WorldWideScience

Sample records for network functional connectivity

  1. Network structure shapes spontaneous functional connectivity dynamics.

    Science.gov (United States)

    Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R

    2015-04-08

    The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.

  2. Light Manipulation in Metallic Nanowire Networks with Functional Connectivity

    KAUST Repository

    Galinski, Henning

    2016-12-27

    Guided by ideas from complex systems, a new class of network metamaterials is introduced for light manipulation, which are based on the functional connectivity among heterogeneous subwavelength components arranged in complex networks. The model system is a nanonetwork formed by dealloying a metallic thin film. The connectivity of the network is deterministically controlled, enabling the formation of tunable absorbing states.

  3. Light Manipulation in Metallic Nanowire Networks with Functional Connectivity

    KAUST Repository

    Galinski, Henning; Fratalocchi, Andrea; Dö beli, Max; Capasso, Federico

    2016-01-01

    Guided by ideas from complex systems, a new class of network metamaterials is introduced for light manipulation, which are based on the functional connectivity among heterogeneous subwavelength components arranged in complex networks. The model

  4. Scholastic performance and functional connectivity of brain networks in children.

    Directory of Open Access Journals (Sweden)

    Laura Chaddock-Heyman

    Full Text Available One of the keys to understanding scholastic success is to determine the neural processes involved in school performance. The present study is the first to use a whole-brain connectivity approach to explore whether functional connectivity of resting state brain networks is associated with scholastic performance in seventy-four 7- to 9-year-old children. We demonstrate that children with higher scholastic performance across reading, math and language have more integrated and interconnected resting state networks, specifically the default mode network, salience network, and frontoparietal network. To add specificity, core regions of the dorsal attention and visual networks did not relate to scholastic performance. The results extend the cognitive role of brain networks in children as well as suggest the importance of network connectivity in scholastic success.

  5. Hyper-connectivity of functional networks for brain disease diagnosis.

    Science.gov (United States)

    Jie, Biao; Wee, Chong-Yaw; Shen, Dinggang; Zhang, Daoqiang

    2016-08-01

    Exploring structural and functional interactions among various brain regions enables better understanding of pathological underpinnings of neurological disorders. Brain connectivity network, as a simplified representation of those structural and functional interactions, has been widely used for diagnosis and classification of neurodegenerative diseases, especially for Alzheimer's disease (AD) and its early stage - mild cognitive impairment (MCI). However, the conventional functional connectivity network is usually constructed based on the pairwise correlation among different brain regions and thus ignores their higher-order relationships. Such loss of high-order information could be important for disease diagnosis, since neurologically a brain region predominantly interacts with more than one other brain regions. Accordingly, in this paper, we propose a novel framework for estimating the hyper-connectivity network of brain functions and then use this hyper-network for brain disease diagnosis. Here, the functional connectivity hyper-network denotes a network where each of its edges representing the interactions among multiple brain regions (i.e., an edge can connect with more than two brain regions), which can be naturally represented by a hyper-graph. Specifically, we first construct connectivity hyper-networks from the resting-state fMRI (R-fMRI) time series by using sparse representation. Then, we extract three sets of brain-region specific features from the connectivity hyper-networks, and further exploit a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Finally, we use multi-kernel support vector machine (SVM) for classification. The experimental results on both MCI dataset and attention deficit hyperactivity disorder (ADHD) dataset demonstrate that, compared with the conventional connectivity network-based methods, the proposed method can not only improve the classification performance, but also help

  6. Methylphenidate Modulates Functional Network Connectivity to Enhance Attention

    Science.gov (United States)

    Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Constable, R. Todd; Li, Chiang-Shan R.; Chun, Marvin M.

    2016-01-01

    Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. SIGNIFICANCE STATEMENT Recent work identified a promising neuromarker of sustained attention based on whole

  7. Methylphenidate Modulates Functional Network Connectivity to Enhance Attention

    OpenAIRE

    Rosenberg, Monica D.; Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Constable, R. Todd; Li, Chiang-Shan R.; Chun, Marvin M.

    2016-01-01

    Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained...

  8. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.

    Science.gov (United States)

    Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf

    2018-04-01

    Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.

  9. Genes2FANs: connecting genes through functional association networks

    Science.gov (United States)

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  10. Graph theoretical analysis of resting magnetoencephalographic functional connectivity networks

    Directory of Open Access Journals (Sweden)

    Lindsay eRutter

    2013-07-01

    Full Text Available Complex networks have been observed to comprise small-world properties, believed to represent an optimal organization of local specialization and global integration of information processing at reduced wiring cost. Here, we applied magnitude squared coherence to resting magnetoencephalographic time series in reconstructed source space, acquired from controls and patients with schizophrenia, and generated frequency-dependent adjacency matrices modeling functional connectivity between virtual channels. After configuring undirected binary and weighted graphs, we found that all human networks demonstrated highly localized clustering and short characteristic path lengths. The most conservatively thresholded networks showed efficient wiring, with topographical distance between connected vertices amounting to one-third as observed in surrogate randomized topologies. Nodal degrees of the human networks conformed to a heavy-tailed exponentially truncated power-law, compatible with the existence of hubs, which included theta and alpha bilateral cerebellar tonsil, beta and gamma bilateral posterior cingulate, and bilateral thalamus across all frequencies. We conclude that all networks showed small-worldness, minimal physical connection distance, and skewed degree distributions characteristic of physically-embedded networks, and that these calculations derived from graph theoretical mathematics did not quantifiably distinguish between subject populations, independent of bandwidth. However, post-hoc measurements of edge computations at the scale of the individual vertex revealed trends of reduced gamma connectivity across the posterior medial parietal cortex in patients, an observation consistent with our prior resting activation study that found significant reduction of synthetic aperture magnetometry gamma power across similar regions. The basis of these small differences remains unclear.

  11. Quetiapine modulates functional connectivity in brain aggression networks.

    Science.gov (United States)

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Li Liu

    Full Text Available BACKGROUND: Numerous studies have demonstrated the higher-order functions of the cerebellum, including emotion regulation and cognitive processing, and have indicated that the cerebellum should therefore be included in the pathophysiological models of major depressive disorder. The aim of this study was to compare the resting-state functional connectivity of the cerebellum in adults with major depression and healthy controls. METHODS: Twenty adults with major depression and 20 gender-, age-, and education-matched controls were investigated using seed-based resting-state functional connectivity magnetic resonance imaging. RESULTS: Compared with the controls, depressed patients showed significantly increased functional connectivity between the cerebellum and the temporal poles. However, significantly reduced cerebellar functional connectivity was observed in the patient group in relation to both the default-mode network, mainly including the ventromedial prefrontal cortex and the posterior cingulate cortex/precuneus, and the executive control network, mainly including the superior frontal cortex and orbitofrontal cortex. Moreover, the Hamilton Depression Rating Scale score was negatively correlated with the functional connectivity between the bilateral Lobule VIIb and the right superior frontal gyrus in depressed patients. CONCLUSIONS: This study demonstrated increased cerebellar coupling with the temporal poles and reduced coupling with the regions in the default-mode and executive control networks in adults with major depression. These differences between patients and controls could be associated with the emotional disturbances and cognitive control function deficits that accompany major depression. Aberrant cerebellar connectivity during major depression may also imply a substantial role for the cerebellum in the pathophysiological models of depression.

  13. Mutual Connectivity Analysis (MCA) Using Generalized Radial Basis Function Neural Networks for Nonlinear Functional Connectivity Network Recovery in Resting-State Functional MRI.

    Science.gov (United States)

    DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel

    2016-03-29

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  14. Link prediction boosted psychiatry disorder classification for functional connectivity network

    Science.gov (United States)

    Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang

    2017-02-01

    Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.

  15. MDD diagnosis based on partial-brain functional connection network

    Science.gov (United States)

    Yan, Gaoliang; Hu, Hailong; Zhao, Xiang; Zhang, Lin; Qu, Zehui; Li, Yantao

    2018-04-01

    Artificial intelligence (AI) is a hotspot in computer science research nowadays. To apply AI technology in all industries has been the developing direction for researchers. Major depressive disorder (MDD) is a common disease of serious mental disorders. The World Health Organization (WHO) reports that MDD is projected to become the second most common cause of death and disability by 2020. At present, the way of MDD diagnosis is single. Applying AI technology to MDD diagnosis and pathophysiological research will speed up the MDD research and improve the efficiency of MDD diagnosis. In this study, we select the higher degree of brain network functional connectivity by statistical methods. And our experiments show that the average accuracy of Logistic Regression (LR) classifier using feature filtering reaches 88.48%. Compared with other classification methods, both the efficiency and accuracy of this method are improved, which will greatly improve the process of MDD diagnose. In these experiments, we also define the brain regions associated with MDD, which plays a vital role in MDD pathophysiological research.

  16. Quantifying Individual Brain Connectivity with Functional Principal Component Analysis for Networks

    OpenAIRE

    Petersen, Alexander; Zhao, Jianyang; Carmichael, Owen; Müller, Hans-Georg

    2016-01-01

    In typical functional connectivity studies, connections between voxels or regions in the brain are represented as edges in a network. Networks for different subjects are constructed at a given graph density and are summarized by some network measure such as path length. Examining these summary measures for many density values yields samples of connectivity curves, one for each individual. This has led to the adoption of basic tools of functional data analysis, most commonly to compare control...

  17. Multimodal functional network connectivity: an EEG-fMRI fusion in network space.

    Directory of Open Access Journals (Sweden)

    Xu Lei

    Full Text Available EEG and fMRI recordings measure the functional activity of multiple coherent networks distributed in the cerebral cortex. Identifying network interaction from the complementary neuroelectric and hemodynamic signals may help to explain the complex relationships between different brain regions. In this paper, multimodal functional network connectivity (mFNC is proposed for the fusion of EEG and fMRI in network space. First, functional networks (FNs are extracted using spatial independent component analysis (ICA in each modality separately. Then the interactions among FNs in each modality are explored by Granger causality analysis (GCA. Finally, fMRI FNs are matched to EEG FNs in the spatial domain using network-based source imaging (NESOI. Investigations of both synthetic and real data demonstrate that mFNC has the potential to reveal the underlying neural networks of each modality separately and in their combination. With mFNC, comprehensive relationships among FNs might be unveiled for the deep exploration of neural activities and metabolic responses in a specific task or neurological state.

  18. Functional organization of intrinsic connectivity networks in Chinese-chess experts.

    Science.gov (United States)

    Duan, Xujun; Long, Zhiliang; Chen, Huafu; Liang, Dongmei; Qiu, Lihua; Huang, Xiaoqi; Liu, Timon Cheng-Yi; Gong, Qiyong

    2014-04-16

    The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low-frequency coherent neuronal fluctuations during a resting state condition. Accumulating evidence suggests that the overall organization of functional connectivity networks is associated with individual differences in cognitive performance and prior experience. Such an association raises the question of how cognitive expertise exerts an influence on the topological properties of large-scale functional networks. To address this question, we examined the overall organization of brain functional networks in 20 grandmaster and master level Chinese-chess players (GM/M) and twenty novice players, by means of resting-state functional connectivity and graph theoretical analyses. We found that, relative to novices, functional connectivity was increased in GM/Ms between basal ganglia, thalamus, hippocampus, and several parietal and temporal areas, suggesting the influence of cognitive expertise on intrinsic connectivity networks associated with learning and memory. Furthermore, we observed economical small-world topology in the whole-brain functional connectivity networks in both groups, but GM/Ms exhibited significantly increased values of normalized clustering coefficient which resulted in increased small-world topology. These findings suggest an association between the functional organization of brain networks and individual differences in cognitive expertise, which might provide further evidence of the mechanisms underlying expert behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Intermittent Theta-Burst Stimulation of the Lateral Cerebellum Increases Functional Connectivity of the Default Network

    Science.gov (United States)

    Farzan, Faranak; Eldaief, Mark C.; Schmahmann, Jeremy D.; Pascual-Leone, Alvaro

    2014-01-01

    Cerebral cortical intrinsic connectivity networks share topographically arranged functional connectivity with the cerebellum. However, the contribution of cerebellar nodes to distributed network organization and function remains poorly understood. In humans, we applied theta-burst transcranial magnetic stimulation, guided by subject-specific connectivity, to regions of the cerebellum to evaluate the functional relevance of connections between cerebellar and cerebral cortical nodes in different networks. We demonstrate that changing activity in the human lateral cerebellar Crus I/II modulates the cerebral default mode network, whereas vermal lobule VII stimulation influences the cerebral dorsal attention system. These results provide novel insights into the distributed, but anatomically specific, modulatory impact of cerebellar effects on large-scale neural network function. PMID:25186750

  20. Changes of functional connectivity in the left frontoparietal network following aphasic stroke

    Directory of Open Access Journals (Sweden)

    Dan eZhu

    2014-05-01

    Full Text Available Language is an essential higher cognitive function supported by large-scale brain networks. In this study, we investigated functional connectivity changes in the left frontoparietal network (LFPN, a language-cognition related brain network in aphasic patients. We enrolled thirteen aphasic patients who had undergone a stroke in the left hemisphere and age-, gender-, educational level-matched controls and analyzed the data by integrating independent component analysis (ICA with a network connectivity analysis method. Resting state functional magnetic resonance imaging (fMRI and clinical evaluation of language function were assessed at two stages: one and two months after stroke onset. We found reduced functional connectivity between the LFPN and the right middle frontal cortex, medial frontal cortex and right inferior frontal cortex in aphasic patients as compared to controls. Correlation analysis showed that stronger functional connectivity between the LFPN and the right middle frontal cortex and medial frontal cortex coincided with more preserved language comprehension ability after stroke. Network connectivity analysis showed reduced LFPN connectivity as indicated by the mean network connectivity index of key regions in the LFPN of aphasic patients. The decreased LFPN connectivity in stroke patients was significantly associated with the impairment of language function in their comprehension ability. We also found significant association between recovery of comprehension ability and the mean changes in intrinsic LFPN connectivity. Our findings suggest that brain lesions may influence language comprehension by altering functional connectivity between regions and that the patterns of abnormal functional connectivity may contribute to the recovery of language deficits.

  1. Abnormal Functional Connectivity Between Default and Salience Networks in Pediatric Bipolar Disorder.

    Science.gov (United States)

    Lopez-Larson, Melissa P; Shah, Lubdha M; Weeks, Howard R; King, Jace B; Mallik, Atul K; Yurgelun-Todd, Deborah A; Anderson, Jeffrey S

    2017-01-01

    Pediatric bipolar disorder (PBD) (occurring prior to 18 years of age) is a developmental brain disorder that is among the most severe and disabling psychiatric conditions affecting youth. Despite increasing evidence that brain connectivity is atypical in adults with bipolar disorder, it is not clear how brain connectivity may be altered in youths with PBD. This cross-sectional resting-state functional magnetic resonance imaging study included 80 participants recruited over 4 years: 32 youths with PBD, currently euthymic (13 males; 15.1 years old), and 48 healthy control (HC) subjects (27 males; 14.5 years old). Functional connectivity between eight major intrinsic connectivity networks, along with connectivity measurements between 333 brain regions, was compared between PBD and HC subjects. Additionally, connectivity differences were evaluated between PBD and HC samples in negatively correlated connections, as defined by 839 subjects of the Human Connectome Project dataset. We found increased inter- but not intranetwork functional connectivity in PBD between the default mode and salience networks (p = .0017). Throughout the brain, atypical connections showed failure to develop anticorrelation with age during adolescence in PBD but not HC samples among connections that exhibit negative correlation in adulthood. Youths with PBD demonstrate reduced anticorrelation between default mode and salience networks. Further evaluation of the interaction between these networks is needed in development and with other mood states such as depression and mania to clarify if this atypical connectivity is a PBD trait biomarker. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Progressively Disrupted Brain Functional Connectivity Network in Subcortical Ischemic Vascular Cognitive Impairment Patients.

    Science.gov (United States)

    Sang, Linqiong; Chen, Lin; Wang, Li; Zhang, Jingna; Zhang, Ye; Li, Pengyue; Li, Chuanming; Qiu, Mingguo

    2018-01-01

    Cognitive impairment caused by subcortical ischemic vascular disease (SIVD) has been elucidated by many neuroimaging studies. However, little is known regarding the changes in brain functional connectivity networks in relation to the severity of cognitive impairment in SIVD. In the present study, 20 subcortical ischemic vascular cognitive impairment no dementia patients (SIVCIND) and 20 dementia patients (SIVaD) were enrolled; additionally, 19 normal controls were recruited. Each participant underwent a resting-state functional MRI scan. Whole-brain functional networks were analyzed with graph theory and network-based statistics (NBS) to study the functional organization of networks and find alterations in functional connectivity among brain regions. After adjustments for age, gender, and duration of formal education, there were significant group differences for two network functional organization indices, global efficiency and local efficiency, which decreased (NC > SIVCIND > SIVaD) as cognitive impairment worsened. Between-group differences in functional connectivity (NBS corrected, p  impairment worsened, with an increased number of decreased connections between brain regions. We also observed more reductions in nodal efficiency in the prefrontal and temporal cortices for SIVaD than for SIVCIND. These findings indicated a progressively disrupted pattern of the brain functional connectivity network with increased cognitive impairment and showed promise for the development of reliable biomarkers of network metric changes related to cognitive impairment caused by SIVD.

  3. Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture.

    Science.gov (United States)

    Meszlényi, Regina J; Buza, Krisztian; Vidnyánszky, Zoltán

    2017-01-01

    Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.

  4. Default mode network connectivity as a function of familial and environmental risk for psychotic disorder.

    Science.gov (United States)

    Peeters, Sanne C T; van de Ven, Vincent; Gronenschild, Ed H B M; Patel, Ameera X; Habets, Petra; Goebel, Rainer; van Os, Jim; Marcelis, Machteld

    2015-01-01

    Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN), is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder. Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC) seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk), group × environmental exposure (to cannabis, developmental trauma and urbanicity) and symptomatology. There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL), the precuneus (PCu) and the medial prefrontal cortex (MPFC). Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical) psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity. Increased functional connectivity in individuals with (increased risk for) psychotic disorder may reflect trait-related network alterations. The within-network "connectivity at rest" intermediate phenotype was not associated with (subclinical) psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure.

  5. Aberrant functional connectivity of resting state networks in transient ischemic attack.

    Directory of Open Access Journals (Sweden)

    Rong Li

    Full Text Available BACKGROUND: Transient ischemic attack (TIA is usually defined as a neurologic ischemic disorder without permanent cerebral infarction. Studies have showed that patients with TIA can have lasting cognitive functional impairment. Inherent brain activity in the resting state is spatially organized in a set of specific coherent patterns named resting state networks (RSNs, which epitomize the functional architecture of memory, language, attention, visual, auditory and somato-motor networks. Here, we aimed to detect differences in RSNs between TIA patients and healthy controls (HCs. METHODS: Twenty one TIA patients suffered an ischemic event and 21 matched HCs were enrolled in the study. All subjects were investigated using cognitive tests, psychiatric tests and functional magnetic resonance imaging (fMRI. Independent component analysis (ICA was adopted to acquire the eight brain RSNs. Then one-sample t-tests were calculated in each group to gather the spatial maps of each RSNs, followed by second level analysis to investigate statistical differences on RSNs between twenty one TIA patients and 21 controls. Furthermore, a correlation analysis was performed to explore the relationship between functional connectivity (FC and cognitive and psychiatric scales in TIA group. RESULTS: Compared with the controls, TIA patients exhibited both decreased and increased functional connectivity in default mode network (DMN and self-referential network (SRN, and decreased functional connectivity in dorsal attention network (DAN, central-executive network (CEN, core network (CN, somato-motor network (SMN, visual network (VN and auditory network (AN. There was no correlation between neuropsychological scores and functional connectivity in regions of RSNs. CONCLUSIONS: We observed selective impairments of RSN intrinsic FC in TIA patients, whose all eight RSNs had aberrant functional connectivity. These changes indicate that TIA is a disease with widely abnormal brain

  6. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    Science.gov (United States)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral

  7. Network organization is globally atypical in autism: A graph theory study of intrinsic functional connectivity.

    Science.gov (United States)

    Keown, Christopher L; Datko, Michael C; Chen, Colleen P; Maximo, José Omar; Jahedi, Afrooz; Müller, Ralph-Axel

    2017-01-01

    Despite abundant evidence of brain network anomalies in autism spectrum disorder (ASD), findings have varied from broad functional underconnectivity to broad overconnectivity. Rather than pursuing overly simplifying general hypotheses ('under' vs. 'over'), we tested the hypothesis of atypical network distribution in ASD (i.e., participation of unusual loci in distributed functional networks). We used a selective high-quality data subset from the ABIDE datashare (including 111 ASD and 174 typically developing [TD] participants) and several graph theory metrics. Resting state functional MRI data were preprocessed and analyzed for detection of low-frequency intrinsic signal correlations. Groups were tightly matched for available demographics and head motion. As hypothesized, the Rand Index (reflecting how similar network organization was to a normative set of networks) was significantly lower in ASD than TD participants. This was accounted for by globally reduced cohesion and density, but increased dispersion of networks. While differences in hub architecture did not survive correction, rich club connectivity (among the hubs) was increased in the ASD group. Our findings support the model of reduced network integration (connectivity with networks) and differentiation (or segregation; based on connectivity outside network boundaries) in ASD. While the findings applied at the global level, they were not equally robust across all networks and in one case (greater cohesion within ventral attention network in ASD) even reversed.

  8. Functional network connectivity underlying food processing: disturbed salience and visual processing in overweight and obese adults.

    Science.gov (United States)

    Kullmann, Stephanie; Pape, Anna-Antonia; Heni, Martin; Ketterer, Caroline; Schick, Fritz; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert; Veit, Ralf

    2013-05-01

    In order to adequately explore the neurobiological basis of eating behavior of humans and their changes with body weight, interactions between brain areas or networks need to be investigated. In the current functional magnetic resonance imaging study, we examined the modulating effects of stimulus category (food vs. nonfood), caloric content of food, and body weight on the time course and functional connectivity of 5 brain networks by means of independent component analysis in healthy lean and overweight/obese adults. These functional networks included motor sensory, default-mode, extrastriate visual, temporal visual association, and salience networks. We found an extensive modulation elicited by food stimuli in the 2 visual and salience networks, with a dissociable pattern in the time course and functional connectivity between lean and overweight/obese subjects. Specifically, only in lean subjects, the temporal visual association network was modulated by the stimulus category and the salience network by caloric content, whereas overweight and obese subjects showed a generalized augmented response in the salience network. Furthermore, overweight/obese subjects showed changes in functional connectivity in networks important for object recognition, motivational salience, and executive control. These alterations could potentially lead to top-down deficiencies driving the overconsumption of food in the obese population.

  9. Altered Functional Connectivity of the Default Mode Network in Low-Empathy Subjects.

    Science.gov (United States)

    Kim, Seung Jun; Kim, Sung Eun; Kim, Hyo Eun; Han, Kiwan; Jeong, Bumseok; Kim, Jae Jin; Namkoong, Kee; Kim, Ji Woong

    2017-09-01

    Empathy is the ability to identify with or make a vicariously experience of another person's feelings or thoughts based on memory and/or self-referential mental simulation. The default mode network in particular is related to self-referential empathy. In order to elucidate the possible neural mechanisms underlying empathy, we investigated the functional connectivity of the default mode network in subjects from a general population. Resting state functional magnetic resonance imaging data were acquired from 19 low-empathy subjects and 18 medium-empathy subjects. An independent component analysis was used to identify the default mode network, and differences in functional connectivity strength were compared between the two groups. The low-empathy group showed lower functional connectivity of the medial prefrontal cortex and anterior cingulate cortex (Brodmann areas 9 and 32) within the default mode network, compared to the medium-empathy group. The results of the present study suggest that empathy is related to functional connectivity of the medial prefrontal cortex/anterior cingulate cortex within the default mode network. Functional decreases in connectivity among low-empathy subjects may reflect an impairment of self-referential mental simulation. © Copyright: Yonsei University College of Medicine 2017.

  10. Aberrant Resting-State Functional Connectivity in the Salience Network of Adolescent Chronic Fatigue Syndrome.

    Directory of Open Access Journals (Sweden)

    Laura Anne Wortinger

    Full Text Available Neural network investigations are currently absent in adolescent chronic fatigue syndrome (CFS. In this study, we examine whether the core intrinsic connectivity networks (ICNs are altered in adolescent CFS patients. Eighteen adolescent patients with CFS and 18 aged matched healthy adolescent control subjects underwent resting-state functional magnetic resonance imaging (rfMRI. Data was analyzed using dual-regression independent components analysis, which is a data-driven approach for the identification of independent brain networks. Intrinsic connectivity was evaluated in the default mode network (DMN, salience network (SN, and central executive network (CEN. Associations between network characteristics and symptoms of CFS were also explored. Adolescent CFS patients displayed a significant decrease in SN functional connectivity to the right posterior insula compared to healthy comparison participants, which was related to fatigue symptoms. Additionally, there was an association between pain intensity and SN functional connectivity to the left middle insula and caudate that differed between adolescent patients and healthy comparison participants. Our findings of insula dysfunction and its association with fatigue severity and pain intensity in adolescent CFS demonstrate an aberration of the salience network which might play a role in CFS pathophysiology.

  11. Age Differences in the Intrinsic Functional Connectivity of Default Network Subsystems

    Directory of Open Access Journals (Sweden)

    Karen eCampbell

    2013-11-01

    Full Text Available Recent work suggests that the default mode network (DMN includes two core regions, the ventromedial prefrontal cortex (vmPFC and posterior cingulate cortex (PCC, and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL subsystem, active during remembering and future projection, and a dorsomedial PFC (dmPFC subsystem, active during self-reference. The PCC has been further subdivided into ventral (vPCC and dorsal (dPCC regions that are more strongly connected with the DMN and cognitive control networks, respectively. The goal of this study was to examine age differences in resting state functional connectivity within these subsystems. After applying a rigorous procedure to reduce the effects of head motion, we used a multivariate technique to identify both common and unique patterns of functional connectivity in the MTL vs. the dmPFC, and in vPCC vs. dPCC. All four areas had robust functional connectivity with other DMN regions, and each also showed distinct connectivity patterns in both age groups. Young and older adults had equivalent functional connectivity in the MTL subsystem. Older adults showed weaker connectivity in the vPCC and dmPFC subsystems, particularly with other DMN areas, but stronger connectivity than younger adults in the dPCC subsystem, which included areas involved in cognitive control. Our data provide evidence for distinct subsystems involving DMN nodes, which are maintained with age. Nevertheless, there are age differences in the strength of functional connectivity within these subsystems, supporting prior evidence that DMN connectivity is particularly vulnerable to age, whereas connectivity involving cognitive control regions is relatively maintained. These results suggest an age difference in the integrated activity among brain networks that can have implications for cognition in older adults.

  12. Data for default network reduced functional connectivity in meditators, negatively correlated with meditation expertise

    Directory of Open Access Journals (Sweden)

    Aviva Berkovich-Ohana

    2016-09-01

    Full Text Available FMRI data described here was recorded during resting-state in Mindfulness Meditators (MM and control participants (see “Task-induced activity and resting-state fluctuations undergo similar alterations in visual and DMN areas of long-term meditators” Berkovich-Ohana et al. (2016 [1] for details. MM participants were also scanned during meditation. Analyses focused on functional connectivity within and between the default mode network (DMN and visual network (Vis. Here we show data demonstrating that: 1 Functional connectivity within the DMN and the Visual networks were higher in the control group than in the meditators; 2 Data show an increase for the functional connectivity between the DMN and the Visual networks in the meditators compared to controls; 3 Data demonstrate that functional connectivity both within and between networks reduces during meditation, compared to the resting-state; and 4 A significant negative correlation was found between DMN functional connectivity and meditation expertise. The reader is referred to Berkovich-Ohana et al. (2016 [1] for further interpretation and discussion.

  13. Developmental Reorganization of the Core and Extended Face Networks Revealed by Global Functional Connectivity.

    Science.gov (United States)

    Wang, Xu; Zhu, Qi; Song, Yiying; Liu, Jia

    2017-08-28

    Prior studies on development of functional specialization in human brain mainly focus on age-related increases in regional activation and connectivity among regions. However, a few recent studies on the face network demonstrate age-related decrease in face-specialized activation in the extended face network (EFN), in addition to increase in activation in the core face network (CFN). Here we used a voxel-based global brain connectivity approach to investigate whether development of the face network exhibited both increase and decrease in network connectivity. We found the voxel-wise resting-state functional connectivity (FC) within the CFN increased with age in bilateral posterior superior temporal sulcus, suggesting the integration of the CFN during development. Interestingly, the FC of the voxels in the EFN to the right fusiform face area and occipital face area decreased with age, suggesting that the CFN segregated from the EFN during development. Moreover, the age-related connectivity in the CFN was related to behavioral performance in face processing. Overall, our study demonstrated developmental reorganization of the face network achieved by both integration within the CFN and segregation of the CFN from the EFN, which may account for the simultaneous increases and decreases in neural activation during the development of the face network. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Network topology and functional connectivity disturbances precede the onset of Huntington's disease.

    Science.gov (United States)

    Harrington, Deborah L; Rubinov, Mikail; Durgerian, Sally; Mourany, Lyla; Reece, Christine; Koenig, Katherine; Bullmore, Ed; Long, Jeffrey D; Paulsen, Jane S; Rao, Stephen M

    2015-08-01

    Cognitive, motor and psychiatric changes in prodromal Huntington's disease have nurtured the emergent need for early interventions. Preventive clinical trials for Huntington's disease, however, are limited by a shortage of suitable measures that could serve as surrogate outcomes. Measures of intrinsic functional connectivity from resting-state functional magnetic resonance imaging are of keen interest. Yet recent studies suggest circumscribed abnormalities in resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease, despite the spectrum of behavioural changes preceding a manifest diagnosis. The present study used two complementary analytical approaches to examine whole-brain resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease. Network topology was studied using graph theory and simple functional connectivity amongst brain regions was explored using the network-based statistic. Participants consisted of gene-negative controls (n = 16) and prodromal Huntington's disease individuals (n = 48) with various stages of disease progression to examine the influence of disease burden on intrinsic connectivity. Graph theory analyses showed that global network interconnectivity approximated a random network topology as proximity to diagnosis neared and this was associated with decreased connectivity amongst highly-connected rich-club network hubs, which integrate processing from diverse brain regions. However, functional segregation within the global network (average clustering) was preserved. Functional segregation was also largely maintained at the local level, except for the notable decrease in the diversity of anterior insula intermodular-interconnections (participation coefficient), irrespective of disease burden. In contrast, network-based statistic analyses revealed patterns of weakened frontostriatal connections and strengthened frontal-posterior connections that evolved as disease

  15. Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold

    Directory of Open Access Journals (Sweden)

    Cécile Bordier

    2017-08-01

    Full Text Available Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls.

  16. Quantifying Individual Brain Connectivity with Functional Principal Component Analysis for Networks.

    Science.gov (United States)

    Petersen, Alexander; Zhao, Jianyang; Carmichael, Owen; Müller, Hans-Georg

    2016-09-01

    In typical functional connectivity studies, connections between voxels or regions in the brain are represented as edges in a network. Networks for different subjects are constructed at a given graph density and are summarized by some network measure such as path length. Examining these summary measures for many density values yields samples of connectivity curves, one for each individual. This has led to the adoption of basic tools of functional data analysis, most commonly to compare control and disease groups through the average curves in each group. Such group differences, however, neglect the variability in the sample of connectivity curves. In this article, the use of functional principal component analysis (FPCA) is demonstrated to enrich functional connectivity studies by providing increased power and flexibility for statistical inference. Specifically, individual connectivity curves are related to individual characteristics such as age and measures of cognitive function, thus providing a tool to relate brain connectivity with these variables at the individual level. This individual level analysis opens a new perspective that goes beyond previous group level comparisons. Using a large data set of resting-state functional magnetic resonance imaging scans, relationships between connectivity and two measures of cognitive function-episodic memory and executive function-were investigated. The group-based approach was implemented by dichotomizing the continuous cognitive variable and testing for group differences, resulting in no statistically significant findings. To demonstrate the new approach, FPCA was implemented, followed by linear regression models with cognitive scores as responses, identifying significant associations of connectivity in the right middle temporal region with both cognitive scores.

  17. Broca's area network in language function.Broca's area network in language function: A pooling-data connectivity study

    Directory of Open Access Journals (Sweden)

    Byron eBernal

    2015-05-01

    Full Text Available Background and Objective. Modern neuroimaging developments have demonstrated that cognitive functions correlate with brain networks rather than specific areas. The purpose of this paper was to analyze the connectivity of Broca's area based on language tasks. Methods. A connectivity modeling study was performed by pooling data of Broca's activation in language tasks. Fifty-seven papers that included 883 subjects in 84 experiments were analyzed. Analysis of Likelihood Estimates of pooled data was utilized to generate the map; thresholds at p < 0.01 were corrected for multiple comparisons and false discovery rate. Resulting images were co-registered into MNI standard space. Results. A network consisting of 16 clusters of activation was obtained. Main clusters were located in the frontal operculum, left posterior temporal region, supplementary motor area, and the parietal lobe. Less common clusters were seen in the sub-cortical structures including the left thalamus, left putamen, secondary visual areas and the right cerebellum. Conclusions. BA44-related networks involved in language processing were demonstrated utilizing a pooling-data connectivity study. Significance, interpretation and limitations of the results are discussed.

  18. Default-Mode Network Functional Connectivity in Aphasia: Therapy-Induced Neuroplasticity

    Science.gov (United States)

    Marcotte, Karine; Perlbarg, Vincent; Marrelec, Guillaume; Benali, Habib; Ansaldo, Ana Ines

    2013-01-01

    Previous research on participants with aphasia has mainly been based on standard functional neuroimaging analysis. Recent studies have shown that functional connectivity analysis can detect compensatory activity, not revealed by standard analysis. Little is known, however, about the default-mode network in aphasia. In the current study, we studied…

  19. The brain matures with stronger functional connectivity and decreased randomness of its network.

    Directory of Open Access Journals (Sweden)

    Dirk J A Smit

    Full Text Available We investigated the development of the brain's functional connectivity throughout the life span (ages 5 through 71 years by measuring EEG activity in a large population-based sample. Connectivity was established with Synchronization Likelihood. Relative randomness of the connectivity patterns was established with Watts and Strogatz' (1998 graph parameters C (local clustering and L (global path length for alpha (~10 Hz, beta (~20 Hz, and theta (~4 Hz oscillation networks. From childhood to adolescence large increases in connectivity in alpha, theta and beta frequency bands were found that continued at a slower pace into adulthood (peaking at ~50 yrs. Connectivity changes were accompanied by increases in L and C reflecting decreases in network randomness or increased order (peak levels reached at ~18 yrs. Older age (55+ was associated with weakened connectivity. Semi-automatically segmented T1 weighted MRI images of 104 young adults revealed that connectivity was significantly correlated to cerebral white matter volume (alpha oscillations: r = 33, p<01; theta: r = 22, p<05, while path length was related to both white matter (alpha: max. r = 38, p<001 and gray matter (alpha: max. r = 36, p<001; theta: max. r = 36, p<001 volumes. In conclusion, EEG connectivity and graph theoretical network analysis may be used to trace structural and functional development of the brain.

  20. Independent functional connectivity networks underpin food and monetary reward sensitivity in excess weight.

    Science.gov (United States)

    Verdejo-Román, Juan; Fornito, Alex; Soriano-Mas, Carles; Vilar-López, Raquel; Verdejo-García, Antonio

    2017-02-01

    Overvaluation of palatable food is a primary driver of obesity, and is associated with brain regions of the reward system. However, it remains unclear if this network is specialized in food reward, or generally involved in reward processing. We used functional magnetic resonance imaging (fMRI) to characterize functional connectivity during processing of food and monetary rewards. Thirty-nine adults with excess weight and 37 adults with normal weight performed the Willingness to Pay for Food task and the Monetary Incentive Delay task in the fMRI scanner. A data-driven graph approach was applied to compare whole-brain, task-related functional connectivity between groups. Excess weight was associated with decreased functional connectivity during the processing of food rewards in a network involving primarily frontal and striatal areas, and increased functional connectivity during the processing of monetary rewards in a network involving principally frontal and parietal areas. These two networks were topologically and anatomically distinct, and were independently associated with BMI. The processing of food and monetary rewards involve segregated neural networks, and both are altered in individuals with excess weight. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network

    Directory of Open Access Journals (Sweden)

    Fukuda eMegumi

    2015-03-01

    Full Text Available Motor or perceptual learning is known to influence functional connectivity between brain regions and induce short-term changes in the intrinsic functional networks revealed as correlations in slow blood-oxygen-level dependent (BOLD signal fluctuations. However, no cause-and-effect relationship has been elucidated between a specific change in connectivity and a long-term change in global networks. Here, we examine the hypothesis that functional connectivity (i.e. temporal correlation between two regions is increased and preserved for a long time when two regions are simultaneously activated or deactivated. Using the connectivity-neurofeedback training paradigm, subjects successfully learned to increase the correlation of activity between the lateral parietal and primary motor areas, regions that belong to different intrinsic networks and negatively correlated before training under the resting conditions. Furthermore, whole-brain hypothesis-free analysis as well as functional network analyses demonstrated that the correlation in the resting state between these areas as well as the correlation between the intrinsic networks that include the areas increased for at least two months. These findings indicate that the connectivity-neurofeedback training can cause long-term changes in intrinsic connectivity and that intrinsic networks can be shaped by experience-driven modulation of regional correlation.

  2. Inferring the physical connectivity of complex networks from their functional dynamics

    Directory of Open Access Journals (Sweden)

    Holm Liisa

    2010-05-01

    Full Text Available Abstract Background Biological networks, such as protein-protein interactions, metabolic, signalling, transcription-regulatory networks and neural synapses, are representations of large-scale dynamic systems. The relationship between the network structure and functions remains one of the central problems in current multidisciplinary research. Significant progress has been made toward understanding the implication of topological features for the network dynamics and functions, especially in biological networks. Given observations of a network system's behaviours or measurements of its functional dynamics, what can we conclude of the details of physical connectivity of the underlying structure? Results We modelled the network system by employing a scale-free network of coupled phase oscillators. Pairwise phase coherence (PPC was calculated for all the pairs of oscillators to present functional dynamics induced by the system. At the regime of global incoherence, we observed a Significant pairwise synchronization only between two nodes that are physically connected. Right after the onset of global synchronization, disconnected nodes begin to oscillate in a correlated fashion and the PPC of two nodes, either connected or disconnected, depends on their degrees. Based on the observation of PPCs, we built a weighted network of synchronization (WNS, an all-to-all functionally connected network where each link is weighted by the PPC of two oscillators at the ends of the link. In the regime of strong coupling, we observed a Significant similarity in the organization of WNSs induced by systems sharing the same substrate network but different configurations of initial phases and intrinsic frequencies of oscillators. We reconstruct physical network from the WNS by choosing the links whose weights are higher than a given threshold. We observed an optimal reconstruction just before the onset of global synchronization. Finally, we correlated the topology of the

  3. Disrupted functional connectivity in dorsal and ventral attention networks during attention orienting in autism spectrum disorders.

    Science.gov (United States)

    Fitzgerald, Jacqueline; Johnson, Katherine; Kehoe, Elizabeth; Bokde, Arun L W; Garavan, Hugh; Gallagher, Louise; McGrath, Jane

    2015-04-01

    Attention orienting is a cognitive process that facilitates the movement of attention focus from one location to another: this may be impaired in autism spectrum disorder (ASD). Dorsal and ventral attention networks (DAN and VAN) sub-serve the process of attention orienting. This study investigated the functional connectivity of attention orienting in these networks in ASD using the Posner Cueing Task. Twenty-one adolescents with ASD and 21 age and IQ matched controls underwent functional magnetic resonance imaging. A psychophysical interaction (PPI) analysis was implemented to investigate task-dependent functional connectivity, measuring synchronicity of brain regions during the task. Regions of interest (ROI) were selected to explore functional connectivity in the DAN during cue-only conditions and in the VAN during invalid and valid trials. Behaviourally, the ASD and control groups performed the task in a similar manner. Functional MRI results indicated that the ASD and control groups activated similar brain regions. During invalid trials (VAN), the ASD group showed significant positive functional connectivity to multiple brain regions, whilst the control group demonstrated negative connectivity. During valid trials (VAN), the two groups also showed contrasting patterns of connectivity. In the cue-only conditions (DAN), the ASD group showed weaker functional connectivity. The DAN analysis suggests that the ASD group has weaker coherence between brain areas involved in goal-driven, endogenous attention control. The strong positive functional connectivity exhibited by the ASD group in the VAN during the invalid trials suggests that individuals with ASD may generate compensatory mechanisms to achieve neurotypical behaviour. These results support the theory of abnormal cortical connectivity in autism. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.

  4. Network-based analysis reveals functional connectivity related to internet addiction tendency

    Directory of Open Access Journals (Sweden)

    Tanya eWen

    2016-02-01

    Full Text Available IntroductionPreoccupation and compulsive use of the internet can have negative psychological effects, such that it is increasingly being recognized as a mental disorder. The present study employed network-based statistics to explore how whole-brain functional connections at rest is related to the extent of individual’s level of internet addiction, indexed by a self-rated questionnaire. We identified two topologically significant networks, one with connections that are positively correlated with internet addiction tendency, and one with connections negatively correlated with internet addiction tendency. The two networks are interconnected mostly at frontal regions, which might reflect alterations in the frontal region for different aspects of cognitive control (i.e., for control of internet usage and gaming skills. Next, we categorized the brain into several large regional subgroupings, and found that the majority of proportions of connections in the two networks correspond to the cerebellar model of addiction which encompasses the four-circuit model. Lastly, we observed that the brain regions with the most inter-regional connections associated with internet addiction tendency replicate those often seen in addiction literature, and is corroborated by our meta-analysis of internet addiction studies. This research provides a better understanding of large-scale networks involved in internet addiction tendency and shows that pre-clinical levels of internet addiction are associated with similar regions and connections as clinical cases of addiction.

  5. Functional connectivity within and between intrinsic brain networks correlates with trait mind wandering.

    Science.gov (United States)

    Godwin, Christine A; Hunter, Michael A; Bezdek, Matthew A; Lieberman, Gregory; Elkin-Frankston, Seth; Romero, Victoria L; Witkiewitz, Katie; Clark, Vincent P; Schumacher, Eric H

    2017-08-01

    Individual differences across a variety of cognitive processes are functionally associated with individual differences in intrinsic networks such as the default mode network (DMN). The extent to which these networks correlate or anticorrelate has been associated with performance in a variety of circumstances. Despite the established role of the DMN in mind wandering processes, little research has investigated how large-scale brain networks at rest relate to mind wandering tendencies outside the laboratory. Here we examine the extent to which the DMN, along with the dorsal attention network (DAN) and frontoparietal control network (FPCN) correlate with the tendency to mind wander in daily life. Participants completed the Mind Wandering Questionnaire and a 5-min resting state fMRI scan. In addition, participants completed measures of executive function, fluid intelligence, and creativity. We observed significant positive correlations between trait mind wandering and 1) increased DMN connectivity at rest and 2) increased connectivity between the DMN and FPCN at rest. Lastly, we found significant positive correlations between trait mind wandering and fluid intelligence (Ravens) and creativity (Remote Associates Task). We interpret these findings within the context of current theories of mind wandering and executive function and discuss the possibility that certain instances of mind wandering may not be inherently harmful. Due to the controversial nature of global signal regression (GSReg) in functional connectivity analyses, we performed our analyses with and without GSReg and contrast the results from each set of analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Structural and functional properties of a probabilistic model of neuronal connectivity in a simple locomotor network

    Science.gov (United States)

    Merrison-Hort, Robert; Soffe, Stephen R; Borisyuk, Roman

    2018-01-01

    Although, in most animals, brain connectivity varies between individuals, behaviour is often similar across a species. What fundamental structural properties are shared across individual networks that define this behaviour? We describe a probabilistic model of connectivity in the hatchling Xenopus tadpole spinal cord which, when combined with a spiking model, reliably produces rhythmic activity corresponding to swimming. The probabilistic model allows calculation of structural characteristics that reflect common network properties, independent of individual network realisations. We use the structural characteristics to study examples of neuronal dynamics, in the complete network and various sub-networks, and this allows us to explain the basis for key experimental findings, and make predictions for experiments. We also study how structural and functional features differ between detailed anatomical connectomes and those generated by our new, simpler, model (meta-model). PMID:29589828

  7. Reduced Functional Connectivity of Default Mode and Set-Maintenance Networks in Ornithine Transcarbamylase Deficiency.

    Directory of Open Access Journals (Sweden)

    Ileana Pacheco-Colón

    Full Text Available Ornithine transcarbamylase deficiency (OTCD is an X-chromosome linked urea cycle disorder (UCD that causes hyperammonemic episodes leading to white matter injury and impairments in executive functioning, working memory, and motor planning. This study aims to investigate differences in functional connectivity of two resting-state networks--default mode and set-maintenance--between OTCD patients and healthy controls.Sixteen patients with partial OTCD and twenty-two control participants underwent a resting-state scan using 3T fMRI. Combining independent component analysis (ICA and region-of-interest (ROI analyses, we identified the nodes that comprised each network in each group, and assessed internodal connectivity.Group comparisons revealed reduced functional connectivity in the default mode network (DMN of OTCD patients, particularly between the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC node and bilateral inferior parietal lobule (IPL, as well as between the ACC/mPFC node and the posterior cingulate cortex (PCC node. Patients also showed reduced connectivity in the set-maintenance network, especially between right anterior insula/frontal operculum (aI/fO node and bilateral superior frontal gyrus (SFG, as well as between the right aI/fO and ACC and between the ACC and right SFG.Internodal functional connectivity in the DMN and set-maintenance network is reduced in patients with partial OTCD compared to controls, most likely due to hyperammonemia-related white matter damage. Because several of the affected areas are involved in executive functioning, it is postulated that this reduced connectivity is an underlying cause of the deficits OTCD patients display in this cognitive domain.

  8. Network analysis of mesoscale optical recordings to assess regional, functional connectivity.

    Science.gov (United States)

    Lim, Diana H; LeDue, Jeffrey M; Murphy, Timothy H

    2015-10-01

    With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.

  9. Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Yu, Lianchun; De Mazancourt, Marine; Hess, Agathe; Ashadi, Fakhrul R; Klein, Isabelle; Mal, Hervé; Courbage, Maurice; Mangin, Laurence

    2016-08-01

    Breathing involves a complex interplay between the brainstem automatic network and cortical voluntary command. How these brain regions communicate at rest or during inspiratory loading is unknown. This issue is crucial for several reasons: (i) increased respiratory loading is a major feature of several respiratory diseases, (ii) failure of the voluntary motor and cortical sensory processing drives is among the mechanisms that precede acute respiratory failure, (iii) several cerebral structures involved in responding to inspiratory loading participate in the perception of dyspnea, a distressing symptom in many disease. We studied functional connectivity and Granger causality of the respiratory network in controls and patients with chronic obstructive pulmonary disease (COPD), at rest and during inspiratory loading. Compared with those of controls, the motor cortex area of patients exhibited decreased connectivity with their contralateral counterparts and no connectivity with the brainstem. In the patients, the information flow was reversed at rest with the source of the network shifted from the medulla towards the motor cortex. During inspiratory loading, the system was overwhelmed and the motor cortex became the sink of the network. This major finding may help to understand why some patients with COPD are prone to acute respiratory failure. Network connectivity and causality were related to lung function and illness severity. We validated our connectivity and causality results with a mathematical model of neural network. Our findings suggest a new therapeutic strategy involving the modulation of brain activity to increase motor cortex functional connectivity and improve respiratory muscles performance in patients. Hum Brain Mapp 37:2736-2754, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  10. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex.

    Science.gov (United States)

    Yeo, B T Thomas; Krienen, Fenna M; Chee, Michael W L; Buckner, Randy L

    2014-03-01

    The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. © 2013.

  11. Large-scale functional networks connect differently for processing words and symbol strings.

    Science.gov (United States)

    Liljeström, Mia; Vartiainen, Johanna; Kujala, Jan; Salmelin, Riitta

    2018-01-01

    Reconfigurations of synchronized large-scale networks are thought to be central neural mechanisms that support cognition and behavior in the human brain. Magnetoencephalography (MEG) recordings together with recent advances in network analysis now allow for sub-second snapshots of such networks. In the present study, we compared frequency-resolved functional connectivity patterns underlying reading of single words and visual recognition of symbol strings. Word reading emphasized coherence in a left-lateralized network with nodes in classical perisylvian language regions, whereas symbol processing recruited a bilateral network, including connections between frontal and parietal regions previously associated with spatial attention and visual working memory. Our results illustrate the flexible nature of functional networks, whereby processing of different form categories, written words vs. symbol strings, leads to the formation of large-scale functional networks that operate at distinct oscillatory frequencies and incorporate task-relevant regions. These results suggest that category-specific processing should be viewed not so much as a local process but as a distributed neural process implemented in signature networks. For words, increased coherence was detected particularly in the alpha (8-13 Hz) and high gamma (60-90 Hz) frequency bands, whereas increased coherence for symbol strings was observed in the high beta (21-29 Hz) and low gamma (30-45 Hz) frequency range. These findings attest to the role of coherence in specific frequency bands as a general mechanism for integrating stimulus-dependent information across brain regions.

  12. Aberrant functional connectivity of default-mode network in type 2 diabetes patients

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ying; Jiao, Yun; Chen, Hua-Jun; Ding, Jie; Luo, Bing; Peng, Cheng-Yu; Ju, Sheng-Hong; Teng, Gao-Jun [Medical School of Southeast University, Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Nanjing, Jiangsu (China)

    2015-11-15

    Type 2 diabetes mellitus is associated with increased risk for dementia. Patients with impaired cognition often show default-mode network disruption. We aimed to investigate the integrity of a default-mode network in diabetic patients by using independent component analysis, and to explore the relationship between network abnormalities, neurocognitive performance and diabetic variables. Forty-two patients with type 2 diabetes and 42 well-matched healthy controls were included and underwent resting-state functional MRI in a 3 Tesla unit. Independent component analysis was adopted to extract the default-mode network, including its anterior and posterior components. Z-maps of both sub-networks were compared between the two groups and correlated with each clinical variable. Patients showed increased connectivity around the medial prefrontal cortex in the anterior sub-network, but decreased connectivity around the posterior cingulate cortex in the posterior sub-network. The decreased connectivity in the posterior part was significantly correlated with the score on Complex Figure Test-delay recall test (r = 0.359, p = 0.020), the time spent on Trail-Making Test-part B (r = -0.346, p = 0.025) and the insulin resistance level (r = -0.404, p = 0.024). Dissociation pattern in the default-mode network was found in diabetic patients, which might provide powerful new insights into the neural mechanisms that underlie the diabetes-related cognitive decline. (orig.)

  13. Aberrant functional connectivity of default-mode network in type 2 diabetes patients

    International Nuclear Information System (INIS)

    Cui, Ying; Jiao, Yun; Chen, Hua-Jun; Ding, Jie; Luo, Bing; Peng, Cheng-Yu; Ju, Sheng-Hong; Teng, Gao-Jun

    2015-01-01

    Type 2 diabetes mellitus is associated with increased risk for dementia. Patients with impaired cognition often show default-mode network disruption. We aimed to investigate the integrity of a default-mode network in diabetic patients by using independent component analysis, and to explore the relationship between network abnormalities, neurocognitive performance and diabetic variables. Forty-two patients with type 2 diabetes and 42 well-matched healthy controls were included and underwent resting-state functional MRI in a 3 Tesla unit. Independent component analysis was adopted to extract the default-mode network, including its anterior and posterior components. Z-maps of both sub-networks were compared between the two groups and correlated with each clinical variable. Patients showed increased connectivity around the medial prefrontal cortex in the anterior sub-network, but decreased connectivity around the posterior cingulate cortex in the posterior sub-network. The decreased connectivity in the posterior part was significantly correlated with the score on Complex Figure Test-delay recall test (r = 0.359, p = 0.020), the time spent on Trail-Making Test-part B (r = -0.346, p = 0.025) and the insulin resistance level (r = -0.404, p = 0.024). Dissociation pattern in the default-mode network was found in diabetic patients, which might provide powerful new insights into the neural mechanisms that underlie the diabetes-related cognitive decline. (orig.)

  14. Functional Connectivity in Frontoparietal Network: Indicator of Preoperative Cognitive Function and Cognitive Outcome Following Surgery in Patients with Glioma.

    Science.gov (United States)

    Lang, Stefan; Gaxiola-Valdez, Ismael; Opoku-Darko, Michael; Partlo, Lisa A; Goodyear, Bradley G; Kelly, John J P; Federico, Paolo

    2017-09-01

    Patients with diffuse glioma are known to have impaired cognitive functions preoperatively. However, the mechanism of these cognitive deficits remains unclear. Resting-state functional connectivity in the frontoparietal network (FPN) is associated with cognitive performance in healthy subjects. For this reason, it was hypothesized that functional connectivity of the FPN would be related to cognitive functioning in patients with glioma. To assess this relationship, preoperative cognitive status was correlated to patient-specific connectivity within the FPN. Further, we assessed whether connectivity could predict neuropsychologic outcome following surgery. Sixteen patients with diffuse glioma underwent neuropsychologic assessment and preoperative functional magnetic resonance imaging using task (n-back) and resting-state scans. Thirteen patients had postoperative cognitive assessment. An index of patient-specific functional connectivity in the FPN was derived by averaging connectivity values between 2 prefrontal and 2 parietal cortex regions defined by activation during the n-back task. The relationship of these indices with cognitive performance was assessed. Higher average connectivity within the FPN is associated with lower composite cognitive scores. Higher connectivity of the parietal region of the tumor-affected hemisphere is associated specifically with lower fluid cognition. Lower connectivity of the parietal region of the nontumor hemisphere is associated with worse neuropsychologic outcome 1 month after surgery. Resting-state functional connectivity between key regions of the FPN is associated with cognitive performance in patients with glioma and is related to cognitive outcome following surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Kim, Ho Sung; Kim, Sang Joon; Shim, Woo Hyun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-Gu, Seoul (Korea, Republic of); Kim, Jeong Hoon [University of Ulsan College of Medicine, Department of Neurosurgery, Asan Medical Center, Seoul (Korea, Republic of)

    2016-03-15

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  16. Complex networks of functional connectivity in a wetland reconnected to its floodplain

    Science.gov (United States)

    Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson

    2017-01-01

    Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a “biotic filter,” shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.

  17. Whole-brain functional connectivity during acquisition of novel grammar: Distinct functional networks depend on language learning abilities.

    Science.gov (United States)

    Kepinska, Olga; de Rover, Mischa; Caspers, Johanneke; Schiller, Niels O

    2017-03-01

    In an effort to advance the understanding of brain function and organisation accompanying second language learning, we investigate the neural substrates of novel grammar learning in a group of healthy adults, consisting of participants with high and average language analytical abilities (LAA). By means of an Independent Components Analysis, a data-driven approach to functional connectivity of the brain, the fMRI data collected during a grammar-learning task were decomposed into maps representing separate cognitive processes. These included the default mode, task-positive, working memory, visual, cerebellar and emotional networks. We further tested for differences within the components, representing individual differences between the High and Average LAA learners. We found high analytical abilities to be coupled with stronger contributions to the task-positive network from areas adjacent to bilateral Broca's region, stronger connectivity within the working memory network and within the emotional network. Average LAA participants displayed stronger engagement within the task-positive network from areas adjacent to the right-hemisphere homologue of Broca's region and typical to lower level processing (visual word recognition), and increased connectivity within the default mode network. The significance of each of the identified networks for the grammar learning process is presented next to a discussion on the established markers of inter-individual learners' differences. We conclude that in terms of functional connectivity, the engagement of brain's networks during grammar acquisition is coupled with one's language learning abilities. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A Multimodal Approach for Determining Brain Networks by Jointly Modeling Functional and Structural Connectivity

    Directory of Open Access Journals (Sweden)

    Wenqiong eXue

    2015-02-01

    Full Text Available Recent innovations in neuroimaging technology have provided opportunities for researchers to investigate connectivity in the human brain by examining the anatomical circuitry as well as functional relationships between brain regions. Existing statistical approaches for connectivity generally examine resting-state or task-related functional connectivity (FC between brain regions or separately examine structural linkages. As a means to determine brain networks, we present a unified Bayesian framework for analyzing FC utilizing the knowledge of associated structural connections, which extends an approach by Patel et al.(2006a that considers only functional data. We introduce an FC measure that rests upon assessments of functional coherence between regional brain activity identified from functional magnetic resonance imaging (fMRI data. Our structural connectivity (SC information is drawn from diffusion tensor imaging (DTI data, which is used to quantify probabilities of SC between brain regions. We formulate a prior distribution for FC that depends upon the probability of SC between brain regions, with this dependence adhering to structural-functional links revealed by our fMRI and DTI data. We further characterize the functional hierarchy of functionally connected brain regions by defining an ascendancy measure that compares the marginal probabilities of elevated activity between regions. In addition, we describe topological properties of the network, which is composed of connected region pairs, by performing graph theoretic analyses. We demonstrate the use of our Bayesian model using fMRI and DTI data from a study of auditory processing. We further illustrate the advantages of our method by comparisons to methods that only incorporate functional information.

  19. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    In the present paper we consider the allocation of cost in connection networks. Agents have connection demands in form of pairs of locations they want to be connected. Connections between locations are costly to build. The problem is to allocate costs of networks satisfying all connection demands...

  20. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience.

    Science.gov (United States)

    Wijngaarden, M A; Veer, I M; Rombouts, S A R B; van Buchem, M A; Willems van Dijk, K; Pijl, H; van der Grond, J

    2015-01-01

    We hypothesized that brain circuits involved in reward and salience respond differently to fasting in obese versus lean individuals. We compared functional connectivity networks related to food reward and saliency after an overnight fast (baseline) and after a prolonged fast of 48 h in lean versus obese subjects. We included 13 obese (2 males, 11 females, BMI 35.4 ± 1.2 kg/m(2), age 31 ± 3 years) and 11 lean subjects (2 males, 9 females, BMI 23.2 ± 0.5 kg/m(2), age 28 ± 3 years). Resting-state functional magnetic resonance imaging scans were made after an overnight fast (baseline) and after a prolonged 48 h fast. Functional connectivity of the amygdala, hypothalamus and posterior cingulate cortex (default-mode) networks was assessed using seed-based correlations. At baseline, we found a stronger connectivity between hypothalamus and left insula in the obese subjects. This effect diminished upon the prolonged fast. After prolonged fasting, connectivity of the hypothalamus with the dorsal anterior cingulate cortex (dACC) increased in lean subjects and decreased in obese subjects. Amygdala connectivity with the ventromedial prefrontal cortex was stronger in lean subjects at baseline, which did not change upon the prolonged fast. No differences in posterior cingulate cortex connectivity were observed. In conclusion, obesity is marked by alterations in functional connectivity networks involved in food reward and salience. Prolonged fasting differentially affected hypothalamic connections with the dACC and the insula between obese and lean subjects. Our data support the idea that food reward and nutrient deprivation are differently perceived and/or processed in obesity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Functional brain connectivity is predictable from anatomic network's Laplacian eigen-structure.

    Science.gov (United States)

    Abdelnour, Farras; Dayan, Michael; Devinsky, Orrin; Thesen, Thomas; Raj, Ashish

    2018-05-15

    How structural connectivity (SC) gives rise to functional connectivity (FC) is not fully understood. Here we mathematically derive a simple relationship between SC measured from diffusion tensor imaging, and FC from resting state fMRI. We establish that SC and FC are related via (structural) Laplacian spectra, whereby FC and SC share eigenvectors and their eigenvalues are exponentially related. This gives, for the first time, a simple and analytical relationship between the graph spectra of structural and functional networks. Laplacian eigenvectors are shown to be good predictors of functional eigenvectors and networks based on independent component analysis of functional time series. A small number of Laplacian eigenmodes are shown to be sufficient to reconstruct FC matrices, serving as basis functions. This approach is fast, and requires no time-consuming simulations. It was tested on two empirical SC/FC datasets, and was found to significantly outperform generative model simulations of coupled neural masses. Copyright © 2018. Published by Elsevier Inc.

  2. Functional Connectivity with Distinct Neural Networks Tracks Fluctuations in Gain/Loss Framing Susceptibility

    Science.gov (United States)

    Smith, David V.; Sip, Kamila E.; Delgado, Mauricio R.

    2016-01-01

    Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility—indexed as the increase in gambling behavior in loss frames compared to gain frames—was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. PMID:25858445

  3. Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum☆

    Science.gov (United States)

    Verly, Marjolein; Verhoeven, Judith; Zink, Inge; Mantini, Dante; Peeters, Ronald; Deprez, Sabine; Emsell, Louise; Boets, Bart; Noens, Ilse; Steyaert, Jean; Lagae, Lieven; De Cock, Paul; Rommel, Nathalie; Sunaert, Stefan

    2014-01-01

    The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD). Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19) and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI. PMID:24567909

  4. Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum

    Directory of Open Access Journals (Sweden)

    Marjolein Verly

    2014-01-01

    Full Text Available The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD. Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19 and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI.

  5. Hyperthermia-induced disruption of functional connectivity in the human brain network.

    Directory of Open Access Journals (Sweden)

    Gang Sun

    Full Text Available BACKGROUND: Passive hyperthermia is a potential risk factor to human cognitive performance and work behavior in many extreme work environments. Previous studies have demonstrated significant effects of passive hyperthermia on human cognitive performance and work behavior. However, there is a lack of a clear understanding of the exact affected brain regions and inter-regional connectivities. METHODOLOGY AND PRINCIPAL FINDINGS: We simulated 1 hour environmental heat exposure to thirty-six participants under two environmental temperature conditions (25 °C and 50 °C, and collected resting-state functional brain activity. The functional connectivities with a preselected region of interest (ROI in the posterior cingulate cortex and precuneus (PCC/PCu, furthermore, inter-regional connectivities throughout the entire brain using a prior Anatomical Automatic Labeling (AAL atlas were calculated. We identified decreased correlations of a set of regions with the PCC/PCu, including the medial orbitofrontal cortex (mOFC and bilateral medial temporal cortex, as well as increased correlations with the partial orbitofrontal cortex particularly in the bilateral orbital superior frontal gyrus. Compared with the normal control (NC group, the hyperthermia (HT group showed 65 disturbed functional connectivities with 50 of them being decreased and 15 of them being increased. While the decreased correlations mainly involved with the mOFC, temporal lobe and occipital lobe, increased correlations were mainly located within the limbic system. In consideration of physiological system changes, we explored the correlations of the number of significantly altered inter-regional connectivities with differential rectal temperatures and weight loss, but failed to obtain significant correlations. More importantly, during the attention network test (ANT we found that the number of significantly altered functional connectivities was positively correlated with an increase in

  6. Mindfulness Meditation Training and Executive Control Network Resting State Functional Connectivity: A Randomized Controlled Trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Creswell, J David

    Mindfulness meditation training has been previously shown to enhance behavioral measures of executive control (e.g., attention, working memory, cognitive control), but the neural mechanisms underlying these improvements are largely unknown. Here, we test whether mindfulness training interventions foster executive control by strengthening functional connections between dorsolateral prefrontal cortex (dlPFC)-a hub of the executive control network-and frontoparietal regions that coordinate executive function. Thirty-five adults with elevated levels of psychological distress participated in a 3-day randomized controlled trial of intensive mindfulness meditation or relaxation training. Participants completed a resting state functional magnetic resonance imaging scan before and after the intervention. We tested whether mindfulness meditation training increased resting state functional connectivity (rsFC) between dlPFC and frontoparietal control network regions. Left dlPFC showed increased connectivity to the right inferior frontal gyrus (T = 3.74), right middle frontal gyrus (MFG) (T = 3.98), right supplementary eye field (T = 4.29), right parietal cortex (T = 4.44), and left middle temporal gyrus (T = 3.97, all p < .05) after mindfulness training relative to the relaxation control. Right dlPFC showed increased connectivity to right MFG (T = 4.97, p < .05). We report that mindfulness training increases rsFC between dlPFC and dorsal network (superior parietal lobule, supplementary eye field, MFG) and ventral network (right IFG, middle temporal/angular gyrus) regions. These findings extend previous work showing increased functional connectivity among brain regions associated with executive function during active meditation by identifying specific neural circuits in which rsFC is enhanced by a mindfulness intervention in individuals with high levels of psychological distress. Clinicaltrials.gov,NCT01628809.

  7. Age-related decline in functional connectivity of the vestibular cortical network.

    Science.gov (United States)

    Cyran, Carolin Anna Maria; Boegle, Rainer; Stephan, Thomas; Dieterich, Marianne; Glasauer, Stefan

    2016-04-01

    In the elderly, major complaints include dizziness and an increasing number of falls, possibly related to an altered processing of vestibular sensory input. In this study, we therefore investigate age-related changes induced by processing of vestibular sensory stimulation. While previous functional imaging studies of healthy aging have investigated brain function during task performance or at rest, we used galvanic vestibular stimulation during functional MRI in a task-free sensory stimulation paradigm to study the effect of healthy aging on central vestibular processing, which might only become apparent during stimulation processing. Since aging may affect signatures of brain function beyond the BOLD-signal amplitude-such as functional connectivity or temporal signal variability--we employed independent component analysis and partial least squares analysis of temporal signal variability. We tested for age-associated changes unrelated to vestibular processing, using a motor paradigm, voxel-based morphometry and diffusion tensor imaging. This allows us to control for general age-related modifications, possibly originating from vascular, atrophic or structural connectivity changes. Age-correlated decreases of functional connectivity and increases of BOLD--signal variability were associated with multisensory vestibular networks. In contrast, no age-related functional connectivity changes were detected in somatosensory networks or during the motor paradigm. The functional connectivity decrease was not due to structural changes but to a decrease in response amplitude. In synopsis, our data suggest that both the age-dependent functional connectivity decrease and the variability increase may be due to deteriorating reciprocal cortico-cortical inhibition with age and related to multimodal vestibular integration of sensory inputs.

  8. Community structure in networks of functional connectivity: resolving functional organization in the rat brain with pharmacological MRI.

    Science.gov (United States)

    Schwarz, Adam J; Gozzi, Alessandro; Bifone, Angelo

    2009-08-01

    In the study of functional connectivity, fMRI data can be represented mathematically as a network of nodes and links, where image voxels represent the nodes and the connections between them reflect a degree of correlation or similarity in their response. Here we show that, within this framework, functional imaging data can be partitioned into 'communities' of tightly interconnected voxels corresponding to maximum modularity within the overall network. We evaluated this approach systematically in application to networks constructed from pharmacological MRI (phMRI) of the rat brain in response to acute challenge with three different compounds with distinct mechanisms of action (d-amphetamine, fluoxetine, and nicotine) as well as vehicle (physiological saline). This approach resulted in bilaterally symmetric sub-networks corresponding to meaningful anatomical and functional connectivity pathways consistent with the purported mechanism of action of each drug. Interestingly, common features across all three networks revealed two groups of tightly coupled brain structures that responded as functional units independent of the specific neurotransmitter systems stimulated by the drug challenge, including a network involving the prefrontal cortex and sub-cortical regions extending from the striatum to the amygdala. This finding suggests that each of these networks includes general underlying features of the functional organization of the rat brain.

  9. From static to temporal network theory: Applications to functional brain connectivity

    Directory of Open Access Journals (Sweden)

    William Hedley Thompson

    2017-06-01

    Full Text Available Network neuroscience has become an established paradigm to tackle questions related to the functional and structural connectome of the brain. Recently, interest has been growing in examining the temporal dynamics of the brain’s network activity. Although different approaches to capturing fluctuations in brain connectivity have been proposed, there have been few attempts to quantify these fluctuations using temporal network theory. This theory is an extension of network theory that has been successfully applied to the modeling of dynamic processes in economics, social sciences, and engineering article but it has not been adopted to a great extent within network neuroscience. The objective of this article is twofold: (i to present a detailed description of the central tenets of temporal network theory and describe its measures, and; (ii to apply these measures to a resting-state fMRI dataset to illustrate their utility. Furthermore, we discuss the interpretation of temporal network theory in the context of the dynamic functional brain connectome. All the temporal network measures and plotting functions described in this article are freely available as the Python package Teneto. Temporal network theory is a subfield of network theory that has had limited application to date within network neuroscience. The aims of this work are to introduce temporal network theory, define the metrics relevant to the context of network neuroscience, and illustrate their potential by analyzing a resting-state fMRI dataset. We found both between-subjects and between-task differences that illustrate the potential for these tools to be applied in a wider context. Our tools for analyzing temporal networks have been released in a Python package called Teneto.

  10. Network connectivity value.

    Science.gov (United States)

    Dragicevic, Arnaud; Boulanger, Vincent; Bruciamacchie, Max; Chauchard, Sandrine; Dupouey, Jean-Luc; Stenger, Anne

    2017-04-21

    In order to unveil the value of network connectivity, we formalize the construction of ecological networks in forest environments as an optimal control dynamic graph-theoretic problem. The network is based on a set of bioreserves and patches linked by ecological corridors. The node dynamics, built upon the consensus protocol, form a time evolutive Mahalanobis distance weighted by the opportunity costs of timber production. We consider a case of complete graph, where the ecological network is fully connected, and a case of incomplete graph, where the ecological network is partially connected. The results show that the network equilibrium depends on the size of the reception zone, while the network connectivity depends on the environmental compatibility between the ecological areas. Through shadow prices, we find that securing connectivity in partially connected networks is more expensive than in fully connected networks, but should be undertaken when the opportunity costs are significant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Frequency-Dependent Altered Functional Connections of Default Mode Network in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Youjun Li

    2017-08-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder associated with the progressive dysfunction of cognitive ability. Previous research has indicated that the default mode network (DMN is closely related to cognition and is impaired in Alzheimer’s disease. Because recent studies have shown that different frequency bands represent specific physiological functions, DMN functional connectivity studies of the different frequency bands based on resting state fMRI (RS-fMRI data may provide new insight into AD pathophysiology. In this study, we explored the functional connectivity based on well-defined DMN regions of interest (ROIs from the five frequency bands: slow-5 (0.01–0.027 Hz, slow-4 (0.027–0.073 Hz, slow-3 (0.073–0.198 Hz, slow-2 (0.198–0.25 Hzs and standard low-frequency oscillations (LFO (0.01–0.08 Hz. We found that the altered functional connectivity patterns are mainly in the frequency band of slow-5 and slow-4 and that the decreased connections are long distance, but some relatively short connections are increased. In addition, the altered functional connections of the DMN in AD are frequency dependent and differ between the slow-5 and slow-4 bands. Mini-Mental State Examination scores were significantly correlated with the altered functional connectivity patterns in the slow-5 and slow-4 bands. These results indicate that frequency-dependent functional connectivity changes might provide potential biomarkers for AD pathophysiology.

  12. The brain network reflecting bodily self-consciousness: a functional connectivity study

    Science.gov (United States)

    Ionta, Silvio; Martuzzi, Roberto; Salomon, Roy

    2014-01-01

    Several brain regions are important for processing self-location and first-person perspective, two important aspects of bodily self-consciousness. However, the interplay between these regions has not been clarified. In addition, while self-location and first-person perspective in healthy subjects are associated with bilateral activity in temporoparietal junction (TPJ), disturbed self-location and first-person perspective result from damage of only the right TPJ. Identifying the involved brain network and understanding the role of hemispheric specializations in encoding self-location and first-person perspective, will provide important information on system-level interactions neurally mediating bodily self-consciousness. Here, we used functional connectivity and showed that right and left TPJ are bilaterally connected to supplementary motor area, ventral premotor cortex, insula, intraparietal sulcus and occipitotemporal cortex. Furthermore, the functional connectivity between right TPJ and right insula had the highest selectivity for changes in self-location and first-person perspective. Finally, functional connectivity revealed hemispheric differences showing that self-location and first-person perspective modulated the connectivity between right TPJ, right posterior insula, and right supplementary motor area, and between left TPJ and right anterior insula. The present data extend previous evidence on healthy populations and clinical observations in neurological deficits, supporting a bilateral, but right-hemispheric dominant, network for bodily self-consciousness. PMID:24396007

  13. Functional connectivity in the basal ganglia network differentiates PD patients from controls

    Science.gov (United States)

    Szewczyk-Krolikowski, Konrad; Menke, Ricarda A.L.; Rolinski, Michal; Duff, Eugene; Salimi-Khorshidi, Gholamreza; Filippini, Nicola; Zamboni, Giovanna; Hu, Michele T.M.

    2014-01-01

    Objective: To examine functional connectivity within the basal ganglia network (BGN) in a group of cognitively normal patients with early Parkinson disease (PD) on and off medication compared to age- and sex-matched healthy controls (HC), and to validate the findings in a separate cohort of participants with PD. Methods: Participants were scanned with resting-state fMRI (RS-fMRI) at 3T field strength. Resting-state networks were isolated using independent component analysis. A BGN template was derived from 80 elderly HC participants. BGN maps were compared between 19 patients with PD on and off medication in the discovery group and 19 age- and sex-matched controls to identify a threshold for optimal group separation. The threshold was applied to 13 patients with PD (including 5 drug-naive) in the validation group to establish reproducibility of findings. Results: Participants with PD showed reduced functional connectivity with the BGN in a wide range of areas. Administration of medication significantly improved connectivity. Average BGN connectivity differentiated participants with PD from controls with 100% sensitivity and 89.5% specificity. The connectivity threshold was tested on the validation cohort and achieved 85% accuracy. Conclusions: We demonstrate that resting functional connectivity, measured with MRI using an observer-independent method, is reproducibly reduced in the BGN in cognitively intact patients with PD, and increases upon administration of dopaminergic medication. Our results hold promise for RS-fMRI connectivity as a biomarker in early PD. Classification of evidence: This study provides Class III evidence that average connectivity in the BGN as measured by RS-fMRI distinguishes patients with PD from age- and sex-matched controls. PMID:24920856

  14. Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas.

    Science.gov (United States)

    Castillo, Jessica A; Epps, Clinton W; Jeffress, Mackenzie R; Ray, Chris; Rodhouse, Thomas J; Schwalm, Donelle

    2016-09-01

    Landscape connectivity is essential for maintaining viable populations, particularly for species restricted to fragmented habitats or naturally arrayed in metapopulations and facing rapid climate change. The importance of assessing both structural connectivity (physical distribution of favorable habitat patches) and functional connectivity (how species move among habitat patches) for managing such species is well understood. However, the degree to which functional connectivity for a species varies among landscapes, and the resulting implications for conservation, have rarely been assessed. We used a landscape genetics approach to evaluate resistance to gene flow and, thus, to determine how landscape and climate-related variables influence gene flow for American pikas (Ochotona princeps) in eight federally managed sites in the western United States. We used empirically derived, individual-based landscape resistance models in conjunction with predictive occupancy models to generate patch-based network models describing functional landscape connectivity. Metareplication across landscapes enabled identification of limiting factors for dispersal that would not otherwise have been apparent. Despite the cool microclimates characteristic of pika habitat, south-facing aspects consistently represented higher resistance to movement, supporting the previous hypothesis that exposure to relatively high temperatures may limit dispersal in American pikas. We found that other barriers to dispersal included areas with a high degree of topographic relief, such as cliffs and ravines, as well as streams and distances greater than 1-4 km depending on the site. Using the empirically derived network models of habitat patch connectivity, we identified habitat patches that were likely disproportionately important for maintaining functional connectivity, areas in which habitat appeared fragmented, and locations that could be targeted for management actions to improve functional connectivity

  15. Aberrant development of functional connectivity among resting state-related functional networks in medication-naïve ADHD children.

    Directory of Open Access Journals (Sweden)

    Jeewook Choi

    Full Text Available OBJECTIVE: The aim of this study was to investigate the compromised developmental trajectory of the functional connectivity among resting-state-related functional networks (RSFNs in medication-naïve children with attention-deficit/hyperactivity disorder (ADHD. SUBJECTS AND METHODS: Using both independent component analysis and dual regression, subject-specific time courses of 12 RSFNs were extracted from both 20 medication-naïve children with ADHD, and 20 age and gender-matched control children showing typical development (TDC. Both partial correlation coefficients among the 12 RSFNs and a resting-state resource allocation index (rsRAI of the salience network (SN were entered into multiple linear regression analysis to investigate the compromised, age-related change in medication-naïve ADHD children. Finally, correlation analyses were performed between the compromised RSFN connections showing significant group-by-age interaction and rsRAI of SN or clinical variables. RESULTS: Medication-naïve ADHD subjects failed to show age-related increment of functional connectivity in both rsRAI of SN and two RSFN connections, SN-Sensory/motor and posterior default mode/precuneus network (pDMN/prec--anterior DMN. Lower SN-Sensory/motor connectivity was related with higher scores on the ADHD Rating Scale, and with poor scores on the continuous performance test. The pDMN/prec-aDMN connectivity was positively related with rsRAI of SN. CONCLUSIONS: Our results suggest that medication-naïve ADHD subjects may have delayed maturation of the two functional connections, SN-Sensory/Motor and aDMN-pDMN/prec. Interventions that enhance the functional connectivity of these two connections may merit attention as potential therapeutic or preventive options in both ADHD and TDC.

  16. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.

    Science.gov (United States)

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A

    2015-06-01

    A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.

  17. Altered Network Oscillations and Functional Connectivity Dynamics in Children Born Very Preterm.

    Science.gov (United States)

    Moiseev, Alexander; Doesburg, Sam M; Herdman, Anthony T; Ribary, Urs; Grunau, Ruth E

    2015-09-01

    Structural brain connections develop atypically in very preterm children, and altered functional connectivity is also evident in fMRI studies. Such alterations in brain network connectivity are associated with cognitive difficulties in this population. Little is known, however, about electrophysiological interactions among specific brain networks in children born very preterm. In the present study, we recorded magnetoencephalography while very preterm children and full-term controls performed a visual short-term memory task. Regions expressing task-dependent activity changes were identified using beamformer analysis, and inter-regional phase synchrony was calculated. Very preterm children expressed altered regional recruitment in distributed networks of brain areas, across standard physiological frequency ranges including the theta, alpha, beta and gamma bands. Reduced oscillatory synchrony was observed among task-activated brain regions in very preterm children, particularly for connections involving areas critical for executive abilities, including middle frontal gyrus. These findings suggest that inability to recruit neurophysiological activity and interactions in distributed networks including frontal regions may contribute to difficulties in cognitive development in children born very preterm.

  18. Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action.

    Directory of Open Access Journals (Sweden)

    Milan Scheidegger

    Full Text Available Increasing preclinical and clinical evidence underscores the strong and rapid antidepressant properties of the glutamate-modulating NMDA receptor antagonist ketamine. Targeting the glutamatergic system might thus provide a novel molecular strategy for antidepressant treatment. Since glutamate is the most abundant and major excitatory neurotransmitter in the brain, pathophysiological changes in glutamatergic signaling are likely to affect neurobehavioral plasticity, information processing and large-scale changes in functional brain connectivity underlying certain symptoms of major depressive disorder. Using resting state functional magnetic resonance imaging (rsfMRI, the "dorsal nexus "(DN was recently identified as a bilateral dorsal medial prefrontal cortex region showing dramatically increased depression-associated functional connectivity with large portions of a cognitive control network (CCN, the default mode network (DMN, and a rostral affective network (AN. Hence, Sheline and colleagues (2010 proposed that reducing increased connectivity of the DN might play a critical role in reducing depression symptomatology and thus represent a potential therapy target for affective disorders. Here, using a randomized, placebo-controlled, double-blind, crossover rsfMRI challenge in healthy subjects we demonstrate that ketamine decreases functional connectivity of the DMN to the DN and to the pregenual anterior cingulate (PACC and medioprefrontal cortex (MPFC via its representative hub, the posterior cingulate cortex (PCC. These findings in healthy subjects may serve as a model to elucidate potential biomechanisms that are addressed by successful treatment of major depression. This notion is further supported by the temporal overlap of our observation of subacute functional network modulation after 24 hours with the peak of efficacy following an intravenous ketamine administration in treatment-resistant depression.

  19. Functional connectivity in task-negative network of the Deaf: effects of sign language experience

    Directory of Open Access Journals (Sweden)

    Evie Malaia

    2014-06-01

    Full Text Available Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain’s anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud et al., 2013 inter alia. We report the first investigation of the task-negative network in Deaf signers and its functional connectivity—the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG, but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal.

  20. Resting-state network disruption and APOE genotype in Alzheimer's disease: a lagged functional connectivity study.

    Directory of Open Access Journals (Sweden)

    Leonides Canuet

    Full Text Available BACKGROUND: The apolipoprotein E epsilon 4 (APOE-4 is associated with a genetic vulnerability to Alzheimer's disease (AD and with AD-related abnormalities in cortical rhythms. However, it is unclear whether APOE-4 is linked to a specific pattern of intrinsic functional disintegration of the brain after the development of the disease or during its different stages. This study aimed at identifying spatial patterns and effects of APOE genotype on resting-state oscillations and functional connectivity in patients with AD, using a physiological connectivity index called "lagged phase synchronization". METHODOLOGY/PRINCIPAL FINDINGS: Resting EEG was recorded during awake, eyes-closed state in 125 patients with AD and 60 elderly controls. Source current density and functional connectivity were determined using eLORETA. Patients with AD exhibited reduced parieto-occipital alpha oscillations compared with controls, and those carrying the APOE-4 allele had reduced alpha activity in the left inferior parietal and temporo-occipital cortex relative to noncarriers. There was a decreased alpha2 connectivity pattern in AD, involving the left temporal and bilateral parietal cortex. Several brain regions exhibited increased lagged phase synchronization in low frequencies, specifically in the theta band, across and within hemispheres, where temporal lobe connections were particularly compromised. Areas with abnormal theta connectivity correlated with cognitive scores. In patients with early AD, we found an APOE-4-related decrease in interhemispheric alpha connectivity in frontal and parieto-temporal regions. CONCLUSIONS/SIGNIFICANCE: In addition to regional cortical dysfunction, as indicated by abnormal alpha oscillations, there are patterns of functional network disruption affecting theta and alpha bands in AD that associate with the level of cognitive disturbance or with the APOE genotype. These functional patterns of nonlinear connectivity may potentially

  1. Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity

    Science.gov (United States)

    Finn, Emily S.; Shen, Xilin; Holahan, John M.; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E.; Shaywitz, Bennett A.; Constable, R. Todd

    2013-01-01

    Background Functional connectivity analyses of fMRI data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which may result in mixing distinct activation timecourses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Methods Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Results Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Conclusions Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words based on their visual properties, while DYS readers recruit altered reading circuits and rely on laborious phonology-based “sounding out” strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. PMID:24124929

  2. Increased functional connectivity with puberty in the mentalising network involved in social emotion processing

    Science.gov (United States)

    Klapwijk, Eduard T.; Goddings, Anne-Lise; Heyes, Stephanie Burnett; Bird, Geoffrey; Viner, Russell M.; Blakemore, Sarah-Jayne

    2015-01-01

    There is increasing evidence that puberty plays an important role in the structural and functional brain development seen in adolescence, but little is known of the pubertal influence on changes in functional connectivity. We explored how pubertal indicators (salivary concentrations of testosterone, oestradiol and DHEA; pubertal stage; menarcheal status) relate to functional connectivity between components of a mentalising network identified to be engaged in social emotion processing by our prior work, using psychophysiological interaction (PPI) analysis. Female adolescents aged 11 to 13 years were scanned whilst silently reading scenarios designed to evoke either social emotions (guilt and embarrassment) or basic emotions (disgust and fear), of which only social compared to basic emotions require the representation of another person’s mental states. Pubertal stage and menarcheal status were used to assign participants to pre/early or mid/late puberty groups. We found increased functional connectivity between the dorsomedial prefrontal cortex (DMPFC) and the right posterior superior temporal sulcus (pSTS) and right temporo-parietal junction (TPJ) during social relative to basic emotion processing. Moreover, increasing oestradiol concentrations were associated with increased functional connectivity between the DMPFC and the right TPJ during social relative to basic emotion processing, independent of age. Our analysis of the PPI data by phenotypic pubertal status showed that more advanced puberty stage was associated with enhanced functional connectivity between the DMPFC and the left anterior temporal cortex (ATC) during social relative to basic emotion processing, also independent of age. Our results suggest increased functional maturation of the social brain network with the advancement of puberty in girls. PMID:23998674

  3. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    2015-01-01

    In the present paper we consider the allocation of costs in connection networks. Agents have connection demands in form of pairs of locations they want to have connected. Connections between locations are costly to build. The problem is to allocate costs of networks satisfying all connection...... demands. We use a few axioms to characterize allocation rules that truthfully implement cost minimizing networks satisfying all connection demands in a game where: (1) a central planner announces an allocation rule and a cost estimation rule; (2) every agent reports her own connection demand as well...... as all connection costs; (3) the central planner selects a cost minimizing network satisfying reported connection demands based on the estimated costs; and, (4) the planner allocates the true costs of the selected network. It turns out that an allocation rule satisfies the axioms if and only if relative...

  4. Aberrant functional network connectivity in psychopathy from a large (N = 985) forensic sample.

    Science.gov (United States)

    Espinoza, Flor A; Vergara, Victor M; Reyes, Daisy; Anderson, Nathaniel E; Harenski, Carla L; Decety, Jean; Rachakonda, Srinivas; Damaraju, Eswar; Rashid, Barnaly; Miller, Robyn L; Koenigs, Michael; Kosson, David S; Harenski, Keith; Kiehl, Kent A; Calhoun, Vince D

    2018-06-01

    Psychopathy is a personality disorder characterized by antisocial behavior, lack of remorse and empathy, and impaired decision making. The disproportionate amount of crime committed by psychopaths has severe emotional and economic impacts on society. Here we examine the neural correlates associated with psychopathy to improve early assessment and perhaps inform treatments for this condition. Previous resting-state functional magnetic resonance imaging (fMRI) studies in psychopathy have primarily focused on regions of interest. This study examines whole-brain functional connectivity and its association to psychopathic traits. Psychopathy was hypothesized to be characterized by aberrant functional network connectivity (FNC) in several limbic/paralimbic networks. Group-independent component and regression analyses were applied to a data set of resting-state fMRI from 985 incarcerated adult males. We identified resting-state networks (RSNs), estimated FNC between RSNs, and tested their association to psychopathy factors and total summary scores (Factor 1, interpersonal/affective; Factor 2, lifestyle/antisocial). Factor 1 scores showed both increased and reduced functional connectivity between RSNs from seven brain domains (sensorimotor, cerebellar, visual, salience, default mode, executive control, and attentional). Consistent with hypotheses, RSNs from the paralimbic system-insula, anterior and posterior cingulate cortex, amygdala, orbital frontal cortex, and superior temporal gyrus-were related to Factor 1 scores. No significant FNC associations were found with Factor 2 and total PCL-R scores. In summary, results suggest that the affective and interpersonal symptoms of psychopathy (Factor 1) are associated with aberrant connectivity in multiple brain networks, including paralimbic regions. © 2018 Wiley Periodicals, Inc.

  5. Lateralization effects on functional connectivity of the auditory network in patients with unilateral pulsatile tinnitus as detected by functional MRI.

    Science.gov (United States)

    Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Liu, Xuehuan; Ding, Heyu; Liu, Liheng; Wang, Guopeng; Xie, Jing; Zeng, Rong; Chen, Yuchen; Yang, Zhenghan; Gong, Shusheng; Wang, Zhenchang

    2018-02-02

    Unilateral pulsatile tinnitus (PT) was proved to be a kind of disease with brain functional abnormalities within and beyond the auditory network (AN). However, changes in patterns of the lateralization effects of PT are yet to be established. Relationship between the AN and other brain networks in PT patients is also a scientific question need to be answered. In this study, we recruited 23 left-sided, 23 right-sided PT (LSPT, RSPT) patients and 23 normal controls (NC). We combined applied independent component analysis and seed-based functional connectivity (FC) analysis to investigate alteration feature of the FC of the AN by using resting-state functional magnetic resonance imaging (rs-fMRI). Compared with NC, LSPT patients demonstrated disconnected FC within the AN on both sides. Disrupted network integrity between AN and several brain functional networks, including executive control network, self-perceptual network and the limbic network, was also demonstrated in LSPT patient group bilaterally. In contrast, compared with NC, RSPT demonstrated decreased FC within the AN on the left side, but significant increased FC within the AN on the right side (symptomatic side). Enhanced FC between AN and executive control network, self-perceptual network and limbic network was also found mainly on the right side in patients with RSPT. Positive FC between the auditory network and the limbic network may be a reason to explain why RSPT patients are willing to be in the clinic. Briefly, LSPT exhibit disrupted network integrity in brain functional networks. But RSPT is featured by enhanced FC within AN and between networks, especially on the right (symptomatic) side. Corroboration of featured FC helps to reveal the pathophysiological changing process of the brain in patients with PT, providing imaging-based biomarker to distinguish PT from other kind of tinnitus. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Decreased functional connectivity in schizophrenia: The relationship between social functioning, social cognition and graph theoretical network measures.

    Science.gov (United States)

    Erdeniz, Burak; Serin, Emin; İbadi, Yelda; Taş, Cumhur

    2017-12-30

    Schizophrenia is a complex disorder in which abnormalities in brain connectivity and social functioning play a central role. The aim of this study is to explore small-world network properties, and understand their relationship with social functioning and social cognition in the context of schizophrenia, by testing functional connectivity differences in network properties and its relation to clinical behavioral measures. Resting-state fMRI time series data were acquired from 23 patients diagnosed with schizophrenia and 23 healthy volunteers. The results revealed that patients with schizophrenia show significantly decreased connectivity between a range of brain regions, particularly involving connections among the right orbitofrontal cortex, bilateral putamen and left amygdala. Furthermore, topological properties of functional brain networks in patients with schizophrenia were characterized by reduced path length compared to healthy controls; however, no significant difference was found for clustering coefficient, local efficiency or global efficiency. Additionally, we found that nodal efficiency of the amygdala and the putamen were significantly correlated with the independence-performance subscale of social functioning scale (SFC), and Reading the Mind in the Eyes test; however, the correlations do not survive correction for multiple comparison. The current results help to clarify the relationship between social functioning deficits and topological brain measures in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Aberrant functional connectivity between motor and language networks in rolandic epilepsy.

    Science.gov (United States)

    Besseling, René M H; Overvliet, Geke M; Jansen, Jacobus F A; van der Kruijs, Sylvie J M; Vles, Johannes S H; Ebus, Saskia C M; Hofman, Paul A M; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2013-12-01

    Rolandic epilepsy (RE) is an idiopathic focal childhood epilepsy with a well-established neuropsychological profile of language impairment. The aim of this study is to provide a functional correlate that links rolandic (sensorimotor) pathology to language problems using functional MRI. Twenty-three children with RE (8-14 years old) and 21 matched controls underwent extensive language assessment (Clinical Evaluation of Language Fundamentals). fMRI was performed at rest and using word generation, reading, and finger tapping paradigms. Since no activation group differences were found, regions of interest (ROIs) were defined at pooled (patients and controls combined) activation maxima and in contralateral homotopic cortex, and used to assess language lateralization as well as for a resting-state connectivity analysis. Furthermore, the association between connection strength and language performance was investigated. Reduced language performance was found in the children with RE. Bilateral activation was found for both language tasks with some predominance of the left hemisphere in both groups. Compared to controls, patient connectivity was decreased between the left sensorimotor area and right inferior frontal gyrus (planguage scores in the patient group (r=0.49, p=0.02), but not in the controls. Language laterality analysis revealed bilateral language representation in the age range under study (8-14 years). As a consequence, the connection of reduced functional connectivity we found represents an impaired interplay between motor and language networks, and aberrant functional connectivity associated with poorer language performance. These findings provide a first neuronal correlate in terms of aberrant resting-state functional connectivity for language impairment in RE. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Rest but busy: Aberrant resting-state functional connectivity of triple network model in insomnia.

    Science.gov (United States)

    Dong, Xiaojuan; Qin, Haixia; Wu, Taoyu; Hu, Hua; Liao, Keren; Cheng, Fei; Gao, Dong; Lei, Xu

    2018-02-01

    One classical hypothesis among many models to explain the etiology and maintenance of insomnia disorder (ID) is hyperarousal. Aberrant functional connectivity among resting-state large-scale brain networks may be the underlying neurological mechanisms of this hypothesis. The aim of current study was to investigate the functional network connectivity (FNC) among large-scale brain networks in patients with insomnia disorder (ID) during resting state. In the present study, the resting-state fMRI was used to evaluate whether patients with ID showed aberrant FNC among dorsal attention network (DAN), frontoparietal control network (FPC), anterior default mode network (aDMN), and posterior default mode network (pDMN) compared with healthy good sleepers (HGSs). The Pearson's correlation analysis was employed to explore whether the abnormal FNC observed in patients with ID was associated with sleep parameters, cognitive and emotional scores, and behavioral performance assessed by questionnaires and tasks. Patients with ID had worse subjective thought control ability measured by Thought Control Ability Questionnaire (TCAQ) and more negative affect than HGSs. Intriguingly, relative to HGSs, patients with ID showed a significant increase in FNC between DAN and FPC, but a significant decrease in FNC between aDMN and pDMN. Exploratory analysis in patients with ID revealed a significantly positive correlation between the DAN-FPC FNC and reaction time (RT) of psychomotor vigilance task (PVT). The current study demonstrated that even during the resting state, the task-activated and task-deactivated large-scale brain networks in insomniacs may still maintain a hyperarousal state, looking quite similar to the pattern in a task condition with external stimuli. Those results support the hyperarousal model of insomnia.

  9. Childhood poverty and stress reactivity are associated with aberrant functional connectivity in default mode network.

    Science.gov (United States)

    Sripada, Rebecca K; Swain, James E; Evans, Gary W; Welsh, Robert C; Liberzon, Israel

    2014-08-01

    Convergent research suggests that childhood poverty is associated with perturbation in the stress response system. This might extend to aberrations in the connectivity of large-scale brain networks, which subserve key cognitive and emotional functions. Resting-state brain activity was measured in adults with a documented history of childhood poverty (n=26) and matched controls from middle-income families (n=26). Participants also underwent a standard laboratory social stress test and provided saliva samples for cortisol assay. Childhood poverty was associated with reduced default mode network (DMN) connectivity. This, in turn, was associated with higher cortisol levels in anticipation of social stress. These results suggest a possible brain basis for exaggerated stress sensitivity in low-income individuals. Alterations in DMN may be associated with less efficient cognitive processing or greater risk for development of stress-related psychopathology among individuals who experienced the adversity of chronic childhood poverty.

  10. Brain networks of the imaginative mind: Dynamic functional connectivity of default and cognitive control networks relates to openness to experience.

    Science.gov (United States)

    Beaty, Roger E; Chen, Qunlin; Christensen, Alexander P; Qiu, Jiang; Silvia, Paul J; Schacter, Daniel L

    2018-02-01

    Imagination and creative cognition are often associated with the brain's default network (DN). Recent evidence has also linked cognitive control systems to performance on tasks involving imagination and creativity, with a growing number of studies reporting functional interactions between cognitive control and DN regions. We sought to extend the emerging literature on brain dynamics supporting imagination by examining individual differences in large-scale network connectivity in relation to Openness to Experience, a personality trait typified by imagination and creativity. To this end, we obtained personality and resting-state fMRI data from two large samples of participants recruited from the United States and China, and we examined contributions of Openness to temporal shifts in default and cognitive control network interactions using multivariate structural equation modeling and dynamic functional network connectivity analysis. In Study 1, we found that Openness was related to the proportion of scan time (i.e., "dwell time") that participants spent in a brain state characterized by positive correlations among the default, executive, salience, and dorsal attention networks. Study 2 replicated and extended the effect of Openness on dwell time in a correlated brain state comparable to the state found in Study 1, and further demonstrated the robustness of this effect in latent variable models including fluid intelligence and other major personality factors. The findings suggest that Openness to Experience is associated with increased functional connectivity between default and cognitive control systems, a connectivity profile that may account for the enhanced imaginative and creative abilities of people high in Openness to Experience. © 2017 Wiley Periodicals, Inc.

  11. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Joana [Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Fernandes, Henrique M.; Van Hartevelt, Tim J.; Kringelbach, Morten L. [Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus (Denmark); James, Anthony C. [Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Highfield Unit, Warneford Hospital, Oxford OX3 7JX (United Kingdom); Deco, Gustavo [Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010 (Spain)

    2013-12-15

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.

  12. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    International Nuclear Information System (INIS)

    Cabral, Joana; Fernandes, Henrique M.; Van Hartevelt, Tim J.; Kringelbach, Morten L.; James, Anthony C.; Deco, Gustavo

    2013-01-01

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime

  13. [Functional connectivity and complex networks in focal epilepsy. Pathophysiology and therapeutic implications].

    Science.gov (United States)

    Pastor, Jesús; Sola, Rafael G; Vega-Zelaya, Lorena; Garnes, Óscar; Ortega, Guillermo J

    2014-05-01

    The traditional surgical approach to treat drug-resistant focal epileptic patients is in the resection or disconnection of the epileptic focus. However, a significant minority of patients continue to experience seizures after surgery, which shows the incomplete level of knowledge that currently we have of this pathology. This paper introduces some concepts of functional connectivity and complex networks methodology with its application to the study of neurophysiological recordings from patients suffering from drug-resistant focal epilepsy. In order to fully understand the new developments in the area of complex networks and its applications to the study of epilepsy, we will here review fundamental concepts in complex networks methodology, synchronization and functional connectivity. Some of the most recent published works dealing with focal epilepsy viewed under this new perspective will be revised and commented. We think that a wider perspective in the study of epilepsy, such as the one reviewed in this work, will allow epileptologists to consider surgical alternatives in the usual treatment of focal epilepsy at those currently performed in most medical centers around the world. Combining the traditional knowledge with new insights provided by network theory will certainly fill many of the gaps we have today in the fragmented understanding of epilepsy.

  14. Resting-state functional connectivity of the default mode network associated with happiness.

    Science.gov (United States)

    Luo, Yangmei; Kong, Feng; Qi, Senqing; You, Xuqun; Huang, Xiting

    2016-03-01

    Happiness refers to people's cognitive and affective evaluation of their life. Why are some people happier than others? One reason might be that unhappy people are prone to ruminate more than happy people. The default mode network (DMN) is normally active during rest and is implicated in rumination. We hypothesized that unhappiness may be associated with increased default-mode functional connectivity during rest, including the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC) and inferior parietal lobule (IPL). The hyperconnectivity of these areas may be associated with higher levels of rumination. One hundred forty-eight healthy participants underwent a resting-state fMRI scan. A group-independent component analysis identified the DMNs. Results indicated increased functional connectivity in the DMN was associated with lower levels of happiness. Specifically, relative to happy people, unhappy people exhibited greater functional connectivity in the anterior medial cortex (bilateral MPFC), posterior medial cortex regions (bilateral PCC) and posterior parietal cortex (left IPL). Moreover, the increased functional connectivity of the MPFC, PCC and IPL, correlated positively with the inclination to ruminate. These results highlight the important role of the DMN in the neural correlates of happiness, and suggest that rumination may play an important role in people's perceived happiness. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Thalamocortical functional connectivity in Lennox-Gastaut syndrome is abnormally enhanced in executive-control and default-mode networks.

    Science.gov (United States)

    Warren, Aaron E L; Abbott, David F; Jackson, Graeme D; Archer, John S

    2017-12-01

    To identify abnormal thalamocortical circuits in the severe epilepsy of Lennox-Gastaut syndrome (LGS) that may explain the shared electroclinical phenotype and provide potential treatment targets. Twenty patients with a diagnosis of LGS (mean age = 28.5 years) and 26 healthy controls (mean age = 27.6 years) were compared using task-free functional magnetic resonance imaging (MRI). The thalamus was parcellated according to functional connectivity with 10 cortical networks derived using group-level independent component analysis. For each cortical network, we assessed between-group differences in thalamic functional connectivity strength using nonparametric permutation-based tests. Anatomical locations were identified by quantifying spatial overlap with a histologically informed thalamic MRI atlas. In both groups, posterior thalamic regions showed functional connectivity with visual, auditory, and sensorimotor networks, whereas anterior, medial, and dorsal thalamic regions were connected with networks of distributed association cortex (including the default-mode, anterior-salience, and executive-control networks). Four cortical networks (left and right executive-control network; ventral and dorsal default-mode network) showed significantly enhanced thalamic functional connectivity strength in patients relative to controls. Abnormal connectivity was maximal in mediodorsal and ventrolateral thalamic nuclei. Specific thalamocortical circuits are affected in LGS. Functional connectivity is abnormally enhanced between the mediodorsal and ventrolateral thalamus and the default-mode and executive-control networks, thalamocortical circuits that normally support diverse cognitive processes. In contrast, thalamic regions connecting with primary and sensory cortical networks appear to be less affected. Our previous neuroimaging studies show that epileptic activity in LGS is expressed via the default-mode and executive-control networks. Results of the present study suggest that

  16. Handbook of networking & connectivity

    CERN Document Server

    McClain, Gary R

    1994-01-01

    Handbook of Networking & Connectivity focuses on connectivity standards in use, including hardware and software options. The book serves as a guide for solving specific problems that arise in designing and maintaining organizational networks.The selection first tackles open systems interconnection, guide to digital communications, and implementing TCP/IP in an SNA environment. Discussions focus on elimination of the SNA backbone, routing SNA over internets, connectionless versus connection-oriented networks, internet concepts, application program interfaces, basic principles of layering, proto

  17. Disrupted functional connectivity of cerebellar default network areas in attention-deficit/hyperactivity disorder

    Science.gov (United States)

    Kucyi, Aaron; Hove, Michael J.; Biederman, Joseph; Van Dijk, Koene R.A.; Valera, Eve M.

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is increasingly understood as a disorder of spontaneous brain-network interactions. The default mode network (DMN), implicated in ADHD-linked behaviors including mind-wandering and attentional fluctuations, has been shown to exhibit abnormal spontaneous functional connectivity (FC) within-network and with other networks (salience, dorsal attention and frontoparietal) in ADHD. Although the cerebellum has been implicated in the pathophysiology of ADHD, it remains unknown whether cerebellar areas of the DMN (CerDMN) exhibit altered FC with cortical networks in ADHD. Here, 23 adults with ADHD and 23 age-, IQ-, and sex-matched controls underwent resting state fMRI. The mean time series of CerDMN areas was extracted, and FC with the whole brain was calculated. Whole-brain between-group differences in FC were assessed. Additionally, relationships between inattention and individual differences in FC were assessed for between-group interactions. In ADHD, CerDMN areas showed positive FC (in contrast to average FC in the negative direction in controls) with widespread regions of salience, dorsal attention and sensorimotor networks. ADHD individuals also exhibited higher FC (more positive correlation) of CerDMN areas with frontoparietal and visual network regions. Within the control group, but not in ADHD, participants with higher inattention had higher FC between CerDMN and regions in the visual and dorsal attention networks. This work provides novel evidence of impaired CerDMN coupling with cortical networks in ADHD and highlights a role of the cerebro-cerebellar interactions in cognitive function. These data provide support for the potential targeting of CerDMN areas for therapeutic interventions in ADHD. PMID:26109476

  18. Disrupted functional connectivity of cerebellar default network areas in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Kucyi, Aaron; Hove, Michael J; Biederman, Joseph; Van Dijk, Koene R A; Valera, Eve M

    2015-09-01

    Attention-deficit/hyperactivity disorder (ADHD) is increasingly understood as a disorder of spontaneous brain-network interactions. The default mode network (DMN), implicated in ADHD-linked behaviors including mind-wandering and attentional fluctuations, has been shown to exhibit abnormal spontaneous functional connectivity (FC) within-network and with other networks (salience, dorsal attention and frontoparietal) in ADHD. Although the cerebellum has been implicated in the pathophysiology of ADHD, it remains unknown whether cerebellar areas of the DMN (CerDMN) exhibit altered FC with cortical networks in ADHD. Here, 23 adults with ADHD and 23 age-, IQ-, and sex-matched controls underwent resting state fMRI. The mean time series of CerDMN areas was extracted, and FC with the whole brain was calculated. Whole-brain between-group differences in FC were assessed. Additionally, relationships between inattention and individual differences in FC were assessed for between-group interactions. In ADHD, CerDMN areas showed positive FC (in contrast to average FC in the negative direction in controls) with widespread regions of salience, dorsal attention and sensorimotor networks. ADHD individuals also exhibited higher FC (more positive correlation) of CerDMN areas with frontoparietal and visual network regions. Within the control group, but not in ADHD, participants with higher inattention had higher FC between CerDMN and regions in the visual and dorsal attention networks. This work provides novel evidence of impaired CerDMN coupling with cortical networks in ADHD and highlights a role of cerebro-cerebellar interactions in cognitive function. These data provide support for the potential targeting of CerDMN areas for therapeutic interventions in ADHD. © 2015 Wiley Periodicals, Inc.

  19. Altered functional connectivity within the central reward network in overweight and obese women

    Science.gov (United States)

    Coveleskie, K; Gupta, A; Kilpatrick, L A; Mayer, E D; Ashe-McNalley, C; Stains, J; Labus, J S; Mayer, E A

    2015-01-01

    Background/Objectives: Neuroimaging studies in obese subjects have identified abnormal activation of key regions of central reward circuits, including the nucleus accumbens (NAcc), in response to food-related stimuli. We aimed to examine whether women with elevated body mass index (BMI) show structural and resting state (RS) functional connectivity alterations within regions of the reward network. Subjects/Methods: Fifty healthy, premenopausal women, 19 overweight and obese (high BMI=26–38 kg m−2) and 31 lean (BMI=19–25 kg m−2) were selected from the University of California Los Angeles' Oppenheimer Center for Neurobiology of Stress database. Structural and RS functional scans were collected. Group differences in grey matter volume (GMV) of the NAcc, oscillation dynamics of intrinsic brain activity and functional connectivity of the NAcc to regions within the reward network were examined. Results: GMV of the left NAcc was significantly greater in the high BMI group than in the lean group (P=0.031). Altered frequency distributions were observed in women with high BMI compared with lean group in the left NAcc (P=0.009) in a medium-frequency (MF) band, and in bilateral anterior cingulate cortex (ACC) (P=0.014, ingestive behaviors. PMID:25599560

  20. Network science and the effects of music preference on functional brain connectivity: from Beethoven to Eminem.

    Science.gov (United States)

    Wilkins, R W; Hodges, D A; Laurienti, P J; Steen, M; Burdette, J H

    2014-08-28

    Most people choose to listen to music that they prefer or 'like' such as classical, country or rock. Previous research has focused on how different characteristics of music (i.e., classical versus country) affect the brain. Yet, when listening to preferred music--regardless of the type--people report they often experience personal thoughts and memories. To date, understanding how this occurs in the brain has remained elusive. Using network science methods, we evaluated differences in functional brain connectivity when individuals listened to complete songs. We show that a circuit important for internally-focused thoughts, known as the default mode network, was most connected when listening to preferred music. We also show that listening to a favorite song alters the connectivity between auditory brain areas and the hippocampus, a region responsible for memory and social emotion consolidation. Given that musical preferences are uniquely individualized phenomena and that music can vary in acoustic complexity and the presence or absence of lyrics, the consistency of our results was unexpected. These findings may explain why comparable emotional and mental states can be experienced by people listening to music that differs as widely as Beethoven and Eminem. The neurobiological and neurorehabilitation implications of these results are discussed.

  1. Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Syed, Maleeha F; Lindquist, Martin A; Pillai, Jay J; Agarwal, Shruti; Gujar, Sachin K; Choe, Ann S; Caffo, Brian; Sair, Haris I

    2017-12-01

    Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.

  2. Markov models for fMRI correlation structure: Is brain functional connectivity small world, or decomposable into networks?

    Science.gov (United States)

    Varoquaux, G; Gramfort, A; Poline, J B; Thirion, B

    2012-01-01

    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Decreased functional connectivity and structural deficit in alertness network with right-sided temporal lobe epilepsy.

    Science.gov (United States)

    Gao, Yujun; Zheng, Jinou; Li, Yaping; Guo, Danni; Wang, Mingli; Cui, Xiangxiang; Ye, Wei

    2018-04-01

    Patients with temporal lobe epilepsy (TLE) often suffer from alertness alterations. However, specific regions connected with alertness remain controversial, and whether these regions have structural impairment is also elusive. This study aimed to investigate the characteristics and neural mechanisms underlying the functions and structures of alertness network in patients with right-sided temporal lobe epilepsy (rTLE) by performing the attentional network test (ANT), resting-state functional magnetic resonance imaging (R-SfMRI), and diffusion tensor imaging (DTI).A total of 47 patients with rTLE and 34 healthy controls underwent ANT, R-SfMRI, and DTI scan. The seed-based functional connectivity (FC) method and deterministic tractography were used to analyze the data.Patients with rTLE had longer reaction times in the no-cue and double-cue conditions. However, no differences were noted in the alertness effect between the 2 groups. The patient group had lower FC compared with the control group in the right inferior parietal lobe (IPL), amygdala, and insula. Structural deficits were found in the right parahippocampal gyrus, superior temporal pole, insula, and amygdala in the patient group compared with the control group. Also significantly negative correlations were observed between abnormal fractional anisotropy (between the right insula and the superior temporal pole) and illness duration in the patients with rTLE.The findings of this study suggested abnormal intrinsic and phasic alertness, decreased FC, and structural deficits within the alerting network in the rTLE. This study provided new insights into the mechanisms of alertness alterations in rTLE.

  4. Alteration in intrinsic and extrinsic functional connectivity of resting state networks associated with subclinical hypothyroid.

    Science.gov (United States)

    Kumar, Mukesh; Modi, Shilpi; Rana, Poonam; Kumar, Pawan; Kanwar, Ratnesh; Sekhri, Tarun; D'souza, Maria; Khushu, Subash

    2018-03-05

    Subclinical hypothyroidism (SCH) is characterized by mild elevation of thyroid stimulating hormone (TSH) (range 5-10 μIU/ml) and normal free triiodothyronine (FT3) and free thyroxine (FT4). The cognitive function impairment is well known in thyroid disorders such as hypothyroidism and hyperthyroidism, but little is known about deficits in brain functions in SCH subjects. Also, whether hormone-replacement treatment is necessary or not in SCH subjects is still debatable. In order to have an insight into the cognition of SCH subjects, intrinsic and extrinsic functional connectivity (FC) of the resting state networks (RSNs) was studied. For resting state data analysis we used an unbiased, data-driven approach based on Independent Component Analysis (ICA) and dual-regression that can emphasize widespread changes in FC without restricting to a set of predefined seeds. 28 SCH subjects and 28 matched healthy controls (HC) participated in the study. RSN analysis showed significantly decreased intrinsic FC in somato-motor network (SMN) and right fronto-parietal attention network (RAN) and increased intrinsic FC in default mode network (DMN) in SCH subjects as compared to control subjects. The reduced intrinsic FC in the SMN and RAN suggests neuro-cognitive alterations in SCH subjects in the corresponding functions which were also evident from the deficit in the neuropsychological performance of the SCH subjects on behavioural tests such as digit span, delayed recall, visual retention, recognition, Bender Gestalt and Mini-Mental State Examination (MMSE). We also found a significant reduction in extrinsic network FC between DMN and RAN; SMN and posterior default mode network (PDMN); and increased extrinsic FC between SMN and anterior default mode network (ADMN) in SCH subjects as compared to controls. An altered extrinsic FC in SCH suggests functional reorganization in response to neurological disruption. The partial correlation analysis between intrinsic and extrinsic RSNs

  5. Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: an independent component analysis.

    Science.gov (United States)

    Huang, Huiyuan; Wang, Junjing; Seger, Carol; Lu, Min; Deng, Feng; Wu, Xiaoyan; He, Yuan; Niu, Chen; Wang, Jun; Huang, Ruiwang

    2018-01-01

    Long-term intensive gymnastic training can induce brain structural and functional reorganization. Previous studies have identified structural and functional network differences between world class gymnasts (WCGs) and non-athletes at the whole-brain level. However, it is still unclear how interactions within and between functional networks are affected by long-term intensive gymnastic training. We examined both intra- and inter-network functional connectivity of gymnasts relative to non-athletes using resting-state fMRI (R-fMRI). R-fMRI data were acquired from 13 WCGs and 14 non-athlete controls. Group-independent component analysis (ICA) was adopted to decompose the R-fMRI data into spatial independent components and associated time courses. An automatic component identification method was used to identify components of interest associated with resting-state networks (RSNs). We identified nine RSNs, the basal ganglia network (BG), sensorimotor network (SMN), cerebellum (CB), anterior and posterior default mode networks (aDMN/pDMN), left and right fronto-parietal networks (lFPN/rFPN), primary visual network (PVN), and extrastriate visual network (EVN). Statistical analyses revealed that the intra-network functional connectivity was significantly decreased within the BG, aDMN, lFPN, and rFPN, but increased within the EVN in the WCGs compared to the controls. In addition, the WCGs showed uniformly decreased inter-network functional connectivity between SMN and BG, CB, and PVN, BG and PVN, and pDMN and rFPN compared to the controls. We interpret this generally weaker intra- and inter-network functional connectivity in WCGs during the resting state as a result of greater efficiency in the WCGs' brain associated with long-term motor skill training.

  6. Shared atypical default mode and salience network functional connectivity between autism and schizophrenia.

    Science.gov (United States)

    Chen, Heng; Uddin, Lucina Q; Duan, Xujun; Zheng, Junjie; Long, Zhiliang; Zhang, Youxue; Guo, Xiaonan; Zhang, Yan; Zhao, Jingping; Chen, Huafu

    2017-11-01

    Schizophrenia and autism spectrum disorder (ASD) are two prevalent neurodevelopmental disorders sharing some similar genetic basis and clinical features. The extent to which they share common neural substrates remains unclear. Resting-state fMRI data were collected from 35 drug-naïve adolescent participants with first-episode schizophrenia (15.6 ± 1.8 years old) and 31 healthy controls (15.4 ± 1.6 years old). Data from 22 participants with ASD (13.1 ± 3.1 years old) and 21 healthy controls (12.9 ± 2.9 years old) were downloaded from the Autism Brain Imaging Data Exchange. Resting-state functional networks were constructed using predefined regions of interest. Multivariate pattern analysis combined with multi-task regression feature selection methods were conducted in two datasets separately. Classification between individuals with disorders and controls was achieved with high accuracy (schizophrenia dataset: accuracy = 83%; ASD dataset: accuracy = 80%). Shared atypical brain connections contributing to classification were mostly present in the default mode network (DMN) and salience network (SN). These functional connections were further related to severity of social deficits in ASD (p = 0.002). Distinct atypical connections were also more related to the DMN and SN, but showed different atypical connectivity patterns between the two disorders. These results suggest some common neural mechanisms contributing to schizophrenia and ASD, and may aid in understanding the pathology of these two neurodevelopmental disorders. Autism Res 2017, 10: 1776-1786. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism spectrum disorder (ASD) and schizophrenia are two common neurodevelopmental disorders which share several genetic and behavioral features. The present study identified common neural mechanisms contributing to ASD and schizophrenia using resting-state functional MRI data. The results may help to understand

  7. Functional connectivity profile of the human inferior frontal junction: involvement in a cognitive control network

    Directory of Open Access Journals (Sweden)

    Sundermann Benedikt

    2012-10-01

    Full Text Available Abstract Background The human inferior frontal junction area (IFJ is critically involved in three main component processes of cognitive control (working memory, task switching and inhibitory control. As it overlaps with several areas in established anatomical labeling schemes, it is considered to be underreported as a functionally distinct location in the neuroimaging literature. While recent studies explicitly focused on the IFJ's anatomical organization and functional role as a single brain area, it is usually not explicitly denominated in studies on cognitive networks. However based on few analyses in small datasets constrained by specific a priori assumptions on its functional specialization, the IFJ has been postulated to be part of a cognitive control network. Goal of this meta-analysis was to establish the IFJ’s connectivity profile on a high formal level of evidence by aggregating published implicit knowledge about its co-activations. We applied meta-analytical connectivity modeling (MACM based on the activation likelihood estimation (ALE method without specific assumptions regarding functional specialization on 180 (reporting left IFJ activity and 131 (right IFJ published functional neuroimaging experiments derived from the BrainMap database. This method is based on coordinates in stereotaxic space, not on anatomical descriptors. Results The IFJ is significantly co-activated with areas in the dorsolateral and ventrolateral prefrontal cortex, anterior insula, medial frontal gyrus / pre-SMA, posterior parietal cortex, occipitotemporal junction / cerebellum, thalamus and putamen as well as language and motor areas. Results are corroborated by an independent resting-state fMRI analysis. Conclusions These results support the assumption that the IFJ is part of a previously described cognitive control network. They also highlight the involvement of subcortical structures in this system. A direct line is drawn from works on the functional

  8. Modulation of steady state functional connectivity in the default mode and working memory networks by cognitive load.

    Science.gov (United States)

    Newton, Allen T; Morgan, Victoria L; Rogers, Baxter P; Gore, John C

    2011-10-01

    Interregional correlations between blood oxygen level dependent (BOLD) magnetic resonance imaging (fMRI) signals in the resting state have been interpreted as measures of connectivity across the brain. Here we investigate whether such connectivity in the working memory and default mode networks is modulated by changes in cognitive load. Functional connectivity was measured in a steady-state verbal identity N-back task for three different conditions (N = 1, 2, and 3) as well as in the resting state. We found that as cognitive load increases, the functional connectivity within both the working memory the default mode network increases. To test whether functional connectivity between the working memory and the default mode networks changed, we constructed maps of functional connectivity to the working memory network as a whole and found that increasingly negative correlations emerged in a dorsal region of the posterior cingulate cortex. These results provide further evidence that low frequency fluctuations in BOLD signals reflect variations in neural activity and suggests interaction between the default mode network and other cognitive networks. Copyright © 2010 Wiley-Liss, Inc.

  9. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats.

    Science.gov (United States)

    Pillay, Siveshigan; Liu, Xiping; Baracskay, Péter; Hudetz, Anthony G

    2014-09-01

    Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.

  10. Effects of training strategies implemented in a complex videogame on functional connectivity of attentional networks.

    Science.gov (United States)

    Voss, Michelle W; Prakash, Ruchika Shaurya; Erickson, Kirk I; Boot, Walter R; Basak, Chandramallika; Neider, Mark B; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele; Kramer, Arthur F

    2012-01-02

    We used the Space Fortress videogame, originally developed by cognitive psychologists to study skill acquisition, as a platform to examine learning-induced plasticity of interacting brain networks. Novice videogame players learned Space Fortress using one of two training strategies: (a) focus on all aspects of the game during learning (fixed priority), or (b) focus on improving separate game components in the context of the whole game (variable priority). Participants were scanned during game play using functional magnetic resonance imaging (fMRI), both before and after 20 h of training. As expected, variable priority training enhanced learning, particularly for individuals who initially performed poorly. Functional connectivity analysis revealed changes in brain network interaction reflective of more flexible skill learning and retrieval with variable priority training, compared to procedural learning and skill implementation with fixed priority training. These results provide the first evidence for differences in the interaction of large-scale brain networks when learning with different training strategies. Our approach and findings also provide a foundation for exploring the brain plasticity involved in transfer of trained abilities to novel real-world tasks such as driving, sport, or neurorehabilitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Altered functional connectivity of the default mode network in Williams syndrome: a multimodal approach.

    Science.gov (United States)

    Sampaio, Adriana; Moreira, Pedro Silva; Osório, Ana; Magalhães, Ricardo; Vasconcelos, Cristiana; Férnandez, Montse; Carracedo, Angel; Alegria, Joana; Gonçalves, Óscar F; Soares, José Miguel

    2016-07-01

    Resting state brain networks are implicated in a variety of relevant brain functions. Importantly, abnormal patterns of functional connectivity (FC) have been reported in several neurodevelopmental disorders. In particular, the Default Mode Network (DMN) has been found to be associated with social cognition. We hypothesize that the DMN may be altered in Williams syndrome (WS), a neurodevelopmental genetic disorder characterized by an unique cognitive and behavioral phenotype. In this study, we assessed the architecture of the DMN using fMRI in WS patients and typically developing matched controls (sex and age) in terms of FC and volumetry of the DMN. Moreover, we complemented the analysis with a functional connectome approach. After excluding participants due to movement artifacts (n = 3), seven participants with WS and their respective matched controls were included in the analyses. A decreased FC between the DMN regions was observed in the WS group when compared with the typically developing group. Specifically, we found a decreased FC in a posterior hub of the DMN including the precuneus, calcarine and the posterior cingulate of the left hemisphere. The functional connectome approach showed a focalized and global increased FC connectome in the WS group. The reduced FC of the posterior hub of the DMN in the WS group is consistent with immaturity of the brain FC patterns and may be associated with the singularity of their visual spatial phenotype. © 2016 John Wiley & Sons Ltd.

  12. Functional connectivity associated with social networks in older adults: A resting-state fMRI study.

    Science.gov (United States)

    Pillemer, Sarah; Holtzer, Roee; Blumen, Helena M

    2017-06-01

    Poor social networks and decreased levels of social support are associated with worse mood, health, and cognition in younger and older adults. Yet, we know very little about the brain substrates associated with social networks and social support, particularly in older adults. This study examined functional brain substrates associated with social networks using the Social Network Index (SNI) and resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data from 28 non-demented older adults were analyzed with independent components analyses. As expected, four established resting-state networks-previously linked to motor, vision, speech, and other language functions-correlated with the quality (SNI-1: total number of high-contact roles of a respondent) and quantity (SNI-2: total number of individuals in a respondent's social network) of social networks: a sensorimotor, a visual, a vestibular/insular, and a left frontoparietal network. Moreover, SNI-1 was associated with greater functional connectivity in the lateral prefrontal regions of the left frontoparietal network, while SNI-2 was associated with greater functional connectivity in the medial prefrontal regions of this network. Thus, lateral prefrontal regions may be particularly linked to the quality of social networks while medial prefrontal regions may be particularly linked to the quantity of social networks.

  13. Resting-State Functional Connectivity and Network Analysis of Cerebellum with Respect to IQ and Gender

    Directory of Open Access Journals (Sweden)

    Vasileios C. Pezoulas

    2017-04-01

    Full Text Available During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high fluid Intelligence Quotient (IQ. Functional magnetic resonance imaging (fMRI data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our results

  14. The effect of epoch length on estimated EEG functional connectivity and brain network organisation

    Science.gov (United States)

    Fraschini, Matteo; Demuru, Matteo; Crobe, Alessandra; Marrosu, Francesco; Stam, Cornelis J.; Hillebrand, Arjan

    2016-06-01

    Objective. Graph theory and network science tools have revealed fundamental mechanisms of functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly understood how several methodological aspects may bias the topology of the reconstructed functional networks. In this context, the literature shows inconsistency in the chosen length of the selected epochs, impeding a meaningful comparison between results from different studies. Approach. The aim of this study was to provide a network approach insensitive to the effects that epoch length has on functional connectivity and network reconstruction. Two different measures, the phase lag index (PLI) and the amplitude envelope correlation (AEC) were applied to EEG resting-state recordings for a group of 18 healthy volunteers using non-overlapping epochs with variable length (1, 2, 4, 6, 8, 10, 12, 14 and 16 s). Weighted clustering coefficient (CCw), weighted characteristic path length (L w) and minimum spanning tree (MST) parameters were computed to evaluate the network topology. The analysis was performed on both scalp and source-space data. Main results. Results from scalp analysis show a decrease in both mean PLI and AEC values with an increase in epoch length, with a tendency to stabilize at a length of 12 s for PLI and 6 s for AEC. Moreover, CCw and L w show very similar behaviour, with metrics based on AEC more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, particularly for MSTs based on PLI (1-6 s versus 4-8 s for AEC). At the source-level the results were even more reliable, with stability already at 1 s duration for PLI-based MSTs. Significance. The present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of brain

  15. Changes in resting-state functionally connected parietofrontal networks after videogame practice.

    Science.gov (United States)

    Martínez, Kenia; Solana, Ana Beatriz; Burgaleta, Miguel; Hernández-Tamames, Juan Antonio; Alvarez-Linera, Juan; Román, Francisco J; Alfayate, Eva; Privado, Jesús; Escorial, Sergio; Quiroga, María A; Karama, Sherif; Bellec, Pierre; Colom, Roberto

    2013-12-01

    Neuroimaging studies provide evidence for organized intrinsic activity under task-free conditions. This activity serves functionally relevant brain systems supporting cognition. Here, we analyze changes in resting-state functional connectivity after videogame practice applying a test-retest design. Twenty young females were selected from a group of 100 participants tested on four standardized cognitive ability tests. The practice and control groups were carefully matched on their ability scores. The practice group played during two sessions per week across 4 weeks (16 h total) under strict supervision in the laboratory, showing systematic performance improvements in the game. A group independent component analysis (GICA) applying multisession temporal concatenation on test-retest resting-state fMRI, jointly with a dual-regression approach, was computed. Supporting the main hypothesis, the key finding reveals an increased correlated activity during rest in certain predefined resting state networks (albeit using uncorrected statistics) attributable to practice with the cognitively demanding tasks of the videogame. Observed changes were mainly concentrated on parietofrontal networks involved in heterogeneous cognitive functions. Copyright © 2012 Wiley Periodicals, Inc.

  16. Voxel Scale Complex Networks of Functional Connectivity in the Rat Brain: Neurochemical State Dependence of Global and Local Topological Properties

    Directory of Open Access Journals (Sweden)

    Adam J. Schwarz

    2012-01-01

    Full Text Available Network analysis of functional imaging data reveals emergent features of the brain as a function of its topological properties. However, the brain is not a homogeneous network, and the dependence of functional connectivity parameters on neuroanatomical substrate and parcellation scale is a key issue. Moreover, the extent to which these topological properties depend on underlying neurochemical changes remains unclear. In the present study, we investigated both global statistical properties and the local, voxel-scale distribution of connectivity parameters of the rat brain. Different neurotransmitter systems were stimulated by pharmacological challenge (d-amphetamine, fluoxetine, and nicotine to discriminate between stimulus-specific functional connectivity and more general features of the rat brain architecture. Although global connectivity parameters were similar, mapping of local connectivity parameters at high spatial resolution revealed strong neuroanatomical dependence of functional connectivity in the rat brain, with clear differentiation between the neocortex and older brain regions. Localized foci of high functional connectivity independent of drug challenge were found in the sensorimotor cortices, consistent with the high neuronal connectivity in these regions. Conversely, the topological properties and node roles in subcortical regions varied with neurochemical state and were dependent on the specific dynamics of the different functional processes elicited.

  17. An Exploratory Investigation of Functional Network Connectivity of Empathy and Default Mode Networks in a Free-Viewing Task.

    Science.gov (United States)

    Vemuri, Kavita; Surampudi, Bapi Raju

    2015-08-01

    This study reports dynamic functional network connectivity (dFNC) analysis on time courses of putative empathy networks-cognitive, emotional, and motor-and the default mode network (DMN) identified from independent components (ICs) derived by the group independent component analysis (ICA) method. The functional magnetic resonance imaging (fMRI) data were collected from 15 subjects watching movies of three genres, an animation (S1), Indian Hindi (S2), and a Hollywood English (S3) movie. The hypothesis of the study is that empathic engagement in a movie narrative would modulate the activation with the DMN. The clippings were individually rated for emotional expressions, context, and empathy self-response by the fMRI subjects post scanning and by 40 participants in an independent survey who rated at four time intervals in each clipping. The analysis illustrates the following: (a) the ICA method separated ICs with areas reported for empathy response and anterior/posterior DMNs. An IC indicating insula region activation reported to be crucial for the emotional empathy network was separated for S2 and S3 movies only, but not for S1, (b) the dFNC between DMN and ICs corresponding to cognitive empathy network showed higher positive periodical fluctuating correlations for all three movies, while ICs with areas crucial to motor or emotional empathy display lower positive or negative correlation values with no distinct periodicity. A possible explanation for the lower values and anticorrelation between the DMN and emotional empathy networks could possibly be inhibition due to internal self-reflections, attributed to DMN, while processing and preparing a response to external emotional content. The positive higher correlation values for cognitive empathy networks may reflect a functional overlap with DMN for enhanced internal self-reflections, inferring beliefs and intentions about the 'other', all triggered by the external stimuli. The findings are useful in the study of

  18. Resting-state functional connectivity of orthographic networks in acquired dysgraphia

    Directory of Open Access Journals (Sweden)

    Gali Ellenblum

    2015-05-01

    The NTA findings indicate that the relationship between orthographic and default-mode networks is characterized by greater within- vs. across-network connectivity. Furthermore, we show for the first time a pattern of increasing within/across network “coherence normalization” following spelling rehabilitation. Additional dysgraphic participants and other networks (language, sensory-motor, etc. will be analyzed to develop a better understanding of the RS orthographic network and its response to damage and recovery. Acknowledgements. The work is part of a multi-site, NIDCD-supported project examining language recovery neurobiology in aphasia (DC006740. We thank Melissa Greenberger and Xiao-Wei Song.

  19. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization.

    Directory of Open Access Journals (Sweden)

    Melle J W van der Molen

    Full Text Available Disruptions in functional connectivity and dysfunctional brain networks are considered to be a neurological hallmark of neurodevelopmental disorders. Despite the vast literature on functional brain connectivity in typical brain development, surprisingly few attempts have been made to characterize brain network integrity in neurodevelopmental disorders. Here we used resting-state EEG to characterize functional brain connectivity and brain network organization in eight males with fragile X syndrome (FXS and 12 healthy male controls. Functional connectivity was calculated based on the phase lag index (PLI, a non-linear synchronization index that is less sensitive to the effects of volume conduction. Brain network organization was assessed with graph theoretical analysis. A decrease in global functional connectivity was observed in FXS males for upper alpha and beta frequency bands. For theta oscillations, we found increased connectivity in long-range (fronto-posterior and short-range (frontal-frontal and posterior-posterior clusters. Graph theoretical analysis yielded evidence of increased path length in the theta band, suggesting that information transfer between brain regions is particularly impaired for theta oscillations in FXS. These findings are discussed in terms of aberrant maturation of neuronal oscillatory dynamics, resulting in an imbalance in excitatory and inhibitory neuronal circuit activity.

  20. Mobile Device Applications for the Visualization of Functional Connectivity Networks and EEG Electrodes: iBraiN and iBraiNEEG.

    Science.gov (United States)

    Rojas, Gonzalo M; Fuentes, Jorge A; Gálvez, Marcelo

    2016-01-01

    Multiple functional MRI (fMRI)-based functional connectivity networks were obtained by Yeo et al. (2011), and the visualization of these complex networks is a difficult task. Also, the combination of functional connectivity networks determined by fMRI with electroencephalography (EEG) data could be a very useful tool. Mobile devices are becoming increasingly common among users, and for this reason, we describe here two applications for Android and iOS mobile devices: one that shows in an interactive way the seven Yeo functional connectivity networks, and another application that shows the relative position of 10-20 EEG electrodes with Yeo's seven functional connectivity networks.

  1. Regulatory networks and connected components of the neutral space. A look at functional islands

    Science.gov (United States)

    Boldhaus, G.; Klemm, K.

    2010-09-01

    The functioning of a living cell is largely determined by the structure of its regulatory network, comprising non-linear interactions between regulatory genes. An important factor for the stability and evolvability of such regulatory systems is neutrality - typically a large number of alternative network structures give rise to the necessary dynamics. Here we study the discretized regulatory dynamics of the yeast cell cycle [Li et al., PNAS, 2004] and the set of networks capable of reproducing it, which we call functional. Among these, the empirical yeast wildtype network is close to optimal with respect to sparse wiring. Under point mutations, which establish or delete single interactions, the neutral space of functional networks is fragmented into ≈ 4.7 × 108 components. One of the smaller ones contains the wildtype network. On average, functional networks reachable from the wildtype by mutations are sparser, have higher noise resilience and fewer fixed point attractors as compared with networks outside of this wildtype component.

  2. State-Dependent Changes of Connectivity Patterns and Functional Brain Network Topology in Autism Spectrum Disorder

    Science.gov (United States)

    Barttfeld, Pablo; Wicker, Bruno; Cukier, Sebastian; Navarta, Silvana; Lew, Sergio; Leiguarda, Ramon; Sigman, Mariano

    2012-01-01

    Anatomical and functional brain studies have converged to the hypothesis that autism spectrum disorders (ASD) are associated with atypical connectivity. Using a modified resting-state paradigm to drive subjects' attention, we provide evidence of a very marked interaction between ASD brain functional connectivity and cognitive state. We show that…

  3. [Influence of acupuncture of Zusanli (ST 36) on connectivity of brain functional network in healthy subjects].

    Science.gov (United States)

    Li, Nuo; Wang, Pang; Deng, Bin; Wei, Xi-le; Che, Yan-qiu; Jia, Chen-hui; Guo, Yi; Chao, Wang

    2011-08-01

    .05), suggesting an increase of the information exchange and functional connectivity of different brain regions. Acupuncture of Zusanli (ST 36) can increase the amplitude and synchronization of EEG-delta waves of different leads, and potentiate the functional interconnectivity of brain functional network.

  4. The putative visual word form area is functionally connected to the dorsal attention network.

    Science.gov (United States)

    Vogel, Alecia C; Miezin, Fran M; Petersen, Steven E; Schlaggar, Bradley L

    2012-03-01

    The putative visual word form area (pVWFA) is the most consistently activated region in single word reading studies (i.e., Vigneau et al. 2006), yet its function remains a matter of debate. The pVWFA may be predominantly used in reading or it could be a more general visual processor used in reading but also in other visual tasks. Here, resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) is used to characterize the functional relationships of the pVWFA to help adjudicate between these possibilities. rs-fcMRI defines relationships based on correlations in slow fluctuations of blood oxygen level-dependent activity occurring at rest. In this study, rs-fcMRI correlations show little relationship between the pVWFA and reading-related regions but a strong relationship between the pVWFA and dorsal attention regions thought to be related to spatial and feature attention. The rs-fcMRI correlations between the pVWFA and regions of the dorsal attention network increase with age and reading skill, while the correlations between the pVWFA and reading-related regions do not. These results argue the pVWFA is not used predominantly in reading but is a more general visual processor used in other visual tasks, as well as reading.

  5. Different alterations in brain functional networks according to direct and indirect topological connections in patients with schizophrenia.

    Science.gov (United States)

    Park, Chang-Hyun; Lee, Seungyup; Kim, Taewon; Won, Wang Yeon; Lee, Kyoung-Uk

    2017-10-01

    Schizophrenia displays connectivity deficits in the brain, but the literature has shown inconsistent findings about alterations in global efficiency of brain functional networks. We supposed that such inconsistency at the whole brain level may be due to a mixture of different portions of global efficiency at sub-brain levels. Accordingly, we considered measuring portions of global efficiency in two aspects: spatial portions by considering sub-brain networks and topological portions by considering contributions to global efficiency according to direct and indirect topological connections. We proposed adjacency and indirect adjacency as new network parameters attributable to direct and indirect topological connections, respectively, and applied them to graph-theoretical analysis of brain functional networks constructed from resting state fMRI data of 22 patients with schizophrenia and 22 healthy controls. Group differences in the network parameters were observed not for whole brain and hemispheric networks, but for regional networks. Alterations in adjacency and indirect adjacency were in opposite directions, such that adjacency increased, but indirect adjacency decreased in patients with schizophrenia. Furthermore, over connections in frontal and parietal regions, increased adjacency was associated with more severe negative symptoms, while decreased adjacency was associated with more severe positive symptoms of schizophrenia. This finding indicates that connectivity deficits associated with positive and negative symptoms of schizophrenia may involve topologically different paths in the brain. In patients with schizophrenia, although changes in global efficiency may not be clearly shown, different alterations in brain functional networks according to direct and indirect topological connections could be revealed at the regional level. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mobile Device Applications for the Visualization of Functional Connectivity Networks and EEG electrodes: iBraiN and iBraiNEEG.

    Directory of Open Access Journals (Sweden)

    Gonzalo Mauricio Rojas

    2016-10-01

    Full Text Available Multiple fMRI-based functional connectivity networks were obtained by Yeo et al., and the visualization of these complex networks is a difficult task. Also, the combination of functional connectivity networks determined by fMRI with EEG data could be a very useful tool. Mobile devices are becoming increasingly common among users, and for this reason, we describe here two applications for Android and iOS mobile devices: one that shows in an interactive way the seven Yeo functional connectivity networks, and another application that shows the relative position of 10-20 EEG electrodes with Yeo’s seven functional connectivity networks.

  7. Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study.

    Science.gov (United States)

    Tian, Lin; Meng, Chun; Jiang, Ying; Tang, Qunfeng; Wang, Shuai; Xie, Xiyao; Fu, Xiangshuai; Jin, Chunhui; Zhang, Fuquan; Wang, Jidong

    2016-04-03

    Abnormal brain networks have been observed in patients with obsessive-compulsive disorder (OCD). However, detailed network hub and connectivity changes remained unclear in treatment-naive patients with OCD. Here, we sought to determine whether patients show hub-related connectivity changes in their whole-brain functional networks. We used resting-state functional magnetic resonance imaging data and voxel-based graph-theoretic analysis to investigate functional connectivity strength and hubs of whole-brain networks in 29 treatment-naive patients with OCD and 29 age- and gender-matched healthy controls. Correlation analysis was applied for potential associations with OCD symptom severity. OCD selectively targeted brain regions of higher functional connectivity strength than the average including brain network hubs, mainly distributed in the cortico-striato-thalamo-cortical (CSTC) circuits and additionally parietal, occipital, temporal and cerebellar regions. Moreover, affected functional connectivity strength in the cerebellum, the medial orbitofrontal cortex and superior occipital cortex was significantly associated with global OCD symptom severity. Our results provide the evidence about OCD-related brain network hub changes, not only in the CSTC circuits but more distributed in whole brain networks. Data suggest that whole brain network hub analysis is useful for understanding the pathophysiology of OCD. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effects of gratitude meditation on neural network functional connectivity and brain-heart coupling.

    Science.gov (United States)

    Kyeong, Sunghyon; Kim, Joohan; Kim, Dae Jin; Kim, Hesun Erin; Kim, Jae-Jin

    2017-07-11

    A sense of gratitude is a powerful and positive experience that can promote a happier life, whereas resentment is associated with life dissatisfaction. To explore the effects of gratitude and resentment on mental well-being, we acquired functional magnetic resonance imaging and heart rate (HR) data before, during, and after the gratitude and resentment interventions. Functional connectivity (FC) analysis was conducted to identify the modulatory effects of gratitude on the default mode, emotion, and reward-motivation networks. The average HR was significantly lower during the gratitude intervention than during the resentment intervention. Temporostriatal FC showed a positive correlation with HR during the gratitude intervention, but not during the resentment intervention. Temporostriatal resting-state FC was significantly decreased after the gratitude intervention compared to the resentment intervention. After the gratitude intervention, resting-state FC of the amygdala with the right dorsomedial prefrontal cortex and left dorsal anterior cingulate cortex were positively correlated with anxiety scale and depression scale, respectively. Taken together, our findings shed light on the effect of gratitude meditation on an individual's mental well-being, and indicate that it may be a means of improving both emotion regulation and self-motivation by modulating resting-state FC in emotion and motivation-related brain regions.

  9. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.

    Science.gov (United States)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-18

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  10. Spatial Disassociation of Disrupted Functional Connectivity for the Default Mode Network in Patients with End-Stage Renal Disease.

    Directory of Open Access Journals (Sweden)

    Xiaofen Ma

    Full Text Available To investigate the aberrant functional connectivity of the default mode network (DMN in patients with end-stage renal disease (ESRD and their clinical relevance.Resting-state functional MRI data were collected from 31 patients with ESRD (24 men, 24-61 years and 31 age- and gender-matched healthy controls (HCs, 21 men, 26-61years. A whole-brain seed-based functional connectivity analysis of these collected R-fMRI data was performed by locating the seeds in the posterior cingulate cortex (PCC and ventromedial prefrontal cortex (vmPFC to investigate the functional connectivity of the posterior and anterior DMN over the whole brain, respectively.Compared to the HCs, the patients exhibited significantly decreased functional connectivity with the PCC in the left middle temporal gyrus, the right anterior cingulate gyrus, and the bilateral medial superior frontal gyrus. For the vmPFC seed, only the right thalamus showed significantly decreased functional connectivity in the patients with ESRD compared to HCs. Interestingly, functional connectivity between the PCC and right medial superior frontal gyrus exhibited a significantly positive correlation with the hemoglobin level in the patients.Our findings suggest a spatially specific disruption of functional connectivity in the DMN in patients with ESRD, thereby providing novel insights into our understanding of the neurophysiology mechanism that underlies the disease.

  11. Preliminary findings of altered functional connectivity of the default mode network linked to functional outcomes one year after pediatric traumatic brain injury.

    Science.gov (United States)

    Stephens, Jaclyn A; Salorio, Cynthia F; Barber, Anita D; Risen, Sarah R; Mostofsky, Stewart H; Suskauer, Stacy J

    2017-07-10

    This study examined functional connectivity of the default mode network (DMN) and examined brain-behavior relationships in a pilot cohort of children with chronic mild to moderate traumatic brain injury (TBI). Compared to uninjured peers, children with TBI demonstrated less anti-correlated functional connectivity between DMN and right Brodmann Area 40 (BA 40). In children with TBI, more anomalous less anti-correlated) connectivity between DMN and right BA 40 was linked to poorer performance on response inhibition tasks. Collectively, these preliminary findings suggest that functional connectivity between DMN and BA 40 may relate to longterm functional outcomes in chronic pediatric TBI.

  12. Brain resting-state networks in adolescents with high-functioning autism: Analysis of spatial connectivity and temporal neurodynamics.

    Science.gov (United States)

    Bernas, Antoine; Barendse, Evelien M; Aldenkamp, Albert P; Backes, Walter H; Hofman, Paul A M; Hendriks, Marc P H; Kessels, Roy P C; Willems, Frans M J; de With, Peter H N; Zinger, Svitlana; Jansen, Jacobus F A

    2018-02-01

    Autism spectrum disorder (ASD) is mainly characterized by functional and communication impairments as well as restrictive and repetitive behavior. The leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, which can be assessed using functional magnetic resonance imaging (fMRI). Even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic, or resting-state, connectivity. Global default connectivity in individuals with autism versus controls is not well characterized, especially for a high-functioning young population. The aim of this study is to test whether high-functioning adolescents with ASD (HFA) have an abnormal resting-state functional connectivity. We performed spatial and temporal analyses on resting-state networks (RSNs) in 13 HFA adolescents and 13 IQ- and age-matched controls. For the spatial analysis, we used probabilistic independent component analysis (ICA) and a permutation statistical method to reveal the RSN differences between the groups. For the temporal analysis, we applied Granger causality to find differences in temporal neurodynamics. Controls and HFA display very similar patterns and strengths of resting-state connectivity. We do not find any significant differences between HFA adolescents and controls in the spatial resting-state connectivity. However, in the temporal dynamics of this connectivity, we did find differences in the causal effect properties of RSNs originating in temporal and prefrontal cortices. The results show a difference between HFA and controls in the temporal neurodynamics from the ventral attention network to the salience-executive network: a pathway involving cognitive, executive, and emotion-related cortices. We hypothesized that this weaker dynamic pathway is due to a subtle trigger challenging the cognitive state prior to the resting state.

  13. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.

    Science.gov (United States)

    Xu, Tingting; Cullen, Kathryn R; Mueller, Bryon; Schreiner, Mindy W; Lim, Kelvin O; Schulz, S Charles; Parhi, Keshab K

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03-0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03-0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge

  14. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    2016-01-01

    Full Text Available Borderline personality disorder (BPD is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study

  15. Tracking the Reorganization of Module Structure in Time-Varying Weighted Brain Functional Connectivity Networks.

    Science.gov (United States)

    Schmidt, Christoph; Piper, Diana; Pester, Britta; Mierau, Andreas; Witte, Herbert

    2018-05-01

    Identification of module structure in brain functional networks is a promising way to obtain novel insights into neural information processing, as modules correspond to delineated brain regions in which interactions are strongly increased. Tracking of network modules in time-varying brain functional networks is not yet commonly considered in neuroscience despite its potential for gaining an understanding of the time evolution of functional interaction patterns and associated changing degrees of functional segregation and integration. We introduce a general computational framework for extracting consensus partitions from defined time windows in sequences of weighted directed edge-complete networks and show how the temporal reorganization of the module structure can be tracked and visualized. Part of the framework is a new approach for computing edge weight thresholds for individual networks based on multiobjective optimization of module structure quality criteria as well as an approach for matching modules across time steps. By testing our framework using synthetic network sequences and applying it to brain functional networks computed from electroencephalographic recordings of healthy subjects that were exposed to a major balance perturbation, we demonstrate the framework's potential for gaining meaningful insights into dynamic brain function in the form of evolving network modules. The precise chronology of the neural processing inferred with our framework and its interpretation helps to improve the currently incomplete understanding of the cortical contribution for the compensation of such balance perturbations.

  16. Preserved functional connectivity in the default mode and salience networks is associated with youthful memory in superaging

    OpenAIRE

    Barrett, Lisa; Zhang, Jiahe; Andreano, Joseph; Dickerson, Bradford; Touroutoglou, Alexandra

    2018-01-01

    'Superagers' are older adults who, despite their advanced age, maintain youthful memory. Previous morphometry studies revealed multiple default mode network (DMN) and salience network (SN) regions whose cortical thickness is preserved in superagers and correlates with memory performance. In this study, we examined the intrinsic functional connectivity within DMN and SN in 41 young (24.5 ± 3.6 years old) and 40 elderly adults (66.9 ± 5.5 years old). As in prior studies, superaging was defined ...

  17. An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation.

    Science.gov (United States)

    Wang, Yikai; Kang, Jian; Kemmer, Phebe B; Guo, Ying

    2016-01-01

    Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant

  18. Functional connectivity pattern during rest within the episodic memory network in association with episodic memory performance in bipolar disorder.

    Science.gov (United States)

    Oertel-Knöchel, Viola; Reinke, Britta; Matura, Silke; Prvulovic, David; Linden, David E J; van de Ven, Vincent

    2015-02-28

    In this study, we sought to examine the intrinsic functional organization of the episodic memory network during rest in bipolar disorder (BD). The previous work suggests that deficits in intrinsic functional connectivity may account for impaired memory performance. We hypothesized that regions involved in episodic memory processing would reveal aberrant functional connectivity in patients with bipolar disorder. We examined 21 patients with BD and 21 healthy matched controls who underwent functional magnetic resonance imaging (fMRI) during a resting condition. We did a seed-based functional connectivity analysis (SBA), using the regions of the episodic memory network that showed a significantly different activation pattern during task-related fMRI as seeds. The functional connectivity scores (FC) were further correlated with episodic memory task performance. Our results revealed decreased FC scores within frontal areas and between frontal and temporal/hippocampal/limbic regions in BD patients in comparison with controls. We observed higher FC in BD patients compared with controls between frontal and limbic regions. The decrease in fronto-frontal functional connectivity in BD patients showed a significant positive association with episodic memory performance. The association between task-independent dysfunctional frontal-limbic FC and episodic memory performance may be relevant for current pathophysiological models of the disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations.

    Directory of Open Access Journals (Sweden)

    Gaelle Bettus

    Full Text Available In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD signal derived from resting state functional magnetic resonance imaging (fMRI reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG and resting-state functional MRI (fMRI in 5 patients suffering from intractable temporal lobe epilepsy (TLE. Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal. This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional

  20. Social interactions elicit rapid shifts in functional connectivity in the social decision-making network of zebrafish.

    Science.gov (United States)

    Teles, Magda C; Almeida, Olinda; Lopes, João S; Oliveira, Rui F

    2015-10-07

    According to the social decision-making (SDM) network hypothesis, SDM is encoded in a network of forebrain and midbrain structures in a distributed and dynamic fashion, such that the expression of a given social behaviour is better reflected by the overall profile of activation across the different loci rather than by the activity of a single node. This proposal has the implicit assumption that SDM relies on integration across brain regions, rather than on regional specialization. Here we tested the occurrence of functional localization and of functional connectivity in the SDM network. For this purpose we used zebrafish to map different social behaviour states into patterns of neuronal activity, as indicated by the expression of the immediate early genes c-fos and egr-1, across the SDM network. The results did not support functional localization, as some loci had similar patterns of activity associated with different social behaviour states, and showed socially driven changes in functional connectivity. Thus, this study provides functional support to the SDM network hypothesis and suggests that the neural context in which a given node of the network is operating (i.e. the state of its interconnected areas) is central to its functional relevance. © 2015 The Author(s).

  1. Modular organization of functional network connectivity in healthy controls and patients with schizophrenia during the resting state

    Directory of Open Access Journals (Sweden)

    Qingbao eYu

    2012-01-01

    Full Text Available Neuroimaging studies have shown that functional brain networks composed from select regions of interest (ROIs have a modular community structure. However, the organization of functional network connectivity (FNC, comprising a purely data-driven network built from spatially independent brain components, is not yet clear. The aim of this study is to explore the modular organization of FNC in both healthy controls (HCs and patients with schizophrenia (SZs. Resting state functional magnetic resonance imaging (R-fMRI data of HCs and SZs were decomposed into independent components (ICs by group independent component analysis (ICA. Then weighted brain networks (in which nodes are brain components were built based on correlations among of ICA time courses. Clustering coefficients and connectivity strength of the networks were computed. A dynamic branch cutting algorithm was used to identify modules of the FNC in HCs and SZs. Results show stronger connectivity strength and higher clustering coefficient in HCs with more and smaller modules in SZs. In addition, HCs and SZs had some different hubs. Our findings demonstrate altered modular architecture of the FNC in schizophrenia and provide insights into abnormal topological organization of intrinsic brain networks in this mental illness.

  2. Classification of schizophrenia patients based on resting-state functional network connectivity

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Arbabshirani

    2013-07-01

    Full Text Available There is a growing interest in automatic classification of mental disorders based on neuroimaging data. Small training data sets (subjects and very large amount of high dimensional data make it a challenging task to design robust and accurate classifiers for heterogeneous disorders such as schizophrenia. Most previous studies considered structural MRI, diffusion tensor imaging and task-based fMRI for this purpose. However, resting-state data has been rarely used in discrimination of schizophrenia patients from healthy controls. Resting data are of great interest, since they are relatively easy to collect, and not confounded by behavioral performance on a task. Several linear and non-linear classification methods were trained using a training dataset and evaluate with a separate testing dataset. Results show that classification with high accuracy is achievable using simple non-linear discriminative methods such as k-nearest neighbors which is very promising. We compare and report detailed results of each classifier as well as statistical analysis and evaluation of each single feature. To our knowledge our effects represent the first use of resting-state functional network connectivity features to classify schizophrenia.

  3. Complementary Network-Based Approaches for Exploring Genetic Structure and Functional Connectivity in Two Vulnerable, Endemic Ground Squirrels

    Directory of Open Access Journals (Sweden)

    Victoria H. Zero

    2017-06-01

    Full Text Available The persistence of small populations is influenced by genetic structure and functional connectivity. We used two network-based approaches to understand the persistence of the northern Idaho ground squirrel (Urocitellus brunneus and the southern Idaho ground squirrel (U. endemicus, two congeners of conservation concern. These graph theoretic approaches are conventionally applied to social or transportation networks, but here are used to study population persistence and connectivity. Population graph analyses revealed that local extinction rapidly reduced connectivity for the southern species, while connectivity for the northern species could be maintained following local extinction. Results from gravity models complemented those of population graph analyses, and indicated that potential vegetation productivity and topography drove connectivity in the northern species. For the southern species, development (roads and small-scale topography reduced connectivity, while greater potential vegetation productivity increased connectivity. Taken together, the results of the two network-based methods (population graph analyses and gravity models suggest the need for increased conservation action for the southern species, and that management efforts have been effective at maintaining habitat quality throughout the current range of the northern species. To prevent further declines, we encourage the continuation of management efforts for the northern species, whereas conservation of the southern species requires active management and additional measures to curtail habitat fragmentation. Our combination of population graph analyses and gravity models can inform conservation strategies of other species exhibiting patchy distributions.

  4. Comparison of functional network connectivity for passive-listening and active-response narrative comprehension in adolescents.

    Science.gov (United States)

    Wang, Yingying; Holland, Scott K

    2014-05-01

    Comprehension of narrative stories plays an important role in the development of language skills. In this study, we compared brain activity elicited by a passive-listening version and an active-response (AR) version of a narrative comprehension task by using independent component (IC) analysis on functional magnetic resonance imaging data from 21 adolescents (ages 14-18 years). Furthermore, we explored differences in functional network connectivity engaged by two versions of the task and investigated the relationship between the online response time and the strength of connectivity between each pair of ICs. Despite similar brain region involvements in auditory, temporoparietal, and frontoparietal language networks for both versions, the AR version engages some additional network elements including the left dorsolateral prefrontal, anterior cingulate, and sensorimotor networks. These additional involvements are likely associated with working memory and maintenance of attention, which can be attributed to the differences in cognitive strategic aspects of the two versions. We found significant positive correlation between the online response time and the strength of connectivity between an IC in left inferior frontal region and an IC in sensorimotor region. An explanation for this finding is that longer reaction time indicates stronger connection between the frontal and sensorimotor networks caused by increased activation in adolescents who require more effort to complete the task.

  5. Risk seeking for losses modulates the functional connectivity of the default mode and left frontoparietal networks in young males.

    Science.gov (United States)

    Deza Araujo, Yacila I; Nebe, Stephan; Neukam, Philipp T; Pooseh, Shakoor; Sebold, Miriam; Garbusow, Maria; Heinz, Andreas; Smolka, Michael N

    2018-06-01

    Value-based decision making (VBDM) is a principle that states that humans and other species adapt their behavior according to the dynamic subjective values of the chosen or unchosen options. The neural bases of this process have been extensively investigated using task-based fMRI and lesion studies. However, the growing field of resting-state functional connectivity (RSFC) may shed light on the organization and function of brain connections across different decision-making domains. With this aim, we used independent component analysis to study the brain network dynamics in a large cohort of young males (N = 145) and the relationship of these dynamics with VBDM. Participants completed a battery of behavioral tests that evaluated delay aversion, risk seeking for losses, risk aversion for gains, and loss aversion, followed by an RSFC scan session. We identified a set of large-scale brain networks and conducted our analysis only on the default mode network (DMN) and networks comprising cognitive control, appetitive-driven, and reward-processing regions. Higher risk seeking for losses was associated with increased connectivity between medial temporal regions, frontal regions, and the DMN. Higher risk seeking for losses was also associated with increased coupling between the left frontoparietal network and occipital cortices. These associations illustrate the participation of brain regions involved in prospective thinking, affective decision making, and visual processing in participants who are greater risk-seekers, and they demonstrate the sensitivity of RSFC to detect brain connectivity differences associated with distinct VBDM parameters.

  6. The Salience Network and Its Functional Architecture in a Perceptual Decision: An Effective Connectivity Study.

    Science.gov (United States)

    Lamichhane, Bidhan; Dhamala, Mukesh

    2015-08-01

    The anterior insulae (INSs) are involved in accumulating sensory evidence in perceptual decision-making independent of the motor response, whereas the dorsal anterior cingulate cortex (dACC) is known to play a role in choosing appropriate behavioral responses. Recent evidence suggests that INSs and dACC are part of the salience network (SN), a key network known to be involved in decision-making and thought to be important for the coordination of behavioral responses. However, how these nodes in the SN contribute to the decision-making process from segregation of stimuli to the generation of an appropriate behavioral response remains unknown. In this study, the authors scanned 33 participants in functional magnetic resonance imaging and asked them to decide whether the presented pairs of audio (a beep of sound) and visual (a flash of light) stimuli were synchronous or asynchronous. Participants reported their perception with a button press. Stimuli were presented in block of eight pairs with a temporal lag (ΔT) between the first (audio) and the second (visual) stimulus in each pair. They used dynamic causal modeling (DCM) and the Bayesian model evidence technique to elucidate the functional architecture between the nodes of SN. Both the synchrony and the asynchrony perception resulted in strong activation in the SN. Most importantly, the DCM analyses demonstrated that the INSs were integrating as well as driving hubs in the SN. The INSs were found to a play an important role in the integration of sensory information; input to the SN is most likely through INSs. Furthermore, significant INSs to dACC intrinsic connectivity established by these task conditions help us conclude that INSs drive the dACC to guide the behavior of choosing the appropriate response. The authors therefore argue that the dACC and INS are part of a system involved in the decision-making process from perception to planning of a motor response, and that this observed functional mechanism might

  7. Resting-state functional under-connectivity within and between large-scale cortical networks across three low-frequency bands in adolescents with autism.

    Science.gov (United States)

    Duan, Xujun; Chen, Heng; He, Changchun; Long, Zhiliang; Guo, Xiaonan; Zhou, Yuanyue; Uddin, Lucina Q; Chen, Huafu

    2017-10-03

    Although evidence is accumulating that autism spectrum disorder (ASD) is associated with disruption of functional connections between and within brain networks, it remains largely unknown whether these abnormalities are related to specific frequency bands. To address this question, network contingency analysis was performed on brain functional connectomes obtained from 213 adolescent participants across nine sites in the Autism Brain Imaging Data Exchange (ABIDE) multisite sample, to determine the disrupted connections between and within seven major cortical networks in adolescents with ASD at Slow-5, Slow-4 and Slow-3 frequency bands and further assess whether the aberrant intra- and inter-network connectivity varied as a function of ASD symptoms. Overall under-connectivity within and between large-scale intrinsic networks in ASD was revealed across the three frequency bands. Specifically, decreased connectivity strength within the default mode network (DMN), between DMN and visual network (VN), ventral attention network (VAN), and between dorsal attention network (DAN) and VAN was observed in the lower frequency band (slow-5, slow-4), while decreased connectivity between limbic network (LN) and frontal-parietal network (FPN) was observed in the higher frequency band (slow-3). Furthermore, weaker connectivity within and between specific networks correlated with poorer communication and social interaction skills in the slow-5 band, uniquely. These results demonstrate intrinsic under-connectivity within and between multiple brain networks within predefined frequency bands in ASD, suggesting that frequency-related properties underlie abnormal brain network organization in the disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Functional resting-state connectivity of the human motor network: differences between right- and left-handers.

    Science.gov (United States)

    Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2015-04-01

    Handedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The relationship between default mode network connectivity and social functioning in individuals at familial high-risk for schizophrenia.

    Science.gov (United States)

    Dodell-Feder, David; Delisi, Lynn E; Hooker, Christine I

    2014-06-01

    Unaffected first-degree relatives of individuals with schizophrenia (i.e., those at familial high-risk [FHR]), demonstrate social dysfunction qualitatively similar though less severe than that of their affected relatives. These social difficulties may be the consequence of genetically conferred disruption to aspects of the default mode network (DMN), such as the dMPFC subsystem, which overlaps with the network of brain regions recruited during social cognitive processes. In the present study, we investigate this possibility, testing DMN connectivity and its relationship to social functioning in FHR using resting-state fMRI. Twenty FHR individuals and 17 controls underwent fMRI during a resting-state scan. Hypothesis-driven functional connectivity analyses examined ROI-to-ROI correlations between the DMN's hubs, and regions of the dMPFC subsystem and MTL subsystem. Connectivity values were examined in relationship to a measure of social functioning and empathy/perspective-taking. Results demonstrate that FHR exhibit reduced connectivity specifically within the dMPFC subsystem of the DMN. Certain ROI-to-ROI correlations predicted aspects of social functioning and empathy/perspective-taking across all participants. Together, the data indicate that disruption to the dMPFC subsystem of the DMN may be associated with familial risk for schizophrenia, and that these intrinsic connections may carry measurable consequences for social functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Extraversion modulates functional connectivity hubs of resting-state brain networks.

    Science.gov (United States)

    Pang, Yajing; Cui, Qian; Duan, Xujun; Chen, Heng; Zeng, Ling; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu

    2017-09-01

    Personality dimension extraversion describes individual differences in social behaviour and socio-emotional functioning. The intrinsic functional connectivity patterns of the brain are reportedly associated with extraversion. However, whether or not extraversion is associated with functional hubs warrants clarification. Functional hubs are involved in the rapid integration of neural processing, and their dysfunction contributes to the development of neuropsychiatric disorders. In this study, we employed the functional connectivity density (FCD) method for the first time to distinguish the energy-efficient hubs associated with extraversion. The resting-state functional magnetic resonance imaging data of 71 healthy subjects were used in the analysis. Short-range FCD was positively correlated with extraversion in the left cuneus, revealing a link between the local functional activity of this region and extraversion in risk-taking. Long-range FCD was negatively correlated with extraversion in the right superior frontal gyrus and the inferior frontal gyrus. Seed-based resting-state functional connectivity (RSFC) analyses revealed that a decreased long-range FCD in individuals with high extraversion scores showed a low long-range functional connectivity pattern between the medial and dorsolateral prefrontal cortex, middle temporal gyrus, and anterior cingulate cortex. This result suggests that decreased RSFC patterns are responsible for self-esteem, self-evaluation, and inhibitory behaviour system that account for the modulation and shaping of extraversion. Overall, our results emphasize specific brain hubs, and reveal long-range functional connections in relation to extraversion, thereby providing a neurobiological basis of extraversion. © 2015 The British Psychological Society.

  11. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    OpenAIRE

    Tingting Xu; Kathryn R. Cullen; Bryon Mueller; Mindy W. Schreiner; Kelvin O. Lim; S. Charles Schulz; Keshab K. Parhi

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and construc...

  12. Abnormal Functional Connectivity of Resting State Network Detection Based on Linear ICA Analysis in Autism Spectrum Disorder.

    Science.gov (United States)

    Bi, Xia-An; Zhao, Junxia; Xu, Qian; Sun, Qi; Wang, Zhigang

    2018-01-01

    Some functional magnetic resonance imaging (fMRI) researches in autism spectrum disorder (ASD) patients have shown that ASD patients have significant impairment in brain response. However, few researchers have studied the functional structure changes of the eight resting state networks (RSNs) in ASD patients. Therefore, research on statistical differences of RSNs between 42 healthy controls (HC) and 50 ASD patients has been studied using linear independent component analysis (ICA) in this paper. Our researches showed that there was abnormal functional connectivity (FC) of RSNs in ASD patients. The RSNs with the decreased FC and increased FC in ASD patients included default mode network (DMN), central executive network (CEN), core network (CN), visual network (VN), self-referential network (SRN) compared to HC. The RSNs with the increased FC in ASD patients included auditory network (AN), somato-motor network (SMN). The dorsal attention network (DAN) in ASD patients showed the decreased FC. Our findings indicate that the abnormal FC in RSNs extensively exists in ASD patients. Our results have important contribution for the study of neuro-pathophysiological mechanisms in ASD patients.

  13. The CB1 Neutral Antagonist Tetrahydrocannabivarin Reduces Default Mode Network and Increases Executive Control Network Resting State Functional Connectivity in Healthy Volunteers.

    Science.gov (United States)

    Rzepa, Ewelina; Tudge, Luke; McCabe, Ciara

    2015-09-10

    The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  14. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction.

    Directory of Open Access Journals (Sweden)

    Wei-na Ding

    Full Text Available Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA.Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS and Barratt Impulsiveness Scale-11 (BIS-11 and their hours of Internet use per week.There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours (p<0.0001 and higher CIAS (p<0.0001 and BIS-11 (p = 0.01 scores than the controls. Compared with the control group, subjects with IGA exhibited increased functional connectivity in the bilateral cerebellum posterior lobe and middle temporal gyrus. The bilateral inferior parietal lobule and right inferior temporal gyrus exhibited decreased connectivity. Connectivity with the PCC was positively correlated with CIAS scores in the right precuneus, posterior cingulate gyrus, thalamus, caudate, nucleus accumbens, supplementary motor area, and lingual gyrus. It was negatively correlated with the right cerebellum anterior lobe and left superior parietal lobule.Our results suggest that adolescents with IGA exhibit different resting-state patterns of brain activity. As these alterations are partially consistent with those in patients with substance addiction, they support the

  15. Resting state cortico-cerebellar functional connectivity networks: A comparison of anatomical and self-organizing map approaches

    Directory of Open Access Journals (Sweden)

    Jessica A Bernard

    2012-08-01

    Full Text Available The cerebellum plays a role in a wide variety of complex behaviors. In order to better understand the role of the cerebellum in human behavior, it is important to know how this structure interacts with cortical and other subcortical regions of the brain. To date, several studies have investigated the cerebellum using resting-state functional connectivity magnetic resonance imaging (fcMRI; Buckner et al., 2011; Krienen & Buckner, 2009; O’Reilly et al., 2009. However, none of this work has taken an anatomically-driven approach. Furthermore, though detailed maps of cerebral cortex and cerebellum networks have been proposed using different network solutions based on the cerebral cortex (Buckner et al., 2011, it remains unknown whether or not an anatomical lobular breakdown best encompasses the networks of the cerebellum. Here, we used fcMRI to create an anatomically-driven cerebellar connectivity atlas. Timecourses were extracted from the lobules of the right hemisphere and vermis. We found distinct networks for the individual lobules with a clear division into motor and non-motor regions. We also used a self-organizing map algorithm to parcellate the cerebellum. This allowed us to investigate redundancy and independence of the anatomically identified cerebellar networks. We found that while anatomical boundaries in the anterior cerebellum provide functional subdivisions of a larger motor grouping defined using our self-organizing map algorithm, in the posterior cerebellum, the lobules were made up of sub-regions associated with distinct functional networks. Together, our results indicate that the lobular boundaries of the human cerebellum are not indicative of functional boundaries, though anatomical divisions can be useful, as is the case of the anterior cerebellum. Additionally, driving the analyses from the cerebellum is key to determining the complete picture of functional connectivity within the structure.

  16. Control Networks in Paediatric Tourette Syndrome Show Immature and Anomalous Patterns of Functional Connectivity

    Science.gov (United States)

    Church, Jessica A.; Fair, Damien A.; Dosenbach, Nico U. F.; Cohen, Alexander L.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2009-01-01

    Tourette syndrome (TS) is a developmental disorder characterized by unwanted, repetitive behaviours that manifest as stereotyped movements and vocalizations called "tics". Operating under the hypothesis that the brain's control systems may be impaired in TS, we measured resting-state functional connectivity MRI (rs-fcMRI) between 39 previously…

  17. Resting-state functional connectivity predicts longitudinal pain symptom change in urologic chronic pelvic pain syndrome: a MAPP network study.

    Science.gov (United States)

    Kutch, Jason J; Labus, Jennifer S; Harris, Richard E; Martucci, Katherine T; Farmer, Melissa A; Fenske, Sonja; Fling, Connor; Ichesco, Eric; Peltier, Scott; Petre, Bogdan; Guo, Wensheng; Hou, Xiaoling; Stephens, Alisa J; Mullins, Chris; Clauw, Daniel J; Mackey, Sean C; Apkarian, A Vania; Landis, J Richard; Mayer, Emeran A

    2017-06-01

    Chronic pain symptoms often change over time, even in individuals who have had symptoms for years. Studying biological factors that predict trends in symptom change in chronic pain may uncover novel pathophysiological mechanisms and potential therapeutic targets. In this study, we investigated whether brain functional connectivity measures obtained from resting-state functional magnetic resonance imaging at baseline can predict longitudinal symptom change (3, 6, and 12 months after scan) in urologic chronic pelvic pain syndrome. We studied 52 individuals with urologic chronic pelvic pain syndrome (34 women, 18 men) who had baseline neuroimaging followed by symptom tracking every 2 weeks for 1 year as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network study. We found that brain functional connectivity can make a significant prediction of short-term (3 month) pain reduction with 73.1% accuracy (69.2% sensitivity and 75.0% precision). In addition, we found that the brain regions with greatest contribution to the classification were preferentially aligned with the left frontoparietal network. Resting-state functional magnetic resonance imaging measures seemed to be less informative about 6- or 12-month symptom change. Our study provides the first evidence that future trends in symptom change in patients in a state of chronic pain may be linked to functional connectivity within specific brain networks.

  18. Functional Connectivity of Precipitation Networks in the Brazilian Rainforest-Savanna Transition Zone

    Science.gov (United States)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2016-12-01

    In the Brazilian rainforest-savanna transition zone, vegetation change has the potential to significantly affect precipitation patterns. Deforestation, in particular, can affect precipitation patterns by increasing land surface albedo, increasing aerosol loading to the atmosphere, changing land surface roughness, and reducing transpiration. Understanding land surface-precipitation couplings in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching and agriculture, hydropower generation, and drinking water management. Simulations suggest complex, scale-dependent interactions between precipitation and land cover. For example, the size and distribution of deforested patches has been found to affect precipitation patterns. We take an empirical approach to ask: (1) what are the dominant spatial and temporal length scales of precipitation coupling in the Brazilian rainforest-savanna transition zone? (2) How do these length scales change over time? (3) How does the connectivity of precipitation change over time? The answers to these questions will help address fundamental questions about the impacts of deforestation on precipitation. We use rain gauge data from 1100 rain gauges intermittently covering the period 1980 - 2013, a period of intensive land cover change in the region. The dominant spatial and temporal length scales of precipitation coupling are resolved using transfer entropy, a metric from information theory. Connectivity of the emergent network of couplings is quantified using network statistics. Analyses using transfer entropy and network statistics reveal the spatial and temporal interdependencies of rainfall events occurring in different parts of the study domain.

  19. Effects of Cognitive Training on Resting-State Functional Connectivity of Default Mode, Salience, and Central Executive Networks.

    Science.gov (United States)

    Cao, Weifang; Cao, Xinyi; Hou, Changyue; Li, Ting; Cheng, Yan; Jiang, Lijuan; Luo, Cheng; Li, Chunbo; Yao, Dezhong

    2016-01-01

    Neuroimaging studies have documented that aging can disrupt certain higher cognitive systems such as the default mode network (DMN), the salience network and the central executive network (CEN). The effect of cognitive training on higher cognitive systems remains unclear. This study used a 1-year longitudinal design to explore the cognitive training effect on three higher cognitive networks in healthy older adults. The community-living healthy older adults were divided into two groups: the multi-domain cognitive training group (24 sessions of cognitive training over a 3-months period) and the wait-list control group. All subjects underwent cognitive measurements and resting-state functional magnetic resonance imaging scanning at baseline and at 1 year after the training ended. We examined training-related changes in functional connectivity (FC) within and between three networks. Compared with the baseline, we observed maintained or increased FC within all three networks after training. The scans after training also showed maintained anti-correlation of FC between the DMN and CEN compared to the baseline. These findings demonstrated that cognitive training maintained or improved the functional integration within networks and the coupling between the DMN and CEN in older adults. Our findings suggested that multi-domain cognitive training can mitigate the aging-related dysfunction of higher cognitive networks.

  20. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

    Science.gov (United States)

    Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe

    2016-07-01

    Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed

  1. The Association among Default Mode Network Functional Connectivity, Mentalization, and Psychopathology in a Nonclinical Sample: An eLORETA Study.

    Science.gov (United States)

    Farina, Benedetto; Della Marca, Giacomo; Maestoso, Giulia; Amoroso, Noemi; Valenti, Enrico Maria; Carbone, Giuseppe Alessio; Massullo, Chiara; Contardi, Anna; Imperatori, Claudio

    2018-01-01

    We investigated default mode network (DMN) electroencephalography (EEG) functional connectivity differences between individuals with self-reported high mentalization capability and low psychopathological symptoms, versus participants with mentalization impairments and high psychopathological symptoms. Forty-nine students (35 women) with a mean age of 22.92 ± 2.53 years were administered the Mentalization Questionnaire (MZQ) and the Symptom Checklist-90-Revised. Five minutes of EEG during resting state were also recorded for each participant. DMN functional connectivity analyses were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Compared to the individuals with high mentalization capability and lower self-reported psychopathological symptoms, participants with mentalization impairments and high psychopathological symptoms showed a decrease of EEG beta connectivity between: (i) the right and left medial frontal lobe, and (ii) the left medial frontal lobe and the right anterior cingulate cortex. Furthermore, while MZQ total score was positively associated with DMN network connections (i.e., right and left medial frontal lobes), several psychopathological symptoms (i.e., interpersonal sensitivity, depression, and psychoticism) were negatively associated with DMN connectivity. Our results may reflect a top-down emotion regulation deficit which is associated with both internalizing and externalizing behavior problems. © 2018 S. Karger AG, Basel.

  2. Finite connectivity attractor neural networks

    International Nuclear Information System (INIS)

    Wemmenhove, B; Coolen, A C C

    2003-01-01

    We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous

  3. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction.

    Science.gov (United States)

    Ding, Wei-na; Sun, Jin-hua; Sun, Ya-wen; Zhou, Yan; Li, Lei; Xu, Jian-rong; Du, Ya-song

    2013-01-01

    Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI) to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA). Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC) connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS) and Barratt Impulsiveness Scale-11 (BIS-11) and their hours of Internet use per week. There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours) (paddiction, they support the hypothesis that IGA as a behavioral addiction that may share similar neurobiological abnormalities with other addictive disorders.

  4. Functional Connectivity of Human Chewing

    Science.gov (United States)

    Quintero, A.; Ichesco, E.; Schutt, R.; Myers, C.; Peltier, S.; Gerstner, G.E.

    2013-01-01

    Mastication is one of the most important orofacial functions. The neurobiological mechanisms of masticatory control have been investigated in animal models, but less so in humans. This project used functional connectivity magnetic resonance imaging (fcMRI) to assess the positive temporal correlations among activated brain areas during a gum-chewing task. Twenty-nine healthy young-adults underwent an fcMRI scanning protocol while they chewed gum. Seed-based fcMRI analyses were performed with the motor cortex and cerebellum as regions of interest. Both left and right motor cortices were reciprocally functionally connected and functionally connected with the post-central gyrus, cerebellum, cingulate cortex, and precuneus. The cerebellar seeds showed functional connections with the contralateral cerebellar hemispheres, bilateral sensorimotor cortices, left superior temporal gyrus, and left cingulate cortex. These results are the first to identify functional central networks engaged during mastication. PMID:23355525

  5. Order Patterns Networks (orpan – a method toestimate time-evolving functional connectivity frommultivariate time series

    Directory of Open Access Journals (Sweden)

    Stefan eSchinkel

    2012-11-01

    Full Text Available Complex networks provide an excellent framework for studying the functionof the human brain activity. Yet estimating functional networks from mea-sured signals is not trivial, especially if the data is non-stationary and noisyas it is often the case with physiological recordings. In this article we proposea method that uses the local rank structure of the data to define functionallinks in terms of identical rank structures. The method yields temporal se-quences of networks which permits to trace the evolution of the functionalconnectivity during the time course of the observation. We demonstrate thepotentials of this approach with model data as well as with experimentaldata from an electrophysiological study on language processing.

  6. Functional connectivity analysis of the brain network using resting-state fMRI

    International Nuclear Information System (INIS)

    Hayashi, Toshihiro

    2011-01-01

    Spatial patterns of spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals reflect the underlying neural architecture. The study of the brain network based on these self-organized patterns is termed resting-state functional MRI (fMRI). This review article aims at briefly reviewing a basic concept of this technology and discussing its implications for neuropsychological studies. First, the technical aspects of resting-state fMRI, including signal sources, physiological artifacts, image acquisition, and analytical methods such as seed-based correlation analysis and independent component analysis, are explained, followed by a discussion on the major resting-state networks, including the default mode network. In addition, the structure-function correlation studied using diffuse tensor imaging and resting-state fMRI is briefly discussed. Second, I have discussed the reservations and potential pitfalls of 2 major imaging methods: voxel-based lesion-symptom mapping and task fMRI. Problems encountered with voxel-based lesion-symptom mapping can be overcome by using resting-state fMRI and evaluating undamaged brain networks in patients. Regarding task fMRI in patients, I have also emphasized the importance of evaluating the baseline brain activity because the amplitude of activation in BOLD fMRI is hard to interpret as the same baseline cannot be assumed for both patient and normal groups. (author)

  7. Interhemispheric disconnectivity in the sensorimotor network in bipolar disorder revealed by functional connectivity and diffusion tensor imaging analysis

    Directory of Open Access Journals (Sweden)

    Takuya Ishida

    2017-06-01

    Full Text Available Background: Little is known regarding interhemispheric functional connectivity (FC abnormalities via the corpus callosum in subjects with bipolar disorder (BD, which might be a key pathophysiological basis of emotional processing alterations in BD. Methods: We performed tract-based spatial statistics (TBSS using diffusion tensor imaging (DTI in 24 healthy control (HC and 22 BD subjects. Next, we analyzed the neural networks with independent component analysis (ICA in 32HC and 25 BD subjects using resting-state functional magnetic resonance imaging. Results: In TBSS analysis, we found reduced fractional anisotropy (FA in the corpus callosum of BD subjects. In ICA, functional within-connectivity was reduced in two clusters in the sensorimotor network (SMN (right and left primary somatosensory areas of BD subjects compared with HCs. FC between the two clusters and FA values in the corpus callosum of BD subjects was significantly correlated. Further, the functional within-connectivity was related to Young Mania Rating Scale (YMRS total scores in the right premotor area in the SMN of BD subjects. Limitations: Almost all of our BD subjects were taking several medications which could be a confounding factor. Conclusions: Our findings suggest that interhemispheric FC dysfunction in the SMN is associated with the impaired nerve fibers in the corpus callosum, which could be one of pathophysiological bases of emotion processing dysregulation in BD patients. Keywords: Neuroscience, Medical imaging, Psychiatry

  8. Reduced integration and differentiation of the imitation network in autism: A combined functional connectivity magnetic resonance imaging and diffusion-weighted imaging study.

    Science.gov (United States)

    Fishman, Inna; Datko, Michael; Cabrera, Yuliana; Carper, Ruth A; Müller, Ralph-Axel

    2015-12-01

    Converging evidence indicates that brain abnormalities in autism spectrum disorder (ASD) involve atypical network connectivity, but few studies have integrated functional with structural connectivity measures. This multimodal investigation examined functional and structural connectivity of the imitation network in children and adolescents with ASD, and its links with clinical symptoms. Resting state functional magnetic resonance imaging and diffusion-weighted imaging were performed in 35 participants with ASD and 35 typically developing controls, aged 8 to 17 years, matched for age, gender, intelligence quotient, and head motion. Within-network analyses revealed overall reduced functional connectivity (FC) between distributed imitation regions in the ASD group. Whole brain analyses showed that underconnectivity in ASD occurred exclusively in regions belonging to the imitation network, whereas overconnectivity was observed between imitation nodes and extraneous regions. Structurally, reduced fractional anisotropy and increased mean diffusivity were found in white matter tracts directly connecting key imitation regions with atypical FC in ASD. These differences in microstructural organization of white matter correlated with weaker FC and greater ASD symptomatology. Findings demonstrate atypical connectivity of the brain network supporting imitation in ASD, characterized by a highly specific pattern. This pattern of underconnectivity within, but overconnectivity outside the functional network is in contrast with typical development and suggests reduced network integration and differentiation in ASD. Our findings also indicate that atypical connectivity of the imitation network may contribute to ASD clinical symptoms, highlighting the role of this fundamental social cognition ability in the pathophysiology of ASD. © 2015 American Neurological Association.

  9. Functional connectivity and laterality of the motor and sensory components in the volitional swallowing network.

    Science.gov (United States)

    Lowell, Soren Y; Reynolds, Richard C; Chen, Gang; Horwitz, Barry; Ludlow, Christy L

    2012-05-01

    Functional neuroimaging has shown that multiple brain regions are active during volitional swallowing. Little is known, however, about which regions integrate motor execution and sensory feedback in the swallowing system. Although unilateral brain lesions in either hemisphere can produce swallowing deficits, some functional neuroimaging studies indicate that the left hemisphere has greater activation in certain sensory and motor-related swallowing regions. In this study, correlation coefficients were computed for five seed regions during volitional saliva swallowing to determine the functional relationships of these regions with the rest of the brain: the anterior and posterior insula, inferior frontal gyrus (BA44), primary sensory cortex (S1), and primary motor cortex (M1). A laterality index (LI) was derived that accounts for relative differences in total, positive connected voxels for the left/right hemisphere seeds. Clusters of significantly connected voxels were greater from the anterior and posterior insula than from the other three seed regions. Interactions of the insula with other brain regions were greater on the left than on the right during volitional swallowing. Group means showed laterality in the anterior insula (LI = 0.25) and the posterior insula (LI = 0.33). BA44 showed a lesser degree of difference in left versus right hemisphere interactions (LI = 0.12) while S1 did not show lateralization (LI = 0.02) and M1 showed some predominance of interactions in the right hemisphere (LI = -0.19). The greater connectivity from the left hemisphere insula to brain regions within and across hemispheres suggests that the insula is a primary integrative region for volitional swallowing in humans.

  10. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder.

    Science.gov (United States)

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-04-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.

  11. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder

    Science.gov (United States)

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-01-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772

  12. The Functional Networks of Prepulse Inhibition: Neuronal Connectivity Analysis Based on FDG-PET in Awake and Unrestrained Rats.

    Directory of Open Access Journals (Sweden)

    Cathrin Rohleder

    2016-07-01

    Full Text Available Prepulse inhibition (PPI is a neuropsychological process during which a weak sensory stimulus (prepulse attenuates the motor response (startle reaction to a subsequent strong startling stimulus. It is measured as a surrogate marker of sensorimotor gating in patients suffering from neuropsychological diseases such as schizophrenia, as well as in corresponding animal models. A variety of studies has shown that PPI of the acoustical startle reaction comprises three brain circuitries for: i startle mediation, ii PPI mediation and iii modulation of PPI mediation. While anatomical connections and information flow in the startle and PPI mediation pathways are well known, spatial and temporal interactions of the numerous regions involved in PPI modulation are incompletely understood.We therefore combined [18F]fluoro-2-deoxyglucose positron-emission-tomography (FDG-PET with PPI and resting state control paradigms in awake rats. A battery of subtractive, correlative as well as seed-based functional connectivity analyses revealed a default mode-like network (DMN active during resting state only. Furthermore, two functional networks were observed during PPI: Metabolic activity in the lateral circuitry was positively correlated with PPI effectiveness and involved the auditory system and emotional regions. The medial network was negatively correlated with PPI effectiveness, i.e. associated with startle, and recruited a spatial/cognitive network. Our study provides evidence for two distinct neuronal networks, whose continuous interplay determines PPI effectiveness in rats, probably by either protecting the prepulse or facilitating startle processing.Discovering similar networks affected in neuropsychological disorders may help to better understand mechanisms of sensorimotor gating deficits and provide new perspectives for therapeutic strategies.

  13. The Functional Networks of Prepulse Inhibition: Neuronal Connectivity Analysis Based on FDG-PET in Awake and Unrestrained Rats.

    Science.gov (United States)

    Rohleder, Cathrin; Wiedermann, Dirk; Neumaier, Bernd; Drzezga, Alexander; Timmermann, Lars; Graf, Rudolf; Leweke, F Markus; Endepols, Heike

    2016-01-01

    Prepulse inhibition (PPI) is a neuropsychological process during which a weak sensory stimulus ("prepulse") attenuates the motor response ("startle reaction") to a subsequent strong startling stimulus. It is measured as a surrogate marker of sensorimotor gating in patients suffering from neuropsychological diseases such as schizophrenia, as well as in corresponding animal models. A variety of studies has shown that PPI of the acoustical startle reaction comprises three brain circuitries for: (i) startle mediation, (ii) PPI mediation, and (iii) modulation of PPI mediation. While anatomical connections and information flow in the startle and PPI mediation pathways are well known, spatial and temporal interactions of the numerous regions involved in PPI modulation are incompletely understood. We therefore combined [(18)F]fluoro-2-deoxyglucose positron-emission-tomography (FDG-PET) with PPI and resting state control paradigms in awake rats. A battery of subtractive, correlative as well as seed-based functional connectivity analyses revealed a default mode-like network (DMN) active during resting state only. Furthermore, two functional networks were observed during PPI: Metabolic activity in the lateral circuitry was positively correlated with PPI effectiveness and involved the auditory system and emotional regions. The medial network was negatively correlated with PPI effectiveness, i.e., associated with startle, and recruited a spatial/cognitive network. Our study provides evidence for two distinct neuronal networks, whose continuous interplay determines PPI effectiveness in rats, probably by either protecting the prepulse or facilitating startle processing. Discovering similar networks affected in neuropsychological disorders may help to better understand mechanisms of sensorimotor gating deficits and provide new perspectives for therapeutic strategies.

  14. EEG-MEG Integration Enhances the Characterization of Functional and Effective Connectivity in the Resting State Network

    Science.gov (United States)

    Mideksa, Kidist Gebremariam; Anwar, Abdul Rauf; Stephani, Ulrich; Deuschl, Günther; Freitag, Christine M.; Siniatchkin, Michael

    2015-01-01

    At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general

  15. Altered dynamic functional connectivity in the default mode network in patients with cirrhosis and minimal hepatic encephalopathy

    International Nuclear Information System (INIS)

    Chen, Hua-Jun; Lin, Hai-Long; Chen, Qiu-Feng; Liu, Peng-Fei

    2017-01-01

    Abnormal brain intrinsic functional connectivity (FC) has been documented in minimal hepatic encephalopathy (MHE) by static connectivity analysis. However, changes in dynamic FC (dFC) remain unknown. We aimed to identify altered dFC within the default mode network (DMN) associated with MHE. Resting-state functional MRI data were acquired from 20 cirrhotic patients with MHE and 24 healthy controls. DMN seed regions were defined using seed-based FC analysis (centered on the posterior cingulate cortex (PCC)). Dynamic FC architecture was calculated using a sliding time-window method. K-means clustering (number of clusters = 2-4) was applied to estimate FC states. When the number of clusters was 2, MHE patients presented weaker connectivity strengths compared with controls in states 1 and 2. In state 1, decreased FC strength was found between the PCC/precuneus (PCUN) and right medial temporal lobe (MTL)/bilateral lateral temporal cortex (LTC); left inferior parietal lobule (IPL) and right MTL/left LTC; right IPL and right MTL/bilateral LTC; right MTL and right LTC; and medial prefrontal cortex (MPFC) and right MTL/bilateral LTC. In state 2, reduced FC strength was observed between the PCC/PCUN and bilateral MTL/bilateral LTC; left IPL and left MTL/bilateral LTC/MPFC; and left LTC and right LTC. Altered connectivities from state 1 were correlated with patient cognitive performance. Similar findings were observed when the number of clusters was set to 3 or 4. Aberrant dynamic DMN connectivity is an additional characteristic of MHE. Dynamic connectivity analysis offers a novel paradigm for understanding MHE-related mechanisms. (orig.)

  16. Altered dynamic functional connectivity in the default mode network in patients with cirrhosis and minimal hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Jun; Lin, Hai-Long [Fujian Medical University Union Hospital, Department of Radiology, Fuzhou (China); Chen, Qiu-Feng; Liu, Peng-Fei [Central South University, School of Information Science and Engineering, Changsha (China)

    2017-09-15

    Abnormal brain intrinsic functional connectivity (FC) has been documented in minimal hepatic encephalopathy (MHE) by static connectivity analysis. However, changes in dynamic FC (dFC) remain unknown. We aimed to identify altered dFC within the default mode network (DMN) associated with MHE. Resting-state functional MRI data were acquired from 20 cirrhotic patients with MHE and 24 healthy controls. DMN seed regions were defined using seed-based FC analysis (centered on the posterior cingulate cortex (PCC)). Dynamic FC architecture was calculated using a sliding time-window method. K-means clustering (number of clusters = 2-4) was applied to estimate FC states. When the number of clusters was 2, MHE patients presented weaker connectivity strengths compared with controls in states 1 and 2. In state 1, decreased FC strength was found between the PCC/precuneus (PCUN) and right medial temporal lobe (MTL)/bilateral lateral temporal cortex (LTC); left inferior parietal lobule (IPL) and right MTL/left LTC; right IPL and right MTL/bilateral LTC; right MTL and right LTC; and medial prefrontal cortex (MPFC) and right MTL/bilateral LTC. In state 2, reduced FC strength was observed between the PCC/PCUN and bilateral MTL/bilateral LTC; left IPL and left MTL/bilateral LTC/MPFC; and left LTC and right LTC. Altered connectivities from state 1 were correlated with patient cognitive performance. Similar findings were observed when the number of clusters was set to 3 or 4. Aberrant dynamic DMN connectivity is an additional characteristic of MHE. Dynamic connectivity analysis offers a novel paradigm for understanding MHE-related mechanisms. (orig.)

  17. Functional Connectivity of the Dorsal Attention Network Predicts Selective Attention in 4-7 year-old Girls.

    Science.gov (United States)

    Rohr, Christiane S; Vinette, Sarah A; Parsons, Kari A L; Cho, Ivy Y K; Dimond, Dennis; Benischek, Alina; Lebel, Catherine; Dewey, Deborah; Bray, Signe

    2017-09-01

    Early childhood is a period of profound neural development and remodeling during which attention skills undergo rapid maturation. Attention networks have been extensively studied in the adult brain, yet relatively little is known about changes in early childhood, and their relation to cognitive development. We investigated the association between age and functional connectivity (FC) within the dorsal attention network (DAN) and the association between FC and attention skills in early childhood. Functional magnetic resonance imaging data was collected during passive viewing in 44 typically developing female children between 4 and 7 years whose sustained, selective, and executive attention skills were assessed. FC of the intraparietal sulcus (IPS) and the frontal eye fields (FEF) was computed across the entire brain and regressed against age. Age was positively associated with FC between core nodes of the DAN, the IPS and the FEF, and negatively associated with FC between the DAN and regions of the default-mode network. Further, controlling for age, FC between the IPS and FEF was significantly associated with selective attention. These findings add to our understanding of early childhood development of attention networks and suggest that greater FC within the DAN is associated with better selective attention skills. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Schizophrenia alters intra-network functional connectivity in the caudate for detecting speech under informational speech masking conditions.

    Science.gov (United States)

    Zheng, Yingjun; Wu, Chao; Li, Juanhua; Li, Ruikeng; Peng, Hongjun; She, Shenglin; Ning, Yuping; Li, Liang

    2018-04-04

    Speech recognition under noisy "cocktail-party" environments involves multiple perceptual/cognitive processes, including target detection, selective attention, irrelevant signal inhibition, sensory/working memory, and speech production. Compared to health listeners, people with schizophrenia are more vulnerable to masking stimuli and perform worse in speech recognition under speech-on-speech masking conditions. Although the schizophrenia-related speech-recognition impairment under "cocktail-party" conditions is associated with deficits of various perceptual/cognitive processes, it is crucial to know whether the brain substrates critically underlying speech detection against informational speech masking are impaired in people with schizophrenia. Using functional magnetic resonance imaging (fMRI), this study investigated differences between people with schizophrenia (n = 19, mean age = 33 ± 10 years) and their matched healthy controls (n = 15, mean age = 30 ± 9 years) in intra-network functional connectivity (FC) specifically associated with target-speech detection under speech-on-speech-masking conditions. The target-speech detection performance under the speech-on-speech-masking condition in participants with schizophrenia was significantly worse than that in matched healthy participants (healthy controls). Moreover, in healthy controls, but not participants with schizophrenia, the strength of intra-network FC within the bilateral caudate was positively correlated with the speech-detection performance under the speech-masking conditions. Compared to controls, patients showed altered spatial activity pattern and decreased intra-network FC in the caudate. In people with schizophrenia, the declined speech-detection performance under speech-on-speech masking conditions is associated with reduced intra-caudate functional connectivity, which normally contributes to detecting target speech against speech masking via its functions of suppressing masking-speech signals.

  19. ICN_Atlas: Automated description and quantification of functional MRI activation patterns in the framework of intrinsic connectivity networks.

    Science.gov (United States)

    Kozák, Lajos R; van Graan, Louis André; Chaudhary, Umair J; Szabó, Ádám György; Lemieux, Louis

    2017-12-01

    Generally, the interpretation of functional MRI (fMRI) activation maps continues to rely on assessing their relationship to anatomical structures, mostly in a qualitative and often subjective way. Recently, the existence of persistent and stable brain networks of functional nature has been revealed; in particular these so-called intrinsic connectivity networks (ICNs) appear to link patterns of resting state and task-related state connectivity. These networks provide an opportunity of functionally-derived description and interpretation of fMRI maps, that may be especially important in cases where the maps are predominantly task-unrelated, such as studies of spontaneous brain activity e.g. in the case of seizure-related fMRI maps in epilepsy patients or sleep states. Here we present a new toolbox (ICN_Atlas) aimed at facilitating the interpretation of fMRI data in the context of ICN. More specifically, the new methodology was designed to describe fMRI maps in function-oriented, objective and quantitative way using a set of 15 metrics conceived to quantify the degree of 'engagement' of ICNs for any given fMRI-derived statistical map of interest. We demonstrate that the proposed framework provides a highly reliable quantification of fMRI activation maps using a publicly available longitudinal (test-retest) resting-state fMRI dataset. The utility of the ICN_Atlas is also illustrated on a parametric task-modulation fMRI dataset, and on a dataset of a patient who had repeated seizures during resting-state fMRI, confirmed on simultaneously recorded EEG. The proposed ICN_Atlas toolbox is freely available for download at http://icnatlas.com and at http://www.nitrc.org for researchers to use in their fMRI investigations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Cognitive and behavioral comorbidities in Rolandic epilepsy and their relation with default mode network's functional connectivity and organization.

    Science.gov (United States)

    Ofer, Isabell; Jacobs, Julia; Jaiser, Nathalie; Akin, Burak; Hennig, Jürgen; Schulze-Bonhage, Andreas; LeVan, Pierre

    2018-01-01

    Rolandic epilepsy (RE) is characterized by typical interictal-electroencephalogram (EEG) patterns mainly localized in centrotemporal and parietooccipital areas. An aberrant intrinsic organization of the default mode network (DMN) due to repeated disturbances from spike-generating areas may be able to account for specific cognitive deficits and behavioral problems in RE. The aim of the present study was to investigate cognitive development (CD) and socioemotional development (SED) in patients with RE during active disease in relation to DMN connectivity and network topology. In 10 children with RE and active EEG, CD was assessed using the Wechsler Intelligence Scale for Children-IV (WISC-IV); SED was assessed using the Fünf-Faktoren-Fragebogen für Kinder (FFFK), a Big-Five inventory for the assessment of personality traits in children. Functional connectivity (FC) in the DMN was determined from a 15-minute resting state functional magnetic resonance imaging (fMRI), and network properties were calculated using standard graph-theoretical measures. More severe deficits of verbal abilities tended to be associated with an earlier age at epilepsy onset, but were not directly related to the number of seizures and disease duration. Nonetheless, at the network level, disease duration was associated with alterations of the efficiency and centrality of parietal network nodes and midline structures. Particularly, centrality of the left inferior parietal lobe (IPL) was found to be linked with CD. Reduced centrality of the left IPL and alterations supporting a rather segregated processing within DMN's subsystems was associated with a more favorable CD. A more complicated SED was associated with high seizure frequency and long disease duration, and revealed links with a less favorable CD. An impaired CD and - because of their interrelation - SED might be mediated by a common pathomechanism reflected in an aberrant organization, and thus, a potential functional deficit of the DMN

  1. Fully Connected Cascade Artificial Neural Network Architecture for Attention Deficit Hyperactivity Disorder Classification From Functional Magnetic Resonance Imaging Data.

    Science.gov (United States)

    Deshpande, Gopikrishna; Wang, Peng; Rangaprakash, D; Wilamowski, Bogdan

    2015-12-01

    Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Toward this end, an international competition was conducted for classifying ADHD using functional magnetic resonance imaging data acquired from multiple sites worldwide. Here, we consider the data from this competition as an example to illustrate the utility of fully connected cascade (FCC) artificial neural network (ANN) architecture for performing classification. We employed various directional and nondirectional brain connectivity-based methods to extract discriminative features which gave better classification accuracy compared to raw data. Our accuracy for distinguishing ADHD from healthy subjects was close to 90% and between the ADHD subtypes was close to 95%. Further, we show that, if properly used, FCC ANN performs very well compared to other classifiers such as support vector machines in terms of accuracy, irrespective of the feature used. Finally, the most discriminative connectivity features provided insights about the pathophysiology of ADHD and showed reduced and altered connectivity involving the left orbitofrontal cortex and various cerebellar regions in ADHD.

  2. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network.

    Science.gov (United States)

    Battelli, Lorella; Grossman, Emily D; Plow, Ela B

    The interhemispheric competition hypothesis attributes the distribution of selective attention to a balance of mutual inhibition between homotopic, interhemispheric connections in parietal cortex (Kinsbourne 1977; Battelli et al., 2009). In support of this hypothesis, repetitive inhibitory TMS over right parietal cortex in healthy individuals rapidly induces interhemispheric imbalance in cortical activity that spreads beyond the site of stimulation (Plow et al., 2014). Behaviorally, the impacts of inhibitory rTMS may be long delayed from the onset of stimulation, as much as 30 minutes (Agosta et al., 2014; Hubl et al., 2008). In this study, we examine the temporal dynamics of inhibitory rTMS on cortical network integrity that supports sustained visual attention. Healthy individuals received 15 min of 1 Hz offline, inhibitory rTMS (or sham) over left parietal cortex, and then immediately engaged in a bilateral visual tracking task while we recorded brain activity with fMRI. We computed functional connectivity (FC) between three nodes of the attention network engaged by visual tracking: the intraparietal sulcus (IPS), frontal eye fields (FEF) and human MT+ (hMT+). FC immediately and significantly decreased between the stimulation site (left IPS) and all other regions, then recovered to normal levels within 30 minutes. rTMS increased FC between left and right FEF at approximately 36 min following stimulation, and between sites in the unstimulated hemisphere approximately 48 min after stimulation. These findings demonstrate large-scale changes in cortical organization following inhibitory rTMS. The immediate impact of rTMS on connectivity to the stimulation site dovetails with the putative role of interhemispheric balance for bilateral visual sustained attention. The delayed, compensatory increases in functional connectivity have implications for models of dynamic reorganization in networks supporting spatial and nonspatial selective attention, and

  3. Typical and Atypical Development of Functional Connectivity in the Face Network.

    Science.gov (United States)

    Song, Yiying; Zhu, Qi; Li, Jingguang; Wang, Xu; Liu, Jia

    2015-10-28

    Extensive studies have demonstrated that face recognition performance does not reach adult levels until adolescence. However, there is no consensus on whether such prolonged improvement stems from development of general cognitive factors or face-specific mechanisms. Here, we used behavioral experiments and functional magnetic resonance imaging (fMRI) to evaluate these two hypotheses. With a large cohort of children (n = 379), we found that the ability of face-specific recognition in humans increased with age throughout childhood and into late adolescence in both face memory and face perception. Neurally, to circumvent the potential problem of age differences in task performance, attention, or cognitive strategies in task-state fMRI studies, we measured the resting-state functional connectivity (RSFC) between the occipital face area (OFA) and fusiform face area (FFA) in human brain and found that the OFA-FFA RSFC increased until 11-13 years of age. Moreover, the OFA-FFA RSFC was selectively impaired in adults with developmental prosopagnosia (DP). In contrast, no age-related changes or differences between DP and normal adults were observed for RSFCs in the object system. Finally, the OFA-FFA RSFC matured earlier than face selectivity in either the OFA or FFA. These results suggest the critical role of the OFA-FFA RSFC in the development of face recognition. Together, our findings support the hypothesis that prolonged development of face recognition is face specific, not domain general. Copyright © 2015 the authors 0270-6474/15/3514624-12$15.00/0.

  4. Whole-brain functional connectivity predicted by indirect structural connections

    DEFF Research Database (Denmark)

    Røge, Rasmus; Ambrosen, Karen Marie Sandø; Albers, Kristoffer Jon

    2017-01-01

    Modern functional and diffusion magnetic resonance imaging (fMRI and dMRI) provide data from which macro-scale networks of functional and structural whole brain connectivity can be estimated. Although networks derived from these two modalities describe different properties of the human brain, the...

  5. The development of the intrinsic functional connectivity of default network subsystems from age 3 to 5.

    Science.gov (United States)

    Xiao, Yaqiong; Zhai, Hongchang; Friederici, Angela D; Jia, Fucang

    2016-03-01

    In recent years, research on human functional brain imaging using resting-state fMRI techniques has been increasingly prevalent. The term "default mode" was proposed to describe a baseline or default state of the brain during rest. Recent studies suggested that the default mode network (DMN) is comprised of two functionally distinct subsystems: a dorsal-medial prefrontal cortex (DMPFC) subsystem involved in self-oriented cognition (i.e., theory of mind) and a medial temporal lobe (MTL) subsystem engaged in memory and scene construction; both subsystems interact with the anterior medial prefrontal cortex (aMPFC) and posterior cingulate (PCC) as the core regions of DMN. The present study explored the development of DMN core regions and these two subsystems in both hemispheres from 3- to 5-year-old children. The analysis of the intrinsic activity showed strong developmental changes in both subsystems, and significant changes were specifically found in MTL subsystem, but not in DMPFC subsystem, implying distinct developmental trajectories for DMN subsystems. We found stronger interactions between the DMPFC and MTL subsystems in 5-year-olds, particularly in the left subsystems that support the development of environmental adaptation and relatively complex mental activities. These results also indicate that there is stronger right hemispheric lateralization at age 3, which then changes as bilateral development gradually increases through to age 5, suggesting in turn the hemispheric dominance in DMN subsystems changing with age. The present results provide primary evidence for the development of DMN subsystems in early life, which might be closely related to the development of social cognition in childhood.

  6. The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Leor eRoseman

    2014-05-01

    Full Text Available Perturbing a system and observing the consequences is a classic scientific strategy for understanding a phenomenon. Psychedelic drugs perturb consciousness in a marked and novel way and thus are powerful tools for studying its mechanisms. In the present analysis, we measured changes in resting-state functional connectivity (RSFC between a standard template of different independent components analysis (ICA-derived resting state networks (RSNs under the influence of two different psychoactive drugs, the stimulant/psychedelic hybrid, MDMA, and the classic psychedelic, psilocybin. Both were given in placebo-controlled designs and produced marked subjective effects, although reports of more profound changes in consciousness were given after psilocybin. Between-network RSFC was generally increased under psilocybin, implying that networks become less differentiated from each other in the psychedelic state. Decreased RSFC between visual and sensorimotor RSNs was also observed. MDMA had a notably less marked effect on between-network RSFC, implying that the extensive changes observed under psilocybin may be exclusive to classic psychedelic drugs and related to their especially profound effects on consciousness. The novel analytical approach applied here may be applied to other altered states of consciousness to improve our characterization of different conscious states and ultimately advance our understanding of the brain mechanisms underlying them.

  7. The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers.

    Science.gov (United States)

    Roseman, Leor; Leech, Robert; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2014-01-01

    Perturbing a system and observing the consequences is a classic scientific strategy for understanding a phenomenon. Psychedelic drugs perturb consciousness in a marked and novel way and thus are powerful tools for studying its mechanisms. In the present analysis, we measured changes in resting-state functional connectivity (RSFC) between a standard template of different independent components analysis (ICA)-derived resting state networks (RSNs) under the influence of two different psychoactive drugs, the stimulant/psychedelic hybrid, MDMA, and the classic psychedelic, psilocybin. Both were given in placebo-controlled designs and produced marked subjective effects, although reports of more profound changes in consciousness were given after psilocybin. Between-network RSFC was generally increased under psilocybin, implying that networks become less differentiated from each other in the psychedelic state. Decreased RSFC between visual and sensorimotor RSNs was also observed. MDMA had a notably less marked effect on between-network RSFC, implying that the extensive changes observed under psilocybin may be exclusive to classic psychedelic drugs and related to their especially profound effects on consciousness. The novel analytical approach applied here may be applied to other altered states of consciousness to improve our characterization of different conscious states and ultimately advance our understanding of the brain mechanisms underlying them.

  8. High dimensional ICA analysis detects within-network functional connectivity damage of default mode and sensory motor networks in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ottavia eDipasquale

    2015-02-01

    Full Text Available High dimensional independent component analysis (ICA, compared to low dimensional ICA, allows performing a detailed parcellation of the resting state networks. The purpose of this study was to give further insight into functional connectivity (FC in Alzheimer’s disease (AD using high dimensional ICA. For this reason, we performed both low and high dimensional ICA analyses of resting state fMRI (rfMRI data of 20 healthy controls and 21 AD patients, focusing on the primarily altered default mode network (DMN and exploring the sensory motor network (SMN. As expected, results obtained at low dimensionality were in line with previous literature. Moreover, high dimensional results allowed us to observe either the presence of within-network disconnections and FC damage confined to some of the resting state sub-networks. Due to the higher sensitivity of the high dimensional ICA analysis, our results suggest that high-dimensional decomposition in sub-networks is very promising to better localize FC alterations in AD and that FC damage is not confined to the default mode network.

  9. Perceived social isolation is associated with altered functional connectivity in neural networks associated with tonic alertness and executive control.

    Science.gov (United States)

    Layden, Elliot A; Cacioppo, John T; Cacioppo, Stephanie; Cappa, Stefano F; Dodich, Alessandra; Falini, Andrea; Canessa, Nicola

    2017-01-15

    Perceived social isolation (PSI), colloquially known as loneliness, is associated with selectively altered attentional, cognitive, and affective processes in humans, but the neural mechanisms underlying these adjustments remain largely unexplored. Behavioral, eye tracking, and neuroimaging research has identified associations between PSI and implicit hypervigilance for social threats. Additionally, selective executive dysfunction has been evidenced by reduced prepotent response inhibition in social Stroop and dichotic listening tasks. Given that PSI is associated with pre-attentional processes, PSI may also be related to altered resting-state functional connectivity (FC) in the brain. Therefore, we conducted the first resting-state fMRI FC study of PSI in healthy young adults. Five-minute resting-state scans were obtained from 55 participants (31 females). Analyses revealed robust associations between PSI and increased brain-wide FC in areas encompassing the right central operculum and right supramarginal gyrus, and these associations were not explained by depressive symptomatology, objective isolation, or demographics. Further analyses revealed that PSI was associated with increased FC between several nodes of the cingulo-opercular network, a network known to underlie the maintenance of tonic alertness. These regions encompassed the bilateral insula/frontoparietal opercula and ACC/pre-SMA. In contrast, FC between the cingulo-opercular network and right middle/superior frontal gyrus was reduced, a finding associated with diminished executive function in prior literature. We suggest that, in PSI, increased within-network cingulo-opercular FC may be associated with hypervigilance to social threat, whereas reduced right middle/superior frontal gyrus FC to the cingulo-opercular network may be associated with diminished impulse control. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Connecting and Networking for Schools

    Science.gov (United States)

    Resources for connecting and networking for schools through e-newsletters, finding school IAQ Champions and other EPA school programs such as Asthma, Energy Star, Clean School Bus USA, School Flag, etc.

  11. Resting-State Functional Connectivity and Network Analysis of Cerebellum with Respect to Crystallized IQ and Gender.

    Science.gov (United States)

    Pezoulas, Vasileios C; Zervakis, Michalis; Michelogiannis, Sifis; Klados, Manousos A

    2017-01-01

    During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high crystallized Intelligence Quotient (IQ). Functional magnetic resonance imaging (fMRI) data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP) database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject) using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST) was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our results reveal that

  12. Resting-State Functional Connectivity and Network Analysis of Cerebellum with Respect to Crystallized IQ and Gender

    Directory of Open Access Journals (Sweden)

    Vasileios C. Pezoulas

    2017-04-01

    Full Text Available During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high crystallized Intelligence Quotient (IQ. Functional magnetic resonance imaging (fMRI data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our

  13. Mapping functional connectivity

    Science.gov (United States)

    Peter Vogt; Joseph R. Ferrari; Todd R. Lookingbill; Robert H. Gardner; Kurt H. Riitters; Katarzyna Ostapowicz

    2009-01-01

    An objective and reliable assessment of wildlife movement is important in theoretical and applied ecology. The identification and mapping of landscape elements that may enhance functional connectivity is usually a subjective process based on visual interpretations of species movement patterns. New methods based on mathematical morphology provide a generic, flexible,...

  14. Composition, Architecture, and Functional Implications of the Connective Tissue Network of the Extraocular Muscles

    Science.gov (United States)

    McLoon, Linda K.; Vicente, André; Fitzpatrick, Krysta R.; Lindström, Mona

    2018-01-01

    Purpose We examined the pattern and extent of connective tissue distribution in the extraocular muscles (EOMs) and determined the ability of the interconnected connective tissues to disseminate force laterally. Methods Human EOMs were examined for collagens I, III, IV, and VI; fibronectin; laminin; and elastin using immunohistochemistry. Connective tissue distribution was examined with scanning electron microscopy. Rabbit EOMs were examined for levels of force transmission longitudinally and transversely using in vitro force assessment. Results Collagens I, III, and VI localized to the endomysium, perimysium, and epimysium. Collagen IV, fibronectin, and laminin localized to the basal lamina surrounding all myofibers. All collagens localized similarly in the orbital and global layers throughout the muscle length. Elastin had the most irregular pattern and ran longitudinally and circumferentially throughout the length of all EOMs. Scanning electron microscopy showed these elements to be extensively interconnected, from endomysium through the perimysium to the epimysium surrounding the whole muscle. In vitro physiology demonstrated force generation in the lateral dimension, presumably through myofascial transmission, which was always proportional to the force generated in the longitudinally oriented muscles. Conclusions A striking connective tissue matrix interconnects all the myofibers and extends, via perimysial connections, to the epimysium. These interconnections are significant and allow measurable force transmission laterally as well as longitudinally, suggesting that they may contribute to the nonlinear force summation seen in motor unit recording studies. This provides strong evidence that separate compartmental movements are unlikely as no region is independent of the rest of the muscle. PMID:29346490

  15. Functional Connectivity Alterations between Networks and Associations with Infant Immune Health within Networks in HIV Infected Children on Early Treatment: A Study at 7 Years

    Directory of Open Access Journals (Sweden)

    Jadrana T. F. Toich

    2018-01-01

    Full Text Available Although HIV has been shown to impact brain connectivity in adults and youth, it is not yet known to what extent long-term early antiretroviral therapy (ART may alter these effects, especially during rapid brain development in early childhood. Using both independent component analysis (ICA and seed-based correlation analysis (SCA, we examine the effects of HIV infection in conjunction with early ART on resting state functional connectivity (FC in 7 year old children. HIV infected (HIV+ children were from the Children with HIV Early Antiretroviral Therapy (CHER trial and all initiated ART before 18 months; uninfected children were recruited from an interlinking vaccine trial. To better understand the effects of current and early immune health on the developing brain, we also investigated among HIV+ children the association of FC at 7 years with CD4 count and CD4%, both in infancy (6–8 weeks and at scan. Although we found no differences within any ICA-generated resting state networks (RSNs between HIV+ and uninfected children (27 HIV+, 18 uninfected, whole brain connectivity to seeds located at RSN connectivity peaks revealed several loci of FC differences, predominantly from seeds in midline regions (posterior cingulate cortex, paracentral lobule, cuneus, and anterior cingulate. Reduced long-range connectivity and increased short-range connectivity suggest developmental delay. Within the HIV+ children, clinical measures at age 7 years were not associated with FC values in any of the RSNs; however, poor immune health during infancy was associated with localized FC increases in the somatosensory, salience and basal ganglia networks. Together these findings suggest that HIV may affect brain development from its earliest stages and persist into childhood, despite early ART.

  16. Random geometric graphs with general connection functions

    Science.gov (United States)

    Dettmann, Carl P.; Georgiou, Orestis

    2016-03-01

    In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H (r ) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.

  17. Ecological connectivity networks in rapidly expanding cities.

    Science.gov (United States)

    Nor, Amal Najihah M; Corstanje, Ron; Harris, Jim A; Grafius, Darren R; Siriwardena, Gavin M

    2017-06-01

    Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow ( Passer montanus ) and Yellow-vented bulbul ( Pycnonotus goiavier ) in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines). The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance) were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such models for

  18. Ecological connectivity networks in rapidly expanding cities

    Directory of Open Access Journals (Sweden)

    Amal Najihah M. Nor

    2017-06-01

    Full Text Available Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow (Passer montanus and Yellow-vented bulbul (Pycnonotus goiavier in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines. The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such

  19. Improved diagnostic accuracy of Alzheimer's disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer's disease neuroimaging initiative set

    International Nuclear Information System (INIS)

    Park, Ji Eun; Park, Bum Woo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Jung; Oh, Joo Young; Shim, Woo Hyun; Lee, Jae Hong; Roh, Jee Hoon

    2017-01-01

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease

  20. On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age: Evidence from connectivity-based single-subject classification.

    Science.gov (United States)

    Pläschke, Rachel N; Cieslik, Edna C; Müller, Veronika I; Hoffstaedter, Felix; Plachti, Anna; Varikuti, Deepthi P; Goosses, Mareike; Latz, Anne; Caspers, Svenja; Jockwitz, Christiane; Moebus, Susanne; Gruber, Oliver; Eickhoff, Claudia R; Reetz, Kathrin; Heller, Julia; Südmeyer, Martin; Mathys, Christian; Caspers, Julian; Grefkes, Christian; Kalenscher, Tobias; Langner, Robert; Eickhoff, Simon B

    2017-12-01

    Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc. © 2017

  1. Top-down and bottom-up attention-to-memory: mapping functional connectivity in two distinct networks that underlie cued and uncued recognition memory.

    Science.gov (United States)

    Burianová, Hana; Ciaramelli, Elisa; Grady, Cheryl L; Moscovitch, Morris

    2012-11-15

    The objective of this study was to examine the functional connectivity of brain regions active during cued and uncued recognition memory to test the idea that distinct networks would underlie these memory processes, as predicted by the attention-to-memory (AtoM) hypothesis. The AtoM hypothesis suggests that dorsal parietal cortex (DPC) allocates effortful top-down attention to memory retrieval during cued retrieval, whereas ventral parietal cortex (VPC) mediates spontaneous bottom-up capture of attention by memory during uncued retrieval. To identify networks associated with these two processes, we conducted a functional connectivity analysis of a left DPC and a left VPC region, both identified by a previous analysis of task-related regional activations. We hypothesized that the two parietal regions would be functionally connected with distinct neural networks, reflecting their engagement in the differential mnemonic processes. We found two spatially dissociated networks that overlapped only in the precuneus. During cued trials, DPC was functionally connected with dorsal attention areas, including the superior parietal lobules, right precuneus, and premotor cortex, as well as relevant memory areas, such as the left hippocampus and the middle frontal gyri. During uncued trials, VPC was functionally connected with ventral attention areas, including the supramarginal gyrus, cuneus, and right fusiform gyrus, as well as the parahippocampal gyrus. In addition, activity in the DPC network was associated with faster response times for cued retrieval. This is the first study to show a dissociation of the functional connectivity of posterior parietal regions during episodic memory retrieval, characterized by a top-down AtoM network involving DPC and a bottom-up AtoM network involving VPC. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Default Mode Network Connectivity in Stroke Patients.

    Science.gov (United States)

    Tuladhar, Anil Man; Snaphaan, Liselore; Shumskaya, Elena; Rijpkema, Mark; Fernandez, Guillén; Norris, David G; de Leeuw, Frank-Erik

    2013-01-01

    The pathophysiology of episodic memory dysfunction after infarction is not completely understood. It has been suggested that infarctions located anywhere in the brain can induce widespread effects causing disruption of functional networks of the cortical regions. The default mode network, which includes the medial temporal lobe, is a functional network that is associated with episodic memory processing. We investigated whether the default mode network activity is reduced in stroke patients compared to healthy control subjects in the resting state condition. We assessed the whole brain network properties during resting state functional MRI in 21 control subjects and 20 'first-ever' stroke patients. Patients were scanned 9-12 weeks after stroke onset. Stroke lesions were located in various parts of the brain. Independent component analyses were conducted to identify the default mode network and to compare the group differences of the default mode network. Furthermore, region-of-interest based analysis was performed to explore the functional connectivity between the regions of the default mode network. Stroke patients performed significantly worse than control subjects on the delayed recall score on California verbal learning test. We found decreased functional connectivity in the left medial temporal lobe, posterior cingulate and medial prefrontal cortical areas within the default mode network and reduced functional connectivity between these regions in stroke patients compared with controls. There were no significant volumetric differences between the groups. These results demonstrate that connectivity within the default mode network is reduced in 'first-ever' stroke patients compared to control subjects. This phenomenon might explain the occurrence of post-stroke cognitive dysfunction in stroke patients.

  3. Network Connection Management

    CERN Document Server

    IT Department, Communication Systems and Network Group

    2005-01-01

    The CERN network database is a key element of the CERN network infrastructure. It is absolutely essential that its information is kept up-to-date for security reasons and to ensure a smooth running of the network infrastructure. Over the years, some of the information in the database has become obsolete. The database therefore needs to be cleaned up, for which we are requesting your help. In the coming weeks, you may receive an electronic mail from Netops.database@cern.ch relating to the clean-up. If you receive such a message, it will be for one of the following reasons: You are the person responsible for or the main user of a system for which a problem has been detected, or You have been the supervisor of a person who has now left CERN (according to the HR database), or The problem has been passed up to you because someone under your supervision has not taken the necessary action within four weeks of notification. Just open the link that will be included in the message and follow the instructions....

  4. Network Connection Management

    CERN Multimedia

    IT Department

    2005-01-01

    The CERN network database is a key element of the CERN network infrastructure. It is absolutely essential that its information is kept up-to-date for security reasons and to ensure smooth running of the network infrastructure. Over the years, some of the information in the database has become obsolete. The database therefore needs to be cleaned up, for which we are requesting your help. In the coming weeks, you may receive an electronic mail from Netops.database@cern.ch relating to the clean-up. If you receive such a message, it will be for one of the following reasons: You are the person responsible for or the main user of a system for which a problem has been detected, or You have been the supervisor of a person who has now left CERN (according to the HR database), or The problem has been passed up to you because someone under your supervision has not taken the necessary action within four weeks of notification. Just open the link that will be included in the message and follow the instructions. Thank ...

  5. Violence-related content in video game may lead to functional connectivity changes in brain networks as revealed by fMRI-ICA in young men.

    Science.gov (United States)

    Zvyagintsev, M; Klasen, M; Weber, R; Sarkheil, P; Esposito, F; Mathiak, K A; Schwenzer, M; Mathiak, K

    2016-04-21

    In violent video games, players engage in virtual aggressive behaviors. Exposure to virtual aggressive behavior induces short-term changes in players' behavior. In a previous study, a violence-related version of the racing game "Carmageddon TDR2000" increased aggressive affects, cognitions, and behaviors compared to its non-violence-related version. This study investigates the differences in neural network activity during the playing of both versions of the video game. Functional magnetic resonance imaging (fMRI) recorded ongoing brain activity of 18 young men playing the violence-related and the non-violence-related version of the video game Carmageddon. Image time series were decomposed into functional connectivity (FC) patterns using independent component analysis (ICA) and template-matching yielded a mapping to established functional brain networks. The FC patterns revealed a decrease in connectivity within 6 brain networks during the violence-related compared to the non-violence-related condition: three sensory-motor networks, the reward network, the default mode network (DMN), and the right-lateralized frontoparietal network. Playing violent racing games may change functional brain connectivity, in particular and even after controlling for event frequency, in the reward network and the DMN. These changes may underlie the short-term increase of aggressive affects, cognitions, and behaviors as observed after playing violent video games. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Functional connectivity of motor cortical network in patients with brachial plexus avulsion injury after contralateral cervical nerve transfer: a resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Aihong; Cheng, Xiaoguang; Liang, Wei; Bai, Rongjie [The 4th Medical College of Peking University, Department of Radiology, Beijing Jishuitan Hospital, Xicheng Qu, Beijing (China); Wang, Shufeng; Xue, Yunhao; Li, Wenjun [The 4th Medical College of Peking University, Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing (China)

    2017-03-15

    The purpose of this study is to assess the functional connectivity of the motor cortical network in patients with brachial plexus avulsion injury (BPAI) after contralateral C7 nerve transfer, using resting-state functional magnetic resonance imaging (RS-fMRI). Twelve patients with total brachial plexus root avulsion underwent RS-fMRI after contralateral C7 nerve transfer. Seventeen healthy volunteers were also included in this fMRI study as controls. The hand motor seed regions were defined as region of interests in the bilateral hemispheres. The seed-based functional connectivity was calculated in all the subjects. Differences in functional connectivity of the motor cortical network between patients and healthy controls were compared. The inter-hemispheric functional connectivity of the M1 areas was increased in patients with BPAI compared with the controls. The inter-hemispheric functional connectivity between the supplementary motor areas was reduced bilaterally. The resting-state inter-hemispheric functional connectivity of the bilateral M1 areas is altered in patients after contralateral C7 nerve transfer, suggesting a functional reorganization of cerebral cortex. (orig.)

  7. Functional connectivity of motor cortical network in patients with brachial plexus avulsion injury after contralateral cervical nerve transfer: a resting-state fMRI study

    International Nuclear Information System (INIS)

    Yu, Aihong; Cheng, Xiaoguang; Liang, Wei; Bai, Rongjie; Wang, Shufeng; Xue, Yunhao; Li, Wenjun

    2017-01-01

    The purpose of this study is to assess the functional connectivity of the motor cortical network in patients with brachial plexus avulsion injury (BPAI) after contralateral C7 nerve transfer, using resting-state functional magnetic resonance imaging (RS-fMRI). Twelve patients with total brachial plexus root avulsion underwent RS-fMRI after contralateral C7 nerve transfer. Seventeen healthy volunteers were also included in this fMRI study as controls. The hand motor seed regions were defined as region of interests in the bilateral hemispheres. The seed-based functional connectivity was calculated in all the subjects. Differences in functional connectivity of the motor cortical network between patients and healthy controls were compared. The inter-hemispheric functional connectivity of the M1 areas was increased in patients with BPAI compared with the controls. The inter-hemispheric functional connectivity between the supplementary motor areas was reduced bilaterally. The resting-state inter-hemispheric functional connectivity of the bilateral M1 areas is altered in patients after contralateral C7 nerve transfer, suggesting a functional reorganization of cerebral cortex. (orig.)

  8. Intrinsic Functional Connectivity of Amygdala-Based Networks in Adolescent Generalized Anxiety Disorder

    Science.gov (United States)

    Roy, Amy K.; Fudge, Julie L.; Kelly, Clare; Perry, Justin S. A.; Daniele, Teresa; Carlisi, Christina; Benson, Brenda; Castellanos, F. Xavier; Milham, Michael P.; Pine, Daniel S.; Ernst, Monique

    2013-01-01

    Objective: Generalized anxiety disorder (GAD) typically begins during adolescence and can persist into adulthood. The pathophysiological mechanisms underlying this disorder remain unclear. Recent evidence from resting state functional magnetic resonance imaging (R-fMRI) studies in adults suggests disruptions in amygdala-based circuitry; the…

  9. Functional Connectivity Between Anterior Insula and Key Nodes of Frontoparietal Executive Control and Salience Networks Distinguish Bipolar Depression From Unipolar Depression and Healthy Control Subjects.

    Science.gov (United States)

    Ellard, Kristen K; Zimmerman, Jared P; Kaur, Navneet; Van Dijk, Koene R A; Roffman, Joshua L; Nierenberg, Andrew A; Dougherty, Darin D; Deckersbach, Thilo; Camprodon, Joan A

    2018-05-01

    Patients with bipolar depression are characterized by dysregulation across the full spectrum of mood, differentiating them from patients with unipolar depression. The ability to switch neural resources among the default mode network, salience network, and executive control network (ECN) has been proposed as a key mechanism for adaptive mood regulation. The anterior insula is implicated in the modulation of functional network switching. Differential connectivity between anterior insula and functional networks may provide insights into pathophysiological differences between bipolar and unipolar mood disorders, with implications for diagnosis and treatment. Resting-state functional magnetic resonance imaging data were collected from 98 subjects (35 unipolar, 24 bipolar, and 39 healthy control subjects). Pearson correlations were computed between bilateral insula seed regions and a priori defined target regions from the default mode network, salience network, and ECN. After r-to-z transformation, a one-way multivariate analysis of covariance was conducted to identify significant differences in connectivity between groups. Post hoc pairwise comparisons were conducted and Bonferroni corrections were applied. Receiver-operating characteristics were computed to assess diagnostic sensitivity. Patients with bipolar depression evidenced significantly altered right anterior insula functional connectivity with the inferior parietal lobule of the ECN relative to patients with unipolar depression and control subjects. Right anterior insula-inferior parietal lobule connectivity significantly discriminated patients with bipolar depression. Impaired functional connectivity between the anterior insula and the inferior parietal lobule of the ECN distinguishes patients with bipolar depression from those with unipolar depression and healthy control subjects. This finding highlights a pathophysiological mechanism with potential as a therapeutic target and a clinical biomarker for bipolar

  10. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study.

    Science.gov (United States)

    Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar

    2017-09-01

    Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.

  11. Atypical within- and between-hemisphere motor network functional connections in children with developmental coordination disorder and attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Kevin R. McLeod

    2016-01-01

    Full Text Available Developmental coordination disorder (DCD and attention-deficit hyperactivity disorder (ADHD are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1 cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD, a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.

  12. Brain resting-state networks in adolescents with high-functioning autism: Analysis of spatial connectivity and temporal neurodynamics

    NARCIS (Netherlands)

    Bernas, A.; Barendse, E.M.; Aldenkamp, A.P.; Backes, W.H.; Hofman, P.A.M.; Hendriks, M.P.H.; Kessels, R.P.C.; Willems, F.M.J.; With, P.H.N. de; Zinger, S.; Jansen, J.F.A.

    2018-01-01

    Introduction: Autism spectrum disorder (ASD) is mainly characterized by functional and communication impairments as well as restrictive and repetitive behavior. The leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, which can be assessed using

  13. Large-scale brain network associated with creative insight: combined voxel-based morphometry and resting-state functional connectivity analyses.

    Science.gov (United States)

    Ogawa, Takeshi; Aihara, Takatsugu; Shimokawa, Takeaki; Yamashita, Okito

    2018-04-24

    Creative insight occurs with an "Aha!" experience when solving a difficult problem. Here, we investigated large-scale networks associated with insight problem solving. We recruited 232 healthy participants aged 21-69 years old. Participants completed a magnetic resonance imaging study (MRI; structural imaging and a 10 min resting-state functional MRI) and an insight test battery (ITB) consisting of written questionnaires (matchstick arithmetic task, remote associates test, and insight problem solving task). To identify the resting-state functional connectivity (RSFC) associated with individual creative insight, we conducted an exploratory voxel-based morphometry (VBM)-constrained RSFC analysis. We identified positive correlations between ITB score and grey matter volume (GMV) in the right insula and middle cingulate cortex/precuneus, and a negative correlation between ITB score and GMV in the left cerebellum crus 1 and right supplementary motor area. We applied seed-based RSFC analysis to whole brain voxels using the seeds obtained from the VBM and identified insight-positive/negative connections, i.e. a positive/negative correlation between the ITB score and individual RSFCs between two brain regions. Insight-specific connections included motor-related regions whereas creative-common connections included a default mode network. Our results indicate that creative insight requires a coupling of multiple networks, such as the default mode, semantic and cerebral-cerebellum networks.

  14. Default mode network connectivity during task execution.

    Science.gov (United States)

    Vatansever, D; Menon, D K; Manktelow, A E; Sahakian, B J; Stamatakis, E A

    2015-11-15

    Initially described as task-induced deactivations during goal-directed paradigms of high attentional load, the unresolved functionality of default mode regions has long been assumed to interfere with task performance. However, recent evidence suggests a potential default mode network involvement in fulfilling cognitive demands. We tested this hypothesis in a finger opposition paradigm with task and fixation periods which we compared with an independent resting state scan using functional magnetic resonance imaging and a comprehensive analysis pipeline including activation, functional connectivity, behavioural and graph theoretical assessments. The results indicate task specific changes in the default mode network topography. Behaviourally, we show that increased connectivity of the posterior cingulate cortex with the left superior frontal gyrus predicts faster reaction times. Moreover, interactive and dynamic reconfiguration of the default mode network regions' functional connections illustrates their involvement with the task at hand with higher-level global parallel processing power, yet preserved small-world architecture in comparison with rest. These findings demonstrate that the default mode network does not disengage during this paradigm, but instead may be involved in task relevant processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The Effects of Long Duration Bed Rest as a Spaceflight Analogue on Resting State Sensorimotor Network Functional Connectivity and Neurocognitive Performance

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; hide

    2015-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from

  16. Adolescent Gender Differences in Cognitive Control Performance and Functional Connectivity Between Default Mode and Fronto-Parietal Networks Within a Self-Referential Context

    Directory of Open Access Journals (Sweden)

    Gabriela Alarcón

    2018-04-01

    Full Text Available Ineffective reduction of functional connectivity between the default mode network (DMN and frontoparietal network (FPN during cognitive control can interfere with performance in healthy individuals—a phenomenon present in psychiatric disorders, such as depression. Here, this mechanism is studied in healthy adolescents by examining gender differences in task-regressed functional connectivity using functional magnetic resonance imaging (MRI and a novel task designed to place the DMN—supporting self-referential processing (SRP—and FPN—supporting cognitive control—into conflict. Compared to boys, girls showed stronger functional connectivity between DMN and FPN during cognitive control in an SRP context (n = 40; boys = 20, a context that also elicited more errors of omission in girls. The gender difference in errors of omission was mediated by higher self-reported co-rumination—the extensive and repetitive discussion of problems and focus on negative feelings with a same-gender peer—by girls, compared to boys. These findings indicate that placing internal and external attentional demands in conflict lead to persistent functional connectivity between FPN and DMN in girls, but not boys; however, deficits in performance during this context were explained by co-rumination, such that youth with higher co-rumination displayed the largest performance deficits. Previous research shows that co-rumination predicts depressive symptoms during adolescence; thus, gender differences in the mechanisms involved with transitioning from internal to external processing may be relevant for understanding heightened vulnerability for depression in adolescent girls.

  17. Understanding marijuana's effects on functional connectivity of the default mode network in patients with schizophrenia and co-occurring cannabis use disorder: A pilot investigation.

    Science.gov (United States)

    Whitfield-Gabrieli, Susan; Fischer, Adina S; Henricks, Angela M; Khokhar, Jibran Y; Roth, Robert M; Brunette, Mary F; Green, Alan I

    2018-04-01

    Nearly half of patients with schizophrenia (SCZ) have co-occurring cannabis use disorder (CUD), which has been associated with decreased treatment efficacy, increased risk of psychotic relapse, and poor global functioning. While reports on the effects of cannabis on cognitive performance in patients with SCZ have been mixed, study of brain networks related to executive function may clarify the relationship between cannabis use and cognition in these dual-diagnosis patients. In the present pilot study, patients with SCZ and CUD (n=12) and healthy controls (n=12) completed two functional magnetic resonance imaging (fMRI) resting scans. Prior to the second scan, patients smoked a 3.6% tetrahydrocannabinol (THC) cannabis cigarette or ingested a 15mg delta-9-tetrahydrocannabinol (THC) pill. We used resting-state functional connectivity to examine the default mode network (DMN) during both scans, as connectivity/activity within this network is negatively correlated with connectivity of the network involved in executive control and shows reduced activity during task performance in normal individuals. At baseline, relative to controls, patients exhibited DMN hyperconnectivity that correlated with positive symptom severity, and reduced anticorrelation between the DMN and the executive control network (ECN). Cannabinoid administration reduced DMN hyperconnectivity and increased DMN-ECN anticorrelation. Moreover, the magnitude of anticorrelation in the controls, and in the patients after cannabinoid administration, positively correlated with WM performance. The finding that DMN brain connectivity is plastic may have implications for future pharmacotherapeutic development, as treatment efficacy could be assessed through the ability of therapies to normalize underlying circuit-level dysfunction. Copyright © 2017. Published by Elsevier B.V.

  18. Increased Resting-State Functional Connectivity in the Cingulo-Opercular Cognitive-Control Network after Intervention in Children with Reading Difficulties.

    Directory of Open Access Journals (Sweden)

    Tzipi Horowitz-Kraus

    Full Text Available Dyslexia, or reading difficulty, is characterized by slow, inaccurate reading accompanied by executive dysfunction. Reading training using the Reading Acceleration Program improves reading and executive functions in both children with dyslexia and typical readers. This improvement is associated with increased activation in and functional connectivity between the anterior cingulate cortex, part of the cingulo-opercular cognitive-control network, and the fusiform gyrus during a reading task after training. The objective of the current study was to determine whether the training also has an effect on functional connectivity of the cingulo-opercular and fronto-parietal cognitive-control networks during rest in children with dyslexia and typical readers. Fifteen children with reading difficulty and 17 typical readers (8-12 years old were included in the study. Reading and executive functions behavioral measures and resting-state functional magnetic resonance imaging data were collected before and after reading training. Imaging data were analyzed using a graphical network-modeling tool. Both reading groups had increased reading and executive-functions scores after training, with greater gains among the dyslexia group. Training may have less effect on cognitive control in typical readers and a more direct effect on the visual area, as previously reported. Statistical analysis revealed that compared to typical readers, children with reading difficulty had significantly greater functional connectivity in the cingulo-opercular network after training, which may demonstrate the importance of cognitive control during reading in this population. These results support previous findings of increased error-monitoring activation after reading training in children with dyslexia and confirm greater gains with training in this group.

  19. Resting-state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidity

    NARCIS (Netherlands)

    Pannekoek, J. Nienke; Veer, Ilya M.; van Tol, Marie-Jose; van der Werff, Steven J. A.; Demenescu, Liliana R.; Aleman, Andre; Veltman, Dick J.; Zitman, Frans G.; Rombouts, Serge A. R. B.; van der Wee, Nic J. A.

    The neurobiology of social anxiety disorder (SAD) is not yet fully understood. Structural and functional neuroimaging studies in SAD have identified abnormalities in various brain areas, particularly the amygdala and elements of the salience network. This study is the first to examine resting-state

  20. Resting-state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidity

    NARCIS (Netherlands)

    Pannekoek, J.N.; Veer, I.M.; van Tol, M.J.; van der Werff, S.J.A.; Demenescu, L.R.; Aleman, A.; Veltman, D.J.; Zitman, F. G.; Rombouts, S.A.R.B.; van der Wee, N.J.A.

    2013-01-01

    The neurobiology of social anxiety disorder (SAD) is not yet fully understood. Structural and functional neuroimaging studies in SAD have identified abnormalities in various brain areas, particularly the amygdala and elements of the salience network. This study is the first to examine resting-state

  1. Network Function Virtualization (NFV) based architecture to address connectivity, interoperability and manageability challenges in Internet of Things (IoT)

    Science.gov (United States)

    Haseeb, Shariq; Hashim, Aisha Hassan A.; Khalifa, Othman O.; Faris Ismail, Ahmad

    2017-11-01

    IoT aims to interconnect sensors and actuators built into devices (also known as Things) in order for them to share data and control each other to improve existing processes for making people’s life better. IoT aims to connect between all physical devices like fridges, cars, utilities, buildings and cities so that they can take advantage of small pieces of information collected by each one of these devices and derive more complex decisions. However, these devices are heterogeneous in nature because of various vendor support, connectivity options and protocol suit. Heterogeneity of such devices makes it difficult for them to leverage on each other’s capabilities in the traditional IoT architecture. This paper highlights the effects of heterogeneity challenges on connectivity, interoperability, management in greater details. It also surveys some of the existing solutions adopted in the core network to solve the challenges of massive IoT deployments. Finally, the paper proposes a new architecture based on NFV to address the problems.

  2. Effects of resting state condition on reliability, trait specificity, and network connectivity of brain function measured with arterial spin labeled perfusion MRI.

    Science.gov (United States)

    Li, Zhengjun; Vidorreta, Marta; Katchmar, Natalie; Alsop, David C; Wolf, Daniel H; Detre, John A

    2018-06-01

    Resting state fMRI (rs-fMRI) provides imaging biomarkers of task-independent brain function that can be associated with clinical variables or modulated by interventions such as behavioral training or pharmacological manipulations. These biomarkers include time-averaged regional brain function as manifested by regional cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion MRI and correlated temporal fluctuations of function across brain networks with either ASL or blood oxygenation level dependent (BOLD) fMRI. Resting-state studies are typically carried out using just one of several prescribed state conditions such as eyes closed (EC), eyes open (EO), or visual fixation on a cross-hair (FIX), which may affect the reliability and specificity of rs-fMRI. In this study, we collected test-retest ASL MRI data during 4 resting-state task conditions: EC, EO, FIX and PVT (low-frequency psychomotor vigilance task), and examined the effects of these task conditions on reliability and reproducibility as well as trait specificity of regional brain function. We also acquired resting-state BOLD fMRI under FIX and compared the network connectivity reliabilities between the four ASL conditions and the BOLD FIX condition. For resting-state ASL data, EC provided the highest CBF reliability, reproducibility, trait specificity, and network connectivity reliability, followed by EO, while FIX was lowest on all of these measures. PVT demonstrated lower CBF reliability, reproducibility and trait specificity than EO and EC. Overall network connectivity reliability was comparable between ASL and BOLD. Our findings confirm ASL CBF as a reliable, stable, and consistent measure of resting-state regional brain function and support the use of EC or EO over FIX and PVT as the resting-state condition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Altered network hub connectivity after acute LSD administration

    Directory of Open Access Journals (Sweden)

    Felix Müller

    Full Text Available LSD is an ambiguous substance, said to mimic psychosis and to improve mental health in people suffering from anxiety and depression. Little is known about the neuronal correlates of altered states of consciousness induced by this substance. Limited previous studies indicated profound changes in functional connectivity of resting state networks after the administration of LSD. The current investigation attempts to replicate and extend those findings in an independent sample. In a double-blind, randomized, cross-over study, 100 μg LSD and placebo were orally administered to 20 healthy participants. Resting state brain activity was assessed by functional magnetic resonance imaging. Within-network and between-network connectivity measures of ten established resting state networks were compared between drug conditions. Complementary analysis were conducted using resting state networks as sources in seed-to-voxel analyses. Acute LSD administration significantly decreased functional connectivity within visual, sensorimotor and auditory networks and the default mode network. While between-network connectivity was widely increased and all investigated networks were affected to some extent, seed-to-voxel analyses consistently indicated increased connectivity between networks and subcortical (thalamus, striatum and cortical (precuneus, anterior cingulate cortex hub structures. These latter observations are consistent with findings on the importance of hubs in psychopathological states, especially in psychosis, and could underlay therapeutic effects of hallucinogens as proposed by a recent model. Keywords: LSD, fMRI, Functional connectivity, Networks, Hubs

  4. Maternal Immune Activation During the Third Trimester Is Associated with Neonatal Functional Connectivity of the Salience Network and Fetal to Toddler Behavior.

    Science.gov (United States)

    Spann, Marisa N; Monk, Catherine; Scheinost, Dustin; Peterson, Bradley S

    2018-03-14

    Prenatal maternal immune activation (MIA) is associated with altered brain development and risk of psychiatric disorders in offspring. Translational human studies of MIA are few in number. Alterations of the salience network have been implicated in the pathogenesis of the same psychiatric disorders associated with MIA. If MIA is pathogenic, then associated abnormalities in the salience network should be detectable in neonates immediately after birth. We tested the hypothesis that third trimester MIA of adolescent women who are at risk for high stress and inflammation is associated with the strength of functional connectivity in the salience network of their neonate. Thirty-six women underwent blood draws to measure interleukin-6 (IL-6) and C-reactive protein (CRP) and electrocardiograms to measure fetal heart rate variability (FHRV) at 34-37 weeks gestation. Resting-state imaging data were acquired in the infants at 40-44 weeks postmenstrual age (PMA). Functional connectivity was measured from seeds placed in the anterior cingulate cortex and insula. Measures of cognitive development were obtained at 14 months PMA using the Bayley Scales of Infant and Toddler Development-Third Edition (BSID-III). Both sexes were studied. Regions in which the strength of the salience network correlated with maternal IL-6 or CRP levels included the medial prefrontal cortex, temporoparietal junction, and basal ganglia. Maternal CRP level correlated inversely with FHRV acquired at the same gestational age. Maternal CRP and IL-6 levels correlated positively with measures of cognitive development on the BSID-III. These results suggest that MIA is associated with short- and long-term influences on offspring brain and behavior. SIGNIFICANCE STATEMENT Preclinical studies in rodents and nonhuman primates and epidemiological studies in humans suggest that maternal immune activation (MIA) alters the development of brain circuitry and associated behaviors, placing offspring at risk for

  5. Multimodal Hyper-connectivity Networks for MCI Classification.

    Science.gov (United States)

    Li, Yang; Gao, Xinqiang; Jie, Biao; Yap, Pew-Thian; Kim, Min-Jeong; Wee, Chong-Yaw; Shen, Dinggang

    2017-09-01

    Hyper-connectivity network is a network where every edge is connected to more than two nodes, and can be naturally denoted using a hyper-graph. Hyper-connectivity brain network, either based on structural or functional interactions among the brain regions, has been used for brain disease diagnosis. However, the conventional hyper-connectivity network is constructed solely based on single modality data, ignoring potential complementary information conveyed by other modalities. The integration of complementary information from multiple modalities has been shown to provide a more comprehensive representation about the brain disruptions. In this paper, a novel multimodal hyper-network modelling method was proposed for improving the diagnostic accuracy of mild cognitive impairment (MCI). Specifically, we first constructed a multimodal hyper-connectivity network by simultaneously considering information from diffusion tensor imaging and resting-state functional magnetic resonance imaging data. We then extracted different types of network features from the hyper-connectivity network, and further exploited a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Our proposed multimodal hyper-connectivity network demonstrated a better MCI classification performance than the conventional single modality based hyper-connectivity networks.

  6. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.

    Science.gov (United States)

    Carbonell, F; Bellec, P; Shmuel, A

    2014-02-01

    The effect of regressing out the global average signal (GAS) in resting state fMRI data has become a concern for interpreting functional connectivity analyses. It is not clear whether the reported anti-correlations between the Default Mode and the Dorsal Attention Networks are intrinsic to the brain, or are artificially created by regressing out the GAS. Here we introduce a concept, Impact of the Global Average on Functional Connectivity (IGAFC), for quantifying the sensitivity of seed-based correlation analyses to the regression of the GAS. This voxel-wise IGAFC index is defined as the product of two correlation coefficients: the correlation between the GAS and the fMRI time course of a voxel, times the correlation between the GAS and the seed time course. This definition enables the calculation of a threshold at which the impact of regressing-out the GAS would be large enough to introduce spurious negative correlations. It also yields a post-hoc impact correction procedure via thresholding, which eliminates spurious correlations introduced by regressing out the GAS. In addition, we introduce an Artificial Negative Correlation Index (ANCI), defined as the absolute difference between the IGAFC index and the impact threshold. The ANCI allows a graded confidence scale for ranking voxels according to their likelihood of showing artificial correlations. By applying this method, we observed regions in the Default Mode and Dorsal Attention Networks that were anti-correlated. These findings confirm that the previously reported negative correlations between the Dorsal Attention and Default Mode Networks are intrinsic to the brain and not the result of statistical manipulations. Our proposed quantification of the impact that a confound may have on functional connectivity can be generalized to global effect estimators other than the GAS. It can be readily applied to other confounds, such as systemic physiological or head movement interferences, in order to quantify their

  7. Are we connected? : Ports in Global Networks

    NARCIS (Netherlands)

    R.A. Zuidwijk (Rob)

    2015-01-01

    markdownabstractAbstract Global supply chains are built on organizational, information, and logistics networks. Ports are connected via these networks and also need to connect these networks. Synchromodality is an innovative concept for container transportation, and the port plays an important

  8. Nonrandom network connectivity comes in pairs

    Directory of Open Access Journals (Sweden)

    Felix Z. Hoffmann

    2017-02-01

    Full Text Available Overrepresentation of bidirectional connections in local cortical networks has been repeatedly reported and is a focus of the ongoing discussion of nonrandom connectivity. Here we show in a brief mathematical analysis that in a network in which connection probabilities are symmetric in pairs, Pij = Pji, the occurrences of bidirectional connections and nonrandom structures are inherently linked; an overabundance of reciprocally connected pairs emerges necessarily when some pairs of neurons are more likely to be connected than others. Our numerical results imply that such overrepresentation can also be sustained when connection probabilities are only approximately symmetric.

  9. Default network connectivity in medial temporal lobe amnesia.

    Science.gov (United States)

    Hayes, Scott M; Salat, David H; Verfaellie, Mieke

    2012-10-17

    There is substantial overlap between the brain regions supporting episodic memory and the default network. However, in humans, the impact of bilateral medial temporal lobe (MTL) damage on a large-scale neural network such as the default mode network is unknown. To examine this issue, resting fMRI was performed with amnesic patients and control participants. Seed-based functional connectivity analyses revealed robust default network connectivity in amnesia in cortical default network regions such as medial prefrontal cortex, posterior medial cortex, and lateral parietal cortex, as well as evidence of connectivity to residual MTL tissue. Relative to control participants, decreased posterior cingulate cortex connectivity to MTL and increased connectivity to cortical default network regions including lateral parietal and medial prefrontal cortex were observed in amnesic patients. In contrast, somatomotor network connectivity was intact in amnesic patients, indicating that bilateral MTL lesions may selectively impact the default network. Changes in default network connectivity in amnesia were largely restricted to the MTL subsystem, providing preliminary support from MTL amnesic patients that the default network can be fractionated into functionally and structurally distinct components. To our knowledge, this is the first examination of the default network in amnesia.

  10. Disrupted functional connectivity in adolescent obesity

    Directory of Open Access Journals (Sweden)

    Laura Moreno-Lopez

    2016-01-01

    Conclusions: These findings suggest that adolescent obesity is linked to disrupted functional connectivity in brain networks relevant to maintaining balance between reward, emotional memories and cognitive control. Our findings may contribute to reconceptualization of obesity as a multi-layered brain disorder leading to compromised motivation and control, and provide a biological account to target prevention strategies for adolescent obesity.

  11. Altered brain activation and functional connectivity in working memory related networks in patients with type 2 diabetes: An ICA-based analysis

    Science.gov (United States)

    Zhang, Yang; Lu, Shan; Liu, Chunlei; Zhang, Huimei; Zhou, Xuanhe; Ni, Changlin; Qin, Wen; Zhang, Quan

    2016-01-01

    Type 2 diabetes mellitus (T2DM) can cause multidimensional cognitive deficits, among which working memory (WM) is usually involved at an early stage. However, the neural substrates underlying impaired WM in T2DM patients are still unclear. To clarify this issue, we utilized functional magnetic resonance imaging (fMRI) and independent component analysis to evaluate T2DM patients for alterations in brain activation and functional connectivity (FC) in WM networks and to determine their associations with cognitive and clinical variables. Twenty complication-free T2DM patients and 19 matched healthy controls (HCs) were enrolled, and fMRI data were acquired during a block-designed 1-back WM task. The WM metrics of the T2DM patients showed no differences compared with those of the HCs, except for a slightly lower accuracy rate in the T2DM patients. Compared with the HCs, the T2DM patients demonstrated increased activation within their WM fronto-parietal networks, and activation strength was significantly correlated with WM performance. The T2DM patients also showed decreased FC within and between their WM networks. Our results indicate that the functional integration of WM sub-networks was disrupted in the complication-free T2DM patients and that strengthened regional activity in fronto-parietal networks may compensate for the WM impairment caused by T2DM. PMID:27021340

  12. Switch-connected HyperX network

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip

    2018-02-13

    A network system includes a plurality of sub-network planes and global switches. The sub-network planes have a same network topology as each other. Each of the sub-network planes includes edge switches. Each of the edge switches has N ports. Each of the global switches is configured to connect a group of edge switches at a same location in the sub-network planes. In each of the sub-network planes, some of the N ports of each of the edge switches are connected to end nodes, and others of the N ports are connected to other edge switches in the same sub-network plane, other of the N ports are connected to at least one of the global switches.

  13. Impulsive Internet Game Play Is Associated With Increased Functional Connectivity Between the Default Mode and Salience Networks in Depressed Patients With Short Allele of Serotonin Transporter Gene

    Directory of Open Access Journals (Sweden)

    Ji Sun Hong

    2018-04-01

    Full Text Available Problematic Internet game play is often accompanied by major depressive disorder (MDD. Depression seems to be closely related to altered functional connectivity (FC within (and between the default mode network (DMN and salience network. In addition, serotonergic neurotransmission may regulate the symptoms of depression, including impulsivity, potentially by modulating the DMN. We hypothesized that altered connectivity between the DMN and salience network could mediate an association between the 5HTTLPR genotype and impulsivity in patients with depression. A total of 54 participants with problematic Internet game play and MDD completed the research protocol. We genotyped for 5HTTLPR and assessed the DMN FC using resting-state functional magnetic resonance imaging. The severity of Internet game play, depressive symptoms, anxiety, attention and impulsivity, and behavioral inhibition and activation were assessed using the Young Internet Addiction Scale (YIAS, Beck Depressive Inventory, Beck Anxiety Inventory (BAI, Korean Attention Deficit Hyperactivity Disorder scale, and the Behavioral Inhibition and Activation Scales (BIS-BAS, respectively. The SS allele was associated with increased FC within the DMN, including the middle prefrontal cortex (MPFC to the posterior cingulate cortex, and within the salience network, including the right supramarginal gyrus (SMG to the right rostral prefrontal cortex (RPFC, right anterior insular (AInsular to right SMG, anterior cingulate cortex (ACC to left RPFC, and left AInsular to right RPFC, and between the DMN and salience network, including the MPFC to the ACC. In addition, the FC from the MPFC to ACC positively correlated with the BIS and YIAS scores in the SS allele group. The SS allele of 5HTTLPR might modulate the FC within and between the DMN and salience network, which may ultimately be a risk factor for impulsive Internet game play in patients with MDD.

  14. Impulsive Internet Game Play Is Associated With Increased Functional Connectivity Between the Default Mode and Salience Networks in Depressed Patients With Short Allele of Serotonin Transporter Gene.

    Science.gov (United States)

    Hong, Ji Sun; Kim, Sun Mi; Bae, Sujin; Han, Doug Hyun

    2018-01-01

    Problematic Internet game play is often accompanied by major depressive disorder (MDD). Depression seems to be closely related to altered functional connectivity (FC) within (and between) the default mode network (DMN) and salience network. In addition, serotonergic neurotransmission may regulate the symptoms of depression, including impulsivity, potentially by modulating the DMN. We hypothesized that altered connectivity between the DMN and salience network could mediate an association between the 5HTTLPR genotype and impulsivity in patients with depression. A total of 54 participants with problematic Internet game play and MDD completed the research protocol. We genotyped for 5HTTLPR and assessed the DMN FC using resting-state functional magnetic resonance imaging. The severity of Internet game play, depressive symptoms, anxiety, attention and impulsivity, and behavioral inhibition and activation were assessed using the Young Internet Addiction Scale (YIAS), Beck Depressive Inventory, Beck Anxiety Inventory (BAI), Korean Attention Deficit Hyperactivity Disorder scale, and the Behavioral Inhibition and Activation Scales (BIS-BAS), respectively. The SS allele was associated with increased FC within the DMN, including the middle prefrontal cortex (MPFC) to the posterior cingulate cortex, and within the salience network, including the right supramarginal gyrus (SMG) to the right rostral prefrontal cortex (RPFC), right anterior insular (AInsular) to right SMG, anterior cingulate cortex (ACC) to left RPFC, and left AInsular to right RPFC, and between the DMN and salience network, including the MPFC to the ACC. In addition, the FC from the MPFC to ACC positively correlated with the BIS and YIAS scores in the SS allele group. The SS allele of 5HTTLPR might modulate the FC within and between the DMN and salience network, which may ultimately be a risk factor for impulsive Internet game play in patients with MDD.

  15. Increased functional connectivity in the default mode network in mild cognitive impairment: a maladaptive compensatory mechanism associated with poor semantic memory performance.

    Science.gov (United States)

    Gardini, Simona; Venneri, Annalena; Sambataro, Fabio; Cuetos, Fernando; Fasano, Fabrizio; Marchi, Massimo; Crisi, Girolamo; Caffarra, Paolo

    2015-01-01

    Semantic memory decline and changes of default mode network (DMN) connectivity have been reported in mild cognitive impairment (MCI). Only a few studies, however, have investigated the role of changes of activity in the DMN on semantic memory in this clinical condition. The present study aimed to investigate more extensively the relationship between semantic memory impairment and DMN intrinsic connectivity in MCI. Twenty-one MCI patients and 21 healthy elderly controls matched for demographic variables took part in this study. All participants underwent a comprehensive semantic battery including tasks of category fluency, visual naming and naming from definition for objects, actions and famous people, word-association for early and late acquired words and reading. A subgroup of the original sample (16 MCI patients and 20 healthy elderly controls) was also scanned with resting state functional magnetic resonance imaging and DMN connectivity was estimated using a seed-based approach. Compared with healthy elderly, patients showed an extensive semantic memory decline in category fluency, visual naming, naming from definition, words-association, and reading tasks. Patients presented increased DMN connectivity between the medial prefrontal regions and the posterior cingulate and between the posterior cingulate and the parahippocampus and anterior hippocampus. MCI patients also showed a significant negative correlation of medial prefrontal gyrus connectivity with parahippocampus and posterior hippocampus and visual naming performance. Our findings suggest that increasing DMN connectivity may contribute to semantic memory deficits in MCI, specifically in visual naming. Increased DMN connectivity with posterior cingulate and medio-temporal regions seems to represent a maladaptive reorganization of brain functions in MCI, which detrimentally contributes to cognitive impairment in this clinical population.

  16. A systematic framework for functional connectivity measures

    Directory of Open Access Journals (Sweden)

    Huifang Elizabeth Wang

    2014-12-01

    Full Text Available Various methods have been proposed to characterize the functional connectivity between nodes in a network measured with different modalities (electrophysiology, functional magnetic resonance imaging etc.. Since different measures of functional connectivity yield different results for the same dataset, it is important to assess when and how they can be used. In this work, we provide a systematic framework for evaluating the performance of a large range of functional connectivity measures – based upon a comprehensive portfolio of models generating measurable responses. Specifically, we benchmarked 42 methods using 10,000 simulated datasets from 5 different types of generative models with different connectivity structures. Since all functional connectivity methods require the setting of some parameters (window size and number, model order etc., we first optimized these parameters using performance criteria based upon (threshold free ROC analysis. We then evaluated the performance of the methods on data simulated with different types of models. Finally, we assessed the performance of the methods against different levels of signal-to-noise ratios and network configurations. A MATLAB toolbox is provided to perform such analyses using other methods and simulated datasets.

  17. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  18. Leadership Networking Connect, Collaborate, Create

    CERN Document Server

    (CCL), Center for Creative Leadership; Baldwin, David

    2011-01-01

    Networking is essential to effective leadership in today's organizations. Leaders who are skilled networkers have access to people, information, and resources to help solve problems and create opportunities. Leaders who neglect their networks are missing out on a critical component of their role as leaders. This book will help leaders take a new view of networking and provide insight into how to enhance their networks and become effective at leadership networking.

  19. Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: a resting-state fMRI study.

    Science.gov (United States)

    Lv, Zong-xia; Huang, Dong-Hong; Ye, Wei; Chen, Zi-rong; Huang, Wen-li; Zheng, Jin-ou

    2014-06-01

    This study aimed to investigate the resting-state brain network related to visuospatial working memory (VSWM) in patients with right temporal lobe epilepsy (rTLE). The functional mechanism underlying the cognitive impairment in VSWM was also determined. Fifteen patients with rTLE and 16 healthy controls matched for age, gender, and handedness underwent a 6-min resting-state functional MRI session and a neuropsychological test using VSWM_Nback. The VSWM-related brain network at rest was extracted using multiple independent component analysis; the spatial distribution and the functional connectivity (FC) parameters of the cerebral network were compared between groups. Behavioral data were subsequently correlated with the mean Z-value in voxels showing significant FC difference during intergroup comparison. The distribution of the VSWM-related resting-state network (RSN) in the group with rTLE was virtually consistent with that in the healthy controls. The distribution involved the dorsolateral prefrontal lobe and parietal lobe in the right hemisphere and the partial inferior parietal lobe and posterior lobe of the cerebellum in the left hemisphere (pright superior frontal lobe (BA8), right middle frontal lobe, and right ventromedial prefrontal lobe compared with the controls (pright superior frontal lobe (BA11), right superior parietal lobe, and left posterior lobe of the cerebellum (prights reserved.

  20. Aging and functional brain networks

    International Nuclear Information System (INIS)

    Tomasi D.; Volkow, N.D.

    2012-01-01

    Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.

  1. Synchronization from second order network connectivity statistics

    Directory of Open Access Journals (Sweden)

    Liqiong eZhao

    2011-07-01

    Full Text Available We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks (SONETs, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by a pool and redistribute mechanism. The pooling of many inputs averages out independent fluctuations, amplifying weak correlations in the inputs. With increased chain connections, neurons with many inputs tend to have many outputs. Hence, chains ensure that the amplified correlations in the neurons with many inputs are redistributed throughout the network, enhancing the development of synchrony across the network.

  2. Attractor neural networks with resource-efficient synaptic connectivity

    Science.gov (United States)

    Pehlevan, Cengiz; Sengupta, Anirvan

    Memories are thought to be stored in the attractor states of recurrent neural networks. Here we explore how resource constraints interplay with memory storage function to shape synaptic connectivity of attractor networks. We propose that given a set of memories, in the form of population activity patterns, the neural circuit choses a synaptic connectivity configuration that minimizes a resource usage cost. We argue that the total synaptic weight (l1-norm) in the network measures the resource cost because synaptic weight is correlated with synaptic volume, which is a limited resource, and is proportional to neurotransmitter release and post-synaptic current, both of which cost energy. Using numerical simulations and replica theory, we characterize optimal connectivity profiles in resource-efficient attractor networks. Our theory explains several experimental observations on cortical connectivity profiles, 1) connectivity is sparse, because synapses are costly, 2) bidirectional connections are overrepresented and 3) are stronger, because attractor states need strong recurrence.

  3. Visualizing neuronal network connectivity with connectivity pattern tables

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2010-01-01

    Full Text Available Complex ideas are best conveyed through well-designed illustrations. Up to now, computational neuroscientists have mostly relied on box-and-arrow diagrams of even complex neuronal networks, often using ad hoc notations with conflicting use of symbols from paper to paper. This significantly impedes the communication of ideas in neuronal network modeling. We present here Connectivity Pattern Tables (CPTs as a clutter-free visualization of connectivity in large neuronal networks containing two-dimensional populations of neurons. CPTs can be generated automatically from the same script code used to create the actual network in the NEST simulator. Through aggregation, CPTs can be viewed at different levels, providing either full detail or summary information. We also provide the open source ConnPlotter tool as a means to create connectivity pattern tables.

  4. Pramipexole Modulates Interregional Connectivity Within the Sensorimotor Network.

    Science.gov (United States)

    Ye, Zheng; Hammer, Anke; Münte, Thomas F

    2017-05-01

    Pramipexole is widely prescribed to treat Parkinson's disease but has been reported to cause impulse control disorders such as pathological gambling. Recent neurocomputational models suggested that D2 agonists may distort functional connections between the striatum and the motor cortex, resulting in impaired reinforcement learning and pathological gambling. To examine how D2 agonists modulate the striatal-motor connectivity, we carried out a pharmacological resting-state functional magnetic resonance imaging study with a double-blind randomized within-subject crossover design. We analyzed the medication-induced changes of network connectivity and topology with two approaches, an independent component analysis (ICA) and a graph theoretical analysis (GTA). The ICA identified the sensorimotor network (SMN) as well as other classical resting-state networks. Within the SMN, the connectivity between the right caudate nucleus and other cortical regions was weaker under pramipexole than under placebo. The GTA measured the topological properties of the whole-brain network at global and regional levels. Both the whole-brain network under placebo and that under pramipexole were identified as small-world networks. The two whole-brain networks were similar in global efficiency, clustering coefficient, small-world index, and modularity. However, the degree of the right caudate nucleus decreased under pramipexole mainly due to the loss of the connectivity with the supplementary motor area, paracentral lobule, and precentral and postcentral gyrus of the SMN. The two network analyses consistently revealed that pramipexole weakened the functional connectivity between the caudate nucleus and the SMN regions.

  5. Functional Connectivity Changes in Second Language Vocabulary Learning

    Science.gov (United States)

    Saidi, Ladan Ghazi; Perlbarg, Vincent; Marrelec, Guillaume; Pelegrini-Issac, Melani; Benali, Habib; Ansaldo, Ana-Ines

    2013-01-01

    Functional connectivity changes in the language network (Price, 2010), and in a control network involved in second language (L2) processing (Abutalebi & Green, 2007) were examined in a group of Persian (L1) speakers learning French (L2) words. Measures of network integration that characterize the global integrative state of a network (Marrelec,…

  6. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI.

    Science.gov (United States)

    Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn

    2015-12-01

    The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.

  7. Synchronization from Second Order Network Connectivity Statistics

    Science.gov (United States)

    Zhao, Liqiong; Beverlin, Bryce; Netoff, Theoden; Nykamp, Duane Q.

    2011-01-01

    We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections, and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by their increasing the effective coupling strength. The decrease of synchrony with convergent connections is primarily due to the resulting heterogeneity in firing rates. PMID:21779239

  8. A Comparison of the Cluster-Span Threshold and the Union of Shortest Paths as Objective Thresholds of EEG Functional Connectivity Networks from Beta Activity in Alzhaimer’s Disease

    OpenAIRE

    Smith, K; Abasolo, Daniel Emilio; Escudero, J

    2016-01-01

    The Cluster-Span Threshold (CST) is a recently introduced unbiased threshold for functional connectivity networks. This binarisation technique offers a natural trade-off of sparsity and density of information by balancing the ratio of closed to open triples in the network topology. Here we present findings comparing it with the Union of Shortest Paths (USP), another recently proposed objective method. We analyse standard network metrics of binarised networks for sensitivity to clinical Alzhei...

  9. Electrophysiological signatures of atypical intrinsic brain connectivity networks in autism

    Science.gov (United States)

    Shou, Guofa; Mosconi, Matthew W.; Wang, Jun; Ethridge, Lauren E.; Sweeney, John A.; Ding, Lei

    2017-08-01

    Objective. Abnormal local and long-range brain connectivity have been widely reported in autism spectrum disorder (ASD), yet the nature of these abnormalities and their functional relevance at distinct cortical rhythms remains unknown. Investigations of intrinsic connectivity networks (ICNs) and their coherence across whole brain networks hold promise for determining whether patterns of functional connectivity abnormalities vary across frequencies and networks in ASD. In the present study, we aimed to probe atypical intrinsic brain connectivity networks in ASD from resting-state electroencephalography (EEG) data via characterizing the whole brain network. Approach. Connectivity within individual ICNs (measured by spectral power) and between ICNs (measured by coherence) were examined at four canonical frequency bands via a time-frequency independent component analysis on high-density EEG, which were recorded from 20 ASD and 20 typical developing (TD) subjects during an eyes-closed resting state. Main results. Among twelve identified electrophysiological ICNs, individuals with ASD showed hyper-connectivity in individual ICNs and hypo-connectivity between ICNs. Functional connectivity alterations in ASD were more severe in the frontal lobe and the default mode network (DMN) and at low frequency bands. These functional connectivity measures also showed abnormal age-related associations in ICNs related to frontal, temporal and motor regions in ASD. Significance. Our findings suggest that ASD is characterized by the opposite directions of abnormalities (i.e. hypo- and hyper-connectivity) in the hierarchical structure of the whole brain network, with more impairments in the frontal lobe and the DMN at low frequency bands, which are critical for top-down control of sensory systems, as well as for both cognition and social skills.

  10. Thermal Stimulation Alters Cervical Spinal Cord Functional Connectivity in Humans.

    Science.gov (United States)

    Weber, Kenneth A; Sentis, Amy I; Bernadel-Huey, Olivia N; Chen, Yufen; Wang, Xue; Parrish, Todd B; Mackey, Sean

    2018-01-15

    The spinal cord has an active role in the modulation and transmission of the neural signals traveling between the body and the brain. Recent advancements in functional magnetic resonance imaging (fMRI) have made the in vivo examination of spinal cord function in humans now possible. This technology has been recently extended to the investigation of resting state functional networks in the spinal cord, leading to the identification of distinct patterns of spinal cord functional connectivity. In this study, we expand on the previous work and further investigate resting state cervical spinal cord functional connectivity in healthy participants (n = 15) using high resolution imaging coupled with both seed-based functional connectivity analyses and graph theory-based metrics. Within spinal cord segment functional connectivity was present between the left and right ventral horns (bilateral motor network), left and right dorsal horns (bilateral sensory network), and the ipsilateral ventral and dorsal horns (unilateral sensory-motor network). Functional connectivity between the spinal cord segments was less apparent with the connectivity centered at the region of interest and spanning spinal cord functional network was demonstrated to be state-dependent as thermal stimulation of the right ventrolateral forearm resulted in significant disruption of the bilateral sensory network, increased network global efficiency, and decreased network modularity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Selectivity and sparseness in randomly connected balanced networks.

    Directory of Open Access Journals (Sweden)

    Cengiz Pehlevan

    Full Text Available Neurons in sensory cortex show stimulus selectivity and sparse population response, even in cases where no strong functionally specific structure in connectivity can be detected. This raises the question whether selectivity and sparseness can be generated and maintained in randomly connected networks. We consider a recurrent network of excitatory and inhibitory spiking neurons with random connectivity, driven by random projections from an input layer of stimulus selective neurons. In this architecture, the stimulus-to-stimulus and neuron-to-neuron modulation of total synaptic input is weak compared to the mean input. Surprisingly, we show that in the balanced state the network can still support high stimulus selectivity and sparse population response. In the balanced state, strong synapses amplify the variation in synaptic input and recurrent inhibition cancels the mean. Functional specificity in connectivity emerges due to the inhomogeneity caused by the generative statistical rule used to build the network. We further elucidate the mechanism behind and evaluate the effects of model parameters on population sparseness and stimulus selectivity. Network response to mixtures of stimuli is investigated. It is shown that a balanced state with unselective inhibition can be achieved with densely connected input to inhibitory population. Balanced networks exhibit the "paradoxical" effect: an increase in excitatory drive to inhibition leads to decreased inhibitory population firing rate. We compare and contrast selectivity and sparseness generated by the balanced network to randomly connected unbalanced networks. Finally, we discuss our results in light of experiments.

  12. Connectivity patterns in cognitive control networks predict naturalistic multitasking ability.

    Science.gov (United States)

    Wen, Tanya; Liu, De-Cyuan; Hsieh, Shulan

    2018-06-01

    Multitasking is a fundamental aspect of everyday life activities. To achieve a complex, multi-component goal, the tasks must be subdivided into sub-tasks and component steps, a critical function of prefrontal networks. The prefrontal cortex is considered to be organized in a cascade of executive processes from the sensorimotor to anterior prefrontal cortex, which includes execution of specific goal-directed action, to encoding and maintaining task rules, and finally monitoring distal goals. In the current study, we used a virtual multitasking paradigm to tap into real-world performance and relate it to each individual's resting-state functional connectivity in fMRI. While did not find any correlation between global connectivity of any of the major networks with multitasking ability, global connectivity of the lateral prefrontal cortex (LPFC) was predictive of multitasking ability. Further analysis showed that multivariate connectivity patterns within the sensorimotor network (SMN), and between-network connectivity of the frontoparietal network (FPN) and dorsal attention network (DAN), predicted individual multitasking ability and could be generalized to novel individuals. Together, these results support previous research that prefrontal networks underlie multitasking abilities and show that connectivity patterns in the cascade of prefrontal networks may explain individual differences in performance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Learning Control Over Emotion Networks Through Connectivity-Based Neurofeedback.

    Science.gov (United States)

    Koush, Yury; Meskaldji, Djalel-E; Pichon, Swann; Rey, Gwladys; Rieger, Sebastian W; Linden, David E J; Van De Ville, Dimitri; Vuilleumier, Patrik; Scharnowski, Frank

    2017-02-01

    Most mental functions are associated with dynamic interactions within functional brain networks. Thus, training individuals to alter functional brain networks might provide novel and powerful means to improve cognitive performance and emotions. Using a novel connectivity-neurofeedback approach based on functional magnetic resonance imaging (fMRI), we show for the first time that participants can learn to change functional brain networks. Specifically, we taught participants control over a key component of the emotion regulation network, in that they learned to increase top-down connectivity from the dorsomedial prefrontal cortex, which is involved in cognitive control, onto the amygdala, which is involved in emotion processing. After training, participants successfully self-regulated the top-down connectivity between these brain areas even without neurofeedback, and this was associated with concomitant increases in subjective valence ratings of emotional stimuli of the participants. Connectivity-based neurofeedback goes beyond previous neurofeedback approaches, which were limited to training localized activity within a brain region. It allows to noninvasively and nonpharmacologically change interconnected functional brain networks directly, thereby resulting in specific behavioral changes. Our results demonstrate that connectivity-based neurofeedback training of emotion regulation networks enhances emotion regulation capabilities. This approach can potentially lead to powerful therapeutic emotion regulation protocols for neuropsychiatric disorders. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Network-based functional enrichment

    Directory of Open Access Journals (Sweden)

    Poirel Christopher L

    2011-11-01

    Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are

  15. Functional Imaging and Migraine: New Connections?

    Science.gov (United States)

    Schwedt, Todd J.; Chong, Catherine D.

    2015-01-01

    Purpose of Review Over the last several years, a growing number of brain functional imaging studies have provided insights into mechanisms underlying migraine. This manuscript reviews the recent migraine functional neuroimaging literature and provides recommendations for future studies that will help fill knowledge gaps. Recent Findings Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies have identified brain regions that might be responsible for mediating the onset of a migraine attack and those associated with migraine symptoms. Enhanced activation of brain regions that facilitate processing of sensory stimuli suggests a mechanism by which migraineurs are hypersensitive to visual, olfactory, and cutaneous stimuli. Resting state functional connectivity MRI studies have identified numerous brain regions and functional networks with atypical functional connectivity in migraineurs, suggesting that migraine is associated with aberrant brain functional organization. Summary fMRI and PET studies that have identified brain regions and brain networks that are atypical in migraine have helped to describe the neurofunctional basis for migraine symptoms. Future studies should compare functional imaging findings in migraine to other headache and pain disorders and should explore the utility of functional imaging data as biomarkers for diagnostic and treatment purposes. PMID:25887764

  16. Precentral gyrus functional connectivity signatures of autism

    Directory of Open Access Journals (Sweden)

    Mary Beth eNebel

    2014-05-01

    Full Text Available Motor impairments are prevalent in children with autism spectrum disorders (ASD and are perhaps the earliest symptoms to develop. In addition, motor skills relate to the communicative/social deficits at the core of ASD diagnosis, and these behavioral deficits may reflect abnormal connectivity within brain networks underlying motor control and learning. Despite the fact that motor abnormalities in ASD are well-characterized, there remains a fundamental disconnect between the complexity of the clinical presentation of ASD and the underlying neurobiological mechanisms. In this study, we examined connectivity within and between functional subregions of a key component of the motor control network, the precentral gyrus, using resting state functional Magnetic Resonance Imaging data collected from a large, heterogeneous sample of individuals with ASD as well as neurotypical controls. We found that the strength of connectivity within and between distinct functional subregions of the precentral gyrus was related to ASD diagnosis and to the severity of ASD traits. In particular, connectivity involving the dorsomedial (lower limb/trunk subregion was abnormal in ASD individuals as predicted by models using a dichotomous variable coding for the presence of ASD, as well as models using symptom severity ratings. These findings provide further support for a link between motor and social/communicative abilities in ASD.

  17. Connectivities and synchronous firing in cortical neuronal networks

    International Nuclear Information System (INIS)

    Jia, L.C.; Sano, M.; Lai, P.-Y.; Chan, C.K.

    2004-01-01

    Network connectivities (k-bar) of cortical neural cultures are studied by synchronized firing and determined from measured correlations between fluorescence intensities of firing neurons. The bursting frequency (f) during synchronized firing of the networks is found to be an increasing function of k-bar. With f taken to be proportional to k-bar, a simple random model with a k-bar dependent connection probability p(k-bar) has been constructed to explain our experimental findings successfully

  18. Social network of an internationally connected nurse leader.

    Science.gov (United States)

    Benton, David

    2016-03-01

    Over the past decade, there has been a proliferation of social media sites offering the opportunity for colleagues to connect with each other locally, nationally and internationally. Meanwhile, nurses have been increasingly using social network analytical techniques to look at team functioning and communication pathways. This article uses the author's LinkedIn social network to illustrate how analysis can offer insights into the connections, and how the results can be used to professional advantage.

  19. Low-stress bicycling and network connectivity.

    Science.gov (United States)

    2012-05-01

    For a bicycling network to attract the widest possible segment of the population, its most fundamental attribute should be low-stress connectivity, that is, providing routes between peoples origins and destinations that do not require cyclists to ...

  20. Decreased functional connectivity and disrupted neural network in the prefrontal cortex of affective disorders: A resting-state fNIRS study.

    Science.gov (United States)

    Zhu, Huilin; Xu, Jie; Li, Jiangxue; Peng, Hongjun; Cai, Tingting; Li, Xinge; Wu, Shijing; Cao, Wei; He, Sailing

    2017-10-15

    Affective disorders (AD) have been conceptualized as neural network-level diseases. In this study, we utilized functional near infrared spectroscopy (fNIRS) to investigate the spontaneous hemodynamic activities in the prefrontal cortex (PFC) of the AD patients with or without medications. 42 optical channels were applied to cover the superior frontal gyrus (SFG), middle frontal gyrus (MFG), and inferior frontal gyrus (IFG), which constitute one of the most important affective networks of the brain. We performed resting-state measurements on 28 patients who were diagnosed as having AD and 30 healthy controls (HC). Raw fNIRS data were preprocessed with independent component analysis (ICA) and a band-pass filter to remove artifacts and physiological noise. By systematically analyzing the intra-regional, intrahemispheric, and interhemispheric connectivities based on the spontaneous oscillations of Δ[HbO], our results indicated that patients with AD exhibited significantly reduced intra-regional and symmetrically interhemispheric connectivities in the PFC when compared to HC. More specifically, relative to HC, AD patients showed significantly lower locally functional connectivity in the right IFG, and poor long-distance connectivity between bilateral IFG. In addition, AD patients without medication presented more disrupted cortical organizations in the PFC, and the severity of self-reported symptoms of depression was negatively correlated with the strength of intra-regional and symmetrically interhemispheric connectivity in the PFC. Regarding the measuring technique, fNIRS has restricted measurement depth and spatial resolution. During the study, the subgroups of AD, such as major depressive disorder, bipolar, comorbidity, or non-comorbidity, dosage of psychotropic drugs, as well as different types of pharmacological responses were not distinguished and systematically compared. Furthermore, due to the limitation of the research design, it was still not very clear how

  1. Empirical validation of directed functional connectivity.

    Science.gov (United States)

    Mill, Ravi D; Bagic, Anto; Bostan, Andreea; Schneider, Walter; Cole, Michael W

    2017-02-01

    Mapping directions of influence in the human brain connectome represents the next phase in understanding its functional architecture. However, a host of methodological uncertainties have impeded the application of directed connectivity methods, which have primarily been validated via "ground truth" connectivity patterns embedded in simulated functional MRI (fMRI) and magneto-/electro-encephalography (MEG/EEG) datasets. Such simulations rely on many generative assumptions, and we hence utilized a different strategy involving empirical data in which a ground truth directed connectivity pattern could be anticipated with confidence. Specifically, we exploited the established "sensory reactivation" effect in episodic memory, in which retrieval of sensory information reactivates regions involved in perceiving that sensory modality. Subjects performed a paired associate task in separate fMRI and MEG sessions, in which a ground truth reversal in directed connectivity between auditory and visual sensory regions was instantiated across task conditions. This directed connectivity reversal was successfully recovered across different algorithms, including Granger causality and Bayes network (IMAGES) approaches, and across fMRI ("raw" and deconvolved) and source-modeled MEG. These results extend simulation studies of directed connectivity, and offer practical guidelines for the use of such methods in clarifying causal mechanisms of neural processing. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Maternal reading fluency is positively associated with greater functional connectivity between the child's future reading network and regions related to executive functions and language processing in preschool-age children.

    Science.gov (United States)

    Horowitz-Kraus, Tzipi; Hutton, John S; Phelan, Kieran; Holland, Scott K

    2018-03-01

    The role of the parent or educator in a child's learning is a key feature in child development. Evidence supports the impact of early language exposure for future language and cognitive abilities and of home reading environment on neural circuits supporting language and reading. As shared parent-child reading is largely contingent on the reading ability of the parent, the aim of the current study was to explore association of parental reading ability on functional connectivity of brain networks involved with reading acquisition in their children. Twenty-two 4-year-old girls and their mothers participated in the current study. Maternal reading fluency was applied as predictors of functional connectivity analyses of a stories-listening functional MRI task. Results indicate a positive association between maternal fluency scores and greater functional connectivity between regions in the future reading network and brain regions supporting language and cognitive control in the children. Maternal reading fluency is important in facilitating development of a child's reading network. Implications regarding shared reading are discussed, and an extended ecological model for child language and literacy development is proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The relationship between default mode network connectivity and social functioning in individuals at familial high-risk for schizophrenia

    OpenAIRE

    Dodell-Feder, David; DeLisi, Lynn E.; Hooker, Christine I.

    2014-01-01

    Unaffected first-degree relatives of individuals with schizophrenia (i.e., those at familial high-risk [FHR]), demonstrate social dysfunction qualitatively similar though less severe than that of their affected relatives. These social difficulties may be the consequence of genetically conferred disruption to aspects of the default mode network (DMN), such as the dMPFC subsystem, which overlaps with the network of brain regions recruited during social cognitive processes. In the present study,...

  4. Aberrant cerebellar connectivity in motor and association networks in schizophrenia

    Directory of Open Access Journals (Sweden)

    Ann K. Shinn

    2015-03-01

    Full Text Available Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the cognitive dysmetria and dysmetria of thought models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of

  5. Intrinsic network connectivity and own body perception in gender dysphoria.

    Science.gov (United States)

    Feusner, Jamie D; Lidström, Andreas; Moody, Teena D; Dhejne, Cecilia; Bookheimer, Susan Y; Savic, Ivanka

    2017-08-01

    Gender dysphoria (GD) is characterized by incongruence between one's identity and gender assigned at birth. The biological mechanisms of GD are unclear. We investigated brain network connectivity patterns involved in own body perception in the context of self in GD. Twenty-seven female-to-male (FtM) individuals with GD, 27 male controls, and 27 female controls underwent resting state fMRI. We compared functional connections within intrinsic connectivity networks involved in self-referential processes and own body perception -default mode network (DMN) and salience network - and visual networks, using independent components analyses. Behavioral correlates of network connectivity were also tested using self-perception ratings while viewing own body images morphed to their sex assigned at birth, and to the sex of their gender identity. FtM exhibited decreased connectivity of anterior and posterior cingulate and precuneus within the DMN compared with controls. In FtM, higher "self" ratings for bodies morphed towards the sex of their gender identity were associated with greater connectivity of the anterior cingulate within the DMN, during long viewing times. In controls, higher ratings for bodies morphed towards their gender assigned at birth were associated with right insula connectivity within the salience network, during short viewing times. Within visual networks FtM showed weaker connectivity in occipital and temporal regions. Results suggest disconnectivity within networks involved in own body perception in the context of self in GD. Moreover, perception of bodies in relation to self may be reflective rather than reflexive, as a function of mesial prefrontal processes. These may represent neurobiological correlates to the subjective disconnection between perception of body and self-identification.

  6. Improved diagnostic accuracy of Alzheimer's disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer's disease neuroimaging initiative set

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Park, Bum Woo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Jung; Oh, Joo Young; Shim, Woo Hyun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Jae Hong; Roh, Jee Hoon [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-11-15

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease.

  7. Altered Brain Functional Connectivity in Betel Quid-Dependent Chewers.

    Science.gov (United States)

    Huang, Xiaojun; Pu, Weidan; Liu, Haihong; Li, Xinmin; Greenshaw, Andrew J; Dursun, Serdar M; Xue, Zhimin; Liu, Zhening

    2017-01-01

    Betel quid (BQ) is a common psychoactive substance worldwide with particularly high usage in many Asian countries. This study aimed to explore the effect of BQ use on functional connectivity by comparing global functional brain networks and their subset between BQ chewers and healthy controls (HCs). Resting-state functional magnetic resonance imaging (fMRI) was obtained from 24 betel quid-dependent (BQD) male chewers and 27 healthy male individuals on a 3.0T scanner. We used independent component analysis (ICA) to determine components that represent the brain's functional networks and their spatial aspects of functional connectivity. Two sample t -tests were used to identify the functional connectivity differences in each network between these two groups. Seventeen networks were identified by ICA. Nine of them showed connectivity differences between BQD and HCs (two sample t -tests, p  betel quid dependence scale scores were positively related to the increased functional connectivity in the orbitofrontal ( r  = 0.39, p  = 0.03) while negatively related to the decreased functional connectivity in medial frontal/anterior cingulate networks ( r  = -0.35, p  = 0.02). Our findings provide further evidence that BQ chewing may lead to brain functional connectivity changes, which may play a key role in the psychological and physiological effects of BQ.

  8. 城市生态网络功能性连接辨识方法%Identifying and evaluating functional connectivity for building urban ecological networks

    Institute of Scientific and Technical Information of China (English)

    陈春娣; Meurk D. Colin; Ignatieva E. Maria; Stewart H. Glenn; 吴胜军

    2015-01-01

    城市生态网络是景观生态学应用领域研究的热点和重点之一,识别、评估生境之间的连接是构建生态网络的关键环节。在总结已有连接辨识方法的基础上,提出采用最小费用模型和图论分析相结合的方法,探讨功能性连接的辨识和优先恢复途径。以新西兰基督城为案例,分别利用景观发展强度指数建立阻力面,新西兰鸡毛松( Dacrycarpus dacrydioides)种子最大传播距离作为连接阈值来模拟、评价网络连接。结果表明:在1200 m 距离阈值下,共有408条连接,其重要性分为10类。其中Richmond—Petrie公园,Hansons—Auburn保护地,Centaurus公园—King George保护地是整个生态网络的关键连接;若去除,景观整体连接度将下降31.73%。此外,研究发现连接重要值与两端的源面积之和没有显著相关性,即面积大的源斑块之间的连接不一定对网络构建起关键作用,这一结论还有待进一步证明。针对缺少动物迁移资料的城市环境,改进最小费用模型和网络连接分析的部分参数;可操作性与实用性强,对中国城市区域生态恢复建设、栖息地选择具有借鉴意义。%With rapid urbanization and industrialization, habitat fragmentation and loss are inevitable. Under these circumstances, landscape connectivity and ecological networks have become a focus of applied landscape ecology. A well-connected ecological network is believed to facilitate energy and resource fluxes, species dispersal, genetic exchange and multiple other ecological processes, and to contribute to the maintenance of ecosystem stability and integrity. Identifying and evaluating functional connectivity between habitat patches is the key step in designing and building well-connected ecological networks. Based on a review of literature on linkage identification approaches, our study combined least-cost path modeling with graph-theory based network analysis to simulate, identify

  9. Altered Brain Functional Connectivity in Betel Quid-Dependent Chewers

    Directory of Open Access Journals (Sweden)

    Xiaojun Huang

    2017-11-01

    Full Text Available BackgroundBetel quid (BQ is a common psychoactive substance worldwide with particularly high usage in many Asian countries. This study aimed to explore the effect of BQ use on functional connectivity by comparing global functional brain networks and their subset between BQ chewers and healthy controls (HCs.MethodsResting-state functional magnetic resonance imaging (fMRI was obtained from 24 betel quid-dependent (BQD male chewers and 27 healthy male individuals on a 3.0T scanner. We used independent component analysis (ICA to determine components that represent the brain’s functional networks and their spatial aspects of functional connectivity. Two sample t-tests were used to identify the functional connectivity differences in each network between these two groups.ResultsSeventeen networks were identified by ICA. Nine of them showed connectivity differences between BQD and HCs (two sample t-tests, p < 0.001 uncorrected. We found increased functional connectivity in the orbitofrontal, bilateral frontoparietal, frontotemporal, occipital/parietal, frontotemporal/cerebellum, and temporal/limbic networks, and decreased connectivity in the parietal and medial frontal/anterior cingulate networks in the BQD compared to the HCs. The betel quid dependence scale scores were positively related to the increased functional connectivity in the orbitofrontal (r = 0.39, p = 0.03 while negatively related to the decreased functional connectivity in medial frontal/anterior cingulate networks (r = −0.35, p = 0.02.DiscussionOur findings provide further evidence that BQ chewing may lead to brain functional connectivity changes, which may play a key role in the psychological and physiological effects of BQ.

  10. Retrospective Correction of Physiological Noise: Impact on Sensitivity, Specificity, and Reproducibility of Resting-State Functional Connectivity in a Reading Network Model.

    Science.gov (United States)

    Krishnamurthy, Venkatagiri; Krishnamurthy, Lisa C; Schwam, Dina M; Ealey, Ashley; Shin, Jaemin; Greenberg, Daphne; Morris, Robin D

    2018-03-01

    It is well accepted that physiological noise (PN) obscures the detection of neural fluctuations in resting-state functional connectivity (rsFC) magnetic resonance imaging. However, a clear consensus for an optimal PN correction (PNC) methodology and how it can impact the rsFC signal characteristics is still lacking. In this study, we probe the impact of three PNC methods: RETROICOR: (Glover et al., 2000 ), ANATICOR: (Jo et al., 2010 ), and RVTMBPM: (Bianciardi et al., 2009 ). Using a reading network model, we systematically explore the effects of PNC optimization on sensitivity, specificity, and reproducibility of rsFC signals. In terms of specificity, ANATICOR was found to be effective in removing local white matter (WM) fluctuations and also resulted in aggressive removal of expected cortical-to-subcortical functional connections. The ability of RETROICOR to remove PN was equivalent to removal of simulated random PN such that it artificially inflated the connection strength, thereby decreasing sensitivity. RVTMBPM maintained specificity and sensitivity by balanced removal of vasodilatory PN and local WM nuisance edges. Another aspect of this work was exploring the effects of PNC on identifying reading group differences. Most PNC methods accounted for between-subject PN variability resulting in reduced intersession reproducibility. This effect facilitated the detection of the most consistent group differences. RVTMBPM was most effective in detecting significant group differences due to its inherent sensitivity to removing spatially structured and temporally repeating PN arising from dense vasculature. Finally, results suggest that combining all three PNC resulted in "overcorrection" by removing signal along with noise.

  11. The Longitudinal Trajectory of Default Mode Network Connectivity in Healthy Older Adults Varies As a Function of Age and Is Associated with Changes in Episodic Memory and Processing Speed.

    Science.gov (United States)

    Staffaroni, Adam M; Brown, Jesse A; Casaletto, Kaitlin B; Elahi, Fanny M; Deng, Jersey; Neuhaus, John; Cobigo, Yann; Mumford, Paige S; Walters, Samantha; Saloner, Rowan; Karydas, Anna; Coppola, Giovanni; Rosen, Howie J; Miller, Bruce L; Seeley, William W; Kramer, Joel H

    2018-03-14

    The default mode network (DMN) supports memory functioning and may be sensitive to preclinical Alzheimer's pathology. Little is known, however, about the longitudinal trajectory of this network's intrinsic functional connectivity (FC). In this study, we evaluated longitudinal FC in 111 cognitively normal older human adults (ages 49-87, 46 women/65 men), 92 of whom had at least three task-free fMRI scans ( n = 353 total scans). Whole-brain FC and three DMN subnetworks were assessed: (1) within-DMN, (2) between anterior and posterior DMN, and (3) between medial temporal lobe network and posterior DMN. Linear mixed-effects models demonstrated significant baseline age × time interactions, indicating a nonlinear trajectory. There was a trend toward increasing FC between ages 50-66 and significantly accelerating declines after age 74. A similar interaction was observed for whole-brain FC. APOE status did not predict baseline connectivity or change in connectivity. After adjusting for network volume, changes in within-DMN connectivity were specifically associated with changes in episodic memory and processing speed but not working memory or executive functions. The relationship with processing speed was attenuated after covarying for white matter hyperintensities (WMH) and whole-brain FC, whereas within-DMN connectivity remained associated with memory above and beyond WMH and whole-brain FC. Whole-brain and DMN FC exhibit a nonlinear trajectory, with more rapid declines in older age and possibly increases in connectivity early in the aging process. Within-DMN connectivity is a marker of episodic memory performance even among cognitively healthy older adults. SIGNIFICANCE STATEMENT Default mode network and whole-brain connectivity, measured using task-free fMRI, changed nonlinearly as a function of age, with some suggestion of early increases in connectivity. For the first time, longitudinal changes in DMN connectivity were shown to correlate with changes in episodic

  12. Intrinsic Functional Connectivity in Salience and Default Mode Networks and Aberrant Social Processes in Youth at Ultra-High Risk for Psychosis.

    Science.gov (United States)

    Pelletier-Baldelli, Andrea; Bernard, Jessica A; Mittal, Vijay A

    2015-01-01

    Social processes are key to navigating the world, and investigating their underlying mechanisms and cognitive architecture can aid in understanding disease states such as schizophrenia, where social processes are highly impacted. Evidence suggests that social processes are impaired in individuals at ultra high-risk for the development of psychosis (UHR). Understanding these phenomena in UHR youth may clarify disease etiology and social processes in a period that is characterized by significantly fewer confounds than schizophrenia. Furthermore, understanding social processing deficits in this population will help explain these processes in healthy individuals. The current study examined resting state connectivity of the salience (SN) and default mode networks (DMN) in association with facial emotion recognition (FER), an integral aspect of social processes, as well as broader social functioning (SF) in UHR individuals and healthy controls. Consistent with the existing literature, UHR youth were impaired in FER and SF when compared with controls. In the UHR group, we found increased connectivity between the SN and the medial prefrontal cortex, an area of the DMN relative to controls. In UHR youth, the DMN exhibited both positive and negative correlations with the somatosensory cortex/cerebellum and precuneus, respectively, which was linked with better FER performance. For SF, results showed that sensory processing links with the SN might be important in allowing for better SF for both groups, but especially in controls where sensory processing is likely to be unimpaired. These findings clarify how social processing deficits may manifest in psychosis, and underscore the importance of SN and DMN connectivity for social processing more generally.

  13. Brain intrinsic network connectivity in individuals with frequent tanning behavior.

    Science.gov (United States)

    Ketcherside, Ariel; Filbey, Francesca M; Aubert, Pamela M; Seibyl, John P; Price, Julianne L; Adinoff, Bryon

    2018-05-01

    Emergent studies suggest a bidirectional relationship between brain functioning and the skin. This neurocutaneous connection may be responsible for the reward response to tanning and, thus, may contribute to excessive tanning behavior. To date, however, this association has not yet been examined. To explore whether intrinsic brain functional connectivity within the default mode network (DMN) is related to indoor tanning behavior. Resting state functional connectivity (rsFC) was obtained in twenty adults (16 females) with a history of indoor tanning. Using a seed-based [(posterior cingulate cortex (PCC)] approach, the relationship between tanning severity and FC strength was assessed. Tanning severity was measured with symptom count from the Structured Clinical Interview for Tanning Abuse and Dependence (SITAD) and tanning intensity (lifetime indoor tanning episodes/years tanning). rsFC strength between the PCC and other DMN regions (left globus pallidus, left medial frontal gyrus, left superior frontal gyrus) is positively correlated with tanning symptom count. rsFC strength between the PCC and salience network regions (right anterior cingulate cortex, left inferior parietal lobe, left inferior temporal gyrus) is correlated with tanning intensity. Greater connectivity between tanning severity and DMN and salience network connectivity suggests that heightened self-awareness of salient stimuli may be a mechanism that underlies frequent tanning behavior. These findings add to the growing evidence of brain-skin connection and reflect dysregulation in the reward processing networks in those with frequent tanning.

  14. Connecting Network Properties of Rapidly Disseminating Epizoonotics

    Science.gov (United States)

    Rivas, Ariel L.; Fasina, Folorunso O.; Hoogesteyn, Almira L.; Konah, Steven N.; Febles, José L.; Perkins, Douglas J.; Hyman, James M.; Fair, Jeanne M.; Hittner, James B.; Smith, Steven D.

    2012-01-01

    Background To effectively control the geographical dissemination of infectious diseases, their properties need to be determined. To test that rapid microbial dispersal requires not only susceptible hosts but also a pre-existing, connecting network, we explored constructs meant to reveal the network properties associated with disease spread, which included the road structure. Methods Using geo-temporal data collected from epizoonotics in which all hosts were susceptible (mammals infected by Foot-and-mouth disease virus, Uruguay, 2001; birds infected by Avian Influenza virus H5N1, Nigeria, 2006), two models were compared: 1) ‘connectivity’, a model that integrated bio-physical concepts (the agent’s transmission cycle, road topology) into indicators designed to measure networks (‘nodes’ or infected sites with short- and long-range links), and 2) ‘contacts’, which focused on infected individuals but did not assess connectivity. Results The connectivity model showed five network properties: 1) spatial aggregation of cases (disease clusters), 2) links among similar ‘nodes’ (assortativity), 3) simultaneous activation of similar nodes (synchronicity), 4) disease flows moving from highly to poorly connected nodes (directionality), and 5) a few nodes accounting for most cases (a “20∶80″ pattern). In both epizoonotics, 1) not all primary cases were connected but at least one primary case was connected, 2) highly connected, small areas (nodes) accounted for most cases, 3) several classes of nodes were distinguished, and 4) the contact model, which assumed all primary cases were identical, captured half the number of cases identified by the connectivity model. When assessed together, the synchronicity and directionality properties explained when and where an infectious disease spreads. Conclusions Geo-temporal constructs of Network Theory’s nodes and links were retrospectively validated in rapidly disseminating infectious diseases. They distinguished

  15. Functional connectivity of emotional processing in depression.

    LENUS (Irish Health Repository)

    Carballedo, Angela

    2012-02-01

    OBJECTIVES: The aim of the study is to map a neural network of emotion processing and to identify differences in major depression compared to healthy controls. It is hypothesized that intentional perception of emotional faces activates connections between amygdala (Demir et al.), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and prefrontal cortex (PFC) and that frontal-amygdala connections are altered in major depressive disorder (MDD). METHODS: Fifteen medication-free patients with MDD and fifteen healthy controls were enrolled. All subjects were assessed using the same face-matching functional Magnetic Resonance Imaging (fMRI) task, known to involve those areas. Brain activations were obtained using Statistical Parametric Mapping version 5 (SPM5) for data analysis and MARSBAR for extracting of fMRI time series. Then data was analyzed using structural equation modeling (SEM). RESULTS: A valid model was established for the left and the right hemispheres showing a circuit involving ACC, OFC, PFC and AMY. The left hemisphere shows significant lower connectivity strengths in patients than controls, for the pathway that goes from AMY to the OF11, and a trend of higher connectivity in patients for the path that goes from the PF9 to the OF11. In the right hemisphere, patients show lower connectivity coefficients in the paths from the AMY to OF11, from the AMY to ACC, and from the ACC to PF9. By the contrary, controls show lower connectivity strengths for the path that goes from ACC to AMY. CONCLUSIONS: Functional disconnection between limbic and frontal brain regions could be demonstrated using structural equation modeling. The interpretation of these findings could be that there is an emotional processing bias with disconnection bilaterally between amygdala to orbitofrontal cortices and in addition a right disconnection between amygdala and ACC as well as between ACC and prefrontal cortex possibly in line with a more prominent role for the right hemisphere

  16. Connecting Mobile Users Through Mobile Social Networks

    Directory of Open Access Journals (Sweden)

    Faisal Alkhateeb

    2012-10-01

    Full Text Available Nowadays, social networks become popular with the emerging of web-based social networking services. Recently, several mobile services are developed to connect users to their favourite social networks such as Facebook, Twitter, Flickr, etc. However, these services depends upon the existing web-based social networks. In this paper, we present a mobile service for joining groups across communities. The originality of the work is that the framework of the service allows creating and joining social networks that are self-contained for mobile company servers. The service consists of several sub-services such as users invitation, group finding and others. Users, regardless of their disability, can use the service and its sub-services without the need to create their own accounts on social web sites and thus their own groups. We also propose a privacy control policy for mobile social networks.

  17. Connectivity, topology and dynamics in climate networks

    Czech Academy of Sciences Publication Activity Database

    Paluš, Milan; Hartman, David; Hlinka, Jaroslav; Vejmelka, Martin

    2012-01-01

    Roč. 14, - (2012), s. 8397 ISSN 1607-7962. [European Geosciences Union General Assembly 2012. 22.04.2012-27.04.2012, Vienna] R&D Projects: GA ČR GCP103/11/J068 Institutional support: RVO:67985807 Keywords : complex networks * climate network * connectivity * entropy rate * El Nino Southern Oscillation * North Atlantic Oscillation Subject RIV: BB - Applied Statistics, Operational Research

  18. Women’s connectivity in extreme networks

    Science.gov (United States)

    Manrique, Pedro; Cao, Zhenfeng; Gabriel, Andrew; Horgan, John; Gill, Paul; Qi, Hong; Restrepo, Elvira M.; Johnson, Daniela; Wuchty, Stefan; Song, Chaoming; Johnson, Neil

    2016-01-01

    A popular stereotype is that women will play more minor roles than men as environments become more dangerous and aggressive. Our analysis of new longitudinal data sets from offline and online operational networks [for example, ISIS (Islamic State)] shows that although men dominate numerically, women emerge with superior network connectivity that can benefit the underlying system’s robustness and survival. Our observations suggest new female-centric approaches that could be used to affect such networks. They also raise questions about how individual contributions in high-pressure systems are evaluated. PMID:27386564

  19. Discerning connectivity from dynamics in climate networks

    Czech Academy of Sciences Publication Activity Database

    Paluš, Milan; Hartman, David; Hlinka, Jaroslav; Vejmelka, Martin

    2011-01-01

    Roč. 18, č. 5 (2011), s. 751-763 ISSN 1023-5809 R&D Projects: GA ČR GCP103/11/J068 Institutional research plan: CEZ:AV0Z10300504 Keywords : complex networks * climate dynamics * connectivity * North Atlantic Oscillation * solar activity Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.597, year: 2011

  20. Intrinsic connectivity networks within cerebellum and beyond in eating disorders.

    Science.gov (United States)

    Amianto, F; D'Agata, F; Lavagnino, L; Caroppo, P; Abbate-Daga, G; Righi, D; Scarone, S; Bergui, M; Mortara, P; Fassino, S

    2013-10-01

    Cerebellum seems to have a role both in feeding behavior and emotion regulation; therefore, it is a region that warrants further neuroimaging studies in eating disorders, severe conditions that determine a significant impairment in the physical and psychological domain. The aim of this study was to examine the cerebellum intrinsic connectivity during functional magnetic resonance imaging resting state in anorexia nervosa (AN), bulimia nervosa (BN), and healthy controls (CN). Resting state brain activity was decomposed into intrinsic connectivity networks (ICNs) using group spatial independent component analysis on the resting blood oxygenation level dependent time courses of 12 AN, 12 BN, and 10 CN. We extracted the cerebellar ICN and compared it between groups. Intrinsic connectivity within the cerebellar network showed some common alterations in eating disordered compared to healthy subjects (e.g., a greater connectivity with insulae, vermis, and paravermis and a lesser connectivity with parietal lobe); AN and BN patients were characterized by some peculiar alterations in connectivity patterns (e.g., greater connectivity with the insulae in AN compared to BN, greater connectivity with anterior cingulate cortex in BN compared to AN). Our data are consistent with the presence of different alterations in the cerebellar network in AN and BN patients that could be related to psychopathologic dimensions of eating disorders.

  1. Coded Network Function Virtualization

    DEFF Research Database (Denmark)

    Al-Shuwaili, A.; Simone, O.; Kliewer, J.

    2016-01-01

    Network function virtualization (NFV) prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off......-the-shelf hardware is less reliable than the dedicated network elements used in conventional cellular deployments. The typical solution for this problem is to duplicate network functions across geographically distributed hardware in order to ensure diversity. In contrast, this letter proposes to leverage channel...... coding in order to enhance the robustness on NFV to hardware failure. The proposed approach targets the network function of uplink channel decoding, and builds on the algebraic structure of the encoded data frames in order to perform in-network coding on the signals to be processed at different servers...

  2. Asymmetric network connectivity using weighted harmonic averages

    Science.gov (United States)

    Morrison, Greg; Mahadevan, L.

    2011-02-01

    We propose a non-metric measure of the "closeness" felt between two nodes in an undirected, weighted graph using a simple weighted harmonic average of connectivity, that is a real-valued Generalized Erdös Number (GEN). While our measure is developed with a collaborative network in mind, the approach can be of use in a variety of artificial and real-world networks. We are able to distinguish between network topologies that standard distance metrics view as identical, and use our measure to study some simple analytically tractable networks. We show how this might be used to look at asymmetry in authorship networks such as those that inspired the integer Erdös numbers in mathematical coauthorships. We also show the utility of our approach to devise a ratings scheme that we apply to the data from the NetFlix prize, and find a significant improvement using our method over a baseline.

  3. On development of functional brain connectivity in the young brain

    Directory of Open Access Journals (Sweden)

    G.E. Anna-Jasmijn eHoff

    2013-10-01

    Full Text Available Our brain is a complex network of structurally and functionally interconnected regions, shaped to efficiently process and integrate information. The development from a brain equipped with basic functionalities to an efficient network facilitating complex behavior starts during gestation and continues into adulthood. Resting-state functional MRI (rs-fMRI enables the examination of developmental aspects of functional connectivity and functional brain networks. This review will discuss changes observed in the developing brain on the level of network functional connectivity (FC from a gestational age of 20 weeks onwards. We discuss findings of resting-state fMRI studies showing that functional network development starts during gestation, creating a foundation for each of the resting-state networks to be established. Visual and sensorimotor areas are reported to develop first, with other networks, at different rates, increasing both in network connectivity and size over time. Reaching childhood, marked fine-tuning and specialization takes place in the regions necessary for higher-order cognitive functions.

  4. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity.

    Science.gov (United States)

    Finn, Emily S; Shen, Xilin; Scheinost, Dustin; Rosenberg, Monica D; Huang, Jessica; Chun, Marvin M; Papademetris, Xenophon; Constable, R Todd

    2015-11-01

    Functional magnetic resonance imaging (fMRI) studies typically collapse data from many subjects, but brain functional organization varies between individuals. Here we establish that this individual variability is both robust and reliable, using data from the Human Connectome Project to demonstrate that functional connectivity profiles act as a 'fingerprint' that can accurately identify subjects from a large group. Identification was successful across scan sessions and even between task and rest conditions, indicating that an individual's connectivity profile is intrinsic, and can be used to distinguish that individual regardless of how the brain is engaged during imaging. Characteristic connectivity patterns were distributed throughout the brain, but the frontoparietal network emerged as most distinctive. Furthermore, we show that connectivity profiles predict levels of fluid intelligence: the same networks that were most discriminating of individuals were also most predictive of cognitive behavior. Results indicate the potential to draw inferences about single subjects on the basis of functional connectivity fMRI.

  5. Latent and Abnormal Functional Connectivity Circuits in Autism Spectrum Disorder.

    Science.gov (United States)

    Chen, Shuo; Xing, Yishi; Kang, Jian

    2017-01-01

    Autism spectrum disorder (ASD) is associated with disrupted brain networks. Neuroimaging techniques provide noninvasive methods of investigating abnormal connectivity patterns in ASD. In the present study, we compare functional connectivity networks in people with ASD with those in typical controls, using neuroimaging data from the Autism Brain Imaging Data Exchange (ABIDE) project. Specifically, we focus on the characteristics of intrinsic functional connectivity based on data collected by resting-state functional magnetic resonance imaging (rs-fMRI). Our aim was to identify disrupted brain connectivity patterns across all networks, instead of in individual edges, by using advanced statistical methods. Unlike many brain connectome studies, in which networks are prespecified before the edge connectivity in each network is compared between clinical groups, we detected the latent differentially expressed networks automatically. Our network-level analysis identified abnormal connectome networks that (i) included a high proportion of edges that were differentially expressed between people with ASD and typical controls; and (ii) showed highly-organized graph topology. These findings provide new insight into the study of the underlying neuropsychiatric mechanism of ASD.

  6. Brain network connectivity in individuals with schizophrenia and their siblings.

    Science.gov (United States)

    Repovs, Grega; Csernansky, John G; Barch, Deanna M

    2011-05-15

    Research on brain activity in schizophrenia has shown that changes in the function of any single region cannot explain the range of cognitive and affective impairments in this illness. Rather, neural circuits that support sensory, cognitive, and emotional processes are now being investigated as substrates for cognitive and affective impairments in schizophrenia, a shift in focus consistent with long-standing hypotheses about schizophrenia as a disconnection syndrome. Our goal was to further examine alterations in functional connectivity within and between the default mode network and three cognitive control networks (frontal-parietal, cingulo-opercular, and cerebellar) as a basis for such impairments. Resting state functional magnetic resonance imaging was collected from 40 individuals with DSM-IV-TR schizophrenia, 31 siblings of individuals with schizophrenia, 15 healthy control subjects, and 18 siblings of healthy control subjects while they rested quietly with their eyes closed. Connectivity metrics were compared between patients and control subjects for both within- and between-network connections and were used to predict clinical symptoms and cognitive function. Individuals with schizophrenia showed reduced distal and somewhat enhanced local connectivity between the cognitive control networks compared with control subjects. Additionally, greater connectivity between the frontal-parietal and cerebellar regions was robustly predictive of better cognitive performance across groups and predictive of fewer disorganization symptoms among patients. These results are consistent with the hypothesis that impairments of executive function and cognitive control result from disruption in the coordination of activity across brain networks and additionally suggest that these might reflect impairments in normal pattern of brain connectivity development. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. BDNF genotype modulates resting functional connectivity in children

    Directory of Open Access Journals (Sweden)

    Moriah E Thomason

    2009-11-01

    Full Text Available A specific polymorphism of the brain-derived neurotrophic factor (BDNF gene is associated with alterations in brain anatomy and memory; its relevance to the functional connectivity of brain networks, however, is unclear. Given that altered hippocampal function and structure has been found in adults who carry the methionine (met allele of the BDNF gene and the molecular studies elucidating the role of BDNF in neurogenesis and synapse formation, we examined in the association between BDNF gene variants and neural resting connectivity in children and adolescents. We observed a reduction in hippocampal and parahippocampal to cortical connectivity in met-allele carriers within each of three resting networks: the default-mode, executive, and paralimbic networks. In contrast, we observed increased connectivity to amygdala, insula and striatal regions in met-carriers, within the paralimbic network. Because the BDNF met-allele has been linked to increased susceptibility to neuropsychiatric disorders, this latter finding of greater connectivity in circuits important for emotion processing may indicate a new neural mechanism through which these gene-related psychiatric differences are manifest. Here we show that the BDNF gene, known to regulate synaptic plasticity and connectivity in the brain, affects functional connectivity at the neural systems level. Additionally, we provide the first demonstration that the spatial topography of multiple high-level resting state networks in healthy children and adolescents is similar to that observed in adults.

  8. Two Distinct Scene-Processing Networks Connecting Vision and Memory.

    Science.gov (United States)

    Baldassano, Christopher; Esteva, Andre; Fei-Fei, Li; Beck, Diane M

    2016-01-01

    A number of regions in the human brain are known to be involved in processing natural scenes, but the field has lacked a unifying framework for understanding how these different regions are organized and interact. We provide evidence from functional connectivity and meta-analyses for a new organizational principle, in which scene processing relies upon two distinct networks that split the classically defined parahippocampal place area (PPA). The first network of strongly connected regions consists of the occipital place area/transverse occipital sulcus and posterior PPA, which contain retinotopic maps and are not strongly coupled to the hippocampus at rest. The second network consists of the caudal inferior parietal lobule, retrosplenial complex, and anterior PPA, which connect to the hippocampus (especially anterior hippocampus), and are implicated in both visual and nonvisual tasks, including episodic memory and navigation. We propose that these two distinct networks capture the primary functional division among scene-processing regions, between those that process visual features from the current view of a scene and those that connect information from a current scene view with a much broader temporal and spatial context. This new framework for understanding the neural substrates of scene-processing bridges results from many lines of research, and makes specific functional predictions.

  9. Micro-generation network connection (renewables)

    Energy Technology Data Exchange (ETDEWEB)

    Thornycroft, J.; Russell, T.; Curran, J.

    2003-07-01

    The drive to reduce emissions of carbon dioxide will result in an increase in the number of small generation units seeking connection to the electric power distribution network. The objectives of this study were to consider connection issues relating to micro-generation from renewables and their integration into the UK distribution network. The document is divided into two sections. The first section describes the present system which includes input from micro-generation, the technical impacts and the financial considerations. The second part discusses technical, financial and governance options for the future. A summary of preferred options and recommendations is given. The study was carried out by the Halcrow Group Ltd under contract to the DTI.

  10. Diagnosing Autism Spectrum Disorder from Brain Resting-State Functional Connectivity Patterns Using a Deep Neural Network with a Novel Feature Selection Method.

    Science.gov (United States)

    Guo, Xinyu; Dominick, Kelli C; Minai, Ali A; Li, Hailong; Erickson, Craig A; Lu, Long J

    2017-01-01

    The whole-brain functional connectivity (FC) pattern obtained from resting-state functional magnetic resonance imaging data are commonly applied to study neuropsychiatric conditions such as autism spectrum disorder (ASD) by using different machine learning models. Recent studies indicate that both hyper- and hypo- aberrant ASD-associated FCs were widely distributed throughout the entire brain rather than only in some specific brain regions. Deep neural networks (DNN) with multiple hidden layers have shown the ability to systematically extract lower-to-higher level information from high dimensional data across a series of neural hidden layers, significantly improving classification accuracy for such data. In this study, a DNN with a novel feature selection method (DNN-FS) is developed for the high dimensional whole-brain resting-state FC pattern classification of ASD patients vs. typical development (TD) controls. The feature selection method is able to help the DNN generate low dimensional high-quality representations of the whole-brain FC patterns by selecting features with high discriminating power from multiple trained sparse auto-encoders. For the comparison, a DNN without the feature selection method (DNN-woFS) is developed, and both of them are tested with different architectures (i.e., with different numbers of hidden layers/nodes). Results show that the best classification accuracy of 86.36% is generated by the DNN-FS approach with 3 hidden layers and 150 hidden nodes (3/150). Remarkably, DNN-FS outperforms DNN-woFS for all architectures studied. The most significant accuracy improvement was 9.09% with the 3/150 architecture. The method also outperforms other feature selection methods, e.g., two sample t -test and elastic net. In addition to improving the classification accuracy, a Fisher's score-based biomarker identification method based on the DNN is also developed, and used to identify 32 FCs related to ASD. These FCs come from or cross different pre

  11. Diagnosing Autism Spectrum Disorder from Brain Resting-State Functional Connectivity Patterns Using a Deep Neural Network with a Novel Feature Selection Method

    Directory of Open Access Journals (Sweden)

    Xinyu Guo

    2017-08-01

    Full Text Available The whole-brain functional connectivity (FC pattern obtained from resting-state functional magnetic resonance imaging data are commonly applied to study neuropsychiatric conditions such as autism spectrum disorder (ASD by using different machine learning models. Recent studies indicate that both hyper- and hypo- aberrant ASD-associated FCs were widely distributed throughout the entire brain rather than only in some specific brain regions. Deep neural networks (DNN with multiple hidden layers have shown the ability to systematically extract lower-to-higher level information from high dimensional data across a series of neural hidden layers, significantly improving classification accuracy for such data. In this study, a DNN with a novel feature selection method (DNN-FS is developed for the high dimensional whole-brain resting-state FC pattern classification of ASD patients vs. typical development (TD controls. The feature selection method is able to help the DNN generate low dimensional high-quality representations of the whole-brain FC patterns by selecting features with high discriminating power from multiple trained sparse auto-encoders. For the comparison, a DNN without the feature selection method (DNN-woFS is developed, and both of them are tested with different architectures (i.e., with different numbers of hidden layers/nodes. Results show that the best classification accuracy of 86.36% is generated by the DNN-FS approach with 3 hidden layers and 150 hidden nodes (3/150. Remarkably, DNN-FS outperforms DNN-woFS for all architectures studied. The most significant accuracy improvement was 9.09% with the 3/150 architecture. The method also outperforms other feature selection methods, e.g., two sample t-test and elastic net. In addition to improving the classification accuracy, a Fisher's score-based biomarker identification method based on the DNN is also developed, and used to identify 32 FCs related to ASD. These FCs come from or cross

  12. Brain Connectivity Networks and the Aesthetic Experience of Music.

    Science.gov (United States)

    Reybrouck, Mark; Vuust, Peter; Brattico, Elvira

    2018-06-12

    Listening to music is above all a human experience, which becomes an aesthetic experience when an individual immerses himself/herself in the music, dedicating attention to perceptual-cognitive-affective interpretation and evaluation. The study of these processes where the individual perceives, understands, enjoys and evaluates a set of auditory stimuli has mainly been focused on the effect of music on specific brain structures, as measured with neurophysiology and neuroimaging techniques. The very recent application of network science algorithms to brain research allows an insight into the functional connectivity between brain regions. These studies in network neuroscience have identified distinct circuits that function during goal-directed tasks and resting states. We review recent neuroimaging findings which indicate that music listening is traceable in terms of network connectivity and activations of target regions in the brain, in particular between the auditory cortex, the reward brain system and brain regions active during mind wandering.

  13. Exponential stability of neural networks with asymmetric connection weights

    International Nuclear Information System (INIS)

    Yang Jinxiang; Zhong Shouming

    2007-01-01

    This paper investigates the exponential stability of a class of neural networks with asymmetric connection weights. By dividing the network state variables into various parts according to the characters of the neural networks, some new sufficient conditions of exponential stability are derived via constructing a Lyapunov function and using the method of the variation of constant. The new conditions are associated with the initial values and are described by some blocks of the interconnection matrix, and do not depend on other blocks. Examples are given to further illustrate the theory

  14. Functional connectivity of the dorsal striatum in female musicians

    Directory of Open Access Journals (Sweden)

    Shoji eTanaka

    2016-04-01

    Full Text Available The dorsal striatum (caudate/putamen is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians.Resting state functional magnetic resonance imaging (fMRI data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to graph theoretical analysis and functional connectivity analysis. The graph theoretical analysis of the entire brain revealed that the degree, which represents the number of connections, of the bilateral putamen was significantly lower in musicians than in nonmusicians. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum and between the left caudate nucleus and cerebellum. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum, with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers. To the best of our knowledge, this is the first study suggesting that long-term musical training results in a less extensive or selective functional network of the dorsal striatum.

  15. Altered resting state functional connectivity of the cognitive control network in fibromyalgia and the modulation effect of mind-body intervention.

    Science.gov (United States)

    Kong, Jian; Wolcott, Emily; Wang, Zengjian; Jorgenson, Kristen; Harvey, William F; Tao, Jing; Rones, Ramel; Wang, Chenchen

    2018-05-02

    This study examines altered resting state functional connectivity (rsFC) of the cognitive control network (CCN) in fibromyalgia patients as compared to healthy controls, as well as how an effective mind-body intervention, Tai Chi, can modulate the altered rsFC of the CCN. Patients with fibromyalgia and matched healthy subjects were recruited in this study. Fibromyalgia patients were scanned 12 weeks before and after intervention. The bilateral dorsolateral prefrontal cortex (DLPFC) was used as a seed to explore the rsFC of the CCN. Data analysis was conducted with 21 patients and 20 healthy subjects. Compared to healthy subjects, fibromyalgia patients exhibited increased rsFC between the DLPFC and the bilateral rostral anterior cingulate cortex (rACC) and medial prefrontal cortex (MPFC) at baseline. The rsFC between the CCN and rACC/MPFC further increased after Tai Chi intervention, and this increase was accompanied by clinical improvements. This rsFC change was also significantly associated with corresponding changes in the Overall Impact domain of the Revised Fibromyalgia Impact Questionnaire (FIQR). Further analysis showed that the rACC/MPFC rsFC with both the PAG and hippocampus significantly decreased following Tai Chi intervention. Our study suggests that fibromyalgia is associated with altered CCN rsFC and that effective mind-body treatment may elicit clinical improvements by further increasing this altered rsFC. Elucidating this mechanism of enhancing the allostasis process will deepen our understanding of the mechanisms underlying mind-body interventions in fibromyalgia patients and facilitate the development of new pain management methods.

  16. Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity

    Science.gov (United States)

    Diwadkar, Vaibhav A.; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L.

    2017-01-01

    The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition. PMID:28278267

  17. Intranasal oxytocin modulates neural functional connectivity during human social interaction.

    Science.gov (United States)

    Rilling, James K; Chen, Xiangchuan; Chen, Xu; Haroon, Ebrahim

    2018-02-10

    Oxytocin (OT) modulates social behavior in primates and many other vertebrate species. Studies in non-primate animals have demonstrated that, in addition to influencing activity within individual brain areas, OT influences functional connectivity across networks of areas involved in social behavior. Previously, we used fMRI to image brain function in human subjects during a dyadic social interaction task following administration of either intranasal oxytocin (INOT) or placebo, and analyzed the data with a standard general linear model. Here, we conduct an extensive re-analysis of these data to explore how OT modulates functional connectivity across a neural network that animal studies implicate in social behavior. OT induced widespread increases in functional connectivity in response to positive social interactions among men and widespread decreases in functional connectivity in response to negative social interactions among women. Nucleus basalis of Meynert, an important regulator of selective attention and motivation with a particularly high density of OT receptors, had the largest number of OT-modulated connections. Regions known to receive mesolimbic dopamine projections such as the nucleus accumbens and lateral septum were also hubs for OT effects on functional connectivity. Our results suggest that the neural mechanism by which OT influences primate social cognition may include changes in patterns of activity across neural networks that regulate social behavior in other animals. © 2018 Wiley Periodicals, Inc.

  18. Prioritizing connection requests in GMPLS-controlled optical networks

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Koster, A.; Andriolli, N.

    2009-01-01

    We prioritize bidirectional connection requests by combining dynamic connection provisioning with off-line optimization. Results show that the proposed approach decreases wavelength-converter usage, thereby allowing operators to reduce blocking-probably under bulk connection assignment or network...

  19. Connectivity Neurofeedback Training Can Differentially Change Functional Connectivity and Cognitive Performance.

    Science.gov (United States)

    Yamashita, Ayumu; Hayasaka, Shunsuke; Kawato, Mitsuo; Imamizu, Hiroshi

    2017-10-01

    Advances in functional magnetic resonance imaging have made it possible to provide real-time feedback on brain activity. Neurofeedback has been applied to therapeutic interventions for psychiatric disorders. Since many studies have shown that most psychiatric disorders exhibit abnormal brain networks, a novel experimental paradigm named connectivity neurofeedback, which can directly modulate a brain network, has emerged as a promising approach to treat psychiatric disorders. Here, we investigated the hypothesis that connectivity neurofeedback can induce the aimed direction of change in functional connectivity, and the differential change in cognitive performance according to the direction of change in connectivity. We selected the connectivity between the left primary motor cortex and the left lateral parietal cortex as the target. Subjects were divided into 2 groups, in which only the direction of change (an increase or a decrease in correlation) in the experimentally manipulated connectivity differed between the groups. As a result, subjects successfully induced the expected connectivity changes in either of the 2 directions. Furthermore, cognitive performance significantly and differentially changed from preneurofeedback to postneurofeedback training between the 2 groups. These findings indicate that connectivity neurofeedback can induce the aimed direction of change in connectivity and also a differential change in cognitive performance. © The Author 2017. Published by Oxford University Press.

  20. Altered Functional Connectivity of the Default Mode Network in Patients With Schizo-obsessive Comorbidity: A Comparison Between Schizophrenia and Obsessive-compulsive Disorder

    DEFF Research Database (Denmark)

    Wang, Yongming; Zou, Lai-quan; Xie, Wen-lan

    2018-01-01

    increased rsFC between subregions of the DMN and the middle temporal gyrus, but the OCD group exhibited decreased rsFC between them. These findings highlight a specific alteration in functional connectivity in the DMN in patients with SOC, and provide new insights into the dysfunctional brain organization...

  1. Intrinsic connectivity of neural networks in the awake rabbit.

    Science.gov (United States)

    Schroeder, Matthew P; Weiss, Craig; Procissi, Daniel; Disterhoft, John F; Wang, Lei

    2016-04-01

    The way in which the brain is functionally connected into different networks has emerged as an important research topic in order to understand normal neural processing and signaling. Since some experimental manipulations are difficult or unethical to perform in humans, animal models are better suited to investigate this topic. Rabbits are a species that can undergo MRI scanning in an awake and conscious state with minimal preparation and habituation. In this study, we characterized the intrinsic functional networks of the resting New Zealand White rabbit brain using BOLD fMRI data. Group independent component analysis revealed seven networks similar to those previously found in humans, non-human primates and/or rodents including the hippocampus, default mode, cerebellum, thalamus, and visual, somatosensory, and parietal cortices. For the first time, the intrinsic functional networks of the resting rabbit brain have been elucidated demonstrating the rabbit's applicability as a translational animal model. Without the confounding effects of anesthetics or sedatives, future experiments may employ rabbits to understand changes in neural connectivity and brain functioning as a result of experimental manipulation (e.g., temporary or permanent network disruption, learning-related changes, and drug administration). Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Connectivity and Nestedness in Bipartite Networks from Community Ecology

    International Nuclear Information System (INIS)

    Corso, Gilberto; De Araujo, A I Levartoski; De Almeida, Adriana M

    2011-01-01

    Bipartite networks and the nestedness concept appear in two different contexts in theoretical ecology: community ecology and islands biogeography. From a mathematical perspective nestedness is a pattern in a bipartite network. There are several nestedness indices in the market, we used the index ν. The index ν is found using the relation ν = 1 - τ where τ is the temperature of the adjacency matrix of the bipartite network. By its turn τ is defined with help of the Manhattan distance of the occupied elements of the adjacency matrix of the bipartite network. We prove that the nestedness index ν is a function of the connectivities of the bipartite network. In addition we find a concise way to find ν which avoid cumbersome algorithm manupulation of the adjacency matrix.

  3. Connectivity and Nestedness in Bipartite Networks from Community Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Corso, Gilberto [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil); De Araujo, A I Levartoski [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara Av. Treze de Maio, 2081 - Benfica CEP 60040-531 - Fortaleza, CE (Brazil); De Almeida, Adriana M, E-mail: corso@cb.ufrn.br [Departamento de Botanica, Ecologia e Zoologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil)

    2011-03-01

    Bipartite networks and the nestedness concept appear in two different contexts in theoretical ecology: community ecology and islands biogeography. From a mathematical perspective nestedness is a pattern in a bipartite network. There are several nestedness indices in the market, we used the index {nu}. The index {nu} is found using the relation {nu} = 1 - {tau} where {tau} is the temperature of the adjacency matrix of the bipartite network. By its turn {tau} is defined with help of the Manhattan distance of the occupied elements of the adjacency matrix of the bipartite network. We prove that the nestedness index {nu} is a function of the connectivities of the bipartite network. In addition we find a concise way to find {nu} which avoid cumbersome algorithm manupulation of the adjacency matrix.

  4. Default network connectivity as a vulnerability marker for obsessive compulsive disorder.

    Science.gov (United States)

    Peng, Z W; Xu, T; He, Q H; Shi, C Z; Wei, Z; Miao, G D; Jing, J; Lim, K O; Zuo, X N; Chan, R C K

    2014-05-01

    Aberrant functional connectivity within the default network is generally assumed to be involved in the pathophysiology of obsessive compulsive disorder (OCD); however, the genetic risk of default network connectivity in OCD remains largely unknown. Here, we systematically investigated default network connectivity in 15 OCD patients, 15 paired unaffected siblings and 28 healthy controls. We sought to examine the profiles of default network connectivity in OCD patients and their siblings, exploring the correlation between abnormal default network connectivity and genetic risk for this population. Compared with healthy controls, OCD patients exhibited reduced strength of default network functional connectivity with the posterior cingulate cortex (PCC), and increased functional connectivity in the right inferior frontal lobe, insula, superior parietal cortex and superior temporal cortex, while their unaffected first-degree siblings only showed reduced local connectivity in the PCC. These findings suggest that the disruptions of default network functional connectivity might be associated with family history of OCD. The decreased default network connectivity in both OCD patients and their unaffected siblings may serve as a potential marker of OCD.

  5. Hidden Connectivity in Networks with Vulnerable Classes of Nodes

    Directory of Open Access Journals (Sweden)

    Sebastian M. Krause

    2016-10-01

    Full Text Available In many complex systems representable as networks, nodes can be separated into different classes. Often these classes can be linked to a mutually shared vulnerability. Shared vulnerabilities may be due to a shared eavesdropper or correlated failures. In this paper, we show the impact of shared vulnerabilities on robust connectivity and how the heterogeneity of node classes can be exploited to maintain functionality by utilizing multiple paths. Percolation is the field of statistical physics that is generally used to analyze connectivity in complex networks, but in its existing forms, it cannot treat the heterogeneity of multiple vulnerable classes. To analyze the connectivity under these constraints, we describe each class as a color and develop a “color-avoiding” percolation. We present an analytic theory for random networks and a numerical algorithm for all networks, with which we can determine which nodes are color-avoiding connected and whether the maximal set percolates in the system. We find that the interaction of topology and color distribution implies a rich critical behavior, with critical values and critical exponents depending both on the topology and on the color distribution. Applying our physics-based theory to the Internet, we show how color-avoiding percolation can be used as the basis for new topologically aware secure communication protocols. Beyond applications to cybersecurity, our framework reveals a new layer of hidden structure in a wide range of natural and technological systems.

  6. Bioprinting: Functional droplet networks

    Science.gov (United States)

    Durmus, Naside Gozde; Tasoglu, Savas; Demirci, Utkan

    2013-06-01

    Tissue-mimicking printed networks of droplets separated by lipid bilayers that can be functionalized with membrane proteins are able to spontaneously fold and transmit electrical currents along predefined paths.

  7. Knowledge Access in Rural Inter-connected Areas Network ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Knowledge Access in Rural Inter-connected Areas Network (KariaNet) - Phase II ... the existing network to include two thematic networks on food security and rural ... Woman conquering male business in Yemen : Waleya's micro-enterprise.

  8. Social network models predict movement and connectivity in ecological landscapes

    Science.gov (United States)

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  9. Social network models predict movement and connectivity in ecological landscapes.

    Science.gov (United States)

    Fletcher, Robert J; Acevedo, Miguel A; Reichert, Brian E; Pias, Kyle E; Kitchens, Wiley M

    2011-11-29

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  10. The functional consequences of mutualistic network architecture.

    Directory of Open Access Journals (Sweden)

    José M Gómez

    Full Text Available The architecture and properties of many complex networks play a significant role in the functioning of the systems they describe. Recently, complex network theory has been applied to ecological entities, like food webs or mutualistic plant-animal interactions. Unfortunately, we still lack an accurate view of the relationship between the architecture and functioning of ecological networks. In this study we explore this link by building individual-based pollination networks from eight Erysimum mediohispanicum (Brassicaceae populations. In these individual-based networks, each individual plant in a population was considered a node, and was connected by means of undirected links to conspecifics sharing pollinators. The architecture of these unipartite networks was described by means of nestedness, connectivity and transitivity. Network functioning was estimated by quantifying the performance of the population described by each network as the number of per-capita juvenile plants produced per population. We found a consistent relationship between the topology of the networks and their functioning, since variation across populations in the average per-capita production of juvenile plants was positively and significantly related with network nestedness, connectivity and clustering. Subtle changes in the composition of diverse pollinator assemblages can drive major consequences for plant population performance and local persistence through modifications in the structure of the inter-plant pollination networks.

  11. Computational network design from functional specifications

    KAUST Repository

    Peng, Chi Han

    2016-07-11

    Connectivity and layout of underlying networks largely determine agent behavior and usage in many environments. For example, transportation networks determine the flow of traffic in a neighborhood, whereas building floorplans determine the flow of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications. Such specifications can be in the form of network density, travel time versus network length, traffic type, destination location, etc. We propose an integer programming-based approach that guarantees that the resultant networks are valid by fulfilling all the specified hard constraints and that they score favorably in terms of the objective function. We evaluate our algorithm in two different design settings, street layout and floorplans to demonstrate that diverse networks can emerge purely from high-level functional specifications.

  12. Joint brain connectivity estimation from diffusion and functional MRI data

    Science.gov (United States)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  13. Development of the brain's functional network architecture.

    Science.gov (United States)

    Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L

    2010-12-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.

  14. Dynamical graph theory networks techniques for the analysis of sparse connectivity networks in dementia

    Science.gov (United States)

    Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke

    2017-05-01

    Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.

  15. Change in brain network connectivity during PACAP38-induced migraine attacks

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Magon, Stefano

    2016-01-01

    OBJECTIVE: To investigate resting-state functional connectivity in the salience network (SN), the sensorimotor network (SMN), and the default mode network (DMN) during migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38 (PACAP38). METHODS: In a double-blind, randomized...... connectivity with the bilateral opercular part of the inferior frontal gyrus in the SN. In SMN, there was increased connectivity with the right premotor cortex and decreased connectivity with the left visual cortex. Several areas showed increased (left primary auditory, secondary somatosensory, premotor......, and visual cortices) and decreased (right cerebellum and left frontal lobe) connectivity with DMN. We found no resting-state network changes after VIP (n = 15). CONCLUSIONS: PACAP38-induced migraine attack is associated with altered connectivity of several large-scale functional networks of the brain....

  16. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    Science.gov (United States)

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.

  17. Increased resting-state functional connectivity of visual- and cognitive-control brain networks after training in children with reading difficulties

    Directory of Open Access Journals (Sweden)

    Tzipi Horowitz-Kraus

    2015-01-01

    Full Text Available The Reading Acceleration Program, a computerized reading-training program, increases activation in neural circuits related to reading. We examined the effect of the training on the functional connectivity between independent components related to visual processing, executive functions, attention, memory, and language during rest after the training. Children 8–12 years old with reading difficulties and typical readers participated in the study. Behavioral testing and functional magnetic resonance imaging were performed before and after the training. Imaging data were analyzed using an independent component analysis approach. After training, both reading groups showed increased single-word contextual reading and reading comprehension scores. Greater positive correlations between the visual-processing component and the executive functions, attention, memory, or language components were found after training in children with reading difficulties. Training-related increases in connectivity between the visual and attention components and between the visual and executive function components were positively correlated with increased word reading and reading comprehension, respectively. Our findings suggest that the effect of the Reading Acceleration Program on basic cognitive domains can be detected even in the absence of an ongoing reading task.

  18. Functional connectivity change as shared signal dynamics

    Science.gov (United States)

    Cole, Michael W.; Yang, Genevieve J.; Murray, John D.; Repovš, Grega; Anticevic, Alan

    2015-01-01

    Background An increasing number of neuroscientific studies gain insights by focusing on differences in functional connectivity – between groups, individuals, temporal windows, or task conditions. We found using simulations that additional insights into such differences can be gained by forgoing variance normalization, a procedure used by most functional connectivity measures. Simulations indicated that these functional connectivity measures are sensitive to increases in independent fluctuations (unshared signal) in time series, consistently reducing functional connectivity estimates (e.g., correlations) even though such changes are unrelated to corresponding fluctuations (shared signal) between those time series. This is inconsistent with the common notion of functional connectivity as the amount of inter-region interaction. New Method Simulations revealed that a version of correlation without variance normalization – covariance – was able to isolate differences in shared signal, increasing interpretability of observed functional connectivity change. Simulations also revealed cases problematic for non-normalized methods, leading to a “covariance conjunction” method combining the benefits of both normalized and non-normalized approaches. Results We found that covariance and covariance conjunction methods can detect functional connectivity changes across a variety of tasks and rest in both clinical and non-clinical functional MRI datasets. Comparison with Existing Method(s) We verified using a variety of tasks and rest in both clinical and non-clinical functional MRI datasets that it matters in practice whether correlation, covariance, or covariance conjunction methods are used. Conclusions These results demonstrate the practical and theoretical utility of isolating changes in shared signal, improving the ability to interpret observed functional connectivity change. PMID:26642966

  19. Network Function Virtualisation

    OpenAIRE

    Aakarshan Singh; Kamal Grover; Palak Bansal; Taranveer Singh Seekhon

    2017-01-01

    This paper is written to give basic knowledge of Network function virtualisation in network system. In this paper the work on NFV done till now has been collaborated. It describes how the challenges faced by industry lead to NFV and what is meaning of NFV and NFV architecture model. It also explains NFV Infrastructure is managed and the forwarding path on which packets traverse in NFV. A relationship of NFV with SDN and current research ongoing on NFV policies is discussed.

  20. Connectivity analysis of one-dimensional ad-hoc networks

    DEFF Research Database (Denmark)

    Hansen, Martin Bøgsted; Rasmussen, Jakob Gulddahl; Schwefel, Hans-Peter

    hop-count; (3) the connectivity distance, expressing the geographic distance that a message can be propagated in the network on multi-hop paths; (4) the connectivity hops, which corresponds to the number of hops that are necessary to reach all nodes in the connected network. The paper develops...

  1. Brain Activity and Functional Connectivity Associated with Hypnosis.

    Science.gov (United States)

    Jiang, Heidi; White, Matthew P; Greicius, Michael D; Waelde, Lynn C; Spiegel, David

    2017-08-01

    Hypnosis has proven clinical utility, yet changes in brain activity underlying the hypnotic state have not yet been fully identified. Previous research suggests that hypnosis is associated with decreased default mode network (DMN) activity and that high hypnotizability is associated with greater functional connectivity between the executive control network (ECN) and the salience network (SN). We used functional magnetic resonance imaging to investigate activity and functional connectivity among these three networks in hypnosis. We selected 57 of 545 healthy subjects with very high or low hypnotizability using two hypnotizability scales. All subjects underwent four conditions in the scanner: rest, memory retrieval, and two different hypnosis experiences guided by standard pre-recorded instructions in counterbalanced order. Seeds for the ECN, SN, and DMN were left and right dorsolateral prefrontal cortex, dorsal anterior cingulate cortex (dACC), and posterior cingulate cortex (PCC), respectively. During hypnosis there was reduced activity in the dACC, increased functional connectivity between the dorsolateral prefrontal cortex (DLPFC;ECN) and the insula in the SN, and reduced connectivity between the ECN (DLPFC) and the DMN (PCC). These changes in neural activity underlie the focused attention, enhanced somatic and emotional control, and lack of self-consciousness that characterizes hypnosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Dynamic functional brain connectivity for face perception

    NARCIS (Netherlands)

    Yang, Yuan; Qiu, Yihong; Schouten, Alfred C.

    2015-01-01

    Face perception is mediated by a distributed brain network comprised of the core system at occipito-temporal areas and the extended system at other relevant brain areas involving bilateral hemispheres. In this study we explored how the brain connectivity changes over the time for face-sensitive

  3. Functional connectivity changes in second language vocabulary learning.

    Science.gov (United States)

    Ghazi Saidi, Ladan; Perlbarg, Vincent; Marrelec, Guillaume; Pélégrini-Issac, Mélani; Benali, Habib; Ansaldo, Ana-Inés

    2013-01-01

    Functional connectivity changes in the language network (Price, 2010), and in a control network involved in second language (L2) processing (Abutalebi & Green, 2007) were examined in a group of Persian (L1) speakers learning French (L2) words. Measures of network integration that characterize the global integrative state of a network (Marrelec, Bellec et al., 2008) were gathered, in the shallow and consolidation phases of L2 vocabulary learning. Functional connectivity remained unchanged across learning phases for L1, whereas total, between- and within-network integration levels decreased as proficiency for L2 increased. The results of this study provide the first functional connectivity evidence regarding the dynamic role of the language processing and cognitive control networks in L2 learning (Abutalebi, Cappa, & Perani, 2005; Altarriba & Heredia, 2008; Leonard et al., 2011; Parker-Jones et al., 2011). Thus, increased proficiency results in a higher degree of automaticity and lower cognitive effort (Segalowitz & Hulstijn, 2005). Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Predicting individual brain maturity using dynamic functional connectivity

    Directory of Open Access Journals (Sweden)

    Jian eQin

    2015-07-01

    Full Text Available Neuroimaging-based functional connectivity (FC analyses have revealed significant developmental trends in specific intrinsic connectivity networks linked to cognitive and behavioral maturation. However, knowledge of how brain functional maturation is associated with FC dynamics at rest is limited. Here, we examined age-related differences in the temporal variability of FC dynamics with data publicly released by the Nathan Kline Institute (NKI (n=183, ages 7-30 and showed that dynamic inter-region interactions can be used to accurately predict individual brain maturity across development. Furthermore, we identified a significant age-dependent trend underlying dynamic inter-network FC, including increasing variability of the connections between the visual network, default mode network (DMN and cerebellum as well as within the cerebellum and DMN and decreasing variability within the cerebellum and between the cerebellum and DMN as well as the cingulo-opercular network. Overall, the results suggested significant developmental changes in dynamic inter-network interaction, which may shed new light on the functional organization of typical developmental brains.

  5. Establishing the functional connectivity of the frontotemporal network in pre-attentive change detection with Transcranial Magnetic Stimulation and event-related optical signal.

    Science.gov (United States)

    Tse, Chun-Yu; Long-Yin, Yip; Lui, Troby Ka-Yan; Xiao, Xue-Zhen; Wang, Yang; Chu, Winnie Chiu Wing; Parks, Nathan Allen; Chan, Sandra Sau-Man; Neggers, Sebastiaan Franciscus Wijnandus

    2018-06-18

    Current theories of pre-attentive deviant detection postulate that before the Superior Temporal Cortex (STC) detects a change, the Inferior Frontal Cortex (IFC) engages in stimulus analysis, which is particularly critical for ambiguous deviations (e.g., deviant preceded by a short train of standards). These theories rest on the assumption that IFC and STC are functionally connected, which has only been supported by correlational brain imaging studies. We examined this functional connectivity assumption by applying Transcranial Magnetic Stimulation (TMS) to disrupt IFC function, while measuring the later STC mismatch response with the event-related optical signal (EROS). EROS can localize brain activity in both spatial and temporal dimensions via measurement of optical property changes associated with neuronal activity, and is inert to the electromagnetic interference produced by TMS. Specifically, the STC mismatch response at 120-180 ms elicited by a deviant preceded by a short standard train when IFC TMS was applied at 80 ms was compared with the STC mismatch responses in temporal control (TMS with 200 ms delay), spatial control (sham TMS at vertex), auditory control (TMS pulse noise only), and cognitive control (deviant preceded by a long standard train) conditions. The STC mismatch response to deviants preceded by the short train was abolished by TMS of the IFC at 80 ms, while the STC responses remained intact in all other control conditions. These results confirm the involvement of the IFC in the STC mismatch response and support a functional connection between IFC and STC. Copyright © 2018. Published by Elsevier Inc.

  6. Methods for Functional Connectivity Analyses

    Science.gov (United States)

    2012-12-13

    motor , or hand motor function (green, red, or blue shading, respectively). Thus, this work produced the first comprehensive analysis of ECoG...Computer Engineering, University of Texas at El Paso , TX, USA 3Department of Neurology, Albany Medical College, Albany, NY, USA 4Department of Computer...Department of Health, Albany, NY, USA bDepartment of Electrical and Computer Engineering, University of Texas at El Paso , TX, USA cDepartment of Neurology

  7. Connections between classical and parametric network entropies.

    Directory of Open Access Journals (Sweden)

    Matthias Dehmer

    Full Text Available This paper explores relationships between classical and parametric measures of graph (or network complexity. Classical measures are based on vertex decompositions induced by equivalence relations. Parametric measures, on the other hand, are constructed by using information functions to assign probabilities to the vertices. The inequalities established in this paper relating classical and parametric measures lay a foundation for systematic classification of entropy-based measures of graph complexity.

  8. Local functional connectivity suggests functional immaturity in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Marcos-Vidal, Luis; Martínez-García, Magdalena; Pretus, Clara; Garcia-Garcia, David; Martínez, Kenia; Janssen, Joost; Vilarroya, Oscar; Castellanos, Francisco X; Desco, Manuel; Sepulcre, Jorge; Carmona, Susanna

    2018-06-01

    Previous studies have associated Attention-Deficit/Hyperactivity Disorder (ADHD) with a maturational lag of brain functional networks. Functional connectivity of the human brain changes from primarily local to more distant connectivity patterns during typical development. Under the maturational lag hypothesis, we expect children with ADHD to exhibit increased local connectivity and decreased distant connectivity compared with neurotypically developing (ND) children. We applied a graph-theory method to compute local and distant connectivity levels and cross-sectionally compared them in a sample of 120 children with ADHD and 120 age-matched ND children (age range = 7-17 years). In addition, we measured if potential group differences in local and distant connectivity were stable across the age range considered. Finally, we assessed the clinical relevance of observed group differences by correlating the connectivity levels and ADHD symptoms severity separately for each group. Children with ADHD exhibited more local connectivity than age-matched ND children in multiple brain regions, mainly overlapping with default mode, fronto-parietal and ventral attentional functional networks (p attentional networks, the severity of clinical symptoms is related to atypical functional connectivity within somatomotor areas. Additionally, our findings are in line with the view of ADHD as a disorder of deviated maturational trajectories, mainly affecting somatomotor areas, rather than delays that normalize with age. © 2018 Wiley Periodicals, Inc.

  9. Mesial temporal lobe epilepsy diminishes functional connectivity during emotion perception.

    Science.gov (United States)

    Steiger, Bettina K; Muller, Angela M; Spirig, Esther; Toller, Gianina; Jokeit, Hennric

    2017-08-01

    Unilateral mesial temporal lobe epilepsy (MTLE) has been associated with impaired recognition of emotional facial expressions. Correspondingly, imaging studies showed decreased activity of the amygdala and cortical face processing regions in response to emotional faces. However, functional connectivity among regions involved in emotion perception has not been studied so far. To address this, we examined intrinsic functional connectivity (FC) modulated by the perception of dynamic fearful faces among the amygdala and limbic, frontal, temporal and brainstem regions. Regions of interest were identified in an activation analysis by presenting a block-design with dynamic fearful faces and dynamic landscapes to 15 healthy individuals. This led to 10 predominately right-hemispheric regions. Functional connectivity between these regions during the perception of fearful faces was examined in drug-refractory patients with left- (n=16) or right-sided (n=17) MTLE, epilepsy patients with extratemporal seizure onset (n=15) and a second group of 15 healthy controls. Healthy controls showed a widespread functional network modulated by the perception of fearful faces that encompassed bilateral amygdalae, limbic, cortical, subcortical and brainstem regions. In patients with left MTLE, a downsized network of frontal and temporal regions centered on the right amygdala was present. Patients with right MTLE showed almost no significant functional connectivity. A maintained network in the epilepsy control group indicates that findings in mesial temporal lobe epilepsy could not be explained by clinical factors such as seizures and antiepileptic medication. Functional networks underlying facial emotion perception are considerably changed in left and right MTLE. Alterations are present for both hemispheres in either MTLE group, but are more pronounced in right MTLE. Disruption of the functional network architecture possibly contributes to deficits in facial emotion recognition frequently

  10. Towards Designing PLC Networks for Ubiquitous Connectivity in Enterprises

    OpenAIRE

    Ali, Kamran; Pefkianakis, Ioannis; Liu, Alex X.; Kim, Kyu-Han

    2016-01-01

    Powerline communication (PLC) provides inexpensive, secure and high speed network connectivity, by leveraging the existing power distribution networks inside the buildings. While PLC technology has the potential to improve connectivity and is considered a key enabler for sensing, control, and automation applications in enterprises, it has been mainly deployed for improving connectivity in homes. Deploying PLCs in enterprises is more challenging since the power distribution network is more com...

  11. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  12. Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease.

    Science.gov (United States)

    Borchert, Robin J; Rittman, Timothy; Passamonti, Luca; Ye, Zheng; Sami, Saber; Jones, Simon P; Nombela, Cristina; Vázquez Rodríguez, Patricia; Vatansever, Deniz; Rae, Charlotte L; Hughes, Laura E; Robbins, Trevor W; Rowe, James B

    2016-07-01

    Cognitive impairment is common in Parkinson's disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest ('task-free') provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems.

  13. Knowledge Access in Rural Inter-connected Areas Network ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Knowledge Access in Rural Inter-connected Areas Network (KariaNet) - Phase II ... poor by sharing innovations, best practices and indigenous knowledge using ... A third thematic network - on knowledge management strategies - will play an ...

  14. Attention reorganizes connectivity across networks in a frequency specific manner

    DEFF Research Database (Denmark)

    Kwon, Soyoung; Watanabe, Masataka; Fischer, Elvira

    2017-01-01

    Attention allows our brain to focus its limited resources on a given task. It does so by selective modulation of neural activity and of functional connectivity (FC) across brain-wide networks. While there is extensive literature on activity changes, surprisingly few studies examined brain-wide FC...... modulations that can be cleanly attributed to attention compared to matched visual processing. In contrast to prior approaches, we used an ultra-long trial design that avoided transients from trial onsets, included slow fluctuations (...-segregated analyses. We found that FC derived from long blocks had a nearly two-fold higher gain compared to FC derived from traditional (short) block designs. Second, attention enhanced intrinsic (negative or positive) correlations across networks, such as between the default-mode network (DMN), the dorsal attention...

  15. The functional connectivity landscape of the human brain.

    Directory of Open Access Journals (Sweden)

    Bratislav Mišić

    Full Text Available Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment.

  16. Reward networks in the brain as captured by connectivity measures

    Directory of Open Access Journals (Sweden)

    Estela Camara

    2009-12-01

    Full Text Available An assortment of human behaviors is thought to be driven by rewards including reinforcement learning, novelty processing, learning, decision making, economic choice, incentive motivation, and addiction. In each case the ventral tegmental area / ventral striatum (Nucleus accumbens system (VTA-VS has been implicated as a key structure by functional imaging studies, mostly on the basis of standard, univariate analyses. Here we propose that standard fMRI analysis needs to be complemented by methods that take into account the differential connectivity of the VTA-VS system in the different behavioral contexts in order to describe reward based processes more appropriately. We first consider the wider network for reward processing as it emerged from animal experimentation. Subsequently, an example for a method to assess functional connectivity is given. Finally, we illustrate the usefulness of such analyses by examples regarding reward valuation, reward expectation and the role of reward in addiction.

  17. Hippocampal functional connectivity and episodic memory in early childhood.

    Science.gov (United States)

    Riggins, Tracy; Geng, Fengji; Blankenship, Sarah L; Redcay, Elizabeth

    2016-06-01

    Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The value of less connected agents in Boolean networks

    Science.gov (United States)

    Epstein, Daniel; Bazzan, Ana L. C.

    2013-11-01

    In multiagent systems, agents often face binary decisions where one seeks to take either the minority or the majority side. Examples are minority and congestion games in general, i.e., situations that require coordination among the agents in order to depict efficient decisions. In minority games such as the El Farol Bar Problem, previous works have shown that agents may reach appropriate levels of coordination, mostly by looking at the history of past decisions. Not many works consider any kind of structure of the social network, i.e., how agents are connected. Moreover, when structure is indeed considered, it assumes some kind of random network with a given, fixed connectivity degree. The present paper departs from the conventional approach in some ways. First, it considers more realistic network topologies, based on preferential attachments. This is especially useful in social networks. Second, the formalism of random Boolean networks is used to help agents to make decisions given their attachments (for example acquaintances). This is coupled with a reinforcement learning mechanism that allows agents to select strategies that are locally and globally efficient. Third, we use agent-based modeling and simulation, a microscopic approach, which allows us to draw conclusions about individuals and/or classes of individuals. Finally, for the sake of illustration we use two different scenarios, namely the El Farol Bar Problem and a binary route choice scenario. With this approach we target systems that adapt dynamically to changes in the environment, including other adaptive decision-makers. Our results using preferential attachments and random Boolean networks are threefold. First we show that an efficient equilibrium can be achieved, provided agents do experimentation. Second, microscopic analysis show that influential agents tend to consider few inputs in their Boolean functions. Third, we have also conducted measurements related to network clustering and centrality

  19. Measuring symmetry, asymmetry and randomness in neural network connectivity.

    Directory of Open Access Journals (Sweden)

    Umberto Esposito

    Full Text Available Cognitive functions are stored in the connectome, the wiring diagram of the brain, which exhibits non-random features, so-called motifs. In this work, we focus on bidirectional, symmetric motifs, i.e. two neurons that project to each other via connections of equal strength, and unidirectional, non-symmetric motifs, i.e. within a pair of neurons only one neuron projects to the other. We hypothesise that such motifs have been shaped via activity dependent synaptic plasticity processes. As a consequence, learning moves the distribution of the synaptic connections away from randomness. Our aim is to provide a global, macroscopic, single parameter characterisation of the statistical occurrence of bidirectional and unidirectional motifs. To this end we define a symmetry measure that does not require any a priori thresholding of the weights or knowledge of their maximal value. We calculate its mean and variance for random uniform or Gaussian distributions, which allows us to introduce a confidence measure of how significantly symmetric or asymmetric a specific configuration is, i.e. how likely it is that the configuration is the result of chance. We demonstrate the discriminatory power of our symmetry measure by inspecting the eigenvalues of different types of connectivity matrices. We show that a Gaussian weight distribution biases the connectivity motifs to more symmetric configurations than a uniform distribution and that introducing a random synaptic pruning, mimicking developmental regulation in synaptogenesis, biases the connectivity motifs to more asymmetric configurations, regardless of the distribution. We expect that our work will benefit the computational modelling community, by providing a systematic way to characterise symmetry and asymmetry in network structures. Further, our symmetry measure will be of use to electrophysiologists that investigate symmetry of network connectivity.

  20. Measuring symmetry, asymmetry and randomness in neural network connectivity.

    Science.gov (United States)

    Esposito, Umberto; Giugliano, Michele; van Rossum, Mark; Vasilaki, Eleni

    2014-01-01

    Cognitive functions are stored in the connectome, the wiring diagram of the brain, which exhibits non-random features, so-called motifs. In this work, we focus on bidirectional, symmetric motifs, i.e. two neurons that project to each other via connections of equal strength, and unidirectional, non-symmetric motifs, i.e. within a pair of neurons only one neuron projects to the other. We hypothesise that such motifs have been shaped via activity dependent synaptic plasticity processes. As a consequence, learning moves the distribution of the synaptic connections away from randomness. Our aim is to provide a global, macroscopic, single parameter characterisation of the statistical occurrence of bidirectional and unidirectional motifs. To this end we define a symmetry measure that does not require any a priori thresholding of the weights or knowledge of their maximal value. We calculate its mean and variance for random uniform or Gaussian distributions, which allows us to introduce a confidence measure of how significantly symmetric or asymmetric a specific configuration is, i.e. how likely it is that the configuration is the result of chance. We demonstrate the discriminatory power of our symmetry measure by inspecting the eigenvalues of different types of connectivity matrices. We show that a Gaussian weight distribution biases the connectivity motifs to more symmetric configurations than a uniform distribution and that introducing a random synaptic pruning, mimicking developmental regulation in synaptogenesis, biases the connectivity motifs to more asymmetric configurations, regardless of the distribution. We expect that our work will benefit the computational modelling community, by providing a systematic way to characterise symmetry and asymmetry in network structures. Further, our symmetry measure will be of use to electrophysiologists that investigate symmetry of network connectivity.

  1. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  2. Development of large-scale functional brain networks in children.

    Science.gov (United States)

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  3. Accelerated Distributed Dual Averaging Over Evolving Networks of Growing Connectivity

    Science.gov (United States)

    Liu, Sijia; Chen, Pin-Yu; Hero, Alfred O.

    2018-04-01

    We consider the problem of accelerating distributed optimization in multi-agent networks by sequentially adding edges. Specifically, we extend the distributed dual averaging (DDA) subgradient algorithm to evolving networks of growing connectivity and analyze the corresponding improvement in convergence rate. It is known that the convergence rate of DDA is influenced by the algebraic connectivity of the underlying network, where better connectivity leads to faster convergence. However, the impact of network topology design on the convergence rate of DDA has not been fully understood. In this paper, we begin by designing network topologies via edge selection and scheduling. For edge selection, we determine the best set of candidate edges that achieves the optimal tradeoff between the growth of network connectivity and the usage of network resources. The dynamics of network evolution is then incurred by edge scheduling. Further, we provide a tractable approach to analyze the improvement in the convergence rate of DDA induced by the growth of network connectivity. Our analysis reveals the connection between network topology design and the convergence rate of DDA, and provides quantitative evaluation of DDA acceleration for distributed optimization that is absent in the existing analysis. Lastly, numerical experiments show that DDA can be significantly accelerated using a sequence of well-designed networks, and our theoretical predictions are well matched to its empirical convergence behavior.

  4. Functional brain networks in schizophrenia: a review

    Directory of Open Access Journals (Sweden)

    Vince D Calhoun

    2009-08-01

    Full Text Available Functional magnetic resonance imaging (fMRI has become a major technique for studying cognitive function and its disruption in mental illness, including schizophrenia. The major proportion of imaging studies focused primarily upon identifying regions which hemodynamic response amplitudes covary with particular stimuli and differentiate between patient and control groups. In addition to such amplitude based comparisons, one can estimate temporal correlations and compute maps of functional connectivity between regions which include the variance associated with event related responses as well as intrinsic fluctuations of hemodynamic activity. Functional connectivity maps can be computed by correlating all voxels with a seed region when a spatial prior is available. An alternative are multivariate decompositions such as independent component analysis (ICA which extract multiple components, each of which is a spatially distinct map of voxels with a common time course. Recent work has shown that these networks are pervasive in relaxed resting and during task performance and hence provide robust measures of intact and disturbed brain activity. This in turn bears the prospect of yielding biomarkers for schizophrenia, which can be described both in terms of disrupted local processing as well as altered global connectivity between large scale networks. In this review we will summarize functional connectivity measures with a focus upon work with ICA and discuss the meaning of intrinsic fluctuations. In addition, examples of how brain networks have been used for classification of disease will be shown. We present work with functional network connectivity, an approach that enables the evaluation of the interplay between multiple networks and how they are affected in disease. We conclude by discussing new variants of ICA for extracting maximally group discriminative networks from data. In summary, it is clear that identification of brain networks and their

  5. Connectivity analysis of one-dimensional ad-hoc networks

    DEFF Research Database (Denmark)

    Bøgsted, Martin; Rasmussen, Jakob Gulddahl; Schwefel, Hans Peter

    2011-01-01

    distance, expressing the geographic distance that a message can be propagated in the network on multi-hop paths; (4) the connectivity hops, which corresponds to the number of hops that are necessary to reach all nodes in the connected network. The paper develops analytic expressions for the distributions...

  6. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    Science.gov (United States)

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  7. Intermittent Hypoxia Enhances Functional Connectivity of Midcervical Spinal Interneurons

    Science.gov (United States)

    Streeter, Kristi A.; Sunshine, Michael D.; Patel, Shreya; Gonzalez-Rothi, Elisa J.; Reier, Paul J.

    2017-01-01

    Brief, intermittent oxygen reductions [acute intermittent hypoxia (AIH)] evokes spinal plasticity. Models of AIH-induced neuroplasticity have focused on motoneurons; however, most midcervical interneurons (C-INs) also respond to hypoxia. We hypothesized that AIH would alter the functional connectivity between C-INs and induce persistent changes in discharge. Bilateral phrenic nerve activity was recorded in anesthetized and ventilated adult male rats and a multielectrode array was used to record C4/5 spinal discharge before [baseline (BL)], during, and 15 min after three 5 min hypoxic episodes (11% O2, H1–H3). Most C-INs (94%) responded to hypoxia by either increasing or decreasing firing rate. Functional connectivity was examined by cross-correlating C-IN discharge. Correlograms with a peak or trough were taken as evidence for excitatory or inhibitory connectivity between C-IN pairs. A subset of C-IN pairs had increased excitatory cross-correlations during hypoxic episodes (34%) compared with BL (19%; p phrenic motoneurons and excitatory inputs to these “pre-phrenic” cells increased during AIH. We conclude that AIH alters connectivity of the midcervical spinal network. To our knowledge, this is the first demonstration that AIH induces plasticity within the propriospinal network. SIGNIFICANCE STATEMENT Acute intermittent hypoxia (AIH) can trigger spinal plasticity associated with sustained increases in respiratory, somatic, and/or autonomic motor output. The impact of AIH on cervical spinal interneuron (C-IN) discharge and connectivity is unknown. Our results demonstrate that AIH recruits excitatory C-INs into the spinal respiratory (phrenic) network. AIH also enhances excitatory and reduces inhibitory connections among the C-IN network. We conclude that C-INs are part of the respiratory, somatic, and/or autonomic response to AIH, and that propriospinal plasticity may contribute to sustained increases in motor output after AIH. PMID:28751456

  8. An information theory framework for dynamic functional domain connectivity.

    Science.gov (United States)

    Vergara, Victor M; Miller, Robyn; Calhoun, Vince

    2017-06-01

    Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Multivariate Heteroscedasticity Models for Functional Brain Connectivity

    Directory of Open Access Journals (Sweden)

    Christof Seiler

    2017-12-01

    Full Text Available Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI. We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

  10. Association Between Brain Activation and Functional Connectivity.

    Science.gov (United States)

    Tomasi, Dardo; Volkow, Nora D

    2018-04-13

    The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.

  11. Exploring brain function from anatomical connectivity

    Directory of Open Access Journals (Sweden)

    Gorka eZamora-López

    2011-06-01

    Full Text Available The intrinsic relationship between the architecture of the brain and the range of sensory and behavioral phenomena it produces is a relevant question in neuroscience. Here, we review recent knowledge gained on the architecture of the anatomical connectivity by means of complex network analysis. It has been found that corticocortical networks display a few prominent characteristics: (i modular organization, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Additionally, we present a novel classification of cortical areas of the cat according to the role they play in multisensory connectivity. All these properties represent an ideal anatomical substrate supporting rich dynamical behaviors, as-well-as facilitating the capacity of the brain to process sensory information of different modalities segregated and to integrate them towards a comprehensive perception of the real world. The result here exposed are mainly based in anatomical data of cats’ brain, but we show how further observations suggest that, from worms to humans, the nervous system of all animals might share fundamental principles of organization.

  12. Functional connectivity metrics during stroke recovery

    DEFF Research Database (Denmark)

    Yourganov, Grigori; Schmah, Tanya; Small, Steven L.

    2010-01-01

    We explore functional connectivity in nine subjects measured with 1 5T fMRI-BOLD in a longitudinal study of recovery from unilateral stroke affecting the motor area (Small et al, 2002) We found that several measures of complexity of covariance matrices show strong correlations with behavioral mea...

  13. Resting-state functional connectivity differences in premature children

    Directory of Open Access Journals (Sweden)

    Eswar Damaraju

    2010-06-01

    Full Text Available We examine the coherence in the spontaneous brain activity of sleeping children as measured by the blood oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI signals. The results are described in terms of resting-state networks (RSN and their properties. More specifically, in this study we examine the effect of severe prematurity on the spatial location of the visual, temporal, motor, basal ganglia, and the default mode networks, the temporal response properties of each of these networks, and the functional connectivity between them. Our results suggest that the anatomical locations of the RSNs are well developed by 18 months of age and their spatial locations are not distinguishable between premature and term born infants at 18 months or at 36 months, with the exception of small spatial differences noted in the basal ganglia area and the visual cortex. The two major differences between term and preterm children were present at 36 but not 18 months and include: 1 increased spectral energy in the low frequency range (0.01 – 0.06 Hz for pre-term children in the basal ganglia component, and 2 stronger connectivity between RSNs in term children. We speculate that children born very prematurely are vulnerable to injury resulting in weaker connectivity between resting state networks by 36 months of age. Further work is required to determine whether this could be a clinically useful tool to identify children at risk of developmental delay related to premature birth.

  14. Green function on product networks

    OpenAIRE

    Arauz Lombardía, Cristina; Carmona Mejías, Ángeles; Encinas Bachiller, Andrés Marcos

    2012-01-01

    Our objective is to determine the Green function of product networks in terms of the Green function of one of the factor networks and the eigenvalues and eigenfunctions of the Schr odinger operator of the other factor network, which we consider that are known. Moreover, we use these results to obtain the Green function of spider networks in terms of Green functions over cicles and paths. Peer Reviewed

  15. Altered functional brain connectivity in patients with visually induced dizziness

    Directory of Open Access Journals (Sweden)

    Angelique Van Ombergen

    2017-01-01

    Conclusions: We found alterations in the visual and vestibular cortical network in VID patients that could underlie the typical VID symptoms such as a worsening of their vestibular symptoms when being exposed to challenging visual stimuli. These preliminary findings provide the first insights into the underlying functional brain connectivity in VID patients. Future studies should extend these findings by employing larger sample sizes, by investigating specific task-based paradigms in these patients and by exploring the implications for treatment.

  16. BOLD signal and functional connectivity associated with loving kindness meditation

    Science.gov (United States)

    Garrison, Kathleen A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2014-01-01

    Loving kindness is a form of meditation involving directed well-wishing, typically supported by the silent repetition of phrases such as “may all beings be happy,” to foster a feeling of selfless love. Here we used functional magnetic resonance imaging to assess the neural substrate of loving kindness meditation in experienced meditators and novices. We first assessed group differences in blood oxygen level-dependent (BOLD) signal during loving kindness meditation. We next used a relatively novel approach, the intrinsic connectivity distribution of functional connectivity, to identify regions that differ in intrinsic connectivity between groups, and then used a data-driven approach to seed-based connectivity analysis to identify which connections differ between groups. Our findings suggest group differences in brain regions involved in self-related processing and mind wandering, emotional processing, inner speech, and memory. Meditators showed overall reduced BOLD signal and intrinsic connectivity during loving kindness as compared to novices, more specifically in the posterior cingulate cortex/precuneus (PCC/PCu), a finding that is consistent with our prior work and other recent neuroimaging studies of meditation. Furthermore, meditators showed greater functional connectivity during loving kindness between the PCC/PCu and the left inferior frontal gyrus, whereas novices showed greater functional connectivity during loving kindness between the PCC/PCu and other cortical midline regions of the default mode network, the bilateral posterior insula lobe, and the bilateral parahippocampus/hippocampus. These novel findings suggest that loving kindness meditation involves a present-centered, selfless focus for meditators as compared to novices. PMID:24944863

  17. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  18. A Novel Synchronization-Based Approach for Functional Connectivity Analysis

    Directory of Open Access Journals (Sweden)

    Angela Lombardi

    2017-01-01

    Full Text Available Complex network analysis has become a gold standard to investigate functional connectivity in the human brain. Popular approaches for quantifying functional coupling between fMRI time series are linear zero-lag correlation methods; however, they might reveal only partial aspects of the functional links between brain areas. In this work, we propose a novel approach for assessing functional coupling between fMRI time series and constructing functional brain networks. A phase space framework is used to map couples of signals exploiting their cross recurrence plots (CRPs to compare the trajectories of the interacting systems. A synchronization metric is extracted from the CRP to assess the coupling behavior of the time series. Since the functional communities of a healthy population are expected to be highly consistent for the same task, we defined functional networks of task-related fMRI data of a cohort of healthy subjects and applied a modularity algorithm in order to determine the community structures of the networks. The within-group similarity of communities is evaluated to verify whether such new metric is robust enough against noise. The synchronization metric is also compared with Pearson’s correlation coefficient and the detected communities seem to better reflect the functional brain organization during the specific task.

  19. Directed connectivity of brain default networks in resting state using GCA and motif.

    Science.gov (United States)

    Jiao, Zhuqing; Wang, Huan; Ma, Kai; Zou, Ling; Xiang, Jianbo

    2017-06-01

    Nowadays, there is a lot of interest in assessing functional interactions between key brain regions. In this paper, Granger causality analysis (GCA) and motif structure are adopted to study directed connectivity of brain default mode networks (DMNs) in resting state. Firstly, the time series of functional magnetic resonance imaging (fMRI) data in resting state were extracted, and the causal relationship values of the nodes representing related brain regions are analyzed in time domain to construct a default network. Then, the network structures were searched from the default networks of controls and patients to determine the fixed connection mode in the networks. The important degree of motif structures in directed connectivity of default networks was judged according to p-value and Z-score. Both node degree and average distance were used to analyze the effect degree an information transfer rate of brain regions in motifs and default networks, and efficiency of the network. Finally, activity and functional connectivity strength of the default brain regions are researched according to the change of energy distributions between the normals and the patients' brain regions. Experimental results demonstrate that, both normal subjects and stroke patients have some corresponding fixed connection mode of three nodes, and the efficiency and power spectrum of the patient's default network is somewhat lower than that of the normal person. In particular, the Right Posterior Cingulate Gyrus (PCG.R) has a larger change in functional connectivity and its activity. The research results verify the feasibility of the application of GCA and motif structure to study the functional connectivity of default networks in resting state.

  20. Unsupervised classification of major depression using functional connectivity MRI.

    Science.gov (United States)

    Zeng, Ling-Li; Shen, Hui; Liu, Li; Hu, Dewen

    2014-04-01

    The current diagnosis of psychiatric disorders including major depressive disorder based largely on self-reported symptoms and clinical signs may be prone to patients' behaviors and psychiatrists' bias. This study aims at developing an unsupervised machine learning approach for the accurate identification of major depression based on single resting-state functional magnetic resonance imaging scans in the absence of clinical information. Twenty-four medication-naive patients with major depression and 29 demographically similar healthy individuals underwent resting-state functional magnetic resonance imaging. We first clustered the voxels within the perigenual cingulate cortex into two subregions, a subgenual region and a pregenual region, according to their distinct resting-state functional connectivity patterns and showed that a maximum margin clustering-based unsupervised machine learning approach extracted sufficient information from the subgenual cingulate functional connectivity map to differentiate depressed patients from healthy controls with a group-level clustering consistency of 92.5% and an individual-level classification consistency of 92.5%. It was also revealed that the subgenual cingulate functional connectivity network with the highest discriminative power primarily included the ventrolateral and ventromedial prefrontal cortex, superior temporal gyri and limbic areas, indicating that these connections may play critical roles in the pathophysiology of major depression. The current study suggests that subgenual cingulate functional connectivity network signatures may provide promising objective biomarkers for the diagnosis of major depression and that maximum margin clustering-based unsupervised machine learning approaches may have the potential to inform clinical practice and aid in research on psychiatric disorders. Copyright © 2013 Wiley Periodicals, Inc.

  1. Sensitivity of marine protected area network connectivity to atmospheric variability.

    Science.gov (United States)

    Fox, Alan D; Henry, Lea-Anne; Corne, David W; Roberts, J Murray

    2016-11-01

    International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs of a particle tracking model to examine the sensitivity of an MPA network for habitat-forming cold-water corals in the northeast Atlantic to changes in larval dispersal driven by atmospheric cycles and larval behaviour. Trajectories of Lophelia pertusa larvae were strongly correlated to the North Atlantic Oscillation (NAO), the dominant pattern of interannual atmospheric circulation variability over the northeast Atlantic. Variability in trajectories significantly altered network connectivity and source-sink dynamics, with positive phase NAO conditions producing a well-connected but asymmetrical network connected from west to east. Negative phase NAO produced reduced connectivity, but notably some larvae tracked westward-flowing currents towards coral populations on the mid-Atlantic ridge. Graph theoretical metrics demonstrate critical roles played by seamounts and offshore banks in larval supply and maintaining connectivity across the network. Larval longevity and behaviour mediated dispersal and connectivity, with shorter lived and passive larvae associated with reduced connectivity. We conclude that the existing MPA network is vulnerable to atmospheric-driven changes in ocean circulation.

  2. Enabling Research Network Connectivity to Clouds with Virtual Router Technology

    Science.gov (United States)

    Seuster, R.; Casteels, K.; Leavett-Brown, CR; Paterson, M.; Sobie, RJ

    2017-10-01

    The use of opportunistic cloud resources by HEP experiments has significantly increased over the past few years. Clouds that are owned or managed by the HEP community are connected to the LHCONE network or the research network with global access to HEP computing resources. Private clouds, such as those supported by non-HEP research funds are generally connected to the international research network; however, commercial clouds are either not connected to the research network or only connect to research sites within their national boundaries. Since research network connectivity is a requirement for HEP applications, we need to find a solution that provides a high-speed connection. We are studying a solution with a virtual router that will address the use case when a commercial cloud has research network connectivity in a limited region. In this situation, we host a virtual router in our HEP site and require that all traffic from the commercial site transit through the virtual router. Although this may increase the network path and also the load on the HEP site, it is a workable solution that would enable the use of the remote cloud for low I/O applications. We are exploring some simple open-source solutions. In this paper, we present the results of our studies and how it will benefit our use of private and public clouds for HEP computing.

  3. Insular subdivisions functional connectivity dysfunction within major depressive disorder.

    Science.gov (United States)

    Peng, Xiaolong; Lin, Pan; Wu, Xiaoping; Gong, Ruxue; Yang, Rui; Wang, Jue

    2018-02-01

    Major depressive disorder (MDD) is a mental disorder characterized by cognitive and affective deficits. Previous studies suggested that insula is a crucial node of the salience network for initiating network switching, and dysfunctional connection to this region may be related to the mechanism of MDD. In this study, we systematically investigated and quantified the altered functional connectivity (FC) of the specific insular subdivisions and its relationship to psychopathology of MDD. Resting-state FC of insular subdivisions, including bilateral ventral/dorsal anterior insula and posterior insula, were estimated in 19 MDD patients and 19 healthy controls. Abnormal FC was quantified between groups. Additionally, we investigated the relationships between insular connectivity and depressive symptom severity. MDD patients demonstrated aberrant FC for insular subdivisions to superior temporal sulcus, inferior prefrontal gyrus, amygdala and posterior parietal cortex. Moreover, depression symptoms (Hamilton Depression Rating Scale and Hamilton Anxiety Rating Scale scorers) were associated with the FC values of insular subdivisions. First, the sample size of our current study is relatively small, which may affect the statistic power. Second, using standardized insular subdivision seeds for FC analyses may neglect subtle natural differences in size and location of functional area across individuals and may thus affect connectivity maps. Abnormal FC of insular subdivisions to default network and central executive network may represent impaired intrinsic networks switching which may affect the underlying emotional and sensory disturbances in MDD. And our findings can help to understand the pathophysiology and underlying neural mechanisms of MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The increase in medial prefrontal glutamate/glutamine concentration during memory encoding is associated with better memory performance and stronger functional connectivity in the human medial prefrontal-thalamus-hippocampus network.

    Science.gov (United States)

    Thielen, Jan-Willem; Hong, Donghyun; Rohani Rankouhi, Seyedmorteza; Wiltfang, Jens; Fernández, Guillén; Norris, David G; Tendolkar, Indira

    2018-06-01

    The classical model of the declarative memory system describes the hippocampus and its interactions with representational brain areas in posterior neocortex as being essential for the formation of long-term episodic memories. However, new evidence suggests an extension of this classical model by assigning the medial prefrontal cortex (mPFC) a specific, yet not fully defined role in episodic memory. In this study, we utilized 1H magnetic resonance spectroscopy (MRS) and psychophysiological interaction (PPI) analysis to lend further support for the idea of a mnemonic role of the mPFC in humans. By using MRS, we measured mPFC γ-aminobutyric acid (GABA) and glutamate/glutamine (GLx) concentrations before and after volunteers memorized face-name association. We demonstrate that mPFC GLx but not GABA levels increased during the memory task, which appeared to be related to memory performance. Regarding functional connectivity, we used the subsequent memory paradigm and found that the GLx increase was associated with stronger mPFC connectivity to thalamus and hippocampus for associations subsequently recognized with high confidence as opposed to subsequently recognized with low confidence/forgotten. Taken together, we provide new evidence for an mPFC involvement in episodic memory by showing a memory-related increase in mPFC excitatory neurotransmitter levels that was associated with better memory and stronger memory-related functional connectivity in a medial prefrontal-thalamus-hippocampus network. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  5. Functional connectivity of parietal cortex during temporal selective attention.

    Science.gov (United States)

    Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D

    2015-04-01

    Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Chimera states in networks of logistic maps with hierarchical connectivities

    Science.gov (United States)

    zur Bonsen, Alexander; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard

    2018-04-01

    Chimera states are complex spatiotemporal patterns consisting of coexisting domains of coherence and incoherence. We study networks of nonlocally coupled logistic maps and analyze systematically how the dilution of the network links influences the appearance of chimera patterns. The network connectivities are constructed using an iterative Cantor algorithm to generate fractal (hierarchical) connectivities. Increasing the hierarchical level of iteration, we compare the resulting spatiotemporal patterns. We demonstrate that a high clustering coefficient and symmetry of the base pattern promotes chimera states, and asymmetric connectivities result in complex nested chimera patterns.

  7. Stability of a giant connected component in a complex network

    Science.gov (United States)

    Kitsak, Maksim; Ganin, Alexander A.; Eisenberg, Daniel A.; Krapivsky, Pavel L.; Krioukov, Dmitri; Alderson, David L.; Linkov, Igor

    2018-01-01

    We analyze the stability of the network's giant connected component under impact of adverse events, which we model through the link percolation. Specifically, we quantify the extent to which the largest connected component of a network consists of the same nodes, regardless of the specific set of deactivated links. Our results are intuitive in the case of single-layered systems: the presence of large degree nodes in a single-layered network ensures both its robustness and stability. In contrast, we find that interdependent networks that are robust to adverse events have unstable connected components. Our results bring novel insights to the design of resilient network topologies and the reinforcement of existing networked systems.

  8. Connecting Land-Based Networks to Ships

    Science.gov (United States)

    2013-06-01

    multipoint wireless broadband systems, and WiMAX networks were initially deployed for fixed and nomadic (portable) applications. These standards...CAPABILITIES OF SHIP-TO-SHORE COMMUNICATIONS A. US Navy Automated Digital Network System (ADNS) The U.S. Navy’s Automated Digital Network System (ADNS...submit digitally any necessary documents to the terminal operators, contact their logistics providers, access tidal information and receive

  9. Default network connectivity during a working memory task.

    Science.gov (United States)

    Bluhm, Robyn L; Clark, C Richard; McFarlane, Alexander C; Moores, Kathryn A; Shaw, Marnie E; Lanius, Ruth A

    2011-07-01

    The default network exhibits correlated activity at rest and has shown decreased activation during performance of cognitive tasks. There has been little investigation of changes in connectivity of this network during task performance. In this study, we examined task-related modulation of connectivity between two seed regions from the default network posterior cingulated cortex (PCC) and medial prefrontal cortex (mPFC) and the rest of the brain in 12 healthy adults. The purpose was to determine (1) whether connectivity within the default network differs between a resting state and performance of a cognitive (working memory) task and (2) whether connectivity differs between these nodes of the default network and other brain regions, particularly those implicated in cognitive tasks. There was little change in connectivity with the other main areas of the default network for either seed region, but moderate task-related changes in connectivity occurred between seed regions and regions outside the default network. For example, connectivity of the mPFC with the right insula and the right superior frontal gyrus decreased during task performance. Increased connectivity during the working memory task occurred between the PCC and bilateral inferior frontal gyri, and between the mPFC and the left inferior frontal gyrus, cuneus, superior parietal lobule, middle temporal gyrus and cerebellum. Overall, the areas showing greater correlation with the default network seed regions during task than at rest have been previously implicated in working memory tasks. These changes may reflect a decrease in the negative correlations occurring between the default and task-positive networks at rest. Copyright © 2010 Wiley-Liss, Inc.

  10. Altered functional connectivity of interoception in illness anxiety disorder.

    Science.gov (United States)

    Grossi, Dario; Longarzo, Mariachiara; Quarantelli, Mario; Salvatore, Elena; Cavaliere, Carlo; De Luca, Paolofabrizio; Trojano, Luigi; Aiello, Marco

    2017-01-01

    Interoception collects all information coming from the body and is sustained by several brain areas such as insula and cingulate cortex. Here, we used resting-state functional magnetic resonance imaging to investigate functional connectivity (FC) of networks implied in interoception in patients with Illness anxiety disorders (IADs). We observed significantly reduced FC between the left extrastriate body area (EBA) and the paracentral lobule compared to healthy controls. Moreover, the correlation analysis between behavioural questionnaires and ROI to ROI FC showed that higher levels of illness anxiety were related to hyper-connectivity between EBA and amygdala and hippocampus. Scores on a questionnaire for interoceptive awareness were significantly correlated with higher FC between right hippocampus and nucleus accumbens bilaterally, and with higher connectivity between left anterior cingulate cortex (ACC) and left orbitofrontal cortex (OFC). Last, patients showed increased interoceptive awareness, measured by Self-Awareness Questionnaire (SAQ), and reduced capability in recognizing emotions, indicating inverse correlation between interoception and emotional awareness. Taken together our results suggested that, in absence of structural and micro-structural changes, patients with IADs show functional alteration in the neural network involved in the self-body representation; such functional alteration might be the target of possible treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Connecting to the Internet Securely; Protecting Home Networks CIAC-2324

    Energy Technology Data Exchange (ETDEWEB)

    Orvis, W J; Krystosek, P; Smith, J

    2002-11-27

    With more and more people working at home and connecting to company networks via the Internet, the risk to company networks to intrusion and theft of sensitive information is growing. Working from home has many positive advantages for both the home worker and the company they work for. However, as companies encourage people to work from home, they need to start considering the interaction of the employee's home network and the company network he connects to. This paper discusses problems and solutions related to protection of home computers from attacks on those computers via the network connection. It does not consider protection of those systems from people who have physical access to the computers nor does it consider company laptops taken on-the-road. Home networks are often targeted by intruders because they are plentiful and they are usually not well secured. While companies have departments of professionals to maintain and secure their networks, home networks are maintained by the employee who may be less knowledgeable about network security matters. The biggest problems with home networks are that: Home networks are not designed to be secure and may use technologies (wireless) that are not secure; The operating systems are not secured when they are installed; The operating systems and applications are not maintained (for security considerations) after they are installed; and The networks are often used for other activities that put them at risk for being compromised. Home networks that are going to be connected to company networks need to be cooperatively secured by the employee and the company so they do not open up the company network to intruders. Securing home networks involves many of the same operations as securing a company network: Patch and maintain systems; Securely configure systems; Eliminate unneeded services; Protect remote logins; Use good passwords; Use current antivirus software; and Moderate your Internet usage habits. Most of these

  12. Structural and Functional Connectivity from Unmanned-Aerial System Data

    Science.gov (United States)

    Masselink, Rens; Heckmann, Tobias; Casalí, Javier; Giménez, Rafael; Cerdá, Artemi; Keesstra, Saskia

    2017-04-01

    Over the past decade there has been an increase in both connectivity research and research involving Unmanned-Aerial systems (UASs). In some studies, UASs were successfully used for the assessment of connectivity, but not yet to their full potential. We present several ways to use data obtained from UASs to measure variables related to connectivity, and use these to assess both structural and functional connectivity. These assessments of connectivity can aid us in obtaining a better understanding of the dynamics of e.g. sediment and nutrient transport. We identify three sources of data obtained from a consumer camera mounted on a fixed-wing UAS, which can be used separately or combined: Visual and near-infrared imagery, point clouds, and digital elevation models (DEMs). Imagery (or: orthophotos) can be used for (automatic) mapping of connectivity features like rills, gullies and soil and water conservation measures using supervised or unsupervised classification methods with e.g. Object-Based Image Analysis. Furthermore, patterns of soil moisture in the top layers can be extracted from visual and near-infrared imagery. Point clouds can be analysed for vegetation height and density, and soil surface roughness. Lastly, DEMs can be used in combination with imagery for a number of tasks, including raster-based (e.g. DEM derivatives) and object-based (e.g., feature detection) analysis: Flow routing algorithms can be used to analyse potential pathways of surface runoff and sediment transport. This allows for the assessment of structural connectivity through indices that are based, for example, on morphometric and other properties of surfaces, contributing areas, and pathways. Third, erosion and deposition can be measured by calculating elevation changes from repeat surveys. From these "intermediate" variables like roughness, vegetation density and soil moisture, structural connectivity and functional connectivity can be assessed by combining them into a dynamic index of

  13. The Connect Effect Building Strong Personal, Professional, and Virtual Networks

    CERN Document Server

    Dulworth, Michael

    2008-01-01

    Entrepreneur and executive development expert Mike Dulworth's THE CONNECT EFFECT provides readers with a simple framework and practical tools for developing that crucial competitive advantage: a high-quality personal, professional/organizational and virtual network.

  14. Oscillations, networks, and their development: MEG connectivity changes with age.

    Science.gov (United States)

    Schäfer, Carmen B; Morgan, Benjamin R; Ye, Annette X; Taylor, Margot J; Doesburg, Sam M

    2014-10-01

    Magnetoencephalographic (MEG) investigations of inter-regional amplitude correlations have yielded new insights into the organization and neurophysiology of resting-state networks (RSNs) first identified using fMRI. Inter-regional MEG amplitude correlations in adult RSNs have been shown to be most prominent in alpha and beta frequency ranges and to express strong congruence with RSN topologies found using fMRI. Despite such advances, little is known about how oscillatory connectivity in RSNs develops throughout childhood and adolescence. This study used a novel fMRI-guided MEG approach to investigate the maturation of resting-state amplitude correlations in physiologically relevant frequency ranges within and among six RSNs in 59 participants, aged 6-34 years. We report age-related increases in inter-regional amplitude correlations that were largest in alpha and beta frequency bands. In contrast to fMRI reports, these changes were observed both within and between the various RSNs analyzed. Our results provide the first evidence of developmental changes in spontaneous neurophysiological connectivity in source-resolved RSNs, which indicate increasing integration within and among intrinsic functional brain networks throughout childhood, adolescence, and early adulthood. Copyright © 2014 Wiley Periodicals, Inc.

  15. Resting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Anne eHafkemeijer

    2015-09-01

    Full Text Available Alzheimer’s disease (AD and behavioral variant frontotemporal dementia (bvFTD are the most common types of early-onset dementia. Here, we apply resting state functional magnetic resonance imaging (fMRI to study functional brain connectivity differences between AD and bvFTD.We used resting state fMRI data of 31 AD patients, 25 bvFTD patients, and 29 controls. We studied functional connectivity throughout the entire brain, applying two different analysis techniques, studying network-to-region and region-to-region connectivity. A general linear model approach was used to study group differences, while controlling for physiological noise, age, gender, study center, and regional gray matter volume. Given gray matter differences, we observed decreased network-to-region connectivity in bvFTD between a lateral visual cortical network and lateral occipital and cuneal cortex, and b auditory system network and angular gyrus. In AD, we found decreased network-to-region connectivity between the dorsal visual stream network and lateral occipital and parietal opercular cortex. Region-to-region connectivity was decreased in bvFTD between superior temporal gyrus and cuneal, supracalcarine, intracalcarine cortex, and lingual gyrus. We showed that the pathophysiology of functional brain connectivity is different between AD and bvFTD. However, the group differences in functional connectivity are less abundant than has been shown in previous studies.

  16. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia

    Directory of Open Access Journals (Sweden)

    E. Damaraju

    2014-01-01

    Full Text Available Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length, and a dynamic sense, computed using sliding windows (44 s in length and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual, as well as reduced connectivity (hypoconnectivity between sensory networks from all modalities. Dynamic analysis suggests that (1, on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2, that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity

  17. Effects of local and global network connectivity on synergistic epidemics

    Science.gov (United States)

    Broder-Rodgers, David; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2015-12-01

    Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected neighbors. The connectivity effects are studied by constructing networks of different topology, starting with lattices with only local connectivity and then with networks that have both local and global connectivity obtained by random bond-rewiring to nodes within a certain distance. The susceptible-infected-removed epidemics were found to exhibit several interesting effects: (i) for epidemics with strong constructive synergy spreading in networks with high local connectivity, the bond rewiring has a negative role in epidemic spread, i.e., it reduces invasion probability; (ii) in contrast, for epidemics with destructive or weak constructive synergy spreading on networks of arbitrary local connectivity, rewiring helps epidemics to spread; (iii) and, finally, rewiring always enhances the spread of epidemics, independent of synergy, if the local connectivity is low.

  18. Further evidence of alerted default network connectivity and association with theory of mind ability in schizophrenia.

    Science.gov (United States)

    Mothersill, Omar; Tangney, Noreen; Morris, Derek W; McCarthy, Hazel; Frodl, Thomas; Gill, Michael; Corvin, Aiden; Donohoe, Gary

    2017-06-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) has repeatedly shown evidence of altered functional connectivity of large-scale networks in schizophrenia. The relationship between these connectivity changes and behaviour (e.g. symptoms, neuropsychological performance) remains unclear. Functional connectivity in 27 patients with schizophrenia or schizoaffective disorder, and 25 age and gender matched healthy controls was examined using rs-fMRI. Based on seed regions from previous studies, we examined functional connectivity of the default, cognitive control, affective and attention networks. Effects of symptom severity and theory of mind performance on functional connectivity were also examined. Patients showed increased connectivity between key nodes of the default network including the precuneus and medial prefrontal cortex compared to controls (pmind performance were both associated with altered connectivity of default regions within the patient group (pmind performance. Extending these findings by examining the effects of emerging social cognition treatments on both default connectivity and theory of mind performance is now an important goal for research. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Population coding in sparsely connected networks of noisy neurons.

    Science.gov (United States)

    Tripp, Bryan P; Orchard, Jeff

    2012-01-01

    This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behavior. However, population coding theory has often ignored network structure, or assumed discrete, fully connected populations (in contrast with the sparsely connected, continuous sheet of the cortex). In this study, we modeled a sheet of cortical neurons with sparse, primarily local connections, and found that a network with this structure could encode multiple internal state variables with high signal-to-noise ratio. However, we were unable to create high-fidelity networks by instantiating connections at random according to spatial connection probabilities. In our models, high-fidelity networks required additional structure, with higher cluster factors and correlations between the inputs to nearby neurons.

  20. Disruption of visuospatial and somatosensory functional connectivity in anorexia nervosa.

    Science.gov (United States)

    Favaro, Angela; Santonastaso, Paolo; Manara, Renzo; Bosello, Romina; Bommarito, Giulia; Tenconi, Elena; Di Salle, Francesco

    2012-11-15

    Although body image disturbance is considered one of the core characteristics of anorexia nervosa (AN), the exact nature of this complex feature is poorly understood. Task-related functional magnetic resonance imaging studies can only partially explore the multimodal complexity of body consciousness, which is a complex cognition underpinned by aspects of visual perception, proprioception, and touch. The aim of the present study was to explore the functional connectivity of networks involved in visuospatial and somatosensory processing in AN. Twenty-nine subjects with AN, 16 women who had recovered from it, and 26 healthy women underwent a resting-state functional magnetic resonance imaging scan and neuropsychological assessment of their visuospatial abilities using the Rey-Osterrieth Complex Figure Test. Both AN groups showed areas of decreased connectivity in the ventral visual network, a network involved in the "what?" pathway of visual perception. Even more interestingly, the AN group, but not the recovered AN group, displayed increased coactivation in the left parietal cortex, encompassing the somatosensory cortex, in an area implicated in long-term multimodal spatial memory and representation, even in the absence of visual information. A neuropsychological assessment of visuospatial abilities revealed that aspects of detail processing and global integration (central coherence) showed correlations with connectivity of this brain area in the AN group. Our findings show that AN is associated with double disruption of brain connectivity, which shows a specific association with visuospatial difficulties and may explain the failure of the integration process between visual and somatosensory perceptual information that might sustain body image disturbance. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Exploring the Associations Between Intrinsic Brain Connectivity and Creative Ability Using Functional Connectivity Strength and Connectome Analysis.

    Science.gov (United States)

    Gao, Zhenni; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Cai, Yuxuan; Li, Junchao; Gao, Mengxia; Liu, Xiaojin; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2017-11-01

    The present study aimed to explore the association between resting-state functional connectivity and creativity ability. Toward this end, the figural Torrance Tests of Creative Thinking (TTCT) scores were collected from 180 participants. Based on the figural TTCT measures, we collected resting-state functional magnetic resonance imaging data for participants with two different levels of creativity ability (a high-creativity group [HG, n = 22] and a low-creativity group [LG, n = 20]). For the aspect of group difference, this study combined voxel-wise functional connectivity strength (FCS) and seed-based functional connectivity to identify brain regions with group-change functional connectivity. Furthermore, the connectome properties of the identified regions and their associations with creativity were investigated using the permutation test, discriminative analysis, and brain-behavior correlation analysis. The results indicated that there were 4 regions with group differences in FCS, and these regions were linked to 30 other regions, demonstrating different functional connectivity between the groups. Together, these regions form a creativity-related network, and we observed higher network efficiency in the HG compared with the LG. The regions involved in the creativity network were widely distributed across the modality-specific/supramodality cerebral cortex, subcortex, and cerebellum. Notably, properties of regions in the supramodality networks (i.e., the default mode network and attention network) carried creativity-level discriminative information and were significantly correlated with the creativity performance. Together, these findings demonstrate a link between intrinsic brain connectivity and creative ability, which should provide new insights into the neural basis of creativity.

  2. Networks with fourfold connectivity in two dimensions.

    Science.gov (United States)

    Tessier, Frédéric; Boal, David H; Discher, Dennis E

    2003-01-01

    The elastic properties of planar, C4-symmetric networks under stress and at nonzero temperature are determined by simulation and mean field approximations. Attached at fourfold coordinated junction vertices, the networks are self-avoiding in that their elements (or bonds) may not intersect each other. Two different models are considered for the potential energy of the elements: either Hooke's law springs or flexible tethers (square well potential). For certain ranges of stress and temperature, the properties of the networks are captured by one of several models: at large tensions, the networks behave like a uniform system of square plaquettes, while at large compressions or high temperatures, they display many characteristics of an ideal gas. Under less severe conditions, mean field models with more general shapes (parallelograms) reproduce many essential features of both networks. Lastly, the spring network expands without limit at a two-dimensional tension equal to the force constant of the spring; however, it does not appear to collapse under compression, except at zero temperature.

  3. Transcranial Direct Current Stimulation Targeting Primary Motor Versus Dorsolateral Prefrontal Cortices: Proof-of-Concept Study Investigating Functional Connectivity of Thalamocortical Networks Specific to Sensory-Affective Information Processing.

    Science.gov (United States)

    Sankarasubramanian, Vishwanath; Cunningham, David A; Potter-Baker, Kelsey A; Beall, Erik B; Roelle, Sarah M; Varnerin, Nicole M; Machado, Andre G; Jones, Stephen E; Lowe, Mark J; Plow, Ela B

    2017-04-01

    The pain matrix is comprised of an extensive network of brain structures involved in sensory and/or affective information processing. The thalamus is a key structure constituting the pain matrix. The thalamus serves as a relay center receiving information from multiple ascending pathways and relating information to and from multiple cortical areas. However, it is unknown how thalamocortical networks specific to sensory-affective information processing are functionally integrated. Here, in a proof-of-concept study in healthy humans, we aimed to understand this connectivity using transcranial direct current stimulation (tDCS) targeting primary motor (M1) or dorsolateral prefrontal cortices (DLPFC). We compared changes in functional connectivity (FC) with DLPFC tDCS to changes in FC with M1 tDCS. FC changes were also compared to further investigate its relation with individual's baseline experience of pain. We hypothesized that resting-state FC would change based on tDCS location and would represent known thalamocortical networks. Ten right-handed individuals received a single application of anodal tDCS (1 mA, 20 min) to right M1 and DLPFC in a single-blind, sham-controlled crossover study. FC changes were studied between ventroposterolateral (VPL), the sensory nucleus of thalamus, and cortical areas involved in sensory information processing and between medial dorsal (MD), the affective nucleus, and cortical areas involved in affective information processing. Individual's perception of pain at baseline was assessed using cutaneous heat pain stimuli. We found that anodal M1 tDCS and anodal DLPFC tDCS both increased FC between VPL and sensorimotor cortices, although FC effects were greater with M1 tDCS. Similarly, anodal M1 tDCS and anodal DLPFC tDCS both increased FC between MD and motor cortices, but only DLPFC tDCS modulated FC between MD and affective cortices, like DLPFC. Our findings suggest that M1 stimulation primarily modulates FC of sensory networks

  4. Functional connectivity of the rodent brain using optical imaging

    Science.gov (United States)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  5. Graph theoretical analysis of EEG functional connectivity during music perception.

    Science.gov (United States)

    Wu, Junjie; Zhang, Junsong; Liu, Chu; Liu, Dongwei; Ding, Xiaojun; Zhou, Changle

    2012-11-05

    The present study evaluated the effect of music on large-scale structure of functional brain networks using graph theoretical concepts. While most studies on music perception used Western music as an acoustic stimulus, Guqin music, representative of Eastern music, was selected for this experiment to increase our knowledge of music perception. Electroencephalography (EEG) was recorded from non-musician volunteers in three conditions: Guqin music, noise and silence backgrounds. Phase coherence was calculated in the alpha band and between all pairs of EEG channels to construct correlation matrices. Each resulting matrix was converted into a weighted graph using a threshold, and two network measures: the clustering coefficient and characteristic path length were calculated. Music perception was found to display a higher level mean phase coherence. Over the whole range of thresholds, the clustering coefficient was larger while listening to music, whereas the path length was smaller. Networks in music background still had a shorter characteristic path length even after the correction for differences in mean synchronization level among background conditions. This topological change indicated a more optimal structure under music perception. Thus, prominent small-world properties are confirmed in functional brain networks. Furthermore, music perception shows an increase of functional connectivity and an enhancement of small-world network organizations. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Localizing and placement of network node functions in a network

    NARCIS (Netherlands)

    Strijkers, R.J.; Meulenhoff, P.J.

    2014-01-01

    The invention enables placement and use of a network node function in a second network node instead of using the network node function in a first network node. The network node function is e.g. a server function or a router function. The second network node is typically located in or close to the

  7. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1998-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  8. Whole brain resting-state analysis reveals decreased functional connectivity in major depression

    NARCIS (Netherlands)

    Veer, I.M.; Beckmann, C.F.; van Tol, M.J.; Ferrarini, L.; Milles, J.; Veltman, D.J.; Aleman, A.; van Buchem, M.A.; van der Wee, N.J.; Rombouts, S.A.R.B.

    2010-01-01

    Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always

  9. Resting-State Functional Connectivity in Individuals with Down Syndrome and Williams Syndrome Compared with Typically Developing Controls.

    Science.gov (United States)

    Vega, Jennifer N; Hohman, Timothy J; Pryweller, Jennifer R; Dykens, Elisabeth M; Thornton-Wells, Tricia A

    2015-10-01

    The emergence of resting-state functional connectivity (rsFC) analysis, which examines temporal correlations of low-frequency (syndrome (DS) compared with another neurodevelopmental disorder, Williams syndrome (WS), and TD. Ten subjects with DS, 18 subjects with WS, and 40 subjects with TD each participated in a 3-Tesla MRI scan. We tested for group differences (DS vs. TD, DS vs. WS, and WS vs. TD) in between- and within-network rsFC connectivity for seven functional networks. For the DS group, we also examined associations between rsFC and other cognitive and genetic risk factors. In DS compared with TD, we observed higher levels of between-network connectivity in 6 out 21 network pairs but no differences in within-network connectivity. Participants with WS showed lower levels of within-network connectivity and no significant differences in between-network connectivity relative to DS. Finally, our comparison between WS and TD controls revealed lower within-network connectivity in multiple networks and higher between-network connectivity in one network pair relative to TD controls. While preliminary due to modest sample sizes, our findings suggest a global difference in between-network connectivity in individuals with neurodevelopmental disorders compared with controls and that such a difference is exacerbated across many brain regions in DS. However, this alteration in DS does not appear to extend to within-network connections, and therefore, the altered between-network connectivity must be interpreted within the framework of an intact intra-network pattern of activity. In contrast, WS shows markedly lower levels of within-network connectivity in the default mode network and somatomotor network relative to controls. These findings warrant further investigation using a task-based procedure that may help disentangle the relationship between brain function and cognitive performance across the spectrum of neurodevelopmental disorders.

  10. Muscle networks: Connectivity analysis of EMG activity during postural control

    Science.gov (United States)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  11. Dual connectivity for LTE-advanced heterogeneous networks

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus I.

    2016-01-01

    Dual connectivity (DC) allows user equipments (UEs) to receive data simultaneously from different eNodeBs (eNBs) in order to boost the performance in a heterogeneous network with dedicated carrier deployment. Yet, how to efficiently operate with DC opens a number of research questions. In this pa......Dual connectivity (DC) allows user equipments (UEs) to receive data simultaneously from different eNodeBs (eNBs) in order to boost the performance in a heterogeneous network with dedicated carrier deployment. Yet, how to efficiently operate with DC opens a number of research questions...... aggregation (CA) and virtually zerolatency fronthaul connections, and in any case it is significantly higher compared to the case without DC. Keywords: Dual connectivity Heterogeneous network LTE-advanced Radio resource management Performance evaluation...

  12. Age-Related Difference in Functional Brain Connectivity of Mastication

    Science.gov (United States)

    Lin, Chia-shu; Wu, Ching-yi; Wu, Shih-yun; Lin, Hsiao-Han; Cheng, Dong-hui; Lo, Wen-liang

    2017-01-01

    The age-related decline in motor function is associated with changes in intrinsic brain signatures. Here, we investigated the functional connectivity (FC) associated with masticatory performance, a clinical index evaluating general masticatory function. Twenty-six older adults (OA) and 26 younger (YA) healthy adults were recruited and assessed using the masticatory performance index (MPI) and resting-state functional magnetic resonance imaging (rs-fMRI). We analyzed the rs-fMRI FC network related to mastication, which was constructed based on 12 bilateral mastication-related brain regions according to the literature. For the OA and the YA group, we identified the mastication-related hubs, i.e., the nodes for which the degree centrality (DC) was positively correlated with the MPI. For each pair of nodes, we identified the inter-nodal link for which the FC was positively correlated with the MPI. The network analysis revealed that, in the YA group, the FC between the sensorimotor cortex, the thalamus (THA) and the cerebellum was positively correlated with the MPI. Consistently, the cerebellum nodes were defined as the mastication-related hubs. In contrast, in the OA group, we found a sparser connection within the sensorimotor regions and cerebellum and a denser connection across distributed regions, including the FC between the superior parietal lobe (SPL), the anterior insula (aINS) and the dorsal anterior cingulate cortex (dACC). Compared to the YA group, the network of the OA group also comprised more mastication-related hubs, which were spatially distributed outside the sensorimotor regions, including the right SPL, the right aINS, and the bilateral dACC. In general, the findings supported the hypothesis that in OA, higher masticatory performance is associated with a widespread pattern of mastication-related hubs. Such a widespread engagement of multiple brain regions associated with the MPI may reflect an increased demand in sensorimotor integration, attentional

  13. A Longitudinal Study on Resting State Functional Connectivity in Behavioral Variant Frontotemporal Dementia and Alzheimer's Disease.

    Science.gov (United States)

    Hafkemeijer, Anne; Möller, Christiane; Dopper, Elise G P; Jiskoot, Lize C; van den Berg-Huysmans, Annette A; van Swieten, John C; van der Flier, Wiesje M; Vrenken, Hugo; Pijnenburg, Yolande A L; Barkhof, Frederik; Scheltens, Philip; van der Grond, Jeroen; Rombouts, Serge A R B

    2017-01-01

    Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are the most common types of early-onset dementia. We applied longitudinal resting state functional magnetic resonance imaging (fMRI) to delineate functional brain connections relevant for disease progression and diagnostic accuracy. We used two-center resting state fMRI data of 20 AD patients (65.1±8.0 years), 12 bvFTD patients (64.7±5.4 years), and 22 control subjects (63.8±5.0 years) at baseline and 1.8-year follow-up. We used whole-network and voxel-based network-to-region analyses to study group differences in functional connectivity at baseline and follow-up, and longitudinal changes in connectivity within and between groups. At baseline, connectivity between paracingulate gyrus and executive control network, between cuneal cortex and medial visual network, and between paracingulate gyrus and salience network was higher in AD compared with controls. These differences were also present after 1.8 years. At follow-up, connectivity between angular gyrus and right frontoparietal network, and between paracingulate gyrus and default mode network was lower in bvFTD compared with controls, and lower compared with AD between anterior cingulate gyrus and executive control network, and between lateral occipital cortex and medial visual network. Over time, connectivity decreased in AD between precuneus and right frontoparietal network and in bvFTD between inferior frontal gyrus and left frontoparietal network. Longitudinal changes in connectivity between supramarginal gyrus and right frontoparietal network differ between both patient groups and controls. We found disease-specific brain regions with longitudinal connectivity changes. This suggests the potential of longitudinal resting state fMRI to delineate regions relevant for disease progression and for diagnostic accuracy, although no group differences in longitudinal changes in the direct comparison of AD and bvFTD were found.

  14. Structural Connectivity Networks of Transgender People

    NARCIS (Netherlands)

    Hahn, Andreas; Kranz, Georg S.; Küblböck, Martin; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.; Lanzenberger, Rupert

    2015-01-01

    Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF)

  15. Hydraulic Stability of Heat Networks for Connection of New Consumers

    Science.gov (United States)

    Seminenko, A. S.; Sheremet, E. O.; Gushchin, S. V.; Elistratova, J. V.; Kireev, V. M.

    2018-03-01

    Nowadays due to intensive urban construction, there is a need to connect new consumers to existing heating networks. Often the connection of new consumers leads to a hydraulic misalignment of the network, which in turn affects supplying existing consumers with heat. In order to minimize the possibility of misalignment, appropriate recommendations are needed that can be obtained during the research. In the article, the authors carried out a required experiment aimed at revealing the influence of the new consumers’ connection on the hydraulic stability of the entire network. The result of the research is relevant recommendations that will be useful for engineering specialists both for the design of new networks and the reconstruction of the old ones.

  16. On Connectivity of Wireless Sensor Networks with Directional Antennas

    Directory of Open Access Journals (Sweden)

    Qiu Wang

    2017-01-01

    Full Text Available In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models.

  17. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.

    Directory of Open Access Journals (Sweden)

    Christopher E Hart

    2006-12-01

    Full Text Available A current challenge is to develop computational approaches to infer gene network regulatory relationships based on multiple types of large-scale functional genomic data. We find that single-layer feed-forward artificial neural network (ANN models can effectively discover gene network structure by integrating global in vivo protein:DNA interaction data (ChIP/Array with genome-wide microarray RNA data. We test this on the yeast cell cycle transcription network, which is composed of several hundred genes with phase-specific RNA outputs. These ANNs were robust to noise in data and to a variety of perturbations. They reliably identified and ranked 10 of 12 known major cell cycle factors at the top of a set of 204, based on a sum-of-squared weights metric. Comparative analysis of motif occurrences among multiple yeast species independently confirmed relationships inferred from ANN weights analysis. ANN models can capitalize on properties of biological gene networks that other kinds of models do not. ANNs naturally take advantage of patterns of absence, as well as presence, of factor binding associated with specific expression output; they are easily subjected to in silico "mutation" to uncover biological redundancies; and they can use the full range of factor binding values. A prominent feature of cell cycle ANNs suggested an analogous property might exist in the biological network. This postulated that "network-local discrimination" occurs when regulatory connections (here between MBF and target genes are explicitly disfavored in one network module (G2, relative to others and to the class of genes outside the mitotic network. If correct, this predicts that MBF motifs will be significantly depleted from the discriminated class and that the discrimination will persist through evolution. Analysis of distantly related Schizosaccharomyces pombe confirmed this, suggesting that network-local discrimination is real and complements well-known enrichment of

  18. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    Science.gov (United States)

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  19. A Brain-Wide Study of Age-Related Changes in Functional Connectivity

    NARCIS (Netherlands)

    Geerligs, Linda; Renken, Remco J.; Saliasi, Emi; Maurits, Natasha M.; Lorist, Monicque M.

    Aging affects functional connectivity between brain areas, however, a complete picture of how aging affects integration of information within and between functional networks is missing. We used complex network measures, derived from a brain-wide graph, to provide a comprehensive overview of

  20. Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach.

    Science.gov (United States)

    Stampanoni Bassi, Mario; Gilio, Luana; Buttari, Fabio; Maffei, Pierpaolo; Marfia, Girolama A; Restivo, Domenico A; Centonze, Diego; Iezzi, Ennio

    2017-01-01

    Neurons in the central nervous system are organized in functional units interconnected to form complex networks. Acute and chronic brain damage disrupts brain connectivity producing neurological signs and/or symptoms. In several neurological diseases, particularly in Multiple Sclerosis (MS), structural imaging studies cannot always demonstrate a clear association between lesion site and clinical disability, originating the "clinico-radiological paradox." The discrepancy between structural damage and disability can be explained by a complex network perspective. Both brain networks architecture and synaptic plasticity may play important roles in modulating brain networks efficiency after brain damage. In particular, long-term potentiation (LTP) may occur in surviving neurons to compensate network disconnection. In MS, inflammatory cytokines dramatically interfere with synaptic transmission and plasticity. Importantly, in addition to acute and chronic structural damage, inflammation could contribute to reduce brain networks efficiency in MS leading to worse clinical recovery after a relapse and worse disease progression. These evidence suggest that removing inflammation should represent the main therapeutic target in MS; moreover, as synaptic plasticity is particularly altered by inflammation, specific strategies aimed at promoting LTP mechanisms could be effective for enhancing clinical recovery. Modulation of plasticity with different non-invasive brain stimulation (NIBS) techniques has been used to promote recovery of MS symptoms. Better knowledge of features inducing brain disconnection in MS is crucial to design specific strategies to promote recovery and use NIBS with an increasingly tailored approach.

  1. Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach

    Directory of Open Access Journals (Sweden)

    Mario Stampanoni Bassi

    2017-12-01

    Full Text Available Neurons in the central nervous system are organized in functional units interconnected to form complex networks. Acute and chronic brain damage disrupts brain connectivity producing neurological signs and/or symptoms. In several neurological diseases, particularly in Multiple Sclerosis (MS, structural imaging studies cannot always demonstrate a clear association between lesion site and clinical disability, originating the “clinico-radiological paradox.” The discrepancy between structural damage and disability can be explained by a complex network perspective. Both brain networks architecture and synaptic plasticity may play important roles in modulating brain networks efficiency after brain damage. In particular, long-term potentiation (LTP may occur in surviving neurons to compensate network disconnection. In MS, inflammatory cytokines dramatically interfere with synaptic transmission and plasticity. Importantly, in addition to acute and chronic structural damage, inflammation could contribute to reduce brain networks efficiency in MS leading to worse clinical recovery after a relapse and worse disease progression. These evidence suggest that removing inflammation should represent the main therapeutic target in MS; moreover, as synaptic plasticity is particularly altered by inflammation, specific strategies aimed at promoting LTP mechanisms could be effective for enhancing clinical recovery. Modulation of plasticity with different non-invasive brain stimulation (NIBS techniques has been used to promote recovery of MS symptoms. Better knowledge of features inducing brain disconnection in MS is crucial to design specific strategies to promote recovery and use NIBS with an increasingly tailored approach.

  2. Clinical applications of resting state functional connectivity

    Directory of Open Access Journals (Sweden)

    Michael D Fox

    2010-06-01

    Full Text Available During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level dependent (BOLD signal of fMRI. The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm.

  3. Magnetoencephalography Reveals a Widespread Increase in Network Connectivity in Idiopathic/Genetic Generalized Epilepsy.

    Directory of Open Access Journals (Sweden)

    Adham Elshahabi

    Full Text Available Idiopathic/genetic generalized epilepsy (IGE/GGE is characterized by seizures, which start and rapidly engage widely distributed networks, and result in symptoms such as absences, generalized myoclonic and primary generalized tonic-clonic seizures. Although routine magnetic resonance imaging is apparently normal, many studies have reported structural alterations in IGE/GGE patients using diffusion tensor imaging and voxel-based morphometry. Changes have also been reported in functional networks during generalized spike wave discharges. However, network function in the resting-state without epileptiforme discharges has been less well studied. We hypothesize that resting-state networks are more representative of the underlying pathophysiology and abnormal network synchrony. We studied functional network connectivity derived from whole-brain magnetoencephalography recordings in thirteen IGE/GGE and nineteen healthy controls. Using graph theoretical network analysis, we found a widespread increase in connectivity in patients compared to controls. These changes were most pronounced in the motor network, the mesio-frontal and temporal cortex. We did not, however, find any significant difference between the normalized clustering coefficients, indicating preserved gross network architecture. Our findings suggest that increased resting state connectivity could be an important factor for seizure spread and/or generation in IGE/GGE, and could serve as a biomarker for the disease.

  4. Functional classification of the Gauteng provincial road network ...

    African Journals Online (AJOL)

    The built environment consists of various land uses and activities connected by a road network. The efficiency and effectiveness of the road network directly impacts economic growth and societal movement. This study involved the functional classification of the Gauteng provincial road network using the South African Road ...

  5. Effects of Neuromodulation on Excitatory-Inhibitory Neural Network Dynamics Depend on Network Connectivity Structure

    Science.gov (United States)

    Rich, Scott; Zochowski, Michal; Booth, Victoria

    2018-01-01

    Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.

  6. Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder.

    Science.gov (United States)

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Liu, Feng; Chen, Huafu

    2016-05-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing.

  7. Fast long-range connections in transportation networks

    International Nuclear Information System (INIS)

    Palhares Viana, Matheus; Fontoura Costa, Luciano da

    2011-01-01

    Multidimensional scaling is applied in order to visualize an analogue of the small-world effect implied by edges having different displacement velocities in transportation networks. Our findings are illustrated for two real-world systems, namely the London urban network (streets and underground) and the US highway network enhanced by some of the main US airlines routes. We also show that the travel time in these two networks is drastically changed by attacks targeting the edges with large displacement velocities. - Highlights: → Multidimensional scaling used to visualize the effects of fast long-range connections. → Fast long-range connections are important to decrease the average travel time. → The average travel time diverges quickly when the network is under target attacks.

  8. Population Coding in Sparsely Connected Networks of Noisy Neurons

    Directory of Open Access Journals (Sweden)

    Bryan Patrick Tripp

    2012-05-01

    Full Text Available This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behaviour. However, population coding theory has often ignored network structure, or assumed discrete, fully-connected populations (in contrast with the sparsely connected, continuous sheet of the cortex. In this study, we model a sheet of cortical neurons with sparse, primarily local connections, and find that a network with this structure can encode multiple internal state variables with high signal-to-noise ratio. However, in our model, although connection probability varies with the distance between neurons, we find that the connections cannot be instantiated at random according to these probabilities, but must have additional structure if information is to be encoded with high fidelity.

  9. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation.

    Science.gov (United States)

    Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin

    2011-02-14

    The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we