that control both hands in musicians compared with nonmusicians, which was more evident in the musicians whose instrument required bimanual coordination and as a function of hours of practice. Finally, we replicated previous morphometric data to show an increased volume in the right AC in musicians, which was greater in those with earlier musical training, and that this anatomic feature was in turn related to greater rs-FC between auditory and motor systems. These results show that functional coupling within the motor system and between motor and auditory areas is modulated as a function of musical training, suggesting a link between anatomic and functional brain features. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Hierarchical High-Order Functional Connectivity Networks and Selective Feature Fusion for MCI Classification.

    Science.gov (United States)

    Chen, Xiaobo; Zhang, Han; Lee, Seong-Whan; Shen, Dinggang

    2017-07-01

    Conventional Functional connectivity (FC) analysis focuses on characterizing the correlation between two brain regions, whereas the high-order FC can model the correlation between two brain region pairs. To reduce the number of brain region pairs, clustering is applied to group all the brain region pairs into a small number of clusters. Then, a high-order FC network can be constructed based on the clustering result. By varying the number of clusters, multiple high-order FC networks can be generated and the one with the best overall performance can be finally selected. However, the important information contained in other networks may be simply discarded. To address this issue, in this paper, we propose to make full use of the information contained in all high-order FC networks. First, an agglomerative hierarchical clustering technique is applied such that the clustering result in one layer always depends on the previous layer, thus making the high-order FC networks in the two consecutive layers highly correlated. As a result, the features extracted from high-order FC network in each layer can be decomposed into two parts (blocks), i.e., one is redundant while the other might be informative or complementary, with respect to its previous layer. Then, a selective feature fusion method, which combines sequential forward selection and sparse regression, is developed to select a feature set from those informative feature blocks for classification. Experimental results confirm that our novel method outperforms the best single high-order FC network in diagnosis of mild cognitive impairment (MCI) subjects.

  19. Network Analysis of Functional Brain Connectivity Driven by Gamma-Band Auditory Steady-State Response in Auditory Hallucinations.

    Science.gov (United States)

    Ying, Jun; Zhou, Dan; Lin, Ke; Gao, Xiaorong

    The auditory steady-state response (ASSR) may reflect activity from different regions of the brain. Particularly, it was reported that the gamma-band ASSR plays an important role in working memory, speech understanding, and recognition. Traditionally, the ASSR has been determined by power spectral density analysis, which cannot detect the exact overall distributed properties of the ASSR. Functional network analysis has recently been applied in electroencephalography studies. Previous studies on resting or working state found a small-world organization of the brain network. Some researchers have studied dysfunctional networks caused by diseases. The present study investigates the brain connection networks of schizophrenia patients with auditory hallucinations during an ASSR task. A directed transfer function is utilized to estimate the brain connectivity patterns. Moreover, the structures of brain networks are analyzed by converting the connectivity matrices into graphs. It is found that for normal subjects, network connections are mainly distributed at the central and frontal-temporal regions. This indicates that the central regions act as transmission hubs of information under ASSR stimulation. For patients, network connections seem unordered. The finding that the path length was larger in patients compared to that in normal subjects under most thresholds provides insight into the structures of connectivity patterns. The results suggest that there are more synchronous oscillations that cover a long distance on the cortex but a less efficient network for patients with auditory hallucinations.

  20. Altered resting-state functional connectivity of default-mode network and sensorimotor network in heavy metal music lovers.

    Science.gov (United States)

    Sun, Yan; Zhang, Congcong; Duan, Shuxia; Du, Xiaoxia; Calhoun, Vince D

    2017-09-18

    The aim of this study was to investigate the spontaneous neural activity and functional connectivity (FC) in heavy metal music lovers (HMML) compared with classical music lovers (CML) during resting state. Forty HMML and 31 CML underwent resting-state functional MRI scans. Fractional amplitude of low-frequency fluctuations (fALFF) and seed-based resting-state FC were computed to explore regional activity and functional integration. A voxel-based two-sample t-test was used to test the differences between the two groups. Compared with CML, HMML showed functional alterations: higher fALFF in the right precentral gyrus, the bilateral paracentral lobule, and the left middle occipital gyrus, lower fALFF in the left medial superior frontal gyrus, an altered FC in the default-mode network, lower connectivity between the right precentral gyrus and the left cerebellum-6 and the right cerebellum-3, and an altered FC between the left paracentral lobule and the sensorimotor network, lower in the right paracentral lobule and the right inferior temporal gyrus FC. The results may partly explain the disorders of behavioral and emotional cognition in HMML compared with CML and are consistent with our predictions. These findings may help provide a basic understanding of the potential neural mechanism of HMML.

  1. Modulation of steady state functional connectivity in the default mode and working memory networks by cognitive load.

    Science.gov (United States)

    Newton, Allen T; Morgan, Victoria L; Rogers, Baxter P; Gore, John C

    2011-10-01

    Interregional correlations between blood oxygen level dependent (BOLD) magnetic resonance imaging (fMRI) signals in the resting state have been interpreted as measures of connectivity across the brain. Here we investigate whether such connectivity in the working memory and default mode networks is modulated by changes in cognitive load. Functional connectivity was measured in a steady-state verbal identity N-back task for three different conditions (N = 1, 2, and 3) as well as in the resting state. We found that as cognitive load increases, the functional connectivity within both the working memory the default mode network increases. To test whether functional connectivity between the working memory and the default mode networks changed, we constructed maps of functional connectivity to the working memory network as a whole and found that increasingly negative correlations emerged in a dorsal region of the posterior cingulate cortex. These results provide further evidence that low frequency fluctuations in BOLD signals reflect variations in neural activity and suggests interaction between the default mode network and other cognitive networks. Copyright © 2010 Wiley-Liss, Inc.

  2. Loss of 'Small-World' Networks in Alzheimer's Disease: Graph Analysis of fMRI Resting-State Functional Connectivity

    NARCIS (Netherlands)

    Sanz-Arigita, E.J.; Schoonheim, M.M.; Damoiseaux, J.S.; Rombouts, S.A.R.B.; Maris, E.; Barkhof, F.; Scheltens, P.; Stam, C.J.

    2010-01-01

    Background: Local network connectivity disruptions in Alzheimer's disease patients have been found using graph analysis in BOLD fMRI. Other studies using MEG and cortical thickness measures, however, show more global long distance connectivity changes, both in functional and structural imaging data.

  3. Effects of training strategies implemented in a complex videogame on functional connectivity of attentional networks.

    Science.gov (United States)

    Voss, Michelle W; Prakash, Ruchika Shaurya; Erickson, Kirk I; Boot, Walter R; Basak, Chandramallika; Neider, Mark B; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele; Kramer, Arthur F

    2012-01-02

    We used the Space Fortress videogame, originally developed by cognitive psychologists to study skill acquisition, as a platform to examine learning-induced plasticity of interacting brain networks. Novice videogame players learned Space Fortress using one of two training strategies: (a) focus on all aspects of the game during learning (fixed priority), or (b) focus on improving separate game components in the context of the whole game (variable priority). Participants were scanned during game play using functional magnetic resonance imaging (fMRI), both before and after 20 h of training. As expected, variable priority training enhanced learning, particularly for individuals who initially performed poorly. Functional connectivity analysis revealed changes in brain network interaction reflective of more flexible skill learning and retrieval with variable priority training, compared to procedural learning and skill implementation with fixed priority training. These results provide the first evidence for differences in the interaction of large-scale brain networks when learning with different training strategies. Our approach and findings also provide a foundation for exploring the brain plasticity involved in transfer of trained abilities to novel real-world tasks such as driving, sport, or neurorehabilitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Functional connectivity associated with social networks in older adults: A resting-state fMRI study.

    Science.gov (United States)

    Pillemer, Sarah; Holtzer, Roee; Blumen, Helena M

    2017-06-01

    Poor social networks and decreased levels of social support are associated with worse mood, health, and cognition in younger and older adults. Yet, we know very little about the brain substrates associated with social networks and social support, particularly in older adults. This study examined functional brain substrates associated with social networks using the Social Network Index (SNI) and resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data from 28 non-demented older adults were analyzed with independent components analyses. As expected, four established resting-state networks-previously linked to motor, vision, speech, and other language functions-correlated with the quality (SNI-1: total number of high-contact roles of a respondent) and quantity (SNI-2: total number of individuals in a respondent's social network) of social networks: a sensorimotor, a visual, a vestibular/insular, and a left frontoparietal network. Moreover, SNI-1 was associated with greater functional connectivity in the lateral prefrontal regions of the left frontoparietal network, while SNI-2 was associated with greater functional connectivity in the medial prefrontal regions of this network. Thus, lateral prefrontal regions may be particularly linked to the quality of social networks while medial prefrontal regions may be particularly linked to the quantity of social networks.

  5. Voxel Scale Complex Networks of Functional Connectivity in the Rat Brain: Neurochemical State Dependence of Global and Local Topological Properties

    Directory of Open Access Journals (Sweden)

    Adam J. Schwarz

    2012-01-01

    Full Text Available Network analysis of functional imaging data reveals emergent features of the brain as a function of its topological properties. However, the brain is not a homogeneous network, and the dependence of functional connectivity parameters on neuroanatomical substrate and parcellation scale is a key issue. Moreover, the extent to which these topological properties depend on underlying neurochemical changes remains unclear. In the present study, we investigated both global statistical properties and the local, voxel-scale distribution of connectivity parameters of the rat brain. Different neurotransmitter systems were stimulated by pharmacological challenge (d-amphetamine, fluoxetine, and nicotine to discriminate between stimulus-specific functional connectivity and more general features of the rat brain architecture. Although global connectivity parameters were similar, mapping of local connectivity parameters at high spatial resolution revealed strong neuroanatomical dependence of functional connectivity in the rat brain, with clear differentiation between the neocortex and older brain regions. Localized foci of high functional connectivity independent of drug challenge were found in the sensorimotor cortices, consistent with the high neuronal connectivity in these regions. Conversely, the topological properties and node roles in subcortical regions varied with neurochemical state and were dependent on the specific dynamics of the different functional processes elicited.

  6. An Exploratory Investigation of Functional Network Connectivity of Empathy and Default Mode Networks in a Free-Viewing Task.

    Science.gov (United States)

    Vemuri, Kavita; Surampudi, Bapi Raju

    2015-08-01

    This study reports dynamic functional network connectivity (dFNC) analysis on time courses of putative empathy networks-cognitive, emotional, and motor-and the default mode network (DMN) identified from independent components (ICs) derived by the group independent component analysis (ICA) method. The functional magnetic resonance imaging (fMRI) data were collected from 15 subjects watching movies of three genres, an animation (S1), Indian Hindi (S2), and a Hollywood English (S3) movie. The hypothesis of the study is that empathic engagement in a movie narrative would modulate the activation with the DMN. The clippings were individually rated for emotional expressions, context, and empathy self-response by the fMRI subjects post scanning and by 40 participants in an independent survey who rated at four time intervals in each clipping. The analysis illustrates the following: (a) the ICA method separated ICs with areas reported for empathy response and anterior/posterior DMNs. An IC indicating insula region activation reported to be crucial for the emotional empathy network was separated for S2 and S3 movies only, but not for S1, (b) the dFNC between DMN and ICs corresponding to cognitive empathy network showed higher positive periodical fluctuating correlations for all three movies, while ICs with areas crucial to motor or emotional empathy display lower positive or negative correlation values with no distinct periodicity. A possible explanation for the lower values and anticorrelation between the DMN and emotional empathy networks could possibly be inhibition due to internal self-reflections, attributed to DMN, while processing and preparing a response to external emotional content. The positive higher correlation values for cognitive empathy networks may reflect a functional overlap with DMN for enhanced internal self-reflections, inferring beliefs and intentions about the 'other', all triggered by the external stimuli. The findings are useful in the study of

  7. Networks of phobic fear: Functional connectivity shifts in two subtypes of specific phobia.

    Science.gov (United States)

    Stefanescu, Maria R; Endres, Ralph J; Hilbert, Kevin; Wittchen, Hans-Ulrich; Lueken, Ulrike

    2018-01-01

    Anxiety disorders can be conceptualized by an abnormal interplay of emotion-processing brain circuits; however, knowledge of brain connectivity measures in specific phobia is still limited. To explore functional interactions within selected fear-circuitry structures (anterior cingulate cortex (ACC), amygdala, insula), we re-examined three task-based fMRI studies using a symptom provocation approach (n=94 subjects in total) on two different phobia subtypes (animal subtype as represented by snake phobia (SP) and blood-injection-injury subtype as represented by dental phobia (DP)), and a non-phobic healthy control group (HC). Functional connectivity (FC) analyses detected a negative coupling between the amygdala and the ACC in HC for both classes of phobic stimuli, while SP and DP lacked this inhibitory relationship during visual stimulus presentation. However, a negative FC between the insula and the amygdala was observed in DP during visual symptom provocation, which reversed to a positive FC under auditory symptom provocation pointing to effects depending on stimulus modality in DP. SP showed significantly higher FC towards snake-anxiety eliciting stimuli than HC on an average measure of FC, while DP showed a similar pattern under auditory stimulation only. These findings altogether indicate FC shifts during symptom provocation in specific phobia possibly reflecting impaired emotion regulation processes within fear-circuitry networks. FC hence could represent a prime target for neuroscience-informed augmentation strategies when treating pathological forms of fear. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Resting-state functional connectivity of orthographic networks in acquired dysgraphia

    Directory of Open Access Journals (Sweden)

    Gali Ellenblum

    2015-05-01

    The NTA findings indicate that the relationship between orthographic and default-mode networks is characterized by greater within- vs. across-network connectivity. Furthermore, we show for the first time a pattern of increasing within/across network “coherence normalization” following spelling rehabilitation. Additional dysgraphic participants and other networks (language, sensory-motor, etc. will be analyzed to develop a better understanding of the RS orthographic network and its response to damage and recovery. Acknowledgements. The work is part of a multi-site, NIDCD-supported project examining language recovery neurobiology in aphasia (DC006740. We thank Melissa Greenberger and Xiao-Wei Song.

  9. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization.

    Directory of Open Access Journals (Sweden)

    Melle J W van der Molen

    Full Text Available Disruptions in functional connectivity and dysfunctional brain networks are considered to be a neurological hallmark of neurodevelopmental disorders. Despite the vast literature on functional brain connectivity in typical brain development, surprisingly few attempts have been made to characterize brain network integrity in neurodevelopmental disorders. Here we used resting-state EEG to characterize functional brain connectivity and brain network organization in eight males with fragile X syndrome (FXS and 12 healthy male controls. Functional connectivity was calculated based on the phase lag index (PLI, a non-linear synchronization index that is less sensitive to the effects of volume conduction. Brain network organization was assessed with graph theoretical analysis. A decrease in global functional connectivity was observed in FXS males for upper alpha and beta frequency bands. For theta oscillations, we found increased connectivity in long-range (fronto-posterior and short-range (frontal-frontal and posterior-posterior clusters. Graph theoretical analysis yielded evidence of increased path length in the theta band, suggesting that information transfer between brain regions is particularly impaired for theta oscillations in FXS. These findings are discussed in terms of aberrant maturation of neuronal oscillatory dynamics, resulting in an imbalance in excitatory and inhibitory neuronal circuit activity.

  10. Functional connectivity of paired default mode network subregions in primary insomnia

    Directory of Open Access Journals (Sweden)

    Nie X

    2015-12-01

    Full Text Available Xiao Nie,1,* Yi Shao,2,* Si-yu Liu,3 Hai-jun Li,1 Ai-lan Wan,4 Si Nie,1 De-chang Peng,1 Xi-jian Dai1,5 1Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, Jiangxi, People’s Republic of China; 2Department of Ophthalmology,The First Affiliated Hospital of Nanchang University, Nangchang, Jiangxi, People’s Republic of China; 3Medical College of Nanchang University, Nangchang, Jiangxi, People’s Republic of China; 4Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nangchang, Jiangxi, People’s Republic of China; 5Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study is to explore the resting-state functional connectivity (FC differences between the paired default mode network (DMN subregions in patients with primary insomnia (PIs.Methods: Forty-two PIs and forty-two age- and sex-matched good sleepers (GSs were recruited. All subjects underwent the resting-state functional magnetic resonance imaging scans. The seed-based region-to-region FC method was used to evaluate the abnormal connectivity within the DMN subregions between the PIs and the GSs. Pearson correlation analysis was used to investigate the relationships between the abnormal FC strength within the paired DMN subregions and the clinical features in PIs.Results: Compared with the GSs, the PIs showed higher Pittsburgh Sleep Quality Index score, Hamilton Anxiety Rating Scale score, Hamilton Depression Rating Scale score, Self-Rating Depression Scale score, Self Rating Anxiety Scale score, Self-Rating Scale of Sleep score, and Profile of Mood States score (P<0.001. Compared with the GSs, the PIs showed significant decreased region-to-region FC between the medial prefrontal cortex and the right medial temporal lobe (t=-2.275, P

  11. Negative mood influences default mode network functional connectivity in patients with chronic low back pain: implications for functional neuroimaging biomarkers.

    Science.gov (United States)

    Letzen, Janelle E; Robinson, Michael E

    2017-01-01

    The default mode network (DMN) has been proposed as a biomarker for several chronic pain conditions. Default mode network functional connectivity (FC) is typically examined during resting-state functional neuroimaging, in which participants are instructed to let thoughts wander. However, factors at the time of data collection (eg, negative mood) that might systematically impact pain perception and its brain activity, influencing the application of the DMN as a pain biomarker, are rarely reported. This study measured whether positive and negative moods altered DMN FC patterns in patients with chronic low back pain (CLBP), specifically focusing on negative mood because of its clinical relevance. Thirty-three participants (CLBP = 17) underwent resting-state functional magnetic resonance imaging scanning before and after sad and happy mood inductions, and rated levels of mood and pain intensity at the time of scanning. Two-way repeated-measures analysis of variances were conducted on resting-state functional connectivity data. Significant group (CLBP > healthy controls) × condition (sadness > baseline) interaction effects were identified in clusters spanning parietal operculum/postcentral gyrus, insular cortices, anterior cingulate cortex, frontal pole, and a portion of the cerebellum (PFDR baseline (PFDR negative mood in individuals with and without CLBP. It is possible that DMN FC seen in patients with chronic pain is related to an affective dimension of pain, which is important to consider in future neuroimaging biomarker development and implementation.

  12. How the Statistical Validation of Functional Connectivity Patterns Can Prevent Erroneous Definition of Small-World Properties of a Brain Connectivity Network

    Directory of Open Access Journals (Sweden)

    J. Toppi

    2012-01-01

    Full Text Available The application of Graph Theory to the brain connectivity patterns obtained from the analysis of neuroelectrical signals has provided an important step to the interpretation and statistical analysis of such functional networks. The properties of a network are derived from the adjacency matrix describing a connectivity pattern obtained by one of the available functional connectivity methods. However, no common procedure is currently applied for extracting the adjacency matrix from a connectivity pattern. To understand how the topographical properties of a network inferred by means of graph indices can be affected by this procedure, we compared one of the methods extensively used in Neuroscience applications (i.e. fixing the edge density with an approach based on the statistical validation of achieved connectivity patterns. The comparison was performed on the basis of simulated data and of signals acquired on a polystyrene head used as a phantom. The results showed (i the importance of the assessing process in discarding the occurrence of spurious links and in the definition of the real topographical properties of the network, and (ii a dependence of the small world properties obtained for the phantom networks from the spatial correlation of the neighboring electrodes.

  13. State-Dependent Changes of Connectivity Patterns and Functional Brain Network Topology in Autism Spectrum Disorder

    Science.gov (United States)

    Barttfeld, Pablo; Wicker, Bruno; Cukier, Sebastian; Navarta, Silvana; Lew, Sergio; Leiguarda, Ramon; Sigman, Mariano

    2012-01-01

    Anatomical and functional brain studies have converged to the hypothesis that autism spectrum disorders (ASD) are associated with atypical connectivity. Using a modified resting-state paradigm to drive subjects' attention, we provide evidence of a very marked interaction between ASD brain functional connectivity and cognitive state. We show that…

  14. Loss of functional connectivity is greater outside the default mode network in nonfamilial early-onset Alzheimer's disease variants.

    Science.gov (United States)

    Lehmann, Manja; Madison, Cindee; Ghosh, Pia M; Miller, Zachary A; Greicius, Michael D; Kramer, Joel H; Coppola, Giovanni; Miller, Bruce L; Jagust, William J; Gorno-Tempini, Maria L; Seeley, William W; Rabinovici, Gil D

    2015-10-01

    The common and specific involvement of brain networks in clinical variants of Alzheimer's disease (AD) is not well understood. We performed task-free ("resting-state") functional imaging in 60 nonfamilial AD patients, including 20 early-onset AD (age at onset functional connectivity is greatest in networks outside the DMN in early-onset and nonamnestic AD variants and may thus be a better biomarker in these patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Quantifying bicycle network connectivity.

    Science.gov (United States)

    Lowry, Michael; Loh, Tracy Hadden

    2017-02-01

    The intent of this study was to compare bicycle network connectivity for different types of bicyclists and different neighborhoods. Connectivity was defined as the ability to reach important destinations, such as grocery stores, banks, and elementary schools, via pathways or roads with low vehicle volumes and low speed limits. The analysis was conducted for 28 neighborhoods in Seattle, Washington under existing conditions and for a proposed bicycle master plan, which when complete will provide over 700 new bicycle facilities, including protected bike lanes, neighborhood greenways, and multi-use trails. The results showed different levels of connectivity across neighborhoods and for different types of bicyclists. Certain projects were shown to improve connectivity differently for confident and non-confident bicyclists. The analysis showed a positive correlation between connectivity and observed utilitarian bicycle trips. To improve connectivity for the majority of bicyclists, planners and policy-makers should provide bicycle facilities that allow immediate, low-stress access to the street network, such as neighborhood greenways. The analysis also suggests that policies and programs that build confidence for bicycling could greatly increase connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Loss of 'small-world' networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity.

    Directory of Open Access Journals (Sweden)

    Ernesto J Sanz-Arigita

    Full Text Available BACKGROUND: Local network connectivity disruptions in Alzheimer's disease patients have been found using graph analysis in BOLD fMRI. Other studies using MEG and cortical thickness measures, however, show more global long distance connectivity changes, both in functional and structural imaging data. The form and role of functional connectivity changes thus remains ambiguous. The current study shows more conclusive data on connectivity changes in early AD using graph analysis on resting-state condition fMRI data. METHODOLOGY/PRINCIPAL FINDINGS: 18 mild AD patients and 21 healthy age-matched control subjects without memory complaints were investigated in resting-state condition with MRI at 1.5 Tesla. Functional coupling between brain regions was calculated on the basis of pair-wise synchronizations between regional time-series. Local (cluster coefficient and global (path length network measures were quantitatively defined. Compared to controls, the characteristic path length of AD functional networks is closer to the theoretical values of random networks, while no significant differences were found in cluster coefficient. The whole-brain average synchronization does not differ between Alzheimer and healthy control groups. Post-hoc analysis of the regional synchronization reveals increased AD synchronization involving the frontal cortices and generalized decreases located at the parietal and occipital regions. This effectively translates in a global reduction of functional long-distance links between frontal and caudal brain regions. CONCLUSIONS/SIGNIFICANCE: We present evidence of AD-induced changes in global brain functional connectivity specifically affecting long-distance connectivity. This finding is highly relevant for it supports the anterior-posterior disconnection theory and its role in AD. Our results can be interpreted as reflecting the randomization of the brain functional networks in AD, further suggesting a loss of global information

  17. Loss of 'small-world' networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity.

    Science.gov (United States)

    Sanz-Arigita, Ernesto J; Schoonheim, Menno M; Damoiseaux, Jessica S; Rombouts, Serge A R B; Maris, Erik; Barkhof, Frederik; Scheltens, Philip; Stam, Cornelis J

    2010-11-01

    Local network connectivity disruptions in Alzheimer's disease patients have been found using graph analysis in BOLD fMRI. Other studies using MEG and cortical thickness measures, however, show more global long distance connectivity changes, both in functional and structural imaging data. The form and role of functional connectivity changes thus remains ambiguous. The current study shows more conclusive data on connectivity changes in early AD using graph analysis on resting-state condition fMRI data. 18 mild AD patients and 21 healthy age-matched control subjects without memory complaints were investigated in resting-state condition with MRI at 1.5 Tesla. Functional coupling between brain regions was calculated on the basis of pair-wise synchronizations between regional time-series. Local (cluster coefficient) and global (path length) network measures were quantitatively defined. Compared to controls, the characteristic path length of AD functional networks is closer to the theoretical values of random networks, while no significant differences were found in cluster coefficient. The whole-brain average synchronization does not differ between Alzheimer and healthy control groups. Post-hoc analysis of the regional synchronization reveals increased AD synchronization involving the frontal cortices and generalized decreases located at the parietal and occipital regions. This effectively translates in a global reduction of functional long-distance links between frontal and caudal brain regions. We present evidence of AD-induced changes in global brain functional connectivity specifically affecting long-distance connectivity. This finding is highly relevant for it supports the anterior-posterior disconnection theory and its role in AD. Our results can be interpreted as reflecting the randomization of the brain functional networks in AD, further suggesting a loss of global information integration in disease.

  18. Connected networks economy

    Energy Technology Data Exchange (ETDEWEB)

    Hamerak, K.

    1981-05-05

    Two foremost requirements for interconnected power systems are: constancy of frequency and constancy of voltage. Because there is a rigid relation between main frequency and the number of revolutions of the synchronous generators, and this leads to active load alterations in the case of frequency changes of the network, there is a need for control systems for power networks. In practice they are designed for automatic operation. For control of the number of revolutions of turbines proportional controllers are the most useful. Autocontrol also has an advantageous influence on frequency stability. Peak loads in connected networks are covered by pumping storage power plants.

  19. Connected Cubic Network Graph

    Directory of Open Access Journals (Sweden)

    Burhan Selçuk

    2017-06-01

    Full Text Available Hypercube is a popular interconnection network. Due to the popularity of hypercube, more researchers pay a great effort to develop the different variants of hypercube. In this paper, we have proposed a variant of hypercube which is called as “Connected Cubic Network Graphs”, and have investigated the Hamilton-like properties of Connected Cubic Network Graphs (CCNG. Firstly, we defined CCNG and showed the characteristic analyses of CCNG. Then, we showed that the CCNG has the properties of Hamilton graph, and can be labeled using a Gray coding based recursive algorithm. Finally, we gave the comparison results, a routing algorithm and a bitonic sort algorithm for CCNG. In case of sparsity and cost, CCNG is better than Hypercube.

  20. Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study.

    Science.gov (United States)

    Tian, Lin; Meng, Chun; Jiang, Ying; Tang, Qunfeng; Wang, Shuai; Xie, Xiyao; Fu, Xiangshuai; Jin, Chunhui; Zhang, Fuquan; Wang, Jidong

    2016-04-03

    Abnormal brain networks have been observed in patients with obsessive-compulsive disorder (OCD). However, detailed network hub and connectivity changes remained unclear in treatment-naive patients with OCD. Here, we sought to determine whether patients show hub-related connectivity changes in their whole-brain functional networks. We used resting-state functional magnetic resonance imaging data and voxel-based graph-theoretic analysis to investigate functional connectivity strength and hubs of whole-brain networks in 29 treatment-naive patients with OCD and 29 age- and gender-matched healthy controls. Correlation analysis was applied for potential associations with OCD symptom severity. OCD selectively targeted brain regions of higher functional connectivity strength than the average including brain network hubs, mainly distributed in the cortico-striato-thalamo-cortical (CSTC) circuits and additionally parietal, occipital, temporal and cerebellar regions. Moreover, affected functional connectivity strength in the cerebellum, the medial orbitofrontal cortex and superior occipital cortex was significantly associated with global OCD symptom severity. Our results provide the evidence about OCD-related brain network hub changes, not only in the CSTC circuits but more distributed in whole brain networks. Data suggest that whole brain network hub analysis is useful for understanding the pathophysiology of OCD. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Effects of gratitude meditation on neural network functional connectivity and brain-heart coupling.

    Science.gov (United States)

    Kyeong, Sunghyon; Kim, Joohan; Kim, Dae Jin; Kim, Hesun Erin; Kim, Jae-Jin

    2017-07-11

    A sense of gratitude is a powerful and positive experience that can promote a happier life, whereas resentment is associated with life dissatisfaction. To explore the effects of gratitude and resentment on mental well-being, we acquired functional magnetic resonance imaging and heart rate (HR) data before, during, and after the gratitude and resentment interventions. Functional connectivity (FC) analysis was conducted to identify the modulatory effects of gratitude on the default mode, emotion, and reward-motivation networks. The average HR was significantly lower during the gratitude intervention than during the resentment intervention. Temporostriatal FC showed a positive correlation with HR during the gratitude intervention, but not during the resentment intervention. Temporostriatal resting-state FC was significantly decreased after the gratitude intervention compared to the resentment intervention. After the gratitude intervention, resting-state FC of the amygdala with the right dorsomedial prefrontal cortex and left dorsal anterior cingulate cortex were positively correlated with anxiety scale and depression scale, respectively. Taken together, our findings shed light on the effect of gratitude meditation on an individual's mental well-being, and indicate that it may be a means of improving both emotion regulation and self-motivation by modulating resting-state FC in emotion and motivation-related brain regions.

  2. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.

    Science.gov (United States)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-18

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  3. Default Mode Network Functional Connectivity in Early and Late Mild Cognitive Impairment: Results From the Alzheimer's Disease Neuroimaging Initiative.

    Science.gov (United States)

    Lee, Eek-Sung; Yoo, Kwangsun; Lee, Young-Beom; Chung, Jinyong; Lim, Ji-Eun; Yoon, Bora; Jeong, Yong

    2016-01-01

    Default mode network (DMN) functional connectivity is one of the neuroimaging candidate biomarkers of Alzheimer disease. However, no studies have investigated DMN connectivity at different stages of mild cognitive impairment (MCI). The aim of this study was to investigate patterns of DMN connectivity and its breakdown among cognitively normal (CN), early MCI (EMCI), and late MCI (LMCI) subjects. Magnetic resonance imaging data and neuropsychological test scores from 130 subjects (CN=43, EMCI=47, LMCI=40) were obtained from the Alzheimer's Disease Neuroimaging Initiative. DMN functional connectivity was extracted using independent components analysis and compared between groups. Functional connectivity in the precuneus, bilateral medial frontal, parahippocampal, middle temporal, right superior temporal, and left angular gyri was decreased in EMCI subjects compared with CN subjects. When the 2 MCI groups were directly compared, LMCI subjects exhibited decreased functional connectivity in the precuneus, bilateral medial frontal gyri, and left angular gyrus. There was no significant difference in gray matter volume among the 3 groups. Amyloid-positive EMCI subjects revealed more widespread breakdown of DMN connectivity than amyloid-negative EMCI subjects. A quantitative index of DMN connectivity correlated well with measures of cognitive performance. Our results suggest that the breakdown of DMN connectivity may occur in the early stage of MCI.

  4. Modafinil modulates resting-state functional network connectivity and cognitive control in alcohol-dependent patients

    NARCIS (Netherlands)

    Schmaal, Lianne; Goudriaan, Anna E.; Joos, Leen; Krüse, Anne Maren; Dom, Geert; van den Brink, Wim; Veltman, Dick J.

    2013-01-01

    Chronic alcohol abuse is associated with deficits in cognitive control functions. Cognitive control is likely to be mediated through the interaction between intrinsic large-scale brain networks involved in externally oriented executive functioning and internally focused thought processing. Improving

  5. Modafinil Modulates Resting-State Functional Network Connectivity and Cognitive Control in Alcohol-Dependent Patients

    NARCIS (Netherlands)

    Schmaal, L.; Goudriaan, A.E.; Joos, L.; Kruse, A.M.; Dom, G.; van den Brink, W.; Veltman, D.J.

    2013-01-01

    Background: Chronic alcohol abuse is associated with deficits in cognitive control functions. Cognitive control is likely to be mediated through the interaction between intrinsic large-scale brain networks involved in externally oriented executive functioning and internally focused thought

  6. Negative mood-induction modulates default mode network resting-state functional connectivity in chronic depression

    NARCIS (Netherlands)

    Renner, F.; Siep, N.; Arntz, A.; van de Ven, V.; Peeters, F.P.M.L.; Quaedflieg, C.W.E.M.; Huibers, M.J.H.

    2017-01-01

    BACKGROUND: The aim of this study was to investigate the effects of sad mood on default mode network (DMN) resting-state connectivity in persons with chronic major depressive disorder (cMDD). METHODS: Participants with a diagnosis of cMDD (n=18) and age, gender and education level matched

  7. Large-scale directional connections among multi resting-state neural networks in human brain: a functional MRI and Bayesian network modeling study.

    Science.gov (United States)

    Li, Rui; Chen, Kewei; Fleisher, Adam S; Reiman, Eric M; Yao, Li; Wu, Xia

    2011-06-01

    This study examined the large-scale connectivity among multiple resting-state networks (RSNs) in the human brain. Independent component analysis was first applied to the resting-state functional MRI (fMRI) data acquired from 12 healthy young subjects for the separation of RSNs. Four sensory (lateral and medial visual, auditory, and sensory-motor) RSNs and four cognitive (default-mode, self-referential, dorsal and ventral attention) RSNs were identified. Gaussian Bayesian network (BN) learning approach was then used for the examination of the conditional dependencies among these RSNs and the construction of the network-to-network directional connectivity patterns. The BN based results demonstrated that sensory networks and cognitive networks were hierarchically organized. Specially, we found the sensory networks were highly intra-dependent and the cognitive networks were strongly intra-influenced. In addition, the results depicted dominant bottom-up connectivity from sensory networks to cognitive networks in which the self-referential and the default-mode networks might play respectively important roles in the process of resting-state information transfer and integration. The present study characterized the global connectivity relations among RSNs and delineated more characteristics of spontaneous activity dynamics. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    2016-01-01

    Full Text Available Borderline personality disorder (BPD is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study

  9. The functional connectivity of different EEG bands moves towards small-world network organization during sleep

    NARCIS (Netherlands)

    Ferri, R.; Rundo, F.; Bruni, O.; Terzano, M.G.; Stam, C.J.

    2008-01-01

    Objective: To analyze the functional connectivity patterns of the different EEG bands during wakefulness and sleep (different sleep stages and cyclic alternating pattern (CAP) conditions), using concepts derived from Graph Theory. Methods: We evaluated spatial patterns of EEG band synchronization

  10. Functional connectivity pattern during rest within the episodic memory network in association with episodic memory performance in bipolar disorder.

    Science.gov (United States)

    Oertel-Knöchel, Viola; Reinke, Britta; Matura, Silke; Prvulovic, David; Linden, David E J; van de Ven, Vincent

    2015-02-28

    In this study, we sought to examine the intrinsic functional organization of the episodic memory network during rest in bipolar disorder (BD). The previous work suggests that deficits in intrinsic functional connectivity may account for impaired memory performance. We hypothesized that regions involved in episodic memory processing would reveal aberrant functional connectivity in patients with bipolar disorder. We examined 21 patients with BD and 21 healthy matched controls who underwent functional magnetic resonance imaging (fMRI) during a resting condition. We did a seed-based functional connectivity analysis (SBA), using the regions of the episodic memory network that showed a significantly different activation pattern during task-related fMRI as seeds. The functional connectivity scores (FC) were further correlated with episodic memory task performance. Our results revealed decreased FC scores within frontal areas and between frontal and temporal/hippocampal/limbic regions in BD patients in comparison with controls. We observed higher FC in BD patients compared with controls between frontal and limbic regions. The decrease in fronto-frontal functional connectivity in BD patients showed a significant positive association with episodic memory performance. The association between task-independent dysfunctional frontal-limbic FC and episodic memory performance may be relevant for current pathophysiological models of the disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Modular organization of functional network connectivity in healthy controls and patients with schizophrenia during the resting state

    Directory of Open Access Journals (Sweden)

    Qingbao eYu

    2012-01-01

    Full Text Available Neuroimaging studies have shown that functional brain networks composed from select regions of interest (ROIs have a modular community structure. However, the organization of functional network connectivity (FNC, comprising a purely data-driven network built from spatially independent brain components, is not yet clear. The aim of this study is to explore the modular organization of FNC in both healthy controls (HCs and patients with schizophrenia (SZs. Resting state functional magnetic resonance imaging (R-fMRI data of HCs and SZs were decomposed into independent components (ICs by group independent component analysis (ICA. Then weighted brain networks (in which nodes are brain components were built based on correlations among of ICA time courses. Clustering coefficients and connectivity strength of the networks were computed. A dynamic branch cutting algorithm was used to identify modules of the FNC in HCs and SZs. Results show stronger connectivity strength and higher clustering coefficient in HCs with more and smaller modules in SZs. In addition, HCs and SZs had some different hubs. Our findings demonstrate altered modular architecture of the FNC in schizophrenia and provide insights into abnormal topological organization of intrinsic brain networks in this mental illness.

  12. Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations.

    Directory of Open Access Journals (Sweden)

    Gaelle Bettus

    Full Text Available In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD signal derived from resting state functional magnetic resonance imaging (fMRI reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG and resting-state functional MRI (fMRI in 5 patients suffering from intractable temporal lobe epilepsy (TLE. Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal. This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional

  13. Effect of resting-state functional MR imaging duration on stability of graph theory metrics of brain network connectivity.

    Science.gov (United States)

    Whitlow, Christopher T; Casanova, Ramon; Maldjian, Joseph A

    2011-05-01

    To investigate the effect of resting-state (RS) functional magnetic resonance (MR) imaging blood oxygen level-dependent (BOLD) signal acquisition duration on stability of computed graph theory metrics of brain network connectivity. An institutional ethics committee approved this study, and informed consent was obtained. BOLD signal (7.5 minutes worth) was obtained from 30 subjects and truncated into 30-second time bins that ranged from 1.5 to 7.5 minutes. A binarized adjacency matrix for each subject and acquisition duration was generated at network costs between 0.1 and 0.5, where network cost is defined as the ratio of the number of edges (connections) in a network to the maximum possible number of edges. Measures of correlation coefficient stability associated with functional connectivity matrices (correlation coefficient standard deviation [SD] and correlation threshold) and associated graph theory metrics (small worldness, local efficiency, and global efficiency) were computed for each subject at each BOLD signal acquisition duration. Computations were implemented with a 15-node 30-core computer cluster to enable analysis of the approximately 2000 resulting brain networks. Analysis of variance and posthoc analyses were conducted to identify differences between time bins for each measure. Small worldness, local efficiency, and global efficiency stabilized after 2 minutes of BOLD signal acquisition, whereas correlation coefficient data from functional connectivity matrices (correlation coefficient SD and cost-associated threshold) stabilized after 5 minutes of BOLD signal acquisition. Graph theory metrics of brain network connectivity (small worldness, local efficiency, and global efficiency) may be accurately computed from as little as 1.5-2.0 minutes of RS functional MR imaging BOLD signal. As such, implementation of these methods in the context of time-constrained clinical imaging protocols may be feasible and cost-effective. http

  14. Classification of schizophrenia patients based on resting-state functional network connectivity

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Arbabshirani

    2013-07-01

    Full Text Available There is a growing interest in automatic classification of mental disorders based on neuroimaging data. Small training data sets (subjects and very large amount of high dimensional data make it a challenging task to design robust and accurate classifiers for heterogeneous disorders such as schizophrenia. Most previous studies considered structural MRI, diffusion tensor imaging and task-based fMRI for this purpose. However, resting-state data has been rarely used in discrimination of schizophrenia patients from healthy controls. Resting data are of great interest, since they are relatively easy to collect, and not confounded by behavioral performance on a task. Several linear and non-linear classification methods were trained using a training dataset and evaluate with a separate testing dataset. Results show that classification with high accuracy is achievable using simple non-linear discriminative methods such as k-nearest neighbors which is very promising. We compare and report detailed results of each classifier as well as statistical analysis and evaluation of each single feature. To our knowledge our effects represent the first use of resting-state functional network connectivity features to classify schizophrenia.

  15. Working memory performance of early MS patients correlates inversely with modularity increases in resting state functional connectivity networks.

    Science.gov (United States)

    Gamboa, O L; Tagliazucchi, E; von Wegner, F; Jurcoane, A; Wahl, M; Laufs, H; Ziemann, U

    2014-07-01

    Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating and neurodegenerative disorder of the central nervous system characterized by multifocal white matter brain lesions leading to alterations in connectivity at the subcortical and cortical level. Graph theory, in combination with neuroimaging techniques, has been recently developed into a powerful tool to assess the large-scale structure of brain functional connectivity. Considering the structural damage present in the brain of MS patients, we hypothesized that the topological properties of resting-state functional networks of early MS patients would be re-arranged in order to limit the impact of disease expression. A standardized dual task (Paced Auditory Serial Addition Task simultaneously performed with a paper and pencil task) was administered to study the interactions between behavioral performance and functional network re-organization. We studied a group of 16 early MS patients (35.3±8.3 years, 11 females) and 20 healthy controls (29.9±7.0 years, 10 females) and found that brain resting-state networks of the MS patients displayed increased network modularity, i.e. diminished functional integration between separate functional modules. Modularity correlated negatively with dual task performance in the MS patients. Our results shed light on how localized anatomical connectivity damage can globally impact brain functional connectivity and how these alterations can impair behavioral performance. Finally, given the early stage of the MS patients included in this study, network modularity could be considered a promising biomarker for detection of earliest-stage brain network reorganization, and possibly of disease progression. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The Salience Network and Its Functional Architecture in a Perceptual Decision: An Effective Connectivity Study.

    Science.gov (United States)

    Lamichhane, Bidhan; Dhamala, Mukesh

    2015-08-01

    The anterior insulae (INSs) are involved in accumulating sensory evidence in perceptual decision-making independent of the motor response, whereas the dorsal anterior cingulate cortex (dACC) is known to play a role in choosing appropriate behavioral responses. Recent evidence suggests that INSs and dACC are part of the salience network (SN), a key network known to be involved in decision-making and thought to be important for the coordination of behavioral responses. However, how these nodes in the SN contribute to the decision-making process from segregation of stimuli to the generation of an appropriate behavioral response remains unknown. In this study, the authors scanned 33 participants in functional magnetic resonance imaging and asked them to decide whether the presented pairs of audio (a beep of sound) and visual (a flash of light) stimuli were synchronous or asynchronous. Participants reported their perception with a button press. Stimuli were presented in block of eight pairs with a temporal lag (ΔT) between the first (audio) and the second (visual) stimulus in each pair. They used dynamic causal modeling (DCM) and the Bayesian model evidence technique to elucidate the functional architecture between the nodes of SN. Both the synchrony and the asynchrony perception resulted in strong activation in the SN. Most importantly, the DCM analyses demonstrated that the INSs were integrating as well as driving hubs in the SN. The INSs were found to a play an important role in the integration of sensory information; input to the SN is most likely through INSs. Furthermore, significant INSs to dACC intrinsic connectivity established by these task conditions help us conclude that INSs drive the dACC to guide the behavior of choosing the appropriate response. The authors therefore argue that the dACC and INS are part of a system involved in the decision-making process from perception to planning of a motor response, and that this observed functional mechanism might

  17. Functional resting-state connectivity of the human motor network: differences between right- and left-handers.

    Science.gov (United States)

    Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2015-04-01

    Handedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Loss of Intra- and Inter-Network Resting State Functional Connections with Alzheimer’s Disease Progression

    Science.gov (United States)

    Brier, Mathew; Thomas, Jewell B.; Snyder, Abraham Z.; Benzinger, Tammie L.; Zhang, Dongyang; Raichle, Marcus E.; Holtzman, David M.; Morris, John C.; Ances, Beau M.

    2012-01-01

    Alzheimer’s disease (AD) is the most common cause of dementia. Much is known concerning AD pathophysiology but our understanding of the disease at the systems level remains incomplete. Previous AD research has used resting state functional connectivity magnetic resonance imaging (rs-fcMRI) to assess the integrity of functional networks within the brain. Most studies have focused on the default-mode network (DMN), a primary locus of AD pathology. However, other brain regions are inevitably affected with disease progression. We studied rs-fcMRI in five functionally defined brain networks within a large cohort of human participants of either gender (n=510) that ranged in AD severity from unaffected (clinical dementia rating, CDR 0) to very mild (CDR 0.5) to mild AD (CDR 1). We observed loss of correlations within not only the DMN but other networks at CDR 0.5. Within the salience network (SAL), increases were seen between CDR 0 and CDR 0.5. However, at CDR 1, all networks, including SAL, exhibited reduced correlations. Specific networks were preferentially affected at certain CDR stages. In addition, cross-network relations were consistently lost with increasing AD severity. Our results demonstrate that AD is associated with widespread loss of both intra- and inter-network correlations. These results provide insight into AD pathophysiology and reinforce an integrative view of the brain’s functional organization. PMID:22745490

  19. Altered Default Network Resting State Functional Connectivity in Patients with a First Episode of Psychosis

    Science.gov (United States)

    Alonso-Solís, Anna; Corripio, Iluminada; de Castro-Manglano, Pilar; Duran-Sindreu, Santiago; Garcia-Garcia, Manuel; Proal, Erika; Nuñez-Marín, Fidel; Soutullo, Cesar; Alvarez, Enric; Gómez-Ansón, Beatriz; Kelly, Clare; Castellanos, F. Xavier

    2012-01-01

    Background Default network (DN) abnormalities have been identified in patients with chronic schizophrenia using “resting state” functional magnetic resonance imaging (R-fMRI). Here, we examined the integrity of the DN in patients experiencing their first episode of psychosis (FEP) compared with sex- and age-matched healthy controls. Methods We collected R-fMRI data from 19 FEP patients (mean age 24.9±4.8 yrs, 14 males) and 19 healthy controls (26.1±4.8 yrs, 14 males) at 3 Tesla. Following standard preprocessing, we examined the functional connectivity (FC) of two DN subsystems and the two DN hubs (P<0.0045, corrected). Results Patients with FEP exhibited abnormal FC that appeared largely restricted to the dorsomedial prefrontal cortex (dMPFC) DN subsystem. Relative to controls, FEP patients exhibited weaker positive FC between dMPFC and posterior cingulate cortex (PCC) and precuneus, extending laterally through the parietal lobe to the posterior angular gyrus. Patients with FEP exhibited weaker negative FC between the lateral temporal cortex and the intracalcarine cortex, bilaterally. The PCC and temporo-parietal junction also exhibited weaker negative FC with the right fusiform gyrus extending to the lingual gyrus and lateral occipital cortex, in FEP patients, compared to controls. By contrast, patients with FEP showed stronger negative FC between the temporal pole and medial motor cortex, anterior precuneus and posterior mid-cingulate cortex. Conclusions Abnormalities in the dMPFC DN subsystem in patients with a FEP suggest that FC patterns are altered even in the early stages of psychosis. PMID:22633527

  20. A new method to measure complexity in binary or weighted networks and applications to functional connectivity in the human brain.

    Science.gov (United States)

    Hahn, Klaus; Massopust, Peter R; Prigarin, Sergei

    2016-02-13

    Networks or graphs play an important role in the biological sciences. Protein interaction networks and metabolic networks support the understanding of basic cellular mechanisms. In the human brain, networks of functional or structural connectivity model the information-flow between cortex regions. In this context, measures of network properties are needed. We propose a new measure, Ndim, estimating the complexity of arbitrary networks. This measure is based on a fractal dimension, which is similar to recently introduced box-covering dimensions. However, box-covering dimensions are only applicable to fractal networks. The construction of these network-dimensions relies on concepts proposed to measure fractality or complexity of irregular sets in [Formula: see text]. The network measure Ndim grows with the proliferation of increasing network connectivity and is essentially determined by the cardinality of a maximum k-clique, where k is the characteristic path length of the network. Numerical applications to lattice-graphs and to fractal and non-fractal graph models, together with formal proofs show, that Ndim estimates a dimension of complexity for arbitrary graphs. Box-covering dimensions for fractal graphs rely on a linear log-log plot of minimum numbers of covering subgraph boxes versus the box sizes. We demonstrate the affinity between Ndim and the fractal box-covering dimensions but also that Ndim extends the concept of a fractal dimension to networks with non-linear log-log plots. Comparisons of Ndim with topological measures of complexity (cost and efficiency) show that Ndim has larger informative power. Three different methods to apply Ndim to weighted networks are finally presented and exemplified by comparisons of functional brain connectivity of healthy and depressed subjects. We introduce a new measure of complexity for networks. We show that Ndim has the properties of a dimension and overcomes several limitations of presently used topological and fractal

  1. Altered inter-subregion connectivity of the default mode network in relapsing remitting multiple sclerosis: a functional and structural connectivity study.

    Directory of Open Access Journals (Sweden)

    Fuqing Zhou

    Full Text Available BACKGROUND AND PURPOSE: Little is known about the interactions between the default mode network (DMN subregions in relapsing-remitting multiple sclerosis (RRMS. This study used diffusion tensor imaging (DTI and resting-state functional MRI (rs-fMRI to examine alterations of long white matter tracts in paired DMN subregions and their functional connectivity in RRMS patients. METHODS: Twenty-four RRMS patients and 24 healthy subjects participated in this study. The fiber connections derived from DTI tractography and the temporal correlation coefficient derived from rs-fMRI were combined to examine the inter-subregion structural-functional connectivity (SC-FC within the DMN and its correlations with clinical markers. RESULTS: Compared with healthy subjects, the RRMS patients showed the following: 1 significantly decreased SC and increased FC in the pair-wise subregions; 2 two significant correlations in SC-FC coupling patterns, including the positive correlation between slightly increased FC value and long white matter tract damage in the PCC/PCUN-MPFC connection, and the negative correlations between significantly increased FC values and long white matter tract damage in the PCC/PCUN-bilateral mTL connections; 3 SC alterations [log(N track of the PCC/PCUN-left IPL, RD value of the MPFC-left IPL, FA value of the PCC/PCUN-left mTL connections] correlated with EDSS, increases in the RD value of MPFC-left IPL connection was positively correlated to the MFIS; and decreases in the FA value of PCC/PCUN-right IPL connection was negatively correlated with the PASAT; 4 decreased SC (FA value of the MPFC-left IPL, track volume of the PCC/PCUN-MPFC, and log(N track of PCC/PCUN-left mTL connections was positively correlated with brain atrophy. CONCLUSIONS: In the connections of paired DMN subregions, we observed decreased SC and increased FC in RRMS patients. The relationship between MS-related structural abnormalities and clinical markers suggests that the

  2. Altered inter-subregion connectivity of the default mode network in relapsing remitting multiple sclerosis: a functional and structural connectivity study.

    Science.gov (United States)

    Zhou, Fuqing; Zhuang, Ying; Gong, Honghan; Wang, Bo; Wang, Xing; Chen, Qi; Wu, Lin; Wan, Hui

    2014-01-01

    Little is known about the interactions between the default mode network (DMN) subregions in relapsing-remitting multiple sclerosis (RRMS). This study used diffusion tensor imaging (DTI) and resting-state functional MRI (rs-fMRI) to examine alterations of long white matter tracts in paired DMN subregions and their functional connectivity in RRMS patients. Twenty-four RRMS patients and 24 healthy subjects participated in this study. The fiber connections derived from DTI tractography and the temporal correlation coefficient derived from rs-fMRI were combined to examine the inter-subregion structural-functional connectivity (SC-FC) within the DMN and its correlations with clinical markers. Compared with healthy subjects, the RRMS patients showed the following: 1) significantly decreased SC and increased FC in the pair-wise subregions; 2) two significant correlations in SC-FC coupling patterns, including the positive correlation between slightly increased FC value and long white matter tract damage in the PCC/PCUN-MPFC connection, and the negative correlations between significantly increased FC values and long white matter tract damage in the PCC/PCUN-bilateral mTL connections; 3) SC alterations [log(N track) of the PCC/PCUN-left IPL, RD value of the MPFC-left IPL, FA value of the PCC/PCUN-left mTL connections] correlated with EDSS, increases in the RD value of MPFC-left IPL connection was positively correlated to the MFIS; and decreases in the FA value of PCC/PCUN-right IPL connection was negatively correlated with the PASAT; 4) decreased SC (FA value of the MPFC-left IPL, track volume of the PCC/PCUN-MPFC, and log(N track) of PCC/PCUN-left mTL connections) was positively correlated with brain atrophy. In the connections of paired DMN subregions, we observed decreased SC and increased FC in RRMS patients. The relationship between MS-related structural abnormalities and clinical markers suggests that the disruption of this long-distance "inter-subregion" connectivity

  3. Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?

    OpenAIRE

    Varoquaux, Gaël; Gramfort, Alexandre; Poline, Jean Baptiste; Thirion, Bertrand

    2012-01-01

    International audience; Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-wor...

  4. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction.

    Directory of Open Access Journals (Sweden)

    Wei-na Ding

    Full Text Available PURPOSE: Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA. METHODS: Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS and Barratt Impulsiveness Scale-11 (BIS-11 and their hours of Internet use per week. RESULTS: There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours (p<0.0001 and higher CIAS (p<0.0001 and BIS-11 (p = 0.01 scores than the controls. Compared with the control group, subjects with IGA exhibited increased functional connectivity in the bilateral cerebellum posterior lobe and middle temporal gyrus. The bilateral inferior parietal lobule and right inferior temporal gyrus exhibited decreased connectivity. Connectivity with the PCC was positively correlated with CIAS scores in the right precuneus, posterior cingulate gyrus, thalamus, caudate, nucleus accumbens, supplementary motor area, and lingual gyrus. It was negatively correlated with the right cerebellum anterior lobe and left superior parietal lobule. CONCLUSION: Our results suggest that adolescents with IGA exhibit different resting-state patterns of brain activity. As these alterations are partially consistent with those in patients

  5. Resting-state functional connectivity predicts longitudinal pain symptom change in urologic chronic pelvic pain syndrome: a MAPP network study.

    Science.gov (United States)

    Kutch, Jason J; Labus, Jennifer S; Harris, Richard E; Martucci, Katherine T; Farmer, Melissa A; Fenske, Sonja; Fling, Connor; Ichesco, Eric; Peltier, Scott; Petre, Bogdan; Guo, Wensheng; Hou, Xiaoling; Stephens, Alisa J; Mullins, Chris; Clauw, Daniel J; Mackey, Sean C; Apkarian, A Vania; Landis, J Richard; Mayer, Emeran A

    2017-06-01

    Chronic pain symptoms often change over time, even in individuals who have had symptoms for years. Studying biological factors that predict trends in symptom change in chronic pain may uncover novel pathophysiological mechanisms and potential therapeutic targets. In this study, we investigated whether brain functional connectivity measures obtained from resting-state functional magnetic resonance imaging at baseline can predict longitudinal symptom change (3, 6, and 12 months after scan) in urologic chronic pelvic pain syndrome. We studied 52 individuals with urologic chronic pelvic pain syndrome (34 women, 18 men) who had baseline neuroimaging followed by symptom tracking every 2 weeks for 1 year as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network study. We found that brain functional connectivity can make a significant prediction of short-term (3 month) pain reduction with 73.1% accuracy (69.2% sensitivity and 75.0% precision). In addition, we found that the brain regions with greatest contribution to the classification were preferentially aligned with the left frontoparietal network. Resting-state functional magnetic resonance imaging measures seemed to be less informative about 6- or 12-month symptom change. Our study provides the first evidence that future trends in symptom change in patients in a state of chronic pain may be linked to functional connectivity within specific brain networks.

  6. Control Networks in Paediatric Tourette Syndrome Show Immature and Anomalous Patterns of Functional Connectivity

    Science.gov (United States)

    Church, Jessica A.; Fair, Damien A.; Dosenbach, Nico U. F.; Cohen, Alexander L.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2009-01-01

    Tourette syndrome (TS) is a developmental disorder characterized by unwanted, repetitive behaviours that manifest as stereotyped movements and vocalizations called "tics". Operating under the hypothesis that the brain's control systems may be impaired in TS, we measured resting-state functional connectivity MRI (rs-fcMRI) between 39 previously…

  7. Functional Connectivity of Precipitation Networks in the Brazilian Rainforest-Savanna Transition Zone

    Science.gov (United States)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2016-12-01

    In the Brazilian rainforest-savanna transition zone, vegetation change has the potential to significantly affect precipitation patterns. Deforestation, in particular, can affect precipitation patterns by increasing land surface albedo, increasing aerosol loading to the atmosphere, changing land surface roughness, and reducing transpiration. Understanding land surface-precipitation couplings in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching and agriculture, hydropower generation, and drinking water management. Simulations suggest complex, scale-dependent interactions between precipitation and land cover. For example, the size and distribution of deforested patches has been found to affect precipitation patterns. We take an empirical approach to ask: (1) what are the dominant spatial and temporal length scales of precipitation coupling in the Brazilian rainforest-savanna transition zone? (2) How do these length scales change over time? (3) How does the connectivity of precipitation change over time? The answers to these questions will help address fundamental questions about the impacts of deforestation on precipitation. We use rain gauge data from 1100 rain gauges intermittently covering the period 1980 - 2013, a period of intensive land cover change in the region. The dominant spatial and temporal length scales of precipitation coupling are resolved using transfer entropy, a metric from information theory. Connectivity of the emergent network of couplings is quantified using network statistics. Analyses using transfer entropy and network statistics reveal the spatial and temporal interdependencies of rainfall events occurring in different parts of the study domain.

  8. Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials

    Science.gov (United States)

    Lopour, Beth A.; Staba, Richard J.; Stern, John M.; Fried, Itzhak; Ringach, Dario L.

    2016-04-01

    Objective. Quantifying the relationship between microelectrode-recorded multi-unit activity (MUA) and local field potentials (LFPs) in distinct brain regions can provide detailed information on the extent of functional connectivity in spatially widespread networks. These methods are common in studies of cognition using non-human animal models, but are rare in humans. Here we applied a neuronal spike-triggered impulse response to electrophysiological recordings from the human epileptic brain for the first time, and we evaluate functional connectivity in relation to brain areas supporting the generation of seizures. Approach. Broadband interictal electrophysiological data were recorded from microwires adapted to clinical depth electrodes that were implanted bilaterally using stereotactic techniques in six presurgical patients with medically refractory epilepsy. MUA and LFPs were isolated in each microwire, and we calculated the impulse response between the MUA on one microwire and the LFPs on a second microwire for all possible MUA/LFP pairs. Results were compared to clinical seizure localization, including sites of seizure onset and interictal epileptiform discharges. Main results. We detected significant interictal long-range functional connections in each subject, in some cases across hemispheres. Results were consistent between two independent datasets, and the timing and location of significant impulse responses reflected anatomical connectivity. However, within individual subjects, the spatial distribution of impulse responses was unique. In two subjects with clear seizure localization and successful surgery, the epileptogenic zone was associated with significant impulse responses. Significance. The results suggest that the spike-triggered impulse response can provide valuable information about the neuronal networks that contribute to seizures using only interictal data. This technique will enable testing of specific hypotheses regarding functional connectivity

  9. Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials.

    Science.gov (United States)

    Lopour, Beth A; Staba, Richard J; Stern, John M; Fried, Itzhak; Ringach, Dario L

    2016-04-01

    Quantifying the relationship between microelectrode-recorded multi-unit activity (MUA) and local field potentials (LFPs) in distinct brain regions can provide detailed information on the extent of functional connectivity in spatially widespread networks. These methods are common in studies of cognition using non-human animal models, but are rare in humans. Here we applied a neuronal spike-triggered impulse response to electrophysiological recordings from the human epileptic brain for the first time, and we evaluate functional connectivity in relation to brain areas supporting the generation of seizures. Broadband interictal electrophysiological data were recorded from microwires adapted to clinical depth electrodes that were implanted bilaterally using stereotactic techniques in six presurgical patients with medically refractory epilepsy. MUA and LFPs were isolated in each microwire, and we calculated the impulse response between the MUA on one microwire and the LFPs on a second microwire for all possible MUA/LFP pairs. Results were compared to clinical seizure localization, including sites of seizure onset and interictal epileptiform discharges. We detected significant interictal long-range functional connections in each subject, in some cases across hemispheres. Results were consistent between two independent datasets, and the timing and location of significant impulse responses reflected anatomical connectivity. However, within individual subjects, the spatial distribution of impulse responses was unique. In two subjects with clear seizure localization and successful surgery, the epileptogenic zone was associated with significant impulse responses. The results suggest that the spike-triggered impulse response can provide valuable information about the neuronal networks that contribute to seizures using only interictal data. This technique will enable testing of specific hypotheses regarding functional connectivity in epilepsy and the relationship between

  10. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

    Science.gov (United States)

    Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe

    2016-07-01

    Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed

  11. Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks.

    Science.gov (United States)

    Vértes, Petra E; Rittman, Timothy; Whitaker, Kirstie J; Romero-Garcia, Rafael; Váša, František; Kitzbichler, Manfred G; Wagstyl, Konrad; Fonagy, Peter; Dolan, Raymond J; Jones, Peter B; Goodyer, Ian M; Bullmore, Edward T

    2016-10-05

    Human functional magnetic resonance imaging (fMRI) brain networks have a complex topology comprising integrative components, e.g. long-distance inter-modular edges, that are theoretically associated with higher biological cost. Here, we estimated intra-modular degree, inter-modular degree and connection distance for each of 285 cortical nodes in multi-echo fMRI data from 38 healthy adults. We used the multivariate technique of partial least squares (PLS) to reduce the dimensionality of the relationships between these three nodal network parameters and prior microarray data on regional expression of 20 737 genes. The first PLS component defined a transcriptional profile associated with high intra-modular degree and short connection distance, whereas the second PLS component was associated with high inter-modular degree and long connection distance. Nodes in superior and lateral cortex with high inter-modular degree and long connection distance had local transcriptional profiles enriched for oxidative metabolism and mitochondria, and for genes specific to supragranular layers of human cortex. In contrast, primary and secondary sensory cortical nodes in posterior cortex with high intra-modular degree and short connection distance had transcriptional profiles enriched for RNA translation and nuclear components. We conclude that, as predicted, topologically integrative hubs, mediating long-distance connections between modules, are more costly in terms of mitochondrial glucose metabolism.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Authors.

  12. Nonlinear functional connectivity network recovery in the human brain with mutual connectivity analysis (MCA): convergent cross-mapping and non-metric clustering

    Science.gov (United States)

    Wismüller, Axel; Abidin, Anas Z.; D'Souza, Adora M.; Wang, Xixi; Hobbs, Susan K.; Leistritz, Lutz; Nagarajan, Mahesh B.

    2015-03-01

    We explore a computational framework for functional connectivity analysis in resting-state functional MRI (fMRI) data acquired from the human brain for recovering the underlying network structure and understanding causality between network components. Termed mutual connectivity analysis (MCA), this framework involves two steps, the first of which is to evaluate the pair-wise cross-prediction performance between fMRI pixel time series within the brain. In a second step, the underlying network structure is subsequently recovered from the affinity matrix using non-metric network clustering approaches, such as the so-called Louvain method. Finally, we use convergent cross-mapping (CCM) to study causality between different network components. We demonstrate our MCA framework in the problem of recovering the motor cortex network associated with hand movement from resting state fMRI data. Results are compared with a ground truth of active motor cortex regions as identified by a task-based fMRI sequence involving a finger-tapping stimulation experiment. Our results regarding causation between regions of the motor cortex revealed a significant directional variability and were not readily interpretable in a consistent manner across subjects. However, our results on whole-slice fMRI analysis demonstrate that MCA-based model-free recovery of regions associated with the primary motor cortex and supplementary motor area are in close agreement with localization of similar regions achieved with a task-based fMRI acquisition. Thus, we conclude that our MCA methodology can extract and visualize valuable information concerning the underlying network structure between different regions of the brain in resting state fMRI.

  13. Docosahexaenoic acid biostatus is associated with event-related functional connectivity in cortical attention networks of typically developing children.

    Science.gov (United States)

    Almeida, Daniel M; Jandacek, Ronald J; Weber, Wade A; McNamara, Robert K

    2017-05-01

    Although extant preclinical evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) is important for neurodevelopment, little is known about its role in human cortical structural and functional maturation. In the present cross-sectional study, we investigated the relationship between DHA biostatus and functional connectivity in cortical attention networks of typically developing children. Male children (aged 8-10 years, n = 36) were divided into 'low-DHA' (n = 18) and 'high-DHA' (n = 18) biostatus groups by a median split of erythrocyte DHA levels. Event-related functional connectivity during the performance of a sustained attention task (identical pairs continuous performance task (CPT-IP)) was conducted using functional magnetic resonance imaging. A voxelwise approach used the anterior cingulate cortex (ACC) as the seed-region. Erythrocyte DHA composition in the low-DHA group (2.6 ± 0.9%) was significantly lower than the high-DHA group (4.1 ± 1.1%, P ≤ 0.0001). Fish intake frequency was greater in the high-DHA group (P = 0.003) and was positively correlated with DHA levels among all subjects. The low-DHA group exhibited reduced functional connectivity between the ACC and the ventrolateral prefrontal cortex, insula, precuneus, superior parietal lobule, middle occipital gyrus, inferior temporal gyrus, and lingual gyrus compared with the high-DHA group (P DHA group did not exhibit greater ACC functional connectivity with any region compared with the high-DHA group. On the CPT-IP task, the low-DHA group had slower reaction time (P = 0.03) which was inversely correlated with erythrocyte DHA among all subjects. These data suggest that low-DHA biostatus is associated with reduced event-related functional connectivity in cortical attention networks of typically developing children.

  14. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction.

    Science.gov (United States)

    Ding, Wei-na; Sun, Jin-hua; Sun, Ya-wen; Zhou, Yan; Li, Lei; Xu, Jian-rong; Du, Ya-song

    2013-01-01

    Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI) to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA). Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC) connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS) and Barratt Impulsiveness Scale-11 (BIS-11) and their hours of Internet use per week. There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours) (paddiction, they support the hypothesis that IGA as a behavioral addiction that may share similar neurobiological abnormalities with other addictive disorders.

  15. Functionally connected brain regions in the network activated during capsaicin inhalation

    NARCIS (Netherlands)

    Farrell, Michael J.; Koch, Saskia; Ando, Ayaka; Cole, Leonie J.; Egan, Gary F.; Mazzone, Stuart B.

    2014-01-01

    Coughing and the urge-to-cough are important mechanisms that protect the patency of the airways, and are coordinated by the brain. Inhaling a noxious substance leads to a widely distributed network of responses in the brain that are likely to reflect multiple functional processes requisite for

  16. Oxytocin differentially alters resting state functional connectivity between amygdala subregions and emotional control networks: Inverse correlation with depressive traits.

    Science.gov (United States)

    Eckstein, Monika; Markett, Sebastian; Kendrick, Keith M; Ditzen, Beate; Liu, Fang; Hurlemann, Rene; Becker, Benjamin

    2017-04-01

    The hypothalamic neuropeptide oxytocin (OT) has received increasing attention for its role in modulating social-emotional processes across species. Previous studies on using intranasal-OT in humans point to a crucial engagement of the amygdala in the observed neuromodulatory effects of OT under task and rest conditions. However, the amygdala is not a single homogenous structure, but rather a set of structurally and functionally heterogeneous nuclei that show distinct patterns of connectivity with limbic and frontal emotion-processing regions. To determine potential differential effects of OT on functional connectivity of the amygdala subregions, 79 male participants underwent resting-state fMRI following randomized intranasal-OT or placebo administration. In line with previous studies OT increased the connectivity of the total amygdala with dorso-medial prefrontal regions engaged in emotion regulation. In addition, OT enhanced coupling of the total amygdala with cerebellar regions. Importantly, OT differentially altered the connectivity of amygdala subregions with distinct up-stream cortical nodes, particularly prefrontal/parietal, and cerebellar down-stream regions. OT-induced increased connectivity with cerebellar regions were largely driven by effects on the centromedial and basolateral subregions, whereas increased connectivity with prefrontal regions were largely mediated by right superficial and basolateral subregions. OT decreased connectivity of the centromedial subregions with core hubs of the emotional face processing network in temporal, occipital and parietal regions. Preliminary findings suggest that effects on the superficial amygdala-prefrontal pathway were inversely associated with levels of subclinical depression, possibly indicating that OT modulation may be blunted in the context of increased pathological load. Together, the present findings suggest a subregional-specific modulatory role of OT on amygdala-centered emotion processing networks in

  17. Order Patterns Networks (orpan – a method toestimate time-evolving functional connectivity frommultivariate time series

    Directory of Open Access Journals (Sweden)

    Stefan eSchinkel

    2012-11-01

    Full Text Available Complex networks provide an excellent framework for studying the functionof the human brain activity. Yet estimating functional networks from mea-sured signals is not trivial, especially if the data is non-stationary and noisyas it is often the case with physiological recordings. In this article we proposea method that uses the local rank structure of the data to define functionallinks in terms of identical rank structures. The method yields temporal se-quences of networks which permits to trace the evolution of the functionalconnectivity during the time course of the observation. We demonstrate thepotentials of this approach with model data as well as with experimentaldata from an electrophysiological study on language processing.

  18. Insula-based networks in professional musicians: Evidence for increased functional connectivity during resting state fMRI.

    Science.gov (United States)

    Zamorano, Anna M; Cifre, Ignacio; Montoya, Pedro; Riquelme, Inmaculada; Kleber, Boris

    2017-10-01

    Despite considerable research on experience-dependent neuroplasticity in professional musicians, detailed understanding of an involvement of the insula is only now beginning to emerge. We investigated the effects of musical training on intrinsic insula-based connectivity in professional classical musicians relative to nonmusicians using resting-state functional MRI. Following a tripartite scheme of insula subdivisions, coactivation profiles were analyzed for the posterior, ventral anterior, and dorsal anterior insula in both hemispheres. While whole-brain connectivity across all participants confirmed previously reported patterns, between-group comparisons revealed increased insular connectivity in musicians relative to nonmusicians. Coactivated regions encompassed constituents of large-scale networks involved in salience detection (e.g., anterior and middle cingulate cortex), affective processing (e.g., orbitofrontal cortex and temporal pole), and higher order cognition (e.g., dorsolateral prefrontal cortex and the temporoparietal junction), whereas no differences were found for the reversed group contrast. Importantly, these connectivity patterns were stronger in musicians who experienced more years of musical practice, including also sensorimotor regions involved in music performance (M1 hand area, S1, A1, and SMA). We conclude that musical training triggers significant reorganization in insula-based networks, potentially facilitating high-level cognitive and affective functions associated with the fast integration of multisensory information in the context of music performance. Hum Brain Mapp 38:4834-4849, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Network Science and the Effects of Music Preference on Functional Brain Connectivity: From Beethoven to Eminem

    OpenAIRE

    Wilkins, R. W.; D. A. Hodges; Laurienti, P. J.; M. Steen; Burdette, J. H.

    2014-01-01

    Most people choose to listen to music that they prefer or ?like? such as classical, country or rock. Previous research has focused on how different characteristics of music (i.e., classical versus country) affect the brain. Yet, when listening to preferred music?regardless of the type?people report they often experience personal thoughts and memories. To date, understanding how this occurs in the brain has remained elusive. Using network science methods, we evaluated differences in functional...

  20. Robust Detection of Impaired Resting State Functional Connectivity Networks in Alzheimer's Disease Using Elastic Net Regularized Regression

    Science.gov (United States)

    Teipel, Stefan J.; Grothe, Michel J.; Metzger, Coraline D.; Grimmer, Timo; Sorg, Christian; Ewers, Michael; Franzmeier, Nicolai; Meisenzahl, Eva; Klöppel, Stefan; Borchardt, Viola; Walter, Martin; Dyrba, Martin

    2017-01-01

    The large number of multicollinear regional features that are provided by resting state (rs) fMRI data requires robust feature selection to uncover consistent networks of functional disconnection in Alzheimer's disease (AD). Here, we compared elastic net regularized and classical stepwise logistic regression in respect to consistency of feature selection and diagnostic accuracy using rs-fMRI data from four centers of the “German resting-state initiative for diagnostic biomarkers” (psymri.org), comprising 53 AD patients and 118 age and sex matched healthy controls. Using all possible pairs of correlations between the time series of rs-fMRI signal from 84 functionally defined brain regions as the initial set of predictor variables, we calculated accuracy of group discrimination and consistency of feature selection with bootstrap cross-validation. Mean areas under the receiver operating characteristic curves as measure of diagnostic accuracy were 0.70 in unregularized and 0.80 in regularized regression. Elastic net regression was insensitive to scanner effects and recovered a consistent network of functional connectivity decline in AD that encompassed parts of the dorsal default mode as well as brain regions involved in attention, executive control, and language processing. Stepwise logistic regression found no consistent network of AD related functional connectivity decline. Regularized regression has high potential to increase diagnostic accuracy and consistency of feature selection from multicollinear functional neuroimaging data in AD. Our findings suggest an extended network of functional alterations in AD, but the diagnostic accuracy of rs-fMRI in this multicenter setting did not reach the benchmark defined for a useful biomarker of AD. PMID:28101051

  1. Resting-state functional connectivity alterations in the default network of schizophrenia patients with persistent auditory verbal hallucinations.

    Science.gov (United States)

    Alonso-Solís, Anna; Vives-Gilabert, Yolanda; Grasa, Eva; Portella, Maria J; Rabella, Mireia; Sauras, Rosa Blanca; Roldán, Alexandra; Núñez-Marín, Fidel; Gómez-Ansón, Beatriz; Pérez, Víctor; Alvarez, Enric; Corripio, Iluminada

    2015-02-01

    To understand the neural mechanism that underlies treatment resistant auditory verbal hallucinations (AVH), is still an important issue in psychiatric research. Alterations in functional connectivity during rest have been frequently reported in patients with schizophrenia. Though the default mode network (DN) appears to be abnormal in schizophrenia patients, little is known about its role in resistant AVH. We collected resting-state functional magnetic resonance imaging (R-fMRI) data with a 3T scanner from 19 schizophrenia patients with chronic AVH resistant to pharmacological treatment, 14 schizophrenia patients without AVH and 20 healthy controls. Using seed-based correlation analysis, we created spherical seed regions of interest (ROI) to examine functional connectivity of the two DN hub regions (posterior cingulate cortex and anteromedial prefrontal cortex) and the two DN subsystems: dorsomedial prefrontal cortex subsystem and medial temporal lobe subsystem (p<0.0045 corrected). Patients with hallucinations exhibited higher FC between dMPFC ROI and bilateral central opercular cortex, bilateral insular cortex and bilateral precentral gyrus compared to non hallucinating patients and healthy controls. Additionally, patients with hallucinations also exhibited lower FC between vMPFC ROI and bilateral paracingulate and dorsal anterior cingulate cortex. As the anterior cingulate cortex and the insula are two hubs of the salience network, our results suggest cross-network abnormalities between DN and salience system in patients with persistent hallucinations. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The Functional Networks of Prepulse Inhibition: Neuronal Connectivity Analysis Based on FDG-PET in Awake and Unrestrained Rats.

    Directory of Open Access Journals (Sweden)

    Cathrin Rohleder

    2016-07-01

    Full Text Available Prepulse inhibition (PPI is a neuropsychological process during which a weak sensory stimulus (prepulse attenuates the motor response (startle reaction to a subsequent strong startling stimulus. It is measured as a surrogate marker of sensorimotor gating in patients suffering from neuropsychological diseases such as schizophrenia, as well as in corresponding animal models. A variety of studies has shown that PPI of the acoustical startle reaction comprises three brain circuitries for: i startle mediation, ii PPI mediation and iii modulation of PPI mediation. While anatomical connections and information flow in the startle and PPI mediation pathways are well known, spatial and temporal interactions of the numerous regions involved in PPI modulation are incompletely understood.We therefore combined [18F]fluoro-2-deoxyglucose positron-emission-tomography (FDG-PET with PPI and resting state control paradigms in awake rats. A battery of subtractive, correlative as well as seed-based functional connectivity analyses revealed a default mode-like network (DMN active during resting state only. Furthermore, two functional networks were observed during PPI: Metabolic activity in the lateral circuitry was positively correlated with PPI effectiveness and involved the auditory system and emotional regions. The medial network was negatively correlated with PPI effectiveness, i.e. associated with startle, and recruited a spatial/cognitive network. Our study provides evidence for two distinct neuronal networks, whose continuous interplay determines PPI effectiveness in rats, probably by either protecting the prepulse or facilitating startle processing.Discovering similar networks affected in neuropsychological disorders may help to better understand mechanisms of sensorimotor gating deficits and provide new perspectives for therapeutic strategies.

  3. EEG-MEG Integration Enhances the Characterization of Functional and Effective Connectivity in the Resting State Network

    Science.gov (United States)

    Mideksa, Kidist Gebremariam; Anwar, Abdul Rauf; Stephani, Ulrich; Deuschl, Günther; Freitag, Christine M.; Siniatchkin, Michael

    2015-01-01

    At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general

  4. Whole-brain functional connectivity predicted by indirect structural connections

    DEFF Research Database (Denmark)

    Røge, Rasmus; Ambrosen, Karen Marie Sandø; Albers, Kristoffer Jon

    2017-01-01

    Modern functional and diffusion magnetic resonance imaging (fMRI and dMRI) provide data from which macro-scale networks of functional and structural whole brain connectivity can be estimated. Although networks derived from these two modalities describe different properties of the human brain......, they emerge from the same underlying brain organization, and functional communication is presumably mediated by structural connections. In this paper, we assess the structure-function relationship by evaluating how well functional connectivity can be predicted from structural graphs. Using high......-resolution whole brain networks generated with varying density, we contrast the performance of several non-parametric link predictors that measure structural communication flow. While functional connectivity is not well predicted directly by structural connections, we show that superior predictions can be achieved...

  5. Cognitive Decline and Reorganization of Functional Connectivity in Healthy Aging: The Pivotal Role of the Salience Network in the Prediction of Age and Cognitive Performances

    Science.gov (United States)

    La Corte, Valentina; Sperduti, Marco; Malherbe, Caroline; Vialatte, François; Lion, Stéphanie; Gallarda, Thierry; Oppenheim, Catherine; Piolino, Pascale

    2016-01-01

    Normal aging is related to a decline in specific cognitive processes, in particular in executive functions and memory. In recent years a growing number of studies have focused on changes in brain functional connectivity related to cognitive aging. A common finding is the decreased connectivity within multiple resting state networks, including the default mode network (DMN) and the salience network. In this study, we measured resting state activity using fMRI and explored whether cognitive decline is related to altered functional connectivity. To this end we used a machine learning approach to classify young and old participants from functional connectivity data. The originality of the approach consists in the prediction of the performance and age of the subjects based on functional connectivity by using a machine learning approach. Our findings showed that the connectivity profile between specific networks predicts both the age of the subjects and their cognitive abilities. In particular, we report that the connectivity profiles between the salience and visual networks, and the salience and the anterior part of the DMN, were the features that best predicted the age. Moreover, independently of the age of the subject, connectivity between the salience network and various specific networks (i.e., visual, frontal) predicted episodic memory skills either based on a standard assessment or on an autobiographical memory task, and short-term memory binding. Finally, the connectivity between the salience and the frontal networks predicted inhibition and updating performance, but this link was no longer significant after removing the effect of age. Our findings confirm the crucial role of episodic memory and executive functions in cognitive aging and suggest a pivotal role of the salience network in neural reorganization in aging. PMID:27616991

  6. Ditch network sustains functional connectivity and influences patterns of gene flow in an intensive agricultural landscape.

    Science.gov (United States)

    Favre-Bac, L; Mony, C; Ernoult, A; Burel, F; Arnaud, J-F

    2016-02-01

    In intensive agricultural landscapes, plant species previously relying on semi-natural habitats may persist as metapopulations within landscape linear elements. Maintenance of populations' connectivity through pollen and seed dispersal is a key factor in species persistence in the face of substantial habitat loss. The goals of this study were to investigate the potential corridor role of ditches and to identify the landscape components that significantly impact patterns of gene flow among remnant populations. Using microsatellite loci, we explored the spatial genetic structure of two hydrochorous wetland plants exhibiting contrasting local abundance and different habitat requirements: the rare and regionally protected Oenanthe aquatica and the more commonly distributed Lycopus europaeus, in an 83 km(2) agricultural lowland located in northern France. Both species exhibited a significant spatial genetic structure, along with substantial levels of genetic differentiation, especially for L. europaeus, which also expressed high levels of inbreeding. Isolation-by-distance analysis revealed enhanced gene flow along ditches, indicating their key role in effective seed and pollen dispersal. Our data also suggested that the configuration of the ditch network and the landscape elements significantly affected population genetic structure, with (i) species-specific scale effects on the genetic neighborhood and (ii) detrimental impact of human ditch management on genetic diversity, especially for O. aquatica. Altogether, these findings highlighted the key role of ditches in the maintenance of plant biodiversity in intensive agricultural landscapes with few remnant wetland habitats.

  7. Altered dynamic functional connectivity in the default mode network in patients with cirrhosis and minimal hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Jun; Lin, Hai-Long [Fujian Medical University Union Hospital, Department of Radiology, Fuzhou (China); Chen, Qiu-Feng; Liu, Peng-Fei [Central South University, School of Information Science and Engineering, Changsha (China)

    2017-09-15

    Abnormal brain intrinsic functional connectivity (FC) has been documented in minimal hepatic encephalopathy (MHE) by static connectivity analysis. However, changes in dynamic FC (dFC) remain unknown. We aimed to identify altered dFC within the default mode network (DMN) associated with MHE. Resting-state functional MRI data were acquired from 20 cirrhotic patients with MHE and 24 healthy controls. DMN seed regions were defined using seed-based FC analysis (centered on the posterior cingulate cortex (PCC)). Dynamic FC architecture was calculated using a sliding time-window method. K-means clustering (number of clusters = 2-4) was applied to estimate FC states. When the number of clusters was 2, MHE patients presented weaker connectivity strengths compared with controls in states 1 and 2. In state 1, decreased FC strength was found between the PCC/precuneus (PCUN) and right medial temporal lobe (MTL)/bilateral lateral temporal cortex (LTC); left inferior parietal lobule (IPL) and right MTL/left LTC; right IPL and right MTL/bilateral LTC; right MTL and right LTC; and medial prefrontal cortex (MPFC) and right MTL/bilateral LTC. In state 2, reduced FC strength was observed between the PCC/PCUN and bilateral MTL/bilateral LTC; left IPL and left MTL/bilateral LTC/MPFC; and left LTC and right LTC. Altered connectivities from state 1 were correlated with patient cognitive performance. Similar findings were observed when the number of clusters was set to 3 or 4. Aberrant dynamic DMN connectivity is an additional characteristic of MHE. Dynamic connectivity analysis offers a novel paradigm for understanding MHE-related mechanisms. (orig.)

  8. Identification of Focal Epileptogenic Networks in Generalized Epilepsy Using Brain Functional Connectivity Analysis of Bilateral Intracranial EEG Signals.

    Science.gov (United States)

    Chen, Po-Ching; Castillo, Eduardo M; Baumgartner, James; Seo, Joo Hee; Korostenskaja, Milena; Lee, Ki Hyeong

    2016-09-01

    Simultaneous bilateral onset and bi-synchrony epileptiform discharges in electroencephalogram (EEG) remain hallmarks for generalized seizures. However, the possibility of an epileptogenic focus triggering rapidly generalized epileptiform discharges has been documented in several studies. Previously, a new multi-stage surgical procedure using bilateral intracranial EEG (iEEG) prior to and post complete corpus callosotomy (CC) was developed to uncover seizure focus in non-lateralizing focal epilepsy. Five patients with drug-resistant generalized epilepsy who underwent this procedure were included in the study. Their bilateral iEEG findings prior to complete CC showed generalized epileptiform discharges with no clear lateralization. Nonetheless, the bilateral ictal iEEG findings post complete CC indicated lateralized or localized seizure onset. This study hypothesized that brain functional connectivity analysis, applied to the pre CC bilateral iEEG recordings, could help identify focal epileptogenic networks in generalized epilepsy. The results indicated that despite diffuse epileptiform discharges, focal features can still be observed in apparent generalized seizures through brain connectivity analysis. The seizure onset localization/lateralization from connectivity analysis demonstrated a good agreement with the bilateral iEEG findings post complete CC and final surgical outcomes. Our study supports the role of focal epileptic networks in generalized seizures.

  9. Functional connectivity change across multiple cortical networks relates to episodic memory changes in aging.

    Science.gov (United States)

    Fjell, Anders M; Sneve, Markus H; Grydeland, Håkon; Storsve, Andreas B; de Lange, Ann-Marie Glasø; Amlien, Inge K; Røgeberg, Ole J; Walhovd, Kristine B

    2015-12-01

    A major task of contemporary cognitive neuroscience of aging is to explain why episodic memory declines. Change in resting-state functional connectivity (rsFC) could be a mechanism accounting for reduced function. We addressed this through 3 studies. In study 1, 119 healthy participants (20-83 years) were followed for 3.5 years with verbal recall testing and magnetic resonance imaging. Independent of atrophy, recall change was related to change in rsFC in anatomically widespread areas. Striking age-effects were observed in that a positive relationship between rsFC and memory characterized older participants while a negative relationship was seen among the younger and middle-aged. This suggests that cognitive consequences of rsFC change are not stable across age. In study 2 and 3, the age-dependent differences in rsFC-memory relationship were replicated by use of a simulation model (study 2) and by a cross-sectional experimental recognition memory task (study 3). In conclusion, memory changes were related to altered rsFC in an age-dependent manner, and future research needs to detail the mechanisms behind age-varying relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity.

    Science.gov (United States)

    Braga, Rodrigo M; Buckner, Randy L

    2017-07-19

    Certain organizational features of brain networks present in the individual are lost when central tendencies are examined in the group. Here we investigated the detailed network organization of four individuals each scanned 24 times using MRI. We discovered that the distributed network known as the default network is comprised of two separate networks possessing adjacent regions in eight or more cortical zones. A distinction between the networks is that one is coupled to the hippocampal formation while the other is not. Further exploration revealed that these two networks were juxtaposed with additional networks that themselves fractionate group-defined networks. The collective networks display a repeating spatial progression in multiple cortical zones, suggesting that they are embedded within a broad macroscale gradient. Regions contributing to the newly defined networks are spatially variable across individuals and adjacent to distinct networks, raising issues for network estimation in group-averaged data and applied endeavors, including targeted neuromodulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Design, Surface Treatment, Cellular Plating, and Culturing of Modular Neuronal Networks Composed of Functionally Inter-connected Circuits.

    Science.gov (United States)

    Kanner, Sivan; Bisio, Marta; Cohen, Gilad; Goldin, Miri; Tedesco, Marieteresa; Hanein, Yael; Ben-Jacob, Eshel; Barzilai, Ari; Chiappalone, Michela; Bonifazi, Paolo

    2015-04-15

    The brain operates through the coordinated activation and the dynamic communication of neuronal assemblies. A major open question is how a vast repertoire of dynamical motifs, which underlie most diverse brain functions, can emerge out of a fixed topological and modular organization of brain circuits. Compared to in vivo studies of neuronal circuits which present intrinsic experimental difficulties, in vitro preparations offer a much larger possibility to manipulate and probe the structural, dynamical and chemical properties of experimental neuronal systems. This work describes an in vitro experimental methodology which allows growing of modular networks composed by spatially distinct, functionally interconnected neuronal assemblies. The protocol allows controlling the two-dimensional (2D) architecture of the neuronal network at different levels of topological complexity. A desired network patterning can be achieved both on regular cover slips and substrate embedded micro electrode arrays. Micromachined structures are embossed on a silicon wafer and used to create biocompatible polymeric stencils, which incorporate the negative features of the desired network architecture. The stencils are placed on the culturing substrates during the surface coating procedure with a molecular layer for promoting cellular adhesion. After removal of the stencils, neurons are plated and they spontaneously redirected to the coated areas. By decreasing the inter-compartment distance, it is possible to obtain either isolated or interconnected neuronal circuits. To promote cell survival, cells are co-cultured with a supporting neuronal network which is located at the periphery of the culture dish. Electrophysiological and optical recordings of the activity of modular networks obtained respectively by using substrate embedded micro electrode arrays and calcium imaging are presented. While each module shows spontaneous global synchronizations, the occurrence of inter-module synchronization

  12. A Comparison of the Cluster-Span Threshold and the Union of Shortest Paths as objective thresholds of EEG functional connectivity networks from Beta activity in Alzheimer's disease

    OpenAIRE

    Smith, Keith; Abásolo, Daniel; Escudero, Javier

    2016-01-01

    The Cluster-Span Threshold (CST) is a recently introduced unbiased threshold for functional connectivity networks. This binarisation technique offers a natural trade-off of sparsity and density of information by balancing the ratio of closed to open triples in the network topology. Here we present findings comparing it with the Union of Shortest Paths (USP), another recently proposed objective method. We analyse standard network metrics of binarised networks for sensitivity to clinical Alzhei...

  13. Typical and Atypical Development of Functional Connectivity in the Face Network.

    Science.gov (United States)

    Song, Yiying; Zhu, Qi; Li, Jingguang; Wang, Xu; Liu, Jia

    2015-10-28

    Extensive studies have demonstrated that face recognition performance does not reach adult levels until adolescence. However, there is no consensus on whether such prolonged improvement stems from development of general cognitive factors or face-specific mechanisms. Here, we used behavioral experiments and functional magnetic resonance imaging (fMRI) to evaluate these two hypotheses. With a large cohort of children (n = 379), we found that the ability of face-specific recognition in humans increased with age throughout childhood and into late adolescence in both face memory and face perception. Neurally, to circumvent the potential problem of age differences in task performance, attention, or cognitive strategies in task-state fMRI studies, we measured the resting-state functional connectivity (RSFC) between the occipital face area (OFA) and fusiform face area (FFA) in human brain and found that the OFA-FFA RSFC increased until 11-13 years of age. Moreover, the OFA-FFA RSFC was selectively impaired in adults with developmental prosopagnosia (DP). In contrast, no age-related changes or differences between DP and normal adults were observed for RSFCs in the object system. Finally, the OFA-FFA RSFC matured earlier than face selectivity in either the OFA or FFA. These results suggest the critical role of the OFA-FFA RSFC in the development of face recognition. Together, our findings support the hypothesis that prolonged development of face recognition is face specific, not domain general. Copyright © 2015 the authors 0270-6474/15/3514624-12$15.00/0.

  14. Network-based analysis reveals stronger local diffusion-based connectivity and different correlations with oral language skills in brains of children with high functioning autism spectrum disorders.

    Science.gov (United States)

    Li, Hai; Xue, Zhong; Ellmore, Timothy M; Frye, Richard E; Wong, Stephen T C

    2014-02-01

    Neuroimaging has uncovered both long-range and short-range connectivity abnormalities in the brains of individuals with autism spectrum disorders (ASD). However, the precise connectivity abnormalities and the relationship between these abnormalities and cognition and ASD symptoms have been inconsistent across studies. Indeed, studies find both increases and decreases in connectivity, suggesting that connectivity changes in the ASD brain are not merely due to abnormalities in specific connections, but rather, due to changes in the structure of the network in which the brain areas interact (i.e., network topology). In this study, we examined the differences in the network topology between high-functioning ASD patients and age and gender matched typically developing (TD) controls. After quantitatively characterizing the whole-brain connectivity network using diffusion tensor imaging (DTI) data, we searched for brain regions with different connectivity between ASD and TD. A measure of oral language ability was then correlated with the connectivity changes to determine the functional significance of such changes. Whole-brain connectivity measures demonstrated greater local connectivity and shorter path length in ASD as compared to TD. Stronger local connectivity was found in ASD, especially in regions such as the left superior parietal lobule, the precuneus and angular gyrus, and the right supramarginal gyrus. The relationship between oral language ability and local connectivity within these regions was significantly different between ASD and TD. Stronger local connectivity was associated with better performance in ASD and poorer performance in TD. This study supports the notion that increased local connectivity is compensatory for supporting cognitive function in ASD. Copyright © 2012 Wiley Periodicals, Inc.

  15. Functional connectivity in amygdalar-sensory/(pre)motor networks at rest: new evidence from the Human Connectome Project.

    Science.gov (United States)

    Toschi, Nicola; Duggento, Andrea; Passamonti, Luca

    2017-05-01

    The word 'e-motion' derives from the Latin word 'ex-moveo' which literally means 'moving away from something/somebody'. Emotions are thus fundamental to prime action and goal-directed behavior with obvious implications for individual's survival. However, the brain mechanisms underlying the interactions between emotional and motor cortical systems remain poorly understood. A recent diffusion tensor imaging study in humans has reported the existence of direct anatomical connections between the amygdala and sensory/(pre)motor cortices, corroborating an initial observation in animal research. Nevertheless, the functional significance of these amygdala-sensory/(pre)motor pathways remain uncertain. More specifically, it is currently unclear whether a distinct amygdala-sensory/(pre)motor circuit can be identified with resting-state functional magnetic resonance imaging (rs-fMRI). This is a key issue, as rs-fMRI offers an opportunity to simultaneously examine distinct neural circuits that underpin different cognitive, emotional and motor functions, while minimizing task-related performance confounds. We therefore tested the hypothesis that the amygdala and sensory/(pre)motor cortices could be identified as part of the same resting-state functional connectivity network. To this end, we examined independent component analysis results in a very large rs-fMRI data-set drawn from the Human Connectome Project (n = 820 participants, mean age: 28.5 years). To our knowledge, we report for the first time the existence of a distinct amygdala-sensory/(pre)motor functional network at rest. rs-fMRI studies are now warranted to examine potential abnormalities in this circuit in psychiatric and neurological diseases that may be associated with alterations in the amygdala-sensory/(pre)motor pathways (e.g. conversion disorders, impulse control disorders, amyotrophic lateral sclerosis and multiple sclerosis). © 2017 The Authors. European Journal of Neuroscience published by Federation of

  16. Connecting and Networking for Schools

    Science.gov (United States)

    Resources for connecting and networking for schools through e-newsletters, finding school IAQ Champions and other EPA school programs such as Asthma, Energy Star, Clean School Bus USA, School Flag, etc.

  17. The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Leor eRoseman

    2014-05-01

    Full Text Available Perturbing a system and observing the consequences is a classic scientific strategy for understanding a phenomenon. Psychedelic drugs perturb consciousness in a marked and novel way and thus are powerful tools for studying its mechanisms. In the present analysis, we measured changes in resting-state functional connectivity (RSFC between a standard template of different independent components analysis (ICA-derived resting state networks (RSNs under the influence of two different psychoactive drugs, the stimulant/psychedelic hybrid, MDMA, and the classic psychedelic, psilocybin. Both were given in placebo-controlled designs and produced marked subjective effects, although reports of more profound changes in consciousness were given after psilocybin. Between-network RSFC was generally increased under psilocybin, implying that networks become less differentiated from each other in the psychedelic state. Decreased RSFC between visual and sensorimotor RSNs was also observed. MDMA had a notably less marked effect on between-network RSFC, implying that the extensive changes observed under psilocybin may be exclusive to classic psychedelic drugs and related to their especially profound effects on consciousness. The novel analytical approach applied here may be applied to other altered states of consciousness to improve our characterization of different conscious states and ultimately advance our understanding of the brain mechanisms underlying them.

  18. The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers.

    Science.gov (United States)

    Roseman, Leor; Leech, Robert; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2014-01-01

    Perturbing a system and observing the consequences is a classic scientific strategy for understanding a phenomenon. Psychedelic drugs perturb consciousness in a marked and novel way and thus are powerful tools for studying its mechanisms. In the present analysis, we measured changes in resting-state functional connectivity (RSFC) between a standard template of different independent components analysis (ICA)-derived resting state networks (RSNs) under the influence of two different psychoactive drugs, the stimulant/psychedelic hybrid, MDMA, and the classic psychedelic, psilocybin. Both were given in placebo-controlled designs and produced marked subjective effects, although reports of more profound changes in consciousness were given after psilocybin. Between-network RSFC was generally increased under psilocybin, implying that networks become less differentiated from each other in the psychedelic state. Decreased RSFC between visual and sensorimotor RSNs was also observed. MDMA had a notably less marked effect on between-network RSFC, implying that the extensive changes observed under psilocybin may be exclusive to classic psychedelic drugs and related to their especially profound effects on consciousness. The novel analytical approach applied here may be applied to other altered states of consciousness to improve our characterization of different conscious states and ultimately advance our understanding of the brain mechanisms underlying them.

  19. The development of the intrinsic functional connectivity of default network subsystems from age 3 to 5.

    Science.gov (United States)

    Xiao, Yaqiong; Zhai, Hongchang; Friederici, Angela D; Jia, Fucang

    2016-03-01

    In recent years, research on human functional brain imaging using resting-state fMRI techniques has been increasingly prevalent. The term "default mode" was proposed to describe a baseline or default state of the brain during rest. Recent studies suggested that the default mode network (DMN) is comprised of two functionally distinct subsystems: a dorsal-medial prefrontal cortex (DMPFC) subsystem involved in self-oriented cognition (i.e., theory of mind) and a medial temporal lobe (MTL) subsystem engaged in memory and scene construction; both subsystems interact with the anterior medial prefrontal cortex (aMPFC) and posterior cingulate (PCC) as the core regions of DMN. The present study explored the development of DMN core regions and these two subsystems in both hemispheres from 3- to 5-year-old children. The analysis of the intrinsic activity showed strong developmental changes in both subsystems, and significant changes were specifically found in MTL subsystem, but not in DMPFC subsystem, implying distinct developmental trajectories for DMN subsystems. We found stronger interactions between the DMPFC and MTL subsystems in 5-year-olds, particularly in the left subsystems that support the development of environmental adaptation and relatively complex mental activities. These results also indicate that there is stronger right hemispheric lateralization at age 3, which then changes as bilateral development gradually increases through to age 5, suggesting in turn the hemispheric dominance in DMN subsystems changing with age. The present results provide primary evidence for the development of DMN subsystems in early life, which might be closely related to the development of social cognition in childhood.

  20. Resting-State Functional Connectivity and Network Analysis of Cerebellum with Respect to Crystallized IQ and Gender

    Science.gov (United States)

    Pezoulas, Vasileios C.; Zervakis, Michalis; Michelogiannis, Sifis; Klados, Manousos A.

    2017-01-01

    During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high crystallized Intelligence Quotient (IQ). Functional magnetic resonance imaging (fMRI) data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP) database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject) using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST) was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our results reveal that

  1. Resting-State Functional Connectivity and Network Analysis of Cerebellum with Respect to Crystallized IQ and Gender

    Directory of Open Access Journals (Sweden)

    Vasileios C. Pezoulas

    2017-04-01

    Full Text Available During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high crystallized Intelligence Quotient (IQ. Functional magnetic resonance imaging (fMRI data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our

  2. Ecological connectivity networks in rapidly expanding cities.

    Science.gov (United States)

    Nor, Amal Najihah M; Corstanje, Ron; Harris, Jim A; Grafius, Darren R; Siriwardena, Gavin M

    2017-06-01

    Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow (Passer montanus) and Yellow-vented bulbul (Pycnonotus goiavier) in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines). The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance) were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such models for

  3. Functional Connectivity Alterations between Networks and Associations with Infant Immune Health within Networks in HIV Infected Children on Early Treatment: A Study at 7 Years

    Directory of Open Access Journals (Sweden)

    Jadrana T. F. Toich

    2018-01-01

    Full Text Available Although HIV has been shown to impact brain connectivity in adults and youth, it is not yet known to what extent long-term early antiretroviral therapy (ART may alter these effects, especially during rapid brain development in early childhood. Using both independent component analysis (ICA and seed-based correlation analysis (SCA, we examine the effects of HIV infection in conjunction with early ART on resting state functional connectivity (FC in 7 year old children. HIV infected (HIV+ children were from the Children with HIV Early Antiretroviral Therapy (CHER trial and all initiated ART before 18 months; uninfected children were recruited from an interlinking vaccine trial. To better understand the effects of current and early immune health on the developing brain, we also investigated among HIV+ children the association of FC at 7 years with CD4 count and CD4%, both in infancy (6–8 weeks and at scan. Although we found no differences within any ICA-generated resting state networks (RSNs between HIV+ and uninfected children (27 HIV+, 18 uninfected, whole brain connectivity to seeds located at RSN connectivity peaks revealed several loci of FC differences, predominantly from seeds in midline regions (posterior cingulate cortex, paracentral lobule, cuneus, and anterior cingulate. Reduced long-range connectivity and increased short-range connectivity suggest developmental delay. Within the HIV+ children, clinical measures at age 7 years were not associated with FC values in any of the RSNs; however, poor immune health during infancy was associated with localized FC increases in the somatosensory, salience and basal ganglia networks. Together these findings suggest that HIV may affect brain development from its earliest stages and persist into childhood, despite early ART.

  4. Random geometric graphs with general connection functions.

    Science.gov (United States)

    Dettmann, Carl P; Georgiou, Orestis

    2016-03-01

    In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H(r) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.

  5. Abnormal regional activity and functional connectivity in resting-state brain networks associated with etiology confirmed unilateral pulsatile tinnitus in the early stage of disease.

    Science.gov (United States)

    Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Li, Rui; Zhang, Ling; Wang, Peng; Yan, Fei; Liu, Liheng; Wang, Guopeng; Zeng, Rong; Li, Ting; Dong, Cheng; Gong, Shusheng; Wang, Zhenchang

    2017-03-01

    Abnormal neural activities can be revealed by resting-state functional magnetic resonance imaging (rs-fMRI) using analyses of the regional activity and functional connectivity (FC) of the networks in the brain. This study was designed to demonstrate the functional network alterations in the patients with pulsatile tinnitus (PT). In this study, we recruited 45 patients with unilateral PT in the early stage of disease (less than 48 months of disease duration) and 45 normal controls. We used regional homogeneity (ReHo) and seed-based FC computational methods to reveal resting-state brain activity features associated with pulsatile tinnitus. Compared with healthy controls, PT patients showed regional abnormalities mainly in the left middle occipital gyrus (MOG), posterior cingulate gyrus (PCC), precuneus and right anterior insula (AI). When these regions were defined as seeds, we demonstrated widespread modification of interaction between the auditory and non-auditory networks. The auditory network was positively connected with the cognitive control network (CCN), which may associate with tinnitus related distress. Both altered regional activity and changed FC were found in the visual network. The modification of interactions of higher order networks were mainly found in the DMN, CCN and limbic networks. Functional connectivity between the left MOG and left parahippocampal gyrus could also be an index to reflect the disease duration. This study helped us gain a better understanding of the characteristics of neural network modifications in patients with pulsatile tinnitus. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Multi-modal analysis of functional connectivity and cerebral blood flow reveals shared and unique effects of propofol in large-scale brain networks.

    Science.gov (United States)

    Qiu, Maolin; Scheinost, Dustin; Ramani, Ramachandran; Constable, R Todd

    2017-03-01

    Anesthesia-induced changes in functional connectivity and cerebral blow flow (CBF) in large-scale brain networks have emerged as key markers of reduced consciousness. However, studies of functional connectivity disagree on which large-scale networks are altered or preserved during anesthesia, making it difficult to find a consensus amount studies. Additionally, pharmacological alterations in CBF could amplify or occlude changes in connectivity due to the shared variance between CBF and connectivity. Here, we used data-driven connectivity methods and multi-modal imaging to investigate shared and unique neural correlates of reduced consciousness for connectivity in large-scale brain networks. Rs-fMRI and CBF data were collected from the same subjects during an awake and deep sedation condition induced by propofol. We measured whole-brain connectivity using the intrinsic connectivity distribution (ICD), a method not reliant on pre-defined seed regions, networks of interest, or connectivity thresholds. The shared and unique variance between connectivity and CBF were investigated. Finally, to account for shared variance, we present a novel extension to ICD that incorporates cerebral blood flow (CBF) as a scaling factor in the calculation of global connectivity, labeled CBF-adjusted ICD). We observed altered connectivity in multiple large-scale brain networks including the default mode (DMN), salience, visual, and motor networks and reduced CBF in the DMN, frontoparietal network, and thalamus. Regional connectivity and CBF were significantly correlated during both the awake and propofol condition. Nevertheless changes in connectivity and CBF between the awake and deep sedation condition were only significantly correlated in a subsystem of the DMN, suggesting that, while there is significant shared variance between the modalities, changes due to propofol are relatively unique. Similar, but less significant, results were observed in the CBF-adjusted ICD analysis, providing

  7. Network Connection Management

    CERN Multimedia

    IT Department, Communication Systems and Network Group

    2005-01-01

    The CERN network database is a key element of the CERN network infrastructure. It is absolutely essential that its information is kept up-to-date for security reasons and to ensure a smooth running of the network infrastructure. Over the years, some of the information in the database has become obsolete. The database therefore needs to be cleaned up, for which we are requesting your help. In the coming weeks, you may receive an electronic mail from Netops.database@cern.ch relating to the clean-up. If you receive such a message, it will be for one of the following reasons: You are the person responsible for or the main user of a system for which a problem has been detected, or You have been the supervisor of a person who has now left CERN (according to the HR database), or The problem has been passed up to you because someone under your supervision has not taken the necessary action within four weeks of notification. Just open the link that will be included in the message and follow the instructions....

  8. Network Connection Management

    CERN Multimedia

    IT Department

    2005-01-01

    The CERN network database is a key element of the CERN network infrastructure. It is absolutely essential that its information is kept up-to-date for security reasons and to ensure smooth running of the network infrastructure. Over the years, some of the information in the database has become obsolete. The database therefore needs to be cleaned up, for which we are requesting your help. In the coming weeks, you may receive an electronic mail from Netops.database@cern.ch relating to the clean-up. If you receive such a message, it will be for one of the following reasons: You are the person responsible for or the main user of a system for which a problem has been detected, or You have been the supervisor of a person who has now left CERN (according to the HR database), or The problem has been passed up to you because someone under your supervision has not taken the necessary action within four weeks of notification. Just open the link that will be included in the message and follow the instructions. Thank ...

  9. On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age: Evidence from connectivity-based single-subject classification.

    Science.gov (United States)

    Pläschke, Rachel N; Cieslik, Edna C; Müller, Veronika I; Hoffstaedter, Felix; Plachti, Anna; Varikuti, Deepthi P; Goosses, Mareike; Latz, Anne; Caspers, Svenja; Jockwitz, Christiane; Moebus, Susanne; Gruber, Oliver; Eickhoff, Claudia R; Reetz, Kathrin; Heller, Julia; Südmeyer, Martin; Mathys, Christian; Caspers, Julian; Grefkes, Christian; Kalenscher, Tobias; Langner, Robert; Eickhoff, Simon B

    2017-12-01

    Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc. © 2017

  10. Cortical network dynamics with time delays reveals functional connectivity in the resting brain.

    NARCIS (Netherlands)

    Ghosh, A.; Rho, Y.; McIntosh, A.R.; Kotter, R.; Jirsa, V.K.

    2008-01-01

    In absence of all goal-directed behavior, a characteristic network of cortical regions involving prefrontal and cingulate cortices consistently shows temporally coherent fluctuations. The origin of these fluctuations is unknown, but has been hypothesized to be of stochastic nature. In the present

  11. Violence-related content in video game may lead to functional connectivity changes in brain networks as revealed by fMRI-ICA in young men.

    Science.gov (United States)

    Zvyagintsev, M; Klasen, M; Weber, R; Sarkheil, P; Esposito, F; Mathiak, K A; Schwenzer, M; Mathiak, K

    2016-04-21

    In violent video games, players engage in virtual aggressive behaviors. Exposure to virtual aggressive behavior induces short-term changes in players' behavior. In a previous study, a violence-related version of the racing game "Carmageddon TDR2000" increased aggressive affects, cognitions, and behaviors compared to its non-violence-related version. This study investigates the differences in neural network activity during the playing of both versions of the video game. Functional magnetic resonance imaging (fMRI) recorded ongoing brain activity of 18 young men playing the violence-related and the non-violence-related version of the video game Carmageddon. Image time series were decomposed into functional connectivity (FC) patterns using independent component analysis (ICA) and template-matching yielded a mapping to established functional brain networks. The FC patterns revealed a decrease in connectivity within 6 brain networks during the violence-related compared to the non-violence-related condition: three sensory-motor networks, the reward network, the default mode network (DMN), and the right-lateralized frontoparietal network. Playing violent racing games may change functional brain connectivity, in particular and even after controlling for event frequency, in the reward network and the DMN. These changes may underlie the short-term increase of aggressive affects, cognitions, and behaviors as observed after playing violent video games. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Catechol-O-Methyltransferase Val158Met Polymorphism Modulates Gray Matter Volume and Functional Connectivity of the Default Mode Network

    Science.gov (United States)

    Tian, Tian; Qin, Wen; Liu, Bing; Wang, Dawei; Wang, Junping; Jiang, Tianzi; Yu, Chunshui

    2013-01-01

    The effect of catechol-O-methyltransferase (COMT) Val158Met polymorphism on brain structure and function has been previously investigated separately and regionally; this prevents us from obtaining a full picture of the effect of this gene variant. Additionally, gender difference must not be overlooked because estrogen exerts an interfering effect on COMT activity. We examined 323 young healthy Chinese Han subjects and analyzed the gray matter volume (GMV) differences between Val/Val individuals and Met carriers in a voxel-wise manner throughout the whole brain. We were interested in genotype effects and genotype × gender interactions. We then extracted these brain regions with GMV differences as seeds to compute resting-state functional connectivity (rsFC) with the rest of the brain; we also tested the genotypic differences and gender interactions in the rsFCs. Val/Val individuals showed decreased GMV in the posterior cingulate cortex (PCC) compared with Met carriers; decreased GMV in the medial superior frontal gyrus (mSFG) was found only in male Val/Val subjects. The rsFC analysis revealed that both the PCC and mSFG were functionally correlated with brain regions of the default mode network (DMN). Both of these regions showed decreased rsFCs with different parts of the frontopolar cortex of the DMN in Val/Val individuals than Met carriers. Our findings suggest that the COMT Val158Met polymorphism modulates both the structure and functional connectivity within the DMN and that gender interactions should be considered in studies of the effect of this genetic variant, especially those involving prefrontal morphology. PMID:24147141

  13. Effects of aging on functional connectivity of the amygdala for subsequent memory of negative pictures: a network analysis of functional magnetic resonance imaging data.

    Science.gov (United States)

    St Jacques, Peggy L; Dolcos, Florin; Cabeza, Roberto

    2009-01-01

    Aging is associated with preserved enhancement of emotional memory, as well as with age-related reductions in memory for negative stimuli, but the neural networks underlying such alterations are not clear. We used a subsequent-memory paradigm to identify brain activity predicting enhanced emotional memory in young and older adults. Activity in the amygdala predicted enhanced emotional memory, with subsequent-memory activity greater for negative stimuli than for neutral stimuli, across age groups, a finding consistent with an overall enhancement of emotional memory. However, older adults recruited greater activity in anterior regions and less activity in posterior regions in general for negative stimuli that were subsequently remembered. Functional connectivity of the amygdala with the rest of the brain was consistent with age-related reductions in memory for negative stimuli: Older adults showed decreased functional connectivity between the amygdala and the hippocampus, but increased functional connectivity between the amygdala and dorsolateral prefrontal cortices. These findings suggest that age-related differences in the enhancement of emotional memory might reflect decreased connectivity between the amygdala and typical subsequent-memory regions, as well as the engagement of regulatory processes that inhibit emotional responses.

  14. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks.

    Science.gov (United States)

    Meyer-Bäse, Anke; Roberts, Rodney G; Illan, Ignacio A; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja

    2017-01-01

    Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary

  15. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks

    Directory of Open Access Journals (Sweden)

    Anke Meyer-Bäse

    2017-10-01

    Full Text Available Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and

  16. Decreased anticipated pleasure correlates with increased salience network resting state functional connectivity in adolescents with depressive symptomatology.

    Science.gov (United States)

    Rzepa, Ewelina; McCabe, Ciara

    2016-11-01

    Previous studies have found dysfunctional resting state functional connectivity (RSFC) in depressed patients. Examining RSFC might aid biomarker discovery for depression. However RSFC in young people at risk of depression has yet to be examined. 35 healthy adolescents (13-18 yrs old.) were recruited. 17 scoring high on the Mood and Feelings Questionnaire (MFQ > 27 (High Risk: HR), and 18 scoring low on the MFQ pleasure in all subjects. Increased RSFC was observed between the pgACC and the prefrontal cortex and the amygdala and the temporal pole in the HR group compared to the LR group. Our findings are the first to show that adolescents with depression symptoms have dysfunctional RSFC between seeds in the SN and CEN with nodes in the Default Mode Network. As increased connectivity between the pgACC and the insula correlated with decreased ability to anticipate pleasure, we suggest this might be mechanism underlying the risk of experiencing anhedonia, a suggested biomarker for depression. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Improved Diagnostic Accuracy of Alzheimer's Disease by Combining Regional Cortical Thickness and Default Mode Network Functional Connectivity: Validated in the Alzheimer's Disease Neuroimaging Initiative Set.

    Science.gov (United States)

    Park, Ji Eun; Park, Bumwoo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai; Oh, Joo Young; Lee, Jae-Hong; Roh, Jee Hoon; Shim, Woo Hyun

    2017-01-01

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease.

  18. Functional connectivity of motor cortical network in patients with brachial plexus avulsion injury after contralateral cervical nerve transfer: a resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Aihong; Cheng, Xiaoguang; Liang, Wei; Bai, Rongjie [The 4th Medical College of Peking University, Department of Radiology, Beijing Jishuitan Hospital, Xicheng Qu, Beijing (China); Wang, Shufeng; Xue, Yunhao; Li, Wenjun [The 4th Medical College of Peking University, Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing (China)

    2017-03-15

    The purpose of this study is to assess the functional connectivity of the motor cortical network in patients with brachial plexus avulsion injury (BPAI) after contralateral C7 nerve transfer, using resting-state functional magnetic resonance imaging (RS-fMRI). Twelve patients with total brachial plexus root avulsion underwent RS-fMRI after contralateral C7 nerve transfer. Seventeen healthy volunteers were also included in this fMRI study as controls. The hand motor seed regions were defined as region of interests in the bilateral hemispheres. The seed-based functional connectivity was calculated in all the subjects. Differences in functional connectivity of the motor cortical network between patients and healthy controls were compared. The inter-hemispheric functional connectivity of the M1 areas was increased in patients with BPAI compared with the controls. The inter-hemispheric functional connectivity between the supplementary motor areas was reduced bilaterally. The resting-state inter-hemispheric functional connectivity of the bilateral M1 areas is altered in patients after contralateral C7 nerve transfer, suggesting a functional reorganization of cerebral cortex. (orig.)

  19. High-Dimensional ICA Analysis Detects Within-Network Functional Connectivity Damage of Default-Mode and Sensory-Motor Networks in Alzheimer's Disease.

    Science.gov (United States)

    Dipasquale, Ottavia; Griffanti, Ludovica; Clerici, Mario; Nemni, Raffaello; Baselli, Giuseppe; Baglio, Francesca

    2015-01-01

    High-dimensional independent component analysis (ICA), compared to low-dimensional ICA, allows to conduct a detailed parcellation of the resting-state networks. The purpose of this study was to give further insight into functional connectivity (FC) in Alzheimer's disease (AD) using high-dimensional ICA. For this reason, we performed both low- and high-dimensional ICA analyses of resting-state fMRI data of 20 healthy controls and 21 patients with AD, focusing on the primarily altered default-mode network (DMN) and exploring the sensory-motor network. As expected, results obtained at low dimensionality were in line with previous literature. Moreover, high-dimensional results allowed us to observe either the presence of within-network disconnections and FC damage confined to some of the resting-state subnetworks. Due to the higher sensitivity of the high-dimensional ICA analysis, our results suggest that high-dimensional decomposition in subnetworks is very promising to better localize FC alterations in AD and that FC damage is not confined to the DMN.

  20. Altered eigenvector centrality is related to local resting-state network functional connectivity in patients with longstanding type 1 diabetes mellitus.

    Science.gov (United States)

    van Duinkerken, Eelco; Schoonheim, Menno M; IJzerman, Richard G; Moll, Annette C; Landeira-Fernandez, Jesus; Klein, Martin; Diamant, Michaela; Snoek, Frank J; Barkhof, Frederik; Wink, Alle-Meije

    2017-04-21

    Longstanding type 1 diabetes (T1DM) is associated with microangiopathy and poorer cognition. In the brain, T1DM is related to increased functional resting-state network (RSN) connectivity in patients without, which was decreased in patients with clinically evident microangiopathy. Subcortical structure seems affected in both patient groups. How these localized alterations affect the hierarchy of the functional network in T1DM is unknown. Eigenvector centrality mapping (ECM) and degree centrality are graph theoretical methods that allow determining the relative importance (ECM) and connectedness (degree centrality) of regions within the whole-brain network hierarchy. Therefore, ECM and degree centrality of resting-state functional MRI-scans were compared between 51 patients with, 53 patients without proliferative retinopathy, and 49 controls, and associated with RSN connectivity, subcortical gray matter volume, and cognition. In all patients versus controls, ECM and degree centrality were lower in the bilateral thalamus and the dorsal striatum, with lowest values in patients without proliferative retinopathy (PFWE  centrality were related to altered visual, sensorimotor, and auditory and language RSN connectivity (PFWE   0.05). The findings suggested reorganization of the hierarchy of the cortical connectivity network in patients without proliferative retinopathy, which is lost with disease progression. Centrality seems sensitive to capture early T1DM-related functional connectivity alterations, but not disease progression. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Intrinsic Functional Connectivity of Amygdala-Based Networks in Adolescent Generalized Anxiety Disorder

    Science.gov (United States)

    Roy, Amy K.; Fudge, Julie L.; Kelly, Clare; Perry, Justin S. A.; Daniele, Teresa; Carlisi, Christina; Benson, Brenda; Castellanos, F. Xavier; Milham, Michael P.; Pine, Daniel S.; Ernst, Monique

    2013-01-01

    Objective: Generalized anxiety disorder (GAD) typically begins during adolescence and can persist into adulthood. The pathophysiological mechanisms underlying this disorder remain unclear. Recent evidence from resting state functional magnetic resonance imaging (R-fMRI) studies in adults suggests disruptions in amygdala-based circuitry; the…

  2. Gigabit Wireless for Network Connectivity

    Science.gov (United States)

    Schoedel, Eric

    2009-01-01

    Uninterrupted, high-bandwidth network connectivity is crucial for higher education. Colleges and universities increasingly adopt gigabit wireless solutions because of their fiber-equivalent performance, quick implementation, and significant return on investment. For just those reasons, Rush University Medical Center switched from free space optics…

  3. Tai Chi Chuan and Baduanjin practice modulates functional connectivity of the cognitive control network in older adults.

    Science.gov (United States)

    Tao, Jing; Chen, Xiangli; Egorova, Natalia; Liu, Jiao; Xue, Xiehua; Wang, Qin; Zheng, Guohua; Li, Moyi; Hong, Wenjun; Sun, Sharon; Chen, Lidian; Kong, Jian

    2017-02-07

    Cognitive impairment is one of the most common problem saffecting older adults. In this study, we investigated whether Tai Chi Chuan and Baduanjin practice can modulate mental control functionand the resting state functional connectivity (rsFC) of the cognitive control network in older adults. Participants in the two exercise groups practiced either Tai Chi Chuan or Baduanjin for 12 weeks, and those in the control group received basic health education. Memory tests and fMRI scans were conducted at baseline and at the end of the study. Seed-based (bilateral dorsolateral prefrontal cortex, DLPFC) rsFC analysis was performed. We found that compared to the controls, 1) both Tai Chi Chuan and Baduanjin groups demonstrated significant improvements in mental control function; 2) the Tai Chi Chuan group showed a significant decrease in rsFC between the DLPFC and the left superior frontal gyrus (SFG) and anterior cingulate cortex; and 3) the Baduanjin group showed a significant decrease in rsFC between the DLPFC and the left putamen and insula. Mental control improvement was negatively associated with rsFC DLPFC-putamen changes across all subjects. These findings demonstrate the potential of Tai Chi Chuan and Baduanjin exercises in preventing cognitive decline.

  4. Default-mode network changes in Huntington's disease: an integrated MRI study of functional connectivity and morphometry.

    Directory of Open Access Journals (Sweden)

    Mario Quarantelli

    Full Text Available Previous MRI studies of functional connectivity in pre-symptomatic mutation carriers of Huntington's disease (HD have shown dysfunction of the Default-Mode Network (DMN. No data however are currently available on the DMN alterations in the symptomatic stages of the disease, which are characterized by cortical atrophy involving several DMN nodes. We assessed DMN integrity and its possible correlations with motor and cognitive symptoms in 26 symptomatic HD patients as compared to 22 normal volunteers, by analyzing resting state functional MRI data, using the Precuneal Cortex/Posterior Cingulate Cortices (PC/PCC as seed, controlling at voxel level for the effect of atrophy by co-varying for gray matter volume. Direct correlation with PC/PCC was decreased, without correlation with atrophy, in the ventral medial prefrontal cortex (including anterior cingulate and subgenual cortex, right dorso-medial prefrontal cortex, and in the right inferior parietal cortex (mainly involving the angular gyrus. Negative correlations with PC/PCC were decreased bilaterally in the inferior parietal cortices, while a cluster in the right middle occipital gyrus presented increased correlation with PC/PCC. DMN changes in the ventral medial prefrontal cortex significantly correlated with the performance at the Stroop test (p = .0002. Widespread DMN changes, not correlating with the atrophy of the involved nodes, are present in symptomatic HD patients, and correlate with cognitive disturbances.

  5. Atypical within- and between-hemisphere motor network functional connections in children with developmental coordination disorder and attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Kevin R. McLeod

    2016-01-01

    Full Text Available Developmental coordination disorder (DCD and attention-deficit hyperactivity disorder (ADHD are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1 cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD, a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.

  6. Evaluation of resting state networks in patients with gliomas: connectivity changes in the unaffected side and its relation to cognitive function.

    Directory of Open Access Journals (Sweden)

    Satoshi Maesawa

    Full Text Available In this study, we investigated changes in resting state networks (RSNs in patients with gliomas located in the left hemisphere and its relation to cognitive function. We hypothesized that long distance connection, especially between hemispheres, would be affected by the presence of the tumor. We further hypothesized that these changes would correlate with, or reflect cognitive changes observed in patients with gliomas. Resting state functional MRI datasets from 12 patients and 12 healthy controls were used in the analysis. The tumor's effect on three well-known RSNs including the default mode network (DMN, executive control network (ECN, and salience network (SN identified using independent component analysis were investigated using dual regression analysis. Scores of neuropsychometric testing (WAIS-III and WMS-R were also compared. Compared to the healthy control group, the patient group showed significant decrease in functional connectivity in the right angular gyrus/inferior parietal lobe of the ventral DMN and in the dorsolateral prefrontal cortex of the left ECN, whereas a significant increase in connectivity in the right ECN was observed in the right parietal lobe. Changes in connectivity in the right ECN correlated with spatial memory, while that on the left ECN correlated with attention. Connectivity changes in the ventral DMN correlated with attention, working memory, full IQ, and verbal IQ measures. Although the tumors were localized in the left side of the brain, changes in connectivity were observed in the contralateral side. Moreover, these changes correlated with some aspects of cognitive function indicating that patients with gliomas may undergo cognitive changes even in the absence of or before the onset of major symptoms. Evaluation of resting state networks could be helpful in advancing our hodological understanding of brain function in glioma cases.

  7. Functional Activity and Connectivity Differences of Five Resting-State Networks in Patients with Alzheimer's Disease or Mild Cognitive Impairment.

    Science.gov (United States)

    Chen, Yu; Yan, Hao; Han, Zaizhu; Bi, Yanchao; Chen, Hongyan; Liu, Jia; Wu, Meiru; Wang, Yongjun; Zhang, Yumei

    2016-01-01

    We aimed to investigate the activity within and the connectivity between resting state networks (RSNs) in healthy subjects and patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI). Magnetic resonance imaging (MRI) and resting-state MRI were performed on patients diagnosed with AD (n=18) or MCI (n=16) and on healthy subjects (n=18) with matching demographic characteristics (age, sex, and education level). Independent component analysis and Granger causality analysis (GCA) were used during image postprocessing. We calculated 'In + Out degree' for each RSN. Then, we investigated the relationships between "In + Out degree" of each brain network and the cognitive behavioural data. RSNs were obtained using the optimal matching method. The core areas of the five RSNs were similar between the AD, MCI, and healthy control groups, but the activity within these five RSNs was significantly lower in the AD and MCI groups than in the healthy control group (P<0.01, false discovery rate corrected). The GCA results showed that the connectivity between the five RSNs, particularly the connectivity from the default mode network (DMN) to the other RSNs, was slightly lower in MCI patients and was significantly lower in AD patients than in healthy subjects. In contrast, increased connectivity was evident between the memory network and the executive control network in the AD and MCI patients. The "In + Out degree" of the DMN negatively correlated with the Montreal Cognitive Assessment score in AD patients (R=-0.43, P<0.05). In conclusion, the activity within RSNs and the connectivity between RSNs differed between AD patients, MCI patients, and normal individuals; these results provide an imaging reference for the diagnosis of AD and the measurement of disease progression and reveal insight into the pathogenesis of AD.

  8. Effects of repetitive sub-concussive brain injury on the functional connectivity of Default Mode Network in high school football athletes.

    Science.gov (United States)

    Abbas, Kausar; Shenk, Trey E; Poole, Victoria N; Robinson, Meghan E; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M

    2015-01-01

    Sub-concussive head impacts are identified as a source of accrued damage. Football athletes experience hundreds of such blows each season. Resting state functional magnetic resonance imaging was used to prospectively study changes in Default Mode Network connectivity for clinically asymptomatic high school football athletes. Athletes exhibited short-term changes relative to baseline and across sessions.

  9. On sparsely connected optimal neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V. [Los Alamos National Lab., NM (United States); Draghici, S. [Wayne State Univ., Detroit, MI (United States)

    1997-10-01

    This paper uses two different approaches to show that VLSI- and size-optimal discrete neural networks are obtained for small fan-in values. These have applications to hardware implementations of neural networks, but also reveal an intrinsic limitation of digital VLSI technology: its inability to cope with highly connected structures. The first approach is based on implementing F{sub n,m} functions. The authors show that this class of functions can be implemented in VLSI-optimal (i.e., minimizing AT{sup 2}) neural networks of small constant fan-ins. In order to estimate the area (A) and the delay (T) of such networks, the following cost functions will be used: (i) the connectivity and the number-of-bits for representing the weights and thresholds--for good estimates of the area; and (ii) the fan-ins and the length of the wires--for good approximates of the delay. The second approach is based on implementing Boolean functions for which the classical Shannon`s decomposition can be used. Such a solution has already been used to prove bounds on the size of fan-in 2 neural networks. They will generalize the result presented there to arbitrary fan-in, and prove that the size is minimized by small fan-in values. Finally, a size-optimal neural network of small constant fan-ins will be suggested for F{sub n,m} functions.

  10. Power-functional network

    Science.gov (United States)

    Sun, Yong; Kurths, Jürgen; Zhan, Meng

    2017-08-01

    Power grids and their properties have been studied broadly in many aspects. In this paper, we propose a novel concept, power-flow-based power grid, as a typical power-functional network, based on the calculation of power flow distribution from power electrical engineering. We compare it with structural networks based on the shortest path length and effective networks based on the effective electrical distance and study the relationship among these three kinds of networks. We find that they have roughly positive correlations with each other, indicating that in general any close nodes in the topological structure are actually connected in function. However, we do observe some counter-examples that two close nodes in a structural network can have a long distance in a power-functional network, namely, two physically connected nodes can actually be separated in function. In addition, we find that power grids in the structural network tend to be heterogeneous, whereas those in the effective and power-functional networks tend to be homogeneous. These findings are expected to be significant not only for power grids but also for various other complex networks.

  11. Effect of Resting-State fNIRS Scanning Duration on Functional Brain Connectivity and Graph Theory Metrics of Brain Network.

    Science.gov (United States)

    Geng, Shujie; Liu, Xiangyu; Biswal, Bharat B; Niu, Haijing

    2017-01-01

    As an emerging brain imaging technique, functional near infrared spectroscopy (fNIRS) has attracted widespread attention for advancing resting-state functional connectivity (FC) and graph theoretical analyses of brain networks. However, it remains largely unknown how the duration of the fNIRS signal scanning is related to stable and reproducible functional brain network features. To answer this question, we collected resting-state fNIRS signals (10-min duration, two runs) from 18 participants and then truncated the hemodynamic time series into 30-s time bins that ranged from 1 to 10 min. Measures of nodal efficiency, nodal betweenness, network local efficiency, global efficiency, and clustering coefficient were computed for each subject at each fNIRS signal acquisition duration. Analyses of the stability and between-run reproducibility were performed to identify optimal time length for each measure. We found that the FC, nodal efficiency and nodal betweenness stabilized and were reproducible after 1 min of fNIRS signal acquisition, whereas network clustering coefficient, local and global efficiencies stabilized after 1 min and were reproducible after 5 min of fNIRS signal acquisition for only local and global efficiencies. These quantitative results provide direct evidence regarding the choice of the resting-state fNIRS scanning duration for functional brain connectivity and topological metric stability of brain network connectivity.

  12. Effect of Resting-State fNIRS Scanning Duration on Functional Brain Connectivity and Graph Theory Metrics of Brain Network

    Directory of Open Access Journals (Sweden)

    Shujie Geng

    2017-07-01

    Full Text Available As an emerging brain imaging technique, functional near infrared spectroscopy (fNIRS has attracted widespread attention for advancing resting-state functional connectivity (FC and graph theoretical analyses of brain networks. However, it remains largely unknown how the duration of the fNIRS signal scanning is related to stable and reproducible functional brain network features. To answer this question, we collected resting-state fNIRS signals (10-min duration, two runs from 18 participants and then truncated the hemodynamic time series into 30-s time bins that ranged from 1 to 10 min. Measures of nodal efficiency, nodal betweenness, network local efficiency, global efficiency, and clustering coefficient were computed for each subject at each fNIRS signal acquisition duration. Analyses of the stability and between-run reproducibility were performed to identify optimal time length for each measure. We found that the FC, nodal efficiency and nodal betweenness stabilized and were reproducible after 1 min of fNIRS signal acquisition, whereas network clustering coefficient, local and global efficiencies stabilized after 1 min and were reproducible after 5 min of fNIRS signal acquisition for only local and global efficiencies. These quantitative results provide direct evidence regarding the choice of the resting-state fNIRS scanning duration for functional brain connectivity and topological metric stability of brain network connectivity.

  13. Developmental changes in large-scale network connectivity in autism

    Directory of Open Access Journals (Sweden)

    Jason S. Nomi

    2015-01-01

    Conclusions: Characterizing within- and between-network functional connectivity in age-stratified cohorts of individuals with ASD and TD individuals demonstrates that functional connectivity atypicalities in the disorder are not uniform across the lifespan. These results demonstrate how explicitly characterizing participant age and adopting a developmental perspective can lead to a more nuanced understanding of atypicalities of functional brain connectivity in autism.

  14. Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device

    Science.gov (United States)

    Kanagasabapathi, Thirukumaran T.; Massobrio, Paolo; Barone, Rocco Andrea; Tedesco, Mariateresa; Martinoia, Sergio; Wadman, Wytse J.; Decré, Michel M. J.

    2012-06-01

    Co-cultures containing dissociated cortical and thalamic cells may provide a unique model for understanding the pathophysiology in the respective neuronal sub-circuitry. In addition, developing an in vitro dissociated co-culture model offers the possibility of studying the system without influence from other neuronal sub-populations. Here we demonstrate a dual compartment system coupled to microelectrode arrays (MEAs) for co-culturing and recording spontaneous activities from neuronal sub-populations. Propagation of electrical activities between cortical and thalamic regions and their interdependence in connectivity is verified by means of a cross-correlation algorithm. We found that burst events originate in the cortical region and drive the entire cortical-thalamic network bursting behavior while mutually weak thalamic connections play a relevant role in sustaining longer burst events in cortical cells. To support these experimental findings, a neuronal network model was developed and used to investigate the interplay between network dynamics and connectivity in the cortical-thalamic system.

  15. Differential functional connectivity within an emotion regulation neural network among individuals resilient and susceptible to the depressogenic effects of early life stress.

    Science.gov (United States)

    Cisler, J M; James, G A; Tripathi, S; Mletzko, T; Heim, C; Hu, X P; Mayberg, H S; Nemeroff, C B; Kilts, C D

    2013-03-01

    Early life stress (ELS) is a significant risk factor for depression. The effects of ELS exposure on neural network organization have not been differentiated from the effect of depression. Furthermore, many individuals exposed to ELS do not develop depression, yet the network organization patterns differentiating resiliency versus susceptibility to the depressogenic effects of ELS are not clear. Women aged 18-44 years with either a history of ELS and no history of depression (n = 7), a history of ELS and current or past depression (n = 19), or a history of neither ELS nor depression (n = 12) underwent a resting-state 3-T functional magnetic resonance imaging (fMRI) scan. An emotion regulation brain network consisting of 21 nodes was described using graph analyses and compared between groups. Group differences in network topology involved decreased global connectivity and hub-like properties for the right ventrolateral prefrontal cortex (vlPFC) and decreased local network connectivity for the dorsal anterior cingulate cortex (dACC) among resilient individuals. Decreased local connectivity and increased hub-like properties of the left amygdala, decreased hub-like properties of the dACC and decreased local connectivity of the left vlPFC were observed among susceptible individuals. Regression analyses suggested that the severity of ELS (measured by self-report) correlated negatively with global connectivity and hub-like qualities for the left dorsolateral PFC (dlPFC). These preliminary results suggest functional neural connectivity patterns specific to ELS exposure and resiliency versus susceptibility to the depressogenic effects of ELS exposure.

  16. The Effects of Long Duration Bed Rest as a Spaceflight Analogue on Resting State Sensorimotor Network Functional Connectivity and Neurocognitive Performance

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; hide

    2015-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from

  17. Resting state functional connectivity in anorexia nervosa.

    Science.gov (United States)

    Phillipou, Andrea; Abel, Larry Allen; Castle, David Jonathan; Hughes, Matthew Edward; Nibbs, Richard Grant; Gurvich, Caroline; Rossell, Susan Lee

    2016-05-30

    Anorexia Nervosa (AN) is a serious psychiatric illness characterised by a disturbance in body image, a fear of weight gain and significantly low body weight. The factors involved in the genesis and maintenance of AN are unclear, though the potential neurobiological underpinnings of the condition are of increasing interest. Through the investigation of functional connectivity of the brain at rest, information relating to neuronal communication and integration of information that may relate to behaviours and cognitive symptoms can be explored. The aim of this study was to investigate functional connectivity of the default mode network, and sensorimotor and visual networks in AN. 26 females with AN and 27 healthy control participants matched for age, gender and premorbid intelligence underwent a resting state functional magnetic resonance imaging scan. Default mode network functional connectivity did not differ between groups. AN participants displayed reduced functional connectivity between the sensorimotor and visual networks, in comparison to healthy controls. This finding is discussed in terms of differences in visuospatial processing in AN and the distortion of body image experienced by these individuals. Overall, the findings suggest that sensorimotor and visual network connectivity may be related to visuospatial processing in AN, though, further research is required. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task.

    Science.gov (United States)

    Rubia, Katya; Halari, Rozmin; Cubillo, Ana; Mohammad, Abdul-Majeed; Brammer, Mick; Taylor, Eric

    2009-12-01

    Children with Attention Deficit Hyperactivity Disorder (ADHD) have deficits in motivation and attention that can be ameliorated with the indirect dopamine agonist Methylphenidate (MPH). We used functional magnetic resonance imaging (fMRI) to investigate the effects of MPH in medication-naïve children with ADHD on the activation and functional connectivity of "cool" attentional as well as "hot" motivation networks. 13 medication-naïve children with ADHD were scanned twice, under either an acute clinical dose of MPH or Placebo, in a randomised, double-blind design, while they performed a rewarded continuous performance task that measured vigilant selective attention and the effects of reward. Brain activation and functional connectivity was compared to that of 13 healthy age-matched controls to test for normalisation effects of MPH. MPH normalised performance deficits that were observed in children with ADHD compared to controls. Under placebo, children with ADHD showed reduced activation and functional inter-connectivity in bilateral fronto-striato-parieto-cerebellar networks during the attention condition, but enhanced activation in the orbitofrontal and superior temporal cortices for reward. MPH within children with ADHD enhanced the activation of fronto-striato-cerebellar and parieto-temporal regions. Compared to controls, MPH normalised differences during vigilant attention in parieto-temporal activation and fronto-striatal and fronto-cerebellar connectivity; MPH also normalised the enhanced orbitofrontal activation in children with ADHD in response to reward. MPH normalised attention differences between children with ADHD and controls by both up-regulation of dysfunctional fronto-striato-thalamo-cerebellar and parieto-temporal attention networks and down-regulation of hyper-sensitive orbitofrontal activation for reward processing. MPH thus shows context-dependent dissociative modulation of both motivational and attentional neuro-functional networks in

  19. Resting-State Functional Connectivity of the Sensorimotor Network in Individuals with Nonspecific Low Back Pain and the Association with the Sit-to-Stand-to-Sit Task.

    Science.gov (United States)

    Pijnenburg, Madelon; Brumagne, Simon; Caeyenberghs, Karen; Janssens, Lotte; Goossens, Nina; Marinazzo, Daniele; Swinnen, Stephan P; Claeys, Kurt; Siugzdaite, Roma

    2015-06-01

    Individuals with nonspecific low back pain (NSLBP) show a decreased sit-to-stand-to-sit (STSTS) performance. This dynamic sensorimotor task requires integration of sensory and motor information in the brain. Therefore, a better understanding of the underlying central mechanisms of impaired sensorimotor performance and the presence of NSLBP is needed. The aims of this study were to characterize differences in sensorimotor functional connectivity in individuals with NSLBP and to investigate whether the patterns of sensorimotor functional connectivity underlie the impaired STSTS performance. Seventeen individuals with NSLBP and 17 healthy controls were instructed to perform five consecutive STSTS movements as fast as possible. Based on the center of pressure displacement, the total duration of the STSTS task was determined. In addition, resting-state functional connectivity images were acquired and analyzed on a multivariate level using both functional connectivity density mapping and independent component analysis. Individuals with NSLBP needed significantly more time to perform the STSTS task compared to healthy controls. In addition, decreased resting-state functional connectivity of brain areas related to the integration of sensory and/or motor information was shown in the individuals with NSLBP. Moreover, the decreased functional connectivity at rest of the left precentral gyrus and lobule IV and V of the left cerebellum was associated with a longer duration of the STSTS task in both individuals with NSLBP and healthy controls. In summary, individuals with NSLBP showed a reorganization of the sensorimotor network at rest, and the functional connectivity of specific sensorimotor areas was associated with the performance of a dynamic sensorimotor task.

  20. Default Network Connectivity in Medial Temporal Lobe Amnesia

    Science.gov (United States)

    Hayes, Scott M.; Salat, David H.; Verfaellie, Mieke

    2012-01-01

    There is substantial overlap between the brain regions supporting episodic memory and the default network. However, in humans the impact of bilateral medial temporal lobe (MTL) damage on a large-scale neural network such as the default mode network is unknown. To examine this issue, resting functional magnetic resonance imaging (fMRI) was performed with amnesic patients and control participants. Seed-based functional connectivity analyses revealed robust default network connectivity in amnesia in cortical default network regions such as medial prefrontal cortex, posterior medial cortex, and lateral parietal cortex, as well as evidence of connectivity to residual MTL tissue. Relative to control participants, decreased posterior cingulate cortex connectivity to MTL and increased connectivity to cortical default network regions including lateral parietal and medial prefrontal cortex was observed in amnesia. In contrast, somatomotor network connectivity was intact in amnesia, indicating bilateral MTL lesions may selectively impact the default network. Changes in default network connectivity in amnesia were largely restricted to the MTL subsystem, providing preliminary support from MTL amnesic patients that the default network can be fractionated into functionally and structurally distinct components. To our knowledge, this is the first examination of the default network in amnesia. PMID:23077048

  1. Inferring network connectivity by delayed feedback control.

    Directory of Open Access Journals (Sweden)

    Dongchuan Yu

    Full Text Available We suggest a control based approach to topology estimation of networks with N elements. This method first drives the network to steady states by a delayed feedback control; then performs structural perturbations for shifting the steady states M times; and finally infers the connection topology from the steady states' shifts by matrix inverse algorithm (M = N or l(1-norm convex optimization strategy applicable to estimate the topology of sparse networks from M << N perturbations. We discuss as well some aspects important for applications, such as the topology reconstruction quality and error sources, advantages and disadvantages of the suggested method, and the influence of (control perturbations, inhomegenity, sparsity, coupling functions, and measurement noise. Some examples of networks with Chua's oscillators are presented to illustrate the reliability of the suggested technique.

  2. Network Function Virtualization (NFV) based architecture to address connectivity, interoperability and manageability challenges in Internet of Things (IoT)

    Science.gov (United States)

    Haseeb, Shariq; Hashim, Aisha Hassan A.; Khalifa, Othman O.; Faris Ismail, Ahmad

    2017-11-01

    IoT aims to interconnect sensors and actuators built into devices (also known as Things) in order for them to share data and control each other to improve existing processes for making people’s life better. IoT aims to connect between all physical devices like fridges, cars, utilities, buildings and cities so that they can take advantage of small pieces of information collected by each one of these devices and derive more complex decisions. However, these devices are heterogeneous in nature because of various vendor support, connectivity options and protocol suit. Heterogeneity of such devices makes it difficult for them to leverage on each other’s capabilities in the traditional IoT architecture. This paper highlights the effects of heterogeneity challenges on connectivity, interoperability, management in greater details. It also surveys some of the existing solutions adopted in the core network to solve the challenges of massive IoT deployments. Finally, the paper proposes a new architecture based on NFV to address the problems.

  3. Are we connected? : Ports in Global Networks

    NARCIS (Netherlands)

    R.A. Zuidwijk (Rob)

    2015-01-01

    markdownabstractAbstract Global supply chains are built on organizational, information, and logistics networks. Ports are connected via these networks and also need to connect these networks. Synchromodality is an innovative concept for container transportation, and the port plays an important

  4. Effects of resting state condition on reliability, trait specificity, and network connectivity of brain function measured with arterial spin labeled perfusion MRI.

    Science.gov (United States)

    Li, Zhengjun; Vidorreta, Marta; Katchmar, Natalie; Alsop, David C; Wolf, Daniel H; Detre, John A

    2018-02-16

    Resting state fMRI (rs-fMRI) provides imaging biomarkers of task-independent brain function that can be associated with clinical variables or modulated by interventions such as behavioral training or pharmacological manipulations. These biomarkers include time-averaged regional brain function as manifested by regional cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion MRI and correlated temporal fluctuations of function across brain networks with either ASL or blood oxygenation level dependent (BOLD) fMRI. Resting-state studies are typically carried out using just one of several prescribed state conditions such as eyes closed (EC), eyes open (EO), or visual fixation on a cross-hair (FIX), which may affect the reliability and specificity of rs-fMRI. In this study, we collected test-retest ASL MRI data during 4 resting-state task conditions: EC, EO, FIX and PVT (low-frequency psychomotor vigilance task), and examined the effects of these task conditions on reliability and reproducibility as well as trait specificity of regional brain function. We also acquired resting-state BOLD fMRI under FIX and compared the network connectivity reliabilities between the four ASL conditions and the BOLD FIX condition. For resting-state ASL data, EC provided the highest CBF reliability, reproducibility, trait specificity, and network connectivity reliability, followed by EO, while FIX was lowest on all of these measures. PVT demonstrated lower CBF reliability, reproducibility and trait specificity than EO and EC. Overall network connectivity reliability was comparable between ASL and BOLD. Our findings confirm ASL CBF as a reliable, stable, and consistent measure of resting-state regional brain function and support the use of EC or EO over FIX and PVT as the resting-state condition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Association of cerebral networks in resting state with sexual preference of homosexual men: a study of regional homogeneity and functional connectivity.

    Science.gov (United States)

    Hu, Shaohua; Xu, Dongrong; Peterson, Bradley S; Peterson, Bradley; Wang, Qidong; He, Xiaofu; Hu, Jianbo; Xu, Xiaojun; Wei, Ning; Long, Dan; Huang, Manli; Zhou, Weihua; Xu, Weijuan; Zhang, Minming; Xu, Yi

    2013-01-01

    Recent imaging studies have shown that brain morphology and neural activity during sexual arousal differ between homosexual and heterosexual men. However, functional differences in neural networks at the resting state is unknown. The study is to characterize the association of homosexual preference with measures of regional homogeneity and functional connectivity in the resting state. Participants were 26 healthy homosexual men and 26 age-matched healthy heterosexual men in whom we collected echo planar magnetic resonance imaging data in the resting state. The sexual orientation was evaluated using the Kinsey Scale. We first assessed group differences in regional homogeneity and then, taking the identified differences as seed regions, we compared groups in measures of functional connectivity from those seeds. The behavioral significances of the differences in regional homogeneity and functional connectivity were assessed by examining their associations with Kinsey Scores. Homosexual participants showed significantly reduced regional homogeneity in the left inferior occipital gyrus, right middle occipital gyrus, right superior occipital gyrus, left cuneus, right precuneus, and increased regional homogeneity in rectal gyrus, bilateral midbrain, and left temporal lobe. Regional homogeneity correlated positively with Kinsey scores in the left inferior occipital gyrus. The homosexual group also showed reduced functional connectivity between left middle temporal gyrus, left supra-marginal gyrus, right cuneus and the seed region, i.e. left inferior occipital gyrus. Additionly, the connection between the left inferior occipital gyrus and right thalamus correlated positively with Kinsey scores. These differences in regional homogeneity and functional connectivity may contribute to a better understanding of the neural basis of male sexual orientation.

  6. Association of cerebral networks in resting state with sexual preference of homosexual men: a study of regional homogeneity and functional connectivity.

    Directory of Open Access Journals (Sweden)

    Shaohua Hu

    Full Text Available Recent imaging studies have shown that brain morphology and neural activity during sexual arousal differ between homosexual and heterosexual men. However, functional differences in neural networks at the resting state is unknown. The study is to characterize the association of homosexual preference with measures of regional homogeneity and functional connectivity in the resting state. Participants were 26 healthy homosexual men and 26 age-matched healthy heterosexual men in whom we collected echo planar magnetic resonance imaging data in the resting state. The sexual orientation was evaluated using the Kinsey Scale. We first assessed group differences in regional homogeneity and then, taking the identified differences as seed regions, we compared groups in measures of functional connectivity from those seeds. The behavioral significances of the differences in regional homogeneity and functional connectivity were assessed by examining their associations with Kinsey Scores. Homosexual participants showed significantly reduced regional homogeneity in the left inferior occipital gyrus, right middle occipital gyrus, right superior occipital gyrus, left cuneus, right precuneus, and increased regional homogeneity in rectal gyrus, bilateral midbrain, and left temporal lobe. Regional homogeneity correlated positively with Kinsey scores in the left inferior occipital gyrus. The homosexual group also showed reduced functional connectivity between left middle temporal gyrus, left supra-marginal gyrus, right cuneus and the seed region, i.e. left inferior occipital gyrus. Additionly, the connection between the left inferior occipital gyrus and right thalamus correlated positively with Kinsey scores. These differences in regional homogeneity and functional connectivity may contribute to a better understanding of the neural basis of male sexual orientation.

  7. Developmental changes in large-scale network connectivity in autism.

    Science.gov (United States)

    Nomi, Jason S; Uddin, Lucina Q

    2015-01-01

    Disrupted cortical connectivity is thought to underlie the complex cognitive and behavior profile observed in individuals with autism spectrum disorder (ASD). Previous neuroimaging research has identified patterns of both functional hypo- and hyper-connectivity in individuals with ASD. A recent theory attempting to reconcile conflicting results in the literature proposes that hyper-connectivity of brain networks may be more characteristic of young children with ASD, while hypo-connectivity may be more prevalent in adolescents and adults with the disorder when compared to typical development (TD) (Uddin etal., 2013). Previous work has examined only young children, mixed groups of children and adolescents, or adult cohorts in separate studies, leaving open the question of developmental influences on functional brain connectivity in ASD. The current study tests this developmental hypothesis by examining within- and between-network resting state functional connectivity in a large sample of 26 children, 28 adolescents, and 18 adults with ASD and age- and IQ-matchedTD individuals for the first time using an entirely data-driven approach. Independent component analyses (ICA) and dual regression was applied to data from three age cohorts to examine the effects of participant age on patterns of within-networkwhole-brain functional connectivity in individuals with ASD compared with TD individuals. Between-network connectivity differences were examined for each age cohort by comparing correlations between ICA components across groups. We find that in the youngest cohort (age 11 and under), children with ASD exhibit hyper-connectivity within large-scale brain networks as well as decreased between-network connectivity compared with age-matchedTD children. In contrast, adolescents with ASD (age 11-18) do not differ from TD adolescents in within-network connectivity, yet show decreased between-network connectivity compared with TD adolescents. Adults with ASD show no within- or

  8. Cocaine addiction related reproducible brain regions of abnormal default-mode network functional connectivity: a group ICA study with different model orders.

    Science.gov (United States)

    Ding, Xiaoyu; Lee, Seong-Whan

    2013-08-26

    Model order selection in group independent component analysis (ICA) has a significant effect on the obtained components. This study investigated the reproducible brain regions of abnormal default-mode network (DMN) functional connectivity related with cocaine addiction through different model order settings in group ICA. Resting-state fMRI data from 24 cocaine addicts and 24 healthy controls were temporally concatenated and processed by group ICA using model orders of 10, 20, 30, 40, and 50, respectively. For each model order, the group ICA approach was repeated 100 times using the ICASSO toolbox and after clustering the obtained components, centrotype-based anterior and posterior DMN components were selected for further analysis. Individual DMN components were obtained through back-reconstruction and converted to z-score maps. A whole brain mixed effects factorial ANOVA was performed to explore the differences in resting-state DMN functional connectivity between cocaine addicts and healthy controls. The hippocampus, which showed decreased functional connectivity in cocaine addicts for all the tested model orders, might be considered as a reproducible abnormal region in DMN associated with cocaine addiction. This finding suggests that using group ICA to examine the functional connectivity of the hippocampus in the resting-state DMN may provide an additional insight potentially relevant for cocaine-related diagnoses and treatments. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Switch-connected HyperX network

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip

    2018-02-13

    A network system includes a plurality of sub-network planes and global switches. The sub-network planes have a same network topology as each other. Each of the sub-network planes includes edge switches. Each of the edge switches has N ports. Each of the global switches is configured to connect a group of edge switches at a same location in the sub-network planes. In each of the sub-network planes, some of the N ports of each of the edge switches are connected to end nodes, and others of the N ports are connected to other edge switches in the same sub-network plane, other of the N ports are connected to at least one of the global switches.

  10. Dynamics of influence processes on networks: Complete mean-field theory; the roles of response functions, connectivity, and synchrony; and applications to social contagion

    CERN Document Server

    Harris, Kameron Decker; Dodds, Peter Sheridan

    2013-01-01

    We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. Allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean field theory for random networks and show this predicts that the dynamics on the network are a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and non-conformity by incorporating an off-threshold into standard threshold models of social contagion. In this way we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "li...

  11. A new class of methods for functional connectivity estimation

    Science.gov (United States)

    Lin, Wutu

    Measuring functional connectivity from neural recordings is important in understanding processing in cortical networks. The covariance-based methods are the current golden standard for functional connectivity estimation. However, the link between the pair-wise correlations and the physiological connections inside the neural network is unclear. Therefore, the power of inferring physiological basis from functional connectivity estimation is limited. To build a stronger tie and better understand the relationship between functional connectivity and physiological neural network, we need (1) a realistic model to simulate different types of neural recordings with known ground truth for benchmarking; (2) a new functional connectivity method that produce estimations closely reflecting the physiological basis. In this thesis, (1) I tune a spiking neural network model to match with human sleep EEG data, (2) introduce a new class of methods for estimating connectivity from different kinds of neural signals and provide theory proof for its superiority, (3) apply it to simulated fMRI data as an application.

  12. Altered Functional Connectivity of the Default Mode Network in Patients With Schizo-obsessive Comorbidity: A Comparison Between Schizophrenia and Obsessive-compulsive Disorder

    DEFF Research Database (Denmark)

    Wang, Yongming; Zou, Lai-quan; Xie, Wen-lan

    2018-01-01

    Clinical and neuroimaging data support the idea that schizo-obsessive comorbidity (SOC), similar to obsessive-compulsive disorder (OCD) and schizophrenia (SCZ), may be a distinct brain disorder. In this study, we examined the strength of resting-state functional connectivity (rsFC) between 19...... subregions of the default mode network (DMN) and whole brain voxels in 22 patients with SOC features, 20 patients with SCZ alone, 22 patients with OCD, and 22 healthy controls (HC). The main results demonstrated that patients with SOC exhibited the highest rsFC strength within subregions of the DMN...... increased rsFC between subregions of the DMN and the middle temporal gyrus, but the OCD group exhibited decreased rsFC between them. These findings highlight a specific alteration in functional connectivity in the DMN in patients with SOC, and provide new insights into the dysfunctional brain organization...

  13. Leadership Networking Connect, Collaborate, Create

    CERN Document Server

    (CCL), Center for Creative Leadership; Baldwin, David

    2011-01-01

    Networking is essential to effective leadership in today's organizations. Leaders who are skilled networkers have access to people, information, and resources to help solve problems and create opportunities. Leaders who neglect their networks are missing out on a critical component of their role as leaders. This book will help leaders take a new view of networking and provide insight into how to enhance their networks and become effective at leadership networking.

  14. Disrupted functional connectivity in adolescent obesity.

    Science.gov (United States)

    Moreno-Lopez, Laura; Contreras-Rodriguez, Oren; Soriano-Mas, Carles; Stamatakis, Emmanuel A; Verdejo-Garcia, Antonio

    2016-01-01

    Obesity has been associated with brain alterations characterised by poorer interaction between a hypersensitive reward system and a comparatively weaker prefrontal-cognitive control system. These alterations may occur as early as in adolescence, but this notion remains unclear, as no studies so far have examined global functional connectivity in adolescents with excess weight. We investigated functional connectivity in a sample of 60 adolescents with excess weight and 55 normal weight controls. We first identified parts of the brain displaying between-group global connectivity differences and then characterised the extent of the differences in functional network integrity and their association with reward sensitivity. Adolescent obesity was linked to neuroadaptations in functional connectivity within brain hubs linked to interoception (insula), emotional memory (middle temporal gyrus) and cognitive control (dorsolateral prefrontal cortex) (pFWE adolescent obesity is linked to disrupted functional connectivity in brain networks relevant to maintaining balance between reward, emotional memories and cognitive control. Our findings may contribute to reconceptualization of obesity as a multi-layered brain disorder leading to compromised motivation and control, and provide a biological account to target prevention strategies for adolescent obesity.

  15. A systematic framework for functional connectivity measures

    Directory of Open Access Journals (Sweden)

    Huifang Elizabeth Wang

    2014-12-01

    Full Text Available Various methods have been proposed to characterize the functional connectivity between nodes in a network measured with different modalities (electrophysiology, functional magnetic resonance imaging etc.. Since different measures of functional connectivity yield different results for the same dataset, it is important to assess when and how they can be used. In this work, we provide a systematic framework for evaluating the performance of a large range of functional connectivity measures – based upon a comprehensive portfolio of models generating measurable responses. Specifically, we benchmarked 42 methods using 10,000 simulated datasets from 5 different types of generative models with different connectivity structures. Since all functional connectivity methods require the setting of some parameters (window size and number, model order etc., we first optimized these parameters using performance criteria based upon (threshold free ROC analysis. We then evaluated the performance of the methods on data simulated with different types of models. Finally, we assessed the performance of the methods against different levels of signal-to-noise ratios and network configurations. A MATLAB toolbox is provided to perform such analyses using other methods and simulated datasets.

  16. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  17. Visualizing neuronal network connectivity with connectivity pattern tables

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2010-01-01

    Full Text Available Complex ideas are best conveyed through well-designed illustrations. Up to now, computational neuroscientists have mostly relied on box-and-arrow diagrams of even complex neuronal networks, often using ad hoc notations with conflicting use of symbols from paper to paper. This significantly impedes the communication of ideas in neuronal network modeling. We present here Connectivity Pattern Tables (CPTs as a clutter-free visualization of connectivity in large neuronal networks containing two-dimensional populations of neurons. CPTs can be generated automatically from the same script code used to create the actual network in the NEST simulator. Through aggregation, CPTs can be viewed at different levels, providing either full detail or summary information. We also provide the open source ConnPlotter tool as a means to create connectivity pattern tables.

  18. Development of hippocampal functional connectivity during childhood.

    Science.gov (United States)

    Blankenship, Sarah L; Redcay, Elizabeth; Dougherty, Lea R; Riggins, Tracy

    2017-01-01

    The hippocampus is a medial temporal lobe structure involved in memory, spatial navigation, and regulation of stress responses, making it a structure critical to daily functioning. However, little is known about the functional development of the hippocampus during childhood due to methodological challenges of acquiring neuroimaging data in young participants. This is a critical gap given evidence that hippocampally-mediated behaviors (e.g., episodic memory) undergo rapid and important changes during childhood. To address this gap, the present investigation collected resting-state fMRI scans in 97, 4- to 10-year-old children. Whole brain seed-based analyses of anterior, posterior, and whole hippocampal connectivity were performed to identify regions demonstrating stable (i.e., age-controlled) connectivity profiles as well as age-related differences in connectivity. Results reveal that the hippocampus is a highly connected structure of the brain and that most of the major components of the adult network are evident during childhood, including both unique and overlapping connectivity between anterior and posterior regions. Despite widespread age-controlled connectivity, the strength of hippocampal connectivity with regions of lateral temporal lobes and the anterior cingulate increased throughout the studied age range. These findings have implications for future investigations of the development of hippocampally-mediated behaviors and methodological applications for the appropriateness of whole versus segmented hippocampal seeds in connectivity analyses. Hum Brain Mapp 38:182-201, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Electrophysiological signatures of atypical intrinsic brain connectivity networks in autism

    Science.gov (United States)

    Shou, Guofa; Mosconi, Matthew W.; Wang, Jun; Ethridge, Lauren E.; Sweeney, John A.; Ding, Lei

    2017-08-01

    Objective. Abnormal local and long-range brain connectivity have been widely reported in autism spectrum disorder (ASD), yet the nature of these abnormalities and their functional relevance at distinct cortical rhythms remains unknown. Investigations of intrinsic connectivity networks (ICNs) and their coherence across whole brain networks hold promise for determining whether patterns of functional connectivity abnormalities vary across frequencies and networks in ASD. In the present study, we aimed to probe atypical intrinsic brain connectivity networks in ASD from resting-state electroencephalography (EEG) data via characterizing the whole brain network. Approach. Connectivity within individual ICNs (measured by spectral power) and between ICNs (measured by coherence) were examined at four canonical frequency bands via a time-frequency independent component analysis on high-density EEG, which were recorded from 20 ASD and 20 typical developing (TD) subjects during an eyes-closed resting state. Main results. Among twelve identified electrophysiological ICNs, individuals with ASD showed hyper-connectivity in individual ICNs and hypo-connectivity between ICNs. Functional connectivity alterations in ASD were more severe in the frontal lobe and the default mode network (DMN) and at low frequency bands. These functional connectivity measures also showed abnormal age-related associations in ICNs related to frontal, temporal and motor regions in ASD. Significance. Our findings suggest that ASD is characterized by the opposite directions of abnormalities (i.e. hypo- and hyper-connectivity) in the hierarchical structure of the whole brain network, with more impairments in the frontal lobe and the DMN at low frequency bands, which are critical for top-down control of sensory systems, as well as for both cognition and social skills.

  20. Ecological connectivity networks in rapidly expanding cities

    OpenAIRE

    Nor, A.N.M.; R. Corstanje; Harris, J.A.; Grafius, D.R.; Siriwardena, G.M.

    2017-01-01

    Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for ...

  1. Neuromodulatory connectivity defines the structure of a behavioral neural network.

    Science.gov (United States)

    Diao, Feici; Elliott, Amicia D; Diao, Fengqiu; Shah, Sarav; White, Benjamin H

    2017-11-22

    Neural networks are typically defined by their synaptic connectivity, yet synaptic wiring diagrams often provide limited insight into network function. This is due partly to the importance of non-synaptic communication by neuromodulators, which can dynamically reconfigure circuit activity to alter its output. Here, we systematically map the patterns of neuromodulatory connectivity in a network that governs a developmentally critical behavioral sequence in Drosophila. This sequence, which mediates pupal ecdysis, is governed by the serial release of several key factors, which act both somatically as hormones and within the brain as neuromodulators. By identifying and characterizing the functions of the neuronal targets of these factors, we find that they define hierarchically organized layers of the network controlling the pupal ecdysis sequence: a modular input layer, an intermediate central pattern generating layer, and a motor output layer. Mapping neuromodulatory connections in this system thus defines the functional architecture of the network.

  2. Modulatory interactions of resting-state brain functional connectivity.

    Directory of Open Access Journals (Sweden)

    Xin Di

    Full Text Available The functional brain connectivity studies are generally based on the synchronization of the resting-state functional magnetic resonance imaging (fMRI signals. Functional connectivity measures usually assume a stable relationship over time; however, accumulating studies have reported time-varying properties of strength and spatial distribution of functional connectivity. The present study explored the modulation of functional connectivity between two regions by a third region using the physiophysiological interaction (PPI technique. We first identified eight brain networks and two regions of interest (ROIs representing each of the networks using a spatial independent component analysis. A voxel-wise analysis was conducted to identify regions that showed modulatory interactions (PPI with the two ROIs of each network. Mostly, positive modulatory interactions were observed within regions involved in the same system. For example, the two regions of the dorsal attention network revealed modulatory interactions with the regions related to attention, while the two regions of the extrastriate network revealed modulatory interactions with the regions in the visual cortex. In contrast, the two regions of the default mode network (DMN revealed negative modulatory interactions with the regions in the executive network, and vice versa, suggesting that the activities of one network may be associated with smaller within network connectivity of the competing network. These results validate the use of PPI analysis to study modulation of resting-state functional connectivity by a third region. The modulatory effects may provide a better understanding of complex brain functions.

  3. Selectivity and sparseness in randomly connected balanced networks.

    Directory of Open Access Journals (Sweden)

    Cengiz Pehlevan

    Full Text Available Neurons in sensory cortex show stimulus selectivity and sparse population response, even in cases where no strong functionally specific structure in connectivity can be detected. This raises the question whether selectivity and sparseness can be generated and maintained in randomly connected networks. We consider a recurrent network of excitatory and inhibitory spiking neurons with random connectivity, driven by random projections from an input layer of stimulus selective neurons. In this architecture, the stimulus-to-stimulus and neuron-to-neuron modulation of total synaptic input is weak compared to the mean input. Surprisingly, we show that in the balanced state the network can still support high stimulus selectivity and sparse population response. In the balanced state, strong synapses amplify the variation in synaptic input and recurrent inhibition cancels the mean. Functional specificity in connectivity emerges due to the inhomogeneity caused by the generative statistical rule used to build the network. We further elucidate the mechanism behind and evaluate the effects of model parameters on population sparseness and stimulus selectivity. Network response to mixtures of stimuli is investigated. It is shown that a balanced state with unselective inhibition can be achieved with densely connected input to inhibitory population. Balanced networks exhibit the "paradoxical" effect: an increase in excitatory drive to inhibition leads to decreased inhibitory population firing rate. We compare and contrast selectivity and sparseness generated by the balanced network to randomly connected unbalanced networks. Finally, we discuss our results in light of experiments.

  4. Functional Connectivity Changes in Second Language Vocabulary Learning

    Science.gov (United States)

    Saidi, Ladan Ghazi; Perlbarg, Vincent; Marrelec, Guillaume; Pelegrini-Issac, Melani; Benali, Habib; Ansaldo, Ana-Ines

    2013-01-01

    Functional connectivity changes in the language network (Price, 2010), and in a control network involved in second language (L2) processing (Abutalebi & Green, 2007) were examined in a group of Persian (L1) speakers learning French (L2) words. Measures of network integration that characterize the global integrative state of a network (Marrelec,…

  5. Connecting network properties of rapidly disseminating epizoonotics.

    Directory of Open Access Journals (Sweden)

    Ariel L Rivas

    Full Text Available To effectively control the geographical dissemination of infectious diseases, their properties need to be determined. To test that rapid microbial dispersal requires not only susceptible hosts but also a pre-existing, connecting network, we explored constructs meant to reveal the network properties associated with disease spread, which included the road structure.Using geo-temporal data collected from epizoonotics in which all hosts were susceptible (mammals infected by Foot-and-mouth disease virus, Uruguay, 2001; birds infected by Avian Influenza virus H5N1, Nigeria, 2006, two models were compared: 1 'connectivity', a model that integrated bio-physical concepts (the agent's transmission cycle, road topology into indicators designed to measure networks ('nodes' or infected sites with short- and long-range links, and 2 'contacts', which focused on infected individuals but did not assess connectivity.THE CONNECTIVITY MODEL SHOWED FIVE NETWORK PROPERTIES: 1 spatial aggregation of cases (disease clusters, 2 links among similar 'nodes' (assortativity, 3 simultaneous activation of similar nodes (synchronicity, 4 disease flows moving from highly to poorly connected nodes (directionality, and 5 a few nodes accounting for most cases (a "20:80" pattern. In both epizoonotics, 1 not all primary cases were connected but at least one primary case was connected, 2 highly connected, small areas (nodes accounted for most cases, 3 several classes of nodes were distinguished, and 4 the contact model, which assumed all primary cases were identical, captured half the number of cases identified by the connectivity model. When assessed together, the synchronicity and directionality properties explained when and where an infectious disease spreads.Geo-temporal constructs of Network Theory's nodes and links were retrospectively validated in rapidly disseminating infectious diseases. They distinguished classes of cases, nodes, and networks, generating information usable

  6. Integration of network topological and connectivity properties for neuroimaging classification.

    Science.gov (United States)

    Jie, Biao; Zhang, Daoqiang; Gao, Wei; Wang, Qian; Wee, Chong-Yaw; Shen, Dinggang

    2014-02-01

    Rapid advances in neuroimaging techniques have provided an efficient and noninvasive way for exploring the structural and functional connectivity of the human brain. Quantitative measurement of abnormality of brain connectivity in patients with neurodegenerative diseases, such as mild cognitive impairment (MCI) and Alzheimer's disease (AD), have also been widely reported, especially at a group level. Recently, machine learning techniques have been applied to the study of AD and MCI, i.e., to identify the individuals with AD/MCI from the healthy controls (HCs). However, most existing methods focus on using only a single property of a connectivity network, although multiple network properties, such as local connectivity and global topological properties, can potentially be used. In this paper, by employing multikernel based approach, we propose a novel connectivity based framework to integrate multiple properties of connectivity network for improving the classification performance. Specifically, two different types of kernels (i.e., vector-based kernel and graph kernel) are used to quantify two different yet complementary properties of the network, i.e., local connectivity and global topological properties. Then, multikernel learning (MKL) technique is adopted to fuse these heterogeneous kernels for neuroimaging classification. We test the performance of our proposed method on two different data sets. First, we test it on the functional connectivity networks of 12 MCI and 25 HC subjects. The results show that our method achieves significant performance improvement over those using only one type of network property. Specifically, our method achieves a classification accuracy of 91.9%, which is 10.8% better than those by single network-property-based methods. Then, we test our method for gender classification on a large set of functional connectivity networks with 133 infants scanned at birth, 1 year, and 2 years, also demonstrating very promising results.

  7. Thermal Stimulation Alters Cervical Spinal Cord Functional Connectivity in Humans.

    Science.gov (United States)

    Weber, Kenneth A; Sentis, Amy I; Bernadel-Huey, Olivia N; Chen, Yufen; Wang, Xue; Parrish, Todd B; Mackey, Sean

    2018-01-15

    The spinal cord has an active role in the modulation and transmission of the neural signals traveling between the body and the brain. Recent advancements in functional magnetic resonance imaging (fMRI) have made the in vivo examination of spinal cord function in humans now possible. This technology has been recently extended to the investigation of resting state functional networks in the spinal cord, leading to the identification of distinct patterns of spinal cord functional connectivity. In this study, we expand on the previous work and further investigate resting state cervical spinal cord functional connectivity in healthy participants (n = 15) using high resolution imaging coupled with both seed-based functional connectivity analyses and graph theory-based metrics. Within spinal cord segment functional connectivity was present between the left and right ventral horns (bilateral motor network), left and right dorsal horns (bilateral sensory network), and the ipsilateral ventral and dorsal horns (unilateral sensory-motor network). Functional connectivity between the spinal cord segments was less apparent with the connectivity centered at the region of interest and spanning spinal cord functional network was demonstrated to be state-dependent as thermal stimulation of the right ventrolateral forearm resulted in significant disruption of the bilateral sensory network, increased network global efficiency, and decreased network modularity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Low-stress bicycling and network connectivity.

    Science.gov (United States)

    2012-05-01

    For a bicycling network to attract the widest possible segment of the population, its most fundamental attribute should be low-stress connectivity, that is, providing routes between peoples origins and destinations that do not require cyclists to ...

  9. Functional connectivity increase in the default-mode network of patients with Alzheimer's disease after long-term treatment with Galantamine.

    Science.gov (United States)

    Blautzik, Janusch; Keeser, Daniel; Paolini, Marco; Kirsch, Valerie; Berman, Albert; Coates, Ute; Reiser, Maximilian; Teipel, Stefan J; Meindl, Thomas

    2016-03-01

    Acetylcholinesterase inhibitors (AChEIs) are efficacious for the treatment of mild to moderate forms of Alzheimer's dementia (AD). Default-mode network (DMN) connectivity is considered to be early impaired in AD. Long-term effects of AChEIs on the DMN in AD have not yet been investigated. Twenty-eight AD patients and 11 age-matched healthy volunteers (HC) participated in the prospective study. AD patients were randomly assigned to either a pharmacotherapy arm (Galantamine, AD G) or to a placebo arm (AD P+G) for the period of 6 months followed by open-label Galantamine therapy from month 7-12. All subjects underwent neuropsychological testing, resting-state functional and structural MRI at baseline and after 12 months, AD patients additionally in between after 6 months. Thirteen AD patients completed the treatment trial and underwent all functional MRI follow-up sequences of good quality. Functional connectivity significantly increased within the AD G group in the posterior cingulate cortex and in the Precuneus between baseline and 12 months follow-up (pcorr<0.05). Between-group analyses demonstrated that functional connectivity in the AD G group significantly increased in the posterior cingulate cortex as well as in the Precuneus compared to the HC group and in the anteromedial aspect of the temporal lobes compared to the AD P+G group, respectively, at 12 months follow-up (pcorr<0.05). Cognitive performance remained stable within groups over time indicating that resting-state fMRI may be sensitive for the detection of pharmacologically induced effects on brain function of AD patients. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  10. Altered resting-state network connectivity in congenital blind.

    Science.gov (United States)

    Wang, Dawei; Qin, Wen; Liu, Yong; Zhang, Yunting; Jiang, Tianzi; Yu, Chunshui

    2014-06-01

    The brain of congenital blind (CB) has experienced a series of structural and functional alterations, either undesirable outcomes such as atrophy of the visual pathway due to sight loss from birth, or compensatory plasticity to interact efficiently with the environment. However, little is known, so far, about alterations in the functional architecture of resting-state networks (RSNs) in CB. This study aimed to investigate intra- and internetwork connectivity differences between CB and sighted controls (SC), using independent component analysis (ICA) on resting state functional MRI data. Compared with SC, CB showed significantly increased network connectivity within the salience network (SN) and the occipital cortex. Moreover, CB exhibited enhanced internetwork connectivity between the SN and the frontoparietal network (FPN) and between the FPN and the occipital cortex; however, they showed decreased internetwork connectivity between the occipital cortex and the sensorimotor network. These findings suggest that CB experience large scale reorganization at the level of the functional network. More importantly, the enhanced intra- and internetwork connectivity of the SN, FPN, and occipital cortex in CB may improve their abilities to identify salient stimuli, to initiate the executive function, and to top-down control of attention, which are critical for the CB to guide appropriate behavior and to better adaption to the environment. Copyright © 2013 Wiley Periodicals, Inc.

  11. Coherency and connectivity in oscillating neural networks: linear partialization analysis

    NARCIS (Netherlands)

    Kalitzin, S.; van Dijk, B. W.; Spekreijse, H.; van Leeuwen, W. A.

    1997-01-01

    This paper studies the relation between the functional synaptic connections between two artificial neural networks and the correlation of their spiking activities. The model neurons had realistic non-oscillatory dynamic properties and the networks showed oscillatory behavior as a result of their

  12. Precentral gyrus functional connectivity signatures of autism

    Directory of Open Access Journals (Sweden)

    Mary Beth eNebel

    2014-05-01

    Full Text Available Motor impairments are prevalent in children with autism spectrum disorders (ASD and are perhaps the earliest symptoms to develop. In addition, motor skills relate to the communicative/social deficits at the core of ASD diagnosis, and these behavioral deficits may reflect abnormal connectivity within brain networks underlying motor control and learning. Despite the fact that motor abnormalities in ASD are well-characterized, there remains a fundamental disconnect between the complexity of the clinical presentation of ASD and the underlying neurobiological mechanisms. In this study, we examined connectivity within and between functional subregions of a key component of the motor control network, the precentral gyrus, using resting state functional Magnetic Resonance Imaging data collected from a large, heterogeneous sample of individuals with ASD as well as neurotypical controls. We found that the strength of connectivity within and between distinct functional subregions of the precentral gyrus was related to ASD diagnosis and to the severity of ASD traits. In particular, connectivity involving the dorsomedial (lower limb/trunk subregion was abnormal in ASD individuals as predicted by models using a dichotomous variable coding for the presence of ASD, as well as models using symptom severity ratings. These findings provide further support for a link between motor and social/communicative abilities in ASD.

  13. Network-based functional enrichment

    Directory of Open Access Journals (Sweden)

    Poirel Christopher L

    2011-11-01

    Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are

  14. Image Informatics Strategies for Deciphering Neuronal Network Connectivity.

    Science.gov (United States)

    Detrez, Jan R; Verstraelen, Peter; Gebuis, Titia; Verschuuren, Marlies; Kuijlaars, Jacobine; Langlois, Xavier; Nuydens, Rony; Timmermans, Jean-Pierre; De Vos, Winnok H

    2016-01-01

    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Amongst the neuronal structures that show morphological plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular communication and the associated calcium bursting behaviour. In vitro cultured neuronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardization of both image acquisition and image analysis, it has become possible to extract statistically relevant readouts from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies.

  15. Intrinsic network connectivity and own body perception in gender dysphoria.

    Science.gov (United States)

    Feusner, Jamie D; Lidström, Andreas; Moody, Teena D; Dhejne, Cecilia; Bookheimer, Susan Y; Savic, Ivanka

    2017-08-01

    Gender dysphoria (GD) is characterized by incongruence between one's identity and gender assigned at birth. The biological mechanisms of GD are unclear. We investigated brain network connectivity patterns involved in own body perception in the context of self in GD. Twenty-seven female-to-male (FtM) individuals with GD, 27 male controls, and 27 female controls underwent resting state fMRI. We compared functional connections within intrinsic connectivity networks involved in self-referential processes and own body perception -default mode network (DMN) and salience network - and visual networks, using independent components analyses. Behavioral correlates of network connectivity were also tested using self-perception ratings while viewing own body images morphed to their sex assigned at birth, and to the sex of their gender identity. FtM exhibited decreased connectivity of anterior and posterior cingulate and precuneus within the DMN compared with controls. In FtM, higher "self" ratings for bodies morphed towards the sex of their gender identity were associated with greater connectivity of the anterior cingulate within the DMN, during long viewing times. In controls, higher ratings for bodies morphed towards their gender assigned at birth were associated with right insula connectivity within the salience network, during short viewing times. Within visual networks FtM showed weaker connectivity in occipital and temporal regions. Results suggest disconnectivity within networks involved in own body perception in the context of self in GD. Moreover, perception of bodies in relation to self may be reflective rather than reflexive, as a function of mesial prefrontal processes. These may represent neurobiological correlates to the subjective disconnection between perception of body and self-identification.

  16. Decreased functional connectivity and disrupted neural network in the prefrontal cortex of affective disorders: A resting-state fNIRS study.

    Science.gov (United States)

    Zhu, Huilin; Xu, Jie; Li, Jiangxue; Peng, Hongjun; Cai, Tingting; Li, Xinge; Wu, Shijing; Cao, Wei; He, Sailing

    2017-10-15

    Affective disorders (AD) have been conceptualized as neural network-level diseases. In this study, we utilized functional near infrared spectroscopy (fNIRS) to investigate the spontaneous hemodynamic activities in the prefrontal cortex (PFC) of the AD patients with or without medications. 42 optical channels were applied to cover the superior frontal gyrus (SFG), middle frontal gyrus (MFG), and inferior frontal gyrus (IFG), which constitute one of the most important affective networks of the brain. We performed resting-state measurements on 28 patients who were diagnosed as having AD and 30 healthy controls (HC). Raw fNIRS data were preprocessed with independent component analysis (ICA) and a band-pass filter to remove artifacts and physiological noise. By systematically analyzing the intra-regional, intrahemispheric, and interhemispheric connectivities based on the spontaneous oscillations of Δ[HbO], our results indicated that patients with AD exhibited significantly reduced intra-regional and symmetrically interhemispheric connectivities in the PFC when compared to HC. More specifically, relative to HC, AD patients showed significantly lower locally functional connectivity in the right IFG, and poor long-distance connectivity between bilateral IFG. In addition, AD patients without medication presented more disrupted cortical organizations in the PFC, and the severity of self-reported symptoms of depression was negatively correlated with the strength of intra-regional and symmetrically interhemispheric connectivity in the PFC. Regarding the measuring technique, fNIRS has restricted measurement depth and spatial resolution. During the study, the subgroups of AD, such as major depressive disorder, bipolar, comorbidity, or non-comorbidity, dosage of psychotropic drugs, as well as different types of pharmacological responses were not distinguished and systematically compared. Furthermore, due to the limitation of the research design, it was still not very clear how

  17. Aberrant cerebellar connectivity in motor and association networks in schizophrenia.

    Science.gov (United States)

    Shinn, Ann K; Baker, Justin T; Lewandowski, Kathryn E; Öngür, Dost; Cohen, Bruce M

    2015-01-01

    Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the "cognitive dysmetria" and "dysmetria of thought" models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks) relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of schizophrenia.

  18. Aberrant cerebellar connectivity in motor and association networks in schizophrenia

    Directory of Open Access Journals (Sweden)

    Ann K. Shinn

    2015-03-01

    Full Text Available Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the cognitive dysmetria and dysmetria of thought models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of

  19. Connectivity of Highway Vehicular Networks

    OpenAIRE

    Gramaglia, Marco; Trullols-Cruces, Oscar; Naboulsi, Diala; Fiore, Marco; Calderon, Maria

    2014-01-01

    National audience; There is a growing need for vehicular mobility datasets that can be employed in the simulative evaluation of protocols and architectures designed for upcoming vehicular networks. Such datasets should be realistic, publicly available, and heterogeneous, i.e., they should capture varied traffic con- ditions. In this paper, we contribute to the ongoing effort to define such mobility scenarios by introducing a novel set of traces for vehicular network simulation. Our traces are...

  20. Spectral Diversity in Default Mode Network Connectivity Reflects Behavioral State.

    Science.gov (United States)

    Craig, Michael M; Manktelow, Anne E; Sahakian, Barbara J; Menon, David K; Stamatakis, Emmanuel A

    2017-12-06

    Default mode network (DMN) functional connectivity is thought to occur primarily in low frequencies (<0.1 Hz), resulting in most studies removing high frequencies during data preprocessing. In contrast, subtractive task analyses include high frequencies, as these are thought to be task relevant. An emerging line of research explores resting fMRI data at higher-frequency bands, examining the possibility that functional connectivity is a multiband phenomenon. Furthermore, recent studies suggest DMN involvement in cognitive processing; however, without a systematic investigation of DMN connectivity during tasks, its functional contribution to cognition cannot be fully understood. We bridged these concurrent lines of research by examining the contribution of high frequencies in the relationship between DMN and dorsal attention network at rest and during task execution. Our findings revealed that the inclusion of high frequencies alters between network connectivity, resulting in reduced anticorrelation and increased positive connectivity between DMN and dorsal attention network. Critically, increased positive connectivity was observed only during tasks, suggesting an important role for high-frequency fluctuations in functional integration. Moreover, within-DMN connectivity during task execution correlated with RT only when high frequencies were included. These results show that DMN does not simply deactivate during task execution and suggest active recruitment while performing cognitively demanding paradigms.

  1. Optical Fiber Connected VLBI Network in Japan

    Science.gov (United States)

    Kawaguchi Noriyuki 1, Kouno Yusuke 1, Suda Hiroshi 2, Takaba Hiroshi 3, Takashima Kazuhiro 4, Murata Yasuhiro 5

    Large radio telescopes located at the cenral area of Japan, Usuda 64m, Nobeyama 45m, Tsukuba 32m, Kashima 34m and Gifu 11m are connected with a high speed optical fiber communication network of 5-Gbps rate. We present the current state of the network configuration and observations.

  2. Robust Network Design - Connectivity and Beyond

    Science.gov (United States)

    2015-01-15

    data integrity part in subsections IIC, IID, IIE and IIF. II.A. RESOURCE EFFICIENT BACKBONE NETWORK DESIGN IN FAULT-FREE SCENARIO Prior to our...Optical Networks”, IEEE Transactions on Networking 25. S. Shirazipourazad, P. Ghosh and A. Sen, “On Connectivity of Airborne Networks” AIAA Journal of

  3. Network connectivity modulates power spectrum scale invariance.

    Science.gov (United States)

    Rădulescu, Anca; Mujica-Parodi, Lilianne R

    2014-04-15

    Measures of complexity are sensitive in detecting disease, which has made them attractive candidates for diagnostic biomarkers; one complexity measure that has shown promise in fMRI is power spectrum scale invariance (PSSI). Even if scale-free features of neuroimaging turn out to be diagnostically useful, however, their underlying neurobiological basis is poorly understood. Using modeling and simulations of a schematic prefrontal-limbic meso-circuit, with excitatory and inhibitory networks of nodes, we present here a framework for how network density within a control system can affect the complexity of signal outputs. Our model demonstrates that scale-free behavior, similar to that observed in fMRI PSSI data, can be obtained for sufficiently large networks in a context as simple as a linear stochastic system of differential equations, although the scale-free range improves when introducing more realistic, nonlinear behavior in the system. PSSI values (reflective of complexity) vary as a function of both input type (excitatory, inhibitory) and input density (mean number of long-range connections, or strength), independent of their node-specific geometric distribution. Signals show pink noise (1/f) behavior when excitatory and inhibitory influences are balanced. As excitatory inputs are increased and decreased, signals shift towards white and brown noise, respectively. As inhibitory inputs are increased and decreased, signals shift towards brown and white noise, respectively. The results hold qualitatively at the hemodynamic scale, which we modeled by introducing a neurovascular component. Comparing hemodynamic simulation results to fMRI PSSI results from 96 individuals across a wide spectrum of anxiety-levels, we show how our model can generate concrete and testable hypotheses for understanding how connectivity affects regulation of meso-circuits in the brain. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Default-mode network changes in Huntington's disease: an integrated MRI study of functional connectivity and morphometry

    National Research Council Canada - National Science Library

    Quarantelli, Mario; Salvatore, Elena; Giorgio, Sara Maria Delle Acque; Filla, Alessandro; Cervo, Amedeo; Russo, Cinzia Valeria; Cocozza, Sirio; Massarelli, Marco; Brunetti, Arturo; De Michele, Giuseppe

    2013-01-01

    ...) have shown dysfunction of the Default-Mode Network (DMN). No data however are currently available on the DMN alterations in the symptomatic stages of the disease, which are characterized by cortical atrophy involving several DMN nodes...

  5. Improved diagnostic accuracy of Alzheimer's disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer's disease neuroimaging initiative set

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Park, Bum Woo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Jung; Oh, Joo Young; Shim, Woo Hyun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Jae Hong; Roh, Jee Hoon [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-11-15

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease.

  6. Coded Network Function Virtualization

    DEFF Research Database (Denmark)

    Al-Shuwaili, A.; Simone, O.; Kliewer, J.

    2016-01-01

    Network function virtualization (NFV) prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off-the-shelf ha......Network function virtualization (NFV) prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off...

  7. BASCO: a toolbox for task-related functional connectivity.

    Science.gov (United States)

    Göttlich, Martin; Beyer, Frederike; Krämer, Ulrike M

    2015-01-01

    BASCO (BetA Series COrrelation) is a user-friendly MATLAB toolbox with a graphical user interface (GUI) which allows investigating functional connectivity in event-related functional magnetic resonance imaging (fMRI) data. Connectivity analyses extend and compliment univariate activation analyses since the actual interaction between brain regions involved in a task can be explored. BASCO supports seed-based functional connectivity as well as brain network analyses. Although there are a multitude of advanced toolboxes for investigating resting-state functional connectivity, BASCO is the first toolbox for evaluating task-related whole-brain functional connectivity employing a large number of network nodes. Thus, BASCO allows investigating task-specific rather than resting-state networks. Here, we summarize the main features of the toolbox and describe the methods and algorithms.

  8. Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: a resting-state fMRI study.

    Science.gov (United States)

    Lv, Zong-xia; Huang, Dong-Hong; Ye, Wei; Chen, Zi-rong; Huang, Wen-li; Zheng, Jin-ou

    2014-06-01

    This study aimed to investigate the resting-state brain network related to visuospatial working memory (VSWM) in patients with right temporal lobe epilepsy (rTLE). The functional mechanism underlying the cognitive impairment in VSWM was also determined. Fifteen patients with rTLE and 16 healthy controls matched for age, gender, and handedness underwent a 6-min resting-state functional MRI session and a neuropsychological test using VSWM_Nback. The VSWM-related brain network at rest was extracted using multiple independent component analysis; the spatial distribution and the functional connectivity (FC) parameters of the cerebral network were compared between groups. Behavioral data were subsequently correlated with the mean Z-value in voxels showing significant FC difference during intergroup comparison. The distribution of the VSWM-related resting-state network (RSN) in the group with rTLE was virtually consistent with that in the healthy controls. The distribution involved the dorsolateral prefrontal lobe and parietal lobe in the right hemisphere and the partial inferior parietal lobe and posterior lobe of the cerebellum in the left hemisphere (p<0.05, AlphaSim corrected). Between-group differences suggest that the group with rTLE had a decreased FC within the right superior frontal lobe (BA8), right middle frontal lobe, and right ventromedial prefrontal lobe compared with the controls (p<0.05, AlphaSim corrected). The regions of increased FC in rTLE were localized within the right superior frontal lobe (BA11), right superior parietal lobe, and left posterior lobe of the cerebellum (p<0.05, AlphaSim corrected). Moreover, patients with rTLE performed worse than controls in the VSWM_Nback test, and there were negative correlations between ACCmeanRT (2-back) and the mean Z-value in the voxels showing decreased or increased FC in rTLE (p<0.05). The results suggest that the alteration of the VSWM-related RSN might underpin the VSWM impairment in patients with rTLE and

  9. Altered Brain Functional Connectivity in Betel Quid-Dependent Chewers

    Directory of Open Access Journals (Sweden)

    Xiaojun Huang

    2017-11-01

    Full Text Available BackgroundBetel quid (BQ is a common psychoactive substance worldwide with particularly high usage in many Asian countries. This study aimed to explore the effect of BQ use on functional connectivity by comparing global functional brain networks and their subset between BQ chewers and healthy controls (HCs.MethodsResting-state functional magnetic resonance imaging (fMRI was obtained from 24 betel quid-dependent (BQD male chewers and 27 healthy male individuals on a 3.0T scanner. We used independent component analysis (ICA to determine components that represent the brain’s functional networks and their spatial aspects of functional connectivity. Two sample t-tests were used to identify the functional connectivity differences in each network between these two groups.ResultsSeventeen networks were identified by ICA. Nine of them showed connectivity differences between BQD and HCs (two sample t-tests, p < 0.001 uncorrected. We found increased functional connectivity in the orbitofrontal, bilateral frontoparietal, frontotemporal, occipital/parietal, frontotemporal/cerebellum, and temporal/limbic networks, and decreased connectivity in the parietal and medial frontal/anterior cingulate networks in the BQD compared to the HCs. The betel quid dependence scale scores were positively related to the increased functional connectivity in the orbitofrontal (r = 0.39, p = 0.03 while negatively related to the decreased functional connectivity in medial frontal/anterior cingulate networks (r = −0.35, p = 0.02.DiscussionOur findings provide further evidence that BQ chewing may lead to brain functional connectivity changes, which may play a key role in the psychological and physiological effects of BQ.

  10. Impaired Activation of Visual Attention Network for Motion Salience Is Accompanied by Reduced Functional Connectivity between Frontal Eye Fields and Visual Cortex in Strabismic Amblyopia

    Directory of Open Access Journals (Sweden)

    Sheila G. Crewther

    2017-04-01

    Full Text Available Strabismic amblyopia is now acknowledged to be more than a simple loss of acuity and to involve alterations in visually driven attention, though whether this applies to both stimulus-driven and goal-directed attention has not been explored. Hence we investigated monocular threshold performance during a motion salience-driven attention task involving detection of a coherent dot motion target in one of four quadrants in adult controls and those with strabismic amblyopia. Psychophysical motion thresholds were impaired for the strabismic amblyopic eye, requiring longer inspection time and consequently slower target speed for detection compared to the fellow eye or control eyes. We compared fMRI activation and functional connectivity between four ROIs of the occipital-parieto-frontal visual attention network [primary visual cortex (V1, motion sensitive area V5, intraparietal sulcus (IPS and frontal eye fields (FEF], during a suprathreshold version of the motion-driven attention task, and also a simple goal-directed task, requiring voluntary saccades to targets randomly appearing along a horizontal line. Activation was compared when viewed monocularly by controls and the amblyopic and its fellow eye in strabismics. BOLD activation was weaker in IPS, FEF and V5 for both tasks when viewing through the amblyopic eye compared to viewing through the fellow eye or control participants' non-dominant eye. No difference in V1 activation was seen between the amblyopic and fellow eye, nor between the two eyes of control participants during the motion salience task, though V1 activation was significantly less through the amblyopic eye than through the fellow eye and control group non-dominant eye viewing during the voluntary saccade task. Functional correlations of ROIs within the attention network were impaired through the amblyopic eye during the motion salience task, whereas this was not the case during the voluntary saccade task. Specifically, FEF showed

  11. Whole-brain functional connectivity identification of functional dyspepsia.

    Science.gov (United States)

    Nan, Jiaofen; Liu, Jixin; Li, Guoying; Xiong, Shiwei; Yan, Xuemei; Yin, Qing; Zeng, Fang; von Deneen, Karen M; Liang, Fanrong; Gong, Qiyong; Qin, Wei; Tian, Jie

    2013-01-01

    Recent neuroimaging studies have shown local brain aberrations in functional dyspepsia (FD) patients, yet little attention has been paid to the whole-brain resting-state functional network abnormalities. The purpose of this study was to investigate whether FD disrupts the patterns of whole-brain networks and the abnormal functional connectivity could reflect the severity of the disease. The dysfunctional interactions between brain regions at rest were investigated in FD patients as compared with 40 age- and gender- matched healthy controls. Multivariate pattern analysis was used to evaluate the discriminative power of our results for classifying patients from controls. In our findings, the abnormal brain functional connections were mainly situated within or across the limbic/paralimbic system, the prefrontal cortex, the tempo-parietal areas and the visual cortex. About 96% of the subjects among the original dataset were correctly classified by a leave one-out cross-validation approach, and 88% accuracy was also validated in a replication dataset. The classification features were significantly associated with the patients' dyspepsia symptoms, the self-rating depression scale and self-rating anxiety scale, but it was not correlated with duration of FD patients (p>0.05). Our results may indicate the effectiveness of the altered brain functional connections reflecting the disease pathophysiology underling FD. These dysfunctional connections may be the epiphenomena or causative agents of FD, which may be affected by clinical severity and its related emotional dimension of the disease rather than the clinical course.

  12. Frequency-dependent functional connectivity within resting-state networks: An atlas-based MEG beamformer solution

    NARCIS (Netherlands)

    Hillebrand, A.; Barnes, G.R.; Bosboom, J.L.; Berendse, H.W.; Stam, C.J.

    2012-01-01

    The brain consists of functional units with more-or-less specific information processing capabilities, yet cognitive functions require the co-ordinated activity of these spatially separated units. Magnetoencephalography (MEG) has the temporal resolution to capture these frequency-dependent

  13. Brain connectivity dynamics during social interaction reflect social network structure.

    Science.gov (United States)

    Schmälzle, Ralf; Brook O'Donnell, Matthew; Garcia, Javier O; Cascio, Christopher N; Bayer, Joseph; Bassett, Danielle S; Vettel, Jean M; Falk, Emily B

    2017-05-16

    Social ties are crucial for humans. Disruption of ties through social exclusion has a marked effect on our thoughts and feelings; however, such effects can be tempered by broader social network resources. Here, we use fMRI data acquired from 80 male adolescents to investigate how social exclusion modulates functional connectivity within and across brain networks involved in social pain and understanding the mental states of others (i.e., mentalizing). Furthermore, using objectively logged friendship network data, we examine how individual variability in brain reactivity to social exclusion relates to the density of participants' friendship networks, an important aspect of social network structure. We find increased connectivity within a set of regions previously identified as a mentalizing system during exclusion relative to inclusion. These results are consistent across the regions of interest as well as a whole-brain analysis. Next, examining how social network characteristics are associated with task-based connectivity dynamics, we find that participants who showed greater changes in connectivity within the mentalizing system when socially excluded by peers had less dense friendship networks. This work provides insight to understand how distributed brain systems respond to social and emotional challenges and how such brain dynamics might vary based on broader social network characteristics.

  14. Small vessel disease and cognitive impairment : The relevance of central network connections

    NARCIS (Netherlands)

    Reijmer, Yael D.; Fotiadis, Panagiotis; Piantoni, Giovanni; Boulouis, Gregoire; Kelly, Kathleen E.; Gurol, Mahmut E.; Leemans, Alexander; O'Sullivan, Michael J.; Greenberg, Steven M.; Viswanathan, Anand

    2016-01-01

    Central brain network connections greatly contribute to overall network efficiency. Here we examined whether small vessel disease (SVD) related white matter alterations in central brain network connections have a greater impact on executive functioning than alterations in non-central brain network

  15. Intrinsic connectivity networks within cerebellum and beyond in eating disorders.

    Science.gov (United States)

    Amianto, F; D'Agata, F; Lavagnino, L; Caroppo, P; Abbate-Daga, G; Righi, D; Scarone, S; Bergui, M; Mortara, P; Fassino, S

    2013-10-01

    Cerebellum seems to have a role both in feeding behavior and emotion regulation; therefore, it is a region that warrants further neuroimaging studies in eating disorders, severe conditions that determine a significant impairment in the physical and psychological domain. The aim of this study was to examine the cerebellum intrinsic connectivity during functional magnetic resonance imaging resting state in anorexia nervosa (AN), bulimia nervosa (BN), and healthy controls (CN). Resting state brain activity was decomposed into intrinsic connectivity networks (ICNs) using group spatial independent component analysis on the resting blood oxygenation level dependent time courses of 12 AN, 12 BN, and 10 CN. We extracted the cerebellar ICN and compared it between groups. Intrinsic connectivity within the cerebellar network showed some common alterations in eating disordered compared to healthy subjects (e.g., a greater connectivity with insulae, vermis, and paravermis and a lesser connectivity with parietal lobe); AN and BN patients were characterized by some peculiar alterations in connectivity patterns (e.g., greater connectivity with the insulae in AN compared to BN, greater connectivity with anterior cingulate cortex in BN compared to AN). Our data are consistent with the presence of different alterations in the cerebellar network in AN and BN patients that could be related to psychopathologic dimensions of eating disorders.

  16. Functional connectivity of emotional processing in depression.

    LENUS (Irish Health Repository)

    Carballedo, Angela

    2012-02-01

    OBJECTIVES: The aim of the study is to map a neural network of emotion processing and to identify differences in major depression compared to healthy controls. It is hypothesized that intentional perception of emotional faces activates connections between amygdala (Demir et al.), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and prefrontal cortex (PFC) and that frontal-amygdala connections are altered in major depressive disorder (MDD). METHODS: Fifteen medication-free patients with MDD and fifteen healthy controls were enrolled. All subjects were assessed using the same face-matching functional Magnetic Resonance Imaging (fMRI) task, known to involve those areas. Brain activations were obtained using Statistical Parametric Mapping version 5 (SPM5) for data analysis and MARSBAR for extracting of fMRI time series. Then data was analyzed using structural equation modeling (SEM). RESULTS: A valid model was established for the left and the right hemispheres showing a circuit involving ACC, OFC, PFC and AMY. The left hemisphere shows significant lower connectivity strengths in patients than controls, for the pathway that goes from AMY to the OF11, and a trend of higher connectivity in patients for the path that goes from the PF9 to the OF11. In the right hemisphere, patients show lower connectivity coefficients in the paths from the AMY to OF11, from the AMY to ACC, and from the ACC to PF9. By the contrary, controls show lower connectivity strengths for the path that goes from ACC to AMY. CONCLUSIONS: Functional disconnection between limbic and frontal brain regions could be demonstrated using structural equation modeling. The interpretation of these findings could be that there is an emotional processing bias with disconnection bilaterally between amygdala to orbitofrontal cortices and in addition a right disconnection between amygdala and ACC as well as between ACC and prefrontal cortex possibly in line with a more prominent role for the right hemisphere

  17. Mild hypoxia affects synaptic connectivity in cultured neuronal networks.

    Science.gov (United States)

    Hofmeijer, Jeannette; Mulder, Alex T B; Farinha, Ana C; van Putten, Michel J A M; le Feber, Joost

    2014-04-04

    Eighty percent of patients with chronic mild cerebral ischemia/hypoxia resulting from chronic heart failure or pulmonary disease have cognitive impairment. Overt structural neuronal damage is lacking and the precise cause of neuronal damage is unclear. As almost half of the cerebral energy consumption is used for synaptic transmission, and synaptic failure is the first abrupt consequence of acute complete anoxia, synaptic dysfunction is a candidate mechanism for the cognitive deterioration in chronic mild ischemia/hypoxia. Because measurement of synaptic functioning in patients is problematic, we use cultured networks of cortical neurons from new born rats, grown over a multi-electrode array, as a model system. These were exposed to partial hypoxia (partial oxygen pressure of 150Torr lowered to 40-50Torr) during 3 (n=14) or 6 (n=8) hours. Synaptic functioning was assessed before, during, and after hypoxia by assessment of spontaneous network activity, functional connectivity, and synaptically driven network responses to electrical stimulation. Action potential heights and shapes and non-synaptic stimulus responses were used as measures of individual neuronal integrity. During hypoxia of 3 and 6h, there was a statistically significant decrease of spontaneous network activity, functional connectivity, and synaptically driven network responses, whereas direct responses and action potentials remained unchanged. These changes were largely reversible. Our results indicate that in cultured neuronal networks, partial hypoxia during 3 or 6h causes isolated disturbances of synaptic connectivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Atypical network connectivity for imitation in autism spectrum disorder.

    Science.gov (United States)

    Shih, Patricia; Shen, Mark; Ottl, Birgit; Keehn, Brandon; Gaffrey, Michael S; Müller, Ralph-Axel

    2010-08-01

    Imitation has been considered as one of the precursors for sociocommunicative development. Impairments of imitation in autism spectrum disorder (ASD) could be indicative of dysfunctional underlying neural processes. Neuroimaging studies have found reduced activation in areas associated with imitation, but a functional connectivity MRI network perspective of these regions in autism is unavailable. Functional and effective connectivity was examined in 14 male participants with ASD and 14 matched typically developing (TD) participants. We analyzed intrinsic, low-frequency blood oxygen level dependent (BOLD) fluctuations of three regions in literature found to be associated with imitation (inferior frontal gyrus [IFG], inferior parietal lobule [IPL], superior temporal sulcus [STS]). Direct group comparisons did not show significantly reduced functional connectivity within the imitation network in ASD. Conversely, we observed greater connectivity with frontal regions, particularly superior frontal and anterior cingulate gyri, in the ASD compared to TD group. Structural equation modeling of effective connectivity revealed a significantly reduced effect of IPL on IFG together with an increased influence of a region in dorsal prefrontal cortex (dPFC) on IFG in the ASD group. Our results suggest atypical connectivity of the imitation network with an enhanced role of dPFC, which may relate to behavioral impairments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Asymmetric network connectivity using weighted harmonic averages

    Science.gov (United States)

    Morrison, Greg; Mahadevan, L.

    2011-02-01

    We propose a non-metric measure of the "closeness" felt between two nodes in an undirected, weighted graph using a simple weighted harmonic average of connectivity, that is a real-valued Generalized Erdös Number (GEN). While our measure is developed with a collaborative network in mind, the approach can be of use in a variety of artificial and real-world networks. We are able to distinguish between network topologies that standard distance metrics view as identical, and use our measure to study some simple analytically tractable networks. We show how this might be used to look at asymmetry in authorship networks such as those that inspired the integer Erdös numbers in mathematical coauthorships. We also show the utility of our approach to devise a ratings scheme that we apply to the data from the NetFlix prize, and find a significant improvement using our method over a baseline.

  20. Detecting connectivity changes in neuronal networks.

    Science.gov (United States)

    Berry, Tyrus; Hamilton, Franz; Peixoto, Nathalia; Sauer, Timothy

    2012-08-15

    We develop a method from semiparametric statistics (Cox, 1972) for the purpose of tracking links and connection strengths over time in a neuronal network from spike train data. We consider application of the method as implemented in Masud and Borisyuk (2011), and evaluate its use on data generated independently of the Cox model hypothesis, in particular from a spiking model of Izhikevich in four different dynamical regimes. Then, we show how the Cox method can be used to determine statistically significant changes in network connectivity over time. Our methodology is demonstrated using spike trains from multi-electrode array measurements of networks of cultured mammalian spinal cord cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Altered functional and anatomical connectivity in schizophrenia.

    Science.gov (United States)

    Camchong, Jazmin; MacDonald, Angus W; Bell, Christopher; Mueller, Bryon A; Lim, Kelvin O

    2011-05-01

    Schizophrenia is characterized by a lack of integration between thought, emotion, and behavior. A disruption in the connectivity between brain processes may underlie this schism. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) were used to evaluate functional and anatomical brain connectivity in schizophrenia. In all, 29 chronic schizophrenia patients (11 females, age: mean=41.3, SD=9.28) and 29 controls (11 females, age: mean=41.1, SD=10.6) were recruited. Schizophrenia patients were assessed for severity of negative and positive symptoms and general cognitive abilities of attention/concentration and memory. Participants underwent a resting-fMRI scan and a DTI scan. For fMRI data, a hybrid independent components analysis was used to extract the group default mode network (DMN) and accompanying time-courses. Voxel-wise whole-brain multiple regressions with corresponding DMN time-courses was conducted for each subject. A t-test was conducted on resulting DMN correlation maps to look between-group differences. For DTI data, voxel-wise statistical analysis of the fractional anisotropy data was carried out to look for between-group differences. Voxel-wise correlations were conducted to investigate the relationship between brain connectivity and behavioral measures. Results revealed altered functional and anatomical connectivity in medial frontal and anterior cingulate gyri of schizophrenia patients. In addition, frontal connectivity in schizophrenia patients was positively associated with symptoms as well as with general cognitive ability measures. The present study shows convergent fMRI and DTI findings that are consistent with the disconnection hypothesis in schizophrenia, particularly in medial frontal regions, while adding some insight of the relationship between brain disconnectivity and behavior. © The Author 2009. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved.

  2. The effects of methylphenidate on whole brain intrinsic functional connectivity.

    Science.gov (United States)

    Mueller, Sophia; Costa, Anna; Keeser, Daniel; Pogarell, Oliver; Berman, Albert; Coates, Ute; Reiser, Maximilian F; Riedel, Michael; Möller, Hans-Jürgen; Ettinger, Ulrich; Meindl, Thomas

    2014-11-01

    Methylphenidate (MPH) is an indirect dopaminergic and noradrenergic agonist that is used to treat attention deficit hyperactivity disorder and that has shown therapeutic potential in neuropsychiatric diseases such as depression, dementia, and Parkinson's disease. While effects of MPH on task-induced brain activation have been investigated, little is known about how MPH influences the resting brain. To investigate the effects of 40 mg of oral MPH on intrinsic functional connectivity, we used resting state fMRI in 54 healthy male subjects in a double-blind, randomized, placebo-controlled study. Functional connectivity analysis employing ICA revealed seven resting state networks (RSN) of interest. Connectivity strength between the dorsal attention network and the thalamus was increased after MPH intake. Other RSN located in association cortex areas, such as the left and right frontoparietal networks and the executive control network, showed MPH-induced connectivity increase to sensory-motor and visual cortex regions and connectivity decrease to cortical and subcortical components of cortico-striato-thalamo-cortical circuits (CST). RSN located in sensory-motor cortex areas showed the opposite pattern with MPH-induced connectivity increase to CST components and connectivity decrease to sensory-motor and visual cortex regions. Our results provide evidence that MPH does not only alter intrinsic connectivity between brain areas involved in sustained attention, but that it also induces significant changes in the cortico-cortical and cortico-subcortical connectivity of many other cognitive and sensory-motor RSN. Copyright © 2014 Wiley Periodicals, Inc.

  3. Node Identification Using Inter-Regional Correlation Analysis for Mapping Detailed Connections in Resting State Networks

    Directory of Open Access Journals (Sweden)

    Yong Jeong

    2017-05-01

    Full Text Available Brain function is often characterized by the connections and interactions between highly interconnected brain regions. Pathological disruptions in these networks often result in brain dysfunction, which manifests as brain disease. Typical analysis investigates disruptions in network connectivity based correlations between large brain regions. To obtain a more detailed description of disruptions in network connectivity, we propose a new method where functional nodes are identified in each region based on their maximum connectivity to another brain region in a given network. Since this method provides a unique approach to identifying functionally relevant nodes in a given network, we can provide a more detailed map of brain connectivity and determine new measures of network connectivity. We applied this method to resting state fMRI of Alzheimer's disease patients to validate our method and found decreased connectivity within the default mode network. In addition, new measure of network connectivity revealed a more detailed description of how the network connections deteriorate with disease progression. This suggests that analysis using key relative network hub regions based on regional correlation can be used to detect detailed changes in resting state network connectivity.

  4. Micro-generation network connection (renewables)

    Energy Technology Data Exchange (ETDEWEB)

    Thornycroft, J.; Russell, T.; Curran, J.

    2003-07-01

    The drive to reduce emissions of carbon dioxide will result in an increase in the number of small generation units seeking connection to the electric power distribution network. The objectives of this study were to consider connection issues relating to micro-generation from renewables and their integration into the UK distribution network. The document is divided into two sections. The first section describes the present system which includes input from micro-generation, the technical impacts and the financial considerations. The second part discusses technical, financial and governance options for the future. A summary of preferred options and recommendations is given. The study was carried out by the Halcrow Group Ltd under contract to the DTI.

  5. Diagnosing Autism Spectrum Disorder from Brain Resting-State Functional Connectivity Patterns Using a Deep Neural Network with a Novel Feature Selection Method.

    Science.gov (United States)

    Guo, Xinyu; Dominick, Kelli C; Minai, Ali A; Li, Hailong; Erickson, Craig A; Lu, Long J

    2017-01-01

    The whole-brain functional connectivity (FC) pattern obtained from resting-state functional magnetic resonance imaging data are commonly applied to study neuropsychiatric conditions such as autism spectrum disorder (ASD) by using different machine learning models. Recent studies indicate that both hyper- and hypo- aberrant ASD-associated FCs were widely distributed throughout the entire brain rather than only in some specific brain regions. Deep neural networks (DNN) with multiple hidden layers have shown the ability to systematically extract lower-to-higher level information from high dimensional data across a series of neural hidden layers, significantly improving classification accuracy for such data. In this study, a DNN with a novel feature selection method (DNN-FS) is developed for the high dimensional whole-brain resting-state FC pattern classification of ASD patients vs. typical development (TD) controls. The feature selection method is able to help the DNN generate low dimensional high-quality representations of the whole-brain FC patterns by selecting features with high discriminating power from multiple trained sparse auto-encoders. For the comparison, a DNN without the feature selection method (DNN-woFS) is developed, and both of them are tested with different architectures (i.e., with different numbers of hidden layers/nodes). Results show that the best classification accuracy of 86.36% is generated by the DNN-FS approach with 3 hidden layers and 150 hidden nodes (3/150). Remarkably, DNN-FS outperforms DNN-woFS for all architectures studied. The most significant accuracy improvement was 9.09% with the 3/150 architecture. The method also outperforms other feature selection methods, e.g., two sample t-test and elastic net. In addition to improving the classification accuracy, a Fisher's score-based biomarker identification method based on the DNN is also developed, and used to identify 32 FCs related to ASD. These FCs come from or cross different pre

  6. Diagnosing Autism Spectrum Disorder from Brain Resting-State Functional Connectivity Patterns Using a Deep Neural Network with a Novel Feature Selection Method

    Directory of Open Access Journals (Sweden)

    Xinyu Guo

    2017-08-01

    Full Text Available The whole-brain functional connectivity (FC pattern obtained from resting-state functional magnetic resonance imaging data are commonly applied to study neuropsychiatric conditions such as autism spectrum disorder (ASD by using different machine learning models. Recent studies indicate that both hyper- and hypo- aberrant ASD-associated FCs were widely distributed throughout the entire brain rather than only in some specific brain regions. Deep neural networks (DNN with multiple hidden layers have shown the ability to systematically extract lower-to-higher level information from high dimensional data across a series of neural hidden layers, significantly improving classification accuracy for such data. In this study, a DNN with a novel feature selection method (DNN-FS is developed for the high dimensional whole-brain resting-state FC pattern classification of ASD patients vs. typical development (TD controls. The feature selection method is able to help the DNN generate low dimensional high-quality representations of the whole-brain FC patterns by selecting features with high discriminating power from multiple trained sparse auto-encoders. For the comparison, a DNN without the feature selection method (DNN-woFS is developed, and both of them are tested with different architectures (i.e., with different numbers of hidden layers/nodes. Results show that the best classification accuracy of 86.36% is generated by the DNN-FS approach with 3 hidden layers and 150 hidden nodes (3/150. Remarkably, DNN-FS outperforms DNN-woFS for all architectures studied. The most significant accuracy improvement was 9.09% with the 3/150 architecture. The method also outperforms other feature selection methods, e.g., two sample t-test and elastic net. In addition to improving the classification accuracy, a Fisher's score-based biomarker identification method based on the DNN is also developed, and used to identify 32 FCs related to ASD. These FCs come from or cross

  7. Prioritizing connection requests in GMPLS-controlled optical networks

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Koster, A.; Andriolli, N.

    2009-01-01

    We prioritize bidirectional connection requests by combining dynamic connection provisioning with off-line optimization. Results show that the proposed approach decreases wavelength-converter usage, thereby allowing operators to reduce blocking-probably under bulk connection assignment or network...

  8. Functional connectivity of the dorsal striatum in female musicians

    Directory of Open Access Journals (Sweden)

    Shoji eTanaka

    2016-04-01

    Full Text Available The dorsal striatum (caudate/putamen is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians.Resting state functional magnetic resonance imaging (fMRI data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to graph theoretical analysis and functional connectivity analysis. The graph theoretical analysis of the entire brain revealed that the degree, which represents the number of connections, of the bilateral putamen was significantly lower in musicians than in nonmusicians. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum and between the left caudate nucleus and cerebellum. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum, with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers. To the best of our knowledge, this is the first study suggesting that long-term musical training results in a less extensive or selective functional network of the dorsal striatum.

  9. Functional Connectivity of the Dorsal Striatum in Female Musicians.

    Science.gov (United States)

    Tanaka, Shoji; Kirino, Eiji

    2016-01-01

    The dorsal striatum (caudate/putamen) is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC) motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians. Resting state functional magnetic resonance imaging (fMRI) data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to functional connectivity analysis and graph theoretical analysis. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum (FO) and between the left caudate nucleus and cerebellum. The graph theoretical analysis of the entire brain revealed that the degrees, which represent the numbers of connections, of the bilateral putamen were significantly lower in musicians than in nonmusicians. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers, suggesting that long-term musical training reshapes the functional network of the dorsal striatum to be less extensive or selective.

  10. Mapping effective connectivity within cortical networks with diffuse optical tomography.

    Science.gov (United States)

    Hassanpour, Mahlega S; Eggebrecht, Adam T; Peelle, Jonathan E; Culver, Joseph P

    2017-10-01

    Understanding how cortical networks interact in response to task demands is important both for providing insight into the brain's processing architecture and for managing neurological diseases and mental disorders. High-density diffuse optical tomography (HD-DOT) is a neuroimaging technique that offers the significant advantages of having a naturalistic, acoustically controllable environment and being compatible with metal implants, neither of which is possible with functional magnetic resonance imaging. We used HD-DOT to study the effective connectivity and assess the modulatory effects of speech intelligibility and syntactic complexity on functional connections within the cortical speech network. To accomplish this, we extend the use of a generalized psychophysiological interaction (PPI) analysis framework. In particular, we apply PPI methods to event-related HD-DOT recordings of cortical oxyhemoglobin activity during auditory sentence processing. We evaluate multiple approaches for selecting cortical regions of interest and for modeling interactions among these regions. Our results show that using subject-based regions has minimal effect on group-level connectivity maps. We also demonstrate that incorporating an interaction model based on estimated neural activity results in significantly stronger effective connectivity. Taken together our findings support the use of HD-DOT with PPI methods for noninvasively studying task-related modulations of functional connectivity.

  11. Cognitive Flexibility: A Default Network and Basal Ganglia Connectivity Perspective.

    Science.gov (United States)

    Vatansever, Deniz; Manktelow, Anne E; Sahakian, Barbara J; Menon, David K; Stamatakis, Emmanuel A

    2016-04-01

    The intra/extradimensional set-shifting task (IED) provides a reliable assessment of cognitive flexibility, the shifting of attention to select behaviorally relevant stimuli in a given context. Impairments in this domain were previously reported in patients with altered neurotransmitter systems such as schizophrenia and Parkinson's disease. Consequently, corticostriatal connections were implicated in the mediation of this function. In addition, parts of the default mode network (DMN), namely the medial prefrontal and posterior cingulate/precuneus cortices, are also being progressively described in association with set-shifting paradigms. Nevertheless, a definitive link between cognitive flexibility and DMN connectivity remains to be established. To this end, we related resting state functional magnetic resonance imaging (fMRI)-based functional connectivity of DMN with IED task performance in a healthy population, measured outside the scanner. The results demonstrated that greater posterior cingulate cortex/precuneus (DMN) connectivity with the ventromedial striatopallidum at rest correlated with fewer total adjusted errors on the IED task. This finding points to a relationship between DMN and basal ganglia connectivity for cognitive flexibility, further highlighting this network's potential role in adaptive human cognition.

  12. Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity.

    Science.gov (United States)

    Diwadkar, Vaibhav A; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L

    2017-01-01

    The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition.

  13. Interdecadal changes in atmospheric connectivity using complex networks

    Science.gov (United States)

    Arizmendi, F.; Barreiro, M.; Marti, A.

    2013-05-01

    Improving our understanding of the Earth complex climate phenomena, such as El Niño-Southern Oscillation, has a huge economic and social impact for present and future generations, and can underpin advances in areas as diverse as energy, environment, agricultural and marine sciences. To contribute in this direction we have analyzed the teleconnection patterns from a complex network perspective, using both linear and nonlinear time series symbolic analysis techniques. Specifically, we construct global climate networks by studying the monthly average eddy geopotential height anomalies at 200 mb since 1900 (NCEP/NCAR reanalysis data and NOAA 20th Century Reanalysis) and calculate the fraction of the Earth that each geographical point is connected to (area weighted connectivity function). Mutual information with the ordinal patterns and the classical probability density function methodologies, and linear correlation are used to measure the interconnection degree between nodes. The threshold, to avoid randomness, is varied to establish the strength of the links. The map of area weighted connectivity shows larger connectivity in the tropics with every methodology which agrees with our current understanding of tropical dynamics. Likewise with lower thresholds there are some extratropical regions that stand out for their number of connections, such as the south and north Pacific, which reflect the teleconnection patterns in both hemispheres through the propagation of Rossby waves. Moreover the results also show some differences between linear and nonlinear methodologies, specifically in the central tropical Pacific, where the nonlinear methods using ordinal patterns shows significantly fewer connections than with the others methods. Further analysis of the dynamics of the connectivities in strategic locations shows clear interdecadal changes in the area weighted connectivity function, which suggests changes in the dynamics of the atmospheric teleconnection processes in

  14. Connectivity Restoration in Wireless Sensor Networks via Space Network Coding.

    Science.gov (United States)

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing

    2017-04-20

    The problem of finding the number and optimal positions of relay nodes for restoring the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree (ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network coding approach that combines Delaunay triangulation and non-uniform partitioning techniques for generating a number of candidate relay nodes, and then linear programming is applied for choosing the optimal relay nodes and computing their connection links with terminals. Subsequently, an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals, as well as any density distribution of terminals. The performance and complexity of RPSNC are analyzed and its performance is validated through simulation experiments.

  15. Network centrality in the human functional connectome.

    Science.gov (United States)

    Zuo, Xi-Nian; Ehmke, Ross; Mennes, Maarten; Imperati, Davide; Castellanos, F Xavier; Sporns, Olaf; Milham, Michael P

    2012-08-01

    The network architecture of functional connectivity within the human brain connectome is poorly understood at the voxel level. Here, using resting state functional magnetic resonance imaging data from 1003 healthy adults, we investigate a broad array of network centrality measures to provide novel insights into connectivity within the whole-brain functional network (i.e., the functional connectome). We first assemble and visualize the voxel-wise (4 mm) functional connectome as a functional network. We then demonstrate that each centrality measure captures different aspects of connectivity, highlighting the importance of considering both global and local connectivity properties of the functional connectome. Beyond "detecting functional hubs," we treat centrality as measures of functional connectivity within the brain connectome and demonstrate their reliability and phenotypic correlates (i.e., age and sex). Specifically, our analyses reveal age-related decreases in degree centrality, but not eigenvector centrality, within precuneus and posterior cingulate regions. This implies that while local or (direct) connectivity decreases with age, connections with hub-like regions within the brain remain stable with age at a global level. In sum, these findings demonstrate the nonredundancy of various centrality measures and raise questions regarding their underlying physiological mechanisms that may be relevant to the study of neurodegenerative and psychiatric disorders.

  16. Connectivity and Nestedness in Bipartite Networks from Community Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Corso, Gilberto [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil); De Araujo, A I Levartoski [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara Av. Treze de Maio, 2081 - Benfica CEP 60040-531 - Fortaleza, CE (Brazil); De Almeida, Adriana M, E-mail: corso@cb.ufrn.br [Departamento de Botanica, Ecologia e Zoologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil)

    2011-03-01

    Bipartite networks and the nestedness concept appear in two different contexts in theoretical ecology: community ecology and islands biogeography. From a mathematical perspective nestedness is a pattern in a bipartite network. There are several nestedness indices in the market, we used the index {nu}. The index {nu} is found using the relation {nu} = 1 - {tau} where {tau} is the temperature of the adjacency matrix of the bipartite network. By its turn {tau} is defined with help of the Manhattan distance of the occupied elements of the adjacency matrix of the bipartite network. We prove that the nestedness index {nu} is a function of the connectivities of the bipartite network. In addition we find a concise way to find {nu} which avoid cumbersome algorithm manupulation of the adjacency matrix.

  17. Network centrality in the human functional connectome

    NARCIS (Netherlands)

    Zuo, X.N.; Ehmke, R.; Mennes, M.J.J.; Imperati, D.; Castellanos, F.X.; Sporns, O.; Milham, M.P.

    2012-01-01

    The network architecture of functional connectivity within the human brain connectome is poorly understood at the voxel level. Here, using resting state functional magnetic resonance imaging data from 1003 healthy adults, we investigate a broad array of network centrality measures to provide novel

  18. Hidden Connectivity in Networks with Vulnerable Classes of Nodes

    Directory of Open Access Journals (Sweden)

    Sebastian M. Krause

    2016-10-01

    Full Text Available In many complex systems representable as networks, nodes can be separated into different classes. Often these classes can be linked to a mutually shared vulnerability. Shared vulnerabilities may be due to a shared eavesdropper or correlated failures. In this paper, we show the impact of shared vulnerabilities on robust connectivity and how the heterogeneity of node classes can be exploited to maintain functionality by utilizing multiple paths. Percolation is the field of statistical physics that is generally used to analyze connectivity in complex networks, but in its existing forms, it cannot treat the heterogeneity of multiple vulnerable classes. To analyze the connectivity under these constraints, we describe each class as a color and develop a “color-avoiding” percolation. We present an analytic theory for random networks and a numerical algorithm for all networks, with which we can determine which nodes are color-avoiding connected and whether the maximal set percolates in the system. We find that the interaction of topology and color distribution implies a rich critical behavior, with critical values and critical exponents depending both on the topology and on the color distribution. Applying our physics-based theory to the Internet, we show how color-avoiding percolation can be used as the basis for new topologically aware secure communication protocols. Beyond applications to cybersecurity, our framework reveals a new layer of hidden structure in a wide range of natural and technological systems.

  19. Inferring structural connectivity using Ising couplings in models of neuronal networks.

    Science.gov (United States)

    Kadirvelu, Balasundaram; Hayashi, Yoshikatsu; Nasuto, Slawomir J

    2017-08-15

    Functional connectivity metrics have been widely used to infer the underlying structural connectivity in neuronal networks. Maximum entropy based Ising models have been suggested to discount the effect of indirect interactions and give good results in inferring the true anatomical connections. However, no benchmarking is currently available to assess the performance of Ising couplings against other functional connectivity metrics in the microscopic scale of neuronal networks through a wide set of network conditions and network structures. In this paper, we study the performance of the Ising model couplings to infer the synaptic connectivity in in silico networks of neurons and compare its performance against partial and cross-correlations for different correlation levels, firing rates, network sizes, network densities, and topologies. Our results show that the relative performance amongst the three functional connectivity metrics depends primarily on the network correlation levels. Ising couplings detected the most structural links at very weak network correlation levels, and partial correlations outperformed Ising couplings and cross-correlations at strong correlation levels. The result was consistent across varying firing rates, network sizes, and topologies. The findings of this paper serve as a guide in choosing the right functional connectivity tool to reconstruct the structural connectivity.

  20. Connectivity, excitability and activity patterns in neuronal networks

    NARCIS (Netherlands)

    le Feber, Jakob; Stoyanova, Irina; Chiappalone, Michela

    2014-01-01

    Extremely synchronized firing patterns such as those observed in brain diseases like epilepsy may result from excessive network excitability. Although network excitability is closely related to (excitatory) connectivity, a direct measure for network excitability remains unavailable. Several methods

  1. Social network models predict movement and connectivity in ecological landscapes

    Science.gov (United States)

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  2. Aberrant cerebellar connectivity in motor and association networks in schizophrenia

    OpenAIRE

    SHINN, ANN K; Baker, Justin T.; Kathryn Eve Lewandowski; Dost eOngur; Cohen, Bruce M.

    2015-01-01

    Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the cognitive dysmetria and dysmetria of thought models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the to...

  3. Cognitive Flexibility: A Default Network and Basal Ganglia Connectivity Perspective

    OpenAIRE

    Vatansever, Deniz; Manktelow, Anne E.; Sahakian, Barbara J.; Menon, David K; Stamatakis, Emmanuel A.

    2016-01-01

    The intra/extradimensional set-shifting task (IED) provides a reliable assessment of cognitive flexibility, the shifting of attention to select behaviorally relevant stimuli in a given context. Impairments in this domain were previously reported in patients with altered neurotransmitter systems such as schizophrenia and Parkinson's disease. Consequently, corticostriatal connections were implicated in the mediation of this function. In addition, parts of the default mode network (DMN), namely ...

  4. Cognitive Flexibility: A Default Network and Basal Ganglia Connectivity Perspective

    OpenAIRE

    Vatansever, Deniz; Manktelow, Anne E.; Sahakian, Barbara Jacquelyn; Menon, David Krishna; Stamatakis, Emmanuel Andreas

    2015-01-01

    The intra/extradimensional set-shifting task (IED) provides a reliable assessment of cognitive flexibility, the shifting of attention to select behaviorally relevant stimuli in a given context. Impairments in this domain were previously reported in patients with altered neurotransmitter systems such as schizophrenia and Parkinson's disease. Consequently, corticostriatal connections were implicated in the mediation of this function. In addition, parts of the default mode network (DMN), namely ...

  5. Dynamical graph theory networks techniques for the analysis of sparse connectivity networks in dementia

    Science.gov (United States)

    Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke

    2017-05-01

    Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.

  6. Insulin sensitivity predicts brain network connectivity following a meal.

    Science.gov (United States)

    Ryan, John P; Karim, Helmet T; Aizenstein, Howard J; Helbling, Nicole L; Toledo, Frederico G S

    2018-01-12

    There is converging evidence that insulin plays a role in food-reward signaling in the brain and has effects on enhancing cognition. Little is known about how these effects are altered in individuals with insulin resistance. The present study was designed to identify the relationships between insulin resistance and functional brain connectivity following a meal. Eighteen healthy adults (7 male, 11 female, age: 41-57 years-old) completed a frequently-sampled intravenous glucose tolerance test to quantify insulin resistance. On separate days at least one week apart, a resting state functional magnetic resonance imaging scan was performed: once after a mixed-meal and once after a 12-h fast. Seed-based resting state connectivity of the caudate nucleus and eigenvector centrality were used to identify relationships between insulin resistance and functional brain connectivity. Individuals with greater insulin resistance displayed stronger connectivity within reward networks following a meal suggesting insulin was less able to suppress reward. Insulin resistance was negatively associated with eigenvector centrality in the dorsal anterior cingulate cortex following a meal. These data suggest that individuals with less sensitivity to insulin may fail to shift brain networks away from reward and toward cognitive control following a meal. This altered feedback loop could promote overeating and obesity. Copyright © 2018. Published by Elsevier Inc.

  7. Bioprinting: Functional droplet networks

    Science.gov (United States)

    Durmus, Naside Gozde; Tasoglu, Savas; Demirci, Utkan

    2013-06-01

    Tissue-mimicking printed networks of droplets separated by lipid bilayers that can be functionalized with membrane proteins are able to spontaneously fold and transmit electrical currents along predefined paths.

  8. The functional consequences of mutualistic network architecture.

    Directory of Open Access Journals (Sweden)

    José M Gómez

    Full Text Available The architecture and properties of many complex networks play a significant role in the functioning of the systems they describe. Recently, complex network theory has been applied to ecological entities, like food webs or mutualistic plant-animal interactions. Unfortunately, we still lack an accurate view of the relationship between the architecture and functioning of ecological networks. In this study we explore this link by building individual-based pollination networks from eight Erysimum mediohispanicum (Brassicaceae populations. In these individual-based networks, each individual plant in a population was considered a node, and was connected by means of undirected links to conspecifics sharing pollinators. The architecture of these unipartite networks was described by means of nestedness, connectivity and transitivity. Network functioning was estimated by quantifying the performance of the population described by each network as the number of per-capita juvenile plants produced per population. We found a consistent relationship between the topology of the networks and their functioning, since variation across populations in the average per-capita production of juvenile plants was positively and significantly related with network nestedness, connectivity and clustering. Subtle changes in the composition of diverse pollinator assemblages can drive major consequences for plant population performance and local persistence through modifications in the structure of the inter-plant pollination networks.

  9. Pattern reverberation in networks of excitable systems with connection delays

    Science.gov (United States)

    Lücken, Leonhard; Rosin, David P.; Worlitzer, Vasco M.; Yanchuk, Serhiy

    2017-01-01

    We consider the recurrent pulse-coupled networks of excitable elements with delayed connections, which are inspired by the biological neural networks. If the delays are tuned appropriately, the network can either stay in the steady resting state, or alternatively, exhibit a desired spiking pattern. It is shown that such a network can be used as a pattern-recognition system. More specifically, the application of the correct pattern as an external input to the network leads to a self-sustained reverberation of the encoded pattern. In terms of the coupling structure, the tolerance and the refractory time of the individual systems, we determine the conditions for the uniqueness of the sustained activity, i.e., for the functionality of the network as an unambiguous pattern detector. We point out the relation of the considered systems with cyclic polychronous groups and show how the assumed delay configurations may arise in a self-organized manner when a spike-time dependent plasticity of the connection delays is assumed. As excitable elements, we employ the simplistic coincidence detector models as well as the Hodgkin-Huxley neuron models. Moreover, the system is implemented experimentally on a Field-Programmable Gate Array.

  10. Computational network design from functional specifications

    KAUST Repository

    Peng, Chi Han

    2016-07-11

    Connectivity and layout of underlying networks largely determine agent behavior and usage in many environments. For example, transportation networks determine the flow of traffic in a neighborhood, whereas building floorplans determine the flow of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications. Such specifications can be in the form of network density, travel time versus network length, traffic type, destination location, etc. We propose an integer programming-based approach that guarantees that the resultant networks are valid by fulfilling all the specified hard constraints and that they score favorably in terms of the objective function. We evaluate our algorithm in two different design settings, street layout and floorplans to demonstrate that diverse networks can emerge purely from high-level functional specifications.

  11. An adaptive complex network model for brain functional networks.

    Directory of Open Access Journals (Sweden)

    Ignacio J Gomez Portillo

    Full Text Available Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution.

  12. Joint brain connectivity estimation from diffusion and functional MRI data

    Science.gov (United States)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  13. Change in brain network connectivity during PACAP38-induced migraine attacks

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Magon, Stefano

    2016-01-01

    , and visual cortices) and decreased (right cerebellum and left frontal lobe) connectivity with DMN. We found no resting-state network changes after VIP (n = 15). CONCLUSIONS: PACAP38-induced migraine attack is associated with altered connectivity of several large-scale functional networks of the brain....

  14. Increased resting-state functional connectivity of visual- and cognitive-control brain networks after training in children with reading difficulties.

    Science.gov (United States)

    Horowitz-Kraus, Tzipi; DiFrancesco, Mark; Kay, Benjamin; Wang, Yingying; Holland, Scott K

    2015-01-01

    The Reading Acceleration Program, a computerized reading-training program, increases activation in neural circuits related to reading. We examined the effect of the training on the functional connectivity between independent components related to visual processing, executive functions, attention, memory, and language during rest after the training. Children 8-12 years old with reading difficulties and typical readers participated in the study. Behavioral testing and functional magnetic resonance imaging were performed before and after the training. Imaging data were analyzed using an independent component analysis approach. After training, both reading groups showed increased single-word contextual reading and reading comprehension scores. Greater positive correlations between the visual-processing component and the executive functions, attention, memory, or language components were found after training in children with reading difficulties. Training-related increases in connectivity between the visual and attention components and between the visual and executive function components were positively correlated with increased word reading and reading comprehension, respectively. Our findings suggest that the effect of the Reading Acceleration Program on basic cognitive domains can be detected even in the absence of an ongoing reading task.

  15. The complex hierarchical topology of EEG functional connectivity.

    Science.gov (United States)

    Smith, Keith; Escudero, Javier

    2017-01-30

    Understanding the complex hierarchical topology of functional brain networks is a key aspect of functional connectivity research. Such topics are obscured by the widespread use of sparse binary network models which are fundamentally different to the complete weighted networks derived from functional connectivity. We introduce two techniques to probe the hierarchical complexity of topologies. Firstly, a new metric to measure hierarchical complexity; secondly, a Weighted Complex Hierarchy (WCH) model. To thoroughly evaluate our techniques, we generalise sparse binary network archetypes to weighted forms and explore the main topological features of brain networks - integration, regularity and modularity - using curves over density. By controlling the parameters of our model, the highest complexity is found to arise between a random topology and a strict 'class-based' topology. Further, the model has equivalent complexity to EEG phase-lag networks at peak performance. Hierarchical complexity attains greater magnitude and range of differences between different networks than the previous commonly used complexity metric and our WCH model offers a much broader range of network topology than the standard scale-free and small-world models at a full range of densities. Our metric and model provide a rigorous characterisation of hierarchical complexity. Importantly, our framework shows a scale of complexity arising between 'all nodes are equal' topologies at one extreme and 'strict class-based' topologies at the other. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Statistical technique for analysing functional connectivity of multiple spike trains.

    Science.gov (United States)

    Masud, Mohammad Shahed; Borisyuk, Roman

    2011-03-15

    A new statistical technique, the Cox method, used for analysing functional connectivity of simultaneously recorded multiple spike trains is presented. This method is based on the theory of modulated renewal processes and it estimates a vector of influence strengths from multiple spike trains (called reference trains) to the selected (target) spike train. Selecting another target spike train and repeating the calculation of the influence strengths from the reference spike trains enables researchers to find all functional connections among multiple spike trains. In order to study functional connectivity an "influence function" is identified. This function recognises the specificity of neuronal interactions and reflects the dynamics of postsynaptic potential. In comparison to existing techniques, the Cox method has the following advantages: it does not use bins (binless method); it is applicable to cases where the sample size is small; it is sufficiently sensitive such that it estimates weak influences; it supports the simultaneous analysis of multiple influences; it is able to identify a correct connectivity scheme in difficult cases of "common source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data generated by the neural network model of the leaky integrate and fire neurons with a prescribed architecture of connections. The results suggest that this method is highly successful for analysing functional connectivity of simultaneously recorded multiple spike trains. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Functional connectivity changes in second language vocabulary learning.

    Science.gov (United States)

    Ghazi Saidi, Ladan; Perlbarg, Vincent; Marrelec, Guillaume; Pélégrini-Issac, Mélani; Benali, Habib; Ansaldo, Ana-Inés

    2013-01-01

    Functional connectivity changes in the language network (Price, 2010), and in a control network involved in second language (L2) processing (Abutalebi & Green, 2007) were examined in a group of Persian (L1) speakers learning French (L2) words. Measures of network integration that characterize the global integrative state of a network (Marrelec, Bellec et al., 2008) were gathered, in the shallow and consolidation phases of L2 vocabulary learning. Functional connectivity remained unchanged across learning phases for L1, whereas total, between- and within-network integration levels decreased as proficiency for L2 increased. The results of this study provide the first functional connectivity evidence regarding the dynamic role of the language processing and cognitive control networks in L2 learning (Abutalebi, Cappa, & Perani, 2005; Altarriba & Heredia, 2008; Leonard et al., 2011; Parker-Jones et al., 2011). Thus, increased proficiency results in a higher degree of automaticity and lower cognitive effort (Segalowitz & Hulstijn, 2005). Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Distinction and Connection between Contact Network, Social Network, and Disease Transmission Network

    OpenAIRE

    Chen, Shi; Lanzas, Cristina

    2016-01-01

    In this paper we discuss the distinction and connection between three closely related networks in animal ecology and epidemiology studies: the contact, social, and disease transmission networks. We provide a robust theoretical definition and interpretation of these three networks, demonstrate that social and disease transmission networks can be derived as spanning subgraphs of contact network, and show examples based on real-world high-resolution cattle contact structure data. Furthermore, we...

  19. Variability in Cumulative Habitual Sleep Duration Predicts Waking Functional Connectivity.

    Science.gov (United States)

    Khalsa, Sakh; Mayhew, Stephen D; Przezdzik, Izabela; Wilson, Rebecca; Hale, Joanne; Goldstone, Aimee; Bagary, Manny; Bagshaw, Andrew P

    2016-01-01

    We examined whether interindividual differences in habitual sleep patterns, quantified as the cumulative habitual total sleep time (cTST) over a 2-w period, were reflected in waking measurements of intranetwork and internetwork functional connectivity (FC) between major nodes of three intrinsically connected networks (ICNs): default mode network (DMN), salience network (SN), and central executive network (CEN). Resting state functional magnetic resonance imaging (fMRI) study using seed-based FC analysis combined with 14-d wrist actigraphy, sleep diaries, and subjective questionnaires (N = 33 healthy adults, mean age 34.3, standard deviation ± 11.6 y). Data were statistically analyzed using multiple linear regression. Fourteen consecutive days of wrist actigraphy in participant's home environment and fMRI scanning on day 14 at the Birmingham University Imaging Centre. Seed-based FC analysis on ICNs from resting-state fMRI data and multiple linear regression analysis performed for each ICN seed and target. cTST was used to predict FC (controlling for age). cTST was specific predictor of intranetwork FC when the mesial prefrontal cortex (MPFC) region of the DMN was used as a seed for FC, with a positive correlation between FC and cTST observed. No significant relationship between FC and cTST was seen for any pair of nodes not including the MPFC. Internetwork FC between the DMN (MPFC) and SN (right anterior insula) was also predicted by cTST, with a negative correlation observed between FC and cTST. This study improves understanding of the relationship between intranetwork and internetwork functional connectivity of intrinsically connected networks (ICNs) in relation to habitual sleep quality and duration. The cumulative amount of sleep that participants achieved over a 14-d period was significantly predictive of intranetwork and inter-network functional connectivity of ICNs, an observation that may underlie the link between sleep status and cognitive performance.

  20. Covert neurofeedback without awareness shapes cortical network spontaneous connectivity.

    Science.gov (United States)

    Ramot, Michal; Grossman, Shany; Friedman, Doron; Malach, Rafael

    2016-04-26

    Recent advances in blood oxygen level-dependent-functional MRI (BOLD-fMRI)-based neurofeedback reveal that participants can modulate neuronal properties. However, it is unknown whether such training effects can be introduced in the absence of participants' awareness that they are being trained. Here, we show unconscious neurofeedback training, which consequently produced changes in functional connectivity, introduced in participants who received positive and negative rewards that were covertly coupled to activity in two category-selective visual cortex regions. The results indicate that brain networks can be modified even in the complete absence of intention and awareness of the learning situation, raising intriguing possibilities for clinical interventions.

  1. Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients

    Directory of Open Access Journals (Sweden)

    Douw Linda

    2010-08-01

    Full Text Available Abstract Background Both epilepsy patients and brain tumor patients show altered functional connectivity and less optimal brain network topology when compared to healthy controls, particularly in the theta band. Furthermore, the duration and characteristics of epilepsy may also influence functional interactions in brain networks. However, the specific features of connectivity and networks in tumor-related epilepsy have not been investigated yet. We hypothesize that epilepsy characteristics are related to (theta band connectivity and network architecture in operated glioma patients suffering from epileptic seizures. Included patients participated in a clinical study investigating the effect of levetiracetam monotherapy on seizure frequency in glioma patients, and were assessed at two time points: directly after neurosurgery (t1, and six months later (t2. At these time points, magnetoencephalography (MEG was recorded and information regarding clinical status and epilepsy history was collected. Functional connectivity was calculated in six frequency bands, as were a number of network measures such as normalized clustering coefficient and path length. Results At the two time points, MEG registrations were performed in respectively 17 and 12 patients. No changes in connectivity or network topology occurred over time. Increased theta band connectivity at t1 and t2 was related to a higher total number of seizures. Furthermore, higher number of seizures was related to a less optimal, more random brain network topology. Other factors were not significantly related to functional connectivity or network topology. Conclusions These results indicate that (pathologically increased theta band connectivity is related to a higher number of epileptic seizures in brain tumor patients, suggesting that theta band connectivity changes are a hallmark of tumor-related epilepsy. Furthermore, a more random brain network topology is related to greater vulnerability to

  2. Gray Matter Volume and Resting-State Functional Connectivity of the Motor Cortex-Cerebellum Network Reflect the Individual Variation in Masticatory Performance in Healthy Elderly People.

    Science.gov (United States)

    Lin, Chia-Shu; Wu, Shih-Yun; Wu, Ching-Yi; Ko, Hsien-Wei

    2015-01-01

    Neuroimaging studies have consistently identified brain activation in the motor area and the cerebellum during chewing. In this study, we further investigated the structural and functional brain signature associated with masticatory performance, which is a widely used index for evaluating overall masticatory function in the elderly. Twenty-five healthy elderly participants underwent oral examinations, masticatory performance tests, and behavioral assessments, including the Cognitive Abilities Screening Instrument and the short-form Geriatric Depression Scale. Masticatory performance was assessed with the validated colorimetric method, using color-changeable chewing gum. T1-weighted structural magnetic resonance imaging (MRI) and resting-state function MRI were performed. We analyzed alterations in gray matter volume (GMV) using voxel-based morphometry and resting-state functional connectivity (rsFC) between brain regions using the seed-based method. The structural and functional MRI analyses revealed the following findings: (1) the GMV change in the premotor cortex was positively correlated with masticatory performance. (2) The rsFC between the cerebellum and the premotor cortex was positively correlated with masticatory performance. (3) The GMV changes in the dorsolateral prefrontal cortex (DLPFC), as well as the rsFC between the cerebellum and the DLPFC, were positively correlated with masticatory performance. The findings showed that in the premotor cortex, a reduction of GMV and rsFC would reflect declined masticatory performance. The positive correlation between DLPFC connectivity and masticatory performance implies that masticatory ability is associated with cognitive function in the elderly. Our findings highlighted the role of the central nervous system in masticatory performance and increased our understanding of the structural and functional brain signature underlying individual variations in masticatory performance in the elderly.

  3. Grey matter volume and resting-state functional connectivity of the motor cortex-cerebellum network reflect the individual variation in masticatory performance in the healthy elderly people

    Directory of Open Access Journals (Sweden)

    Chia-Shu eLin

    2016-01-01

    Full Text Available Neuroimaging studies have consistently identified brain activation in the motor area and the cerebellum during chewing. In this study, we further investigated the structural and functional brain signature associated with masticatory performance, which is a widely used index for evaluating overall masticatory function in the elderly. Twenty-five healthy elderly participants underwent oral examinations, masticatory performance tests, and behavioral assessments, including the Cognitive Abilities Screening Instrument and the short-form Geriatric Depression Scale. Masticatory performance was assessed with the validated colorimetric method, using color-changeable chewing gum. T1-weighted structural magnetic resonance imaging (MRI and resting-state function MRI were performed. We analyzed alterations in grey matter volume (GMV using voxel-based morphometry and resting-state functional connectivity (rsFC between brain regions using the seed-based method. The structural and functional MRI analyses revealed the following findings: (1 the GMV change in the premotor cortex was positively correlated with masticatory performance. (2 The rsFC between the cerebellum and the premotor cortex was positively correlated with masticatory performance. (3 The GMV changes in the dorsolateral prefrontal cortex (DLPFC, as well as the rsFC between the cerebellum and the DLPFC, was positively correlated with masticatory performance. The findings showed that in the premotor cortex, a reduction of GMV and rsFC would reflect declined masticatory performance. The positive correlation between DLPFC connectivity and masticatory performance implies that masticatory ability is associated with cognitive function in the elderly. Our findings highlighted the role of the central nervous system in masticatory performance and increased our understanding of the structural and functional brain signature underlying individual variations in masticatory performance in the elderly.

  4. Characterizing structure connectivity correlation with the default mode network in Alzheimer's patients and normal controls

    Science.gov (United States)

    Guo, Jia; Xu, Peng; Song, Chao; Yao, Li; Zhao, Xiaojie

    2012-03-01

    Magnetic resonance diffusion tensor imaging (DTI) is a kind of effective measure to do non-invasive investigation on brain fiber structure at present. Studies of fiber tracking based on DTI showed that there was structural connection of white matter fiber among the nodes of resting-state functional network, denoting that the connection of white matter was the basis of gray matter regions in functional network. Nevertheless, relationship between these structure connectivity regions and functional network has not been clearly indicated. Moreover, research of fMRI found that activation of default mode network (DMN) in Alzheimer's disease (AD) was significantly descended, especially in hippocampus and posterior cingulated cortex (PCC). The relationship between this change of DMN activity and structural connection among functional networks needs further research. In this study, fast marching tractography (FMT) algorithm was adopted to quantitative calculate fiber connectivity value between regions, and hippocampus and PCC which were two important regions in DMN related with AD were selected to compute white matter connection region between them in elderly normal control (NC) and AD patient. The fiber connectivity value was extracted to do the correlation analysis with activity intensity of DMN. Results showed that, between PCC and hippocampus of NC, there exited region with significant high connectivity value of white matter fiber whose performance has relatively strong correlation with the activity of DMN, while there was no significant white matter connection region between them for AD patient which might be related with reduced network activation in these two regions of AD.

  5. Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer's disease.

    NARCIS (Netherlands)

    Stam, C.J.; Jones, B.F.; Manshanden, I.; Cappellen van Walsum, A.M. van; Montez, T.; Verbunt, J.P.; Munck, J.C. de; Dijk, B.W. van; Berendse, H.W.; Scheltens, P.

    2006-01-01

    Statistical interdependencies between magnetoencephalographic signals recorded over different brain regions may reflect the functional connectivity of the resting-state networks. We investigated topographic characteristics of disturbed resting-state networks in Alzheimer's disease patients in

  6. Dynamic functional connectivity shapes individual differences in associative learning.

    Science.gov (United States)

    Fatima, Zainab; Kovacevic, Natasha; Misic, Bratislav; McIntosh, Anthony Randal

    2016-11-01

    Current neuroscientific research has shown that the brain reconfigures its functional interactions at multiple timescales. Here, we sought to link transient changes in functional brain networks to individual differences in behavioral and cognitive performance by using an active learning paradigm. Participants learned associations between pairs of unrelated visual stimuli by using feedback. Interindividual behavioral variability was quantified with a learning rate measure. By using a multivariate statistical framework (partial least squares), we identified patterns of network organization across multiple temporal scales (within a trial, millisecond; across a learning session, minute) and linked these to the rate of change in behavioral performance (fast and slow). Results indicated that posterior network connectivity was present early in the trial for fast, and later in the trial for slow performers. In contrast, connectivity in an associative memory network (frontal, striatal, and medial temporal regions) occurred later in the trial for fast, and earlier for slow performers. Time-dependent changes in the posterior network were correlated with visual/spatial scores obtained from independent neuropsychological assessments, with fast learners performing better on visual/spatial subtests. No relationship was found between functional connectivity dynamics in the memory network and visual/spatial test scores indicative of cognitive skill. By using a comprehensive set of measures (behavioral, cognitive, and neurophysiological), we report that individual variations in learning-related performance change are supported by differences in cognitive ability and time-sensitive connectivity in functional neural networks. Hum Brain Mapp 37:3911-3928, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Resting-state functional connectivity of the human hypothalamus.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Linder, Katarzyna; Zipfel, Stephan; Häring, Hans-Ulrich; Veit, Ralf; Fritsche, Andreas; Preissl, Hubert

    2014-12-01

    The hypothalamus is of enormous importance for multiple bodily functions such as energy homeostasis. Especially, rodent studies have greatly contributed to our understanding how specific hypothalamic subregions integrate peripheral and central signals into the brain to control food intake. In humans, however, the neural circuitry of the hypothalamus, with its different subregions, has not been delineated. Hence, the aim of this study was to map the hypothalamus network using resting-state functional connectivity (FC) analyses from the medial hypothalamus (MH) and lateral hypothalamus (LH) in healthy normal-weight adults (n = 49). Furthermore, in a separate sample, we examined differences within the LH and MH networks between healthy normal-weight (n = 25) versus overweight/obese adults (n = 23). FC patterns from the LH and MH revealed significant connections to the striatum, thalamus, brainstem, orbitofrontal cortex, middle and posterior cingulum and temporal brain regions. However, our analysis revealed subtler distinctions within hypothalamic subregions. The LH was functionally stronger connected to the dorsal striatum, anterior cingulum, and frontal operculum, while the MH showed stronger functional connections to the nucleus accumbens and medial orbitofrontal cortex. Furthermore, overweight/obese participants revealed heightened FC in the orbitofrontal cortex and nucleus accumbens within the MH network. Our results indicate that the MH and LH network are tapped into different parts of the dopaminergic circuitry of the brain, potentially modulating food reward based on the functional connections to the ventral and dorsal striatum, respectively. In obese adults, FC changes were observed in the MH network. © 2014 Wiley Periodicals, Inc.

  8. Attention reorganizes connectivity across networks in a frequency specific manner

    DEFF Research Database (Denmark)

    Kwon, Soyoung; Watanabe, Masataka; Fischer, Elvira

    2017-01-01

    modulations that can be cleanly attributed to attention compared to matched visual processing. In contrast to prior approaches, we used an ultra-long trial design that avoided transients from trial onsets, included slow fluctuations (...Attention allows our brain to focus its limited resources on a given task. It does so by selective modulation of neural activity and of functional connectivity (FC) across brain-wide networks. While there is extensive literature on activity changes, surprisingly few studies examined brain-wide FC......-segregated analyses. We found that FC derived from long blocks had a nearly two-fold higher gain compared to FC derived from traditional (short) block designs. Second, attention enhanced intrinsic (negative or positive) correlations across networks, such as between the default-mode network (DMN), the dorsal attention...

  9. Mesial temporal lobe epilepsy diminishes functional connectivity during emotion perception.

    Science.gov (United States)

    Steiger, Bettina K; Muller, Angela M; Spirig, Esther; Toller, Gianina; Jokeit, Hennric

    2017-08-01

    Unilateral mesial temporal lobe epilepsy (MTLE) has been associated with impaired recognition of emotional facial expressions. Correspondingly, imaging studies showed decreased activity of the amygdala and cortical face processing regions in response to emotional faces. However, functional connectivity among regions involved in emotion perception has not been studied so far. To address this, we examined intrinsic functional connectivity (FC) modulated by the perception of dynamic fearful faces among the amygdala and limbic, frontal, temporal and brainstem regions. Regions of interest were identified in an activation analysis by presenting a block-design with dynamic fearful faces and dynamic landscapes to 15 healthy individuals. This led to 10 predominately right-hemispheric regions. Functional connectivity between these regions during the perception of fearful faces was examined in drug-refractory patients with left- (n=16) or right-sided (n=17) MTLE, epilepsy patients with extratemporal seizure onset (n=15) and a second group of 15 healthy controls. Healthy controls showed a widespread functional network modulated by the perception of fearful faces that encompassed bilateral amygdalae, limbic, cortical, subcortical and brainstem regions. In patients with left MTLE, a downsized network of frontal and temporal regions centered on the right amygdala was present. Patients with right MTLE showed almost no significant functional connectivity. A maintained network in the epilepsy control group indicates that findings in mesial temporal lobe epilepsy could not be explained by clinical factors such as seizures and antiepileptic medication. Functional networks underlying facial emotion perception are considerably changed in left and right MTLE. Alterations are present for both hemispheres in either MTLE group, but are more pronounced in right MTLE. Disruption of the functional network architecture possibly contributes to deficits in facial emotion recognition frequently

  10. Functional connectivity among spike trains in neural assemblies during rat working memory task.

    Science.gov (United States)

    Xie, Jiacun; Bai, Wenwen; Liu, Tiaotiao; Tian, Xin

    2014-11-01

    Working memory refers to a brain system that provides temporary storage to manipulate information for complex cognitive tasks. As the brain is a more complex, dynamic and interwoven network of connections and interactions, the questions raised here: how to investigate the mechanism of working memory from the view of functional connectivity in brain network? How to present most characteristic features of functional connectivity in a low-dimensional network? To address these questions, we recorded the spike trains in prefrontal cortex with multi-electrodes when rats performed a working memory task in Y-maze. The functional connectivity matrix among spike trains was calculated via maximum likelihood estimation (MLE). The average connectivity value Cc, mean of the matrix, was calculated and used to describe connectivity strength quantitatively. The spike network was constructed by the functional connectivity matrix. The information transfer efficiency Eglob was calculated and used to present the features of the network. In order to establish a low-dimensional spike network, the active neurons with higher firing rates than average rate were selected based on sparse coding. The results show that the connectivity Cc and the network transfer efficiency Eglob vaired with time during the task. The maximum values of Cc and Eglob were prior to the working memory behavior reference point. Comparing with the results in the original network, the feature network could present more characteristic features of functional connectivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Reward networks in the brain as captured by connectivity measures

    Directory of Open Access Journals (Sweden)

    Estela Camara

    2009-12-01

    Full Text Available An assortment of human behaviors is thought to be driven by rewards including reinforcement learning, novelty processing, learning, decision making, economic choice, incentive motivation, and addiction. In each case the ventral tegmental area / ventral striatum (Nucleus accumbens system (VTA-VS has been implicated as a key structure by functional imaging studies, mostly on the basis of standard, univariate analyses. Here we propose that standard fMRI analysis needs to be complemented by methods that take into account the differential connectivity of the VTA-VS system in the different behavioral contexts in order to describe reward based processes more appropriately. We first consider the wider network for reward processing as it emerged from animal experimentation. Subsequently, an example for a method to assess functional connectivity is given. Finally, we illustrate the usefulness of such analyses by examples regarding reward valuation, reward expectation and the role of reward in addiction.

  12. Distinction and connection between contact network, social network, and disease transmission network.

    Science.gov (United States)

    Chen, Shi; Lanzas, Cristina

    2016-09-01

    In this paper we discuss the distinction and connection between three closely related networks in animal ecology and epidemiology studies: the contact, social, and disease transmission networks. We provide a robust theoretical definition and interpretation of these three networks, demonstrate that social and disease transmission networks can be derived as spanning subgraphs of contact network, and show examples based on real-world high-resolution cattle contact structure data. Furthermore, we establish a modeling framework to track potential disease transmission dynamics and construct transmission network based on the observed animal contact network. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Walking reduces sensorimotor network connectivity compared to standing

    Science.gov (United States)

    2014-01-01

    Background Considerable effort has been devoted to mapping the functional and effective connectivity of the human brain, but these efforts have largely been limited to tasks involving stationary subjects. Recent advances with high-density electroencephalography (EEG) and Independent Components Analysis (ICA) have enabled study of electrocortical activity during human locomotion. The goal of this work was to measure the effective connectivity of cortical activity during human standing and walking. Methods We recorded 248-channels of EEG as eight young healthy subjects stood and walked on a treadmill both while performing a visual oddball discrimination task and not performing the task. ICA parsed underlying electrocortical, electromyographic, and artifact sources from the EEG signals. Inverse source modeling methods and clustering algorithms localized posterior, anterior, prefrontal, left sensorimotor, and right sensorimotor clusters of electrocortical sources across subjects. We applied a directional measure of connectivity, conditional Granger causality, to determine the effective connectivity between electrocortical sources. Results Connections involving sensorimotor clusters were weaker for walking than standing regardless of whether the subject was performing the simultaneous cognitive task or not. This finding supports the idea that cortical involvement during standing is greater than during walking, possibly because spinal neural networks play a greater role in locomotor control than standing control. Conversely, effective connectivity involving non-sensorimotor areas was stronger for walking than standing when subjects were engaged in the simultaneous cognitive task. Conclusions Our results suggest that standing results in greater functional connectivity between sensorimotor cortical areas than walking does. Greater cognitive attention to standing posture than to walking control could be one interpretation of that finding. These techniques could be applied

  14. The value of less connected agents in Boolean networks

    Science.gov (United States)

    Epstein, Daniel; Bazzan, Ana L. C.

    2013-11-01

    In multiagent systems, agents often face binary decisions where one seeks to take either the minority or the majority side. Examples are minority and congestion games in general, i.e., situations that require coordination among the agents in order to depict efficient decisions. In minority games such as the El Farol Bar Problem, previous works have shown that agents may reach appropriate levels of coordination, mostly by looking at the history of past decisions. Not many works consider any kind of structure of the social network, i.e., how agents are connected. Moreover, when structure is indeed considered, it assumes some kind of random network with a given, fixed connectivity degree. The present paper departs from the conventional approach in some ways. First, it considers more realistic network topologies, based on preferential attachments. This is especially useful in social networks. Second, the formalism of random Boolean networks is used to help agents to make decisions given their attachments (for example acquaintances). This is coupled with a reinforcement learning mechanism that allows agents to select strategies that are locally and globally efficient. Third, we use agent-based modeling and simulation, a microscopic approach, which allows us to draw conclusions about individuals and/or classes of individuals. Finally, for the sake of illustration we use two different scenarios, namely the El Farol Bar Problem and a binary route choice scenario. With this approach we target systems that adapt dynamically to changes in the environment, including other adaptive decision-makers. Our results using preferential attachments and random Boolean networks are threefold. First we show that an efficient equilibrium can be achieved, provided agents do experimentation. Second, microscopic analysis show that influential agents tend to consider few inputs in their Boolean functions. Third, we have also conducted measurements related to network clustering and centrality

  15. Functional connectivity in incarcerated male adolescents with psychopathic traits.

    Science.gov (United States)

    Thijssen, Sandra; Kiehl, Kent A

    2017-07-30

    The present study examined the association between psychopathic traits and functional connectivity in 177 incarcerated male adolescents. We hypothesized that psychopathic symptoms would be associated with functional connectivity within networks encompassing limbic and paralimbic regions, such as the default mode (DMN), salience networks (SN), and executive control network (ECN). The present sample was drawn from the Southwest Advanced Neuroimaging Cohort, Youth sample, and from research at a youth detention facility in Wisconsin. All participants were scanned at maximum-security facilities. Psychopathic traits were assessed using Hare's Psychopathy Checklist-Youth Version. Resting-state networks were computed using group Independent Component Analysis. Associations between psychopathic traits and resting-state connectivity were assessed using Mancova analyses. PCL-YV Total score and Factor 1 score (interpersonal and affective traits) were associated with the power spectra of the DMN. Factor 1 score was associated with SN and ECN spatial maps. Factor 2 score (lifestyle and antisocial traits) was associated with spatial map of the ECN. Only the Factor 1 association with DMN power spectrum survived correction for multiple testing. Comparable to adult psychopathy, adolescent psychopathic traits were associated with networks implicated in self-referential thought, moral behavior, cognition, and saliency detection: functions previously reported to be disrupted in adult psychopaths. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  16. Disrupted functional connectivity affects resting state based language lateralization

    Directory of Open Access Journals (Sweden)

    Alex Teghipco

    2016-01-01

    Full Text Available Pre-operative assessment of language localization and lateralization is critical to preserving brain function after lesion or epileptogenic tissue resection. Task fMRI (t-fMRI has been extensively and reliably used to this end, but resting state fMRI (rs-fMRI is emerging as an alternative pre-operative brain mapping method that is independent of a patient's ability to comply with a task. We sought to evaluate if language lateralization obtained from rs-fMRI can replace standard assessment using t-fMRI. In a group of 43 patients scheduled for pre-operative fMRI brain mapping and 17 healthy controls, we found that existing methods of determining rs-fMRI lateralization by considering interhemispheric and intrahemispheric functional connectivity are inadequate compared to t-fMRI when applied to the language network. We determined that this was attributable to widespread but nuanced disturbances in the functional connectivity of the language network in patients. We found changes in interhemispheric and intrahemispheric functional connectivity that were dependent on lesion location, and particularly impacted patients with lesions in the left temporal lobe. We then tested whether a simpler measure of functional connectivity to the language network has a better relation to t-fMRI based language lateralization. Remarkably, we found that functional connectivity between the language network and the frontal pole, and superior frontal gyrus, as well as the supramarginal gyrus, significantly correlated to task based language lateralization indices in both patients and healthy controls. These findings are consistent with prior work with epilepsy patients, and provide a framework for evaluating language lateralization at rest.

  17. Measuring symmetry, asymmetry and randomness in neural network connectivity.

    Directory of Open Access Journals (Sweden)

    Umberto Esposito

    Full Text Available Cognitive functions are stored in the connectome, the wiring diagram of the brain, which exhibits non-random features, so-called motifs. In this work, we focus on bidirectional, symmetric motifs, i.e. two neurons that project to each other via connections of equal strength, and unidirectional, non-symmetric motifs, i.e. within a pair of neurons only one neuron projects to the other. We hypothesise that such motifs have been shaped via activity dependent synaptic plasticity processes. As a consequence, learning moves the distribution of the synaptic connections away from randomness. Our aim is to provide a global, macroscopic, single parameter characterisation of the statistical occurrence of bidirectional and unidirectional motifs. To this end we define a symmetry measure that does not require any a priori thresholding of the weights or knowledge of their maximal value. We calculate its mean and variance for random uniform or Gaussian distributions, which allows us to introduce a confidence measure of how significantly symmetric or asymmetric a specific configuration is, i.e. how likely it is that the configuration is the result of chance. We demonstrate the discriminatory power of our symmetry measure by inspecting the eigenvalues of different types of connectivity matrices. We show that a Gaussian weight distribution biases the connectivity motifs to more symmetric configurations than a uniform distribution and that introducing a random synaptic pruning, mimicking developmental regulation in synaptogenesis, biases the connectivity motifs to more asymmetric configurations, regardless of the distribution. We expect that our work will benefit the computational modelling community, by providing a systematic way to characterise symmetry and asymmetry in network structures. Further, our symmetry measure will be of use to electrophysiologists that investigate symmetry of network connectivity.

  18. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  19. Biologically meaningful update rules increase the critical connectivity of generalized kauffman networks

    OpenAIRE

    Wittmann, Dominik M.; Marr, Carsten; Theis, Fabian J

    2010-01-01

    Abstract We generalize random Boolean networks by softening the hard binary discretization into multiple discrete states. These multistate networks are generic models of gene regulatory networks, where each gene is known to assume a finite number of functionally different expression levels. We analytically determine the critical connectivity that separates the biologically unfavorable frozen and chaotic regimes. This connectivity is inversely proportional to a parameter which measu...

  20. Compensatory Motor Network Connectivity is Associated with Motor Sequence Learning after Subcortical Stroke

    Science.gov (United States)

    Wadden, Katie P.; Woodward, Todd S.; Metzak, Paul D.; Lavigne, Katie M.; Lakhani, Bimal; Auriat, Angela M.; Boyd, Lara A.

    2015-01-01

    Following stroke, functional networks reorganize and the brain demonstrates widespread alterations in cortical activity. Implicit motor learning is preserved after stroke. However the manner in which brain reorganization occurs, and how it supports behaviour within the damaged brain remains unclear. In this functional magnetic resonance imaging (fMRI) study, we evaluated whole brain patterns of functional connectivity during the performance of an implicit tracking task at baseline and retention, following 5 days of practice. Following motor practice, a significant difference in connectivity within a motor network, consisting of bihemispheric activation of the sensory and motor cortices, parietal lobules, cerebellar and occipital lobules, was observed at retention. Healthy subjects demonstrated greater activity within this motor network during sequence learning compared to random practice. The stroke group did not show the same level of functional network integration, presumably due to the heterogeneity of functional reorganization following stroke. In a secondary analysis, a binary mask of the functional network activated from the aforementioned whole brain analyses was created to assess within-network connectivity, decreasing the spatial distribution and large variability of activation that exists within the lesioned brain. The stroke group demonstrated reduced clusters of connectivity within the masked brain regions as compared to the whole brain approach. Connectivity within this smaller motor network correlated with repeated sequence performance on the retention test. Increased functional integration within the motor network may be an important neurophysiological predictor of motor learning-related change in individuals with stroke. PMID:25757996

  1. The functional connectivity landscape of the human brain.

    Directory of Open Access Journals (Sweden)

    Bratislav Mišić

    Full Text Available Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment.

  2. Compressive sensing reconstruction of feed-forward connectivity in pulse-coupled nonlinear networks

    Science.gov (United States)

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2016-06-01

    Utilizing the sparsity ubiquitous in real-world network connectivity, we develop a theoretical framework for efficiently reconstructing sparse feed-forward connections in a pulse-coupled nonlinear network through its output activities. Using only a small ensemble of random inputs, we solve this inverse problem through the compressive sensing theory based on a hidden linear structure intrinsic to the nonlinear network dynamics. The accuracy of the reconstruction is further verified by the fact that complex inputs can be well recovered using the reconstructed connectivity. We expect this Rapid Communication provides a new perspective for understanding the structure-function relationship as well as compressive sensing principle in nonlinear network dynamics.

  3. Abnormal connectivity in the sensorimotor network predicts attention deficits in traumatic brain injury

    NARCIS (Netherlands)

    Shumskaya, Elena; van Gerven, Marcel A.J.; Norris, David G.; Vos, Pieter E.; Kessels, Roy P.C.

    2017-01-01

    The aim of this study was to explore modifications of functional connectivity in multiple resting-state networks (RSNs) after moderate to severe traumatic brain injury (TBI) and evaluate the relationship between functional connectivity patterns and cognitive abnormalities. Forty-three

  4. Magnetoencephalographic signatures of insular epileptic spikes based on functional connectivity.

    Science.gov (United States)

    Zerouali, Younes; Pouliot, Philippe; Robert, Manon; Mohamed, Ismail; Bouthillier, Alain; Lesage, Frédéric; Nguyen, Dang K

    2016-09-01

    Failure to recognize insular cortex seizures has recently been identified as a cause of epilepsy surgeries targeting the temporal, parietal, or frontal lobe. Such failures are partly due to the fact that current noninvasive localization techniques fare poorly in recognizing insular epileptic foci. Our group recently demonstrated that magnetoencephalography (MEG) is sensitive to epileptiform spikes generated by the insula. In this study, we assessed the potential of distributed source imaging and functional connectivity analyses to distinguish insular networks underlying the generation of spikes. Nineteen patients with operculo-insular epilepsy were investigated. Each patient underwent MEG as well as T1-weighted magnetic resonance imaging (MRI) as part of their standard presurgical evaluation. Cortical sources of MEG spikes were reconstructed with the maximum entropy on the mean algorithm, and their time courses served to analyze source functional connectivity. The results indicate that the anterior and posterior subregions of the insula have specific patterns of functional connectivity mainly involving frontal and parietal regions, respectively. In addition, while their connectivity patterns are qualitatively similar during rest and during spikes, couplings within these networks are much stronger during spikes. These results show that MEG can establish functional connectivity-based signatures that could help in the diagnosis of different subtypes of insular cortex epilepsy. Hum Brain Mapp 37:3250-3261, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Multisite functional connectivity MRI classification of autism: ABIDE results

    Directory of Open Access Journals (Sweden)

    Jared A Nielsen

    2013-09-01

    Full Text Available Background: Systematic differences in functional connectivity MRI metrics have been consistently observed in autism, with predominantly decreased cortico-cortical connectivity. Previous attempts at single subject classification in high-functioning autism using whole brain point-to-point functional connectivity have yielded about 80% accurate classification of autism vs. control subjects across a wide age range. We attempted to replicate the method and results using the Autism Brain Imaging Data Exchange including resting state fMRI data obtained from 964 subjects and 16 separate international sites.Methods: For each of 964 subjects, we obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the gray matter (26.4 million "connections" after preprocessing that included motion and slice timing correction, coregistration to an anatomic image, normalization to standard space, and voxelwise removal by regression of motion parameters, soft tissue, CSF, and white matter signals. Connections were grouped into multiple bins, and a leave-one-out classifier was evaluated on connections comprising each set of bins. Age, age-squared, gender, handedness, and site were included as covariates for the classifier.Results: Classification accuracy significantly outperformed chance but was much lower for multisite prediction than for previous single site results. As high as 60% accuracy was obtained for whole brain classification, with the best accuracy from connections involving regions of the default mode network, parahippocampal and fusiform gyri, insula, Wernicke Area, and intraparietal sulcus. The classifier score was related to symptom severity, social function, daily living skills, and verbal IQ. Classification accuracy was significantly higher for sites with longer BOLD imaging times.Conclusions: Multisite functional connectivity classification of autism outperformed chance using a simple leave

  6. Hippocampal functional connectivity and episodic memory in early childhood

    Directory of Open Access Journals (Sweden)

    Tracy Riggins

    2016-06-01

    Full Text Available Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n = 40. Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4 regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability.

  7. Hippocampal functional connectivity and episodic memory in early childhood

    Science.gov (United States)

    Riggins, Tracy; Geng, Fengji; Blankenship, Sarah L.; Redcay, Elizabeth

    2016-01-01

    Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4-and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability. PMID:26900967

  8. Integration and Segregation of Default Mode Network Resting-State Functional Connectivity in Transition-Age Males with High-Functioning Autism Spectrum Disorder: A Proof-of-Concept Study.

    Science.gov (United States)

    Joshi, Gagan; Arnold Anteraper, Sheeba; Patil, Kaustubh R; Semwal, Meha; Goldin, Rachel L; Furtak, Stephannie L; Chai, Xiaoqian Jenny; Saygin, Zeynep M; Gabrieli, John D E; Biederman, Joseph; Whitfield-Gabrieli, Susan

    2017-11-01

    The aim of this study is to assess the resting-state functional connectivity (RsFc) profile of the default mode network (DMN) in transition-age males with autism spectrum disorder (ASD). Resting-state blood oxygen level-dependent functional magnetic resonance imaging data were acquired from adolescent and young adult males with high-functioning ASD (n = 15) and from age-, sex-, and intelligence quotient-matched healthy controls (HCs; n = 16). The DMN was examined by assessing the positive and negative RsFc correlations of an average of the literature-based conceptualized major DMN nodes (medial prefrontal cortex [mPFC], posterior cingulate cortex, bilateral angular, and inferior temporal gyrus regions). RsFc data analysis was performed using a seed-driven approach. ASD was characterized by an altered pattern of RsFc in the DMN. The ASD group exhibited a weaker pattern of intra- and extra-DMN-positive and -negative RsFc correlations, respectively. In ASD, the strength of intra-DMN coupling was significantly reduced with the mPFC and the bilateral angular gyrus regions. In addition, the polarity of the extra-DMN correlation with the right hemispheric task-positive regions of fusiform gyrus and supramarginal gyrus was reversed from typically negative to positive in the ASD group. A wide variability was observed in the presentation of the RsFc profile of the DMN in both HC and ASD groups that revealed a distinct pattern of subgrouping using pattern recognition analyses. These findings imply that the functional architecture profile of the DMN is altered in ASD with weaker than expected integration and segregation of DMN RsFc. Future studies with larger sample sizes are warranted.

  9. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    Science.gov (United States)

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  10. Emerging connections in the ethylene signaling network.

    Science.gov (United States)

    Yoo, Sang-Dong; Cho, Younghee; Sheen, Jen

    2009-05-01

    The gaseous plant hormone ethylene acts as a pivotal mediator to respond to and coordinate internal and external cues in modulating plant growth dynamics and developmental programs. Genetic analysis of Arabidopsis thaliana has been used to identify key components and to build a linear ethylene-signaling pathway from the receptors through to the nuclear transcription factors. Studies applying integrative approaches have revealed new regulators, molecular connections and mechanisms in ethylene signaling and unexpected links to other plant hormones. Here, we review and discuss recent discoveries about the functional mode of ethylene receptor complexes, dual mitogen-activated protein kinase cascade signaling, stability control of the master nuclear transcription activator ETHYLENE INSENSITIVE 3 (EIN3), and the contextual relationships between ethylene and other plant hormones, such as auxin and gibberellins, in organ-specific growth regulation.

  11. Structurally-informed Bayesian functional connectivity analysis

    NARCIS (Netherlands)

    Hinne, M.; Ambrogioni, L.; Janssen, R.J.; Heskes, T.M.; Gerven, M.A.J. van

    2014-01-01

    Functional connectivity refers to covarying activity between spatially segregated brain regions and can be studied by measuring correlation between functional magnetic resonance imaging (fMRI) time series. These correlations can be caused either by direct communication via active axonal pathways or

  12. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  13. Controllability of giant connected components in a directed network

    Science.gov (United States)

    Liu, Xueming; Pan, Linqiang; Stanley, H. Eugene; Gao, Jianxi

    2017-04-01

    When controlling a complex networked system it is not feasible to control the full network because many networks, including biological, technological, and social systems, are massive in size and complexity. But neither is it necessary to control the full network. In complex networks, the giant connected components provide the essential information about the entire system. How to control these giant connected components of a network remains an open question. We derive the mathematical expression of the degree distributions for four types of giant connected components and develop an analytic tool for studying the controllability of these giant connected components. We find that for both Erdős-Rényi (ER) networks and scale-free (SF) networks with p fraction of remaining nodes, the minimum driver node density to control the giant component first increases and then decreases as p increases from zero to one, showing a peak at a critical point p =pm . We find that, for ER networks, the peak value of the driver node density remains the same regardless of its average degree and that it is determined by pm . In addition, we find that for SF networks the minimum driver node densities needed to control the giant components of networks decrease as the degree distribution exponents increase. Comparing the controllability of the giant components of ER networks and SF networks, we find that when the fraction of remaining nodes p is low, the giant in-connected, out-connected, and strong-connected components in ER networks have lower controllability than those in SF networks.

  14. Functional connectivity in in vitro neuronal assemblies

    Science.gov (United States)

    Poli, Daniele; Pastore, Vito P.; Massobrio, Paolo

    2015-01-01

    Complex network topologies represent the necessary substrate to support complex brain functions. In this work, we reviewed in vitro neuronal networks coupled to Micro-Electrode Arrays (MEAs) as biological substrate. Networks of dissociated neurons developing in vitro and coupled to MEAs, represent a valid experimental model for studying the mechanisms governing the formation, organization and conservation of neuronal cell assemblies. In this review, we present some examples of the use of statistical Cluster Coefficients and Small World indices to infer topological rules underlying the dynamics exhibited by homogeneous and engineered neuronal networks. PMID:26500505

  15. Functional connectivity correlates of response inhibition impairment in anorexia nervosa.

    Science.gov (United States)

    Collantoni, Enrico; Michelon, Silvia; Tenconi, Elena; Degortes, Daniela; Titton, Francesca; Manara, Renzo; Clementi, Maurizio; Pinato, Claudia; Forzan, Monica; Cassina, Matteo; Santonastaso, Paolo; Favaro, Angela

    2016-01-30

    Anorexia nervosa (AN) is a disorder characterized by high levels of cognitive control and behavioral perseveration. The present study aims at exploring inhibitory control abilities and their functional connectivity correlates in patients with AN. Inhibitory control - an executive function that allows the realization of adaptive behavior according to environmental contingencies - has been assessed by means of the Stop-Signal paradigm. The study involved 155 patients with lifetime AN and 102 healthy women. A subsample underwent resting-state functional magnetic resonance imaging and was genotyped for COMT and 5-HTTLPR polymorphisms. AN patients showed an impaired response inhibition and a disruption of the functional connectivity of the ventral attention circuit, a neural network implicated in behavioral response when a stimulus occurs unexpected. The 5-HTTLPR genotype appears to significantly interact with the functional connectivity of ventral attention network in explaining task performance in both patients and controls, suggesting a role of the serotoninergic system in mechanisms of response selection. The disruption of the ventral attention network in patients with AN suggests lower efficiency of bottom-up signal filtering, which might be involved in difficulties to adapt behavioral responses to environmental needs. Our findings deserve further research to confirm their scientific and therapeutic implications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Effect of planning for connectivity on linear reserve networks.

    Science.gov (United States)

    Lentini, Pia E; Gibbons, Philip; Carwardine, Josie; Fischer, Joern; Drielsma, Michael; Martin, Tara G

    2013-08-01

    Although the concept of connectivity is decades old, it remains poorly understood and defined, and some argue that habitat quality and area should take precedence in conservation planning instead. However, fragmented landscapes are often characterized by linear features that are inherently connected, such as streams and hedgerows. For these, both representation and connectivity targets may be met with little effect on the cost, area, or quality of the reserve network. We assessed how connectivity approaches affect planning outcomes for linear habitat networks by using the stock-route network of Australia as a case study. With the objective of representing vegetation communities across the network at a minimal cost, we ran scenarios with a range of representation targets (10%, 30%, 50%, and 70%) and used 3 approaches to account for connectivity (boundary length modifier, Euclidean distance, and landscape-value [LV]). We found that decisions regarding the target and connectivity approach used affected the spatial allocation of reserve systems. At targets ≥50%, networks designed with the Euclidean distance and LV approaches consisted of a greater number of small reserves. Hence, by maximizing both representation and connectivity, these networks compromised on larger contiguous areas. However, targets this high are rarely used in real-world conservation planning. Approaches for incorporating connectivity into the planning of linear reserve networks that account for both the spatial arrangement of reserves and the characteristics of the intervening matrix highlight important sections that link the landscape and that may otherwise be overlooked. © 2013 Society for Conservation Biology.

  17. Core and peripheral connectivity based cluster analysis over PPI network.

    Science.gov (United States)

    Ahmed, Hasin A; Bhattacharyya, Dhruba K; Kalita, Jugal K

    2015-12-01

    A number of methods have been proposed in the literature of protein-protein interaction (PPI) network analysis for detection of clusters in the network. Clusters are identified by these methods using various graph theoretic criteria. Most of these methods have been found time consuming due to involvement of preprocessing and post processing tasks. In addition, they do not achieve high precision and recall consistently and simultaneously. Moreover, the existing methods do not employ the idea of core-periphery structural pattern of protein complexes effectively to extract clusters. In this paper, we introduce a clustering method named CPCA based on a recent observation by researchers that a protein complex in a PPI network is arranged as a relatively dense core region and additional proteins weakly connected to the core. CPCA uses two connectivity criterion functions to identify core and peripheral regions of the cluster. To locate initial node of a cluster we introduce a measure called DNQ (Degree based Neighborhood Qualification) index that evaluates tendency of the node to be part of a cluster. CPCA performs well when compared with well-known counterparts. Along with protein complex gold standards, a co-localization dataset has also been used for validation of the results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. An information theory framework for dynamic functional domain connectivity.

    Science.gov (United States)

    Vergara, Victor M; Miller, Robyn; Calhoun, Vince

    2017-06-01

    Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Abnormal connectivity in the sensorimotor network predicts attention deficits in traumatic brain injury.

    Science.gov (United States)

    Shumskaya, Elena; van Gerven, Marcel A J; Norris, David G; Vos, Pieter E; Kessels, Roy P C

    2017-03-01

    The aim of this study was to explore modifications of functional connectivity in multiple resting-state networks (RSNs) after moderate to severe traumatic brain injury (TBI) and evaluate the relationship between functional connectivity patterns and cognitive abnormalities. Forty-three moderate/severe TBI patients and 34 healthy controls (HC) underwent resting-state fMRI. Group ICA was applied to identify RSNs. Between-subject analysis was performed using dual regression. Multiple linear regressions were used to investigate the relationship between abnormal connectivity strength and neuropsychological outcome. Forty (93%) TBI patients showed moderate disability, while 2 (5%) and 1 (2%) upper severe disability and low good recovery, respectively. TBI patients performed worse than HC on the domains attention and language. We found increased connectivity in sensorimotor, visual, default mode (DMN), executive, and cerebellar RSNs after TBI. We demonstrated an effect of connectivity in the sensorimotor RSN on attention (p sensorimotor network (p = 0.002). In TBI, attention was positively related to abnormal connectivity within the sensorimotor RSN, while in HC this relation was negative. Our results show altered patterns of functional connectivity after TBI. Attention impairments in TBI were associated with increased connectivity in the sensorimotor network. Further research is needed to test whether attention in TBI patients is directly affected by changes in functional connectivity in the sensorimotor network or whether the effect is actually driven by changes in the DMN.

  20. Subdivisions and connectional networks of the lateral prefrontal cortex in the macaque monkey.

    Science.gov (United States)

    Saleem, Kadharbatcha S; Miller, Brad; Price, Joseph L

    2014-05-01

    Neuroanatomical studies have long indicated that corticocortical connections are organized in networks that relate distinct sets of areas. Such networks have been emphasized by development of functional imaging methods for correlating activity across the cortex. Previously, two networks were recognized in the orbitomedial prefrontal cortex, the "orbital" and "medial" networks (OPFC and MPFC, respectively). In this study, three additional networks are proposed for the lateral prefrontal cortex: 1) a ventrolateral network (VLPFC) in and ventral to the principal sulcus; 2) a dorsal network (DPFC) in and dorsal to the principal sulcus and in the frontal pole; 3) a caudolateral network (CLPFC) in and rostral to the arcuate sulcus and the caudal principal sulcus. The connections of the first two networks are described here. Areas in each network are connected primarily with other areas in the same network, with overlaps around the principal sulcus. The VLPFC and DPFC are also connected with the OPFC and MPFC, respectively. Outside the prefrontal cortex, the VLPFC connects with specific areas related to somatic/visceral sensation and vision, in the frontoparietal operculum, insula, ventral bank/fundus of the superior temporal sulcus, inferior temporal gyrus, and inferior parietal cortex. In contrast, the DPFC connects with the rostral superior temporal gyrus, dorsal bank of the superior temporal sulcus, parahippocampal cortex, and posterior cingulate and retrosplenial cortex. Area 45a, in caudal VLPFC, is unique, having connections with all the networks. Its extrinsic connections resemble those of the DPFC. In addition, it has connections with both auditory belt/parabelt areas, and visual related areas. Copyright © 2013 Wiley Periodicals, Inc.

  1. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  2. Similarity analysis of functional connectivity with functional near-infrared spectroscopy

    NARCIS (Netherlands)

    Dalmis, M.U.; Akin, A.

    2015-01-01

    One of the remaining challenges in functional connectivity (FC) studies is investigation of the temporal variability of FC networks. Recent studies focusing on the dynamic FC mostly use functional magnetic resonance imaging as an imaging tool to investigate the temporal variability of FC. We

  3. Estimating the epidemic threshold on networks by deterministic connections

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kezan, E-mail: lkzzr@sohu.com; Zhu, Guanghu [School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004 (China); Fu, Xinchu [Department of Mathematics, Shanghai University, Shanghai 200444 (China); Small, Michael [School of Mathematics and Statistics, The University of Western Australia, Crawley, Western Australia 6009 (Australia)

    2014-12-15

    For many epidemic networks some connections between nodes are treated as deterministic, while the remainder are random and have different connection probabilities. By applying spectral analysis to several constructed models, we find that one can estimate the epidemic thresholds of these networks by investigating information from only the deterministic connections. Nonetheless, in these models, generic nonuniform stochastic connections and heterogeneous community structure are also considered. The estimation of epidemic thresholds is achieved via inequalities with upper and lower bounds, which are found to be in very good agreement with numerical simulations. Since these deterministic connections are easier to detect than those stochastic connections, this work provides a feasible and effective method to estimate the epidemic thresholds in real epidemic networks.

  4. Enabling Research Network Connectivity to Clouds with Virtual Router Technology

    Science.gov (United States)

    Seuster, R.; Casteels, K.; Leavett-Brown, CR; Paterson, M.; Sobie, RJ

    2017-10-01

    The use of opportunistic cloud resources by HEP experiments has significantly increased over the past few years. Clouds that are owned or managed by the HEP community are connected to the LHCONE network or the research network with global access to HEP computing resources. Private clouds, such as those supported by non-HEP research funds are generally connected to the international research network; however, commercial clouds are either not connected to the research network or only connect to research sites within their national boundaries. Since research network connectivity is a requirement for HEP applications, we need to find a solution that provides a high-speed connection. We are studying a solution with a virtual router that will address the use case when a commercial cloud has research network connectivity in a limited region. In this situation, we host a virtual router in our HEP site and require that all traffic from the commercial site transit through the virtual router. Although this may increase the network path and also the load on the HEP site, it is a workable solution that would enable the use of the remote cloud for low I/O applications. We are exploring some simple open-source solutions. In this paper, we present the results of our studies and how it will benefit our use of private and public clouds for HEP computing.

  5. Resting-state functional connectivity differences in premature children

    Directory of Open Access Journals (Sweden)

    Eswar Damaraju

    2010-06-01

    Full Text Available We examine the coherence in the spontaneous brain activity of sleeping children as measured by the blood oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI signals. The results are described in terms of resting-state networks (RSN and their properties. More specifically, in this study we examine the effect of severe prematurity on the spatial location of the visual, temporal, motor, basal ganglia, and the default mode networks, the temporal response properties of each of these networks, and the functional connectivity between them. Our results suggest that the anatomical locations of the RSNs are well developed by 18 months of age and their spatial locations are not distinguishable between premature and term born infants at 18 months or at 36 months, with the exception of small spatial differences noted in the basal ganglia area and the visual cortex. The two major differences between term and preterm children were present at 36 but not 18 months and include: 1 increased spectral energy in the low frequency range (0.01 – 0.06 Hz for pre-term children in the basal ganglia component, and 2 stronger connectivity between RSNs in term children. We speculate that children born very prematurely are vulnerable to injury resulting in weaker connectivity between resting state networks by 36 months of age. Further work is required to determine whether this could be a clinically useful tool to identify children at risk of developmental delay related to premature birth.

  6. Exploring brain function from anatomical connectivity

    Directory of Open Access Journals (Sweden)

    Gorka eZamora-López

    2011-06-01

    Full Text Available The intrinsic relationship between the architecture of the brain and the range of sensory and behavioral phenomena it produces is a relevant question in neuroscience. Here, we review recent knowledge gained on the architecture of the anatomical connectivity by means of complex network analysis. It has been found that corticocortical networks display a few prominent characteristics: (i modular organization, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Additionally, we present a novel classification of cortical areas of the cat according to the role they play in multisensory connectivity. All these properties represent an ideal anatomical substrate supporting rich dynamical behaviors, as-well-as facilitating the capacity of the brain to process sensory information of different modalities segregated and to integrate them towards a comprehensive perception of the real world. The result here exposed are mainly based in anatomical data of cats’ brain, but we show how further observations suggest that, from worms to humans, the nervous system of all animals might share fundamental principles of organization.

  7. Analyzing the association between functional connectivity of the brain and intellectual performance.

    Science.gov (United States)

    Pamplona, Gustavo S P; Santos Neto, Gérson S; Rosset, Sara R E; Rogers, Baxter P; Salmon, Carlos E G

    2015-01-01

    Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of the relationship between the brain's functional connectivity and intelligence scores derived from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III) in a sample of 29 people, born and raised in Brazil. We examined functional connectivity between 82 regions, including graph theoretic properties of the overall network. Some previous findings were extended to the Portuguese-speaking population, specifically the presence of small-world organization of the brain and relationships of intelligence with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal gyrus, and caudate nucleus. Verbal comprehension was associated with global network efficiency, a new finding.

  8. The Developmental Cognitive Neuroscience of Functional Connectivity

    Science.gov (United States)

    Stevens, Michael C.

    2009-01-01

    Developmental cognitive neuroscience is a rapidly growing field that examines the relationships between biological development and cognitive ability. In the past decade, there has been ongoing refinement of concepts and methodology related to the study of "functional connectivity" among distributed brain regions believed to underlie cognition and…

  9. Randomness in resting state functional connectivity matrices.

    Science.gov (United States)

    Vergara, Victor M; Calhoun, Vince

    2016-08-01

    Separate brain regions exhibit synchronous intrinsic activity used to assess connectivity patterns known to appear among brain areas. Connectivity is evaluated from functional magnetic resonance imaging (fMRI) measuring the blood oxygen level dependent signal (BOLD) signal. Extensive research has revealed a distinctive pattern of connectivity among brain areas that can be visualized through a functional connectivity matrix (FCM) matrix. As in any measurement, BOLD signals are subject to contamination from noise and nuisances unrelated to brain's intrinsic activity. Up until now, little work has been developed to determine if patterns observed in FCMs occurred by chance or were driven by a more deterministic process. This work proposes a mathematical framework to test the randomness of FCM connectivity patterns in a systematic and statistical way. A cohort of 121 healthy controls is used to demonstrate the usefulness of the proposed framework. Results indicate that particular parts of the brain might exhibit decreasing randomness with age and gender. Results also show the framework's effectiveness in assessing FCM randomness.

  10. Gender Differences in Brain Functional Connectivity Density

    OpenAIRE

    Tomasi, Dardo; Volkow, Nora D.

    2011-01-01

    The neural bases of gender differences in emotional, cognitive, and socials behaviors are largely unknown. Here, magnetic resonance imaging data from 336 women and 225 men revealed a gender dimorphism in the functional organization of the brain. Consistently across five research sites, women had 14% higher local functional connectivity density (lFCD) and up to 5% higher gray matter density than men in cortical and subcortical regions. The negative power scaling of the lFCD was steeper for men...

  11. BOLD signal and functional connectivity associated with loving kindness meditation

    Science.gov (United States)

    Garrison, Kathleen A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2014-01-01

    Loving kindness is a form of meditation involving directed well-wishing, typically supported by the silent repetition of phrases such as “may all beings be happy,” to foster a feeling of selfless love. Here we used functional magnetic resonance imaging to assess the neural substrate of loving kindness meditation in experienced meditators and novices. We first assessed group differences in blood oxygen level-dependent (BOLD) signal during loving kindness meditation. We next used a relatively novel approach, the intrinsic connectivity distribution of functional connectivity, to identify regions that differ in intrinsic connectivity between groups, and then used a data-driven approach to seed-based connectivity analysis to identify which connections differ between groups. Our findings suggest group differences in brain regions involved in self-related processing and mind wandering, emotional processing, inner speech, and memory. Meditators showed overall reduced BOLD signal and intrinsic connectivity during loving kindness as compared to novices, more specifically in the posterior cingulate cortex/precuneus (PCC/PCu), a finding that is consistent with our prior work and other recent neuroimaging studies of meditation. Furthermore, meditators showed greater functional connectivity during loving kindness between the PCC/PCu and the left inferior frontal gyrus, whereas novices showed greater functional connectivity during loving kindness between the PCC/PCu and other cortical midline regions of the default mode network, the bilateral posterior insula lobe, and the bilateral parahippocampus/hippocampus. These novel findings suggest that loving kindness meditation involves a present-centered, selfless focus for meditators as compared to novices. PMID:24944863

  12. BOLD signal and functional connectivity associated with loving kindness meditation.

    Science.gov (United States)

    Garrison, Kathleen A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2014-05-01

    Loving kindness is a form of meditation involving directed well-wishing, typically supported by the silent repetition of phrases such as "may all beings be happy," to foster a feeling of selfless love. Here we used functional magnetic resonance imaging to assess the neural substrate of loving kindness meditation in experienced meditators and novices. We first assessed group differences in blood oxygen level-dependent (BOLD) signal during loving kindness meditation. We next used a relatively novel approach, the intrinsic connectivity distribution of functional connectivity, to identify regions that differ in intrinsic connectivity between groups, and then used a data-driven approach to seed-based connectivity analysis to identify which connections differ between groups. Our findings suggest group differences in brain regions involved in self-related processing and mind wandering, emotional processing, inner speech, and memory. Meditators showed overall reduced BOLD signal and intrinsic connectivity during loving kindness as compared to novices, more specifically in the posterior cingulate cortex/precuneus (PCC/PCu), a finding that is consistent with our prior work and other recent neuroimaging studies of meditation. Furthermore, meditators showed greater functional connectivity during loving kindness between the PCC/PCu and the left inferior frontal gyrus, whereas novices showed greater functional connectivity during loving kindness between the PCC/PCu and other cortical midline regions of the default mode network, the bilateral posterior insula lobe, and the bilateral parahippocampus/hippocampus. These novel findings suggest that loving kindness meditation involves a present-centered, selfless focus for meditators as compared to novices.

  13. A Novel Synchronization-Based Approach for Functional Connectivity Analysis

    Directory of Open Access Journals (Sweden)

    Angela Lombardi

    2017-01-01

    Full Text Available Complex network analysis has become a gold standard to investigate functional connectivity in the human brain. Popular approaches for quantifying functional coupling between fMRI time series are linear zero-lag correlation methods; however, they might reveal only partial aspects of the functional links between brain areas. In this work, we propose a novel approach for assessing functional coupling between fMRI time series and constructing functional brain networks. A phase space framework is used to map couples of signals exploiting their cross recurrence plots (CRPs to compare the trajectories of the interacting systems. A synchronization metric is extracted from the CRP to assess the coupling behavior of the time series. Since the functional communities of a healthy population are expected to be highly consistent for the same task, we defined functional networks of task-related fMRI data of a cohort of healthy subjects and applied a modularity algorithm in order to determine the community structures of the networks. The within-group similarity of communities is evaluated to verify whether such new metric is robust enough against noise. The synchronization metric is also compared with Pearson’s correlation coefficient and the detected communities seem to better reflect the functional brain organization during the specific task.

  14. Evaluating transceiver power savings produced by connectivity strategies for infrastructure wireless mesh networks

    CSIR Research Space (South Africa)

    Mudali, P

    2011-06-01

    Full Text Available may be battery-powered in the absence of reliable power supplies. A key requirement for the proper functioning of the I-WMN backbone is that network connectivity be maintained. Two main types of connectivity strategies exist in the literature...

  15. Impact of autocorrelation on functional connectivity.

    Science.gov (United States)

    Arbabshirani, Mohammad R; Damaraju, Eswar; Phlypo, Ronald; Plis, Sergey; Allen, Elena; Ma, Sai; Mathalon, Daniel; Preda, Adrian; Vaidya, Jatin G; Adali, Tülay; Calhoun, Vince D

    2014-11-15

    Although the impact of serial correlation (autocorrelation) in residuals of general linear models for fMRI time-series has been studied extensively, the effect of autocorrelation on functional connectivity studies has been largely neglected until recently. Some recent studies based on results from economics have questioned the conventional estimation of functional connectivity and argue that not correcting for autocorrelation in fMRI time-series results in "spurious" correlation coefficients. In this paper, first we assess the effect of autocorrelation on Pearson correlation coefficient through theoretical approximation and simulation. Then we present this effect on real fMRI data. To our knowledge this is the first work comprehensively investigating the effect of autocorrelation on functional connectivity estimates. Our results show that although FC values are altered, even following correction for autocorrelation, results of hypothesis testing on FC values remain very similar to those before correction. In real data we show this is true for main effects and also for group difference testing between healthy controls and schizophrenia patients. We further discuss model order selection in the context of autoregressive processes, effects of frequency filtering and propose a preprocessing pipeline for connectivity studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome.

    Directory of Open Access Journals (Sweden)

    Matthieu Gilson

    2016-03-01

    Full Text Available The brain exhibits complex spatio-temporal patterns of activity. This phenomenon is governed by an interplay between the internal neural dynamics of cortical areas and their connectivity. Uncovering this complex relationship has raised much interest, both for theory and the interpretation of experimental data (e.g., fMRI recordings using dynamical models. Here we focus on the so-called inverse problem: the inference of network parameters in a cortical model to reproduce empirically observed activity. Although it has received a lot of interest, recovering directed connectivity for large networks has been rather unsuccessful so far. The present study specifically addresses this point for a noise-diffusion network model. We develop a Lyapunov optimization that iteratively tunes the network connectivity in order to reproduce second-order moments of the node activity, or functional connectivity. We show theoretically and numerically that the use of covariances with both zero and non-zero time shifts is the key to infer directed connectivity. The first main theoretical finding is that an accurate estimation of the underlying network connectivity requires that the time shift for covariances is matched with the time constant of the dynamical system. In addition to the network connectivity, we also adjust the intrinsic noise received by each network node. The framework is applied to experimental fMRI data recorded for subjects at rest. Diffusion-weighted MRI data provide an estimate of anatomical connections, which is incorporated to constrain the cortical model. The empirical covariance structure is reproduced faithfully, especially its temporal component (i.e., time-shifted covariances in addition to the spatial component that is usually the focus of studies. We find that the cortical interactions, referred to as effective connectivity, in the tuned model are not reciprocal. In particular, hubs are either receptors or feeders: they do not exhibit both

  17. Whole Brain Functional Connectivity Using Phase Locking Measures Of Resting State Magnetoencephalography

    Directory of Open Access Journals (Sweden)

    Benjamin T Schmidt

    2014-06-01

    Full Text Available The analysis of spontaneous functional connectivity reveals the statistical connections between regions of the brain consistent with underlying functional communication networks within the brain. In this work, we describe the implementation of a complete all-to-all network analysis of resting state neuronal activity from magnetoencephalography (MEG. Using graph theory to define networks at the dipole level, we established functionally defined regions by k-means clustering cortical surface locations using Eigenvector centrality scores from the all-to-all adjacency model. Permutation testing was used to estimate regions with statistically significant connections compared to empty room data, which adjusts for spatial dependencies introduced by the MEG inverse problem. In order to test this model, we preformed a series of numerical simulations investigating the effects of the MEG reconstruction on connectivity estimates. We subsequently applied the approach to subject data to investigate the effectiveness of our method in obtaining whole brain networks. Our findings indicated that our model provides statistically robust estimates of functional region networks. Application of our phase locking network methodology to real data produced networks with similar connectivity to previously published findings, specifically, we found connections between contralateral areas of the arcuate fasciculus that have been previously investigated. The use of data-driven methods for neuroscientific investigations provides a new tool for researchers in identifying and characterizing whole brain functional connectivity networks.

  18. Whole brain functional connectivity using phase locking measures of resting state magnetoencephalography.

    Science.gov (United States)

    Schmidt, Benjamin T; Ghuman, Avniel S; Huppert, Theodore J

    2014-01-01

    The analysis of spontaneous functional connectivity (sFC) reveals the statistical connections between regions of the brain consistent with underlying functional communication networks within the brain. In this work, we describe the implementation of a complete all-to-all network analysis of resting state neuronal activity from magnetoencephalography (MEG). Using graph theory to define networks at the dipole level, we established functionally defined regions by k-means clustering cortical surface locations using Eigenvector centrality (EVC) scores from the all-to-all adjacency model. Permutation testing was used to estimate regions with statistically significant connections compared to empty room data, which adjusts for spatial dependencies introduced by the MEG inverse problem. In order to test this model, we performed a series of numerical simulations investigating the effects of the MEG reconstruction on connectivity estimates. We subsequently applied the approach to subject data to investigate the effectiveness of our method in obtaining whole brain networks. Our findings indicated that our model provides statistically robust estimates of functional region networks. Application of our phase locking network methodology to real data produced networks with similar connectivity to previously published findings, specifically, we found connections between contralateral areas of the arcuate fasciculus that have been previously investigated. The use of data-driven methods for neuroscientific investigations provides a new tool for researchers in identifying and characterizing whole brain functional connectivity networks.

  19. From networks of protein interactions to networks of functional dependencies

    Directory of Open Access Journals (Sweden)

    Luciani Davide

    2012-05-01

    Full Text Available Abstract Background As protein-protein interactions connect proteins that participate in either the same or different functions, networks of interacting and functionally annotated proteins can be converted into process graphs of inter-dependent function nodes (each node corresponding to interacting proteins with the same functional annotation. However, as proteins have multiple annotations, the process graph is non-redundant, if only proteins participating directly in a given function are included in the related function node. Results Reasoning that topological features (e.g., clusters of highly inter-connected proteins might help approaching structured and non-redundant understanding of molecular function, an algorithm was developed that prioritizes inclusion of proteins into the function nodes that best overlap protein clusters. Specifically, the algorithm identifies function nodes (and their mutual relations, based on the topological analysis of a protein interaction network, which can be related to various biological domains, such as cellular components (e.g., peroxisome and cellular bud or biological processes (e.g., cell budding of the model organism S. cerevisiae. Conclusions The method we have described allows converting a protein interaction network into a non-redundant process graph of inter-dependent function nodes. The examples we have described show that the resulting graph allows researchers to formulate testable hypotheses about dependencies among functions and the underlying mechanisms.

  20. Scaling solutions for connectivity and conductivity of continuous random networks.

    Science.gov (United States)

    Galindo-Torres, S A; Molebatsi, T; Kong, X-Z; Scheuermann, A; Bringemeier, D; Li, L

    2015-10-01

    Connectivity and conductivity of two-dimensional fracture networks (FNs), as an important type of continuous random networks, are examined systematically through Monte Carlo simulations under a variety of conditions, including different power law distributions of the fracture lengths and domain sizes. The simulation results are analyzed using analogies of the percolation theory for discrete random networks. With a characteristic length scale and conductivity scale introduced, we show that the connectivity and conductivity of FNs can be well described by universal scaling solutions. These solutions shed light on previous observations of scale-dependent FN behavior and provide a powerful method for quantifying effective bulk properties of continuous random networks.

  1. Connecting to the Internet Securely; Protecting Home Networks CIAC-2324

    Energy Technology Data Exchange (ETDEWEB)

    Orvis, W J; Krystosek, P; Smith, J

    2002-11-27

    With more and more people working at home and connecting to company networks via the Internet, the risk to company networks to intrusion and theft of sensitive information is growing. Working from home has many positive advantages for both the home worker and the company they work for. However, as companies encourage people to work from home, they need to start considering the interaction of the employee's home network and the company network he connects to. This paper discusses problems and solutions related to protection of home computers from attacks on those computers via the network connection. It does not consider protection of those systems from people who have physical access to the computers nor does it consider company laptops taken on-the-road. Home networks are often targeted by intruders because they are plentiful and they are usually not well secured. While companies have departments of professionals to maintain and secure their networks, home networks are maintained by the employee who may be less knowledgeable about network security matters. The biggest problems with home networks are that: Home networks are not designed to be secure and may use technologies (wireless) that are not secure; The operating systems are not secured when they are installed; The operating systems and applications are not maintained (for security considerations) after they are installed; and The networks are often used for other activities that put them at risk for being compromised. Home networks that are going to be connected to company networks need to be cooperatively secured by the employee and the company so they do not open up the company network to intruders. Securing home networks involves many of the same operations as securing a company network: Patch and maintain systems; Securely configure systems; Eliminate unneeded services; Protect remote logins; Use good passwords; Use current antivirus software; and Moderate your Internet usage habits. Most of these

  2. Connecting Land-Based Networks to Ships

    Science.gov (United States)

    2013-06-01

    VSAT ) system. The stations, equipped with VSAT antennas, share the satellite’s transmission capacity to transmit to the station having the central hub...and base stations, which are connected to the ship’s VSAT system by which the voice and data connections from the phones are routed from the ship to...Maritime VSAT Communications Solutions, June 2010. [17] MCP Maritime Communications Partner, “Technology overview,” August 2012, http

  3. Volitional regulation of emotions produces distributed alterations in connectivity between visual, attention control, and default networks.

    Science.gov (United States)

    Sripada, Chandra; Angstadt, Michael; Kessler, Daniel; Phan, K Luan; Liberzon, Israel; Evans, Gary W; Welsh, Robert C; Kim, Pilyoung; Swain, James E

    2014-04-01

    The ability to volitionally regulate emotions is critical to health and well-being. While patterns of neural activation during emotion regulation have been well characterized, patterns of connectivity between regions remain less explored. It is increasingly recognized that the human brain is organized into large-scale intrinsic connectivity networks (ICNs) whose interrelationships are altered in characteristic ways during psychological tasks. In this fMRI study of 54 healthy individuals, we investigated alterations in connectivity within and between ICNs produced by the emotion regulation strategy of reappraisal. In order to gain a comprehensive picture of connectivity changes, we utilized connectomic psychophysiological interactions (PPI), a whole-brain generalization of standard single-seed PPI methods. In particular, we quantified PPI connectivity pair-wise across 837 ROIs placed throughout the cortex. We found that compared to maintaining one's emotional responses, engaging in reappraisal produced robust and distributed alterations in functional connections involving visual, dorsal attention, frontoparietal, and default networks. Visual network in particular increased connectivity with multiple ICNs including dorsal attention and default networks. We interpret these findings in terms of the role of these networks in mediating critical constituent processes in emotion regulation, including visual processing, stimulus salience, attention control, and interpretation and contextualization of stimuli. Our results add a new network perspective to our understanding of the neural underpinnings of emotion regulation, and highlight that connectomic methods can play a valuable role in comprehensively investigating modulation of connectivity across task conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Abnormal connectivity between attentional, language and auditory networks in schizophrenia

    NARCIS (Netherlands)

    Liemburg, Edith J.; Vercammen, Ans; Ter Horst, Gert J.; Curcic-Blake, Branislava; Knegtering, Henderikus; Aleman, Andre

    Brain circuits involved in language processing have been suggested to be compromised in patients with schizophrenia. This does not only include regions subserving language production and perception, but also auditory processing and attention. We investigated resting state network connectivity of

  5. The Connect Effect Building Strong Personal, Professional, and Virtual Networks

    CERN Document Server

    Dulworth, Michael

    2008-01-01

    Entrepreneur and executive development expert Mike Dulworth's THE CONNECT EFFECT provides readers with a simple framework and practical tools for developing that crucial competitive advantage: a high-quality personal, professional/organizational and virtual network.

  6. Interhemispheric Functional Brain Connectivity in Neonates with Prenatal Alcohol Exposure: Preliminary Findings.

    Science.gov (United States)

    Donald, Kirsten A; Ipser, Jonathan C; Howells, Fleur M; Roos, Annerine; Fouche, Jean-Paul; Riley, Edward P; Koen, Nastassja; Woods, Roger P; Biswal, Bharat; Zar, Heather J; Narr, Katherine L; Stein, Dan J

    2016-01-01

    Children exposed to alcohol in utero demonstrate reduced white matter microstructural integrity. While early evidence suggests altered functional brain connectivity in the lateralization of motor networks in school-age children with prenatal alcohol exposure (PAE), the specific effects of alcohol exposure on the establishment of intrinsic connectivity in early infancy have not been explored. Sixty subjects received functional imaging at 2 to 4 weeks of age for 6 to 8 minutes during quiet natural sleep. Thirteen alcohol-exposed (PAE) and 14 age-matched control (CTRL) participants with usable data were included in a multivariate model of connectivity between sensorimotor intrinsic functional connectivity networks. Seed-based analyses of group differences in interhemispheric connectivity of intrinsic motor networks were also conducted. The Dubowitz neurological assessment was performed at the imaging visit. Alcohol exposure was associated with significant increases in connectivity between somatosensory, motor networks, brainstem/thalamic, and striatal intrinsic networks. Reductions in interhemispheric connectivity of motor and somatosensory networks did not reach significance. Although results are preliminary, findings suggest PAE may disrupt the temporal coherence in blood oxygenation utilization in intrinsic networks underlying motor performance in newborn infants. Studies that employ longitudinal designs to investigate the effects of in utero alcohol exposure on the evolving resting-state networks will be key in establishing the distribution and timing of connectivity disturbances already described in older children. Copyright © 2016 by the Research Society on Alcoholism.

  7. Breakdown of the brain's functional network modularity with awareness

    National Research Council Canada - National Science Library

    Godwin, Douglass; Barry, Robert L; Marois, René

    2015-01-01

    ... performed a simple masked target detection task. We found that awareness of a visual target is associated with a degradation of the modularity of the brain's functional networks brought about by an increase in intermodular functional connectivity...

  8. Dysregulation of Microtubule Stability Impairs Morphofunctional Connectivity in Primary Neuronal Networks.

    Science.gov (United States)

    Verstraelen, Peter; Detrez, Jan R; Verschuuren, Marlies; Kuijlaars, Jacobine; Nuydens, Rony; Timmermans, Jean-Pierre; De Vos, Winnok H

    2017-01-01

    Functionally related neurons assemble into connected networks that process and transmit electrochemical information. To do this in a coordinated manner, the number and strength of synaptic connections is tightly regulated. Synapse function relies on the microtubule (MT) cytoskeleton, the dynamics of which are in turn controlled by a plethora of MT-associated proteins, including the MT-stabilizing protein Tau. Although mutations in the Tau-encoding MAPT gene underlie a set of neurodegenerative disorders, termed tauopathies, the exact contribution of MT dynamics and the perturbation thereof to neuronal network connectivity has not yet been scrutinized. Therefore, we investigated the impact of targeted perturbations of MT stability on morphological (e.g., neurite- and synapse density) and functional (e.g., synchronous calcium bursting) correlates of connectivity in networks of primary hippocampal neurons. We found that treatment with MT-stabilizing or -destabilizing compounds impaired morphofunctional connectivity in a reversible manner. We also discovered that overexpression of MAPT induced significant connectivity defects, which were accompanied by alterations in MT dynamics and increased resistance to pharmacological MT depolymerization. Overexpression of a MAPT variant harboring the P301L point mutation in the MT-binding domain did far less, directly linking neuronal connectivity with Tau's MT binding affinity. Our results show that MT stability is a vulnerable node in tauopathies and that its precise pharmacological tuning may positively affect neuronal network connectivity. However, a critical balance in MT turnover causes it to be a difficult therapeutic target with a narrow operating window.

  9. Further evidence of alerted default network connectivity and association with theory of mind ability in schizophrenia.

    Science.gov (United States)

    Mothersill, Omar; Tangney, Noreen; Morris, Derek W; McCarthy, Hazel; Frodl, Thomas; Gill, Michael; Corvin, Aiden; Donohoe, Gary

    2017-06-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) has repeatedly shown evidence of altered functional connectivity of large-scale networks in schizophrenia. The relationship between these connectivity changes and behaviour (e.g. symptoms, neuropsychological performance) remains unclear. Functional connectivity in 27 patients with schizophrenia or schizoaffective disorder, and 25 age and gender matched healthy controls was examined using rs-fMRI. Based on seed regions from previous studies, we examined functional connectivity of the default, cognitive control, affective and attention networks. Effects of symptom severity and theory of mind performance on functional connectivity were also examined. Patients showed increased connectivity between key nodes of the default network including the precuneus and medial prefrontal cortex compared to controls (ptheory of mind performance were both associated with altered connectivity of default regions within the patient group (ptheory of mind performance. Extending these findings by examining the effects of emerging social cognition treatments on both default connectivity and theory of mind performance is now an important goal for research. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Altered cerebellar functional connectivity in remitted bipolar disorder: A resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Wang, Ying; Zhong, Shuming; Chen, Guanmao; Liu, Tao; Zhao, Lianping; Sun, Yao; Jia, Yanbin; Huang, Li

    2017-12-01

    Several recent studies have reported a strong association between the cerebellar structural and functional abnormalities and psychiatric disorders. However, there are no studies to investigate possible changes in cerebellar functional connectivity in bipolar disorder. This study aimed to examine the whol