WorldWideScience

Sample records for network forecasting system

  1. Forecasting systemic impact in financial networks

    NARCIS (Netherlands)

    Hautsch, N.; Schaumburg, J.; Schienle, M.

    2014-01-01

    We propose a methodology for forecasting the systemic impact of financial institutions in interconnected systems. Utilizing a five-year sample including the 2008/9 financial crisis, we demonstrate how the approach can be used for the timely systemic risk monitoring of large European banks and

  2. Flood forecasting within urban drainage systems using NARX neural network.

    Science.gov (United States)

    Abou Rjeily, Yves; Abbas, Oras; Sadek, Marwan; Shahrour, Isam; Hage Chehade, Fadi

    2017-11-01

    Urbanization activity and climate change increase the runoff volumes, and consequently the surcharge of the urban drainage systems (UDS). In addition, age and structural failures of these utilities limit their capacities, and thus generate hydraulic operation shortages, leading to flooding events. The large increase in floods within urban areas requires rapid actions from the UDS operators. The proactivity in taking the appropriate actions is a key element in applying efficient management and flood mitigation. Therefore, this work focuses on developing a flooding forecast system (FFS), able to alert in advance the UDS managers for possible flooding. For a forecasted storm event, a quick estimation of the water depth variation within critical manholes allows a reliable evaluation of the flood risk. The Nonlinear Auto Regressive with eXogenous inputs (NARX) neural network was chosen to develop the FFS as due to its calculation nature it is capable of relating water depth variation in manholes to rainfall intensities. The campus of the University of Lille is used as an experimental site to test and evaluate the FFS proposed in this paper.

  3. Using adaptive network based fuzzy inference system to forecast regional electricity loads

    International Nuclear Information System (INIS)

    Ying, L.-C.; Pan, M.-C.

    2008-01-01

    Since accurate regional load forecasting is very important for improvement of the management performance of the electric industry, various regional load forecasting methods have been developed. The purpose of this study is to apply the adaptive network based fuzzy inference system (ANFIS) model to forecast the regional electricity loads in Taiwan and demonstrate the forecasting performance of this model. Based on the mean absolute percentage errors and statistical results, we can see that the ANFIS model has better forecasting performance than the regression model, artificial neural network (ANN) model, support vector machines with genetic algorithms (SVMG) model, recurrent support vector machines with genetic algorithms (RSVMG) model and hybrid ellipsoidal fuzzy systems for time series forecasting (HEFST) model. Thus, the ANFIS model is a promising alternative for forecasting regional electricity loads

  4. Using adaptive network based fuzzy inference system to forecast regional electricity loads

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Li-Chih [Department of Marketing Management, Central Taiwan University of Science and Technology, 11, Pu-tzu Lane, Peitun, Taichung City 406 (China); Pan, Mei-Chiu [Graduate Institute of Management Sciences, Nanhua University, 32, Chung Keng Li, Dalin, Chiayi 622 (China)

    2008-02-15

    Since accurate regional load forecasting is very important for improvement of the management performance of the electric industry, various regional load forecasting methods have been developed. The purpose of this study is to apply the adaptive network based fuzzy inference system (ANFIS) model to forecast the regional electricity loads in Taiwan and demonstrate the forecasting performance of this model. Based on the mean absolute percentage errors and statistical results, we can see that the ANFIS model has better forecasting performance than the regression model, artificial neural network (ANN) model, support vector machines with genetic algorithms (SVMG) model, recurrent support vector machines with genetic algorithms (RSVMG) model and hybrid ellipsoidal fuzzy systems for time series forecasting (HEFST) model. Thus, the ANFIS model is a promising alternative for forecasting regional electricity loads. (author)

  5. Natural gas demand forecast system based on the application of artificial neural networks

    International Nuclear Information System (INIS)

    Sanfeliu, J.M.; Doumanian, J.E.

    1997-01-01

    Gas Natural BAN, as a distribution gas company since 1993 in the north and west area of Buenos Aires Argentina, with 1,000,000 customers, had to develop a gas demand forecast system which should comply with the following basic requirements: Be able to do reliable forecasts with short historical information (2 years); Distinguish demands in areas of different characteristics, i.e. mainly residential, mainly industrial; Self-learning capability. To accomplish above goals, Gas Natural BAN chose in view of its own necessities, an artificial intelligence application (neural networks). 'SANDRA', the gas demand forecast system for gas distribution used by Gas Natural BAN, has the following features: Daily gas demand forecast, Hourly gas demand forecast and Breakdown of both forecast for each of the 3 basic zones in which the distribution area of Gas Natural BAN is divided. (au)

  6. Prospects of application of artificial neural networks for forecasting of cargo transportation volume in transport systems

    Directory of Open Access Journals (Sweden)

    D. T. Yakupov

    2017-01-01

    Full Text Available The purpose of research – to identify the prospects for the use of neural network approach in relation to the tasks of economic forecasting of logistics performance, in particular of volume freight traffic in the transport system promiscuous regional freight traffic, as well as to substantiate the effectiveness of the use of artificial neural networks (ANN, as compared with the efficiency of traditional extrapolative methods of forecasting. The authors consider the possibility of forecasting to use ANN for these economic indicators not as an alternative to the traditional methods of statistical forecasting, but as one of the available simple means for solving complex problems.Materials and methods. When predicting the ANN, three methods of learning were used: 1 the Levenberg-Marquardt algorithm-network training stops when the generalization ceases to improve, which is shown by the increase in the mean square error of the output value; 2 Bayes regularization method - network training is stopped in accordance with the minimization of adaptive weights; 3 the method of scaled conjugate gradients, which is used to find the local extremum of a function on the basis of information about its values and gradient. The Neural Network Toolbox package is used for forecasting. The neural network model consists of a hidden layer of neurons with a sigmoidal activation function and an output neuron with a linear activation function, the input values of the dynamic time series, and the predicted value is removed from the output. For a more objective assessment of the prospects of the ANN application, the results of the forecast are presented in comparison with the results obtained in predicting the method of exponential smoothing.Results. When predicting the volumes of freight transportation by rail, satisfactory indicators of the verification of forecasting by both the method of exponential smoothing and ANN had been obtained, although the neural network

  7. A space weather forecasting system with multiple satellites based on a self-recognizing network.

    Science.gov (United States)

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-05-05

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  8. A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network

    Directory of Open Access Journals (Sweden)

    Masahiro Tokumitsu

    2014-05-01

    Full Text Available This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV. The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  9. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks.

    Science.gov (United States)

    Vlachas, Pantelis R; Byeon, Wonmin; Wan, Zhong Y; Sapsis, Themistoklis P; Koumoutsakos, Petros

    2018-05-01

    We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.

  10. A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems

    Directory of Open Access Journals (Sweden)

    Farshid Keynia

    2011-03-01

    Full Text Available Short-term load forecast (STLF is an important operational function in both regulated power systems and deregulated open electricity markets. However, STLF is not easy to handle due to the nonlinear and random-like behaviors of system loads, weather conditions, and social and economic environment variations. Despite the research work performed in the area, more accurate and robust STLF methods are still needed due to the importance and complexity of STLF. In this paper, a new neural network approach for STLF is proposed. The proposed neural network has a novel learning algorithm based on a new modified harmony search technique. This learning algorithm can widely search the solution space in various directions, and it can also avoid the overfitting problem, trapping in local minima and dead bands. Based on this learning algorithm, the suggested neural network can efficiently extract the input/output mapping function of the forecast process leading to high STLF accuracy. The proposed approach is tested on two practical power systems and the results obtained are compared with the results of several other recently published STLF methods. These comparisons confirm the validity of the developed approach.

  11. Recurrent networks for wave forecasting

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper presents an application of the Artificial Neural Network, namely Backpropagation Recurrent Neural Network (BRNN) with rprop update algorithm for wave forecasting...

  12. An intelligent sales forecasting system through integration of artificial neural networks and fuzzy neural networks with fuzzy weight elimination.

    Science.gov (United States)

    Kuo, R J; Wu, P; Wang, C P

    2002-09-01

    Sales forecasting plays a very prominent role in business strategy. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average (ARMA). However, sales forecasting is very complicated owing to influence by internal and external environments. Recently, artificial neural networks (ANNs) have also been applied in sales forecasting since their promising performances in the areas of control and pattern recognition. However, further improvement is still necessary since unique circumstances, e.g. promotion, cause a sudden change in the sales pattern. Thus, this study utilizes a proposed fuzzy neural network (FNN), which is able to eliminate the unimportant weights, for the sake of learning fuzzy IF-THEN rules obtained from the marketing experts with respect to promotion. The result from FNN is further integrated with the time series data through an ANN. Both the simulated and real-world problem results show that FNN with weight elimination can have lower training error compared with the regular FNN. Besides, real-world problem results also indicate that the proposed estimation system outperforms the conventional statistical method and single ANN in accuracy.

  13. LOAD FORECASTING FOR POWER SYSTEM PLANNING AND OPERATION USING ARTIFICIAL NEURAL NETWORK AT AL BATINAH REGION OMAN

    Directory of Open Access Journals (Sweden)

    HUSSEIN A. ABDULQADER

    2012-08-01

    Full Text Available Load forecasting is essential part for the power system planning and operation. In this paper the modeling and design of artificial neural network for load forecasting is carried out in a particular region of Oman. Neural network approach helps to reduce the problem associated with conventional method and has the advantage of learning directly from the historical data. The neural network here uses data such as past load; weather information like humidity and temperatures. Once the neural network is trained for the past set of data it can give a prediction of future load. This reduces the capital investment reducing the equipments to be installed. The actual data are taken from the Mazoon Electrical Company, Oman. The data of load for the year 2007, 2008 and 2009 are collected for a particular region called Al Batinah in Oman and trained using neural networks to forecast the future. The main objective is to forecast the amount of electricity needed for better load distribution in the areas of this region in Oman. The load forecasting is done for the year 2010 and is validated for the accuracy.

  14. Day-ahead price forecasting in restructured power systems using artificial neural networks

    International Nuclear Information System (INIS)

    Vahidinasab, V.; Jadid, S.; Kazemi, A.

    2008-01-01

    Over the past 15 years most electricity supply companies around the world have been restructured from monopoly utilities to deregulated competitive electricity markets. Market participants in the restructured electricity markets find short-term electricity price forecasting (STPF) crucial in formulating their risk management strategies. They need to know future electricity prices as their profitability depends on them. This research project classifies and compares different techniques of electricity price forecasting in the literature and selects artificial neural networks (ANN) as a suitable method for price forecasting. To perform this task, market knowledge should be used to optimize the selection of input data for an electricity price forecasting tool. Then sensitivity analysis is used in this research to aid in the selection of the optimum inputs of the ANN and fuzzy c-mean (FCM) algorithm is used for daily load pattern clustering. Finally, ANN with a modified Levenberg-Marquardt (LM) learning algorithm are implemented for forecasting prices in Pennsylvania-New Jersey-Maryland (PJM) market. The forecasting results were compared with the previous works and showed that the results are reasonable and accurate. (author)

  15. Modelling self-optimised short term load forecasting for medium voltage loads using tunning fuzzy systems and Artificial Neural Networks

    International Nuclear Information System (INIS)

    Mahmoud, Thair S.; Habibi, Daryoush; Hassan, Mohammed Y.; Bass, Octavian

    2015-01-01

    Highlights: • A novel Short Term Medium Voltage (MV) Load Forecasting (STLF) model is presented. • A knowledge-based STLF error control mechanism is implemented. • An Artificial Neural Network (ANN)-based optimum tuning is applied on STLF. • The relationship between load profiles and operational conditions is analysed. - Abstract: This paper presents an intelligent mechanism for Short Term Load Forecasting (STLF) models, which allows self-adaptation with respect to the load operational conditions. Specifically, a knowledge-based FeedBack Tunning Fuzzy System (FBTFS) is proposed to instantaneously correlate the information about the demand profile and its operational conditions to make decisions for controlling the model’s forecasting error rate. To maintain minimum forecasting error under various operational scenarios, the FBTFS adaptation was optimised using a Multi-Layer Perceptron Artificial Neural Network (MLPANN), which was trained using Backpropagation algorithm, based on the information about the amount of error and the operational conditions at time of forecasting. For the sake of comparison and performance testing, this mechanism was added to the conventional forecasting methods, i.e. Nonlinear AutoRegressive eXogenous-Artificial Neural Network (NARXANN), Fuzzy Subtractive Clustering Method-based Adaptive Neuro Fuzzy Inference System (FSCMANFIS) and Gaussian-kernel Support Vector Machine (GSVM), and the measured forecasting error reduction average in a 12 month simulation period was 7.83%, 8.5% and 8.32% respectively. The 3.5 MW variable load profile of Edith Cowan University (ECU) in Joondalup, Australia, was used in the modelling and simulations of this model, and the data was provided by Western Power, the transmission and distribution company of the state of Western Australia.

  16. COST ES0602: towards a European network on chemical weather forecasting and information systems

    Directory of Open Access Journals (Sweden)

    J. Kukkonen

    2009-04-01

    Full Text Available The COST ES0602 action provides a forum for benchmarking approaches and practices in data exchange and multi-model capabilities for chemical weather forecasting and near real-time information services in Europe. The action includes approximately 30 participants from 19 countries, and its duration is from 2007 to 2011 (http://www.chemicalweather.eu/. Major efforts have been dedicated in other actions and projects to the development of infrastructures for data flow. We have therefore aimed for collaboration with ongoing actions towards developing near real-time exchange of input data for air quality forecasting. We have collected information on the operational air quality forecasting models on a regional and continental scale in a structured form, and inter-compared and evaluated the physical and chemical structure of these models. We have also constructed a European chemical weather forecasting portal that includes links to most of the available chemical weather forecasting systems in Europe. The collaboration also includes the examination of the case studies that have been organized within COST-728, in order to inter-compare and evaluate the models against experimental data. We have also constructed an operational model forecasting ensemble. Data from a representative set of regional background stations have been selected, and the operational forecasts for this set of sites will be inter-compared and evaluated. The Action has investigated, analysed and reviewed existing chemical weather information systems and services, and will provide recommendations on best practices concerning the presentation and dissemination of chemical weather information towards the public and decision makers.

  17. Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kangji [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China); School of Electricity Information Engineering, Jiangsu University, Zhenjiang 212013 (China); Su, Hongye [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China)

    2010-11-15

    There are several ways to forecast building energy consumption, varying from simple regression to models based on physical principles. In this paper, a new method, namely, the hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system (GA-HANFIS) model is developed. In this model, hierarchical structure decreases the rule base dimension. Both clustering and rule base parameters are optimized by GAs and neural networks (NNs). The model is applied to predict a hotel's daily air conditioning consumption for a period over 3 months. The results obtained by the proposed model are presented and compared with regular method of NNs, which indicates that GA-HANFIS model possesses better performance than NNs in terms of their forecasting accuracy. (author)

  18. World Area Forecast System (WAFS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Area Forecast System (WAFS) is a worldwide system by which world area forecast centers provide aeronautical meteorological en-route forecasts in uniform...

  19. Neural Network Models for Time Series Forecasts

    OpenAIRE

    Tim Hill; Marcus O'Connor; William Remus

    1996-01-01

    Neural networks have been advocated as an alternative to traditional statistical forecasting methods. In the present experiment, time series forecasts produced by neural networks are compared with forecasts from six statistical time series methods generated in a major forecasting competition (Makridakis et al. [Makridakis, S., A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen, R. Winkler. 1982. The accuracy of extrapolation (time series) methods: Results of a ...

  20. Forecasting electricity infeed for distribution system networks : an analysis of the Dutch case

    NARCIS (Netherlands)

    Tanrisever, F.; Derinkuyu, K.; Heeren, M.

    2013-01-01

    Estimating and managing electricity distribution losses are the core business competencies of distribution system operators (DSOs). Since electricity demand is a major driver of network losses, it is essential for DSOs to have an accurate estimate of the electricity infeed in their network. In this

  1. Using Artificial Intelligence to Retrieve the Optimal Parameters and Structures of Adaptive Network-Based Fuzzy Inference System for Typhoon Precipitation Forecast Modeling

    Directory of Open Access Journals (Sweden)

    Chien-Lin Huang

    2015-01-01

    Full Text Available This study aims to construct a typhoon precipitation forecast model providing forecasts one to six hours in advance using optimal model parameters and structures retrieved from a combination of the adaptive network-based fuzzy inference system (ANFIS and artificial intelligence. To enhance the accuracy of the precipitation forecast, two structures were then used to establish the precipitation forecast model for a specific lead-time: a single-model structure and a dual-model hybrid structure where the forecast models of higher and lower precipitation were integrated. In order to rapidly, automatically, and accurately retrieve the optimal parameters and structures of the ANFIS-based precipitation forecast model, a tabu search was applied to identify the adjacent radius in subtractive clustering when constructing the ANFIS structure. The coupled structure was also employed to establish a precipitation forecast model across short and long lead-times in order to improve the accuracy of long-term precipitation forecasts. The study area is the Shimen Reservoir, and the analyzed period is from 2001 to 2009. Results showed that the optimal initial ANFIS parameters selected by the tabu search, combined with the dual-model hybrid method and the coupled structure, provided the favors in computation efficiency and high-reliability predictions in typhoon precipitation forecasts regarding short to long lead-time forecasting horizons.

  2. Ocean wave forecasting using recurrent neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...

  3. Climate Forecast System

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Forecast System Home News Organization Web portal to all Federal, state and local government Web resources and services. The NCEP Climate when using the CFS Reanalysis (CFSR) data. Saha, Suranjana, and Coauthors, 2010: The NCEP Climate

  4. Forecasting of electricity prices with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Gareta, Raquel [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain); Romeo, Luis M. [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain)]. E-mail: luismi@unizar.es; Gil, Antonia [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain)

    2006-08-15

    During recent years, the electricity energy market deregulation has led to a new free competition situation in Europe and other countries worldwide. Generators, distributors and qualified clients have some uncertainties about the future evolution of electricity markets. In consequence, feasibility studies of new generation plants, design of new systems and energy management optimization are frequently postponed. The ability of forecasting energy prices, for instance the electricity prices, would be highly appreciated in order to improve the profitability of utility investments. The development of new simulation techniques, such as Artificial Intelligence (AI), has provided a good tool to forecast time series. In this paper, it is demonstrated that the Neural Network (NN) approach can be used to forecast short term hourly electricity pool prices (for the next day and two or three days after). The NN architecture and design for prices forecasting are described in this paper. The results are tested with extensive data sets, and good agreement is found between actual data and NN results. This methodology could help to improve power plant generation capacity management and, certainly, more profitable operation in daily energy pools.

  5. Forecasting of electricity prices with neural networks

    International Nuclear Information System (INIS)

    Gareta, Raquel; Romeo, Luis M.; Gil, Antonia

    2006-01-01

    During recent years, the electricity energy market deregulation has led to a new free competition situation in Europe and other countries worldwide. Generators, distributors and qualified clients have some uncertainties about the future evolution of electricity markets. In consequence, feasibility studies of new generation plants, design of new systems and energy management optimization are frequently postponed. The ability of forecasting energy prices, for instance the electricity prices, would be highly appreciated in order to improve the profitability of utility investments. The development of new simulation techniques, such as Artificial Intelligence (AI), has provided a good tool to forecast time series. In this paper, it is demonstrated that the Neural Network (NN) approach can be used to forecast short term hourly electricity pool prices (for the next day and two or three days after). The NN architecture and design for prices forecasting are described in this paper. The results are tested with extensive data sets, and good agreement is found between actual data and NN results. This methodology could help to improve power plant generation capacity management and, certainly, more profitable operation in daily energy pools

  6. Forecasting Zakat collection using artificial neural network

    Science.gov (United States)

    Sy Ahmad Ubaidillah, Sh. Hafizah; Sallehuddin, Roselina

    2013-04-01

    'Zakat', "that which purifies" or "alms", is the giving of a fixed portion of one's wealth to charity, generally to the poor and needy. It is one of the five pillars of Islam, and must be paid by all practicing Muslims who have the financial means (nisab). 'Nisab' is the minimum level to determine whether there is a 'zakat' to be paid on the assets. Today, in most Muslim countries, 'zakat' is collected through a decentralized and voluntary system. Under this voluntary system, 'zakat' committees are established, which are tasked with the collection and distribution of 'zakat' funds. 'Zakat' promotes a more equitable redistribution of wealth, and fosters a sense of solidarity amongst members of the 'Ummah'. The Malaysian government has established a 'zakat' center at every state to facilitate the management of 'zakat'. The center has to have a good 'zakat' management system to effectively execute its functions especially in the collection and distribution of 'zakat'. Therefore, a good forecasting model is needed. The purpose of this study is to develop a forecasting model for Pusat Zakat Pahang (PZP) to predict the total amount of collection from 'zakat' of assets more precisely. In this study, two different Artificial Neural Network (ANN) models using two different learning algorithms are developed; Back Propagation (BP) and Levenberg-Marquardt (LM). Both models are developed and compared in terms of their accuracy performance. The best model is determined based on the lowest mean square error and the highest correlations values. Based on the results obtained from the study, BP neural network is recommended as the forecasting model to forecast the collection from 'zakat' of assets for PZP.

  7. Neural network based photovoltaic electrical forecasting in south Algeria

    International Nuclear Information System (INIS)

    Hamid Oudjana, S.; Hellal, A.; Hadj Mahammed, I

    2014-01-01

    Photovoltaic electrical forecasting is significance for the optimal operation and power predication of grid-connected photovoltaic (PV) plants, and it is important task in renewable energy electrical system planning and operating. This paper explores the application of neural networks (NN) to study the design of photovoltaic electrical forecasting systems for one week ahead using weather databases include the global irradiance, and temperature of Ghardaia city (south of Algeria) for one year of 2013 using a data acquisition system. Simulations were run and the results are discussed showing that neural networks Technique is capable to decrease the photovoltaic electrical forecasting error. (author)

  8. Forecasting in Complex Systems

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2014-12-01

    Complex nonlinear systems are typically characterized by many degrees of freedom, as well as interactions between the elements. Interesting examples can be found in the areas of earthquakes and finance. In these two systems, fat tails play an important role in the statistical dynamics. For earthquake systems, the Gutenberg-Richter magnitude-frequency is applicable, whereas for daily returns for the securities in the financial markets are known to be characterized by leptokurtotic statistics in which the tails are power law. Very large fluctuations are present in both systems. In earthquake systems, one has the example of great earthquakes such as the M9.1, March 11, 2011 Tohoku event. In financial systems, one has the example of the market crash of October 19, 1987. Both were largely unexpected events that severely impacted the earth and financial systems systemically. Other examples include the M9.3 Andaman earthquake of December 26, 2004, and the Great Recession which began with the fall of Lehman Brothers investment bank on September 12, 2013. Forecasting the occurrence of these damaging events has great societal importance. In recent years, national funding agencies in a variety of countries have emphasized the importance of societal relevance in research, and in particular, the goal of improved forecasting technology. Previous work has shown that both earthquakes and financial crashes can be described by a common Landau-Ginzburg-type free energy model. These metastable systems are characterized by fat tail statistics near the classical spinodal. Correlations in these systems can grow and recede, but do not imply causation, a common source of misunderstanding. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In this talk, we describe the basic phenomenology of these systems and emphasize their similarities and differences. We also consider the problem of forecast validation and verification

  9. Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis

    Directory of Open Access Journals (Sweden)

    Zhongrong Zhang

    2016-01-01

    Full Text Available Wind energy has increasingly played a vital role in mitigating conventional resource shortages. Nevertheless, the stochastic nature of wind poses a great challenge when attempting to find an accurate forecasting model for wind power. Therefore, precise wind power forecasts are of primary importance to solve operational, planning and economic problems in the growing wind power scenario. Previous research has focused efforts on the deterministic forecast of wind power values, but less attention has been paid to providing information about wind energy. Based on an optimal Adaptive-Network-Based Fuzzy Inference System (ANFIS and Singular Spectrum Analysis (SSA, this paper develops a hybrid uncertainty forecasting model, IFASF (Interval Forecast-ANFIS-SSA-Firefly Alogorithm, to obtain the upper and lower bounds of daily average wind power, which is beneficial for the practical operation of both the grid company and independent power producers. To strengthen the practical ability of this developed model, this paper presents a comparison between IFASF and other benchmarks, which provides a general reference for this aspect for statistical or artificially intelligent interval forecast methods. The comparison results show that the developed model outperforms eight benchmarks and has a satisfactory forecasting effectiveness in three different wind farms with two time horizons.

  10. A Neuro-genetic Based Short-term Forecasting Framework for Network Intrusion Prediction System

    Institute of Scientific and Technical Information of China (English)

    Siva S. Sivatha Sindhu; S. Geetha; M. Marikannan; A. Kannan

    2009-01-01

    work show that the system achieves improvement in terms of misclassification cost when compared with conventional IDS. The results of the experiments show that this system can be deployed based on a real network or database environment for effective prediction of both normal attacks and new attacks.

  11. Improved Local Weather Forecasts Using Artificial Neural Networks

    DEFF Research Database (Denmark)

    Wollsen, Morten Gill; Jørgensen, Bo Nørregaard

    2015-01-01

    Solar irradiance and temperature forecasts are used in many different control systems. Such as intelligent climate control systems in commercial greenhouses, where the solar irradiance affects the use of supplemental lighting. This paper proposes a novel method to predict the forthcoming weather...... using an artificial neural network. The neural network used is a NARX network, which is known to model non-linear systems well. The predictions are compared to both a design reference year as well as commercial weather forecasts based upon numerical modelling. The results presented in this paper show...

  12. Genetic Algorithms vs. Artificial Neural Networks in Economic Forecasting Process

    Directory of Open Access Journals (Sweden)

    Nicolae Morariu

    2008-01-01

    Full Text Available This paper aims to describe the implementa-tion of a neural network and a genetic algorithm system in order to forecast certain economic indicators of a free market economy. In a free market economy forecasting process precedes the economic planning (a management function, providing important information for the result of the last process. Forecasting represents a starting point in setting of target for a firm, an organization or even a branch of the economy. Thus, the forecasting method used can influence in a significant mode the evolution of an entity. In the following we will describe the forecasting of an economic indicator using two intelligent systems. The difference between the results obtained by this two systems are described in chapter IV.

  13. Flood Forecasting in River System Using ANFIS

    International Nuclear Information System (INIS)

    Ullah, Nazrin; Choudhury, P.

    2010-01-01

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  14. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  15. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  16. Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems

    Directory of Open Access Journals (Sweden)

    Luis Hernández

    2014-03-01

    Full Text Available The new paradigms and latest developments in the Electrical Grid are based on the introduction of distributed intelligence at several stages of its physical layer, giving birth to concepts such as Smart Grids, Virtual Power Plants, microgrids, Smart Buildings and Smart Environments. Distributed Generation (DG is a philosophy in which energy is no longer produced exclusively in huge centralized plants, but also in smaller premises which take advantage of local conditions in order to minimize transmission losses and optimize production and consumption. This represents a new opportunity for renewable energy, because small elements such as solar panels and wind turbines are expected to be scattered along the grid, feeding local installations or selling energy to the grid depending on their local generation/consumption conditions. The introduction of these highly dynamic elements will lead to a substantial change in the curves of demanded energy. The aim of this paper is to apply Short-Term Load Forecasting (STLF in microgrid environments with curves and similar behaviours, using two different data sets: the first one packing electricity consumption information during four years and six months in a microgrid along with calendar data, while the second one will be just four months of the previous parameters along with the solar radiation from the site. For the first set of data different STLF models will be discussed, studying the effect of each variable, in order to identify the best one. That model will be employed with the second set of data, in order to make a comparison with a new model that takes into account the solar radiation, since the photovoltaic installations of the microgrid will cause the power demand to fluctuate depending on the solar radiation.

  17. Black Sea coastal forecasting system

    Directory of Open Access Journals (Sweden)

    A. I. Kubryakov

    2012-03-01

    Full Text Available The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast.

  18. Foreign currency rate forecasting using neural networks

    Science.gov (United States)

    Pandya, Abhijit S.; Kondo, Tadashi; Talati, Amit; Jayadevappa, Suryaprasad

    2000-03-01

    Neural networks are increasingly being used as a forecasting tool in many forecasting problems. This paper discusses the application of neural networks in predicting daily foreign exchange rates between the USD, GBP as well as DEM. We approach the problem from a time-series analysis framework - where future exchange rates are forecasted solely using past exchange rates. This relies on the belief that the past prices and future prices are very close related, and interdependent. We present the result of training a neural network with historical USD-GBP data. The methodology used in explained, as well as the training process. We discuss the selection of inputs to the network, and present a comparison of using the actual exchange rates and the exchange rate differences as inputs. Price and rate differences are the preferred way of training neural network in financial applications. Results of both approaches are present together for comparison. We show that the network is able to learn the trends in the exchange rate movements correctly, and present the results of the prediction over several periods of time.

  19. Global Ensemble Forecast System (GEFS) [1 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  20. Forecasting Monsoon Precipitation Using Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It pres ents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corre sponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a 'new' data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability.

  1. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    Science.gov (United States)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  2. Wave forecasting in near real time basis by neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, S.; Mandal, S.; Prabaharan, N.

    ., forecasting of waves become an important aspect of marine environment. This paper presents application of the neural network (NN) with better update algorithms, namely rprop, quickprop and superSAB for wave forecasting. Measured waves off Marmagoa, Goa, India...

  3. Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads

    Energy Technology Data Exchange (ETDEWEB)

    Pai, Ping-Feng [Department of Information Management, National Chi Nan University, 1 University Road, Puli, Nantou 545, Taiwan (China)

    2006-09-15

    Because of the privatization of electricity in many countries, load forecasting has become one of the most crucial issues in the planning and operations of electric utilities. In addition, accurate regional load forecasting can provide the transmission and distribution operators with more information. The hybrid ellipsoidal fuzzy system was originally designed to solve control and pattern recognition problems. The main objective of this investigation is to develop a hybrid ellipsoidal fuzzy system for time series forecasting (HEFST) and apply the proposed model to forecast regional electricity loads in Taiwan. Additionally, a scaled conjugate gradient learning method is employed in the supervised learning phase of the HEFST model. Subsequently, numerical data taken from the existing literature is used to demonstrate the forecasting performance of the HEFST model. Simulation results reveal that the proposed model has better forecasting performance than the artificial neural network model and the regression model. Thus, the HEFST model is a valid and promising alternative for forecasting regional electricity loads. (author)

  4. Electricity price forecasting using Enhanced Probability Neural Network

    International Nuclear Information System (INIS)

    Lin, Whei-Min; Gow, Hong-Jey; Tsai, Ming-Tang

    2010-01-01

    This paper proposes a price forecasting system for electric market participants to reduce the risk of price volatility. Combining the Probability Neural Network (PNN) and Orthogonal Experimental Design (OED), an Enhanced Probability Neural Network (EPNN) is proposed in the solving process. In this paper, the Locational Marginal Price (LMP), system load and temperature of PJM system were collected and the data clusters were embedded in the Excel Database according to the year, season, workday, and weekend. With the OED to smooth parameters in the EPNN, the forecasting error can be improved during the training process to promote the accuracy and reliability where even the ''spikes'' can be tracked closely. Simulation results show the effectiveness of the proposed EPNN to provide quality information in a price volatile environment. (author)

  5. The Invasive Species Forecasting System

    Science.gov (United States)

    Schnase, John; Most, Neal; Gill, Roger; Ma, Peter

    2011-01-01

    The Invasive Species Forecasting System (ISFS) provides computational support for the generic work processes found in many regional-scale ecosystem modeling applications. Decision support tools built using ISFS allow a user to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of management concern, such as a national park, monument, forest, or refuge. This type of decision product helps resource managers plan invasive species protection, monitoring, and control strategies for the lands they manage. Until now, scientists and resource managers have lacked the data-assembly and computing capabilities to produce these maps quickly and cost efficiently. ISFS focuses on regional-scale habitat suitability modeling for invasive terrestrial plants. ISFS s component architecture emphasizes simplicity and adaptability. Its core services can be easily adapted to produce model-based decision support tools tailored to particular parks, monuments, forests, refuges, and related management units. ISFS can be used to build standalone run-time tools that require no connection to the Internet, as well as fully Internet-based decision support applications. ISFS provides the core data structures, operating system interfaces, network interfaces, and inter-component constraints comprising the canonical workflow for habitat suitability modeling. The predictors, analysis methods, and geographic extents involved in any particular model run are elements of the user space and arbitrarily configurable by the user. ISFS provides small, lightweight, readily hardened core components of general utility. These components can be adapted to unanticipated uses, are tailorable, and require at most a loosely coupled, nonproprietary connection to the Web. Users can invoke capabilities from a command line; programmers can integrate ISFS's core components into more complex systems and services. Taken together, these

  6. Hybrid Forecasting Approach Based on GRNN Neural Network and SVR Machine for Electricity Demand Forecasting

    Directory of Open Access Journals (Sweden)

    Weide Li

    2017-01-01

    Full Text Available Accurate electric power demand forecasting plays a key role in electricity markets and power systems. The electric power demand is usually a non-linear problem due to various unknown reasons, which make it difficult to get accurate prediction by traditional methods. The purpose of this paper is to propose a novel hybrid forecasting method for managing and scheduling the electricity power. EEMD-SCGRNN-PSVR, the proposed new method, combines ensemble empirical mode decomposition (EEMD, seasonal adjustment (S, cross validation (C, general regression neural network (GRNN and support vector regression machine optimized by the particle swarm optimization algorithm (PSVR. The main idea of EEMD-SCGRNN-PSVR is respectively to forecast waveform and trend component that hidden in demand series to substitute directly forecasting original electric demand. EEMD-SCGRNN-PSVR is used to predict the one week ahead half-hour’s electricity demand in two data sets (New South Wales (NSW and Victorian State (VIC in Australia. Experimental results show that the new hybrid model outperforms the other three models in terms of forecasting accuracy and model robustness.

  7. Short term load forecasting using neuro-fuzzy networks

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.; Hassan, A. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Martinez, D. [Black Hills Power and Light, Rapid City, SD (United States)

    2005-07-01

    Details of a neuro-fuzzy network-based short term load forecasting system for power utilities were presented. The fuzzy logic controller was used to fuzzify inputs representing historical temperature and load curves. The fuzzified inputs were then used to develop the fuzzy rules matrix. Output membership function values were determined by evaluating the fuzzified inputs with the fuzzy rules. Output membership function values were used as inputs for the neural network portion of the system. The training process used a back propagation gradient descent algorithm to adjust the weight values of the neural network in order to reduce the error between the neural network output and the desired output. The neural network was then used to predict future load values. Sample data were taken from a local power company's daily load curve to validate the system. A 10 per cent forecast error was introduced in the temperature values to determine the effect on load prediction. Results of the study suggest that the combined use of fuzzy logic and neural networks provide greater accuracy than studies where either approach is used alone. 6 refs., 6 figs.

  8. Establishment of turbidity forecasting model and early-warning system for source water turbidity management using back-propagation artificial neural network algorithm and probability analysis.

    Science.gov (United States)

    Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng

    2014-08-01

    The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.

  9. Neural network versus classical time series forecasting models

    Science.gov (United States)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  10. Climate Forecast System Version 2 (CFSv2) Operational Forecasts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Forecast System Version 2 (CFSv2) produced by the NOAA National Centers for Environmental Prediction (NCEP) is a fully coupled model representing the...

  11. A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting

    Directory of Open Access Journals (Sweden)

    Ping-Huan Kuo

    2018-01-01

    Full Text Available One of the most important research topics in smart grid technology is load forecasting, because accuracy of load forecasting highly influences reliability of the smart grid systems. In the past, load forecasting was obtained by traditional analysis techniques such as time series analysis and linear regression. Since the load forecast focuses on aggregated electricity consumption patterns, researchers have recently integrated deep learning approaches with machine learning techniques. In this study, an accurate deep neural network algorithm for short-term load forecasting (STLF is introduced. The forecasting performance of proposed algorithm is compared with performances of five artificial intelligence algorithms that are commonly used in load forecasting. The Mean Absolute Percentage Error (MAPE and Cumulative Variation of Root Mean Square Error (CV-RMSE are used as accuracy evaluation indexes. The experiment results show that MAPE and CV-RMSE of proposed algorithm are 9.77% and 11.66%, respectively, displaying very high forecasting accuracy.

  12. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors

    International Nuclear Information System (INIS)

    Liu, Xiuli; Moreno, Blanca; García, Ana Salomé

    2016-01-01

    A combined forecast of Grey forecasting method and neural network back propagation model, which is called Grey Neural Network and Input-Output Combined Forecasting Model (GNF-IO model), is proposed. A real case of energy consumption forecast is used to validate the effectiveness of the proposed model. The GNF-IO model predicts coal, crude oil, natural gas, renewable and nuclear primary energy consumption volumes by Spain's 36 sub-sectors from 2010 to 2015 according to three different GDP growth scenarios (optimistic, baseline and pessimistic). Model test shows that the proposed model has higher simulation and forecasting accuracy on energy consumption than Grey models separately and other combination methods. The forecasts indicate that the primary energies as coal, crude oil and natural gas will represent on average the 83.6% percent of the total of primary energy consumption, raising concerns about security of supply and energy cost and adding risk for some industrial production processes. Thus, Spanish industry must speed up its transition to an energy-efficiency economy, achieving a cost reduction and increase in the level of self-supply. - Highlights: • Forecasting System Using Grey Models combined with Input-Output Models is proposed. • Primary energy consumption in Spain is used to validate the model. • The grey-based combined model has good forecasting performance. • Natural gas will represent the majority of the total of primary energy consumption. • Concerns about security of supply, energy cost and industry competitiveness are raised.

  13. Coastal risk forecast system

    Science.gov (United States)

    Sabino, André; Poseiro, Pedro; Rodrigues, Armanda; Reis, Maria Teresa; Fortes, Conceição J.; Reis, Rui; Araújo, João

    2018-03-01

    The run-up and overtopping by sea waves are two of the main processes that threaten coastal structures, leading to flooding, destruction of both property and the environment, and harm to people. To build early warning systems, the consequences and associated risks in the affected areas must be evaluated. It is also important to understand how these two types of spatial information integrate with sensor data sources and the risk assessment methodology. This paper describes the relationship between consequences and risk maps, their role in risk management and how the HIDRALERTA system integrates both aspects in its risk methodology. It describes a case study for Praia da Vitória Port, Terceira Island, Azores, Portugal, showing that the main innovations in this system are twofold: it represents the overtopping flow and consequent flooding, which are critical for coastal and port areas protected by maritime structures, and it works also as a risk assessment tool, extremely important for long-term planning and decision-making. Moreover, the implementation of the system considers possible known variability issues, enabling changes in its behaviour as needs arise. This system has the potential to become a useful tool for the management of coastal and port areas, due to its capacity to effectively issue warnings and assess risks.

  14. Coastal risk forecast system

    Science.gov (United States)

    Sabino, André; Poseiro, Pedro; Rodrigues, Armanda; Reis, Maria Teresa; Fortes, Conceição J.; Reis, Rui; Araújo, João

    2018-04-01

    The run-up and overtopping by sea waves are two of the main processes that threaten coastal structures, leading to flooding, destruction of both property and the environment, and harm to people. To build early warning systems, the consequences and associated risks in the affected areas must be evaluated. It is also important to understand how these two types of spatial information integrate with sensor data sources and the risk assessment methodology. This paper describes the relationship between consequences and risk maps, their role in risk management and how the HIDRALERTA system integrates both aspects in its risk methodology. It describes a case study for Praia da Vitória Port, Terceira Island, Azores, Portugal, showing that the main innovations in this system are twofold: it represents the overtopping flow and consequent flooding, which are critical for coastal and port areas protected by maritime structures, and it works also as a risk assessment tool, extremely important for long-term planning and decision-making. Moreover, the implementation of the system considers possible known variability issues, enabling changes in its behaviour as needs arise. This system has the potential to become a useful tool for the management of coastal and port areas, due to its capacity to effectively issue warnings and assess risks.

  15. Global Forecast System (GFS) [1 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) is a weather forecast model produced by the National Centers for Environmental Prediction (NCEP). Dozens of atmospheric and...

  16. Hybrid Intrusion Forecasting Framework for Early Warning System

    Science.gov (United States)

    Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo

    Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.

  17. Magnetogram Forecast: An All-Clear Space Weather Forecasting System

    Science.gov (United States)

    Barghouty, Nasser; Falconer, David

    2015-01-01

    Solar flares and coronal mass ejections (CMEs) are the drivers of severe space weather. Forecasting the probability of their occurrence is critical in improving space weather forecasts. The National Oceanic and Atmospheric Administration (NOAA) currently uses the McIntosh active region category system, in which each active region on the disk is assigned to one of 60 categories, and uses the historical flare rates of that category to make an initial forecast that can then be adjusted by the NOAA forecaster. Flares and CMEs are caused by the sudden release of energy from the coronal magnetic field by magnetic reconnection. It is believed that the rate of flare and CME occurrence in an active region is correlated with the free energy of an active region. While the free energy cannot be measured directly with present observations, proxies of the free energy can instead be used to characterize the relative free energy of an active region. The Magnetogram Forecast (MAG4) (output is available at the Community Coordinated Modeling Center) was conceived and designed to be a databased, all-clear forecasting system to support the operational goals of NASA's Space Radiation Analysis Group. The MAG4 system automatically downloads nearreal- time line-of-sight Helioseismic and Magnetic Imager (HMI) magnetograms on the Solar Dynamics Observatory (SDO) satellite, identifies active regions on the solar disk, measures a free-energy proxy, and then applies forecasting curves to convert the free-energy proxy into predicted event rates for X-class flares, M- and X-class flares, CMEs, fast CMEs, and solar energetic particle events (SPEs). The forecast curves themselves are derived from a sample of 40,000 magnetograms from 1,300 active region samples, observed by the Solar and Heliospheric Observatory Michelson Doppler Imager. Figure 1 is an example of MAG4 visual output

  18. Online multistep-ahead inundation depth forecasts by recurrent NARX networks

    Directory of Open Access Journals (Sweden)

    H.-Y. Shen

    2013-03-01

    Full Text Available Various types of artificial neural networks (ANNs have been successfully applied in hydrological fields, but relatively scant on multistep-ahead flood inundation forecasting, which is very difficult to achieve, especially when dealing with forecasts without regular observed data. This study proposes a recurrent configuration of nonlinear autoregressive with exogenous inputs (NARX network, called R-NARX, to forecast multistep-ahead inundation depths in an inundation area. The proposed R-NARX is constructed based on the recurrent neural network (RNN, which is commonly used for modeling nonlinear dynamical systems. The models were trained and tested based on a large number of inundation data generated by a well validated two-dimensional simulation model at thirteen inundation-prone sites in Yilan County, Taiwan. We demonstrate that the R-NARX model can effectively inhibit error growth and accumulation when being applied to online multistep-ahead inundation forecasts over a long lasting forecast period. For comparison, a feedforward time-delay and an online feedback configuration of NARX networks (T-NARX and O-NARX were performed. The results show that (1 T-NARX networks cannot make online forecasts due to unavailable inputs in the constructed networks even though they provide the best performances for reference only; and (2 R-NARX networks consistently outperform O-NARX networks and can be adequately applied to online multistep-ahead forecasts of inundation depths in the study area during typhoon events.

  19. Short-term forecasting of turbidity in trunk main networks.

    Science.gov (United States)

    Meyers, Gregory; Kapelan, Zoran; Keedwell, Edward

    2017-11-01

    Water discolouration is an increasingly important and expensive issue due to rising customer expectations, tighter regulatory demands and ageing Water Distribution Systems (WDSs) in the UK and abroad. This paper presents a new turbidity forecasting methodology capable of aiding operational staff and enabling proactive management strategies. The turbidity forecasting methodology developed here is completely data-driven and does not require hydraulic or water quality network model that is expensive to build and maintain. The methodology is tested and verified on a real trunk main network with observed turbidity measurement data. Results obtained show that the methodology can detect if discolouration material is mobilised, estimate if sufficient turbidity will be generated to exceed a preselected threshold and approximate how long the material will take to reach the downstream meter. Classification based forecasts of turbidity can be reliably made up to 5 h ahead although at the expense of increased false alarm rates. The methodology presented here could be used as an early warning system that can enable a multitude of cost beneficial proactive management strategies to be implemented as an alternative to expensive trunk mains cleaning programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Forecasting Water Levels Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Shreenivas N. Londhe

    2011-06-01

    Full Text Available For all Ocean related activities it is necessary to predict the actual water levels as accurate as possible. The present work aims at predicting the water levels with a lead time of few hours to a day using the technique of artificial neural networks. Instead of using the previous and current values of observed water level time series directly as input and output the water level anomaly (difference between the observed water level and harmonically predicted tidal level is calculated for each hour and the ANN model is developed using this time series. The network predicted anomaly is then added to harmonic tidal level to predict the water levels. The exercise is carried out at six locations, two in The Gulf of Mexico, two in The Gulf of Maine and two in The Gulf of Alaska along the USA coastline. The ANN models performed reasonably well for all forecasting intervals at all the locations. The ANN models were also run in real time mode for a period of eight months. Considering the hurricane season in Gulf of Mexico the models were also tested particularly during hurricanes.

  1. Deterministic Echo State Networks Based Stock Price Forecasting

    Directory of Open Access Journals (Sweden)

    Jingpei Dan

    2014-01-01

    Full Text Available Echo state networks (ESNs, as efficient and powerful computational models for approximating nonlinear dynamical systems, have been successfully applied in financial time series forecasting. Reservoir constructions in standard ESNs rely on trials and errors in real applications due to a series of randomized model building stages. A novel form of ESN with deterministically constructed reservoir is competitive with standard ESN by minimal complexity and possibility of optimizations for ESN specifications. In this paper, forecasting performances of deterministic ESNs are investigated in stock price prediction applications. The experiment results on two benchmark datasets (Shanghai Composite Index and S&P500 demonstrate that deterministic ESNs outperform standard ESN in both accuracy and efficiency, which indicate the prospect of deterministic ESNs for financial prediction.

  2. Wind Resource Assessment and Forecast Planning with Neural Networks

    Directory of Open Access Journals (Sweden)

    Nicolus K. Rotich

    2014-06-01

    Full Text Available In this paper we built three types of artificial neural networks, namely: Feed forward networks, Elman networks and Cascade forward networks, for forecasting wind speeds and directions. A similar network topology was used for all the forecast horizons, regardless of the model type. All the models were then trained with real data of collected wind speeds and directions over a period of two years in the municipal of Puumala, Finland. Up to 70th percentile of the data was used for training, validation and testing, while 71–85th percentile was presented to the trained models for validation. The model outputs were then compared to the last 15% of the original data, by measuring the statistical errors between them. The feed forward networks returned the lowest errors for wind speeds. Cascade forward networks gave the lowest errors for wind directions; Elman networks returned the lowest errors when used for short term forecasting.

  3. A Wind Forecasting System for Energy Application

    Science.gov (United States)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated

  4. The Discriminant Analysis Flare Forecasting System (DAFFS)

    Science.gov (United States)

    Leka, K. D.; Barnes, Graham; Wagner, Eric; Hill, Frank; Marble, Andrew R.

    2016-05-01

    The Discriminant Analysis Flare Forecasting System (DAFFS) has been developed under NOAA/Small Business Innovative Research funds to quantitatively improve upon the NOAA/SWPC flare prediction. In the Phase-I of this project, it was demonstrated that DAFFS could indeed improve by the requested 25% most of the standard flare prediction data products from NOAA/SWPC. In the Phase-II of this project, a prototype has been developed and is presently running autonomously at NWRA.DAFFS uses near-real-time data from NOAA/GOES, SDO/HMI, and the NSO/GONG network to issue both region- and full-disk forecasts of solar flares, based on multi-variable non-parametric Discriminant Analysis. Presently, DAFFS provides forecasts which match those provided by NOAA/SWPC in terms of thresholds and validity periods (including 1-, 2-, and 3- day forecasts), although issued twice daily. Of particular note regarding DAFFS capabilities are the redundant system design, automatically-generated validation statistics and the large range of customizable options available. As part of this poster, a description of the data used, algorithm, performance and customizable options will be presented, as well as a demonstration of the DAFFS prototype.DAFFS development at NWRA is supported by NOAA/SBIR contracts WC-133R-13-CN-0079 and WC-133R-14-CN-0103, with additional support from NASA contract NNH12CG10C, plus acknowledgment to the SDO/HMI and NSO/GONG facilities and NOAA/SWPC personnel for data products, support, and feedback. DAFFS is presently ready for Phase-III development.

  5. Improving Artificial Neural Network Forecasts with Kalman Filtering ...

    African Journals Online (AJOL)

    In this paper, we examine the use of the artificial neural network method as a forecasting technique in financial time series and the application of a Kalman filter algorithm to improve the accuracy of the model. Forecasting accuracy criteria are used to compare the two models over different set of data from different companies ...

  6. An Electrical Energy Consumption Monitoring and Forecasting System

    Directory of Open Access Journals (Sweden)

    J. L. Rojas-Renteria

    2016-10-01

    Full Text Available Electricity consumption is currently an issue of great interest for power companies that need an as much as accurate profile for controlling the installed systems but also for designing future expansions and alterations. Detailed monitoring has proved to be valuable for both power companies and consumers. Further, as smart grid technology is bound to result to increasingly flexible rates, an accurate forecast is bound to prove valuable in the future. In this paper, a monitoring and forecasting system is investigated. The monitoring system was installed in an actual building and the recordings were used to design and evaluate the forecasting system, based on an artificial neural network. Results show that the system can provide detailed monitoring and also an accurate forecast for a building’s consumption.

  7. Cyclone track forecasting based on satellite images using artificial neural networks

    OpenAIRE

    Kovordanyi, Rita; Roy, Chandan

    2009-01-01

    Many places around the world are exposed to tropical cyclones and associated storm surges. In spite of massive efforts, a great number of people die each year as a result of cyclone events. To mitigate this damage, improved forecasting techniques must be developed. The technique presented here uses artificial neural networks to interpret NOAA-AVHRR satellite images. A multi-layer neural network, resembling the human visual system, was trained to forecast the movement of cyclones based on sate...

  8. Forecasting Baltic Dirty Tanker Index by Applying Wavelet Neural Networks

    DEFF Research Database (Denmark)

    Fan, Shuangrui; JI, TINGYUN; Bergqvist, Rickard

    2013-01-01

    modeling techniques used in freight rate forecasting. At the same time research in shipping index forecasting e.g. BDTI applying artificial intelligent techniques is scarce. This analyses the possibilities to forecast the BDTI by applying Wavelet Neural Networks (WNN). Firstly, the characteristics...... of traditional and artificial intelligent forecasting techniques are discussed and rationales for choosing WNN are explained. Secondly, the components and features of BDTI will be explicated. After that, the authors delve the determinants and influencing factors behind fluctuations of the BDTI in order to set...

  9. Data Driven Broiler Weight Forecasting using Dynamic Neural Network Models

    DEFF Research Database (Denmark)

    Johansen, Simon Vestergaard; Bendtsen, Jan Dimon; Riisgaard-Jensen, Martin

    2017-01-01

    In this article, the dynamic influence of environmental broiler house conditions and broiler growth is investigated. Dynamic neural network forecasting models have been trained on farm-scale broiler batch production data from 12 batches from the same house. The model forecasts future broiler weight...... and uses environmental conditions such as heating, ventilation, and temperature along with broiler behavior such as feed and water consumption. Training data and forecasting data is analyzed to explain when the model might fail at generalizing. We present ensemble broiler weight forecasts to day 7, 14, 21...

  10. Daily Nigerian peak load forecasting using artificial neural network ...

    African Journals Online (AJOL)

    A daily peak load forecasting technique that uses artificial neural network with seasonal indices is presented in this paper. A neural network of relatively smaller size than the main prediction network is used to predict the daily peak load for a period of one year over which the actual daily load data are available using one ...

  11. Short term and medium term power distribution load forecasting by neural networks

    International Nuclear Information System (INIS)

    Yalcinoz, T.; Eminoglu, U.

    2005-01-01

    Load forecasting is an important subject for power distribution systems and has been studied from different points of view. In general, load forecasts should be performed over a broad spectrum of time intervals, which could be classified into short term, medium term and long term forecasts. Several research groups have proposed various techniques for either short term load forecasting or medium term load forecasting or long term load forecasting. This paper presents a neural network (NN) model for short term peak load forecasting, short term total load forecasting and medium term monthly load forecasting in power distribution systems. The NN is used to learn the relationships among past, current and future temperatures and loads. The neural network was trained to recognize the peak load of the day, total load of the day and monthly electricity consumption. The suitability of the proposed approach is illustrated through an application to real load shapes from the Turkish Electricity Distribution Corporation (TEDAS) in Nigde. The data represents the daily and monthly electricity consumption in Nigde, Turkey

  12. Forecasting electricity market pricing using artificial neural networks

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien

    2007-01-01

    Electricity price forecasting is extremely important for all market players, in particular for generating companies: in the short term, they must set up bids for the spot market; in the medium term, they have to define contract policies; and in the long term, they must define their expansion plans. For forecasting long-term electricity market pricing, in order to avoid excessive round-off and prediction errors, this paper proposes a new artificial neural network (ANN) with single output node structure by using direct forecasting approach. The potentials of ANNs are investigated by employing a rolling cross validation scheme. Out of sample performance evaluated with three criteria across five forecasting horizons shows that the proposed ANNs are a more robust multi-step ahead forecasting method than autoregressive error models. Moreover, ANN predictions are quite accurate even when the length of the forecast horizon is relatively short or long

  13. Results on SSH neural network forecasting in the Mediterranean Sea

    Science.gov (United States)

    Rixen, Michel; Beckers, Jean-Marie; Alvarez, Alberto; Tintore, Joaquim

    2002-01-01

    Nowadays, satellites are the only monitoring systems that cover almost continuously all possible ocean areas and are now an essential part of operational oceanography. A novel approach based on artificial intelligence (AI) concepts, exploits pasts time series of satellite images to infer near future ocean conditions at the surface by neural networks and genetic algorithms. The size of the AI problem is drastically reduced by splitting the spatio-temporal variability contained in the remote sensing data by using empirical orthogonal function (EOF) decomposition. The problem of forecasting the dynamics of a 2D surface field can thus be reduced by selecting the most relevant empirical modes, and non-linear time series predictors are then applied on the amplitudes only. In the present case study, we use altimetric maps of the Mediterranean Sea, combining TOPEX-POSEIDON and ERS-1/2 data for the period 1992 to 1997. The learning procedure is applied to each mode individually. The final forecast is then reconstructed form the EOFs and the forecasted amplitudes and compared to the real observed field for validation of the method.

  14. Inflow forecasting using Artificial Neural Networks for reservoir operation

    Directory of Open Access Journals (Sweden)

    C. Chiamsathit

    2016-05-01

    Full Text Available In this study, multi-layer perceptron (MLP artificial neural networks have been applied to forecast one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As basis of comparison, four inflow situations were considered: (1 inflow known and assumed to be the historic (Type A; (2 inflow known and assumed to be the forecast (Type F; (3 inflow known and assumed to be the historic mean for month (Type M; and (4 inflow is unknown with release decision only conditioned on the starting reservoir storage (Type N. Reservoir performance was summarised in terms of reliability, resilience, vulnerability and sustainability. It was found that Type F inflow situation produced the best performance while Type N was the worst performing. This clearly demonstrates the importance of good inflow information for effective reservoir operation.

  15. Toward a Marine Ecological Forecasting System

    Science.gov (United States)

    2010-06-01

    coral bleaching , living resource distribution, and pathogen progression). An operational ecological forecasting system depends upon the assimilation of...space scales (e.g., harmful algal blooms, dissolved oxygen concentration (hypoxia), water quality/beach closures, coral bleaching , living resource...advance. Two beaches in Lake Michigan have been selected for initial implementation. Forecasting Coral Bleaching in relation to Ocean Temperatures

  16. Adaptive short-term electricity price forecasting using artificial neural networks in the restructured power markets

    International Nuclear Information System (INIS)

    Yamin, H.Y.; Shahidehpour, S.M.; Li, Z.

    2004-01-01

    This paper proposes a comprehensive model for the adaptive short-term electricity price forecasting using Artificial Neural Networks (ANN) in the restructured power markets. The model consists: price simulation, price forecasting, and performance analysis. The factors impacting the electricity price forecasting, including time factors, load factors, reserve factors, and historical price factor are discussed. We adopted ANN and proposed a new definition for the MAPE using the median to study the relationship between these factors and market price as well as the performance of the electricity price forecasting. The reserve factors are included to enhance the performance of the forecasting process. The proposed model handles the price spikes more efficiently due to considering the median instead of the average. The IEEE 118-bus system and California practical system are used to demonstrate the superiority of the proposed model. (author)

  17. Deep Neural Network Based Demand Side Short Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Seunghyoung Ryu

    2016-12-01

    Full Text Available In the smart grid, one of the most important research areas is load forecasting; it spans from traditional time series analyses to recent machine learning approaches and mostly focuses on forecasting aggregated electricity consumption. However, the importance of demand side energy management, including individual load forecasting, is becoming critical. In this paper, we propose deep neural network (DNN-based load forecasting models and apply them to a demand side empirical load database. DNNs are trained in two different ways: a pre-training restricted Boltzmann machine and using the rectified linear unit without pre-training. DNN forecasting models are trained by individual customer’s electricity consumption data and regional meteorological elements. To verify the performance of DNNs, forecasting results are compared with a shallow neural network (SNN, a double seasonal Holt–Winters (DSHW model and the autoregressive integrated moving average (ARIMA. The mean absolute percentage error (MAPE and relative root mean square error (RRMSE are used for verification. Our results show that DNNs exhibit accurate and robust predictions compared to other forecasting models, e.g., MAPE and RRMSE are reduced by up to 17% and 22% compared to SNN and 9% and 29% compared to DSHW.

  18. Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks.

    Science.gov (United States)

    Wang, Xue; Ma, Jun-Jie; Ding, Liang; Bi, Dao-Wei

    2007-11-15

    An important criterion of wireless sensor network is the energy efficiency inspecified applications. In this wireless multimedia sensor network, the observations arederived from acoustic sensors. Focused on the energy problem of target tracking, this paperproposes a robust forecasting method to enhance the energy efficiency of wirelessmultimedia sensor networks. Target motion information is acquired by acoustic sensornodes while a distributed network with honeycomb configuration is constructed. Thereby,target localization is performed by multiple sensor nodes collaboratively through acousticsignal processing. A novel method, combining autoregressive moving average (ARMA)model and radial basis function networks (RBFNs), is exploited to perform robust targetposition forecasting during target tracking. Then sensor nodes around the target areawakened according to the forecasted target position. With committee decision of sensornodes, target localization is performed in a distributed manner and the uncertainty ofdetection is reduced. Moreover, a sensor-to-observer routing approach of the honeycombmesh network is investigated to solve the data reporting considering the residual energy ofsensor nodes. Target localization and forecasting are implemented in experiments.Meanwhile, sensor node awakening and dynamic routing are evaluated. Experimentalresults verify that energy efficiency of wireless multimedia sensor network is enhanced bythe proposed target tracking method.

  19. Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ding, Fei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-23

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operator can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.

  20. Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ding, Fei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jiang, Huaiguang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ding, Fei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-26

    In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution system operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.

  1. Probabilistic Wind Power Forecasting with Hybrid Artificial Neural Networks

    DEFF Research Database (Denmark)

    Wan, Can; Song, Yonghua; Xu, Zhao

    2016-01-01

    probabilities of prediction errors provide an alternative yet effective solution. This article proposes a hybrid artificial neural network approach to generate prediction intervals of wind power. An extreme learning machine is applied to conduct point prediction of wind power and estimate model uncertainties...... via a bootstrap technique. Subsequently, the maximum likelihood estimation method is employed to construct a distinct neural network to estimate the noise variance of forecasting results. The proposed approach has been tested on multi-step forecasting of high-resolution (10-min) wind power using...... actual wind power data from Denmark. The numerical results demonstrate that the proposed hybrid artificial neural network approach is effective and efficient for probabilistic forecasting of wind power and has high potential in practical applications....

  2. Optimal Control and Forecasting of Complex Dynamical Systems

    CERN Document Server

    Grigorenko, Ilya

    2006-01-01

    This important book reviews applications of optimization and optimal control theory to modern problems in physics, nano-science and finance. The theory presented here can be efficiently applied to various problems, such as the determination of the optimal shape of a laser pulse to induce certain excitations in quantum systems, the optimal design of nanostructured materials and devices, or the control of chaotic systems and minimization of the forecast error for a given forecasting model (for example, artificial neural networks). Starting from a brief review of the history of variational calcul

  3. A global flash flood forecasting system

    Science.gov (United States)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial

  4. Dust forecasting system in JMA

    International Nuclear Information System (INIS)

    Mikami, M; Tanaka, T Y; Maki, T

    2009-01-01

    JMAs dust forecasting information, which is based on a GCM dust model, is presented through the JMA website coupled with nowcast information. The website was updated recently and JMA and MOE joint 'KOSA' website was open from April 2008. Data assimilation technique will be introduced for improvement of the 'KOSA' information.

  5. Global Ensemble Forecast System (GEFS) [2.5 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  6. Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm

    International Nuclear Information System (INIS)

    Chitsaz, Hamed; Amjady, Nima; Zareipour, Hamidreza

    2015-01-01

    Highlights: • Presenting a Morlet wavelet neural network for wind power forecasting. • Proposing improved Clonal selection algorithm for training the model. • Applying Maximum Correntropy Criterion to evaluate the training performance. • Extensive testing of the proposed wind power forecast method on real-world data. - Abstract: With the integration of wind farms into electric power grids, an accurate wind power prediction is becoming increasingly important for the operation of these power plants. In this paper, a new forecasting engine for wind power prediction is proposed. The proposed engine has the structure of Wavelet Neural Network (WNN) with the activation functions of the hidden neurons constructed based on multi-dimensional Morlet wavelets. This forecast engine is trained by a new improved Clonal selection algorithm, which optimizes the free parameters of the WNN for wind power prediction. Furthermore, Maximum Correntropy Criterion (MCC) has been utilized instead of Mean Squared Error as the error measure in training phase of the forecasting model. The proposed wind power forecaster is tested with real-world hourly data of system level wind power generation in Alberta, Canada. In order to demonstrate the efficiency of the proposed method, it is compared with several other wind power forecast techniques. The obtained results confirm the validity of the developed approach

  7. Forecasting Flare Activity Using Deep Convolutional Neural Networks

    Science.gov (United States)

    Hernandez, T.

    2017-12-01

    Current operational flare forecasting relies on human morphological analysis of active regions and the persistence of solar flare activity through time (i.e. that the Sun will continue to do what it is doing right now: flaring or remaining calm). In this talk we present the results of applying deep Convolutional Neural Networks (CNNs) to the problem of solar flare forecasting. CNNs operate by training a set of tunable spatial filters that, in combination with neural layer interconnectivity, allow CNNs to automatically identify significant spatial structures predictive for classification and regression problems. We will start by discussing the applicability and success rate of the approach, the advantages it has over non-automated forecasts, and how mining our trained neural network provides a fresh look into the mechanisms behind magnetic energy storage and release.

  8. Multi nodal load forecasting in electric power systems using a radial basis neural network; Previsao de carga multinodal em sistemas eletricos de potencia usando uma rede neural de base radial

    Energy Technology Data Exchange (ETDEWEB)

    Altran, A.B.; Lotufo, A.D.P.; Minussi, C.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica], Emails: lealtran@yahoo.com.br, annadiva@dee.feis.unesp.br, minussi@dee.feis.unesp.br; Lopes, M.L.M. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Dept. de Matematica], E-mail: mara@mat.feis.unesp.br

    2009-07-01

    This paper presents a methodology for electrical load forecasting, using radial base functions as activation function in artificial neural networks with the training by backpropagation algorithm. This methodology is applied to short term electrical load forecasting (24 h ahead). Therefore, results are presented analyzing the use of radial base functions substituting the sigmoid function as activation function in multilayer perceptron neural networks. However, the main contribution of this paper is the proposal of a new formulation of load forecasting dedicated to the forecasting in several points of the electrical network, as well as considering several types of users (residential, commercial, industrial). It deals with the MLF (Multimodal Load Forecasting), with the same processing time as the GLF (Global Load Forecasting). (author)

  9. Do Director Networks Help Manager Plan and Forecast Better?

    NARCIS (Netherlands)

    Schabus, M.

    I examine whether directors' superior access to information and resources through their board network improves the quality of firms' planning and forecasting. Managers may benefit from well-connected directors as, even though managers have firm specific knowledge, they may have only limited insight

  10. Stock prices forecasting based on wavelet neural networks with PSO

    OpenAIRE

    Wang Kai-Cheng; Yang Chi-I; Chang Kuei-Fang

    2017-01-01

    This research examines the forecasting performance of wavelet neural network (WNN) model using published stock data obtained from Financial Times Stock Exchange (FTSE) Taiwan Stock Exchange (TWSE) 50 index, also known as Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), hereinafter referred to as Taiwan 50. Our WNN model uses particle swarm optimization (PSO) to choose the appropriate initial network values for different companies. The findings come with two advantages. First...

  11. Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

    Science.gov (United States)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    2010-02-01

    This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.

  12. Short-term load forecasting of power system

    Science.gov (United States)

    Xu, Xiaobin

    2017-05-01

    In order to ensure the scientific nature of optimization about power system, it is necessary to improve the load forecasting accuracy. Power system load forecasting is based on accurate statistical data and survey data, starting from the history and current situation of electricity consumption, with a scientific method to predict the future development trend of power load and change the law of science. Short-term load forecasting is the basis of power system operation and analysis, which is of great significance to unit combination, economic dispatch and safety check. Therefore, the load forecasting of the power system is explained in detail in this paper. First, we use the data from 2012 to 2014 to establish the partial least squares model to regression analysis the relationship between daily maximum load, daily minimum load, daily average load and each meteorological factor, and select the highest peak by observing the regression coefficient histogram Day maximum temperature, daily minimum temperature and daily average temperature as the meteorological factors to improve the accuracy of load forecasting indicators. Secondly, in the case of uncertain climate impact, we use the time series model to predict the load data for 2015, respectively, the 2009-2014 load data were sorted out, through the previous six years of the data to forecast the data for this time in 2015. The criterion for the accuracy of the prediction is the average of the standard deviations for the prediction results and average load for the previous six years. Finally, considering the climate effect, we use the BP neural network model to predict the data in 2015, and optimize the forecast results on the basis of the time series model.

  13. FORMASY : forecasting and recruitment in manpower systems

    NARCIS (Netherlands)

    Wessels, J.; van Nunen, J.A.E.E.

    1975-01-01

    In this paper the tools are developed for forecasting and recruitment planning in a graded manpower system. Basic features of the presented approach are: - the system contains several grades or job categories in which the employees stay for a certain time before being promoted or leaving the system,

  14. The Betting Odds Rating System: Using soccer forecasts to forecast soccer.

    Science.gov (United States)

    Wunderlich, Fabian; Memmert, Daniel

    2018-01-01

    Betting odds are frequently found to outperform mathematical models in sports related forecasting tasks, however the factors contributing to betting odds are not fully traceable and in contrast to rating-based forecasts no straightforward measure of team-specific quality is deducible from the betting odds. The present study investigates the approach of combining the methods of mathematical models and the information included in betting odds. A soccer forecasting model based on the well-known ELO rating system and taking advantage of betting odds as a source of information is presented. Data from almost 15.000 soccer matches (seasons 2007/2008 until 2016/2017) are used, including both domestic matches (English Premier League, German Bundesliga, Spanish Primera Division and Italian Serie A) and international matches (UEFA Champions League, UEFA Europe League). The novel betting odds based ELO model is shown to outperform classic ELO models, thus demonstrating that betting odds prior to a match contain more relevant information than the result of the match itself. It is shown how the novel model can help to gain valuable insights into the quality of soccer teams and its development over time, thus having a practical benefit in performance analysis. Moreover, it is argued that network based approaches might help in further improving rating and forecasting methods.

  15. An enhanced radial basis function network for short-term electricity price forecasting

    International Nuclear Information System (INIS)

    Lin, Whei-Min; Gow, Hong-Jey; Tsai, Ming-Tang

    2010-01-01

    This paper proposed a price forecasting system for electric market participants to reduce the risk of price volatility. Combining the Radial Basis Function Network (RBFN) and Orthogonal Experimental Design (OED), an Enhanced Radial Basis Function Network (ERBFN) has been proposed for the solving process. The Locational Marginal Price (LMP), system load, transmission flow and temperature of the PJM system were collected and the data clusters were embedded in the Excel Database according to the year, season, workday and weekend. With the OED applied to learning rates in the ERBFN, the forecasting error can be reduced during the training process to improve both accuracy and reliability. This would mean that even the ''spikes'' could be tracked closely. The Back-propagation Neural Network (BPN), Probability Neural Network (PNN), other algorithms, and the proposed ERBFN were all developed and compared to check the performance. Simulation results demonstrated the effectiveness of the proposed ERBFN to provide quality information in a price volatile environment. (author)

  16. Streamflow Forecasting Using Nuero-Fuzzy Inference System

    Science.gov (United States)

    Nanduri, U. V.; Swain, P. C.

    2005-12-01

    The prediction of flow into a reservoir is fundamental in water resources planning and management. The need for timely and accurate streamflow forecasting is widely recognized and emphasized by many in water resources fraternity. Real-time forecasts of natural inflows to reservoirs are of particular interest for operation and scheduling. The physical system of the river basin that takes the rainfall as an input and produces the runoff is highly nonlinear, complicated and very difficult to fully comprehend. The system is influenced by large number of factors and variables. The large spatial extent of the systems forces the uncertainty into the hydrologic information. A variety of methods have been proposed for forecasting reservoir inflows including conceptual (physical) and empirical (statistical) models (WMO 1994), but none of them can be considered as unique superior model (Shamseldin 1997). Owing to difficulties of formulating reasonable non-linear watershed models, recent attempts have resorted to Neural Network (NN) approach for complex hydrologic modeling. In recent years the use of soft computing in the field of hydrological forecasting is gaining ground. The relatively new soft computing technique of Adaptive Neuro-Fuzzy Inference System (ANFIS), developed by Jang (1993) is able to take care of the non-linearity, uncertainty, and vagueness embedded in the system. It is a judicious combination of the Neural Networks and fuzzy systems. It can learn and generalize highly nonlinear and uncertain phenomena due to the embedded neural network (NN). NN is efficient in learning and generalization, and the fuzzy system mimics the cognitive capability of human brain. Hence, ANFIS can learn the complicated processes involved in the basin and correlate the precipitation to the corresponding discharge. In the present study, one step ahead forecasts are made for ten-daily flows, which are mostly required for short term operational planning of multipurpose reservoirs. A

  17. Climate Prediction Center (CPC) NCEP-Global Forecast System (GFS) Precipitation Forecast Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) forecast precipitation data at 37.5km resolution is created at the NOAA Climate Prediction Center for the purpose of near real-time...

  18. Parametric analysis of parameters for electrical-load forecasting using artificial neural networks

    Science.gov (United States)

    Gerber, William J.; Gonzalez, Avelino J.; Georgiopoulos, Michael

    1997-04-01

    Accurate total system electrical load forecasting is a necessary part of resource management for power generation companies. The better the hourly load forecast, the more closely the power generation assets of the company can be configured to minimize the cost. Automating this process is a profitable goal and neural networks should provide an excellent means of doing the automation. However, prior to developing such a system, the optimal set of input parameters must be determined. The approach of this research was to determine what those inputs should be through a parametric study of potentially good inputs. Input parameters tested were ambient temperature, total electrical load, the day of the week, humidity, dew point temperature, daylight savings time, length of daylight, season, forecast light index and forecast wind velocity. For testing, a limited number of temperatures and total electrical loads were used as a basic reference input parameter set. Most parameters showed some forecasting improvement when added individually to the basic parameter set. Significantly, major improvements were exhibited with the day of the week, dew point temperatures, additional temperatures and loads, forecast light index and forecast wind velocity.

  19. Short-Term Load Forecasting Model Based on Quantum Elman Neural Networks

    Directory of Open Access Journals (Sweden)

    Zhisheng Zhang

    2016-01-01

    Full Text Available Short-term load forecasting model based on quantum Elman neural networks was constructed in this paper. The quantum computation and Elman feedback mechanism were integrated into quantum Elman neural networks. Quantum computation can effectively improve the approximation capability and the information processing ability of the neural networks. Quantum Elman neural networks have not only the feedforward connection but also the feedback connection. The feedback connection between the hidden nodes and the context nodes belongs to the state feedback in the internal system, which has formed specific dynamic memory performance. Phase space reconstruction theory is the theoretical basis of constructing the forecasting model. The training samples are formed by means of K-nearest neighbor approach. Through the example simulation, the testing results show that the model based on quantum Elman neural networks is better than the model based on the quantum feedforward neural network, the model based on the conventional Elman neural network, and the model based on the conventional feedforward neural network. So the proposed model can effectively improve the prediction accuracy. The research in the paper makes a theoretical foundation for the practical engineering application of the short-term load forecasting model based on quantum Elman neural networks.

  20. An Artificial Neural Network for Data Forecasting Purposes

    Directory of Open Access Journals (Sweden)

    Catalina Lucia COCIANU

    2015-01-01

    Full Text Available Considering the fact that markets are generally influenced by different external factors, the stock market prediction is one of the most difficult tasks of time series analysis. The research reported in this paper aims to investigate the potential of artificial neural networks (ANN in solving the forecast task in the most general case, when the time series are non-stationary. We used a feed-forward neural architecture: the nonlinear autoregressive network with exogenous inputs. The network training function used to update the weight and bias parameters corresponds to gradient descent with adaptive learning rate variant of the backpropagation algorithm. The results obtained using this technique are compared with the ones resulted from some ARIMA models. We used the mean square error (MSE measure to evaluate the performances of these two models. The comparative analysis leads to the conclusion that the proposed model can be successfully applied to forecast the financial data.

  1. FORMASY : forecasting and recruitment in manpower systems

    NARCIS (Netherlands)

    Wessels, J.; van Nunen, J.A.E.E.

    1976-01-01

    In this paper the tools are developed for forecasting and recruitment planning in a eraded manpower system. Basic features of the presented approach arc: - the system contains several &fades or job catea:ories in which the employees slay for a certain time before being promoted or leaving the

  2. Forecasting business cycle with chaotic time series based on neural network with weighted fuzzy membership functions

    International Nuclear Information System (INIS)

    Chai, Soo H.; Lim, Joon S.

    2016-01-01

    This study presents a forecasting model of cyclical fluctuations of the economy based on the time delay coordinate embedding method. The model uses a neuro-fuzzy network called neural network with weighted fuzzy membership functions (NEWFM). The preprocessed time series of the leading composite index using the time delay coordinate embedding method are used as input data to the NEWFM to forecast the business cycle. A comparative study is conducted using other methods based on wavelet transform and Principal Component Analysis for the performance comparison. The forecasting results are tested using a linear regression analysis to compare the approximation of the input data against the target class, gross domestic product (GDP). The chaos based model captures nonlinear dynamics and interactions within the system, which other two models ignore. The test results demonstrated that chaos based method significantly improved the prediction capability, thereby demonstrating superior performance to the other methods.

  3. FORECAST MANAGEMENT FOR THE ECONOMIC SYSTEM

    OpenAIRE

    Dragoº MICU; Cosmin LEFTER

    2011-01-01

    Existing turbulences in the economic environment assume a more responsible involvement from the manager’s behalf in the management process thus determing them to use adequate forms of managemet. In this context, this paper highlights the necessity of implementing management forecasting systems in the economic environment.

  4. SOLAR PHOTOVOLTAIC OUTPUT POWER FORECASTING USING BACK PROPAGATION NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    B. Jency Paulin

    2016-01-01

    Full Text Available Solar Energy is an important renewable and unlimited source of energy. Solar photovoltaic power forecasting, is an estimation of the expected power production, that help the grid operators to better manage the electric balance between power demand and supply. Neural network is a computational model that can predict new outcomes from past trends. The artificial neural network is used for photovoltaic plant energy forecasting. The output power for solar photovoltaic cell is predicted on hourly basis. In historical dataset collection process, two dataset was collected and used for analysis. The dataset was provided with three independent attributes and one dependent attributes. The implementation of Artificial Neural Network structure is done by Multilayer Perceptron (MLP and training procedure for neural network is done by error Back Propagation (BP. In order to train and test the neural network, the datasets are divided in the ratio 70:30. The accuracy of prediction can be done by using various error measurement criteria and the performance of neural network is to be noted.

  5. Stacked Heterogeneous Neural Networks for Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    Florin Leon

    2010-01-01

    Full Text Available A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weights of the two stack components that leads to optimal performance is also studied.

  6. Interval forecasting of cyber-attacks on industrial control systems

    Science.gov (United States)

    Ivanyo, Y. M.; Krakovsky, Y. M.; Luzgin, A. N.

    2018-03-01

    At present, cyber-security issues of industrial control systems occupy one of the key niches in a state system of planning and management Functional disruption of these systems via cyber-attacks may lead to emergencies related to loss of life, environmental disasters, major financial and economic damage, or disrupted activities of cities and settlements. There is then an urgent need to develop protection methods against cyber-attacks. This paper studied the results of cyber-attack interval forecasting with a pre-set intensity level of cyber-attacks. Interval forecasting is the forecasting of one interval from two predetermined ones in which a future value of the indicator will be obtained. For this, probability estimates of these events were used. For interval forecasting, a probabilistic neural network with a dynamic updating value of the smoothing parameter was used. A dividing bound of these intervals was determined by a calculation method based on statistical characteristics of the indicator. The number of cyber-attacks per hour that were received through a honeypot from March to September 2013 for the group ‘zeppo-norcal’ was selected as the indicator.

  7. Artificial neural networks applied to forecasting time series.

    Science.gov (United States)

    Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar

    2011-04-01

    This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.

  8. Road icing forecasting and detecting system

    Science.gov (United States)

    Xu, Hongke; Zheng, Jinnan; Li, Peiqi; Wang, Qiucai

    2017-05-01

    Regard for the facts that the low accuracy and low real-time of the artificial observation to determine the road icing condition, and it is difficult to forecast icing situation, according to the main factors influencing the road-icing, and the electrical characteristics reflected by the pavement ice layer, this paper presents an innovative system, that is, ice-forecasting of the highway's dangerous section. The system bases on road surface water salinity measurements and pavement temperature measurement to calculate the freezing point of water and temperature change trend, and then predicts the occurrence time of road icing; using capacitance measurements to verdict the road surface is frozen or not; This paper expounds the method of using single chip microcomputer as the core of the control system and described the business process of the system.

  9. Combining neural networks and genetic algorithms for hydrological flow forecasting

    Science.gov (United States)

    Neruda, Roman; Srejber, Jan; Neruda, Martin; Pascenko, Petr

    2010-05-01

    predicting relative runoff show the best behavior so far. Utilizing the genetically evolved input filter improves the performance of yet another 5 per cent. In the future we would like to continue with experiments in on-line prediction using real-time data from Smeda River with 6 hours lead time forecast. Following the operational reality we will focus on classification of the runoffs into flood alert levels, and reformulation of the time series prediction task as a classification problem. The main goal of all this work is to improve flood warning system operated by the Czech Hydrometeorological Institute.

  10. Advanced approach to numerical forecasting using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Michael Štencl

    2009-01-01

    Full Text Available Current global market is driven by many factors, such as the information age, the time and amount of information distributed by many data channels it is practically impossible analyze all kinds of incoming information flows and transform them to data with classical methods. New requirements could be met by using other methods. Once trained on patterns artificial neural networks can be used for forecasting and they are able to work with extremely big data sets in reasonable time. The patterns used for learning process are samples of past data. This paper uses Radial Basis Functions neural network in comparison with Multi Layer Perceptron network with Back-propagation learning algorithm on prediction task. The task works with simplified numerical time series and includes forty observations with prediction for next five observations. The main topic of the article is the identification of the main differences between used neural networks architectures together with numerical forecasting. Detected differences then verify on practical comparative example.

  11. Forecasting short-term data center network traffic load with convolutional neural networks

    Science.gov (United States)

    Ordozgoiti, Bruno; Gómez-Canaval, Sandra

    2018-01-01

    Efficient resource management in data centers is of central importance to content service providers as 90 percent of the network traffic is expected to go through them in the coming years. In this context we propose the use of convolutional neural networks (CNNs) to forecast short-term changes in the amount of traffic crossing a data center network. This value is an indicator of virtual machine activity and can be utilized to shape the data center infrastructure accordingly. The behaviour of network traffic at the seconds scale is highly chaotic and therefore traditional time-series-analysis approaches such as ARIMA fail to obtain accurate forecasts. We show that our convolutional neural network approach can exploit the non-linear regularities of network traffic, providing significant improvements with respect to the mean absolute and standard deviation of the data, and outperforming ARIMA by an increasingly significant margin as the forecasting granularity is above the 16-second resolution. In order to increase the accuracy of the forecasting model, we exploit the architecture of the CNNs using multiresolution input distributed among separate channels of the first convolutional layer. We validate our approach with an extensive set of experiments using a data set collected at the core network of an Internet Service Provider over a period of 5 months, totalling 70 days of traffic at the one-second resolution. PMID:29408936

  12. Forecasting short-term data center network traffic load with convolutional neural networks.

    Science.gov (United States)

    Mozo, Alberto; Ordozgoiti, Bruno; Gómez-Canaval, Sandra

    2018-01-01

    Efficient resource management in data centers is of central importance to content service providers as 90 percent of the network traffic is expected to go through them in the coming years. In this context we propose the use of convolutional neural networks (CNNs) to forecast short-term changes in the amount of traffic crossing a data center network. This value is an indicator of virtual machine activity and can be utilized to shape the data center infrastructure accordingly. The behaviour of network traffic at the seconds scale is highly chaotic and therefore traditional time-series-analysis approaches such as ARIMA fail to obtain accurate forecasts. We show that our convolutional neural network approach can exploit the non-linear regularities of network traffic, providing significant improvements with respect to the mean absolute and standard deviation of the data, and outperforming ARIMA by an increasingly significant margin as the forecasting granularity is above the 16-second resolution. In order to increase the accuracy of the forecasting model, we exploit the architecture of the CNNs using multiresolution input distributed among separate channels of the first convolutional layer. We validate our approach with an extensive set of experiments using a data set collected at the core network of an Internet Service Provider over a period of 5 months, totalling 70 days of traffic at the one-second resolution.

  13. Applying of forecasting at decision making in power systems

    International Nuclear Information System (INIS)

    Sapundjiev, G.

    2007-01-01

    The problems concerning forecast and decision making are analyzed. The typical tasks arising in the forecasting process of the power systems with hierarchical structure formulated and brought to formal description

  14. North American Mesoscale Forecast System (NAM) [12 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The North American Mesoscale Forecast System (NAM) is one of the major regional weather forecast models run by the National Centers for Environmental Prediction...

  15. Global Forecast System (GFS) [0.5 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) is a weather forecast model produced by the National Centers for Environmental Prediction (NCEP). Dozens of atmospheric and...

  16. Radar Based Flow and Water Level Forecasting in Sewer Systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Bot...

  17. Integrating a Storage Factor into R-NARX Neural Networks for Flood Forecasts

    Science.gov (United States)

    Chou, Po-Kai; Chang, Li-Chiu; Chang, Fi-John; Shih, Ban-Jwu

    2017-04-01

    Because mountainous terrains and steep landforms rapidly accelerate the speed of flood flow in Taiwan island, accurate multi-step-ahead inflow forecasts during typhoon events for providing reliable information benefiting the decision-makings of reservoir pre-storm release and flood-control operation are considered crucial and challenging. Various types of artificial neural networks (ANNs) have been successfully applied in hydrological fields. This study proposes a recurrent configuration of the nonlinear autoregressive with exogenous inputs (NARX) network, called R-NARX, with various effective inputs to forecast the inflows of the Feitsui Reservoir, a pivot reservoir for water supply to Taipei metropolitan in Taiwan, during typhoon periods. The proposed R-NARX is constructed based on the recurrent neural network (RNN), which is commonly used for modelling nonlinear dynamical systems. A large number of hourly rainfall and inflow data sets collected from 95 historical typhoon events in the last thirty years are used to train, validate and test the models. The potential input variables, including rainfall in previous time steps (one to six hours), cumulative rainfall, the storage factor and the storage function, are assessed, and various models are constructed with their reliability and accuracy being tested. We find that the previous (t-2) rainfall and cumulative rainfall are crucial inputs and the storage factor and the storage function would also improve the forecast accuracy of the models. We demonstrate that the R-NARX model not only can accurately forecast the inflows but also effectively catch the peak flow without adopting observed inflow data during the entire typhoon period. Besides, the model with the storage factor is superior to the model with the storage function, where its improvement can reach 24%. This approach can well model the rainfall-runoff process for the entire flood forecasting period without the use of observed inflow data and can provide

  18. Stock prices forecasting based on wavelet neural networks with PSO

    Directory of Open Access Journals (Sweden)

    Wang Kai-Cheng

    2017-01-01

    Full Text Available This research examines the forecasting performance of wavelet neural network (WNN model using published stock data obtained from Financial Times Stock Exchange (FTSE Taiwan Stock Exchange (TWSE 50 index, also known as Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX, hereinafter referred to as Taiwan 50. Our WNN model uses particle swarm optimization (PSO to choose the appropriate initial network values for different companies. The findings come with two advantages. First, the network initial values are automatically selected instead of being a constant. Second, threshold and training data percentage become constant values, because PSO assists with self-adjustment. We can achieve a success rate over 73% without the necessity to manually adjust parameter or create another math model.

  19. A Comparative Study of Neural Networks and ANFIS for Forecasting Attendance Rate of Soccer Games

    Directory of Open Access Journals (Sweden)

    Mehmet Şahin

    2017-11-01

    Full Text Available The main purpose of this study was to develop and apply a neural network (NN approach and an adaptive neuro-fuzzy inference system (ANFIS model for forecasting the attendance rates at soccer games. The models were designed based on the characteristics of the problem. Past real data was used. Training data was used for training the models, and the testing data was used for evaluating the performance of the forecasting models. The obtained forecasting results were compared to the actual data and to each other. To evaluate the performance of the models, two statistical indicators, Mean Absolute Deviation (MAD and mean absolute percent error (MAPE, were used. Based on the results, the proposed neural network approach and the ANFIS model were shown to be effective in forecasting attendance at soccer games. The neural network approach performed better than the ANFIS model. The main contribution of this study is to introduce two effective techniques for estimating attendance at sports games. This is the first attempt to use an ANFIS model for that purpose.

  20. Forecasting energy market indices with recurrent neural networks: Case study of crude oil price fluctuations

    International Nuclear Information System (INIS)

    Wang, Jie; Wang, Jun

    2016-01-01

    In an attempt to improve the forecasting accuracy of crude oil price fluctuations, a new neural network architecture is established in this work which combines Multilayer perception and ERNN (Elman recurrent neural networks) with stochastic time effective function. ERNN is a time-varying predictive control system and is developed with the ability to keep memory of recent events in order to predict future output. The stochastic time effective function represents that the recent information has a stronger effect for the investors than the old information. With the established model the empirical research has a good performance in testing the predictive effects on four different time series indices. Compared to other models, the present model is possible to evaluate data from 1990s to today with extreme accuracy and speedy. The applied CID (complexity invariant distance) analysis and multiscale CID analysis, are provided as the new useful measures to evaluate a better predicting ability of the proposed model than other traditional models. - Highlights: • A new forecasting model is developed by a random Elman recurrent neural network. • The forecasting accuracy of crude oil price fluctuations is improved by the model. • The forecasting results of the proposed model are more accurate than compared models. • Two new distance analysis methods are applied to confirm the predicting results.

  1. FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting.

    Science.gov (United States)

    Alomar, Miquel L; Canals, Vincent; Perez-Mora, Nicolas; Martínez-Moll, Víctor; Rosselló, Josep L

    2016-01-01

    Hardware implementation of artificial neural networks (ANNs) allows exploiting the inherent parallelism of these systems. Nevertheless, they require a large amount of resources in terms of area and power dissipation. Recently, Reservoir Computing (RC) has arisen as a strategic technique to design recurrent neural networks (RNNs) with simple learning capabilities. In this work, we show a new approach to implement RC systems with digital gates. The proposed method is based on the use of probabilistic computing concepts to reduce the hardware required to implement different arithmetic operations. The result is the development of a highly functional system with low hardware resources. The presented methodology is applied to chaotic time-series forecasting.

  2. Real-time emergency forecasting technique for situation management systems

    Science.gov (United States)

    Kopytov, V. V.; Kharechkin, P. V.; Naumenko, V. V.; Tretyak, R. S.; Tebueva, F. B.

    2018-05-01

    The article describes the real-time emergency forecasting technique that allows increasing accuracy and reliability of forecasting results of any emergency computational model applied for decision making in situation management systems. Computational models are improved by the Improved Brown’s method applying fractal dimension to forecast short time series data being received from sensors and control systems. Reliability of emergency forecasting results is ensured by the invalid sensed data filtering according to the methods of correlation analysis.

  3. Forecast on Water Locking Damage of Low Permeable Reservoir with Quantum Neural Network

    Science.gov (United States)

    Zhao, Jingyuan; Sun, Yuxue; Feng, Fuping; Zhao, Fulei; Sui, Dianjie; Xu, Jianjun

    2018-01-01

    It is of great importance in oil-gas reservoir protection to timely and correctly forecast the water locking damage, the greatest damage for low permeable reservoir. An analysis is conducted on the production mechanism and various influence factors of water locking damage, based on which a quantum neuron is constructed based on the information processing manner of a biological neuron and the principle of quantum neural algorithm, besides, the quantum neural network model forecasting the water locking of the reservoir is established and related software is also made to forecast the water locking damage of the gas reservoir. This method has overcome the defects of grey correlation analysis that requires evaluation matrix analysis and complicated operation. According to the practice in Longxi Area of Daqing Oilfield, this method is characterized by fast operation, few system parameters and high accuracy rate (the general incidence rate may reach 90%), which can provide reliable support for the protection technique of low permeable reservoir.

  4. Flood forecasting and warning systems in Pakistan

    International Nuclear Information System (INIS)

    Ali Awan, Shaukat

    2004-01-01

    Meteorologically, there are two situations which may cause three types of floods in Indus Basin in Pakistan: i) Meteorological Situation for Category-I Floods when the seasonal low is a semi permanent weather system situated over south eastern Balochistan, south western Punjab, adjoining parts of Sindh get intensified and causes the moisture from the Arabian Sea to be brought up to upper catchments of Chenab and Jhelum rivers. (ii) Meteorological Situation for Category-11 and Category-111 Floods, which is linked with monsoon low/depression. Such monsoon systems originate in Bay of Bengal region and then move across India in general west/north westerly direction arrive over Rajasthan or any of adjoining states of India. Flood management in Pakistan is multi-functional process involving a number of different organizations. The first step in the process is issuance of flood forecast/warning, which is performed by Pakistan Meteorological Department (PMD) utilizing satellite cloud pictures and quantitative precipitation measurement radar data, in addition to the conventional weather forecasting facilities. For quantitative flood forecasting, hydrological data is obtained through the Provincial Irrigation Department and WAPDA. Furthermore, improved rainfall/runoff and flood routing models have been developed to provide more reliable and explicit flood information to a flood prone population.(Author)

  5. Trend time-series modeling and forecasting with neural networks.

    Science.gov (United States)

    Qi, Min; Zhang, G Peter

    2008-05-01

    Despite its great importance, there has been no general consensus on how to model the trends in time-series data. Compared to traditional approaches, neural networks (NNs) have shown some promise in time-series forecasting. This paper investigates how to best model trend time series using NNs. Four different strategies (raw data, raw data with time index, detrending, and differencing) are used to model various trend patterns (linear, nonlinear, deterministic, stochastic, and breaking trend). We find that with NNs differencing often gives meritorious results regardless of the underlying data generating processes (DGPs). This finding is also confirmed by the real gross national product (GNP) series.

  6. Urban Ozone Concentration Forecasting with Artificial Neural Network in Corsica

    Directory of Open Access Journals (Sweden)

    Tamas Wani

    2014-03-01

    Full Text Available Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air quality in Corsica (France, needs to develop a short-term prediction model to lead its mission of information towards the public. Various deterministic models exist for local forecasting, but need important computing resources, a good knowledge of atmospheric processes and can be inaccurate because of local climatical or geographical particularities, as observed in Corsica, a mountainous island located in the Mediterranean Sea. As a result, we focus in this study on statistical models, and particularly Artificial Neural Networks (ANNs that have shown good results in the prediction of ozone concentration one hour ahead with data measured locally. The purpose of this study is to build a predictor realizing predictions of ozone 24 hours ahead in Corsica in order to be able to anticipate pollution peaks formation and to take appropriate preventive measures. Specific meteorological conditions are known to lead to particular pollution event in Corsica (e.g. Saharan dust events. Therefore, an ANN model will be used with pollutant and meteorological data for operational forecasting. Index of agreement of this model was calculated with a one year test dataset and reached 0.88.

  7. Appraisal of artificial neural network for forecasting of economic parameters

    Science.gov (United States)

    Kordanuli, Bojana; Barjaktarović, Lidija; Jeremić, Ljiljana; Alizamir, Meysam

    2017-01-01

    The main aim of this research is to develop and apply artificial neural network (ANN) with extreme learning machine (ELM) and back propagation (BP) to forecast gross domestic product (GDP) and Hirschman-Herfindahl Index (HHI). GDP could be developed based on combination of different factors. In this investigation GDP forecasting based on the agriculture and industry added value in gross domestic product (GDP) was analysed separately. Other inputs are final consumption expenditure of general government, gross fixed capital formation (investments) and fertility rate. The relation between product market competition and corporate investment is contentious. On one hand, the relation can be positive, but on the other hand, the relation can be negative. Several methods have been proposed to monitor market power for the purpose of developing procedures to mitigate or eliminate the effects. The most widely used methods are based on indices such as the Hirschman-Herfindahl Index (HHI). The reliability of the ANN models were accessed based on simulation results and using several statistical indicators. Based upon simulation results, it was presented that ELM shows better performances than BP learning algorithm in applications of GDP and HHI forecasting.

  8. Using the Artificial Neural Networks for Forecasting the Risk of Bankruptcy of Banks

    Directory of Open Access Journals (Sweden)

    Markov Mykhailo Ye.

    2018-01-01

    Full Text Available The article is aimed at finding the optimal structure of artificial neural network to solve the problem of forecasting the bankruptcy of banks and researching the efficiency of use of the neural networks model for the realities of Ukrainian banking sphere. Results of the research testify that the best accuracy of forecasts for 1-1,5 years showed the model on the basis of the multilayer perceptron with 10 and 2 neurons in the hidden layers. The developed neural networks model can be used as an alternative to statistical methods, as it has shown better results. Prospect for further research in this direction is development of a complex system of support for decision-making for banking institutions, which would include forecasting risks for bank, analysis of the bank’s financial condition and identification of financial problems using innovation instruments and technologies, ensuring the monitoring and control of risks of banking institution. The developed neural networks model can become one of elements of the complex system.

  9. The distribution of wind power forecast errors from operational systems

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Bri-Mathias; Ela, Erik; Milligan, Michael

    2011-07-01

    Wind power forecasting is one important tool in the integration of large amounts of renewable generation into the electricity system. Wind power forecasts from operational systems are not perfect, and thus, an understanding of the forecast error distributions can be important in system operations. In this work, we examine the errors from operational wind power forecasting systems, both for a single wind plant and for an entire interconnection. The resulting error distributions are compared with the normal distribution and the distribution obtained from the persistence forecasting model at multiple timescales. A model distribution is fit to the operational system forecast errors and the potential impact on system operations highlighted through the generation of forecast confidence intervals. (orig.)

  10. Dynamic neural network modeling of HF radar current maps for forecasting oil spill trajectories

    International Nuclear Information System (INIS)

    Tissot, P.; Perez, J.; Kelly, F.J.; Bonner, J.; Michaud, P.

    2001-01-01

    This paper examined the concept of dynamic neural network (NN) modeling for short-term forecasts of coastal high-frequency (HF) radar current maps offshore of Galveston Texas. HF radar technology is emerging as a viable and affordable way to measure surface currents in real time and the number of users applying the technology is increasing. A 25 megahertz, two site, Seasonde HF radar system was used to map ocean and bay surface currents along the coast of Texas where wind and river discharge create complex and rapidly changing current patters that override the weaker tidal flow component. The HF radar system is particularly useful in this type of setting because its mobility makes it a good marine spill response tool that could provide hourly current maps. This capability helps improve deployment of response resources. In addition, the NN model recently developed by the Conrad Blucher Institute can be used to forecast water levels during storm events. Forecasted currents are based on time series of current vectors from HF radar plus wind speed, wind direction, and water levels, as well as tidal forecasts. The dynamic NN model was tested to evaluate its performance and the results were compared with a baseline model which assumes the currents do not change from the time of the forecast up to the forecasted time. The NN model showed improvements over the baseline model for forecasting time equal or greater than 3 hours, but the difference was relatively small. The test demonstrated the ability of the dynamic NN model to link meteorological forcing functions with HF radar current maps. Development of the dynamic NN modeling is still ongoing. 18 refs., 1 tab., 5 figs

  11. New Models for Forecasting Enrollments: Fuzzy Time Series and Neural Network Approaches.

    Science.gov (United States)

    Song, Qiang; Chissom, Brad S.

    Since university enrollment forecasting is very important, many different methods and models have been proposed by researchers. Two new methods for enrollment forecasting are introduced: (1) the fuzzy time series model; and (2) the artificial neural networks model. Fuzzy time series has been proposed to deal with forecasting problems within a…

  12. Input data preprocessing method for exchange rate forecasting via neural network

    Directory of Open Access Journals (Sweden)

    Antić Dragan S.

    2014-01-01

    Full Text Available The aim of this paper is to present a method for neural network input parameters selection and preprocessing. The purpose of this network is to forecast foreign exchange rates using artificial intelligence. Two data sets are formed for two different economic systems. Each system is represented by six categories with 70 economic parameters which are used in the analysis. Reduction of these parameters within each category was performed by using the principal component analysis method. Component interdependencies are established and relations between them are formed. Newly formed relations were used to create input vectors of a neural network. The multilayer feed forward neural network is formed and trained using batch training. Finally, simulation results are presented and it is concluded that input data preparation method is an effective way for preprocessing neural network data. [Projekat Ministarstva nauke Republike Srbije, br.TR 35005, br. III 43007 i br. III 44006

  13. Short-term load and wind power forecasting using neural network-based prediction intervals.

    Science.gov (United States)

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2014-02-01

    Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.

  14. Forecasting the magnitude and onset of El Niño based on climate network

    Science.gov (United States)

    Meng, Jun; Fan, Jingfang; Ashkenazy, Yosef; Bunde, Armin; Havlin, Shlomo

    2018-04-01

    El Niño is probably the most influential climate phenomenon on inter-annual time scales. It affects the global climate system and is associated with natural disasters; it has serious consequences in many aspects of human life. However, the forecasting of the onset and in particular the magnitude of El Niño are still not accurate enough, at least more than half a year ahead. Here, we introduce a new forecasting index based on climate network links representing the similarity of low frequency temporal temperature anomaly variations between different sites in the Niño 3.4 region. We find that significant upward trends in our index forecast the onset of El Niño approximately 1 year ahead, and the highest peak since the end of last El Niño in our index forecasts the magnitude of the following event. We study the forecasting capability of the proposed index on several datasets, including, ERA-Interim, NCEP Reanalysis I, PCMDI-AMIP 1.1.3 and ERSST.v5.

  15. Sensor network based solar forecasting using a local vector autoregressive ridge framework

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J. [Stony Brook Univ., NY (United States); Yoo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Heiser, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kalb, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-04

    The significant improvements and falling costs of photovoltaic (PV) technology make solar energy a promising resource, yet the cloud induced variability of surface solar irradiance inhibits its effective use in grid-tied PV generation. Short-term irradiance forecasting, especially on the minute scale, is critically important for grid system stability and auxiliary power source management. Compared to the trending sky imaging devices, irradiance sensors are inexpensive and easy to deploy but related forecasting methods have not been well researched. The prominent challenge of applying classic time series models on a network of irradiance sensors is to address their varying spatio-temporal correlations due to local changes in cloud conditions. We propose a local vector autoregressive framework with ridge regularization to forecast irradiance without explicitly determining the wind field or cloud movement. By using local training data, our learned forecast model is adaptive to local cloud conditions and by using regularization, we overcome the risk of overfitting from the limited training data. Our systematic experimental results showed an average of 19.7% RMSE and 20.2% MAE improvement over the benchmark Persistent Model for 1-5 minute forecasts on a comprehensive 25-day dataset.

  16. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    Science.gov (United States)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  17. Online Learning Algorithm for Time Series Forecasting Suitable for Low Cost Wireless Sensor Networks Nodes

    Directory of Open Access Journals (Sweden)

    Juan Pardo

    2015-04-01

    Full Text Available Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.

  18. Online Learning Algorithm for Time Series Forecasting Suitable for Low Cost Wireless Sensor Networks Nodes

    Science.gov (United States)

    Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma

    2015-01-01

    Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources. PMID:25905698

  19. Online learning algorithm for time series forecasting suitable for low cost wireless sensor networks nodes.

    Science.gov (United States)

    Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma

    2015-04-21

    Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.

  20. Artificial neural network models' application for radioactive substances' migration forecasting in soil

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Khil'ko, O.S.; Kundas, S.P.

    2009-01-01

    The work is indicated to the use of artificial neural network (ANN) models in program complex SPS for radioactive substances' migration forecasting in soil. For the problem solution two ANN models are used. One of them forecasts radioactive substances' migration, another carries out forecasting of physical and chemical soil properties. Program complex SPS allows to achieve a low error of forecasting (no more than 5 %) and high training speed. (authors)

  1. Toward automatic time-series forecasting using neural networks.

    Science.gov (United States)

    Yan, Weizhong

    2012-07-01

    Over the past few decades, application of artificial neural networks (ANN) to time-series forecasting (TSF) has been growing rapidly due to several unique features of ANN models. However, to date, a consistent ANN performance over different studies has not been achieved. Many factors contribute to the inconsistency in the performance of neural network models. One such factor is that ANN modeling involves determining a large number of design parameters, and the current design practice is essentially heuristic and ad hoc, this does not exploit the full potential of neural networks. Systematic ANN modeling processes and strategies for TSF are, therefore, greatly needed. Motivated by this need, this paper attempts to develop an automatic ANN modeling scheme. It is based on the generalized regression neural network (GRNN), a special type of neural network. By taking advantage of several GRNN properties (i.e., a single design parameter and fast learning) and by incorporating several design strategies (e.g., fusing multiple GRNNs), we have been able to make the proposed modeling scheme to be effective for modeling large-scale business time series. The initial model was entered into the NN3 time-series competition. It was awarded the best prediction on the reduced dataset among approximately 60 different models submitted by scholars worldwide.

  2. [Combined forecasting system of peritonitis outcome].

    Science.gov (United States)

    Lebedev, N V; Klimov, A E; Agrba, S B; Gaidukevich, E K

    To create a reliable system for assessing of severity and prediction of the outcome of peritonitis. Critical analysis of the systems for peritonitis severity assessment is presented. The study included outcomes of 347 patients who admitted at the Department of Faculty Surgery of Peoples' Friendship University of Russia in 2015-2016. The cause of peritonitis were destructive forms of acute appendicitis, cholecystitis, perforated gastroduodenal ulcer, various perforation of small and large intestines (including tumor). Combined forecasting system for peritonitis severity assessment is created. The system includes clinical, laboratory data, assessment of systemic inflammatory response (SIRS) and severity of organ failure (qSOFA). The authors focused on easily identifiable parameters which are available in virtually any surgical hospital. Threshold value (lethal outcome probability over 50%) is 8 scores in this system. Sensitivity, specificity and accuracy were 93.3, 99.7 and 98.9%, respectively according to ROC-curve that exceeds those parameters of MPI and APACHE II.

  3. Load forecasting method considering temperature effect for distribution network

    Directory of Open Access Journals (Sweden)

    Meng Xiao Fang

    2016-01-01

    Full Text Available To improve the accuracy of load forecasting, the temperature factor was introduced into the load forecasting in this paper. This paper analyzed the characteristics of power load variation, and researched the rule of the load with the temperature change. Based on the linear regression analysis, the mathematical model of load forecasting was presented with considering the temperature effect, and the steps of load forecasting were given. Used MATLAB, the temperature regression coefficient was calculated. Using the load forecasting model, the full-day load forecasting and time-sharing load forecasting were carried out. By comparing and analyzing the forecast error, the results showed that the error of time-sharing load forecasting method was small in this paper. The forecasting method is an effective method to improve the accuracy of load forecasting.

  4. The Red Sea Modeling and Forecasting System

    KAUST Repository

    Hoteit, Ibrahim

    2015-04-01

    Despite its importance for a variety of socio-economical and political reasons and the presence of extensive coral reef gardens along its shores, the Red Sea remains one of the most under-studied large marine physical and biological systems in the global ocean. This contribution will present our efforts to build advanced modeling and forecasting capabilities for the Red Sea, which is part of the newly established Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). Our Red Sea modeling system compromises both regional and nested costal MIT general circulation models (MITgcm) with resolutions varying between 8 km and 250 m to simulate the general circulation and mesoscale dynamics at various spatial scales, a 10-km resolution Weather Research Forecasting (WRF) model to simulate the atmospheric conditions, a 4-km resolution European Regional Seas Ecosystem Model (ERSEM) to simulate the Red Sea ecosystem, and a 1-km resolution WAVEWATCH-III model to simulate the wind driven surface waves conditions. We have also implemented an oil spill model, and a probabilistic dispersion and larval connectivity modeling system (CMS) based on a stochastic Lagrangian framework and incorporating biological attributes. We are using the models outputs together with available observational data to study all aspects of the Red Sea circulations. Advanced monitoring capabilities are being deployed in the Red Sea as part of the SAMERCK, comprising multiple gliders equipped with hydrographical and biological sensors, high frequency (HF) surface current/wave mapping, buoys/ moorings, etc, complementing the available satellite ocean and atmospheric observations and Automatic Weather Stations (AWS). The Red Sea models have also been equipped with advanced data assimilation capabilities. Fully parallel ensemble-based Kalman filtering (EnKF) algorithms have been implemented with the MITgcm and ERSEM for assimilating all available multivariate satellite and in-situ data sets. We

  5. The Red Sea Modeling and Forecasting System

    KAUST Repository

    Hoteit, Ibrahim; Gopalakrishnan, Ganesh; Latif, Hatem; Toye, Habib; Zhan, Peng; Kartadikaria, Aditya R.; Viswanadhapalli, Yesubabu; Yao, Fengchao; Triantafyllou, George; Langodan, Sabique; Cavaleri, Luigi; Guo, Daquan; Johns, Burt

    2015-01-01

    Despite its importance for a variety of socio-economical and political reasons and the presence of extensive coral reef gardens along its shores, the Red Sea remains one of the most under-studied large marine physical and biological systems in the global ocean. This contribution will present our efforts to build advanced modeling and forecasting capabilities for the Red Sea, which is part of the newly established Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). Our Red Sea modeling system compromises both regional and nested costal MIT general circulation models (MITgcm) with resolutions varying between 8 km and 250 m to simulate the general circulation and mesoscale dynamics at various spatial scales, a 10-km resolution Weather Research Forecasting (WRF) model to simulate the atmospheric conditions, a 4-km resolution European Regional Seas Ecosystem Model (ERSEM) to simulate the Red Sea ecosystem, and a 1-km resolution WAVEWATCH-III model to simulate the wind driven surface waves conditions. We have also implemented an oil spill model, and a probabilistic dispersion and larval connectivity modeling system (CMS) based on a stochastic Lagrangian framework and incorporating biological attributes. We are using the models outputs together with available observational data to study all aspects of the Red Sea circulations. Advanced monitoring capabilities are being deployed in the Red Sea as part of the SAMERCK, comprising multiple gliders equipped with hydrographical and biological sensors, high frequency (HF) surface current/wave mapping, buoys/ moorings, etc, complementing the available satellite ocean and atmospheric observations and Automatic Weather Stations (AWS). The Red Sea models have also been equipped with advanced data assimilation capabilities. Fully parallel ensemble-based Kalman filtering (EnKF) algorithms have been implemented with the MITgcm and ERSEM for assimilating all available multivariate satellite and in-situ data sets. We

  6. Analysis and forecast of railway coal transportation volume based on BP neural network combined forecasting model

    Science.gov (United States)

    Xu, Yongbin; Xie, Haihong; Wu, Liuyi

    2018-05-01

    The share of coal transportation in the total railway freight volume is about 50%. As is widely acknowledged, coal industry is vulnerable to the economic situation and national policies. Coal transportation volume fluctuates significantly under the new economic normal. Grasp the overall development trend of railway coal transportation market, have important reference and guidance significance to the railway and coal industry decision-making. By analyzing the economic indicators and policy implications, this paper expounds the trend of the coal transportation volume, and further combines the economic indicators with the high correlation with the coal transportation volume with the traditional traffic prediction model to establish a combined forecasting model based on the back propagation neural network. The error of the prediction results is tested, which proves that the method has higher accuracy and has practical application.

  7. Forecasting the mortality rates of Indonesian population by using neural network

    Science.gov (United States)

    Safitri, Lutfiani; Mardiyati, Sri; Rahim, Hendrisman

    2018-03-01

    A model that can represent a problem is required in conducting a forecasting. One of the models that has been acknowledged by the actuary community in forecasting mortality rate is the Lee-Certer model. Lee Carter model supported by Neural Network will be used to calculate mortality forecasting in Indonesia. The type of Neural Network used is feedforward neural network aligned with backpropagation algorithm in python programming language. And the final result of this study is mortality rate in forecasting Indonesia for the next few years

  8. A Novel Nonlinear Combined Forecasting System for Short-Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Chengshi Tian

    2018-03-01

    Full Text Available Short-term load forecasting plays an indispensable role in electric power systems, which is not only an extremely challenging task but also a concerning issue for all society due to complex nonlinearity characteristics. However, most previous combined forecasting models were based on optimizing weight coefficients to develop a linear combined forecasting model, while ignoring that the linear combined model only considers the contribution of the linear terms to improving the model’s performance, which will lead to poor forecasting results because of the significance of the neglected and potential nonlinear terms. In this paper, a novel nonlinear combined forecasting system, which consists of three modules (improved data pre-processing module, forecasting module and the evaluation module is developed for short-term load forecasting. Different from the simple data pre-processing of most previous studies, the improved data pre-processing module based on longitudinal data selection is successfully developed in this system, which further improves the effectiveness of data pre-processing and then enhances the final forecasting performance. Furthermore, the modified support vector machine is developed to integrate all the individual predictors and obtain the final prediction, which successfully overcomes the upper drawbacks of the linear combined model. Moreover, the evaluation module is incorporated to perform a scientific evaluation for the developed system. The half-hourly electrical load data from New South Wales are employed to verify the effectiveness of the developed forecasting system, and the results reveal that the developed nonlinear forecasting system can be employed in the dispatching and planning for smart grids.

  9. Artificial neural networks application for horizontal and vertical forecasting radionuclides transport

    International Nuclear Information System (INIS)

    Khil'ko, O.S.; Kovalenko, V.I.; Kundas, S.P.

    2010-01-01

    Artificial neural networks approach for horizontal and vertical radionuclide transport forecasting was proposed. Runoff factors analysis was considered. Additional artificial neural network structures for physical-chemical properties recognition were used. (authors)

  10. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.

    Science.gov (United States)

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2015-09-01

    Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.

  11. An Operational Coastal Forecasting System in Galicia (NW Spain)

    Science.gov (United States)

    Balseiro, C. F.; Carracedo, P.; Pérez, E.; Pérez, V.; Taboada, J.; Venacio, A.; Vilasa, L.

    2009-09-01

    The Galician coast (NW Iberian Peninsula coast) and mainly the Rias Baixas (southern Galician rias) are one of the most productive ecosystems in the world, supporting a very active fishing and aquiculture industry. This high productivity lives together with a high human pressure and an intense maritime traffic, which means an important environmental risk. Besides that, Harmful Algae Blooms (HAB) are common in this area, producing important economical losses in aquiculture. In this context, the development of an Operational Hydrodynamic Ocean Forecast System is the first step to the development of a more sophisticated Ocean Integrated Decision Support Tool. A regional oceanographic forecasting system in the Galician Coast has been developed by MeteoGalicia (the Galician regional meteorological agency) inside ESEOO project to provide forecasts on currents, sea level, water temperature and salinity. This system is based on hydrodynamic model MOHID, forced with the operational meteorological model WRF, supported daily at MeteoGalicia . Two grid meshes are running nested at different scales, one of ~2km at the shelf scale and the other one with a resolution of 500 m at the rias scale. ESEOAT (Puertos del Estado) model provide salinity and temperature fields which are relaxed at all depth along the open boundary of the regional model (~6km). Temperature and salinity initial fields are also obtained from this application. Freshwater input from main rivers are included as forcing in MOHID model. Monthly mean discharge data from gauge station have been provided by Aguas de Galicia. Nowadays a coupling between an hydrological model (SWAT) and the hydrodynamic one are in development with the aim to verify the impact of the rivers discharges. The system runs operationally daily, providing two days of forecast. First model verifications had been performed against Puertos del Estado buoys and Xunta de Galicia buoys network along the Galician coast. High resolution model results

  12. Forecasting macroeconomic variables using neural network models and three automated model selection techniques

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    2016-01-01

    When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. To alleviate the problem, White (2006) presented a solution (QuickNet) that conv...

  13. Multitask Learning-Based Security Event Forecast Methods for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hui He

    2016-01-01

    Full Text Available Wireless sensor networks have strong dynamics and uncertainty, including network topological changes, node disappearance or addition, and facing various threats. First, to strengthen the detection adaptability of wireless sensor networks to various security attacks, a region similarity multitask-based security event forecast method for wireless sensor networks is proposed. This method performs topology partitioning on a large-scale sensor network and calculates the similarity degree among regional subnetworks. The trend of unknown network security events can be predicted through multitask learning of the occurrence and transmission characteristics of known network security events. Second, in case of lacking regional data, the quantitative trend of unknown regional network security events can be calculated. This study introduces a sensor network security event forecast method named Prediction Network Security Incomplete Unmarked Data (PNSIUD method to forecast missing attack data in the target region according to the known partial data in similar regions. Experimental results indicate that for an unknown security event forecast the forecast accuracy and effects of the similarity forecast algorithm are better than those of single-task learning method. At the same time, the forecast accuracy of the PNSIUD method is better than that of the traditional support vector machine method.

  14. Development and validation of a regional coupled forecasting system for S2S forecasts

    Science.gov (United States)

    Sun, R.; Subramanian, A. C.; Hoteit, I.; Miller, A. J.; Ralph, M.; Cornuelle, B. D.

    2017-12-01

    Accurate and efficient forecasting of oceanic and atmospheric circulation is essential for a wide variety of high-impact societal needs, including: weather extremes; environmental protection and coastal management; management of fisheries, marine conservation; water resources; and renewable energy. Effective forecasting relies on high model fidelity and accurate initialization of the models with observed state of the ocean-atmosphere-land coupled system. A regional coupled ocean-atmosphere model with the Weather Research and Forecasting (WRF) model and the MITGCM ocean model coupled using the ESMF (Earth System Modeling Framework) coupling framework is developed to resolve mesoscale air-sea feedbacks. The regional coupled model allows oceanic mixed layer heat and momentum to interact with the atmospheric boundary layer dynamics at the mesoscale and submesoscale spatiotemporal regimes, thus leading to feedbacks which are otherwise not resolved in coarse resolution global coupled forecasting systems or regional uncoupled forecasting systems. The model is tested in two scenarios in the mesoscale eddy rich Red Sea and Western Indian Ocean region as well as mesoscale eddies and fronts of the California Current System. Recent studies show evidence for air-sea interactions involving the oceanic mesoscale in these two regions which can enhance predictability on sub seasonal timescale. We will present results from this newly developed regional coupled ocean-atmosphere model for forecasts over the Red Sea region as well as the California Current region. The forecasts will be validated against insitu observations in the region as well as reanalysis fields.

  15. Local TEC Modelling and Forecasting using Neural Networks

    Science.gov (United States)

    Tebabal, A.; Radicella, S. M.; Nigussie, M.; Damtie, B.; Nava, B.; Yizengaw, E.

    2017-12-01

    Abstract Modelling the Earth's ionospheric characteristics is the focal task for the ionospheric community to mitigate its effect on the radio communication, satellite navigation and technologies. However, several aspects of modelling are still challenging, for example, the storm time characteristics. This paper presents modelling efforts of TEC taking into account solar and geomagnetic activity, time of the day and day of the year using neural networks (NNs) modelling technique. The NNs have been designed with GPS-TEC measured data from low and mid-latitude GPS stations. The training was conducted using the data obtained for the period from 2011 to 2014. The model prediction accuracy was evaluated using data of year 2015. The model results show that diurnal and seasonal trend of the GPS-TEC is well reproduced by the model for the two stations. The seasonal characteristics of GPS-TEC is compared with NN and NeQuick 2 models prediction when the latter one is driven by the monthly average value of solar flux. It is found that NN model performs better than the corresponding NeQuick 2 model for low latitude region. For the mid-latitude both NN and NeQuick 2 models reproduce the average characteristics of TEC variability quite successfully. An attempt of one day ahead forecast of TEC at the two locations has been made by introducing as driver previous day solar flux and geomagnetic index values. The results show that a reasonable day ahead forecast of local TEC can be achieved.

  16. A production throughput forecasting system in an automated hard disk drive test operation using GRNN

    Energy Technology Data Exchange (ETDEWEB)

    Samattapapong, N.; Afzulpurkar, N.

    2016-07-01

    The goal of this paper is to develop a pragmatic system of a production throughput forecasting system for an automated test operation in a hard drive manufacturing plant. The accurate forecasting result is necessary for the management team to response to any changes in the production processes and the resources allocations. In this study, we design a production throughput forecasting system in an automated test operation in hard drive manufacturing plant. In the proposed system, consists of three main stages. In the first stage, a mutual information method was adopted for selecting the relevant inputs into the forecasting model. In the second stage, a generalized regression neural network (GRNN) was implemented in the forecasting model development phase. Finally, forecasting accuracy was improved by searching the optimal smoothing parameter which selected from comparisons result among three optimization algorithms: particle swarm optimization (PSO), unrestricted search optimization (USO) and interval halving optimization (IHO). The experimental result shows that (1) the developed production throughput forecasting system using GRNN is able to provide forecasted results close to actual values, and to projected the future trends of production throughput in an automated hard disk drive test operation; (2) An IHO algorithm performed as superiority appropriate optimization method than the other two algorithms. (3) Compared with current forecasting system in manufacturing, the results show that the proposed system’s performance is superior to the current system in prediction accuracy and suitable for real-world application. The production throughput volume is a key performance index of hard disk drive manufacturing systems that need to be forecast. Because of the production throughput forecasting result is useful information for management team to respond to any changing in production processes and resources allocation. However, a practically forecasting system for

  17. Regularized forecasting of chaotic dynamical systems

    International Nuclear Information System (INIS)

    Bollt, Erik M.

    2017-01-01

    While local models of dynamical systems have been highly successful in terms of using extensive data sets observing even a chaotic dynamical system to produce useful forecasts, there is a typical problem as follows. Specifically, with k-near neighbors, kNN method, local observations occur due to recurrences in a chaotic system, and this allows for local models to be built by regression to low dimensional polynomial approximations of the underlying system estimating a Taylor series. This has been a popular approach, particularly in context of scalar data observations which have been represented by time-delay embedding methods. However such local models can generally allow for spatial discontinuities of forecasts when considered globally, meaning jumps in predictions because the collected near neighbors vary from point to point. The source of these discontinuities is generally that the set of near neighbors varies discontinuously with respect to the position of the sample point, and so therefore does the model built from the near neighbors. It is possible to utilize local information inferred from near neighbors as usual but at the same time to impose a degree of regularity on a global scale. We present here a new global perspective extending the general local modeling concept. In so doing, then we proceed to show how this perspective allows us to impose prior presumed regularity into the model, by involving the Tikhonov regularity theory, since this classic perspective of optimization in ill-posed problems naturally balances fitting an objective with some prior assumed form of the result, such as continuity or derivative regularity for example. This all reduces to matrix manipulations which we demonstrate on a simple data set, with the implication that it may find much broader context.

  18. The oceanic forecasting system near the Shimokita Peninsula, Japan

    International Nuclear Information System (INIS)

    In, Teiji; Nakayama, Tomoharu; Matsuura, Yasutaka; Shima, Shigeki; Ishikawa, Yoichi; Awaji, Toshiyuki; Kobayashi, Takuya; Kawamura, Hideyuki; Togawa, Orihiko; Toyoda, Takahiro

    2007-01-01

    The oceanic forecasting system off the Shimokita Peninsula was constructed. To evaluate the performance of this system, we carried out the hindcast experiment for the oceanic conditions in 2003. The results showed the system had good reproducibility. Especially, it was able to reproduce the feature of seasonal variation of the Tsugaru Warm Water (TWW). We expect it has enough performance in actual forecasting. (author)

  19. Forecasting PM10 in metropolitan areas: Efficacy of neural networks

    International Nuclear Information System (INIS)

    Fernando, H.J.S.; Mammarella, M.C.; Grandoni, G.; Fedele, P.; Di Marco, R.; Dimitrova, R.; Hyde, P.

    2012-01-01

    Deterministic photochemical air quality models are commonly used for regulatory management and planning of urban airsheds. These models are complex, computer intensive, and hence are prohibitively expensive for routine air quality predictions. Stochastic methods are becoming increasingly popular as an alternative, which relegate decision making to artificial intelligence based on Neural Networks that are made of artificial neurons or ‘nodes’ capable of ‘learning through training’ via historic data. A Neural Network was used to predict particulate matter concentration at a regulatory monitoring site in Phoenix, Arizona; its development, efficacy as a predictive tool and performance vis-à-vis a commonly used regulatory photochemical model are described in this paper. It is concluded that Neural Networks are much easier, quicker and economical to implement without compromising the accuracy of predictions. Neural Networks can be used to develop rapid air quality warning systems based on a network of automated monitoring stations.Highlights: ► Neural Network is an alternative technique to photochemical modelling. ► Neutral Networks can be as effective as traditional air photochemical modelling. ► Neural Networks are much easier and quicker to implement in health warning system. - Neutral networks are as effective as photochemical modelling for air quality predictions, but are much easier, quicker and economical to implement in air pollution (or health) warning systems.

  20. Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks

    International Nuclear Information System (INIS)

    Cao Jiacong; Lin Xingchun

    2008-01-01

    An accurate forecast of solar irradiation is required for various solar energy applications and environmental impact analyses in recent years. Comparatively, various irradiation forecast models based on artificial neural networks (ANN) perform much better in accuracy than many conventional prediction models. However, the forecast precision of most existing ANN based forecast models has not been satisfactory to researchers and engineers so far, and the generalization capability of these networks needs further improving. Combining the prominent dynamic properties of a recurrent neural network (RNN) with the enhanced ability of a wavelet neural network (WNN) in mapping nonlinear functions, a diagonal recurrent wavelet neural network (DRWNN) is newly established in this paper to perform fine forecasting of hourly and daily global solar irradiance. Some additional steps, e.g. applying historical information of cloud cover to sample data sets and the cloud cover from the weather forecast to network input, are adopted to help enhance the forecast precision. Besides, a specially scheduled two phase training algorithm is adopted. As examples, both hourly and daily irradiance forecasts are completed using sample data sets in Shanghai and Macau, and comparisons between irradiation models show that the DRWNN models are definitely more accurate

  1. The GOCF/AWAP system - forecasting temperature extremes

    International Nuclear Information System (INIS)

    Fawcett, Robert; Hume, Timothy

    2010-01-01

    Gridded hourly temperature forecasts from the Bureau of Meteorology's Gridded Operational Consensus Forecasting (GOCF) system are combined in real time with the Australian Water Availability Project (AWAP) gridded daily temperature analyses to produce gridded daily maximum and minimum temperature forecasts with lead times from one to five days. These forecasts are compared against the historical record of AWAP daily temperature analyses (1911 to present), to identify regions where record or near-record temperatures are predicted to occur. This paper describes the GOCF/AWAP system, showing how the daily maximum and minimum temperature forecasts are prepared from the hourly forecasts, and how they are bias-corrected in real time using the AWAP analyses, against which they are subsequently verified. Using monthly climatologies of long-term daily mean, standard deviation and all-time highest and lowest on record, derived forecast products (for both maximum and minimum temperature) include ordinary and standardised anomalies, 'forecast - highest on record' and 'forecast - lowest on record'. Compensation for the climatological variation across the country is achieved in these last two products, which provide the necessary guidance as to whether or not record-breaking temperatures are expected, by expressing the forecast departure from the previous record in both 0 C and standard deviations.

  2. Multiplexed FBG Monitoring System for Forecasting Coalmine Water Inrush Disaster

    Directory of Open Access Journals (Sweden)

    B. Liu

    2012-01-01

    Full Text Available This paper presents a novel fiber-Bragg-grating- (FBG- based system which can monitor and analyze multiple parameters such as temperature, strain, displacement, and seepage pressure simultaneously for forecasting coalmine water inrush disaster. The sensors have minimum perturbation on the strain field. And the seepage pressure sensors adopt a drawbar structure and employ a corrugated diaphragm to transmit seepage pressure to the axial strain of FBG. The pressure sensitivity is 20.20 pm/KPa, which is 6E3 times higher than that of ordinary bare FBG. The FBG sensors are all preembedded on the roof of mining area in coalmine water inrush model test. Then FBG sensing network is set up applying wavelength-division multiplexing (WDM technology. The experiment is carried out by twelve steps, while the system acquires temperature, strain, displacement, and seepage pressure signals in real time. The results show that strain, displacement, and seepage pressure monitored by the system change significantly before water inrush occurs, and the strain changes firstly. Through signal fusion analyzed it can be concluded that the system provides a novel way to forecast water inrush disaster successfully.

  3. Forecasting the Performance of Agroforestry Systems

    Science.gov (United States)

    Luedeling, E.; Shepherd, K.

    2014-12-01

    Agroforestry has received considerable attention from scientists and development practitioners in recent years. It is recognized as a cornerstone of many traditional agricultural systems, as well as a new option for sustainable land management in currently treeless agricultural landscapes. Agroforestry systems are diverse, but most manifestations supply substantial ecosystem services, including marketable tree products, soil fertility, water cycle regulation, wildlife habitat and carbon sequestration. While these benefits have been well documented for many existing systems, projecting the outcomes of introducing new agroforestry systems, or forecasting system performance under changing environmental or climatic conditions, remains a substantial challenge. Due to the various interactions between system components, the multiple benefits produced by trees and crops, and the host of environmental, socioeconomic and cultural factors that shape agroforestry systems, mechanistic models of such systems quickly become very complex. They then require a lot of data for site-specific calibration, which presents a challenge for their use in new environmental and climatic domains, especially in data-scarce environments. For supporting decisions on the scaling up of agroforestry technologies, new projection methods are needed that can capture system complexity to an adequate degree, while taking full account of the fact that data on many system variables will virtually always be highly uncertain. This paper explores what projection methods are needed for supplying decision-makers with useful information on the performance of agroforestry in new places or new climates. Existing methods are discussed in light of these methodological needs. Finally, a participatory approach to performance projection is proposed that captures system dynamics in a holistic manner and makes probabilistic projections about expected system performance. This approach avoids the temptation to take

  4. Forecasting financial asset processes: stochastic dynamics via learning neural networks.

    Science.gov (United States)

    Giebel, S; Rainer, M

    2010-01-01

    Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.

  5. An efficient approach for electric load forecasting using distributed ART (adaptive resonance theory) and HS-ARTMAP (Hyper-spherical ARTMAP network) neural network

    International Nuclear Information System (INIS)

    Cai, Yuan; Wang, Jian-zhou; Tang, Yun; Yang, Yu-chen

    2011-01-01

    This paper presents a neural network based on adaptive resonance theory, named distributed ART (adaptive resonance theory) and HS-ARTMAP (Hyper-spherical ARTMAP network), applied to the electric load forecasting problem. The distributed ART combines the stable fast learning capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multi-layer perceptions. The HS-ARTMAP, a hybrid of an RBF (Radial Basis Function)-network-like module which uses hyper-sphere basis function substitute the Gaussian basis function and an ART-like module, performs incremental learning capabilities in function approximation problem. The HS-ARTMAP only receives the compressed distributed coding processed by distributed ART to deal with the proliferation problem which ARTMAP (adaptive resonance theory map) architecture often encounters and still performs well in electric load forecasting. To demonstrate the performance of the methodology, data from New South Wales and Victoria in Australia are illustrated. Results show that the developed method is much better than the traditional BP and single HS-ARTMAP neural network. -- Research highlights: → The processing of the presented network is based on compressed distributed data. It's an innovation among the adaptive resonance theory architecture. → The presented network decreases the proliferation the Fuzzy ARTMAP architectures usually encounter. → The network on-line forecasts electrical load accurately, stably. → Both one-period and multi-period load forecasting are executed using data of different cities.

  6. Neural networks and traditional time series methods: a synergistic combination in state economic forecasts.

    Science.gov (United States)

    Hansen, J V; Nelson, R D

    1997-01-01

    Ever since the initial planning for the 1997 Utah legislative session, neural-network forecasting techniques have provided valuable insights for analysts forecasting tax revenues. These revenue estimates are critically important since agency budgets, support for education, and improvements to infrastructure all depend on their accuracy. Underforecasting generates windfalls that concern taxpayers, whereas overforecasting produces budget shortfalls that cause inadequately funded commitments. The pattern finding ability of neural networks gives insightful and alternative views of the seasonal and cyclical components commonly found in economic time series data. Two applications of neural networks to revenue forecasting clearly demonstrate how these models complement traditional time series techniques. In the first, preoccupation with a potential downturn in the economy distracts analysis based on traditional time series methods so that it overlooks an emerging new phenomenon in the data. In this case, neural networks identify the new pattern that then allows modification of the time series models and finally gives more accurate forecasts. In the second application, data structure found by traditional statistical tools allows analysts to provide neural networks with important information that the networks then use to create more accurate models. In summary, for the Utah revenue outlook, the insights that result from a portfolio of forecasts that includes neural networks exceeds the understanding generated from strictly statistical forecasting techniques. In this case, the synergy clearly results in the whole of the portfolio of forecasts being more accurate than the sum of the individual parts.

  7. A nowcast-forecast information system for PWS

    International Nuclear Information System (INIS)

    Thomas, G.L.; Cox, W.

    2000-01-01

    The development of the Prince William Sound Oil Spill Recovery Institute's (ORI) nowcast-forecast information system was discussed. OSRI addresses oil spill response and prevention research and development in the Arctic and subArctic. A realistic electronic model of the ecosystem was a much needed tool for efficient prioritization of oil spill technologies. The OSRI Sound Ecosystem Assessment (SEA) research program focused on developing a physical-biological model that consisted of static and biological resources that change over long time periods. This includes bathymetry, shoreline type, and substrate-dependent vegetation. It also focused on developing a model of dynamic properties such as wind, weather, plankton, and wildlife populations that undergo significant changes on annual or shorter time scales. The nowcast information system is a long-term development project which uses the Princeton ocean model (POM), a static runoff model, a network of weather and water observation stations, an Intranet which allows the observational data to run in near-real time and an Internet home page. It will contribute to sustaining the natural resources of coastal areas. It was concluded that the nowcast-forecast information system has short-term applications to oil spill prevention and response and long-term applications to the natural resources at risk to spills. 33 refs

  8. Impact of a high density GPS network on the operational forecast

    Directory of Open Access Journals (Sweden)

    C. Faccani

    2005-01-01

    Full Text Available Global Positioning System Zenith Total Delay (GPS ZTD can provide information about the water vapour in atmosphere. Its assimilation into the analysis used to initialize a model can then improve the weather forecast, giving the right amount of moisture and reducing the model spinup. In the last year, an high density GPS network has been created on the Basilicata region (south of Italy by the Italian Space Agency in the framework of a national project named MAGIC2. MAGIC2 is the Italian follow on of the EC project MAGIC has. Daily operational data assimilation experiments are performed since December 2003. The results show that the assimilation of GPS ZTD improves the forecast especially during the transition from winter to spring even if a no very high model resolution (9km is used.

  9. Hybrid Power Forecasting Model for Photovoltaic Plants Based on Neural Network with Air Quality Index

    Directory of Open Access Journals (Sweden)

    Idris Khan

    2017-01-01

    Full Text Available High concentration of greenhouse gases in the atmosphere has increased dependency on photovoltaic (PV power, but its random nature poses a challenge for system operators to precisely predict and forecast PV power. The conventional forecasting methods were accurate for clean weather. But when the PV plants worked under heavy haze, the radiation is negatively impacted and thus reducing PV power; therefore, to deal with haze weather, Air Quality Index (AQI is introduced as a parameter to predict PV power. AQI, which is an indication of how polluted the air is, has been known to have a strong correlation with power generated by the PV panels. In this paper, a hybrid method based on the model of conventional back propagation (BP neural network for clear weather and BP AQI model for haze weather is used to forecast PV power with conventional parameters like temperature, wind speed, humidity, solar radiation, and an extra parameter of AQI as input. The results show that the proposed method has less error under haze condition as compared to conventional model of neural network.

  10. Study on network traffic forecast model of SVR optimized by GAFSA

    International Nuclear Information System (INIS)

    Liu, Yuan; Wang, RuiXue

    2016-01-01

    There are some problems, such as low precision, on existing network traffic forecast model. In accordance with these problems, this paper proposed the network traffic forecast model of support vector regression (SVR) algorithm optimized by global artificial fish swarm algorithm (GAFSA). GAFSA constitutes an improvement of artificial fish swarm algorithm, which is a swarm intelligence optimization algorithm with a significant effect of optimization. The optimum training parameters used for SVR could be calculated by optimizing chosen parameters, which would make the forecast more accurate. With the optimum training parameters searched by GAFSA algorithm, a model of network traffic forecast, which greatly solved problems of great errors in SVR improved by others intelligent algorithms, could be built with the forecast result approaching stability and the increased forecast precision. The simulation shows that, compared with other models (e.g. GA-SVR, CPSO-SVR), the forecast results of GAFSA-SVR network traffic forecast model is more stable with the precision improved to more than 89%, which plays an important role on instructing network control behavior and analyzing security situation.

  11. The Delft-FEWS flow forecasting system

    NARCIS (Netherlands)

    Werner, M.; Schellekens, J.; Gijsbers, P.; van Dijk, M.; van den Akker, O.; Heynert, K.

    2013-01-01

    Since its introduction in 2002/2003, the current generation of the Delft-FEWS operational forecasting platform has found application in over forty operational centres. In these it is used to link data and models in real time, producing forecasts on a daily basis. In some cases it forms a building

  12. The Stevens Integrated Maritime Surveillance Forecast System: Expansion and Enhancement

    National Research Council Canada - National Science Library

    Bruno, Michael S; Blumberg, Alan F

    2006-01-01

    .... In the long-term, the observation and modeling systems will be linked in a unique fashion, whereby the model forecast system will be enhanced by data assimilation, and the observing system will...

  13. An adaptive wavelet-network model for forecasting daily total solar-radiation

    International Nuclear Information System (INIS)

    Mellit, A.; Benghanem, M.; Kalogirou, S.A.

    2006-01-01

    The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet-networks are feed-forward networks using wavelets as activation functions. Wavelet-networks have been used successfully in various engineering applications such as classification, identification and control problems. In this paper, the use of adaptive wavelet-network architecture in finding a suitable forecasting model for predicting the daily total solar-radiation is investigated. Total solar-radiation is considered as the most important parameter in the performance prediction of renewable energy systems, particularly in sizing photovoltaic (PV) power systems. For this purpose, daily total solar-radiation data have been recorded during the period extending from 1981 to 2001, by a meteorological station in Algeria. The wavelet-network model has been trained by using either the 19 years of data or one year of the data. In both cases the total solar radiation data corresponding to year 2001 was used for testing the model. The network was trained to accept and handle a number of unusual cases. Results indicate that the model predicts daily total solar-radiation values with a good accuracy of approximately 97% and the mean absolute percentage error is not more than 6%. In addition, the performance of the model was compared with different neural network structures and classical models. Training algorithms for wavelet-networks require smaller numbers of iterations when compared with other neural networks. The model can be used to fill missing data in weather databases. Additionally, the proposed model can be generalized and used in different locations and for other weather data, such as sunshine duration and ambient temperature. Finally, an application using the model for sizing a PV-power system is presented in order to confirm the validity of this model

  14. Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models

    International Nuclear Information System (INIS)

    Benmouiza, Khalil; Cheknane, Ali

    2013-01-01

    Highlights: • An unsupervised clustering algorithm with a neural network model was explored. • The forecasting results of solar radiation time series and the comparison of their performance was simulated. • A new method was proposed combining k-means algorithm and NAR network to provide better prediction results. - Abstract: In this paper, we review our work for forecasting hourly global horizontal solar radiation based on the combination of unsupervised k-means clustering algorithm and artificial neural networks (ANN). k-Means algorithm focused on extracting useful information from the data with the aim of modeling the time series behavior and find patterns of the input space by clustering the data. On the other hand, nonlinear autoregressive (NAR) neural networks are powerful computational models for modeling and forecasting nonlinear time series. Taking the advantage of both methods, a new method was proposed combining k-means algorithm and NAR network to provide better forecasting results

  15. Seasonal Drought Forecasting for Latin America Using the ECMWF S4 Forecast System

    Directory of Open Access Journals (Sweden)

    Hugo Carrão

    2018-06-01

    Full Text Available Meaningful seasonal prediction of drought conditions is key information for end-users and water managers, particularly in Latin America where crop and livestock production are key for many regional economies. However, there are still not many studies of the feasibility of such a forecasts at continental level in the region. In this study, precipitation predictions from the European Centre for Medium Range Weather (ECMWF seasonal forecast system S4 are combined with observed precipitation data to generate forecasts of the standardized precipitation index (SPI for Latin America, and their skill is evaluated over the hindcast period 1981–2010. The value-added utility in using the ensemble S4 forecast to predict the SPI is identified by comparing the skill of its forecasts with a baseline skill based solely on their climatological characteristics. As expected, skill of the S4-generated SPI forecasts depends on the season, location, and the specific aggregation period considered (the 3- and 6-month SPI were evaluated. Added skill from the S4 for lead times equaling the SPI accumulation periods is primarily present in regions with high intra-annual precipitation variability, and is found mostly for the months at the end of the dry seasons for 3-month SPI, and half-yearly periods for 6-month SPI. The ECMWF forecast system behaves better than the climatology for clustered grid points in the North of South America, the Northeast of Argentina, Uruguay, southern Brazil and Mexico. The skillful regions are similar for the SPI3 and -6, but become reduced in extent for the severest SPI categories. Forecasting different magnitudes of meteorological drought intensity on a seasonal time scale still remains a challenge. However, the ECMWF S4 forecasting system does capture the occurrence of drought events for the aforementioned regions and seasons reasonably well. In the near term, the largest advances in the prediction of meteorological drought for Latin

  16. Demand Forecasting Methods in Accommodation Establishments: A Research with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ebru ULUCAN

    2018-05-01

    Full Text Available As it being seen in every sector, demand forecasting in tourism is been conducted with various qualitative and quantitative methods. In recent years, artificial neural network models, which have been developed as an alternative to these forecasting methods, give the nearest values in forecasting with the smallest failure percentage. This study aims to reveal that accomodation establishments can use the neural network models as an alternative while forecasting their demand. With this aim, neural network models have been tested by using the sold room values between the period of 2013-2016 of a five star hotel in Istanbul and it is found that the results acquired from the testing models are the nearest values comparing the realized figures. In the light of these results, tourism demand of the hotel for 2017 and 2018 has been forecasted.

  17. The application of hybrid artificial intelligence systems for forecasting

    Science.gov (United States)

    Lees, Brian; Corchado, Juan

    1999-03-01

    The results to date are presented from an ongoing investigation, in which the aim is to combine the strengths of different artificial intelligence methods into a single problem solving system. The premise underlying this research is that a system which embodies several cooperating problem solving methods will be capable of achieving better performance than if only a single method were employed. The work has so far concentrated on the combination of case-based reasoning and artificial neural networks. The relative merits of artificial neural networks and case-based reasoning problem solving paradigms, and their combination are discussed. The integration of these two AI problem solving methods in a hybrid systems architecture, such that the neural network provides support for learning from past experience in the case-based reasoning cycle, is then presented. The approach has been applied to the task of forecasting the variation of physical parameters of the ocean. Results obtained so far from tests carried out in the dynamic oceanic environment are presented.

  18. Assimilation scheme of the Mediterranean Forecasting System: operational implementation

    Directory of Open Access Journals (Sweden)

    E. Demirov

    Full Text Available This paper describes the operational implementation of the data assimilation scheme for the Mediterranean Forecasting System Pilot Project (MFSPP. The assimilation scheme, System for Ocean Forecast and Analysis (SOFA, is a reduced order Optimal Interpolation (OI scheme. The order reduction is achieved by projection of the state vector into vertical Empirical Orthogonal Functions (EOF. The data assimilated are Sea Level Anomaly (SLA and temperature profiles from Expandable Bathy Termographs (XBT. The data collection, quality control, assimilation and forecast procedures are all done in Near Real Time (NRT. The OI is used intermittently with an assimilation cycle of one week so that an analysis is produced once a week. The forecast is then done for ten days following the analysis day. The root mean square (RMS between the model forecast and the analysis (the forecast RMS is below 0.7°C in the surface layers and below 0.2°C in the layers deeper than 200 m for all the ten forecast days. The RMS between forecast and initial condition (persistence RMS is higher than forecast RMS after the first day. This means that the model improves forecast with respect to persistence. The calculation of the misfit between the forecast and the satellite data suggests that the model solution represents well the main space and time variability of the SLA except for a relatively short period of three – four weeks during the summer when the data show a fast transition between the cyclonic winter and anti-cyclonic summer regimes. This occurs in the surface layers that are not corrected by our assimilation scheme hypothesis. On the basis of the forecast skill scores analysis, conclusions are drawn about future improvements.

    Key words. Oceanography; general (marginal and semi-enclosed seas; numerical modeling; ocean prediction

  19. Assimilation scheme of the Mediterranean Forecasting System: operational implementation

    Directory of Open Access Journals (Sweden)

    E. Demirov

    2003-01-01

    Full Text Available This paper describes the operational implementation of the data assimilation scheme for the Mediterranean Forecasting System Pilot Project (MFSPP. The assimilation scheme, System for Ocean Forecast and Analysis (SOFA, is a reduced order Optimal Interpolation (OI scheme. The order reduction is achieved by projection of the state vector into vertical Empirical Orthogonal Functions (EOF. The data assimilated are Sea Level Anomaly (SLA and temperature profiles from Expandable Bathy Termographs (XBT. The data collection, quality control, assimilation and forecast procedures are all done in Near Real Time (NRT. The OI is used intermittently with an assimilation cycle of one week so that an analysis is produced once a week. The forecast is then done for ten days following the analysis day. The root mean square (RMS between the model forecast and the analysis (the forecast RMS is below 0.7°C in the surface layers and below 0.2°C in the layers deeper than 200 m for all the ten forecast days. The RMS between forecast and initial condition (persistence RMS is higher than forecast RMS after the first day. This means that the model improves forecast with respect to persistence. The calculation of the misfit between the forecast and the satellite data suggests that the model solution represents well the main space and time variability of the SLA except for a relatively short period of three – four weeks during the summer when the data show a fast transition between the cyclonic winter and anti-cyclonic summer regimes. This occurs in the surface layers that are not corrected by our assimilation scheme hypothesis. On the basis of the forecast skill scores analysis, conclusions are drawn about future improvements. Key words. Oceanography; general (marginal and semi-enclosed seas; numerical modeling; ocean prediction

  20. Artificial Neural Network Models for Long Lead Streamflow Forecasts using Climate Information

    Science.gov (United States)

    Kumar, J.; Devineni, N.

    2007-12-01

    Information on season ahead stream flow forecasts is very beneficial for the operation and management of water supply systems. Daily streamflow conditions at any particular reservoir primarily depend on atmospheric and land surface conditions including the soil moisture and snow pack. On the other hand recent studies suggest that developing long lead streamflow forecasts (3 months ahead) typically depends on exogenous climatic conditions particularly Sea Surface Temperature conditions (SST) in the tropical oceans. Examples of some oceanic variables are El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Identification of such conditions that influence the moisture transport into a given basin poses many challenges given the nonlinear dependency between the predictors (SST) and predictand (stream flows). In this study, we apply both linear and nonlinear dependency measures to identify the predictors that influence the winter flows into the Neuse basin. The predictor identification approach here adopted uses simple correlation coefficients to spearman rank correlation measures for detecting nonlinear dependency. All these dependency measures are employed with a lag 3 time series of the high flow season (January - February - March) using 75 years (1928-2002) of stream flows recorded in to the Falls Lake, Neuse River Basin. Developing streamflow forecasts contingent on these exogenous predictors will play an important role towards improved water supply planning and management. Recently, the soft computing techniques, such as artificial neural networks (ANNs) have provided an alternative method to solve complex problems efficiently. ANNs are data driven models which trains on the examples given to it. The ANNs functions as universal approximators and are non linear in nature. This paper presents a study aiming towards using climatic predictors for 3 month lead time streamflow forecast. ANN models representing the physical process of the system are

  1. The Use of Artificial Neural Networks for Forecasting the Electric Demand of Stand-Alone Consumers

    Science.gov (United States)

    Ivanin, O. A.; Direktor, L. B.

    2018-05-01

    The problem of short-term forecasting of electric power demand of stand-alone consumers (small inhabited localities) situated outside centralized power supply areas is considered. The basic approaches to modeling the electric power demand depending on the forecasting time frame and the problems set, as well as the specific features of such modeling, are described. The advantages and disadvantages of the methods used for the short-term forecast of the electric demand are indicated, and difficulties involved in the solution of the problem are outlined. The basic principles of arranging artificial neural networks are set forth; it is also shown that the proposed method is preferable when the input information necessary for prediction is lacking or incomplete. The selection of the parameters that should be included into the list of the input data for modeling the electric power demand of residential areas using artificial neural networks is validated. The structure of a neural network is proposed for solving the problem of modeling the electric power demand of residential areas. The specific features of generation of the training dataset are outlined. The results of test modeling of daily electric demand curves for some settlements of Kamchatka and Yakutia based on known actual electric demand curves are provided. The reliability of the test modeling has been validated. A high value of the deviation of the modeled curve from the reference curve obtained in one of the four reference calculations is explained. The input data and the predicted power demand curves for the rural settlement of Kuokuiskii Nasleg are provided. The power demand curves were modeled for four characteristic days of the year, and they can be used in the future for designing a power supply system for the settlement. To enhance the accuracy of the method, a series of measures based on specific features of a neural network's functioning are proposed.

  2. Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods

    NARCIS (Netherlands)

    Suryanarayana, Gowri; Lago Garcia, J.; Geysen, Davy; Aleksiejuk, Piotr; Johansson, Christian

    2018-01-01

    Recent research has seen several forecasting methods being applied for heat load forecasting of district heating networks. This paper presents two methods that gain significant improvements compared to the previous works. First, an automated way of handling non-linear dependencies in linear

  3. FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting

    Directory of Open Access Journals (Sweden)

    Miquel L. Alomar

    2016-01-01

    Full Text Available Hardware implementation of artificial neural networks (ANNs allows exploiting the inherent parallelism of these systems. Nevertheless, they require a large amount of resources in terms of area and power dissipation. Recently, Reservoir Computing (RC has arisen as a strategic technique to design recurrent neural networks (RNNs with simple learning capabilities. In this work, we show a new approach to implement RC systems with digital gates. The proposed method is based on the use of probabilistic computing concepts to reduce the hardware required to implement different arithmetic operations. The result is the development of a highly functional system with low hardware resources. The presented methodology is applied to chaotic time-series forecasting.

  4. Development of Hydrometeorological Monitoring and Forecasting as AN Essential Component of the Early Flood Warning System:

    Science.gov (United States)

    Manukalo, V.

    2012-12-01

    Defining issue The river inundations are the most common and destructive natural hazards in Ukraine. Among non-structural flood management and protection measures a creation of the Early Flood Warning System is extremely important to be able to timely recognize dangerous situations in the flood-prone areas. Hydrometeorological information and forecasts are a core importance in this system. The primary factors affecting reliability and a lead - time of forecasts include: accuracy, speed and reliability with which real - time data are collected. The existing individual conception of monitoring and forecasting resulted in a need in reconsideration of the concept of integrated monitoring and forecasting approach - from "sensors to database and forecasters". Result presentation The Project: "Development of Flood Monitoring and Forecasting in the Ukrainian part of the Dniester River Basin" is presented. The project is developed by the Ukrainian Hydrometeorological Service in a conjunction with the Water Management Agency and the Energy Company "Ukrhydroenergo". The implementation of the Project is funded by the Ukrainian Government and the World Bank. The author is nominated as the responsible person for coordination of activity of organizations involved in the Project. The term of the Project implementation: 2012 - 2014. The principal objectives of the Project are: a) designing integrated automatic hydrometeorological measurement network (including using remote sensing technologies); b) hydrometeorological GIS database construction and coupling with electronic maps for flood risk assessment; c) interface-construction classic numerical database -GIS and with satellite images, and radar data collection; d) providing the real-time data dissemination from observation points to forecasting centers; e) developing hydrometeoroogical forecasting methods; f) providing a flood hazards risk assessment for different temporal and spatial scales; g) providing a dissemination of

  5. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting.

    Science.gov (United States)

    Waheeb, Waddah; Ghazali, Rozaida; Herawan, Tutut

    2016-01-01

    Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network.

  6. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting.

    Directory of Open Access Journals (Sweden)

    Waddah Waheeb

    Full Text Available Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN and the Dynamic Ridge Polynomial Neural Network (DRPNN. Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network.

  7. Short-Term and Long-Term Forecasting for the 3D Point Position Changing by Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Eleni-Georgia Alevizakou

    2018-03-01

    Full Text Available Forecasting is one of the most growing areas in most sciences attracting the attention of many researchers for more extensive study. Therefore, the goal of this study is to develop an integrated forecasting methodology based on an Artificial Neural Network (ANN, which is a modern and attractive intelligent technique. The final result is to provide short-term and long-term forecasts for point position changing, i.e., the displacement or deformation of the surface they belong to. The motivation was the combination of two thoughts, the insertion of the forecasting concept in Geodesy as in the most scientific disciplines (e.g., Economics, Medicine and the desire to know the future position of any point on a construction or on the earth’s crustal. This methodology was designed to be accurate, stable and general for different kind of geodetic data. The basic procedure consists of the definition of the forecasting problem, the preliminary data analysis (data pre-processing, the definition of the most suitable ANN, its evaluation using the proper criteria and finally the production of forecasts. The methodology gives particular emphasis on the stages of the pre-processing and the evaluation. Additionally, the importance of the prediction intervals (PI is emphasized. A case study, which includes geodetic data from the year 2003 to the year 2016—namely X, Y, Z coordinates—is implemented. The data were acquired by 1000 permanent Global Navigation Satellite System (GNSS stations. During this case study, 2016 ANNs—with different hyper-parameters—are trained and tested for short-term forecasting and 2016 for long-term forecasting, for each of the GNSS stations. In addition, other conventional statistical forecasting methods are used for the same purpose using the same data set. Finally the most appropriate Non-linear Autoregressive Recurrent network (NAR or Non-linear Autoregressive with eXogenous inputs (NARX for the forecasting of 3D point

  8. Climate Forecast System Reforecast (CFSR), for 1981 to 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCEP Climate Forecast System Reanalysis (CFSR) was designed and executed as a global, high resolution, coupled atmosphere-ocean-land surface-sea ice system to...

  9. Mid-term report on Renewable Energy Forecasting System

    International Nuclear Information System (INIS)

    Brand, A.J.; Hegberg, T.; Van der Borg, N.J.C.M.; Kok, J.K.; Van Selow, E.R.; Kamphuis, I.G.; De Noord, M.; Van Sambeek, E.J.W.

    2001-04-01

    The most important conclusions on the economical and technical feasibility of renewable energy forecasting systems are presented, next to recommendations to be followed in order to introduce such a system in the Dutch electricity market. 11 refs

  10. Artificial Neural Network versus Linear Models Forecasting Doha Stock Market

    Science.gov (United States)

    Yousif, Adil; Elfaki, Faiz

    2017-12-01

    The purpose of this study is to determine the instability of Doha stock market and develop forecasting models. Linear time series models are used and compared with a nonlinear Artificial Neural Network (ANN) namely Multilayer Perceptron (MLP) Technique. It aims to establish the best useful model based on daily and monthly data which are collected from Qatar exchange for the period starting from January 2007 to January 2015. Proposed models are for the general index of Qatar stock exchange and also for the usages in other several sectors. With the help of these models, Doha stock market index and other various sectors were predicted. The study was conducted by using various time series techniques to study and analyze data trend in producing appropriate results. After applying several models, such as: Quadratic trend model, double exponential smoothing model, and ARIMA, it was concluded that ARIMA (2,2) was the most suitable linear model for the daily general index. However, ANN model was found to be more accurate than time series models.

  11. MOCASSIM - an operational forecast system for the Portuguese coastal waters.

    Science.gov (United States)

    Vitorino, J.; Soares, C.; Almeida, S.; Rusu, E.; Pinto, J.

    2003-04-01

    An operational system for the forecast of oceanographic conditions off the Portuguese coast is presently being implemented at Instituto Hidrográfico (IH), in the framework of project MOCASSIM. The system is planned to use a broad range of observations provided both from IH observational networks (wave buoys, tidal gauges) and programs (hydrographic surveys, moorings) as well as from external sources. The MOCASSIM system integrates several numerical models which, combined, are intended to cover the relevant physical processes observed in the geographical areas of interest. At the present stage of development the system integrates a circulation module and a wave module. The circulation module is based on the Harvard Ocean Prediction System (HOPS), a primitive equation model formulated under the rigid lid assumption, which includes a data assimilation module. The wave module is based on the WaveWatch3 (WW3) model, which provides wave conditions in the North Atlantic basin, and on the SWAN model which is used to improve the wave forecasts on coastal or other specific areas of interest. The models use the meteorological forcing fields of a limited area model (ALADIN model) covering the Portuguese area, which are being provided in the framework of a close colaboration with Instituto de Meteorologia. Although still under devellopment, the MOCASSIM system has already been used in several operationnal contexts. These included the operational environmental assessment during both national and NATO navy exercises and, more recently, the monitoring of the oceanographic conditions in the NW Iberian area affected by the oil spill of MV "Prestige". The system is also a key component of ongoing research on the oceanography of the Portuguese continental margin, which is presently being conducted at IH in the framework of national and European funded projects.

  12. Forecasting of passenger traffic in Moscow metro applying artificial neural networks

    International Nuclear Information System (INIS)

    Ivanov, V.V.; Natsional'nyj Issledovatel'skij Yadernyj Univ. MIFI, Moscow; FKU Rostransmodernizatsiya, Moscow

    2016-01-01

    Methods for the forecasting of passenger traffic in Moscow metro have been developed using artificial neural networks. To this end, the factors primarily determining passenger traffic in the subway have been analyzed and selected [ru

  13. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    KAUST Repository

    Zhang, Xuesong; Liang, Faming; Yu, Beibei; Zong, Ziliang

    2011-01-01

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow

  14. An Assessment of the Subseasonal Forecast Performance in the Extended Global Ensemble Forecast System (GEFS)

    Science.gov (United States)

    Sinsky, E.; Zhu, Y.; Li, W.; Guan, H.; Melhauser, C.

    2017-12-01

    Optimal forecast quality is crucial for the preservation of life and property. Improving monthly forecast performance over both the tropics and extra-tropics requires attention to various physical aspects such as the representation of the underlying SST, model physics and the representation of the model physics uncertainty for an ensemble forecast system. This work focuses on the impact of stochastic physics, SST and the convection scheme on forecast performance for the sub-seasonal scale over the tropics and extra-tropics with emphasis on the Madden-Julian Oscillation (MJO). A 2-year period is evaluated using the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS). Three experiments with different configurations than the operational GEFS were performed to illustrate the impact of the stochastic physics, SST and convection scheme. These experiments are compared against a control experiment (CTL) which consists of the operational GEFS but its integration is extended from 16 to 35 days. The three configurations are: 1) SPs, which uses a Stochastically Perturbed Physics Tendencies (SPPT), Stochastic Perturbed Humidity (SHUM) and Stochastic Kinetic Energy Backscatter (SKEB); 2) SPs+SST_bc, which uses a combination of SPs and a bias-corrected forecast SST from the NCEP Climate Forecast System Version 2 (CFSv2); and 3) SPs+SST_bc+SA_CV, which combines SPs, a bias-corrected forecast SST and a scale aware convection scheme. When comparing to the CTL experiment, SPs shows substantial improvement. The MJO skill has improved by about 4 lead days during the 2-year period. Improvement is also seen over the extra-tropics due to the updated stochastic physics, where there is a 3.1% and a 4.2% improvement during weeks 3 and 4 over the northern hemisphere and southern hemisphere, respectively. Improvement is also seen when the bias-corrected CFSv2 SST is combined with SPs. Additionally, forecast performance enhances when the scale aware

  15. Estimation of clearness index using neural network with meteorological forecast; Kisho yoho wo nyuryoku toshita neural network ni yoru seiten shisu no yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, S; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    Discussions were given on estimation of clearness index in order to operate stably a solar energy utilizing system. All-sky insolation amount varies not only by change in the climate, but also seasonal change in the sun`s altitude. Therefore, a clearness index (ratio of all-sky insolation to out-of-atmosphere insolation) was used. The larger the value, the higher the solar ray permeability. The all-sky insolation amount is a measured value, while the out-of-atmosphere insolation amount is a calculated value. Although the clearness index may be roughly estimated by weather forecast, the clearness index varies largely even on the same weather forecast, especially for cloudy days, if a weather forecast actually having error is used. Therefore, discussions were given on estimation of the clearness index by using a neural network which uses meteorological information such as air temperatures and precipitation probabilities as inputs. Using multiple number of meteorological forecast information simultaneously has reduced the average square error to 49% of that using only the weather forecast. The estimation accuracy depends on the accuracy of meteorological forecast, but using multiple number of forecast information can improve the accuracy. 6 refs., 7 figs., 1 tab.

  16. An artificial neural network model for rainfall forecasting in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    N. Q. Hung

    2009-08-01

    Full Text Available This paper presents a new approach using an Artificial Neural Network technique to improve rainfall forecast performance. A real world case study was set up in Bangkok; 4 years of hourly data from 75 rain gauge stations in the area were used to develop the ANN model. The developed ANN model is being applied for real time rainfall forecasting and flood management in Bangkok, Thailand. Aimed at providing forecasts in a near real time schedule, different network types were tested with different kinds of input information. Preliminary tests showed that a generalized feedforward ANN model using hyperbolic tangent transfer function achieved the best generalization of rainfall. Especially, the use of a combination of meteorological parameters (relative humidity, air pressure, wet bulb temperature and cloudiness, the rainfall at the point of forecasting and rainfall at the surrounding stations, as an input data, advanced ANN model to apply with continuous data containing rainy and non-rainy period, allowed model to issue forecast at any moment. Additionally, forecasts by ANN model were compared to the convenient approach namely simple persistent method. Results show that ANN forecasts have superiority over the ones obtained by the persistent model. Rainfall forecasts for Bangkok from 1 to 3 h ahead were highly satisfactory. Sensitivity analysis indicated that the most important input parameter besides rainfall itself is the wet bulb temperature in forecasting rainfall.

  17. Operational air quality forecasting system for Spain: CALIOPE

    Science.gov (United States)

    Baldasano, J. M.; Piot, M.; Jorba, O.; Goncalves, M.; Pay, M.; Pirez, C.; Lopez, E.; Gasso, S.; Martin, F.; García-Vivanco, M.; Palomino, I.; Querol, X.; Pandolfi, M.; Dieguez, J. J.; Padilla, L.

    2009-12-01

    The European Commission (EC) and the United States Environmental Protection Agency (US-EPA) have shown great concerns to understand the transport and dynamics of pollutants in the atmosphere. According to the European directives (1996/62/EC, 2002/3/EC, 2008/50/EC), air quality modeling, if accurately applied, is a useful tool to understand the dynamics of air pollutants, to analyze and forecast the air quality, and to develop programs reducing emissions and alert the population when health-related issues occur. The CALIOPE project, funded by the Spanish Ministry of the Environment, has the main objective to establish an air quality forecasting system for Spain. A partnership of four research institutions composes the CALIOPE project: the Barcelona Supercomputing Center (BSC), the center of investigation CIEMAT, the Earth Sciences Institute ‘Jaume Almera’ (IJA-CSIC) and the CEAM Foundation. CALIOPE will become the official Spanish air quality operational system. This contribution focuses on the recent developments and implementation of the integrated modelling system for the Iberian Peninsula (IP) and Canary Islands (CI) with a high spatial and temporal resolution (4x4 sq. km for IP and 2x2 sq. km for CI, 1 hour), namely WRF-ARW/HERMES04/CMAQ/BSC-DREAM. The HERMES04 emission model has been specifically developed as a high-resolution (1x1 sq. km, 1 hour) emission model for Spain. It includes biogenic and anthropogenic emissions such as on-road and paved-road resuspension production, power plant generation, ship and plane traffic, airports and ports activities, industrial and agricultural sectors as well as domestic and commercial emissions. The qualitative and quantitative evaluation of the model was performed for a reference year (2004) using data from ground-based measurement networks. The products of the CALIOPE system will provide 24h and 48h forecasts for O3, NO2, SO2, CO, PM10 and PM2.5 at surface level. An operational evaluation system has been developed

  18. Forecasting Kuala Lumpur Composite Index: Evidence of the Artificial Neural Network and Arima

    OpenAIRE

    Mahmud Iwan, Raditya Sukmana,

    2007-01-01

    The aim of this paper is to use, compare, and analyze two forecasting technique: namely Auto Regressive Integrated Moving Average(ARIMA) and Artificial Neural Network(ANN) using Kuala Lumpur Composite Index(KLCI) in Malaysia. Artificial Neural Network is used because of its popularity of capturing the volatility patterns in nonlinear time series while ARIMA used since it is a standard method in the forecasting tool. Daily data of Kuala Lumpur Composite Index from 4 January 1999 to 26 Septembe...

  19. Wind yield forecast with Echo State Networks; Windertragsprognose mit Echo State Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kobialka, Hans-Ulrich [Fraunhofer IAIS, Sankt Augustin (Germany)

    2012-07-01

    Statistical methods are able to create models of complex system dynamics which are difficult to capture analytically. This paper describes a wind energy prediction system based on a machine learning method, called Echo State Networks. Echo State Networks enable the training of large recurrent neural networks which are able to model and predict highly non-linear system dynamics. This paper gives a short description of Echo State Networks and the realization of the wind energy prediction system. (orig.)

  20. Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks.

    Science.gov (United States)

    Jin, Junghwan; Kim, Jinsoo

    2015-01-01

    Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autoregressive conditional heteroskedasticity, and artificial neural network models are employed to predict natural gas prices. We also emphasize the boundary problem in wavelet decomposition, and compare results that consider the boundary problem case with those that do not. The empirical results show that our suggested approach can handle the boundary problem, such that it facilitates the extraction of the appropriate forecasting results. The performance of the wavelet-hybrid approach was superior in all cases, whereas the application of detail components in the forecasting was only able to yield a small improvement in forecasting performance. Therefore, forecasting with only an approximation component would be acceptable, in consideration of forecasting efficiency.

  1. Robustly Fitting and Forecasting Dynamical Data With Electromagnetically Coupled Artificial Neural Network: A Data Compression Method.

    Science.gov (United States)

    Wang, Ziyin; Liu, Mandan; Cheng, Yicheng; Wang, Rubin

    2017-06-01

    In this paper, a dynamical recurrent artificial neural network (ANN) is proposed and studied. Inspired from a recent research in neuroscience, we introduced nonsynaptic coupling to form a dynamical component of the network. We mathematically proved that, with adequate neurons provided, this dynamical ANN model is capable of approximating any continuous dynamic system with an arbitrarily small error in a limited time interval. Its extreme concise Jacobian matrix makes the local stability easy to control. We designed this ANN for fitting and forecasting dynamic data and obtained satisfied results in simulation. The fitting performance is also compared with those of both the classic dynamic ANN and the state-of-the-art models. Sufficient trials and the statistical results indicated that our model is superior to those have been compared. Moreover, we proposed a robust approximation problem, which asking the ANN to approximate a cluster of input-output data pairs in large ranges and to forecast the output of the system under previously unseen input. Our model and learning scheme proposed in this paper have successfully solved this problem, and through this, the approximation becomes much more robust and adaptive to noise, perturbation, and low-order harmonic wave. This approach is actually an efficient method for compressing massive external data of a dynamic system into the weight of the ANN.

  2. System of the Wind Wave Operational Forecast by the Black Sea Marine Forecast Center

    Directory of Open Access Journals (Sweden)

    Yu.B. Ratner

    2017-10-01

    Full Text Available System of the wind wave operational forecast in the Black Sea based on the SWAN (Simulating Waves Nearshore numerical spectral model is represented. In the course of the system development the SWAN model was adapted to take into account the features of its operation at the Black Sea Marine Forecast Center. The model input-output is agreed with the applied nomenclature and the data representation formats. The user interface for rapid access to simulation results was developed. The model adapted to wave forecast in the Black Sea in a quasi-operational mode, is validated for 2012–2015. Validation of the calculation results was carried out for all five forecasting terms based on the analysis of two-dimensional graphs of the wave height distribution derived from the data of prognostic calculations and remote measurements obtained with the altimeter installed on the Jason-2 satellite. Calculation of the statistical characteristics of the deviations between the wave height prognostic values and the data of their measurements from the Jason-2 satellite, as well as a regression analysis of the relationship between the forecasted and measured wave heights was additionally carried out. A comparison of the results obtained with the similar results reported in the works of other authors published in 2009–2016 showed their satisfactory compliance with each other. The forecasts carried out by the authors for the Black Sea as well as those obtained for the other World Ocean regions show that the current level of numerical methods for sea wave forecasting is in full compliance with the requirements of specialists engaged in studying and modeling the state of the ocean and the atmosphere, as well as the experts using these results for solving applied problems.

  3. Microcontroller-based network for meteorological sensing and weather forecast calculations

    Directory of Open Access Journals (Sweden)

    A. Vas

    2012-06-01

    Full Text Available Weather forecasting needs a lot of computing power. It is generally accomplished by using supercomputers which are expensive to rent and to maintain. In addition, weather services also have to maintain radars, balloons and pay for worldwide weather data measured by stations and satellites. Weather forecasting computations usually consist of solving differential equations based on the measured parameters. To do that, the computer uses the data of close and distant neighbor points. Accordingly, if small-sized weather stations, which are capable of making measurements, calculations and communication, are connected through the Internet, then they can be used to run weather forecasting calculations like a supercomputer does. It doesn’t need any central server to achieve this, because this network operates as a distributed system. We chose Microchip’s PIC18 microcontroller (μC platform in the implementation of the hardware, and the embedded software uses the TCP/IP Stack v5.41 provided by Microchip.

  4. Operational flood forecasting system of Umbria Region "Functional Centre

    Science.gov (United States)

    Berni, N.; Pandolfo, C.; Stelluti, M.; Ponziani, F.; Viterbo, A.

    2009-04-01

    The hydrometeorological alert office (called "Decentrate Functional Centre" - CFD) of Umbria Region, in central Italy, is the office that provides technical tools able to support decisions when significant flood/landslide events occur, furnishing 24h support for the whole duration of the emergency period, according to the national directive DPCM 27 February 2004 concerning the "Operating concepts for functional management of national and regional alert system during flooding and landslide events for civil protection activities purposes" that designs, within the Italian Civil Defence Emergency Management System, a network of 21 regional Functional Centres coordinated by a central office at the National Civil Protection Department in Rome. Due to its "linking" role between Civil Protection "real time" activities and environmental/planning "deferred time" ones, the Centre is in charge to acquire and collect both real time and quasi-static data: quantitative data from monitoring networks (hydrometeorological stations, meteo radar, ...), meteorological forecasting models output, Earth Observation data, hydraulic and hydrological simulation models, cartographic and thematic GIS data (vectorial and raster type), planning studies related to flooding areas mapping, dam managing plans during flood events, non instrumental information from direct control of "territorial presidium". A detailed procedure for the management of critical events was planned, also in order to define the different role of various authorities and institutions involved. Tiber River catchment, of which Umbria region represents the main upper-medium portion, includes also regional trans-boundary issues very important to cope with, especially for what concerns large dam behavior and management during heavy rainfall. The alert system is referred to 6 different warning areas in which the territory has been divided into and based on a threshold system of three different increasing critical levels according

  5. Wave energy potential: A forecasting system for the Mediterranean basin

    International Nuclear Information System (INIS)

    Carillo, Adriana; Sannino, Gianmaria; Lombardi, Emanuele

    2015-01-01

    ENEA is performing ocean wave modeling activities with the aim of both characterizing the Italian sea energy resource and providing the information necessary for the experimental at sea and operational phases of energy converters. Therefore a forecast system of sea waves and of the associated energy available has been developed and has been operatively running since June 2013. The forecasts are performed over the entire Mediterranean basin and, at a higher resolution, over ten sub-basins around the Italian coasts. The forecast system is here described along with the validation of the wave heights, performed by comparing them with the measurements from satellite sensors. [it

  6. Human-model hybrid Korean air quality forecasting system.

    Science.gov (United States)

    Chang, Lim-Seok; Cho, Ara; Park, Hyunju; Nam, Kipyo; Kim, Deokrae; Hong, Ji-Hyoung; Song, Chang-Keun

    2016-09-01

    The Korean national air quality forecasting system, consisting of the Weather Research and Forecasting, the Sparse Matrix Operator Kernel Emissions, and the Community Modeling and Analysis (CMAQ), commenced from August 31, 2013 with target pollutants of particulate matters (PM) and ozone. Factors contributing to PM forecasting accuracy include CMAQ inputs of meteorological field and emissions, forecasters' capacity, and inherent CMAQ limit. Four numerical experiments were conducted including two global meteorological inputs from the Global Forecast System (GFS) and the Unified Model (UM), two emissions from the Model Intercomparison Study Asia (MICS-Asia) and the Intercontinental Chemical Transport Experiment (INTEX-B) for the Northeast Asia with Clear Air Policy Support System (CAPSS) for South Korea, and data assimilation of the Monitoring Atmospheric Composition and Climate (MACC). Significant PM underpredictions by using both emissions were found for PM mass and major components (sulfate and organic carbon). CMAQ predicts PM2.5 much better than PM10 (NMB of PM2.5: -20~-25%, PM10: -43~-47%). Forecasters' error usually occurred at the next day of high PM event. Once CMAQ fails to predict high PM event the day before, forecasters are likely to dismiss the model predictions on the next day which turns out to be true. The best combination of CMAQ inputs is the set of UM global meteorological field, MICS-Asia and CAPSS 2010 emissions with the NMB of -12.3%, the RMSE of 16.6μ/m(3) and the R(2) of 0.68. By using MACC data as an initial and boundary condition, the performance skill of CMAQ would be improved, especially in the case of undefined coarse emission. A variety of methods such as ensemble and data assimilation are considered to improve further the accuracy of air quality forecasting, especially for high PM events to be comparable to for all cases. The growing utilization of the air quality forecast induced the public strongly to demand that the accuracy of the

  7. Forecasting short-term power prices in the Ontario Electricity Market (OEM) with a fuzzy logic based inference system

    International Nuclear Information System (INIS)

    Arciniegas, Alvaro I.; Arciniegas Rueda, Ismael E.

    2008-01-01

    The Ontario Electricity Market (OEM), which opened in May 2002, is relatively new and is still under change. In addition, the bidding strategies of the participants are such that the relationships between price and fundamentals are non-linear and dynamic. The lack of market maturity and high complexity hinders the use of traditional statistical methodologies (e.g., regression analysis) for price forecasting. Therefore, a flexible model is needed to achieve good forecasting in OEM. This paper uses a Takagi-Sugeno-Kang (TSK) fuzzy inference system in forecasting the one-day-ahead real-time peak price of the OEM. The forecasting results of TSK are compared with those obtained by traditional statistical and neural network based forecasting. The comparison suggests that TSK has considerable value in forecasting one-day-ahead peak price in OEM. (author)

  8. Climate Forecast System Reanalysis (CFSR), for 1979 to 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCEP Climate Forecast System Reanalysis (CFSR) was initially completed for the 31-year period from 1979 to 2009, in January 2010. The CFSR was designed and...

  9. NOAA/NCEP Global Forecast System (GFS) Atmospheric Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) numerical weather...

  10. Elements of a coastal ocean forecasting system for India

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Radhakrishnan, K.

    After about four decades of investment in infrastructure for ocean research, an appropriate initiative for India now would be to build a coastal ocean forecasting system to support the country's myriad activities in its Exclusive Economic Zone...

  11. Climate Forecast System Version 2 (CFSv2) Operational Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Forecast System Version 2 (CFSv2) produced by the NOAA National Centers for Environmental Prediction (NCEP) is a fully coupled model representing the...

  12. An experimental system for flood risk forecasting at global scale

    Science.gov (United States)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  13. A fuzzy neural network model to forecast the percent cloud coverage and cloud top temperature maps

    Directory of Open Access Journals (Sweden)

    Y. Tulunay

    2008-12-01

    Full Text Available Atmospheric processes are highly nonlinear. A small group at the METU in Ankara has been working on a fuzzy data driven generic model of nonlinear processes. The model developed is called the Middle East Technical University Fuzzy Neural Network Model (METU-FNN-M. The METU-FNN-M consists of a Fuzzy Inference System (METU-FIS, a data driven Neural Network module (METU-FNN of one hidden layer and several neurons, and a mapping module, which employs the Bezier Surface Mapping technique. In this paper, the percent cloud coverage (%CC and cloud top temperatures (CTT are forecast one month ahead of time at 96 grid locations. The probable influence of cosmic rays and sunspot numbers on cloudiness is considered by using the METU-FNN-M.

  14. Forecasting of Groundwater Level using Artificial Neural Network by incorporating river recharge and river bank infiltration

    Directory of Open Access Journals (Sweden)

    Nizar Shamsuddin Mohd Khairul

    2017-01-01

    Full Text Available Groundwater tables forecasting during implemented river bank infiltration (RBI method is important to identify adequate storage of groundwater aquifer for water supply purposes. This study illustrates the development and application of artificial neural networks (ANNs to predict groundwater tables in two vertical wells located in confined aquifer adjacent to the Langat River. ANN model was used in this study is based on the long period forecasting of daily groundwater tables. ANN models were carried out to predict groundwater tables for 1 day ahead at two different geological materials. The input to the ANN models consider of daily rainfall, river stage, water level, stream flow rate, temperature and groundwater level. Two different type of ANNs structure were used to predict the fluctuation of groundwater tables and compared the best forecasting values. The performance of different models structure of the ANN is used to identify the fluctuation of the groundwater table and provide acceptable predictions. Dynamics prediction and time series of the system can be implemented in two possible ways of modelling. The coefficient correlation (R, Mean Square Error (MSE, Root Mean Square Error (RMSE and coefficient determination (R2 were chosen as the selection criteria of the best model. The statistical values for DW1 are 0.8649, 0.0356, 0.01, and 0.748 respectively. While for DW2 the statistical values are 0.7392, 0.0781, 0.0139, and 0.546 respectively. Based on these results, it clearly shows that accurate predictions can be achieved with time series 1-day ahead of forecasting groundwater table and the interaction between river and aquifer can be examine. The findings of the study can be used to assist policy marker to manage groundwater resources by using RBI method.

  15. Continental and global scale flood forecasting systems

    NARCIS (Netherlands)

    Emerton, Rebecca E.; Stephens, Elisabeth M.; Pappenberger, Florian; Pagano, Thomas P.; Weerts, A.H.; Wood, A.; Salamon, Peter; Brown, James D.; Hjerdt, Niclas; Donnelly, Chantal; Baugh, Calum A.; Cloke, Hannah L.

    2016-01-01

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not

  16. SOFT project: a new forecasting system based on satellite data

    Science.gov (United States)

    Pascual, Ananda; Orfila, A.; Alvarez, Alberto; Hernandez, E.; Gomis, D.; Barth, Alexander; Tintore, Joaquim

    2002-01-01

    The aim of the SOFT project is to develop a new ocean forecasting system by using a combination of satellite dat, evolutionary programming and numerical ocean models. To achieve this objective two steps are proved: (1) to obtain an accurate ocean forecasting system using genetic algorithms based on satellite data; and (2) to integrate the above new system into existing deterministic numerical models. Evolutionary programming will be employed to build 'intelligent' systems that, learning form the past ocean variability and considering the present ocean state, will be able to infer near future ocean conditions. Validation of the forecast skill will be carried out by comparing the forecasts fields with satellite and in situ observations. Validation with satellite observations will provide the expected errors in the forecasting system. Validation with in situ data will indicate the capabilities of the satellite based forecast information to improve the performance of the numerical ocean models. This later validation will be accomplished considering in situ measurements in a specific oceanographic area at two different periods of time. The first set of observations will be employed to feed the hybrid systems while the second set will be used to validate the hybrid and traditional numerical model results.

  17. Short-term electricity prices forecasting in a competitive market: A neural network approach

    International Nuclear Information System (INIS)

    Catalao, J.P.S.; Mariano, S.J.P.S.; Mendes, V.M.F.; Ferreira, L.A.F.M.

    2007-01-01

    This paper proposes a neural network approach for forecasting short-term electricity prices. Almost until the end of last century, electricity supply was considered a public service and any price forecasting which was undertaken tended to be over the longer term, concerning future fuel prices and technical improvements. Nowadays, short-term forecasts have become increasingly important since the rise of the competitive electricity markets. In this new competitive framework, short-term price forecasting is required by producers and consumers to derive their bidding strategies to the electricity market. Accurate forecasting tools are essential for producers to maximize their profits, avowing profit losses over the misjudgement of future price movements, and for consumers to maximize their utilities. A three-layered feedforward neural network, trained by the Levenberg-Marquardt algorithm, is used for forecasting next-week electricity prices. We evaluate the accuracy of the price forecasting attained with the proposed neural network approach, reporting the results from the electricity markets of mainland Spain and California. (author)

  18. Impact of onsite solar generation on system load demand forecast

    International Nuclear Information System (INIS)

    Kaur, Amanpreet; Pedro, Hugo T.C.; Coimbra, Carlos F.M.

    2013-01-01

    Highlights: • We showed the impact onsite solar generation on system demand load forecast. • Forecast performance degrades by 9% and 3% for 1 h and 15 min forecast horizons. • Error distribution for onsite case is best characterized as t-distribution. • Relation between error, solar penetration and solar variability is characterized. - Abstract: Net energy metering tariffs have encouraged the growth of solar PV in the distribution grid. The additional variability associated with weather-dependent renewable energy creates new challenges for power system operators that must maintain and operate ancillary services to balance the grid. To deal with these issues power operators mostly rely on demand load forecasts. Electric load forecast has been used in power industry for a long time and there are several well established load forecasting models. But the performance of these models for future scenario of high renewable energy penetration is unclear. In this work, the impact of onsite solar power generation on the demand load forecast is analyzed for a community that meets between 10% and 15% of its annual power demand and 3–54% of its daily power demand from a solar power plant. Short-Term Load Forecasts (STLF) using persistence, machine learning and regression-based forecasting models are presented for two cases: (1) high solar penetration and (2) no penetration. Results show that for 1-h and 15-min forecasts the accuracy of the models drops by 9% and 3% with high solar penetration. Statistical analysis of the forecast errors demonstrate that the error distribution is best characterized as a t-distribution for the high penetration scenario. Analysis of the error distribution as a function of daily solar penetration for different levels of variability revealed that the solar power variability drives the forecast error magnitude whereas increasing penetration level has a much smaller contribution. This work concludes that the demand forecast error distribution

  19. Electric power systems advanced forecasting techniques and optimal generation scheduling

    CERN Document Server

    Catalão, João P S

    2012-01-01

    Overview of Electric Power Generation SystemsCláudio MonteiroUncertainty and Risk in Generation SchedulingRabih A. JabrShort-Term Load ForecastingAlexandre P. Alves da Silva and Vitor H. FerreiraShort-Term Electricity Price ForecastingNima AmjadyShort-Term Wind Power ForecastingGregor Giebel and Michael DenhardPrice-Based Scheduling for GencosGovinda B. Shrestha and Songbo QiaoOptimal Self-Schedule of a Hydro Producer under UncertaintyF. Javier Díaz and Javie

  20. Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Paras; Senjyu, Tomonobu [Department of Electrical and Electronics, University of the Ryukyus, 1 Senbaru, Nagakami Nishihara, Okinawa 903-0213 (Japan); Funabashi, Toshihisa [Meidensha Corporation, Tokyo 103-8515 (Japan)

    2006-09-15

    In daily power markets, forecasting electricity prices and loads are the most essential task and the basis for any decision making. An approach to predict the market behaviors is to use the historical prices, loads and other required information to forecast the future prices and loads. This paper introduces an approach for several hour ahead (1-6h) electricity price and load forecasting using an artificial intelligence method, such as a neural network model, which uses publicly available data from the NEMMCO web site to forecast electricity prices and loads for the Victorian electricity market. An approach of selection of similar days is proposed according to which the load and price curves are forecasted by using the information of the days being similar to that of the forecast day. A Euclidean norm with weighted factors is used for the selection of the similar days. Two different ANN models, one for one to six hour ahead load forecasting and another for one to six hour ahead price forecasting have been proposed. The MAPE (mean absolute percentage error) results show a clear increasing trend with the increase in hour ahead load and price forecasting. The sample average of MAPEs for one hour ahead price forecasts is 9.75%. This figure increases to only 20.03% for six hour ahead predictions. Similarly, the one to six hour ahead load forecast errors (MAPE) range from 0.56% to 1.30% only. MAPE results show that several hour ahead electricity prices and loads in the deregulated Victorian market can be forecasted with reasonable accuracy. (author)

  1. Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market

    International Nuclear Information System (INIS)

    Mandal, Paras; Senjyu, Tomonobu; Funabashi, Toshihisa

    2006-01-01

    In daily power markets, forecasting electricity prices and loads are the most essential task and the basis for any decision making. An approach to predict the market behaviors is to use the historical prices, loads and other required information to forecast the future prices and loads. This paper introduces an approach for several hour ahead (1-6 h) electricity price and load forecasting using an artificial intelligence method, such as a neural network model, which uses publicly available data from the NEMMCO web site to forecast electricity prices and loads for the Victorian electricity market. An approach of selection of similar days is proposed according to which the load and price curves are forecasted by using the information of the days being similar to that of the forecast day. A Euclidean norm with weighted factors is used for the selection of the similar days. Two different ANN models, one for one to six hour ahead load forecasting and another for one to six hour ahead price forecasting have been proposed. The MAPE (mean absolute percentage error) results show a clear increasing trend with the increase in hour ahead load and price forecasting. The sample average of MAPEs for one hour ahead price forecasts is 9.75%. This figure increases to only 20.03% for six hour ahead predictions. Similarly, the one to six hour ahead load forecast errors (MAPE) range from 0.56% to 1.30% only. MAPE results show that several hour ahead electricity prices and loads in the deregulated Victorian market can be forecasted with reasonable accuracy

  2. An Operational System for Surveillance and Ecological Forecasting of West Nile Virus Outbreaks

    Science.gov (United States)

    Wimberly, M. C.; Davis, J. K.; Vincent, G.; Hess, A.; Hildreth, M. B.

    2017-12-01

    Mosquito-borne disease surveillance has traditionally focused on tracking human cases along with the abundance and infection status of mosquito vectors. For many of these diseases, vector and host population dynamics are also sensitive to climatic factors, including temperature fluctuations and the availability of surface water for mosquito breeding. Thus, there is a potential to strengthen surveillance and predict future outbreaks by monitoring environmental risk factors using broad-scale sensor networks that include earth-observing satellites. The South Dakota Mosquito Information System (SDMIS) project combines entomological surveillance with gridded meteorological data from NASA's North American Land Data Assimilation System (NLDAS) to generate weekly risk maps for West Nile virus (WNV) in the north-central United States. Critical components include a mosquito infection model that smooths the noisy infection rate and compensates for unbalanced sampling, and a human infection model that combines the entomological risk estimates with lagged effects of meteorological variables from the North American Land Data Assimilation System (NLDAS). Two types of forecasts are generated: long-term forecasts of statewide risk extending through the entire WNV season, and short-term forecasts of the geographic pattern of WNV risk in the upcoming week. Model forecasts are connected to public health actions through decision support matrices that link predicted risk levels to a set of phased responses. In 2016, the SDMIS successfully forecast an early start to the WNV season and a large outbreak of WNV cases following several years of low transmission. An evaluation of the 2017 forecasts will also be presented. Our experiences with the SDMIS highlight several important lessons that can inform future efforts at disease early warning. These include the value of integrating climatic models with recent observations of infection, the critical role of automated workflows to facilitate

  3. Waste Information Management System with Integrated Transportation Forecast Data

    International Nuclear Information System (INIS)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.

    2009-01-01

    The Waste Information Management System with Integrated Transportation Forecast Data was developed to support the Department of Energy (DOE) mandated accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of waste that would be generated by the DOE sites over the next 40 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste and shipment information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. The Waste Information Management System with Integrated Transportation Forecast Data allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has deployed the web-based forecast and transportation system and is responsible for updating the waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  4. The Henetus wave forecast system in the Adriatic Sea

    Directory of Open Access Journals (Sweden)

    L. Bertotti

    2011-11-01

    Full Text Available We describe the Henetus wave forecast system in the Adriatic Sea. Operational since 1996, the system is continuously upgraded, especially through the correction of the input ECMWF wind fields. As these fields are of progressively improved quality with the increasing resolution of the meteorological model, the correction needs to be correspondingly updated. This ensures a practically constant quality of the Henetus results in the Adriatic Sea since 1996. After suitable and extended validation of the quality of the results at different forecast ranges, the operational range has been recently extended to five days. The Henetus results are used also to improve the tidal forecast on the Venetian coasts and the Venice lagoon, particularly during the most severe events. Extensive statistics on the model performance are provided, both as analysis and forecast, by comparing the model results versus both satellite and buoy data.

  5. Rough Precipitation Forecasts based on Analogue Method: an Operational System

    Science.gov (United States)

    Raffa, Mario; Mercogliano, Paola; Lacressonnière, Gwendoline; Guillaume, Bruno; Deandreis, Céline; Castanier, Pierre

    2017-04-01

    In the framework of the Climate KIC partnership, has been funded the project Wat-Ener-Cast (WEC), coordinated by ARIA Technologies, having the goal to adapt, through tailored weather-related forecast, the water and energy operations to the increased weather fluctuation and to climate change. The WEC products allow providing high quality forecast suited in risk and opportunities assessment dashboard for water and energy operational decisions and addressing the needs of sewage/water distribution operators, energy transport & distribution system operators, energy manager and wind energy producers. A common "energy water" web platform, able to interface with newest smart water-energy IT network have been developed. The main benefit by sharing resources through the "WEC platform" is the possibility to optimize the cost and the procedures of safety and maintenance team, in case of alerts and, finally to reduce overflows. Among the different services implemented on the WEC platform, ARIA have developed a product having the goal to support sewage/water distribution operators, based on a gradual forecast information system ( at 48hrs/24hrs/12hrs horizons) of heavy precipitation. For each fixed deadline different type of operation are implemented: 1) 48hour horizon, organisation of "on call team", 2) 24 hour horizon, update and confirm the "on call team", 3) 12 hour horizon, secure human resources and equipment (emptying storage basins, pipes manipulations …). More specifically CMCC have provided a statistical downscaling method in order to provide a "rough" daily local precipitation at 24 hours, especially when high precipitation values are expected. This statistical technique consists of an adaptation of analogue method based on ECMWF data (analysis and forecast at 24 hours). One of the most advantages of this technique concerns a lower computational burden and budget compared to running a Numerical Weather Prediction (NWP) model, also if, of course it provides only this

  6. Demonstrating the value of larger ensembles in forecasting physical systems

    Directory of Open Access Journals (Sweden)

    Reason L. Machete

    2016-12-01

    Full Text Available Ensemble simulation propagates a collection of initial states forward in time in a Monte Carlo fashion. Depending on the fidelity of the model and the properties of the initial ensemble, the goal of ensemble simulation can range from merely quantifying variations in the sensitivity of the model all the way to providing actionable probability forecasts of the future. Whatever the goal is, success depends on the properties of the ensemble, and there is a longstanding discussion in meteorology as to the size of initial condition ensemble most appropriate for Numerical Weather Prediction. In terms of resource allocation: how is one to divide finite computing resources between model complexity, ensemble size, data assimilation and other components of the forecast system. One wishes to avoid undersampling information available from the model's dynamics, yet one also wishes to use the highest fidelity model available. Arguably, a higher fidelity model can better exploit a larger ensemble; nevertheless it is often suggested that a relatively small ensemble, say ~16 members, is sufficient and that larger ensembles are not an effective investment of resources. This claim is shown to be dubious when the goal is probabilistic forecasting, even in settings where the forecast model is informative but imperfect. Probability forecasts for a ‘simple’ physical system are evaluated at different lead times; ensembles of up to 256 members are considered. The pure density estimation context (where ensemble members are drawn from the same underlying distribution as the target differs from the forecasting context, where one is given a high fidelity (but imperfect model. In the forecasting context, the information provided by additional members depends also on the fidelity of the model, the ensemble formation scheme (data assimilation, the ensemble interpretation and the nature of the observational noise. The effect of increasing the ensemble size is quantified by

  7. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory

    DEFF Research Database (Denmark)

    López, Erick; Allende, Héctor; Gil, Esteban

    2018-01-01

    involved. In particular, two types of RNN, Long Short-Term Memory (LSTM) and Echo State Network (ESN), have shown good results in time series forecasting. In this work, we present an LSTM+ESN architecture that combines the characteristics of both networks. An architecture similar to an ESN is proposed...

  8. Evaluating the Effectiveness of DART® Buoy Networks Based on Forecast Accuracy

    Science.gov (United States)

    Percival, Donald B.; Denbo, Donald W.; Gica, Edison; Huang, Paul Y.; Mofjeld, Harold O.; Spillane, Michael C.; Titov, Vasily V.

    2018-03-01

    A performance measure for a DART® tsunami buoy network has been developed. DART® buoys are used to detect tsunamis, but the full potential of the data they collect is realized through accurate forecasts of inundations caused by the tsunamis. The performance measure assesses how well the network achieves its full potential through a statistical analysis of simulated forecasts of wave amplitudes outside an impact site and a consideration of how much the forecasts are degraded in accuracy when one or more buoys are inoperative. The analysis uses simulated tsunami amplitude time series collected at each buoy from selected source segments in the Short-term Inundation Forecast for Tsunamis database and involves a set for 1000 forecasts for each buoy/segment pair at sites just offshore of selected impact communities. Random error-producing scatter in the time series is induced by uncertainties in the source location, addition of real oceanic noise, and imperfect tidal removal. Comparison with an error-free standard leads to root-mean-square errors (RMSEs) for DART® buoys located near a subduction zone. The RMSEs indicate which buoy provides the best forecast (lowest RMSE) for sections of the zone, under a warning-time constraint for the forecasts of 3 h. The analysis also shows how the forecasts are degraded (larger minimum RMSE among the remaining buoys) when one or more buoys become inoperative. The RMSEs provide a way to assess array augmentation or redesign such as moving buoys to more optimal locations. Examples are shown for buoys off the Aleutian Islands and off the West Coast of South America for impact sites at Hilo HI and along the US West Coast (Crescent City CA and Port San Luis CA, USA). A simple measure (coded green, yellow or red) of the current status of the network's ability to deliver accurate forecasts is proposed to flag the urgency of buoy repair.

  9. Evaluating the Effectiveness of DART® Buoy Networks Based on Forecast Accuracy

    Science.gov (United States)

    Percival, Donald B.; Denbo, Donald W.; Gica, Edison; Huang, Paul Y.; Mofjeld, Harold O.; Spillane, Michael C.; Titov, Vasily V.

    2018-04-01

    A performance measure for a DART® tsunami buoy network has been developed. DART® buoys are used to detect tsunamis, but the full potential of the data they collect is realized through accurate forecasts of inundations caused by the tsunamis. The performance measure assesses how well the network achieves its full potential through a statistical analysis of simulated forecasts of wave amplitudes outside an impact site and a consideration of how much the forecasts are degraded in accuracy when one or more buoys are inoperative. The analysis uses simulated tsunami amplitude time series collected at each buoy from selected source segments in the Short-term Inundation Forecast for Tsunamis database and involves a set for 1000 forecasts for each buoy/segment pair at sites just offshore of selected impact communities. Random error-producing scatter in the time series is induced by uncertainties in the source location, addition of real oceanic noise, and imperfect tidal removal. Comparison with an error-free standard leads to root-mean-square errors (RMSEs) for DART® buoys located near a subduction zone. The RMSEs indicate which buoy provides the best forecast (lowest RMSE) for sections of the zone, under a warning-time constraint for the forecasts of 3 h. The analysis also shows how the forecasts are degraded (larger minimum RMSE among the remaining buoys) when one or more buoys become inoperative. The RMSEs provide a way to assess array augmentation or redesign such as moving buoys to more optimal locations. Examples are shown for buoys off the Aleutian Islands and off the West Coast of South America for impact sites at Hilo HI and along the US West Coast (Crescent City CA and Port San Luis CA, USA). A simple measure (coded green, yellow or red) of the current status of the network's ability to deliver accurate forecasts is proposed to flag the urgency of buoy repair.

  10. Particle Swarm Optimization-based BP Neural Network for UHV DC Insulator Pollution Forecasting

    Directory of Open Access Journals (Sweden)

    Fangcheng Lü

    2014-02-01

    Full Text Available In order to realize the forecasting of the UHV DC insulator's pollution conditions, we introduced a PSOBP algorithm. A BP neural network (BPNN with leakage current, temperature, relative humidity and dew point as input neurons, and ESDD as output neuron was built to forecast the ESDD. The PSO was used to optimize the the BPNN, which had great improved the convergence rate of the BP neural network. The dew point as a brand new input unit has improved the iteration speed of the PSOBP algorithm in this study. It was the first time that the PSOBP algorithm was applied to the UHV DC insulator pollution forecasting. The experiment results showed that the method had great advantages in accuracy and speed of convergence. The research showed that this algorithm was suitable for the UHV DC insulator pollution forecasting.

  11. Electricity price forecast using Combinatorial Neural Network trained by a new stochastic search method

    International Nuclear Information System (INIS)

    Abedinia, O.; Amjady, N.; Shafie-khah, M.; Catalão, J.P.S.

    2015-01-01

    Highlights: • Presenting a Combinatorial Neural Network. • Suggesting a new stochastic search method. • Adapting the suggested method as a training mechanism. • Proposing a new forecast strategy. • Testing the proposed strategy on real-world electricity markets. - Abstract: Electricity price forecast is key information for successful operation of electricity market participants. However, the time series of electricity price has nonlinear, non-stationary and volatile behaviour and so its forecast method should have high learning capability to extract the complex input/output mapping function of electricity price. In this paper, a Combinatorial Neural Network (CNN) based forecasting engine is proposed to predict the future values of price data. The CNN-based forecasting engine is equipped with a new training mechanism for optimizing the weights of the CNN. This training mechanism is based on an efficient stochastic search method, which is a modified version of chemical reaction optimization algorithm, giving high learning ability to the CNN. The proposed price forecast strategy is tested on the real-world electricity markets of Pennsylvania–New Jersey–Maryland (PJM) and mainland Spain and its obtained results are extensively compared with the results obtained from several other forecast methods. These comparisons illustrate effectiveness of the proposed strategy.

  12. Neural Networks-Based Forecasting Regarding the Convergence Process of CEE Countries to the Eurozone

    Directory of Open Access Journals (Sweden)

    Magdalena RĂDULESCU

    2014-06-01

    Full Text Available In the crisis frame, many forecasts failed to provide well determined ratios. What we tried to explain in this paper is how some selected Central and Eastern European countries will perform in the near future: Romania, Bulgaria, Hungary, Poland and Czech Republic, using neural networks- based forecasting model which we created for the nominal and real convergence ratios. As a methodology, we propose the forecasting based on artificial neural network (ANN, using the well-known software tool GMDH Shell. For each output variable, we obtain a forecast model, according to previous values and other input related variables, and we applied the model to all countries. Our forecasts are much closer to the partial results of 2013 in the analyzed countries than the European Commission’s or other international organizations’ forecasts. The results of the forecast are important both for governments to design their financial strategies and for the investors in these selected countries. According to our results, the Czech Republic seems to be closer to achieve its nominal convergence in the next two years, but it faces great difficulties in the real convergence area, because it did not overpass the recession.

  13. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    Science.gov (United States)

    Shukla, Shraddhanand; McNally, Amy; Husak, Gregory; Funk, Christopher C.

    2014-01-01

     The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993–2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall

  14. Modelling and Forecasting Cruise Tourism Demand to İzmir by Different Artificial Neural Network Architectures

    Directory of Open Access Journals (Sweden)

    Murat Cuhadar

    2014-03-01

    Full Text Available Abstract Cruise ports emerged as an important sector for the economy of Turkey bordered on three sides by water. Forecasting cruise tourism demand ensures better planning, efficient preparation at the destination and it is the basis for elaboration of future plans. In the recent years, new techniques such as; artificial neural networks were employed for developing of the predictive models to estimate tourism demand. In this study, it is aimed to determine the forecasting method that provides the best performance when compared the forecast accuracy of Multi-layer Perceptron (MLP, Radial Basis Function (RBF and Generalized Regression neural network (GRNN to estimate the monthly inbound cruise tourism demand to İzmir via the method giving best results. We used the total number of foreign cruise tourist arrivals as a measure of inbound cruise tourism demand and monthly cruise tourist arrivals to İzmir Cruise Port in the period of January 2005 ‐December 2013 were utilized to appropriate model. Experimental results showed that radial basis function (RBF neural network outperforms multi-layer perceptron (MLP and the generalised regression neural networks (GRNN in terms of forecasting accuracy. By the means of the obtained RBF neural network model, it has been forecasted the monthly inbound cruise tourism demand to İzmir for the year 2014.

  15. Short-Term Wind Speed Forecasting for Power System Operations

    KAUST Repository

    Zhu, Xinxin

    2012-04-01

    The emphasis on renewable energy and concerns about the environment have led to large-scale wind energy penetration worldwide. However, there are also significant challenges associated with the use of wind energy due to the intermittent and unstable nature of wind. High-quality short-term wind speed forecasting is critical to reliable and secure power system operations. This article begins with an overview of the current status of worldwide wind power developments and future trends. It then reviews some statistical short-term wind speed forecasting models, including traditional time series approaches and more advanced space-time statistical models. It also discusses the evaluation of forecast accuracy, in particular, the need for realistic loss functions. New challenges in wind speed forecasting regarding ramp events and offshore wind farms are also presented. © 2012 The Authors. International Statistical Review © 2012 International Statistical Institute.

  16. Ensemble Bayesian forecasting system Part I: Theory and algorithms

    Science.gov (United States)

    Herr, Henry D.; Krzysztofowicz, Roman

    2015-05-01

    The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of

  17. Sea Level Forecasts Aggregated from Established Operational Systems

    Directory of Open Access Journals (Sweden)

    Andy Taylor

    2017-08-01

    Full Text Available A system for providing routine seven-day forecasts of sea level observable at tide gauge locations is described and evaluated. Forecast time series are aggregated from well-established operational systems of the Australian Bureau of Meteorology; although following some adjustments these systems are only quasi-complimentary. Target applications are routine coastal decision processes under non-extreme conditions. The configuration aims to be relatively robust to operational realities such as version upgrades, data gaps and metadata ambiguities. Forecast skill is evaluated against hourly tide gauge observations. Characteristics of the bias correction term are demonstrated to be primarily static in time, with time varying signals showing regional coherence. This simple approach to exploiting existing complex systems can offer valuable levels of skill at a range of Australian locations. The prospect of interpolation between observation sites and exploitation of lagged-ensemble uncertainty estimates could be meaningfully pursued. Skill characteristics define a benchmark against which new operational sea level forecasting systems can be measured. More generally, an aggregation approach may prove to be optimal for routine sea level forecast services given the physically inhomogeneous processes involved and ability to incorporate ongoing improvements and extensions of source systems.

  18. Conditional time series forecasting with convolutional neural networks

    NARCIS (Netherlands)

    A. Borovykh (Anastasia); S.M. Bohte (Sander); C.W. Oosterlee (Cornelis)

    2017-01-01

    textabstractForecasting financial time series using past observations has been a significant topic of interest. While temporal relationships in the data exist, they are difficult to analyze and predict accurately due to the non-linear trends and noise present in the series. We propose to learn these

  19. An Experimental High-Resolution Forecast System During the Vancouver 2010 Winter Olympic and Paralympic Games

    Science.gov (United States)

    Mailhot, J.; Milbrandt, J. A.; Giguère, A.; McTaggart-Cowan, R.; Erfani, A.; Denis, B.; Glazer, A.; Vallée, M.

    2014-01-01

    Environment Canada ran an experimental numerical weather prediction (NWP) system during the Vancouver 2010 Winter Olympic and Paralympic Games, consisting of nested high-resolution (down to 1-km horizontal grid-spacing) configurations of the GEM-LAM model, with improved geophysical fields, cloud microphysics and radiative transfer schemes, and several new diagnostic products such as density of falling snow, visibility, and peak wind gust strength. The performance of this experimental NWP system has been evaluated in these winter conditions over complex terrain using the enhanced mesoscale observing network in place during the Olympics. As compared to the forecasts from the operational regional 15-km GEM model, objective verification generally indicated significant added value of the higher-resolution models for near-surface meteorological variables (wind speed, air temperature, and dewpoint temperature) with the 1-km model providing the best forecast accuracy. Appreciable errors were noted in all models for the forecasts of wind direction and humidity near the surface. Subjective assessment of several cases also indicated that the experimental Olympic system was skillful at forecasting meteorological phenomena at high-resolution, both spatially and temporally, and provided enhanced guidance to the Olympic forecasters in terms of better timing of precipitation phase change, squall line passage, wind flow channeling, and visibility reduction due to fog and snow.

  20. Model of Cholera Forecasting Using Artificial Neural Network in Chabahar City, Iran

    Directory of Open Access Journals (Sweden)

    Zahra Pezeshki

    2016-02-01

    Full Text Available Background: Cholera as an endemic disease remains a health issue in Iran despite decrease in incidence. Since forecasting epidemic diseases provides appropriate preventive actions in disease spread, different forecasting methods including artificial neural networks have been developed to study parameters involved in incidence and spread of epidemic diseases such as cholera. Objectives: In this study, cholera in rural area of Chabahar, Iran was investigated to achieve a proper forecasting model. Materials and Methods: Data of cholera was gathered from 465 villages, of which 104 reported cholera during ten years period of study. Logistic regression modeling and correlate bivariate were used to determine risk factors and achieve possible predictive model one-hidden-layer perception neural network with backpropagation training algorithm and the sigmoid activation function was trained and tested between the two groups of infected and non-infected villages after preprocessing. For determining validity of prediction, the ROC diagram was used. The study variables included climate conditions and geographical parameters. Results: After determining significant variables of cholera incidence, the described artificial neural network model was capable of forecasting cholera event among villages of test group with accuracy up to 80%. The highest accuracy was achieved when model was trained with variables that were significant in statistical analysis describing that the two methods confirm the result of each other. Conclusions: Application of artificial neural networking assists forecasting cholera for adopting protective measures. For a more accurate prediction, comprehensive information is required including data on hygienic, social and demographic parameters.

  1. System for forecasting a reactor power distribution

    International Nuclear Information System (INIS)

    Motoda, Hiroshi; Nishizawa, Yasuo.

    1976-01-01

    Purpose: To dispense with frequent running of detector in a BWR type reactor and permit calculation of the prevailing value and forecast value of power distribution in a specified region in an on-line basis. Constitution: The prevailing power distribution P sub(OZ) (where Z indicates a position in the axial direction) at a given position is estimated by prevailing power distribution estimating means, and the average prevailing power distribution Q sub(OZ) in the core is estimated while making correction of a primary neutron distribution model by core average characteristic measuring means. Then, the estimated core average power distribution Q sub(Z) after alteration of the core flow rate or alteration of Xe concentration is estimated by core average power distribution estimating means. At this time, a forecast power distribution P sub(Z) in a specified region after alteration of the flow rate or alteration of the Xe concentration is calculated on the basis of a relation P sub(Z) = (Q sub(Z)/Q sub(OZ)) by using P sub(OZ), Q sub(OZ) and Q sub(Z). The above calculations are carried out in a short period of time by using a process computer. (Ikeda, J.)

  2. Mid-term load forecasting of power systems by a new prediction method

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2008-01-01

    Mid-term load forecasting (MTLF) becomes an essential tool for today power systems, mainly in those countries whose power systems operate in a deregulated environment. Among different kinds of MTLF, this paper focuses on the prediction of daily peak load for one month ahead. This kind of load forecast has many applications like maintenance scheduling, mid-term hydro thermal coordination, adequacy assessment, management of limited energy units, negotiation of forward contracts, and development of cost efficient fuel purchasing strategies. However, daily peak load is a nonlinear, volatile, and nonstationary signal. Besides, lack of sufficient data usually further complicates this problem. The paper proposes a new methodology to solve it, composed of an efficient data model, preforecast mechanism and combination of neural network and evolutionary algorithm as the hybrid forecast technique. The proposed methodology is examined on the EUropean Network on Intelligent TEchnologies (EUNITE) test data and Iran's power system. We will also compare our strategy with the other MTLF methods revealing its capability to solve this load forecast problem

  3. Forecasting the daily electricity consumption in the Moscow region using artificial neural networks

    Science.gov (United States)

    Ivanov, V. V.; Kryanev, A. V.; Osetrov, E. S.

    2017-07-01

    In [1] we demonstrated the possibility in principle for short-term forecasting of daily volumes of passenger traffic in the Moscow metro with the help of artificial neural networks. During training and predicting, a set of the factors that affect the daily passenger traffic in the subway is passed to the input of the neural network. One of these factors is the daily power consumption in the Moscow region. Therefore, to predict the volume of the passenger traffic in the subway, we must first to solve the problem of forecasting the daily energy consumption in the Moscow region.

  4. A Weather Analysis and Forecasting System for Baja California, Mexico

    Science.gov (United States)

    Farfan, L. M.

    2006-05-01

    The weather of the Baja California Peninsula, part of northwestern Mexico, is mild and dry most of the year. However, during the summer, humid air masses associated with tropical cyclones move northward in the eastern Pacific Ocean. Added features that create a unique meteorological situation include mountain ranges along the spine of the peninsula, warm water in the Gulf of California, and the cold California Current in the Pacific. These features interact with the environmental flow to induce conditions that play a role in the occurrence of localized, convective systems during the approach of tropical cyclones. Most of these events occur late in the summer, generating heavy precipitation, strong winds, lightning, and are associated with significant property damage to the local populations. Our goal is to provide information on the characteristics of these weather systems by performing an analysis of observations derived from a regional network. This includes imagery from radar and geostationary satellite, and data from surface stations. A set of real-time products are generated in our research center and are made available to a broad audience (researchers, students, and business employees) by using an internet site. Graphical products are updated anywhere from one to 24 hours and includes predictions from numerical models. Forecasts are derived from an operational model (GFS) and locally generated simulations based on a mesoscale model (MM5). Our analysis and forecasting system has been in operation since the summer of 2005 and was used as a reference for a set of discussions during the development of eastern Pacific tropical cyclones. This basin had 15 named storms and none of them made landfall on the west coast of Mexico; however, four systems were within 800 km from the area of interest, resulting in some convective activity. During the whole season, a group of 30 users from our institution, government offices, and local businesses received daily information

  5. Photovoltaics (PV System Energy Forecast on the Basis of the Local Weather Forecast: Problems, Uncertainties and Solutions

    Directory of Open Access Journals (Sweden)

    Kristijan Brecl

    2018-05-01

    Full Text Available When integrating a photovoltaic system into a smart zero-energy or energy-plus building, or just to lower the electricity bill by rising the share of the self-consumption in a private house, it is very important to have a photovoltaic power energy forecast for the next day(s. While the commercially available forecasting services might not meet the household prosumers interests due to the price or complexity we have developed a forecasting methodology that is based on the common weather forecast. Since the forecasted meteorological data does not include the solar irradiance information, but only the weather condition, the uncertainty of the results is relatively high. However, in the presented approach, irradiance is calculated from discrete weather conditions and with correlation of forecasted meteorological data, an RMS error of 65%, and a R2 correlation factor of 0.85 is feasible.

  6. PCBA demand forecasting using an evolving Takagi-Sugeno system

    NARCIS (Netherlands)

    van Rooijen, M.; Almeida, R.J.; Kaymak, U.

    2016-01-01

    This paper investigates the use of using an evolving fuzzy system for printed circuit board (PCBA) demand forecasting. The algorithm is based on the evolving Takagi-Sugeno (eTS) fuzzy system, which has the ability to incorporate new patterns by changing its internal structure in an on-line fashion.

  7. Computer network defense system

    Science.gov (United States)

    Urias, Vincent; Stout, William M. S.; Loverro, Caleb

    2017-08-22

    A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves network connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.

  8. Daily Crude Oil Price Forecasting Using Hybridizing Wavelet and Artificial Neural Network Model

    Directory of Open Access Journals (Sweden)

    Ani Shabri

    2014-01-01

    Full Text Available A new method based on integrating discrete wavelet transform and artificial neural networks (WANN model for daily crude oil price forecasting is proposed. The discrete Mallat wavelet transform is used to decompose the crude price series into one approximation series and some details series (DS. The new series obtained by adding the effective one approximation series and DS component is then used as input into the ANN model to forecast crude oil price. The relative performance of WANN model was compared to regular ANN model for crude oil forecasting at lead times of 1 day for two main crude oil price series, West Texas Intermediate (WTI and Brent crude oil spot prices. In both cases, WANN model was found to provide more accurate crude oil prices forecasts than individual ANN model.

  9. Inferring Structure and Forecasting Dynamics on Evolving Networks

    Science.gov (United States)

    2016-01-05

    Graphs ........................................................................................................................ 23 7. Sacred Values...5) Team Formation; (6) Games of Graphs; (7) Sacred Values and Legitimacy in Network Interactions; (8) Network processes in Geo-Social Context. 1...Authority, Cooperation and Competition in Religious Networks Key Papers: McBride 2015a [72] and McBride 2015b [73] McBride (2015a) examines

  10. Reducing the network load and optimization of the economic efficiency of CHP plants by forecast-guided control; Verringerung der Netzbelastung und Optimierung der Wirtschaftlichkeit von KWK-Anlagen durch prognosegefuehrte Steuerung

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Daniel; Adelhardt, Stefan [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Sensorik; beECO GmbH, Erlangen (Germany)

    2012-07-01

    Heat-guided combined heat and power (CHP) plants often cause large compensation energy amounts, additional costs to the operator respectively and another burden on the parent network. The balance energy is caused by errors in the production forecast whose quality heavily depends on the heat load performance. This paper identifies the forecasting problems with heat-guided CHP and reveals how the accompanying cost and the network burden can be reduced. This is achieved by an improvement of the forecast in conjunction with a forecast-guided control without affecting the heat supply. In addition, an outlook on further measures to the earnings with the system is presented. (orig.)

  11. Development of Real-time Tsunami Inundation Forecast Using Ocean Bottom Tsunami Networks along the Japan Trench

    Science.gov (United States)

    Aoi, S.; Yamamoto, N.; Suzuki, W.; Hirata, K.; Nakamura, H.; Kunugi, T.; Kubo, T.; Maeda, T.

    2015-12-01

    In the 2011 Tohoku earthquake, in which huge tsunami claimed a great deal of lives, the initial tsunami forecast based on hypocenter information estimated using seismic data on land were greatly underestimated. From this lesson, NIED is now constructing S-net (Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench) which consists of 150 ocean bottom observatories with seismometers and pressure gauges (tsunamimeters) linked by fiber optic cables. To take full advantage of S-net, we develop a new methodology of real-time tsunami inundation forecast using ocean bottom observation data and construct a prototype system that implements the developed forecasting method for the Pacific coast of Chiba prefecture (Sotobo area). We employ a database-based approach because inundation is a strongly non-linear phenomenon and its calculation costs are rather heavy. We prepare tsunami scenario bank in advance, by constructing the possible tsunami sources, and calculating the tsunami waveforms at S-net stations, coastal tsunami heights and tsunami inundation on land. To calculate the inundation for target Sotobo area, we construct the 10-m-mesh precise elevation model with coastal structures. Based on the sensitivities analyses, we construct the tsunami scenario bank that efficiently covers possible tsunami scenarios affecting the Sotobo area. A real-time forecast is carried out by selecting several possible scenarios which can well explain real-time tsunami data observed at S-net from tsunami scenario bank. An advantage of our method is that tsunami inundations are estimated directly from the actual tsunami data without any source information, which may have large estimation errors. In addition to the forecast system, we develop Web services, APIs, and smartphone applications and brush them up through social experiments to provide the real-time tsunami observation and forecast information in easy way to understand toward urging people to evacuate.

  12. Operational Forecasting and Warning systems for Coastal hazards in Korea

    Science.gov (United States)

    Park, Kwang-Soon; Kwon, Jae-Il; Kim, Jin-Ah; Heo, Ki-Young; Jun, Kicheon

    2017-04-01

    Coastal hazards caused by both Mother Nature and humans cost tremendous social, economic and environmental damages. To mitigate these damages many countries have been running the operational forecasting or warning systems. Since 2009 Korea Operational Oceanographic System (KOOS) has been developed by the leading of Korea Institute of Ocean Science and Technology (KIOST) in Korea and KOOS has been operated in 2012. KOOS is consists of several operational modules of numerical models and real-time observations and produces the basic forecasting variables such as winds, tides, waves, currents, temperature and salinity and so on. In practical application systems include storm surges, oil spills, and search and rescue prediction models. In particular, abnormal high waves (swell-like high-height waves) have occurred in the East coast of Korea peninsula during winter season owing to the local meteorological condition over the East Sea, causing property damages and the loss of human lives. In order to improve wave forecast accuracy even very local wave characteristics, numerical wave modeling system using SWAN is established with data assimilation module using 4D-EnKF and sensitivity test has been conducted. During the typhoon period for the prediction of sever waves and the decision making support system for evacuation of the ships, a high-resolution wave forecasting system has been established and calibrated.

  13. CORRECTION OF FORECASTS OF INTERRELATED CURRENCY PAIRS IN TERMS OF SYSTEMS OF BALANCE RATIOS

    OpenAIRE

    Gertsekovich D. A.

    2015-01-01

    In this paper the problem of exchange rates forecast is logically considered a) traditionally as a task of forecast on the base of «stand-alone» equations of autoregression for each currency pair and b) as a result of forecast correction of autoregression equations system on the base of boundary conditions of balance ratios systems. As a criterion for quality of forecast constructed with empirical models we take the sum of deficiency quadrates of forecasts estimated for deductive currency pai...

  14. Climate Prediction Center (CPC) NCEP-Global Forecast System (GFS) 0-10cm Soil-Moisture Forecast Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) forecast 0-10cm soil-moisture data at 37.5km resolution is created at the NOAA Climate Prediction Center for the purpose of near...

  15. Forecasting of Processes in Complex Systems for Real-World Problems

    Czech Academy of Sciences Publication Activity Database

    Pelikán, Emil

    2014-01-01

    Roč. 24, č. 6 (2014), s. 567-589 ISSN 1210-0552 Institutional support: RVO:67985807 Keywords : complex systems * data assimilation * ensemble forecasting * forecasting * global solar radiation * judgmental forecasting * multimodel forecasting * pollution Subject RIV: IN - Informatics, Computer Science Impact factor: 0.479, year: 2014

  16. Application of BP Neural Network Algorithm in Traditional Hydrological Model for Flood Forecasting

    Directory of Open Access Journals (Sweden)

    Jianjin Wang

    2017-01-01

    Full Text Available Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in this paper and knowledge-based method (traditional hydrological model may booster simulation accuracy. In this study, we proposed a new back-propagation (BP neural network algorithm and applied it in the semi-distributed Xinanjiang (XAJ model. The improved hydrological model is capable of updating the flow forecasting error without losing the leading time. The proposed method was tested in a real case study for both single period corrections and real-time corrections. The results reveal that the proposed method could significantly increase the accuracy of flood forecasting and indicate that the global correction effect is superior to the second-order autoregressive correction method in real-time correction.

  17. Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China

    Directory of Open Access Journals (Sweden)

    C. W. Dawson

    2002-01-01

    Full Text Available While engineers have been quantifying rainfall-runoff processes since the mid-19th century, it is only in the last decade that artificial neural network models have been applied to the same task. This paper evaluates two neural networks in this context: the popular multilayer perceptron (MLP, and the radial basis function network (RBF. Using six-hourly rainfall-runoff data for the River Yangtze at Yichang (upstream of the Three Gorges Dam for the period 1991 to 1993, it is shown that both neural network types can simulate river flows beyond the range of the training set. In addition, an evaluation of alternative RBF transfer functions demonstrates that the popular Gaussian function, often used in RBF networks, is not necessarily the ‘best’ function to use for river flow forecasting. Comparisons are also made between these neural networks and conventional statistical techniques; stepwise multiple linear regression, auto regressive moving average models and a zero order forecasting approach. Keywords: Artificial neural network, multilayer perception, radial basis function, flood forecasting

  18. Enhancing Community Based Early Warning Systems in Nepal with Flood Forecasting Using Local and Global Models

    Science.gov (United States)

    Dugar, Sumit; Smith, Paul; Parajuli, Binod; Khanal, Sonu; Brown, Sarah; Gautam, Dilip; Bhandari, Dinanath; Gurung, Gehendra; Shakya, Puja; Kharbuja, RamGopal; Uprety, Madhab

    2017-04-01

    Operationalising effective Flood Early Warning Systems (EWS) in developing countries like Nepal poses numerous challenges, with complex topography and geology, sparse network of river and rainfall gauging stations and diverse socio-economic conditions. Despite these challenges, simple real-time monitoring based EWSs have been in place for the past decade. A key constraint of these simple systems is the very limited lead time for response - as little as 2-3 hours, especially for rivers originating from steep mountainous catchments. Efforts to increase lead time for early warning are focusing on imbedding forecasts into the existing early warning systems. In 2016, the Nepal Department of Hydrology and Meteorology (DHM) piloted an operational Probabilistic Flood Forecasting Model in major river basins across Nepal. This comprised a low data approach to forecast water levels, developed jointly through a research/practitioner partnership with Lancaster University and WaterNumbers (UK) and the International NGO Practical Action. Using Data-Based Mechanistic Modelling (DBM) techniques, the model assimilated rainfall and water levels to generate localised hourly flood predictions, which are presented as probabilistic forecasts, increasing lead times from 2-3 hours to 7-8 hours. The Nepal DHM has simultaneously started utilizing forecasts from the Global Flood Awareness System (GLoFAS) that provides streamflow predictions at the global scale based upon distributed hydrological simulations using numerical ensemble weather forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). The aforementioned global and local models have already affected the approach to early warning in Nepal, being operational during the 2016 monsoon in the West Rapti basin in Western Nepal. On 24 July 2016, GLoFAS hydrological forecasts for the West Rapti indicated a sharp rise in river discharge above 1500 m3/sec (equivalent to the river warning level at 5 meters) with 53

  19. Evaluation of operational forecast model of aerosol transportation using ceilometer network measurements

    Science.gov (United States)

    Chan, Ka Lok; Wiegner, Matthias; Flentje, Harald; Mattis, Ina; Wagner, Frank; Gasteiger, Josef; Geiß, Alexander

    2017-04-01

    Due to technical improvements of ceilometers in recent years, ceilometer measurements are not only limited to determine cloud base heights but also providing information on the vertical aerosol distribution. Therefore, several national weather services implemented ceilometer networks. These measurements are e.g. valuable for the evaluation of the chemical transport model simulations. In this study, we present comparisons of European Centre for Medium-Range Weather Forecast Integrated Forecast System (ECMWF-IFS) model simulation of aerosol backscatter coefficients with ceilometer network measurements operated by the German weather service (DWD) . Five different types of aerosol are available in the model simulations which include two natural aerosols, sea salt and dust. The other three aerosol types, i.e. sulfate, organic carbon and black carbon, have significant anthropogenic contributions. As the model output provides mass mixing ratios of the above mentioned types of aerosol and the ceilometers measure attenuated backscatter (β∗) provided that calibration took place, it is necessary to determine a common physical quantity for the comparison. We have chosen the aerosol backscatter coefficient (β) for this purpose. The β-profiles are calculated from the mass mixing ratios of the model output assuming the inherent aerosol microphysics properties. It shall be emphasized that in the model calculations, all particles are assumed to be spherical. We have examined the sensitivity of the intercomparison on the hygroscopic growth of particles and on the role of particle shape. Our results show that the hygroscopic growth of particle is crucial (up to a factor of 22) in converting the model output to backscatter coefficient profiles whereas the effect of non-sphericity of dust particles is comparably small (˜44%). Furthermore, the calibration of the ceilometer signals can be an issue. The agreements between modeled and retrieved β-profiles show different

  20. Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Petr Maca

    2016-01-01

    Full Text Available The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI and the standardized precipitation evaporation index (SPEI and were derived for the period of 1948–2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.

  1. Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    such as the neural network model is not appropriate if the data is generated by a linear mechanism. Hence, it might be appropriate to test the null of linearity prior to building a nonlinear model. We investigate whether this kind of pretesting improves the forecast accuracy compared to the case where...

  2. Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting

    NARCIS (Netherlands)

    Rezaeianzadeh, M.; Stein, A.; Tabari, H.; Abghari, H.; Jalalkamali, N.; Hosseinipour, E.Z.; Singh, V.P.

    2013-01-01

    Artificial neural networks (ANNs) are used by hydrologists and engineers to forecast flows at the outlet of a watershed. They are employed in particular where hydrological data are limited. Despite these developments, practitioners still prefer conventional hydrological models. This study applied

  3. Artificial neural networks to forecast biomass of Pacific sardine and its environment

    DEFF Research Database (Denmark)

    Cisneros Mata, M.A.; Brey, T.; Jarre, Astrid

    1996-01-01

    We tested the forecasting performance of artificial neural networks (ANNs) using several time series of environmental and biotic data pertaining to the California Current (CC) neritic ecosystem. ANNs performed well predicting CC monthly 10-m depth temperature up to nine years in advance, using te...

  4. Nonlinear Autoregressive Network with the Use of a Moving Average Method for Forecasting Typhoon Tracks

    OpenAIRE

    Tienfuan Kerh; Shin-Hung Wu

    2017-01-01

    Forecasting of a typhoon moving path may help to evaluate the potential negative impacts in the neighbourhood areas along the moving path. This study proposed a work of using both static and dynamic neural network models to link a time series of typhoon track parameters including longitude and latitude of the typhoon central location, cyclonic radius, central wind speed, and typhoon moving speed. Based on the historical records of 100 typhoons, the performances of neural network models are ev...

  5. FORECASTING KUALA LUMPUR COMPOSITE INDEX: EVIDENCE OF THE ARTIFICIAL NEURAL NETWORK AND ARIMA

    OpenAIRE

    Sukmana, Raditya; Solihin, Mahmud Iwan

    2007-01-01

    The aim of this paper is to use, compare, and analyze two forecasting technique: namelyAuto Regressive Integrated Moving Average(ARIMA) and Artificial NeuralNetwork(ANN) using Kuala Lumpur Composite Index(KLCI) in Malaysia. ArtificialNeural Network is used because of its popularity of capturing the volatility patterns innonlinear time series while ARIMA used since it is a standard method in the forecastingtool. Daily data of Kuala Lumpur Composite Index from 4 January 1999 to 26 September2005...

  6. Towards a medium-range coastal station fog forecasting system

    CSIR Research Space (South Africa)

    Landman, S

    2013-09-01

    Full Text Available -1 29th Annual conference of South African Society for Atmospheric Sciences (SASAS) 2013 http://sasas.ukzn.ac.za/homepage.aspx Towards a Medium-Range Coastal Station Fog Forecasting System Stephanie Landman*1, Estelle Marx1, Willem A. Landman2...

  7. A short-term ensemble wind speed forecasting system for wind power applications

    Science.gov (United States)

    Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.

    2011-12-01

    This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.

  8. Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks.

    Directory of Open Access Journals (Sweden)

    Junghwan Jin

    Full Text Available Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autoregressive conditional heteroskedasticity, and artificial neural network models are employed to predict natural gas prices. We also emphasize the boundary problem in wavelet decomposition, and compare results that consider the boundary problem case with those that do not. The empirical results show that our suggested approach can handle the boundary problem, such that it facilitates the extraction of the appropriate forecasting results. The performance of the wavelet-hybrid approach was superior in all cases, whereas the application of detail components in the forecasting was only able to yield a small improvement in forecasting performance. Therefore, forecasting with only an approximation component would be acceptable, in consideration of forecasting efficiency.

  9. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    Science.gov (United States)

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  10. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Directory of Open Access Journals (Sweden)

    Lukas Falat

    2016-01-01

    Full Text Available This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  11. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Science.gov (United States)

    Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450

  12. Financial impact of errors in business forecasting: a comparative study of linear models and neural networks

    Directory of Open Access Journals (Sweden)

    Claudimar Pereira da Veiga

    2012-08-01

    Full Text Available The importance of demand forecasting as a management tool is a well documented issue. However, it is difficult to measure costs generated by forecasting errors and to find a model that assimilate the detailed operation of each company adequately. In general, when linear models fail in the forecasting process, more complex nonlinear models are considered. Although some studies comparing traditional models and neural networks have been conducted in the literature, the conclusions are usually contradictory. In this sense, the objective was to compare the accuracy of linear methods and neural networks with the current method used by the company. The results of this analysis also served as input to evaluate influence of errors in demand forecasting on the financial performance of the company. The study was based on historical data from five groups of food products, from 2004 to 2008. In general, one can affirm that all models tested presented good results (much better than the current forecasting method used, with mean absolute percent error (MAPE around 10%. The total financial impact for the company was 6,05% on annual sales.

  13. Network operating system

    Science.gov (United States)

    1985-01-01

    Long-term and short-term objectives for the development of a network operating system for the Space Station are stated. The short-term objective is to develop a prototype network operating system for a 100 megabit/second fiber optic data bus. The long-term objective is to establish guidelines for writing a detailed specification for a Space Station network operating system. Major milestones are noted. Information is given in outline form.

  14. Computer aided planning of distribution systems and connection with medium term load forecast

    Energy Technology Data Exchange (ETDEWEB)

    di Salvatore, F; Grattieri, W; Insinga, F; Malafarina, L; Mazzoni, M; Nicola, G

    1991-12-31

    In order to perform planning studies on HV (40-l50 kV), MV and LV networks, ENEL (Italian Electricity Board) has developed a computation system composed of a set of integrated programs which utilize the information stored in several data bases, with the aim of: providing energy consumption forecasts for each area of the country; transfering consumption for each area to the distribution network nodes and to evaluating the electric demand by using a statistical power/energy correlation model; analyzing several network development alternatives and selecting the optimum development plan by comparing the overall costs (investments, operation, risk). In order to make its utilization by planners easier, the computation system will be operated with interactive and graphic procedures made available by the use of graphic work stations. This report describes the main objectives and basic hypotheses assumed in the preparation of the computation system, as well as, the system`s general architecture.

  15. Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System

    Science.gov (United States)

    Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup

    2018-04-01

    Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.

  16. Network SCADA System

    International Nuclear Information System (INIS)

    Milivojevic, Dragan R.; Tasic, Visa; Karabasevic, Dejan

    2003-01-01

    Copper Institute, Industrial Informatics department, is developing and applying network real time process monitoring and control systems. Some of these systems are already in use. The paper presents some hardware and software general remarks and performances, with special regard to communication sub-systems and network possibilities. (Author)

  17. Navy Mobility Fuels Forecasting System. Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.M.; Hadder, G.R.; Singh, S.P.N.; Whittle, C.

    1985-07-01

    The Department of the Navy (DON) requires an improved capability to forecast mobility fuel availability and quality. The changing patterns in fuel availability and quality are important in planning the Navy's Mobility Fuels R and D Program. These changes come about primarily because of the decline in the quality of crude oil entering world markets as well as the shifts in refinery capabilities domestically and worldwide. The DON requested ORNL's assistance in assembling and testing a methodology for forecasting mobility fuel trends. ORNL reviewed and analyzed domestic and world oil reserve estimates, production and price trends, and recent refinery trends. Three publicly available models developed by the Department of Energy were selected as the basis of the Navy Mobility Fuels Forecasting System. The system was used to analyze the availability and quality of jet fuel (JP-5) that could be produced on the West Coast of the United States under an illustrative business-as-usual and a world oil disruption scenario in 1990. Various strategies were investigated for replacing the lost JP-5 production. This exercise, which was strictly a test case for the forecasting system, suggested that full recovery of lost fuel production could be achieved by relaxing the smoke point specifications or by increasing the refiners' gate price for the jet fuel. A more complete analysis of military mobility fuel trends is currently under way.

  18. Short-term wind power forecasting in Portugal by neural networks and wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Center for Innovation in Electrical and Energy Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Pousinho, H.M.I. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2011-04-15

    This paper proposes artificial neural networks in combination with wavelet transform for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. Results from a real-world case study are presented. A comparison is carried out, taking into account the results obtained with other approaches. Finally, conclusions are duly drawn. (author)

  19. Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory

    Directory of Open Access Journals (Sweden)

    Erick López

    2018-02-01

    Full Text Available Wind power generation has presented an important development around the world. However, its integration into electrical systems presents numerous challenges due to the variable nature of the wind. Therefore, to maintain an economical and reliable electricity supply, it is necessary to accurately predict wind generation. The Wind Power Prediction Tool (WPPT has been proposed to solve this task using the power curve associated with a wind farm. Recurrent Neural Networks (RNNs model complex non-linear relationships without requiring explicit mathematical expressions that relate the variables involved. In particular, two types of RNN, Long Short-Term Memory (LSTM and Echo State Network (ESN, have shown good results in time series forecasting. In this work, we present an LSTM+ESN architecture that combines the characteristics of both networks. An architecture similar to an ESN is proposed, but using LSTM blocks as units in the hidden layer. The training process of this network has two key stages: (i the hidden layer is trained with a descending gradient method online using one epoch; (ii the output layer is adjusted with a regularized regression. In particular, the case is proposed where Step (i is used as a target for the input signal, in order to extract characteristics automatically as the autoencoder approach; and in the second stage (ii, a quantile regression is used in order to obtain a robust estimate of the expected target. The experimental results show that LSTM+ESN using the autoencoder and quantile regression outperforms the WPPT model in all global metrics used.

  20. DO DYNAMIC NEURAL NETWORKS STAND A BETTER CHANCE IN FRACTIONALLY INTEGRATED PROCESS FORECASTING?

    Directory of Open Access Journals (Sweden)

    Majid Delavari

    2013-04-01

    Full Text Available The main purpose of the present study was to investigate the capabilities of two generations of models such as those based on dynamic neural network (e.g., Nonlinear Neural network Auto Regressive or NNAR model and a regressive (Auto Regressive Fractionally Integrated Moving Average model which is based on Fractional Integration Approach in forecasting daily data related to the return index of Tehran Stock Exchange (TSE. In order to compare these models under similar conditions, Mean Square Error (MSE and also Root Mean Square Error (RMSE were selected as criteria for the models’ simulated out-of-sample forecasting performance. Besides, fractal markets hypothesis was examined and according to the findings, fractal structure was confirmed to exist in the time series under investigation. Another finding of the study was that dynamic artificial neural network model had the best performance in out-of-sample forecasting based on the criteria introduced for calculating forecasting error in comparison with the ARFIMA model.

  1. Analysis of recurrent neural networks for short-term energy load forecasting

    Science.gov (United States)

    Di Persio, Luca; Honchar, Oleksandr

    2017-11-01

    Short-term forecasts have recently gained an increasing attention because of the rise of competitive electricity markets. In fact, short-terms forecast of possible future loads turn out to be fundamental to build efficient energy management strategies as well as to avoid energy wastage. Such type of challenges are difficult to tackle both from a theoretical and applied point of view. Latter tasks require sophisticated methods to manage multidimensional time series related to stochastic phenomena which are often highly interconnected. In the present work we first review novel approaches to energy load forecasting based on recurrent neural network, focusing our attention on long/short term memory architectures (LSTMs). Such type of artificial neural networks have been widely applied to problems dealing with sequential data such it happens, e.g., in socio-economics settings, for text recognition purposes, concerning video signals, etc., always showing their effectiveness to model complex temporal data. Moreover, we consider different novel variations of basic LSTMs, such as sequence-to-sequence approach and bidirectional LSTMs, aiming at providing effective models for energy load data. Last but not least, we test all the described algorithms on real energy load data showing not only that deep recurrent networks can be successfully applied to energy load forecasting, but also that this approach can be extended to other problems based on time series prediction.

  2. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting.

    Science.gov (United States)

    Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.

  3. Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    Directory of Open Access Journals (Sweden)

    Melike Bildirici

    2014-01-01

    Full Text Available The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100. Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications.

  4. Multi-Model Prediction for Demand Forecast in Water Distribution Networks

    Directory of Open Access Journals (Sweden)

    Rodrigo Lopez Farias

    2018-03-01

    Full Text Available This paper presents a multi-model predictor called Qualitative Multi-Model Predictor Plus (QMMP+ for demand forecast in water distribution networks. QMMP+ is based on the decomposition of the quantitative and qualitative information of the time-series. The quantitative component (i.e., the daily consumption prediction is forecasted and the pattern mode estimated using a Nearest Neighbor (NN classifier and a Calendar. The patterns are updated via a simple Moving Average scheme. The NN classifier and the Calendar are executed simultaneously every period and the most suited model for prediction is selected using a probabilistic approach. The proposed solution for water demand forecast is compared against Radial Basis Function Artificial Neural Networks (RBF-ANN, the statistical Autoregressive Integrated Moving Average (ARIMA, and Double Seasonal Holt-Winters (DSHW approaches, providing the best results when applied to real demand of the Barcelona Water Distribution Network. QMMP+ has demonstrated that the special modelling treatment of water consumption patterns improves the forecasting accuracy.

  5. Solar Storm GIC Forecasting: Solar Shield Extension Development of the End-User Forecasting System Requirements

    Science.gov (United States)

    Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.

    2015-01-01

    A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.

  6. Computer aided planning of distribution systems and connection with medium term load forecast

    International Nuclear Information System (INIS)

    di Salvatore, F.; Grattieri, W.; Insinga, F.; Malafarina, L.; Mazzoni, M.; Nicola, G.

    1990-01-01

    In order to perform planning studies on HV (40-l50 kV), MV and LV networks, ENEL (Italian Electricity Board) has developed a computation system composed of a set of integrated programs which utilize the information stored in several data bases, with the aim of: providing energy consumption forecasts for each area of the country; transferring consumption for each area to the distribution network nodes and to evaluating the electric demand by using a statistical power/energy correlation model; analyzing several network development alternatives and selecting the optimum development plan by comparing the overall costs (investments, operation, risk). In order to make its utilization by planners easier, the computation system will be operated with interactive and graphic procedures made available by the use of graphic work stations. This report describes the main objectives and basic hypotheses assumed in the preparation of the computation system, as well as, the system's general architecture

  7. Comparisons of forecasting for hepatitis in Guangxi Province, China by using three neural networks models

    Directory of Open Access Journals (Sweden)

    Ruijing Gan

    2016-11-01

    Full Text Available This study compares and evaluates the prediction of hepatitis in Guangxi Province, China by using back propagation neural networks based genetic algorithm (BPNN-GA, generalized regression neural networks (GRNN, and wavelet neural networks (WNN. In order to compare the results of forecasting, the data obtained from 2004 to 2013 and 2014 were used as modeling and forecasting samples, respectively. The results show that when the small data set of hepatitis has seasonal fluctuation, the prediction result by BPNN-GA will be better than the two other methods. The WNN method is suitable for predicting the large data set of hepatitis that has seasonal fluctuation and the same for the GRNN method when the data increases steadily.

  8. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Thomas Hoff [Clean Power Research, L.L.C., Napa, CA (United States); Kankiewicz, Adam [Clean Power Research, L.L.C., Napa, CA (United States)

    2016-02-26

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California Independent System Operator’s (ISO) load forecasts by integrating behind-the-meter (BTM) PV forecasts. The three, new, state-of-the-art solar irradiance forecasting models included: the infrared (IR) satellite-based cloud motion vector (CMV) model; the WRF-SolarCA model and variants; and the Optimized Deep Machine Learning (ODML)-training model. The first two forecasting models targeted known weaknesses in current operational solar forecasts. They were benchmarked against existing operational numerical weather prediction (NWP) forecasts, visible satellite CMV forecasts, and measured PV plant power production. IR CMV, WRF-SolarCA, and ODML-training forecasting models all improved the forecast to a significant degree. Improvements varied depending on time of day, cloudiness index, and geographic location. The fourth objective was to demonstrate that the California ISO’s load forecasts could be improved by integrating BTM PV forecasts. This objective represented the project’s most exciting and applicable gains. Operational BTM forecasts consisting of 200,000+ individual rooftop PV forecasts were delivered into the California ISO’s real-time automated load forecasting (ALFS) environment. They were then evaluated side-by-side with operational load forecasts with no BTM-treatment. Overall, ALFS-BTM day-ahead (DA) forecasts performed better than baseline ALFS forecasts when compared to actual load data. Specifically, ALFS-BTM DA forecasts were observed to have the largest reduction of error during the afternoon on cloudy days. Shorter term 30 minute-ahead ALFS-BTM forecasts were shown to have less error under all sky conditions, especially during the morning time periods when traditional load forecasts often experience their largest

  9. An Electricity Price Forecasting Model by Hybrid Structured Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Ping-Huan Kuo

    2018-04-01

    Full Text Available Electricity price is a key influencer in the electricity market. Electricity market trades by each participant are based on electricity price. The electricity price adjusted with the change in supply and demand relationship can reflect the real value of electricity in the transaction process. However, for the power generating party, bidding strategy determines the level of profit, and the accurate prediction of electricity price could make it possible to determine a more accurate bidding price. This cannot only reduce transaction risk, but also seize opportunities in the electricity market. In order to effectively estimate electricity price, this paper proposes an electricity price forecasting system based on the combination of 2 deep neural networks, the Convolutional Neural Network (CNN and the Long Short Term Memory (LSTM. In order to compare the overall performance of each algorithm, the Mean Absolute Error (MAE and Root-Mean-Square error (RMSE evaluating measures were applied in the experiments of this paper. Experiment results show that compared with other traditional machine learning methods, the prediction performance of the estimating model proposed in this paper is proven to be the best. By combining the CNN and LSTM models, the feasibility and practicality of electricity price prediction is also confirmed in this paper.

  10. Real-time drought forecasting system for irrigation managment

    Science.gov (United States)

    Ceppi, Alessandro; Ravazzani, Giovanni; Corbari, Chiara; Masseroni, Daniele; Meucci, Stefania; Pala, Francesca; Salerno, Raffaele; Meazza, Giuseppe; Chiesa, Marco; Mancini, Marco

    2013-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in in European areas traditionally rich of water such as the Po Valley. In dry periods, the problem of water shortage can be enhanced by conflictual use of water such as irrigation, industrial and power production (hydroelectric and thermoelectric). Further, over the last decade the social perspective on this issue is increasing due to climate change and global warming scenarios which come out from the last IPCC Report. The increased frequency of dry periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the real-time drought forecasting system Pre.G.I., an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management". The system is based on ensemble prediction at long range (30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin. The studied area covers 74,000 ha in the middle of the Po Valley, near the city of Lodi. The hydrological ensemble forecasts are based on 20 meteorological members of the non-hydrostatic WRF model with 30 days as lead-time, provided by Epson Meteo Centre, while the hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The hydrological model was validated against measurements of latent heat flux and soil moisture acquired by an eddy-covariance station. Reliability of the forecasting system and its benefits was assessed on some cases-study occurred in the recent years.

  11. East Asian winter monsoon forecasting schemes based on the NCEP's climate forecast system

    Science.gov (United States)

    Tian, Baoqiang; Fan, Ke; Yang, Hongqing

    2017-12-01

    The East Asian winter monsoon (EAWM) is the major climate system in the Northern Hemisphere during boreal winter. In this study, we developed two schemes to improve the forecasting skill of the interannual variability of the EAWM index (EAWMI) using the interannual increment prediction method, also known as the DY method. First, we found that version 2 of the NCEP's Climate Forecast System (CFSv2) showed higher skill in predicting the EAWMI in DY form than not. So, based on the advantage of the DY method, Scheme-I was obtained by adding the EAWMI DY predicted by CFSv2 to the observed EAWMI in the previous year. This scheme showed higher forecasting skill than CFSv2. Specifically, during 1983-2016, the temporal correlation coefficient between the Scheme-I-predicted and observed EAWMI was 0.47, exceeding the 99% significance level, with the root-mean-square error (RMSE) decreased by 12%. The autumn Arctic sea ice and North Pacific sea surface temperature (SST) are two important external forcing factors for the interannual variability of the EAWM. Therefore, a second (hybrid) prediction scheme, Scheme-II, was also developed. This scheme not only involved the EAWMI DY of CFSv2, but also the sea-ice concentration (SIC) observed the previous autumn in the Laptev and East Siberian seas and the temporal coefficients of the third mode of the North Pacific SST in DY form. We found that a negative SIC anomaly in the preceding autumn over the Laptev and the East Siberian seas could lead to a significant enhancement of the Aleutian low and East Asian westerly jet in the following winter. However, the intensity of the winter Siberian high was mainly affected by the third mode of the North Pacific autumn SST. Scheme-I and Scheme-II also showed higher predictive ability for the EAWMI in negative anomaly years compared to CFSv2. More importantly, the improvement in the prediction skill of the EAWMI by the new schemes, especially for Scheme-II, could enhance the forecasting skill of

  12. Forecasting Construction Cost Index based on visibility graph: A network approach

    Science.gov (United States)

    Zhang, Rong; Ashuri, Baabak; Shyr, Yu; Deng, Yong

    2018-03-01

    Engineering News-Record (ENR), a professional magazine in the field of global construction engineering, publishes Construction Cost Index (CCI) every month. Cost estimators and contractors assess projects, arrange budgets and prepare bids by forecasting CCI. However, fluctuations and uncertainties of CCI cause irrational estimations now and then. This paper aims at achieving more accurate predictions of CCI based on a network approach in which time series is firstly converted into a visibility graph and future values are forecasted relied on link prediction. According to the experimental results, the proposed method shows satisfactory performance since the error measures are acceptable. Compared with other methods, the proposed method is easier to implement and is able to forecast CCI with less errors. It is convinced that the proposed method is efficient to provide considerably accurate CCI predictions, which will make contributions to the construction engineering by assisting individuals and organizations in reducing costs and making project schedules.

  13. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia

    Science.gov (United States)

    Karimi, Sepideh; Kisi, Ozgur; Shiri, Jalal; Makarynskyy, Oleg

    2013-03-01

    Accurate predictions of sea level with different forecast horizons are important for coastal and ocean engineering applications, as well as in land drainage and reclamation studies. The methodology of tidal harmonic analysis, which is generally used for obtaining a mathematical description of the tides, is data demanding requiring processing of tidal observation collected over several years. In the present study, hourly sea levels for Darwin Harbor, Australia were predicted using two different, data driven techniques, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Multi linear regression (MLR) technique was used for selecting the optimal input combinations (lag times) of hourly sea level. The input combination comprises current sea level as well as five previous level values found to be optimal. For the ANFIS models, five different membership functions namely triangular, trapezoidal, generalized bell, Gaussian and two Gaussian membership function were tested and employed for predicting sea level for the next 1 h, 24 h, 48 h and 72 h. The used ANN models were trained using three different algorithms, namely, Levenberg-Marquardt, conjugate gradient and gradient descent. Predictions of optimal ANFIS and ANN models were compared with those of the optimal auto-regressive moving average (ARMA) models. The coefficient of determination, root mean square error and variance account statistics were used as comparison criteria. The obtained results indicated that triangular membership function was optimal for predictions with the ANFIS models while adaptive learning rate and Levenberg-Marquardt were most suitable for training the ANN models. Consequently, ANFIS and ANN models gave similar forecasts and performed better than the developed for the same purpose ARMA models for all the prediction intervals.

  14. Forecasting solar proton event with artificial neural network

    Science.gov (United States)

    Gong, J.; Wang, J.; Xue, B.; Liu, S.; Zou, Z.

    Solar proton event (SPE), relatively rare but popular in solar maximum, can bring hazard situation to spacecraft. As a special event, SPE always accompanies flare, which is also called proton flare. To produce such an eruptive event, large amount energy must be accumulated within the active region. So we can investigate the character of the active region and its evolving trend, together with other such as cm radio emission and soft X-ray background to evaluate the potential of SEP in chosen area. In order to summarize the omen of SPEs in the active regions behind the observed parameters, we employed AI technology. Full connecting neural network was chosen to fulfil this job. After constructing the network, we train it with 13 parameters that was able to exhibit the character of active regions and their evolution trend. More than 80 sets of event parameter were defined to teach the neural network to identify whether an active region was potential of SPE. Then we test this model with a data base consisting SPE and non-SPE cases that was not used to train the neural network. The result showed that 75% of the choice by the model was right.

  15. Short-Term Distribution System State Forecast Based on Optimal Synchrophasor Sensor Placement and Extreme Learning Machine

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang; Zhang, Yingchen

    2016-11-14

    This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vector regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.

  16. Forecasting Hurricane Tracks Using a Complex Adaptive System

    National Research Council Canada - National Science Library

    Lear, Matthew R

    2005-01-01

    Forecast hurricane tracks using a multi-model ensemble that consists of linearly combining the individual model forecasts have greatly reduced the average forecast errors when compared to individual...

  17. A Complex Adaptive System Approach to Forecasting Hurricane Tracks

    National Research Council Canada - National Science Library

    Lear, Matthew R

    2005-01-01

    Forecast hurricane tracks using a multi-model ensemble that consists of linearly combining the individual model forecasts have greatly reduced the average forecast errors when compared to individual...

  18. A framework for improving a seasonal hydrological forecasting system using sensitivity analysis

    Science.gov (United States)

    Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah

    2017-04-01

    Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of

  19. A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model

    Directory of Open Access Journals (Sweden)

    Ping-Huan Kuo

    2018-04-01

    Full Text Available The photovoltaic (PV systems generate green energy from the sunlight without any pollution or noise. The PV systems are simple, convenient to install, and seldom malfunction. Unfortunately, the energy generated by PV systems depends on climatic conditions, location, and system design. The solar radiation forecasting is important to the smooth operation of PV systems. However, solar radiation detected by a pyranometer sensor is strongly nonlinear and highly unstable. The PV energy generation makes a considerable contribution to the smart grids via a large number of relatively small PV systems. In this paper, a high-precision deep convolutional neural network model (SolarNet is proposed to facilitate the solar radiation forecasting. The proposed model is verified by experiments. The experimental results demonstrate that SolarNet outperforms other benchmark models in forecasting accuracy as well as in predicting complex time series with a high degree of volatility and irregularity.

  20. Long forecast horizon to improve Real Time Control of urban drainage systems

    DEFF Research Database (Denmark)

    Courdent, Vianney Augustin Thomas; Vezzaro, Luca; Mikkelsen, Peter Steen

    2014-01-01

    Global Real Time Control (RTC) of urban drainage system is increasingly seen as cost-effective solution in order to respond to increasing performance demand (e.g. reduction of Combined Sewer Overflow, protection of sensitive areas as bathing water etc.). The Dynamic Overflow Risk Assessment (DORA......) strategy was developed to operate Urban Drainage Systems (UDS) in order to minimize the expected overflow risk by considering the water volume presently stored in the drainage network, the expected runoff volume based on a 2-hours radar forecast model and an estimated uncertainty of the runoff forecast....... However, such temporal horizon (1-2 hours) is relatively short when used for the operation of large storage facilities, which may require a few days to be emptied. This limits the performance of the optimization and control in reducing combined sewer overflow and in preparing for possible flooding. Based...

  1. Using ensemble weather forecast in a risk based real time optimization of urban drainage systems

    DEFF Research Database (Denmark)

    Courdent, Vianney Augustin Thomas; Vezzaro, Luca; Mikkelsen, Peter Steen

    2015-01-01

    Global Real Time Control (RTC) of urban drainage system is increasingly seen as cost-effective solution in order to respond to increasing performance demand (e.g. reduction of Combined Sewer Overflow, protection of sensitive areas as bathing water etc.). The Dynamic Overflow Risk Assessment (DORA......) strategy was developed to operate Urban Drainage Systems (UDS) in order to minimize the expected overflow risk by considering the water volume presently stored in the drainage network, the expected runoff volume based on a 2-hours radar forecast model and an estimated uncertainty of the runoff forecast....... However, such temporal horizon (1-2 hours) is relatively short when used for the operation of large storage facilities, which may require a few days to be emptied. This limits the performance of the optimization and control in reducing combined sewer overflow and in preparing for possible flooding. Based...

  2. A Two-Dimensional Gridded Solar Forecasting System using Situation-Dependent Blending of Multiple Weather Models

    Science.gov (United States)

    Lu, S.; Hwang, Y.; Shao, X.; Hamann, H.

    2015-12-01

    Previously, we reported the application of a "weather situation" dependent multi-model blending approach to improve the forecast accuracy of solar irradiance and other atmospheric parameters. The approach uses machine-learning techniques to classify "weather situations" by a set of atmospheric parameters. The "weather situation" classification is location-dependent and each "weather situation" has characteristic forecast errors from a set of individual input numerical weather prediction (NWP) models. The input models are thus corrected or combined differently for different "weather situations" to minimize the overall forecast error. While the original implementation of the model-blending is applicable to only point-like locations having historical data of both measurements and forecasts, here we extend the approach to provide two-dimensional (2D) gridded forecasts. An experimental 2D forecasting system has been set up to provide gridded forecasts of solar irradiance (global horizontal irradiance), temperature, wind speed, and humidity for the contiguous United States (CONUS). Validation results show around 30% enhancement of 0 to 48 hour ahead solar irradiance forecast accuracy compared to the best input NWP model. The forecasting system may be leveraged by other site- or region-specific solar energy forecast products. To enable the 2D forecasting system, historical solar irradiance measurements from around 1,600 selected sites of the remote automated weather stations (RAWS) network have been employed. The CONUS was divided into smaller sub-regions, each containing a group of 10 to 20 RAWS sites. A group of sites, as classified by statistical analysis, have similar "weather patterns", i.e. the NWPs have similar "weather situation" dependent forecast errors for all sites in a group. The model-blending trained by the historical data from a group of sites is then applied for all locations in the corresponding sub-region. We discuss some key techniques developed for

  3. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Sohrabkhani, S.

    2008-01-01

    This paper presents an artificial neural network (ANN) approach for annual electricity consumption in high energy consumption industrial sectors. Chemicals, basic metals and non-metal minerals industries are defined as high energy consuming industries. It is claimed that, due to high fluctuations of energy consumption in high energy consumption industries, conventional regression models do not forecast energy consumption correctly and precisely. Although ANNs have been typically used to forecast short term consumptions, this paper shows that it is a more precise approach to forecast annual consumption in such industries. Furthermore, the ANN approach based on a supervised multi-layer perceptron (MLP) is used to show it can estimate the annual consumption with less error. Actual data from high energy consuming (intensive) industries in Iran from 1979 to 2003 is used to illustrate the applicability of the ANN approach. This study shows the advantage of the ANN approach through analysis of variance (ANOVA). Furthermore, the ANN forecast is compared with actual data and the conventional regression model through ANOVA to show its superiority. This is the first study to present an algorithm based on the ANN and ANOVA for forecasting long term electricity consumption in high energy consuming industries

  4. Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT

    International Nuclear Information System (INIS)

    Anbazhagan, S.; Kumarappan, N.

    2014-01-01

    Highlights: • We presented DCT input featured FFNN model for forecasting in Spain market. • The key factors impacting electricity price forecasting are historical prices. • Past 42 days were trained and the next 7 days were forecasted. • The proposed approach has a simple and better NN structure. • The DCT-FFNN mode is effective and less computation time than the recent models. - Abstract: In a deregulated market, a number of factors determined the outcome of electricity price and displays a perplexed and maverick fluctuation. Both power producers and consumers needs single compact and robust price forecasting tool in order to maximize their profits and utilities. In order to achieve the helter–skelter kind of electricity price, one dimensional discrete cosine transforms (DCT) input featured feed-forward neural network (FFNN) is modeled (DCT-FFNN). The proposed FFNN is a single compact and robust architecture (without hybridizing the various hard and soft computing models). It has been predicted that the DCT-FFNN model is close to the state of the art can be achieved with less computation time. The proposed DCT-FFNN approach is compared with 17 other recent approaches to estimate the market clearing prices of mainland Spain. Finally, the accuracy of the price forecasting is also applied to the electricity market of New York in year 2010 that shows the effectiveness of the proposed DCT-FFNN approach

  5. Day-ahead price forecasting of electricity markets by a new feature selection algorithm and cascaded neural network technique

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2009-01-01

    With the introduction of restructuring into the electric power industry, the price of electricity has become the focus of all activities in the power market. Electricity price forecast is key information for electricity market managers and participants. However, electricity price is a complex signal due to its non-linear, non-stationary, and time variant behavior. In spite of performed research in this area, more accurate and robust price forecast methods are still required. In this paper, a new forecast strategy is proposed for day-ahead price forecasting of electricity markets. Our forecast strategy is composed of a new two stage feature selection technique and cascaded neural networks. The proposed feature selection technique comprises modified Relief algorithm for the first stage and correlation analysis for the second stage. The modified Relief algorithm selects candidate inputs with maximum relevancy with the target variable. Then among the selected candidates, the correlation analysis eliminates redundant inputs. Selected features by the two stage feature selection technique are used for the forecast engine, which is composed of 24 consecutive forecasters. Each of these 24 forecasters is a neural network allocated to predict the price of 1 h of the next day. The whole proposed forecast strategy is examined on the Spanish and Australia's National Electricity Markets Management Company (NEMMCO) and compared with some of the most recent price forecast methods.

  6. Data Pre-Analysis and Ensemble of Various Artificial Neural Networks for Monthly Streamflow Forecasting

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhou

    2018-05-01

    Full Text Available This paper introduces three artificial neural network (ANN architectures for monthly streamflow forecasting: a radial basis function network, an extreme learning machine, and the Elman network. Three ensemble techniques, a simple average ensemble, a weighted average ensemble, and an ANN-based ensemble, were used to combine the outputs of the individual ANN models. The objective was to highlight the performance of the general regression neural network-based ensemble technique (GNE through an improvement of monthly streamflow forecasting accuracy. Before the construction of an ANN model, data preanalysis techniques, such as empirical wavelet transform (EWT, were exploited to eliminate the oscillations of the streamflow series. Additionally, a theory of chaos phase space reconstruction was used to select the most relevant and important input variables for forecasting. The proposed GNE ensemble model has been applied for the mean monthly streamflow observation data from the Wudongde hydrological station in the Jinsha River Basin, China. Comparisons and analysis of this study have demonstrated that the denoised streamflow time series was less disordered and unsystematic than was suggested by the original time series according to chaos theory. Thus, EWT can be adopted as an effective data preanalysis technique for the prediction of monthly streamflow. Concurrently, the GNE performed better when compared with other ensemble techniques.

  7. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    KAUST Repository

    Zhang, Xuesong

    2011-11-01

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework (BNN-PIS) to incorporate the uncertainties associated with parameters, inputs, and structures into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform BNNs that only consider uncertainties associated with parameters and model structures. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters shows that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of and interactions among different uncertainty sources is expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting. © 2011 Elsevier B.V.

  8. Enhancing Famine Early Warning Systems with Improved Forecasts, Satellite Observations and Hydrologic Simulations

    Science.gov (United States)

    Funk, C. C.; Verdin, J.; Thiaw, W. M.; Hoell, A.; Korecha, D.; McNally, A.; Shukla, S.; Arsenault, K. R.; Magadzire, T.; Novella, N.; Peters-Lidard, C. D.; Robjohn, M.; Pomposi, C.; Galu, G.; Rowland, J.; Budde, M. E.; Landsfeld, M. F.; Harrison, L.; Davenport, F.; Husak, G. J.; Endalkachew, E.

    2017-12-01

    Drought early warning science, in support of famine prevention, is a rapidly advancing field that is helping to save lives and livelihoods. In 2015-2017, a series of extreme droughts afflicted Ethiopia, Southern Africa, Eastern Africa in OND and Eastern Africa in MAM, pushing more than 50 million people into severe food insecurity. Improved drought forecasts and monitoring tools, however, helped motivate and target large and effective humanitarian responses. Here we describe new science being developed by a long-established early warning system - the USAID Famine Early Warning Systems Network (FEWS NET). FEWS NET is a leading provider of early warning and analysis on food insecurity. FEWS NET research is advancing rapidly on several fronts, providing better climate forecasts and more effective drought monitoring tools that are being used to support enhanced famine early warning. We explore the philosophy and science underlying these successes, suggesting that a modal view of climate change can support enhanced seasonal prediction. Under this modal perspective, warming of the tropical oceans may interact with natural modes of variability, like the El Niño-Southern Oscillation, to enhance Indo-Pacific sea surface temperature gradients during both El Niño and La Niña-like climate states. Using empirical data and climate change simulations, we suggest that a sequence of droughts may commence in northern Ethiopia and Southern Africa with the advent of a moderate-to-strong El Niño, and then continue with La Niña/West Pacific related droughts in equatorial eastern East Africa. Scientifically, we show that a new hybrid statistical-dynamic precipitation forecast system, the FEWS NET Integrated Forecast System (FIFS), based on reformulations of the Global Ensemble Forecast System weather forecasts and National Multi-Model Ensemble (NMME) seasonal climate predictions, can effectively anticipate recent East and Southern African drought events. Using cross-validation, we

  9. Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network

    International Nuclear Information System (INIS)

    Zeng, Yu-Rong; Zeng, Yi; Choi, Beomjin; Wang, Lin

    2017-01-01

    Reliable energy consumption forecasting can provide effective decision-making support for planning development strategies to energy enterprises and for establishing national energy policies. Accordingly, the present study aims to apply a hybrid intelligent approach named ADE–BPNN, the back-propagation neural network (BPNN) model supported by an adaptive differential evolution algorithm, to estimate energy consumption. Most often, energy consumption is influenced by socioeconomic factors. The proposed hybrid model incorporates gross domestic product, population, import, and export data as inputs. An improved differential evolution with adaptive mutation and crossover is utilized to find appropriate global initial connection weights and thresholds to enhance the forecasting performance of the BPNN. A comparative example and two extended examples are utilized to validate the applicability and accuracy of the proposed ADE–BPNN model. Errors of the test data sets indicate that the ADE–BPNN model can effectively predict energy consumption compared with the traditional back-propagation neural network model and other popular existing models. Moreover, mean impact value based analysis is conducted for electrical energy consumption in U.S. and total energy consumption forecasting in China to quantitatively explore the relative importance of each input variable for the improvement of effective energy consumption prediction. - Highlights: • Enhanced back-propagation neural network (ADE-BPNN) for energy consumption forecasting. • ADE-BPNN outperforms the current best models for two comparative cases. • Mean impact value approach explores socio-economic factors' relative importance. • ADE-BPNN's adjusted goodness-of-fit is 99.2% for China's energy consumption forecasting.

  10. Forecasting and recruitment in graded manpower systems

    NARCIS (Netherlands)

    van Nunen, J.A.E.E.; Wessels, J.

    1977-01-01

    In this paper a generalized Markov model is introduced to describe the dynamic behaviour of an individual employee in a graded Manpower system. Characteristics like the employee's grade, his educational level, his age and the time spent in his actual grade, can be incorporated in the Markov model.

  11. Application of Artificial Neural Networks to Rainfall Forecasting in Queensland, Australia

    Institute of Scientific and Technical Information of China (English)

    John ABBOT; Jennifer MAROHASY

    2012-01-01

    In this study,the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland,Australia,was assessed by inputting recognized climate indices,monthly historical rainfall data,and atmospheric temperatures into a prototype stand-alone,dynamic,recurrent,time-delay,artificial neural network.Outputs,as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009,were compared with observed rainfall data using time-series plots,root mean squared error (RMSE),and Pearson correlation coefficients.A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-1.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared.The application of artificial neural networks to rainfall forecasting was reviewed.The prototype design is considered preliminary,with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.

  12. Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Baker, Kyri; Summers, Tyler

    2016-12-01

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.

  13. Ensemble Sensitivity Analysis of a Severe Downslope Windstorm in Complex Terrain: Implications for Forecast Predictability Scales and Targeted Observing Networks

    Science.gov (United States)

    2013-09-01

    observations, linear regression finds the straight line that explains the linear relationship of the sample. This line is given by the equation y = mx + b...SENSITIVITY ANALYSIS OF A SEVERE DOWNSLOPE WINDSTORM IN COMPLEX TERRAIN: IMPLICATIONS FOR FORECAST PREDICTABILITY SCALES AND TARGETED OBSERVING...SENSITIVITY ANALYSIS OF A SEVERE DOWNSLOPE WINDSTORM IN COMPLEX TERRAIN: IMPLICATIONS FOR FORECAST PREDICTABILITY SCALES AND TARGETED OBSERVING NETWORKS

  14. Comparing the Selected Transfer Functions and Local Optimization Methods for Neural Network Flood Runoff Forecast

    Directory of Open Access Journals (Sweden)

    Petr Maca

    2014-01-01

    Full Text Available The presented paper aims to analyze the influence of the selection of transfer function and training algorithms on neural network flood runoff forecast. Nine of the most significant flood events, caused by the extreme rainfall, were selected from 10 years of measurement on small headwater catchment in the Czech Republic, and flood runoff forecast was investigated using the extensive set of multilayer perceptrons with one hidden layer of neurons. The analyzed artificial neural network models with 11 different activation functions in hidden layer were trained using 7 local optimization algorithms. The results show that the Levenberg-Marquardt algorithm was superior compared to the remaining tested local optimization methods. When comparing the 11 nonlinear transfer functions, used in hidden layer neurons, the RootSig function was superior compared to the rest of analyzed activation functions.

  15. Monthly electric energy demand forecasting with neural networks and Fourier series

    International Nuclear Information System (INIS)

    Gonzalez-Romera, E.; Jaramillo-Moran, M.A.; Carmona-Fernandez, D.

    2008-01-01

    Medium-term electric energy demand forecasting is a useful tool for grid maintenance planning and market research of electric energy companies. Several methods, such as ARIMA, regression or artificial intelligence, have been usually used to carry out those predictions. Some approaches include weather or economic variables, which strongly influence electric energy demand. Economic variables usually influence the general series trend, while weather provides a periodic behavior because of its seasonal nature. This work investigates the periodic behavior of the Spanish monthly electric demand series, obtained by rejecting the trend from the consumption series. A novel hybrid approach is proposed: the periodic behavior is forecasted with a Fourier series while the trend is predicted with a neural network. Satisfactory results have been obtained, with a lower than 2% MAPE, which improve those reached when only neural networks or ARIMA were used for the same purpose. (author)

  16. Volatility Degree Forecasting of Stock Market by Stochastic Time Strength Neural Network

    Directory of Open Access Journals (Sweden)

    Haiyan Mo

    2013-01-01

    Full Text Available In view of the applications of artificial neural networks in economic and financial forecasting, a stochastic time strength function is introduced in the backpropagation neural network model to predict the fluctuations of stock price changes. In this model, stochastic time strength function gives a weight for each historical datum and makes the model have the effect of random movement, and then we investigate and forecast the behavior of volatility degrees of returns for the Chinese stock market indexes and some global market indexes. The empirical research is performed in testing the prediction effect of SSE, SZSE, HSI, DJIA, IXIC, and S&P 500 with different selected volatility degrees in the established model.

  17. Meteor Shower Forecast Improvements from a Survey of All-Sky Network Observations

    Science.gov (United States)

    Moorhead, Althea V.; Sugar, Glenn; Brown, Peter G.; Cooke, William J.

    2015-01-01

    Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA's Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO's annual meteor shower forecast, which is based on both past shower activity and model predictions. The MEO and the University of Western Ontario operate sister networks of all-sky meteor cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 meteor orbits. Using these data, we conduct a survey of meteor shower activity in the "fireball" size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower's activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.

  18. Triangulation positioning system network

    Directory of Open Access Journals (Sweden)

    Sfendourakis Marios

    2017-01-01

    Full Text Available This paper presents ongoing work on localization and positioning through triangulation procedure for a Fixed Sensors Network - FSN.The FSN has to work as a system.As the triangulation problem becomes high complicated in a case with large numbers of sensors and transmitters, an adequate grid topology is needed in order to tackle the detection complexity.For that reason a Network grid topology is presented and areas that are problematic and need further analysis are analyzed.The Network System in order to deal with problems of saturation and False Triangulations - FTRNs will have to find adequate methods in every sub-area of the Area Of Interest - AOI.Also, concepts like Sensor blindness and overall Network blindness, are presented. All these concepts affect the Network detection rate and its performance and ought to be considered in a way that the network overall performance won’t be degraded.Network performance should be monitored contentiously, with right algorithms and methods.It is also shown that as the number of TRNs and FTRNs is increased Detection Complexity - DC is increased.It is hoped that with further research all the characteristics of a triangulation system network for positioning will be gained and the system will be able to perform autonomously with a high detection rate.

  19. Forecasting systems reliability based on support vector regression with genetic algorithms

    International Nuclear Information System (INIS)

    Chen, K.-Y.

    2007-01-01

    This study applies a novel neural-network technique, support vector regression (SVR), to forecast reliability in engine systems. The aim of this study is to examine the feasibility of SVR in systems reliability prediction by comparing it with the existing neural-network approaches and the autoregressive integrated moving average (ARIMA) model. To build an effective SVR model, SVR's parameters must be set carefully. This study proposes a novel approach, known as GA-SVR, which searches for SVR's optimal parameters using real-value genetic algorithms, and then adopts the optimal parameters to construct the SVR models. A real reliability data for 40 suits of turbochargers were employed as the data set. The experimental results demonstrate that SVR outperforms the existing neural-network approaches and the traditional ARIMA models based on the normalized root mean square error and mean absolute percentage error

  20. Forecast of TEXT plasma disruptions using soft X rays as input signal in a neural network

    International Nuclear Information System (INIS)

    Vannucci, A.; Oliveira, K.A.; Tajima, T.

    1999-01-01

    A feedforward neural network with two hidden layers is used to forecast major and minor disruptive instabilities in TEXT tokamak discharges. Using the experimental data of soft X ray signals as input data, the neural network is trained with one disruptive plasma discharge, and a different disruptive discharge is used for validation. After being properly trained, the networks, with the same set of weights, are used to forecast disruptions in two other plasma discharges. It is observed that the neural network is able to predict the occurrence of a disruption more than 3 ms in advance. This time interval is almost 3 times longer than the one already obtained previously when a magnetic signal from a Mirnov coil was used to feed the neural networks. Visually no indication of an upcoming disruption is seen from the experimental data this far back from the time of disruption. Finally, by observing the predictive behaviour of the network for the disruptive discharges analysed and comparing the soft X ray data with the corresponding magnetic experimental signal, it is conjectured about where inside the plasma column the disruption first started. (author)

  1. A Diagnostics Tool to detect ensemble forecast system anomaly and guide operational decisions

    Science.gov (United States)

    Park, G. H.; Srivastava, A.; Shrestha, E.; Thiemann, M.; Day, G. N.; Draijer, S.

    2017-12-01

    The hydrologic community is moving toward using ensemble forecasts to take uncertainty into account during the decision-making process. The New York City Department of Environmental Protection (DEP) implements several types of ensemble forecasts in their decision-making process: ensemble products for a statistical model (Hirsch and enhanced Hirsch); the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) forecasts based on the classical Ensemble Streamflow Prediction (ESP) technique; and the new NWS Hydrologic Ensemble Forecasting Service (HEFS) forecasts. To remove structural error and apply the forecasts to additional forecast points, the DEP post processes both the AHPS and the HEFS forecasts. These ensemble forecasts provide mass quantities of complex data, and drawing conclusions from these forecasts is time-consuming and difficult. The complexity of these forecasts also makes it difficult to identify system failures resulting from poor data, missing forecasts, and server breakdowns. To address these issues, we developed a diagnostic tool that summarizes ensemble forecasts and provides additional information such as historical forecast statistics, forecast skill, and model forcing statistics. This additional information highlights the key information that enables operators to evaluate the forecast in real-time, dynamically interact with the data, and review additional statistics, if needed, to make better decisions. We used Bokeh, a Python interactive visualization library, and a multi-database management system to create this interactive tool. This tool compiles and stores data into HTML pages that allows operators to readily analyze the data with built-in user interaction features. This paper will present a brief description of the ensemble forecasts, forecast verification results, and the intended applications for the diagnostic tool.

  2. Design and implementation of ticket price forecasting system

    Science.gov (United States)

    Li, Yuling; Li, Zhichao

    2018-05-01

    With the advent of the aviation travel industry, a large number of data mining technologies have been developed to increase profits for airlines in the past two decades. The implementation of the digital optimization strategy leads to price discrimination, for example, similar seats on the same flight are purchased at different prices, depending on the time of purchase, the supplier, and so on. Price fluctuations make the prediction of ticket prices have application value. In this paper, a combination of ARMA algorithm and random forest algorithm is proposed to predict the price of air ticket. The experimental results show that the model is more reliable by comparing the forecasting results with the actual results of each price model. The model is helpful for passengers to buy tickets and to save money. Based on the proposed model, using Python language and SQL Server database, we design and implement the ticket price forecasting system.

  3. Sales Forecasting System for Newspaper Distribution Companies in Turkey

    Directory of Open Access Journals (Sweden)

    Gencay İncesu

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Newspapers are like goods with a shelf life of one day and they have to be distributed daily basis to the sales points. A problem that most newspaper companies encounter daily is how to predict the right number of newspapers to print and distribute among distinct sales points. The aim is to predict newspaper demand as accurately as possible to meet customer need with minimum number of returns, missed sales and oversupply. This makes it necessary to develop a short-term forecasting system. The data taken from one of the largest distribution companies in Turkey is time dependent. Therefore, time series analysis is used to forecast newspaper circulation. In this paper, the newspaper sales system is examined for Turkey. Various types of forecasting techniques which are applicable to newspaper circulation planning are compared and a nonlinear approach for returns is applied.

  4. Anvil Forecast Tool in the Advanced Weather Interactive Processing System

    Science.gov (United States)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.

  5. UD-WCMA: An Energy Estimation and Forecast Scheme for Solar Powered Wireless Sensor Networks

    KAUST Repository

    Dehwah, Ahmad H.

    2017-04-11

    Energy estimation and forecast represents an important role for energy management in solar-powered wireless sensor networks (WSNs). In general, the energy in such networks is managed over a finite time horizon in the future based on input solar power forecasts to enable continuous operation of the WSNs and achieve the sensing objectives while ensuring that no node runs out of energy. In this article, we propose a dynamic version of the weather conditioned moving average technique (UD-WCMA) to estimate and predict the variations of the solar power in a wireless sensor network. The presented approach combines the information from the real-time measurement data and a set of stored profiles representing the energy patterns in the WSNs location to update the prediction model. The UD-WCMA scheme is based on adaptive weighting parameters depending on the weather changes which makes it flexible compared to the existing estimation schemes without any precalibration. A performance analysis has been performed considering real irradiance profiles to assess the UD-WCMA prediction accuracy. Comparative numerical tests to standard forecasting schemes (EWMA, WCMA, and Pro-Energy) shows the outperformance of the new algorithm. The experimental validation has proven the interesting features of the UD-WCMA in real time low power sensor nodes.

  6. Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    Science.gov (United States)

    Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian

    2010-01-01

    /Meteorological Assimilation Data Ingest System (MADIS), as well as the Kennedy Space Center ICape Canaveral Air Force Station wind tower network. The scripts provide NWS MLB and SMG with several options for setting a desirable runtime configuration of the LDIS to account for adjustments in grid spacing, domain location, choice of observational data sources, and selection of background model fields, among others. The utility of an improved LDIS will be demonstrated through postanalysis warm and cool season case studies that compare high-resolution model output with and without the ADAS analyses. Operationally, these upgrades will result in more accurate depictions of the current local environment to help with short-range weather forecasting applications, while also offering an improved initialization for local versions of the Weather Research and Forecasting model.

  7. Application of Statistical, Fuzzy and Perceptron Neural Networks in Drought Forecasting (Case Study: Gonbad-e Kavous Station

    Directory of Open Access Journals (Sweden)

    S.M. Hosseini-Moghari

    2016-10-01

    Full Text Available Introduction: Due to economic, social, and environmental perplexities associated with drought, it is considered as one of the most complex natural hazards. To investigate the beginning along with analyzing the direct impacts of drought; the significance of drought monitoring must be highlighted. Regarding drought management and its consequences alleviation, drought forecasting must be taken into account (11. The current research employed multi-layer perceptron (MLP, adaptive neuro-fuzzy inference system (ANFIS, radial basis function (RBF and general regression neural network (GRNN. It is interesting to note that, there has not been any record of applying GRNN in drought forecasting. Materials and Methods: Throughout this paper, Standard Precipitation Index (SPI was the basis of drought forecasting. To do so, the precipitation data of Gonbad Kavous station during the period of 1972-73 to 2006-07 were used. To provide short-term, mid-term, and long-term drought analysis; SPI for 1, 3, 6, 9, 12, and 24 months was evaluated. SPI evaluation benefited from four statistical distributions, namely, Gamma, Normal, Log-normal, and Weibull along with Kolmogrov-Smirnov (K-S test. Later, to compare the capabilities of four utilized neural networks for drought forecasting; MLP, ANFIS, RBF, and GRNN were applied. MLP as a multi-layer network, which has a sigmoid activation function in hidden layer plus linear function in output layer, can be considered as a powerful regressive tool. ANFIS besides adaptive neuro networks, employed fuzzy logic. RBF, the foundation of radial basis networks, is a three-layer network with Gaussian function in its hidden layer, and a linear function in the output layer. GRNN is another type of RBF which is used for radial basis regressive problems. The performance criteria of the research were as follows: Correlation (R2, Root Mean Square Error (RMSE, Mean Absolute Error (MAE. Results Discussion: According to statistical distribution

  8. Energy-efficient Organization of Wireless Sensor Networks with Adaptive Forecasting

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2008-04-01

    Full Text Available Due to the wide potential applications of wireless sensor networks, this topic has attracted great attention. The strict energy constraints of sensor nodes result in great challenges for energy efficiency. This paper proposes an energy-efficient organization method. The organization of wireless sensor networks is formulated for target tracking. Target localization is achieved by collaborative sensing with multi-sensor fusion. The historical localization results are utilized for adaptive target trajectory forecasting. Combining autoregressive moving average (ARMA model and radial basis function networks (RBFNs, robust target position forecasting is performed. Moreover, an energyefficient organization method is presented to enhance the energy efficiency of wireless sensor networks. The sensor nodes implement sensing tasks are awakened in a distributed manner. When the sensor nodes transfer their observations to achieve data fusion, the routing scheme is obtained by ant colony optimization. Thus, both the operation and communication energy consumption can be minimized. Experimental results verify that the combination of ARMA model and RBFN can estimate the target position efficiently and energy saving is achieved by the proposed organization method in wireless sensor networks.

  9. A multidisciplinary system for monitoring and forecasting Etna volcanic plumes

    Science.gov (United States)

    Coltelli, Mauro; Prestifilippo, Michele; Spata, Gaetano; Scollo, Simona; Andronico, Daniele

    2010-05-01

    One of the most active volcanoes in the world is Mt. Etna, in Italy, characterized by frequent explosive activity from the central craters and from fractures opened along the volcano flanks which, during the last years, caused several damages to aviation and forced the closure of the Catania International Airport. To give precise warning to the aviation authorities and air traffic controller and to assist the work of VAACs, a novel system for monitoring and forecasting Etna volcanic plumes, was developed at the Istituto Nazionale di Geofisica e Vulcanologia, sezione di Catania, the managing institution for the surveillance of Etna volcano. Monitoring is carried out using multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation geosynchronous satellite able to track the volcanic plume with a high time resolution, visual and thermal cameras used to monitor the explosive activity, three continuous wave X-band disdrometers which detect ash dispersal and fallout, sounding balloons used to evaluate the atmospheric fields, and finally field data collected after the end of the eruptive event needed to extrapolate important features of explosive activity. Forecasting is carried out daily using automatic procedures which download weather forecast data obtained by meteorological mesoscale models from the Italian Air Force national Meteorological Office and from the hydrometeorological service of ARPA-SIM; run four different tephra dispersal models using input parameters obtained by the analysis of the deposits collected after few hours since the eruptive event similar to 22 July 1998, 21-24 July 2001 and 2002-03 Etna eruptions; plot hazard maps on ground and in air and finally publish them on a web-site dedicated to the Italian Civil Protection. The system has been already tested successfully during several explosive events occurring at Etna in 2006, 2007 and 2008. These events produced eruption

  10. Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch

    KAUST Repository

    Xie, Le; Gu, Yingzhong; Zhu, Xinxin; Genton, Marc G.

    2014-01-01

    forecasts, the overall cost benefits on system dispatch can be quantified. We integrate the improved forecast with an advanced robust look-ahead dispatch framework. This integrated forecast and economic dispatch framework is tested in a modified IEEE RTS 24

  11. Forecasting US renewables in the national energy modelling system

    International Nuclear Information System (INIS)

    Diedrich, R.; Petersik, T.W.

    2001-01-01

    The Energy information Administration (EIA) of the US Department of Energy (DOE) forecasts US renewable energy supply and demand in the context of overall energy markets using the National Energy Modelling System (NEMS). Renewables compete with other supply and demand options within the residential, commercial, industrial, transportation, and electricity sectors of the US economy. NEMS forecasts renewable energy for grid-connected electricity production within the Electricity Market Module (EM), and characterizes central station biomass, geothermal, conventional hydroelectric, municipal solid waste, solar thermal, solar photovoltaic, and wind-powered electricity generating technologies. EIA's Annual Energy Outlook 1998, projecting US energy markets, forecasts marketed renewables to remain a minor part of US energy production and consumption through to 2020. The USA is expected to remain primarily a fossil energy producer and consumer throughout the period. An alternative case indicates that biomass, wind, and to some extent geothermal power would likely increase most rapidly if the US were to require greater use of renewables for power supply, though electricity prices would increase somewhat. (author)

  12. Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs

    Directory of Open Access Journals (Sweden)

    Jaime Buitrago

    2017-01-01

    Full Text Available Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN with exogenous multi-variable input (NARX. The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input. Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. The New England electrical load data are used to train and validate the forecast prediction.

  13. INDIA’S ELECTRICITY DEMAND FORECAST USING REGRESSION ANALYSIS AND ARTIFICIAL NEURAL NETWORKS BASED ON PRINCIPAL COMPONENTS

    Directory of Open Access Journals (Sweden)

    S. Saravanan

    2012-07-01

    Full Text Available Power System planning starts with Electric load (demand forecasting. Accurate electricity load forecasting is one of the most important challenges in managing supply and demand of the electricity, since the electricity demand is volatile in nature; it cannot be stored and has to be consumed instantly. The aim of this study deals with electricity consumption in India, to forecast future projection of demand for a period of 19 years from 2012 to 2030. The eleven input variables used are Amount of CO2 emission, Population, Per capita GDP, Per capita gross national income, Gross Domestic savings, Industry, Consumer price index, Wholesale price index, Imports, Exports and Per capita power consumption. A new methodology based on Artificial Neural Networks (ANNs using principal components is also used. Data of 29 years used for training and data of 10 years used for testing the ANNs. Comparison made with multiple linear regression (based on original data and the principal components and ANNs with original data as input variables. The results show that the use of ANNs with principal components (PC is more effective.

  14. Forecasting of UV-Vis absorbance time series using artificial neural networks combined with principal component analysis.

    Science.gov (United States)

    Plazas-Nossa, Leonardo; Hofer, Thomas; Gruber, Günter; Torres, Andres

    2017-02-01

    This work proposes a methodology for the forecasting of online water quality data provided by UV-Vis spectrometry. Therefore, a combination of principal component analysis (PCA) to reduce the dimensionality of a data set and artificial neural networks (ANNs) for forecasting purposes was used. The results obtained were compared with those obtained by using discrete Fourier transform (DFT). The proposed methodology was applied to four absorbance time series data sets composed by a total number of 5705 UV-Vis spectra. Absolute percentage errors obtained by applying the proposed PCA/ANN methodology vary between 10% and 13% for all four study sites. In general terms, the results obtained were hardly generalizable, as they appeared to be highly dependent on specific dynamics of the water system; however, some trends can be outlined. PCA/ANN methodology gives better results than PCA/DFT forecasting procedure by using a specific spectra range for the following conditions: (i) for Salitre wastewater treatment plant (WWTP) (first hour) and Graz West R05 (first 18 min), from the last part of UV range to all visible range; (ii) for Gibraltar pumping station (first 6 min) for all UV-Vis absorbance spectra; and (iii) for San Fernando WWTP (first 24 min) for all of UV range to middle part of visible range.

  15. A hybrid ARIMA and neural network model applied to forecast catch volumes of Selar crumenophthalmus

    Science.gov (United States)

    Aquino, Ronald L.; Alcantara, Nialle Loui Mar T.; Addawe, Rizavel C.

    2017-11-01

    The Selar crumenophthalmus with the English name big-eyed scad fish, locally known as matang-baka, is one of the fishes commonly caught along the waters of La Union, Philippines. The study deals with the forecasting of catch volumes of big-eyed scad fish for commercial consumption. The data used are quarterly caught volumes of big-eyed scad fish from 2002 to first quarter of 2017. This actual data is available from the open stat database published by the Philippine Statistics Authority (PSA)whose task is to collect, compiles, analyzes and publish information concerning different aspects of the Philippine setting. Autoregressive Integrated Moving Average (ARIMA) models, Artificial Neural Network (ANN) model and the Hybrid model consisting of ARIMA and ANN were developed to forecast catch volumes of big-eyed scad fish. Statistical errors such as Mean Absolute Errors (MAE) and Root Mean Square Errors (RMSE) were computed and compared to choose the most suitable model for forecasting the catch volume for the next few quarters. A comparison of the results of each model and corresponding statistical errors reveals that the hybrid model, ARIMA-ANN (2,1,2)(6:3:1), is the most suitable model to forecast the catch volumes of the big-eyed scad fish for the next few quarters.

  16. Neural networks-based operational prototype for flash flood forecasting: application to Liane flash floods (France

    Directory of Open Access Journals (Sweden)

    Bertin Dominique

    2016-01-01

    Full Text Available The Liane River is a small costal river, famous for its floods, which can affect the city of Boulogne-sur-Mer. Due to the complexity of land cover and hydrologic processes, a black-box non-linear modelling was chosen using neural networks. The multilayer perceptron model, known for its property of universal approximation is thus chosen. Four models were designed, each one for one forecasting horizon using rainfall forecasts: 24h, 12h, 6h, 3h. The desired output of the model is original: it represents the maximal value of the water level respectively 24h, 12h, 6h, 3h ahead. Working with best forecasts of rain (the observed ones during the event in the past, on the major flood of the database in test set, the model provides excellent forecasts. Nash criteria calculated for the four lead times are 0.98 (3h, 0.97 (6h, 0.91 (12h, 0.89 (24h. Designed models were thus estimated as efficient enough to be implemented in a specific tool devoted to real time operational use. The software tool is described hereafter: designed in Java, it presents a friendly interface allowing applying various scenarios of future rainfalls, and a graphical visualization of the predicted maximum water levels and their associated real time observed values.

  17. Forecasting system predicts presence of sea nettles in Chesapeake Bay

    Science.gov (United States)

    Brown, Christopher W.; Hood, Raleigh R.; Li, Zhen; Decker, Mary Beth; Gross, Thomas F.; Purcell, Jennifer E.; Wang, Harry V.

    Outbreaks of noxious biota, which occur in both aquatic and terrestrial systems, can have considerable negative economic impacts. For example, an increasing frequency of harmful algal blooms worldwide has negatively affected the tourism industry in many regions. Such impacts could be mitigated if the conditions that give rise to these outbreaks were known and could be monitored. Recent advances in technology and communications allow us to continuously measure and model many environmental factors that are responsible for outbreaks of certain noxious organisms. A new prototype ecological forecasting system predicts the likelihood of occurrence of the sea nettle (Chrysaora quinquecirrha), a stinging jellyfish, in the Chesapeake Bay.

  18. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    Science.gov (United States)

    Peters-Lidard, C. D.; Arsenault, K. R.; Shukla, S.; Getirana, A.; McNally, A.; Koster, R. D.; Zaitchik, B. F.; Badr, H. S.; Roningen, J. M.; Kumar, S.; Funk, C. C.

    2017-12-01

    A seamless and effective water deficit monitoring and early warning system is critical for assessing food security in Africa and the Middle East. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of drought and water availability monitoring products in the region. Next, it will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the products through NASA's web-services. The water deficit forecasting system thus far incorporates NASA GMAO's Catchment and the Noah Multi-Physics (MP) LSMs. In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. To establish a climatology from 1981-2015, the two LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. Comparison of the models' energy and hydrological budgets with independent observations suggests that major droughts are well-reflected in the climatology. The system uses seasonal climate forecasts from NASA's GEOS-5 (the Goddard Earth Observing System Model-5) and NCEP's Climate Forecast System-2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region. Current work suggests

  19. A hybrid method for forecasting the energy output of photovoltaic systems

    International Nuclear Information System (INIS)

    Ramsami, Pamela; Oree, Vishwamitra

    2015-01-01

    Highlights: • We propose a novel hybrid technique for predicting the daily PV energy output. • Multiple linear regression, FFNN and GRNN artificial neural networks are used. • Stepwise regression is used to select the most relevant meteorological parameters. • SR-FFNN reduces the average dispersion and overall bias in prediction errors. • Accuracy metrics of hybrid models are better than those of single-stage models. - Abstract: The intermittent nature of solar energy poses many challenges to renewable energy system operators in terms of operational planning and scheduling. Predicting the output of photovoltaic systems is therefore essential for managing the operation and assessing the economic performance of power systems. This paper presents a new technique for forecasting the 24-h ahead stochastic energy output of photovoltaic systems based on the daily weather forecasts. A comparison of the performances of the hybrid technique with conventional linear regression and artificial neural network models has also been reported. Initially, three single-stage models were designed, namely the generalized regression neural network, feedforward neural network and multiple linear regression. Subsequently, a hybrid-modeling approach was adopted by applying stepwise regression to select input variables of greater importance. These variables were then fed to the single-stage models resulting in three hybrid models. They were then validated by comparing the forecasts of the models with measured dataset from an operational photovoltaic system. The accuracy of the each model was evaluated based on the correlation coefficient, mean absolute error, mean bias error and root mean square error values. Simulation results revealed that the hybrid models perform better than their corresponding single-stage models. Stepwise regression-feedforward neural network hybrid model outperformed the other models with root mean square error, mean absolute error, mean bias error and

  20. Development of an Experimental African Drought Monitoring and Seasonal Forecasting System: A First Step towards a Global Drought Information System

    Science.gov (United States)

    Wood, E. F.; Chaney, N.; Sheffield, J.; Yuan, X.

    2012-12-01

    Extreme hydrologic events in the form of droughts are a significant source of social and economic damage. Internationally, organizations such as UNESCO, the Group on Earth Observations (GEO), and the World Climate Research Programme (WCRP) have recognized the need for drought monitoring, especially for the developing world where drought has had devastating impacts on local populations through food insecurity and famine. Having the capacity to monitor droughts in real-time, and to provide drought forecasts with sufficient warning will help developing countries and international programs move from the management of drought crises to the management of drought risk. While observation-based assessments, such as those produced by the US Drought Monitor, are effective for monitoring in countries with extensive observation networks (of precipitation in particular), their utility is lessened in areas (e.g., Africa) where observing networks are sparse. For countries with sparse networks and weak reporting systems, remote sensing observations can provide the real-time data for the monitoring of drought. More importantly, these datasets are now available for at least a decade, which allows for the construction of a climatology against which current conditions can be compared. In this presentation we discuss the development of our multi-lingual experimental African Drought Monitor (ADM) (see http://hydrology.princeton.edu/~nchaney/ADM_ML). At the request of UNESCO, the ADM system has been installed at AGRHYMET, a regional climate and agricultural center in Niamey, Niger and at the ICPAC climate center in Nairobi, Kenya. The ADM system leverages off our U.S. drought monitoring and forecasting system (http://hydrology.princeton.edu/forecasting) that uses the NLDAS data to force the VIC land surface model (LSM) at 1/8th degree spatial resolution for the estimation of our soil moisture drought index (Sheffield et al., 2004). For the seasonal forecast of drought, CFSv2 climate

  1. Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain

    Science.gov (United States)

    Dai, Yonghui; Han, Dongmei; Dai, Weihui

    2014-01-01

    The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market. PMID:24782659

  2. Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain

    Directory of Open Access Journals (Sweden)

    Yonghui Dai

    2014-01-01

    Full Text Available The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market.

  3. Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, Erasmo [Facultad de Ingenieria Mecanica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia No. 403, Centro, 5000, Mor., Mich. (Mexico); Rivera, Wilfrido [Centro de Ivestigacion en Energia, Universidad Nacional Autonoma de Mexico, Apartado Postal 34, Temixco 62580, Morelos (Mexico)

    2009-01-15

    In this paper the short term wind speed forecasting in the region of La Venta, Oaxaca, Mexico, applying the technique of artificial neural network (ANN) to the hourly time series representative of the site is presented. The data were collected by the Comision Federal de Electricidad (CFE) during 7 years through a network of measurement stations located in the place of interest. Diverse configurations of ANN were generated and compared through error measures, guaranteeing the performance and accuracy of the chosen models. First a model with three layers and seven neurons was chosen, according to the recommendations of diverse authors, nevertheless, the results were not sufficiently satisfactory so other three models were developed, consisting of three layers and six neurons, two layers and four neurons and two layers and three neurons. The simplest model of two layers, with two input neurons and one output neuron, was the best for the short term wind speed forecasting, with mean squared error and mean absolute error values of 0.0016 and 0.0399, respectively. The developed model for short term wind speed forecasting showed a very good accuracy to be used by the Electric Utility Control Centre in Oaxaca for the energy supply. (author)

  4. The use of Bayesian networks for nanoparticle risk forecasting: model formulation and baseline evaluation.

    Science.gov (United States)

    Money, Eric S; Reckhow, Kenneth H; Wiesner, Mark R

    2012-06-01

    We describe the use of Bayesian networks as a tool for nanomaterial risk forecasting and develop a baseline probabilistic model that incorporates nanoparticle specific characteristics and environmental parameters, along with elements of exposure potential, hazard, and risk related to nanomaterials. The baseline model, FINE (Forecasting the Impacts of Nanomaterials in the Environment), was developed using expert elicitation techniques. The Bayesian nature of FINE allows for updating as new data become available, a critical feature for forecasting risk in the context of nanomaterials. The specific case of silver nanoparticles (AgNPs) in aquatic environments is presented here (FINE(AgNP)). The results of this study show that Bayesian networks provide a robust method for formally incorporating expert judgments into a probabilistic measure of exposure and risk to nanoparticles, particularly when other knowledge bases may be lacking. The model is easily adapted and updated as additional experimental data and other information on nanoparticle behavior in the environment become available. The baseline model suggests that, within the bounds of uncertainty as currently quantified, nanosilver may pose the greatest potential risk as these particles accumulate in aquatic sediments. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Long-range forecast of all India summer monsoon rainfall using adaptive neuro-fuzzy inference system: skill comparison with CFSv2 model simulation and real-time forecast for the year 2015

    Science.gov (United States)

    Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.

    2016-11-01

    All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.

  6. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator

    International Nuclear Information System (INIS)

    Almonacid, F.; Pérez-Higueras, P.J.; Fernández, Eduardo F.; Hontoria, L.

    2014-01-01

    Highlights: • The output of the majority of renewables energies depends on the variability of the weather conditions. • The short-term forecast is going to be essential for effectively integrating solar energy sources. • A new method based on artificial neural network to predict the power output of a PV generator one hour ahead is proposed. • This new method is based on dynamic artificial neural network to predict global solar irradiance and the air temperature. • The methodology developed can be used to estimate the power output of a PV generator with a satisfactory margin of error. - Abstract: One of the problems of some renewables energies is that the output of these kinds of systems is non-dispatchable depending on variability of weather conditions that cannot be predicted and controlled. From this point of view, the short-term forecast is going to be essential for effectively integrating solar energy sources, being a very useful tool for the reliability and stability of the grid ensuring that an adequate supply is present. In this paper a new methodology for forecasting the output of a PV generator one hour ahead based on dynamic artificial neural network is presented. The results of this study show that the proposed methodology could be used to forecast the power output of PV systems one hour ahead with an acceptable degree of accuracy

  7. AIRS Impact on the Analysis and Forecast Track of Tropical Cyclone Nargis in a Global Data Assimilation and Forecasting System

    Science.gov (United States)

    Reale, O.; Lau, W.K.; Susskind, J.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Rosenburg, R.; Fuentes, M.

    2009-01-01

    Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. Moreover, the automated analyses of cyclones over the northern Indian Ocean, produced by operational global data assimilation systems (DASs), are generally of inferior quality than in other basins. In this work it is shown that the assimilation of Atmospheric Infrared Sounder (AIRS) temperature retrievals under partial cloudy conditions can significantly impact the representation of the cyclone Nargis (which caused devastating loss of life in Myanmar in May 2008) in a global DAS. Forecasts produced from these improved analyses by a global model produce substantially smaller track errors. The impact of the assimilation of clear-sky radiances on the same DAS and forecasting system is positive, but smaller than the one obtained by ingestion of AIRS retrievals, possibly due to poorer coverage.

  8. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  9. The Experimental Regional Ensemble Forecast System (ExREF): Its Use in NWS Forecast Operations and Preliminary Verification

    Science.gov (United States)

    Reynolds, David; Rasch, William; Kozlowski, Daniel; Burks, Jason; Zavodsky, Bradley; Bernardet, Ligia; Jankov, Isidora; Albers, Steve

    2014-01-01

    The Experimental Regional Ensemble Forecast (ExREF) system is a tool for the development and testing of new Numerical Weather Prediction (NWP) methodologies. ExREF is run in near-realtime by the Global Systems Division (GSD) of the NOAA Earth System Research Laboratory (ESRL) and its products are made available through a website, an ftp site, and via the Unidata Local Data Manager (LDM). The ExREF domain covers most of North America and has 9-km horizontal grid spacing. The ensemble has eight members, all employing WRF-ARW. The ensemble uses a variety of initial conditions from LAPS and the Global Forecasting System (GFS) and multiple boundary conditions from the GFS ensemble. Additionally, a diversity of physical parameterizations is used to increase ensemble spread and to account for the uncertainty in forecasting extreme precipitation events. ExREF has been a component of the Hydrometeorology Testbed (HMT) NWP suite in the 2012-2013 and 2013-2014 winters. A smaller domain covering just the West Coast was created to minimize band-width consumption for the NWS. This smaller domain has and is being distributed to the National Weather Service (NWS) Weather Forecast Office and California Nevada River Forecast Center in Sacramento, California, where it is ingested into the Advanced Weather Interactive Processing System (AWIPS I and II) to provide guidance on the forecasting of extreme precipitation events. This paper will review the cooperative effort employed by NOAA ESRL, NASA SPoRT (Short-term Prediction Research and Transition Center), and the NWS to facilitate the ingest and display of ExREF data utilizing the AWIPS I and II D2D and GFE (Graphical Software Editor) software. Within GFE is a very useful verification software package called BoiVer that allows the NWS to utilize the River Forecast Center's 4 km gridded QPE to compare with all operational NWP models 6-hr QPF along with the ExREF mean 6-hr QPF so the forecasters can build confidence in the use of the

  10. Recurrent Neural Network For Forecasting Time Series With Long Memory Pattern

    Science.gov (United States)

    Walid; Alamsyah

    2017-04-01

    Recurrent Neural Network as one of the hybrid models are often used to predict and estimate the issues related to electricity, can be used to describe the cause of the swelling of electrical load which experienced by PLN. In this research will be developed RNN forecasting procedures at the time series with long memory patterns. Considering the application is the national electrical load which of course has a different trend with the condition of the electrical load in any country. This research produces the algorithm of time series forecasting which has long memory pattern using E-RNN after this referred to the algorithm of integrated fractional recurrent neural networks (FIRNN).The prediction results of long memory time series using models Fractional Integrated Recurrent Neural Network (FIRNN) showed that the model with the selection of data difference in the range of [-1,1] and the model of Fractional Integrated Recurrent Neural Network (FIRNN) (24,6,1) provides the smallest MSE value, which is 0.00149684.

  11. A Hybrid Neural Network Model for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles.

    Science.gov (United States)

    Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren

    2016-01-01

    Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words.

  12. A Hybrid Neural Network Model for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles

    Science.gov (United States)

    Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren

    2016-01-01

    Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words. PMID:27313605

  13. ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Luiz Albino Teixeira Júnior

    2015-04-01

    Full Text Available This paper proposes a method (denoted by WD-ANN that combines the Artificial Neural Networks (ANN and the Wavelet Decomposition (WD to generate short-term global horizontal solar radiation forecasting, which is an essential information for evaluating the electrical power generated from the conversion of solar energy into electrical energy. The WD-ANN method consists of two basic steps: firstly, it is performed the decomposition of level p of the time series of interest, generating p + 1 wavelet orthonormal components; secondly, the p + 1 wavelet orthonormal components (generated in the step 1 are inserted simultaneously into an ANN in order to generate short-term forecasting. The results showed that the proposed method (WD-ANN improved substantially the performance over the (traditional ANN method.

  14. A novel multilayer model for missing link prediction and future link forecasting in dynamic complex networks

    Science.gov (United States)

    Yasami, Yasser; Safaei, Farshad

    2018-02-01

    The traditional complex network theory is particularly focused on network models in which all network constituents are dealt with equivalently, while fail to consider the supplementary information related to the dynamic properties of the network interactions. This is a main constraint leading to incorrect descriptions of some real-world phenomena or incomplete capturing the details of certain real-life problems. To cope with the problem, this paper addresses the multilayer aspects of dynamic complex networks by analyzing the properties of intrinsically multilayered co-authorship networks, DBLP and Astro Physics, and presenting a novel multilayer model of dynamic complex networks. The model examines the layers evolution (layers birth/death process and lifetime) throughout the network evolution. Particularly, this paper models the evolution of each node's membership in different layers by an Infinite Factorial Hidden Markov Model considering feature cascade, and thereby formulates the link generation process for intra-layer and inter-layer links. Although adjacency matrixes are useful to describe the traditional single-layer networks, such a representation is not sufficient to describe and analyze the multilayer dynamic networks. This paper also extends a generalized mathematical infrastructure to address the problems issued by multilayer complex networks. The model inference is performed using some Markov Chain Monte Carlo sampling strategies, given synthetic and real complex networks data. Experimental results indicate a tremendous improvement in the performance of the proposed multilayer model in terms of sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, F1-score, Matthews correlation coefficient, and accuracy for two important applications of missing link prediction and future link forecasting. The experimental results also indicate the strong predictivepower of the proposed model for the application of

  15. A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting

    Directory of Open Access Journals (Sweden)

    Yuyang Gao

    2016-09-01

    Full Text Available With increasing importance being attached to big data mining, analysis, and forecasting in the field of wind energy, how to select an optimization model to improve the forecasting accuracy of the wind speed time series is not only an extremely challenging problem, but also a problem of concern for economic forecasting. The artificial intelligence model is widely used in forecasting and data processing, but the individual back-propagation artificial neural network cannot always satisfy the time series forecasting needs. Thus, a hybrid forecasting approach has been proposed in this study, which consists of data preprocessing, parameter optimization and a neural network for advancing the accuracy of short-term wind speed forecasting. According to the case study, in which the data are collected from Peng Lai, a city located in China, the simulation results indicate that the hybrid forecasting method yields better predictions compared to the individual BP, which indicates that the hybrid method exhibits stronger forecasting ability.

  16. Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation

    International Nuclear Information System (INIS)

    Voyant, Cyril; Muselli, Marc; Paoli, Christophe; Nivet, Marie-Laure

    2011-01-01

    This paper presents an application of Artificial Neural Networks (ANNs) to predict daily solar radiation. We look at the Multi-Layer Perceptron (MLP) network which is the most used of ANNs architectures. In previous studies, we have developed an ad-hoc time series preprocessing and optimized a MLP with endogenous inputs in order to forecast the solar radiation on a horizontal surface. We propose in this paper to study the contribution of exogenous meteorological data (multivariate method) as time series to our optimized MLP and compare with different forecasting methods: a naive forecaster (persistence), ARIMA reference predictor, an ANN with preprocessing using only endogenous inputs (univariate method) and an ANN with preprocessing using endogenous and exogenous inputs. The use of exogenous data generates an nRMSE decrease between 0.5% and 1% for two stations during 2006 and 2007 (Corsica Island, France). The prediction results are also relevant for the concrete case of a tilted PV wall (1.175 kWp). The addition of endogenous and exogenous data allows a 1% decrease of the nRMSE over a 6 months-cloudy period for the power production. While the use of exogenous data shows an interest in winter, endogenous data as inputs on a preprocessed ANN seem sufficient in summer. -- Research highlights: → Use of exogenous data as ANN inputs to forecast horizontal daily global irradiation data. → New methodology allowing to choice the adequate exogenous data - a systematic method comparing endogenous and exogenous data. → Different referenced mathematical predictors allows to conclude about the pertinence of the proposed methodology.

  17. Application of artificial neural network model for groundwater level forecasting in a river island with artificial influencing factors

    Science.gov (United States)

    Lee, Sanghoon; Yoon, Heesung; Park, Byeong-Hak; Lee, Kang-Kun

    2017-04-01

    Groundwater use has been increased for various purposes like agriculture, industry or drinking water in recent years, the issue related to sustainability on the groundwater use also has been raised. Accordingly, forecasting the groundwater level is of great importance for planning sustainable use of groundwater. In a small island surrounded by the Han River, South Korea, seasonal fluctuation of the groundwater level is characterized by multiple factors such as recharge/discharge event of the Paldang dam, Water Curtain Cultivation (WCC) during the winter season, operation of Groundwater Heat Pump System (GWHP). For a period when the dam operation is only occurred in the study area, a prediction of the groundwater level can be easily achieved by a simple cross-correlation model. However, for a period when the WCC and the GWHP systems are working together, the groundwater level prediction is challenging due to its unpredictable operation of the two systems. This study performed Artificial Neural Network (ANN) model to forecast the groundwater level in the river area reflecting the various predictable/unpredictable factors. For constructing the ANN models, two monitoring wells, YSN1 and YSO8, which are located near the injection and abstraction wells for the GWHP system were selected, respectively. By training with the groundwater level data measured in January 2015 to August 2015, response of groundwater level by each of the surface water level, the WCC and the GWHP system were evaluated. Consequentially, groundwater levels in December 2015 to March 2016 were predicted by ANN models, providing optimal fits in comparison to the observed water levels. This study suggests that the ANN model is a useful tool to forecast the groundwater level in terms of the management of groundwater. Acknowledgement : Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003) This research was

  18. Short-Term Wind Speed Forecasting for Power System Operations

    KAUST Repository

    Zhu, Xinxin; Genton, Marc G.

    2012-01-01

    some statistical short-term wind speed forecasting models, including traditional time series approaches and more advanced space-time statistical models. It also discusses the evaluation of forecast accuracy, in particular, the need for realistic loss

  19. Traffic congestion forecasting model for the INFORM System. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Azarm, A.; Mughabghab, S.; Stock, D.

    1995-05-01

    This report describes a computerized traffic forecasting model, developed by Brookhaven National Laboratory (BNL) for a portion of the Long Island INFORM Traffic Corridor. The model has gone through a testing phase, and currently is able to make accurate traffic predictions up to one hour forward in time. The model will eventually take on-line traffic data from the INFORM system roadway sensors and make projections as to future traffic patterns, thus allowing operators at the New York State Department of Transportation (D.O.T.) INFORM Traffic Management Center to more optimally manage traffic. It can also form the basis of a travel information system. The BNL computer model developed for this project is called ATOP for Advanced Traffic Occupancy Prediction. The various modules of the ATOP computer code are currently written in Fortran and run on PC computers (pentium machine) faster than real time for the section of the INFORM corridor under study. The following summarizes the various routines currently contained in the ATOP code: Statistical forecasting of traffic flow and occupancy using historical data for similar days and time (long term knowledge), and the recent information from the past hour (short term knowledge). Estimation of the empirical relationships between traffic flow and occupancy using long and short term information. Mechanistic interpolation using macroscopic traffic models and based on the traffic flow and occupancy forecasted (item-1), and the empirical relationships (item-2) for the specific highway configuration at the time of simulation (construction, lane closure, etc.). Statistical routine for detection and classification of anomalies and their impact on the highway capacity which are fed back to previous items.

  20. A quality assessment of the MARS crop yield forecasting system for the European Union

    Science.gov (United States)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  1. A Multi Time Scale Wind Power Forecasting Model of a Chaotic Echo State Network Based on a Hybrid Algorithm of Particle Swarm Optimization and Tabu Search

    Directory of Open Access Journals (Sweden)

    Xiaomin Xu

    2015-11-01

    Full Text Available The uncertainty and regularity of wind power generation are caused by wind resources’ intermittent and randomness. Such volatility brings severe challenges to the wind power grid. The requirements for ultrashort-term and short-term wind power forecasting with high prediction accuracy of the model used, have great significance for reducing the phenomenon of abandoned wind power , optimizing the conventional power generation plan, adjusting the maintenance schedule and developing real-time monitoring systems. Therefore, accurate forecasting of wind power generation is important in electric load forecasting. The echo state network (ESN is a new recurrent neural network composed of input, hidden layer and output layers. It can approximate well the nonlinear system and achieves great results in nonlinear chaotic time series forecasting. Besides, the ESN is simpler and less computationally demanding than the traditional neural network training, which provides more accurate training results. Aiming at addressing the disadvantages of standard ESN, this paper has made some improvements. Combined with the complementary advantages of particle swarm optimization and tabu search, the generalization of ESN is improved. To verify the validity and applicability of this method, case studies of multitime scale forecasting of wind power output are carried out to reconstruct the chaotic time series of the actual wind power generation data in a certain region to predict wind power generation. Meanwhile, the influence of seasonal factors on wind power is taken into consideration. Compared with the classical ESN and the conventional Back Propagation (BP neural network, the results verify the superiority of the proposed method.

  2. Better Forecasting for Better Planning: A Systems Approach.

    Science.gov (United States)

    Austin, W. Burnet

    Predictions and forecasts are the most critical features of rational planning as well as the most vulnerable to inaccuracy. Because plans are only as good as their forecasts, current planning procedures could be improved by greater forecasting accuracy. Economic factors explain and predict more than any other set of factors, making economic…

  3. Advances in electric power and energy systems load and price forecasting

    CERN Document Server

    2017-01-01

    A comprehensive review of state-of-the-art approaches to power systems forecasting from the most respected names in the field, internationally. Advances in Electric Power and Energy Systems is the first book devoted exclusively to a subject of increasing urgency to power systems planning and operations. Written for practicing engineers, researchers, and post-grads concerned with power systems planning and forecasting, this book brings together contributions from many of the world’s foremost names in the field who address a range of critical issues, from forecasting power system load to power system pricing to post-storm service restoration times, river flow forecasting, and more. In a time of ever-increasing energy demands, mounting concerns over the environmental impacts of power generation, and the emergence of new, smart-grid technologies, electricity price forecasting has assumed a prominent role within both the academic and industrial ar nas. Short-run forecasting of electricity prices has become nece...

  4. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    Directory of Open Access Journals (Sweden)

    V. A. Bell

    2017-09-01

    Full Text Available Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts from the GloSea5 model (1996 to 2009 are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region. Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 % in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows, whereas for the 3-month ahead lead time, GloSea5 forecasts account for  ∼ 70

  5. A New Hybrid Model Based on Data Preprocessing and an Intelligent Optimization Algorithm for Electrical Power System Forecasting

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2015-01-01

    Full Text Available The establishment of electrical power system cannot only benefit the reasonable distribution and management in energy resources, but also satisfy the increasing demand for electricity. The electrical power system construction is often a pivotal part in the national and regional economic development plan. This paper constructs a hybrid model, known as the E-MFA-BP model, that can forecast indices in the electrical power system, including wind speed, electrical load, and electricity price. Firstly, the ensemble empirical mode decomposition can be applied to eliminate the noise of original time series data. After data preprocessing, the back propagation neural network model is applied to carry out the forecasting. Owing to the instability of its structure, the modified firefly algorithm is employed to optimize the weight and threshold values of back propagation to obtain a hybrid model with higher forecasting quality. Three experiments are carried out to verify the effectiveness of the model. Through comparison with other traditional well-known forecasting models, and models optimized by other optimization algorithms, the experimental results demonstrate that the hybrid model has the best forecasting performance.

  6. Forecast of energy demand in Colombia by means of a system of inference diffuse neuronal

    International Nuclear Information System (INIS)

    Medina Hurtado, Santiago; Garcia Aguado, Josefina

    2005-01-01

    This work two artificial intelligence techniques are used lo forecast the monthly demand of electric power in Colombia, the objective is determinate the error of the prediction and they can be compared later with other traditional models of forecast time series, an important decrease in the prediction errors, would bring economic benefits for all the agents that operate in the electric market. The artificial neural networks - RNA and Adaptative Neural Fuzzy Inference Systems - ANFIS are actually broadly used in forecast problems in many fields of the science and the technology with good performance, for our case these models were fed with explanatory variables of the demand. We used a RNA totally interconnected with forward propagation and three hidden layer, two learned algorithms were proved for the net find significantly different results in the prediction error as we as in the time of training. The ANFIS model used was of type Takawi - Sugeno of order zero and it was fed with the main components of the defined entrance variables. The results were compared by means of the function of error Root of the Mean Square Error RMSE and the Percentage of Error Mean Absolute (MAPE) we find a better performance of the RNA

  7. Networks as systems.

    Science.gov (United States)

    Best, Allan; Berland, Alex; Greenhalgh, Trisha; Bourgeault, Ivy L; Saul, Jessie E; Barker, Brittany

    2018-03-19

    Purpose The purpose of this paper is to present a case study of the World Health Organization's Global Healthcare Workforce Alliance (GHWA). Based on a commissioned evaluation of GHWA, it applies network theory and key concepts from systems thinking to explore network emergence, effectiveness, and evolution to over a ten-year period. The research was designed to provide high-level strategic guidance for further evolution of global governance in human resources for health (HRH). Design/methodology/approach Methods included a review of published literature on HRH governance and current practice in the field and an in-depth case study whose main data sources were relevant GHWA background documents and key informant interviews with GHWA leaders, staff, and stakeholders. Sampling was purposive and at a senior level, focusing on board members, executive directors, funders, and academics. Data were analyzed thematically with reference to systems theory and Shiffman's theory of network development. Findings Five key lessons emerged: effective management and leadership are critical; networks need to balance "tight" and "loose" approaches to their structure and processes; an active communication strategy is key to create and maintain support; the goals, priorities, and membership must be carefully focused; and the network needs to support shared measurement of progress on agreed-upon goals. Shiffman's middle-range network theory is a useful tool when guided by the principles of complex systems that illuminate dynamic situations and shifting interests as global alliances evolve. Research limitations/implications This study was implemented at the end of the ten-year funding cycle. A more continuous evaluation throughout the term would have provided richer understanding of issues. Experience and perspectives at the country level were not assessed. Practical implications Design and management of large, complex networks requires ongoing attention to key issues like leadership

  8. An operational coupled wave-current forecasting system for the northern Adriatic Sea

    Science.gov (United States)

    Russo, A.; Coluccelli, A.; Deserti, M.; Valentini, A.; Benetazzo, A.; Carniel, S.

    2012-04-01

    Since 2005 an Adriatic implementation of the Regional Ocean Modeling System (AdriaROMS) is being producing operational short-term forecasts (72 hours) of some hydrodynamic properties (currents, sea level, temperature, salinity) of the Adriatic Sea at 2 km horizontal resolution and 20 vertical s-levels, on a daily basis. The main objective of AdriaROMS, which is managed by the Hydro-Meteo-Clima Service (SIMC) of ARPA Emilia Romagna, is to provide useful products for civil protection purposes (sea level forecasts, outputs to run other forecasting models as for saline wedge, oil spills and coastal erosion). In order to improve the forecasts in the coastal area, where most of the attention is focused, a higher resolution model (0.5 km, again with 20 vertical s-levels) has been implemented for the northern Adriatic domain. The new implementation is based on the Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST)and adopts ROMS for the hydrodynamic and Simulating WAve Nearshore (SWAN) for the wave module, respectively. Air-sea fluxes are computed using forecasts produced by the COSMO-I7 operational atmospheric model. At the open boundary of the high resolution model, temperature, salinity and velocity fields are provided by AdriaROMS while the wave characteristics are provided by an operational SWAN implementation (also managed by SIMC). Main tidal components are imposed as well, derived from a tidal model. Work in progress is oriented now on the validation of model results by means of extensive comparisons with acquired hydrographic measurements (such as CTDs or XBTs from sea-truth campaigns), currents and waves acquired at observational sites (including those of SIMC, CNR-ISMAR network and its oceanographic tower, located off the Venice littoral) and satellite-derived wave-heights data. Preliminary results on the forecast waves denote how, especially during intense storms, the effect of coupling can lead to significant variations in the wave

  9. APLIKASI MODEL ARTIFICIAL NEURAL NETWORKS UNTUK STOCK FORECASTING DI PASAR MODAL INDONESIA

    Directory of Open Access Journals (Sweden)

    Christian Herdinata

    2017-03-01

    Full Text Available This research showed the applicat ion of model Art if icial Neural Networks (ANN orJaringan Syaraf Tiruan (JST at the f ield of monetary science, especially for the applicat ion off inancial forecast ing. ANN or JST was a new alternat ive for the applicat ion of f inancialforecast ing.The purpose of this research was to know whether the stock index instantaneouslyand fully ref lect historical informat ion, in Indonesia Stock Exchange (IDX. The research usedcomparison between return of technical t rading rule based Art if icial Neural Networks (ANNmodel and return of buy & hold st rategy. The result showed that the weakness form ofef f icient market hypothesis was rejected in the Indonesian capital market . Expectat ion ofthis research was giving informat ion and securing the market perpet rators that st ill enabledto get abnormal of return by doing commerce in chnical through forecast ing of model Art ificial Neural Networks (ANN or Jaringan Syaraf Tiruan ( JST.

  10. An independent system operator's perspective on operational ramp forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Porter, G. [New Brunswick System Operator, Fredericton, NB (Canada)

    2010-07-01

    One of the principal roles of the power system operator is to select the most economical resources to reliably supply electric system power needs. Operational wind power production forecasts are required by system operators in order to understand the impact of ramp event forecasting on dispatch functions. A centralized dispatch approach can contribute to a more efficient use of resources that traditional economic dispatch methods. Wind ramping events can have a significant impact on system reliability. Power systems can have constrained or robust transmission systems, and may also be islanded or have large connections to neighbouring systems. Power resources can include both flexible and inflexible generation resources. Wind integration tools must be used by system operators to improve communications and connections with wind power plants. Improved wind forecasting techniques are also needed. Sensitivity to forecast errors is dependent on current system conditions. System operators require basic production forecasts, probabilistic forecasts, and event forecasts. Forecasting errors were presented as well as charts outlining the implications of various forecasts. tabs., figs.

  11. Toward Sub-seasonal to Seasonal Arctic Sea Ice Forecasting Using the Regional Arctic System Model (RASM)

    Science.gov (United States)

    Kamal, S.; Maslowski, W.; Roberts, A.; Osinski, R.; Cassano, J. J.; Seefeldt, M. W.

    2017-12-01

    The Regional Arctic system model has been developed and used to advance the current state of Arctic modeling and increase the skill of sea ice forecast. RASM is a fully coupled, limited-area model that includes the atmosphere, ocean, sea ice, land hydrology and runoff routing components and the flux coupler to exchange information among them. Boundary conditions are derived from NCEP Climate Forecasting System Reanalyses (CFSR) or Era Iterim (ERA-I) for hindcast simulations or from NCEP Coupled Forecast System Model version 2 (CFSv2) for seasonal forecasts. We have used RASM to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook (SIO) of the Sea Ice Prediction Network (SIPN). Each year, we produced three SIOs for the September minimum, initialized on June 1, July 1 and August 1. In 2016, predictions used a simple linear regression model to correct for systematic biases and included the mean September sea ice extent, the daily minimum and the week of the minimum. In 2017, we produced a 12-member ensemble on June 1 and July 1, and 28-member ensemble August 1. The predictions of September 2017 included the pan-Arctic and regional Alaskan sea ice extent, daily and monthly mean pan-Arctic maps of sea ice probability, concentration and thickness. No bias correction was applied to the 2017 forecasts. Finally, we will also discuss future plans for RASM forecasts, which include increased resolution for model components, ecosystem predictions with marine biogeochemistry extensions (mBGC) to the ocean and sea ice components, and feasibility of optional boundary conditions using the Navy Global Environmental Model (NAVGEM).

  12. Search for new ternary Al, Ga or In containing phases using information forecasting system

    International Nuclear Information System (INIS)

    Kiseleva, N.N.; Burkhanov, G.S.

    1989-01-01

    Automated system of search for regularities in the formation of crystal phases and forecasting of new compounds with required properties, comprising data base on the properties of ternary inorganic compounds and cybernetic forecasting system, has been developed. General principles of operation of the developed information-forecasting system are considered. Efficiency of the system operation is shown, using as an example the search for new ternary compounds with aluminium, gallium and indium, crystallized in ZrNiAl, TiNiSi, ThCr 2 Si 2 , CaAl 2 Si 2 structural types. Results of the above-mentioned phases forecasting are shown

  13. Observation impact studies with the Mercator Ocean analysis and forecasting systems

    Science.gov (United States)

    Remy, E. D.; Le Traon, P. Y.; Lellouche, J. M.; Drevillon, M.; Turpin, V.; Benkiran, M.

    2016-02-01

    Mercator Ocean produces and delivers in real-time ocean analysis and forecasts on a daily basis. The quality of the analysis highly relies on the availability and quality of the assimilated observations.Tools are developed to estimate the impact of the present network and to help designing the future evolutions of the observing systems in the context of near real time production of ocean analysis and forecasts. OSE and OSSE are the main approaches used in this context. They allow the assessment of the efficiency of a given data set to constrain the ocean model circulation through the data assimilation process. Illustrations will mainly focus on the present and future evolution of the Argo observation network and altimetry constellation, including the potential impact of future SWOT data. Our systems show clear sensitivities to observation array changes, mainly depending on the specified observation error and regional dynamic. Impact on non observed variables can be important and are important to evaluate. Dedicated diagnostics has to be define to measure the improvements bring by each data set. Alternative approaches to OSE and OSSE are also explored: approximate computation of DFS will be presented and discussed. Limitations of each approach will be discussed in the context of real time operation.

  14. A neutral network based technique for short-term forecasting of anomalous load periods

    Energy Technology Data Exchange (ETDEWEB)

    Sforna, M [ENEL, s.p.a, Italian Power Company (Italy); Lamedica, R; Prudenzi, A [Rome Univ. ` La Sapienza` , Rome (Italy); Caciotta, M; Orsolini Cencelli, V [Rome Univ. III, Rome (Italy)

    1995-01-01

    The paper illustrates a part of the research activity conducted by authors in the field of electric Short Term Load Forecasting (STLF) based on Artificial Neural Network (ANN) architectures. Previous experiences with basic ANN architectures have shown that, even though these architecture provide results comparable with those obtained by human operators for most normal days, they evidence some accuracy deficiencies when applied to `anomalous` load conditions occurring during holidays and long weekends. For these periods a specific procedure based upon a combined (unsupervised/supervised) approach has been proposed. The unsupervised stage provides a preventive classification of the historical load data by means of a Kohonen`s Self Organizing Map (SOM). The supervised stage, performing the proper forecasting activity, is obtained by using a multi-layer percept ron with a back propagation learning algorithm similar to the ones above mentioned. The unconventional use of information deriving from the classification stage permits the proposed procedure to obtain a relevant enhancement of the forecast accuracy for anomalous load situations.

  15. Short-Term Wind Speed Forecasting Using Decomposition-Based Neural Networks Combining Abnormal Detection Method

    Directory of Open Access Journals (Sweden)

    Xuejun Chen

    2014-01-01

    Full Text Available As one of the most promising renewable resources in electricity generation, wind energy is acknowledged for its significant environmental contributions and economic competitiveness. Because wind fluctuates with strong variation, it is quite difficult to describe the characteristics of wind or to estimate the power output that will be injected into the grid. In particular, short-term wind speed forecasting, an essential support for the regulatory actions and short-term load dispatching planning during the operation of wind farms, is currently regarded as one of the most difficult problems to be solved. This paper contributes to short-term wind speed forecasting by developing two three-stage hybrid approaches; both are combinations of the five-three-Hanning (53H weighted average smoothing method, ensemble empirical mode decomposition (EEMD algorithm, and nonlinear autoregressive (NAR neural networks. The chosen datasets are ten-minute wind speed observations, including twelve samples, and our simulation indicates that the proposed methods perform much better than the traditional ones when addressing short-term wind speed forecasting problems.

  16. Networking of safeguards systems

    International Nuclear Information System (INIS)

    Chare, P.; Dutrannois, A.; Kloeckner, W.; Swinhoe, M.

    1995-01-01

    This paper discusses the design of a safeguards system that can be incorporated into a plant during the final phase of its construction to permit the acquisition and transmission of data during plant operation in the absence of an inspector. The system is an example of a networked data system of weighing, identity, and NDA information. It collects all of its non-surveillance data produced by safeguards equipment in a fuel fabrication plant. The data collection and transfer tasks are carried out by two software packages: NEGUS, a redundant data acquisition system designed to record neutron coincidence data, high-resolution gamma spectra, and sensor data for the NDA information and associated barcode identity information, and BRANCH, which deals with weighing and associated identity information. These processes collect data from local electronics using an ethernet network and provide information to the main review program

  17. Verification of Global Radiation Forecasts from the Ensemble Prediction System at DMI

    DEFF Research Database (Denmark)

    Lundholm, Sisse Camilla

    To comply with an increasing demand for sustainable energy sources, a solar heating unit is being developed at the Technical University of Denmark. To make optimal use — environmentally and economically —, this heating unit is equipped with an intelligent control system using forecasts of the heat...... consumption of the house and the amount of available solar energy. In order to make the most of this solar heating unit, accurate forecasts of the available solar radiation are esstential. However, because of its sensitivity to local meteorological conditions, the solar radiation received at the surface...... of the Earth can be highly fluctuating and challenging to forecast accurately. To comply with the accuracy requirements to forecasts of both global, direct, and diffuse radiation, the uncertainty of these forecasts is of interest. Forecast uncertainties can become accessible by running an ensemble of forecasts...

  18. A hybrid method based on a new clustering technique and multilayer perceptron neural networks for hourly solar radiation forecasting

    International Nuclear Information System (INIS)

    Azimi, R.; Ghayekhloo, M.; Ghofrani, M.

    2016-01-01

    Highlights: • A novel clustering approach is proposed based on the data transformation approach. • A novel cluster selection method based on correlation analysis is presented. • The proposed hybrid clustering approach leads to deep learning for MLPNN. • A hybrid forecasting method is developed to predict solar radiations. • The evaluation results show superior performance of the proposed forecasting model. - Abstract: Accurate forecasting of renewable energy sources plays a key role in their integration into the grid. This paper proposes a hybrid solar irradiance forecasting framework using a Transformation based K-means algorithm, named TB K-means, to increase the forecast accuracy. The proposed clustering method is a combination of a new initialization technique, K-means algorithm and a new gradual data transformation approach. Unlike the other K-means based clustering methods which are not capable of providing a fixed and definitive answer due to the selection of different cluster centroids for each run, the proposed clustering provides constant results for different runs of the algorithm. The proposed clustering is combined with a time-series analysis, a novel cluster selection algorithm and a multilayer perceptron neural network (MLPNN) to develop the hybrid solar radiation forecasting method for different time horizons (1 h ahead, 2 h ahead, …, 48 h ahead). The performance of the proposed TB K-means clustering is evaluated using several different datasets and compared with different variants of K-means algorithm. Solar datasets with different solar radiation characteristics are also used to determine the accuracy and processing speed of the developed forecasting method with the proposed TB K-means and other clustering techniques. The results of direct comparison with other well-established forecasting models demonstrate the superior performance of the proposed hybrid forecasting method. Furthermore, a comparative analysis with the benchmark solar

  19. Financial forecasts accuracy in Brazil's social security system.

    Directory of Open Access Journals (Sweden)

    Carlos Patrick Alves da Silva

    Full Text Available Long-term social security statistical forecasts produced and disseminated by the Brazilian government aim to provide accurate results that would serve as background information for optimal policy decisions. These forecasts are being used as support for the government's proposed pension reform that plans to radically change the Brazilian Constitution insofar as Social Security is concerned. However, the reliability of official results is uncertain since no systematic evaluation of these forecasts has ever been published by the Brazilian government or anyone else. This paper aims to present a study of the accuracy and methodology of the instruments used by the Brazilian government to carry out long-term actuarial forecasts. We base our research on an empirical and probabilistic analysis of the official models. Our empirical analysis shows that the long-term Social Security forecasts are systematically biased in the short term and have significant errors that render them meaningless in the long run. Moreover, the low level of transparency in the methods impaired the replication of results published by the Brazilian Government and the use of outdated data compromises forecast results. In the theoretical analysis, based on a mathematical modeling approach, we discuss the complexity and limitations of the macroeconomic forecast through the computation of confidence intervals. We demonstrate the problems related to error measurement inherent to any forecasting process. We then extend this exercise to the computation of confidence intervals for Social Security forecasts. This mathematical exercise raises questions about the degree of reliability of the Social Security forecasts.

  20. Financial forecasts accuracy in Brazil's social security system.

    Science.gov (United States)

    Silva, Carlos Patrick Alves da; Puty, Claudio Alberto Castelo Branco; Silva, Marcelino Silva da; Carvalho, Solon Venâncio de; Francês, Carlos Renato Lisboa

    2017-01-01

    Long-term social security statistical forecasts produced and disseminated by the Brazilian government aim to provide accurate results that would serve as background information for optimal policy decisions. These forecasts are being used as support for the government's proposed pension reform that plans to radically change the Brazilian Constitution insofar as Social Security is concerned. However, the reliability of official results is uncertain since no systematic evaluation of these forecasts has ever been published by the Brazilian government or anyone else. This paper aims to present a study of the accuracy and methodology of the instruments used by the Brazilian government to carry out long-term actuarial forecasts. We base our research on an empirical and probabilistic analysis of the official models. Our empirical analysis shows that the long-term Social Security forecasts are systematically biased in the short term and have significant errors that render them meaningless in the long run. Moreover, the low level of transparency in the methods impaired the replication of results published by the Brazilian Government and the use of outdated data compromises forecast results. In the theoretical analysis, based on a mathematical modeling approach, we discuss the complexity and limitations of the macroeconomic forecast through the computation of confidence intervals. We demonstrate the problems related to error measurement inherent to any forecasting process. We then extend this exercise to the computation of confidence intervals for Social Security forecasts. This mathematical exercise raises questions about the degree of reliability of the Social Security forecasts.

  1. Financial forecasts accuracy in Brazil’s social security system

    Science.gov (United States)

    2017-01-01

    Long-term social security statistical forecasts produced and disseminated by the Brazilian government aim to provide accurate results that would serve as background information for optimal policy decisions. These forecasts are being used as support for the government’s proposed pension reform that plans to radically change the Brazilian Constitution insofar as Social Security is concerned. However, the reliability of official results is uncertain since no systematic evaluation of these forecasts has ever been published by the Brazilian government or anyone else. This paper aims to present a study of the accuracy and methodology of the instruments used by the Brazilian government to carry out long-term actuarial forecasts. We base our research on an empirical and probabilistic analysis of the official models. Our empirical analysis shows that the long-term Social Security forecasts are systematically biased in the short term and have significant errors that render them meaningless in the long run. Moreover, the low level of transparency in the methods impaired the replication of results published by the Brazilian Government and the use of outdated data compromises forecast results. In the theoretical analysis, based on a mathematical modeling approach, we discuss the complexity and limitations of the macroeconomic forecast through the computation of confidence intervals. We demonstrate the problems related to error measurement inherent to any forecasting process. We then extend this exercise to the computation of confidence intervals for Social Security forecasts. This mathematical exercise raises questions about the degree of reliability of the Social Security forecasts. PMID:28859172

  2. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.

    2011-01-01

    Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels......-calibrated on flow measurements in order to produce the best possible forecast for the drainage system at all times. The system shows great potential for the implementation of real time control in drainage systems and forecasting flows and water levels.......Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels...... in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto...

  3. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    Science.gov (United States)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  4. Online updating procedures for a real-time hydrological forecasting system

    International Nuclear Information System (INIS)

    Kahl, B; Nachtnebel, H P

    2008-01-01

    Rainfall-runoff-models can explain major parts of the natural runoff pattern but never simulate the observed hydrograph exactly. Reasons for errors are various sources of uncertainties embedded in the model forecasting system. Errors are due to measurement errors, the selected time period for calibration and validation, the parametric uncertainty and the model imprecision. In on-line forecasting systems forecasted input data is used which additionally generates a major uncertainty for the hydrological forecasting system. Techniques for partially compensating these uncertainties are investigated in the recent study in a medium sized catchment in the Austrian part of the Danube basin. The catchment area is about 1000 km2. The forecasting system consists of a semi-distributed continuous rainfall-runoff model that uses quantitative precipitation and temperature forecasts. To provide adequate system states at the beginning of the forecasting period continuous simulation is required, especially in winter. In this study two online updating methods are used and combined for enhancing the runoff forecasts. The first method is used for updating the system states at the beginning of the forecasting period by changing the precipitation input. The second method is an autoregressive error model, which is used to eliminate systematic errors in the model output. In combination those two methods work together well as each method is more effective in different runoff situations.

  5. A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Sohrabkhani, S.

    2008-01-01

    This study presents an integrated algorithm for forecasting monthly electrical energy consumption based on artificial neural network (ANN), computer simulation and design of experiments using stochastic procedures. First, an ANN approach is illustrated based on supervised multi-layer perceptron (MLP) network for the electrical consumption forecasting. The chosen model, therefore, can be compared to that of estimated by time series model. Computer simulation is developed to generate random variables for monthly electricity consumption. This is achieved to foresee the effects of probabilistic distribution on monthly electricity consumption. The simulated-based ANN model is then developed. Therefore, there are four treatments to be considered in analysis of variance (ANOVA), which are actual data, time series, ANN and simulated-based ANN. Furthermore, ANOVA is used to test the null hypothesis of the above four alternatives being statistically equal. If the null hypothesis is accepted, then the lowest mean absolute percentage error (MAPE) value is used to select the best model, otherwise the Duncan method (DMRT) of paired comparison is used to select the optimum model which could be time series, ANN or simulated-based ANN. In case of ties the lowest MAPE value is considered as the benchmark. The integrated algorithm has several unique features. First, it is flexible and identifies the best model based on the results of ANOVA and MAPE, whereas previous studies consider the best fitted ANN model based on MAPE or relative error results. Second, the proposed algorithm may identify conventional time series as the best model for future electricity consumption forecasting because of its dynamic structure, whereas previous studies assume that ANN always provide the best solutions and estimation. To show the applicability and superiority of the proposed algorithm, the monthly electricity consumption in Iran from March 1994 to February 2005 (131 months) is used and applied to

  6. Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks

    Directory of Open Access Journals (Sweden)

    Thierry Moudiki

    2018-03-01

    Full Text Available We are interested in obtaining forecasts for multiple time series, by taking into account the potential nonlinear relationships between their observations. For this purpose, we use a specific type of regression model on an augmented dataset of lagged time series. Our model is inspired by dynamic regression models (Pankratz 2012, with the response variable’s lags included as predictors, and is known as Random Vector Functional Link (RVFL neural networks. The RVFL neural networks have been successfully applied in the past, to solving regression and classification problems. The novelty of our approach is to apply an RVFL model to multivariate time series, under two separate regularization constraints on the regression parameters.

  7. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters

    Directory of Open Access Journals (Sweden)

    Hongshan Zhao

    2012-05-01

    Full Text Available Short-term solar irradiance forecasting (STSIF is of great significance for the optimal operation and power predication of grid-connected photovoltaic (PV plants. However, STSIF is very complex to handle due to the random and nonlinear characteristics of solar irradiance under changeable weather conditions. Artificial Neural Network (ANN is suitable for STSIF modeling and many research works on this topic are presented, but the conciseness and robustness of the existing models still need to be improved. After discussing the relation between weather variations and irradiance, the characteristics of the statistical feature parameters of irradiance under different weather conditions are figured out. A novel ANN model using statistical feature parameters (ANN-SFP for STSIF is proposed in this paper. The input vector is reconstructed with several statistical feature parameters of irradiance and ambient temperature. Thus sufficient information can be effectively extracted from relatively few inputs and the model complexity is reduced. The model structure is determined by cross-validation (CV, and the Levenberg-Marquardt algorithm (LMA is used for the network training. Simulations are carried out to validate and compare the proposed model with the conventional ANN model using historical data series (ANN-HDS, and the results indicated that the forecast accuracy is obviously improved under variable weather conditions.

  8. USING ARTIFICIAL NEURAL NETWORKS (ANNs FOR SEDIMENT LOAD FORECASTING OF TALKHEROOD RIVER MOUTH

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2009-01-01

    Full Text Available Without a doubt the carried sediment load by a river is the most important factor in creating and formation of the related Delta in the river mouth. Therefore, accurate forecasting of the river sediment load can play a significant role for study on the river Delta. However considering the complexity and non-linearity of the phenomenon, the classic experimental or physical-based approaches usually could not handle the problem so well. In this paper, Artificial Neural Network (ANN as a non-linear black box interpolator tool is used for modeling suspended sediment load which discharges to the Talkherood river mouth, located in northern west Iran. For this purpose, observed time series of water discharge at current and previous time steps are used as the model input neurons and the model output neuron will be the forecasted sediment load at the current time step. In this way, various schemes of the ANN approach are examined in order to achieve the best network as well as the best architecture of the model. The obtained results are also compared with the results of two other classic methods (i.e., linear regression and rating curve methods in order to approve the efficiency and ability of the proposed method.

  9. Forecasting Urban Air Quality via a Back-Propagation Neural Network and a Selection Sample Rule

    Directory of Open Access Journals (Sweden)

    Yonghong Liu

    2015-07-01

    Full Text Available In this paper, based on a sample selection rule and a Back Propagation (BP neural network, a new model of forecasting daily SO2, NO2, and PM10 concentration in seven sites of Guangzhou was developed using data from January 2006 to April 2012. A meteorological similarity principle was applied in the development of the sample selection rule. The key meteorological factors influencing SO2, NO2, and PM10 daily concentrations as well as weight matrices and threshold matrices were determined. A basic model was then developed based on the improved BP neural network. Improving the basic model, identification of the factor variation consistency was added in the rule, and seven sets of sensitivity experiments in one of the seven sites were conducted to obtain the selected model. A comparison of the basic model from May 2011 to April 2012 in one site showed that the selected model for PM10 displayed better forecasting performance, with Mean Absolute Percentage Error (MAPE values decreasing by 4% and R2 values increasing from 0.53 to 0.68. Evaluations conducted at the six other sites revealed a similar performance. On the whole, the analysis showed that the models presented here could provide local authorities with reliable and precise predictions and alarms about air quality if used at an operational scale.

  10. Application of Entropy Ensemble Filter in Neural Network Forecasts of Tropical Pacific Sea Surface Temperatures

    Directory of Open Access Journals (Sweden)

    Hossein Foroozand

    2018-03-01

    Full Text Available Recently, the Entropy Ensemble Filter (EEF method was proposed to mitigate the computational cost of the Bootstrap AGGregatING (bagging method. This method uses the most informative training data sets in the model ensemble rather than all ensemble members created by the conventional bagging. In this study, we evaluate, for the first time, the application of the EEF method in Neural Network (NN modeling of El Nino-southern oscillation. Specifically, we forecast the first five principal components (PCs of sea surface temperature monthly anomaly fields over tropical Pacific, at different lead times (from 3 to 15 months, with a three-month increment for the period 1979–2017. We apply the EEF method in a multiple-linear regression (MLR model and two NN models, one using Bayesian regularization and one Levenberg-Marquardt algorithm for training, and evaluate their performance and computational efficiency relative to the same models with conventional bagging. All models perform equally well at the lead time of 3 and 6 months, while at higher lead times, the MLR model’s skill deteriorates faster than the nonlinear models. The neural network models with both bagging methods produce equally successful forecasts with the same computational efficiency. It remains to be shown whether this finding is sensitive to the dataset size.

  11. Advanced Intelligent System Application to Load Forecasting and Control for Hybrid Electric Bus

    Science.gov (United States)

    Momoh, James; Chattopadhyay, Deb; Elfayoumy, Mahmoud

    1996-01-01

    The primary motivation for this research emanates from providing a decision support system to the electric bus operators in the municipal and urban localities which will guide the operators to maintain an optimal compromise among the noise level, pollution level, fuel usage etc. This study is backed up by our previous studies on study of battery characteristics, permanent magnet DC motor studies and electric traction motor size studies completed in the first year. The operator of the Hybrid Electric Car must determine optimal power management schedule to meet a given load demand for different weather and road conditions. The decision support system for the bus operator comprises three sub-tasks viz. forecast of the electrical load for the route to be traversed divided into specified time periods (few minutes); deriving an optimal 'plan' or 'preschedule' based on the load forecast for the entire time-horizon (i.e., for all time periods) ahead of time; and finally employing corrective control action to monitor and modify the optimal plan in real-time. A fully connected artificial neural network (ANN) model is developed for forecasting the kW requirement for hybrid electric bus based on inputs like climatic conditions, passenger load, road inclination, etc. The ANN model is trained using back-propagation algorithm employing improved optimization techniques like projected Lagrangian technique. The pre-scheduler is based on a Goal-Programming (GP) optimization model with noise, pollution and fuel usage as the three objectives. GP has the capability of analyzing the trade-off among the conflicting objectives and arriving at the optimal activity levels, e.g., throttle settings. The corrective control action or the third sub-task is formulated as an optimal control model with inputs from the real-time data base as well as the GP model to minimize the error (or deviation) from the optimal plan. These three activities linked with the ANN forecaster proving the output to the

  12. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm

    International Nuclear Information System (INIS)

    Yu, Lean; Wang, Shouyang; Lai, Kin Keung

    2008-01-01

    In this study, an empirical mode decomposition (EMD) based neural network ensemble learning paradigm is proposed for world crude oil spot price forecasting. For this purpose, the original crude oil spot price series were first decomposed into a finite, and often small, number of intrinsic mode functions (IMFs). Then a three-layer feed-forward neural network (FNN) model was used to model each of the extracted IMFs, so that the tendencies of these IMFs could be accurately predicted. Finally, the prediction results of all IMFs are combined with an adaptive linear neural network (ALNN), to formulate an ensemble output for the original crude oil price series. For verification and testing, two main crude oil price series, West Texas Intermediate (WTI) crude oil spot price and Brent crude oil spot price, are used to test the effectiveness of the proposed EMD-based neural network ensemble learning methodology. Empirical results obtained demonstrate attractiveness of the proposed EMD-based neural network ensemble learning paradigm. (author)

  13. Using Quantile Regression to Extend an Existing Wind Power Forecasting System with Probabilistic Forecasts

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Madsen, Henrik; Nielsen, Torben Skov

    2006-01-01

    speed (due to the non-linearity of the power curve) and the forecast horizon. With respect to the predictability of the actual meteorological situation a number of explanatory variables are considered, some inspired by the literature. The article contains an overview of related work within the field...

  14. An Intelligent Decision Support System for Workforce Forecast

    Science.gov (United States)

    2011-01-01

    growth. Brown (1999) developed a model to forecast dental workforce size and mix (by sex) for the first twenty years of the twenty first century in...forecasted competencies required to deliver needed dental services. Labor market signaling approaches based workforce forecasting model was presented...techniques viz. algebra, calculus or probability theory, (Law and Kelton, 1991). Simulation processes, same as conducting experiments on computers, deals

  15. Seasonal prediction for Southern Africa: Maximising the skill from forecast systems

    CSIR Research Space (South Africa)

    Landman, WA

    2012-06-01

    Full Text Available /system development started in early 1990s ? SAWS, UCT, UP, Wits (statistical forecast systems) ? South African Long-Lead Forecast Forum ? SARCOF started in 1997 ? consensus through discussions ? Late 1990s ? started to use AGCMs and post-processing ? At SAWS... Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 Reg7 Reg8 Regions RO C ar ea s Below-Normal Near-Normal Above-Normal Operational Forecast Skill From CONSENSUS discussions Verification over 7 years of consensus forecast production New objective multi...

  16. CORRECTION OF FORECASTS OF INTERRELATED CURRENCY PAIRS IN TERMS OF SYSTEMS OF BALANCE RATIOS

    Directory of Open Access Journals (Sweden)

    Gertsekovich D. A.

    2015-03-01

    Full Text Available In this paper the problem of exchange rates forecast is logically considered a traditionally as a task of forecast on the base of «stand-alone» equations of autoregression for each currency pair and b as a result of forecast correction of autoregression equations system on the base of boundary conditions of balance ratios systems. As a criterion for quality of forecast constructed with empirical models we take the sum of deficiency quadrates of forecasts estimated for deductive currency pairs. Practical approval confirmed that deductive models meet common requirements, provide accepted precision, show resistance to initial data and are free from series of deficiency of one index. However, extreme forecast errors tell that practical application of the approach offered needs further improvement.

  17. CEREF: A hybrid data-driven model for forecasting annual streamflow from a socio-hydrological system

    Science.gov (United States)

    Zhang, Hongbo; Singh, Vijay P.; Wang, Bin; Yu, Yinghao

    2016-09-01

    Hydrological forecasting is complicated by flow regime alterations in a coupled socio-hydrologic system, encountering increasingly non-stationary, nonlinear and irregular changes, which make decision support difficult for future water resources management. Currently, many hybrid data-driven models, based on the decomposition-prediction-reconstruction principle, have been developed to improve the ability to make predictions of annual streamflow. However, there exist many problems that require further investigation, the chief among which is the direction of trend components decomposed from annual streamflow series and is always difficult to ascertain. In this paper, a hybrid data-driven model was proposed to capture this issue, which combined empirical mode decomposition (EMD), radial basis function neural networks (RBFNN), and external forces (EF) variable, also called the CEREF model. The hybrid model employed EMD for decomposition and RBFNN for intrinsic mode function (IMF) forecasting, and determined future trend component directions by regression with EF as basin water demand representing the social component in the socio-hydrologic system. The Wuding River basin was considered for the case study, and two standard statistical measures, root mean squared error (RMSE) and mean absolute error (MAE), were used to evaluate the performance of CEREF model and compare with other models: the autoregressive (AR), RBFNN and EMD-RBFNN. Results indicated that the CEREF model had lower RMSE and MAE statistics, 42.8% and 7.6%, respectively, than did other models, and provided a superior alternative for forecasting annual runoff in the Wuding River basin. Moreover, the CEREF model can enlarge the effective intervals of streamflow forecasting compared to the EMD-RBFNN model by introducing the water demand planned by the government department to improve long-term prediction accuracy. In addition, we considered the high-frequency component, a frequent subject of concern in EMD

  18. Short-Term Load Forecast in Electric Energy System in Bulgaria

    Directory of Open Access Journals (Sweden)

    Irina Asenova

    2010-01-01

    Full Text Available As the accuracy of the electricity load forecast is crucial in providing better cost effective risk management plans, this paper proposes a Short Term Electricity Load Forecast (STLF model with high forecasting accuracy. Two kind of neural networks, Multilayer Perceptron network model and Radial Basis Function network model, are presented and compared using the mean absolute percentage error. The data used in the models are electricity load historical data. Even though the very good performance of the used model for the load data, weather parameters, especially the temperature, take important part for the energy predicting which is taken into account in this paper. A comparative evaluation between a traditional statistical method and artificial neural networks is presented.

  19. Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm

    Directory of Open Access Journals (Sweden)

    Jeng-Fung Chen

    2014-11-01

    Full Text Available The accuracy of reservoir flow forecasting has the most significant influence on the assurance of stability and annual operations of hydro-constructions. For instance, accurate forecasting on the ebb and flow of Vietnam’s Hoabinh Reservoir can aid in the preparation and prevention of lowland flooding and drought, as well as regulating electric energy. This raises the need to propose a model that accurately forecasts the incoming flow of the Hoabinh Reservoir. In this study, a solution to this problem based on neural network with the Cuckoo Search (CS algorithm is presented. In particular, we used hydrographic data and predicted total incoming flows of the Hoabinh Reservoir over a period of 10 days. The Cuckoo Search algorithm was utilized to train the feedforward neural network (FNN for prediction. The algorithm optimized the weights between layers and biases of the neuron network. Different forecasting models for the three scenarios were developed. The constructed models have shown high forecasting performance based on the performance indices calculated. These results were also compared with those obtained from the neural networks trained by the particle swarm optimization (PSO and back-propagation (BP, indicating that the proposed approach performed more effectively. Based on the experimental results, the scenario using the rainfall and the flow as input yielded the highest forecasting accuracy when compared with other scenarios. The performance criteria RMSE, MAPE, and R obtained by the CS-FNN in this scenario were calculated as 48.7161, 0.067268 and 0.8965, respectively. These results were highly correlated to actual values. It is expected that this work may be useful for hydrographic forecasting.

  20. Comparison of two new short-term wind-power forecasting systems

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Rosado, Ignacio J. [Department of Electrical Engineering, University of Zaragoza, Zaragoza (Spain); Fernandez-Jimenez, L. Alfredo [Department of Electrical Engineering, University of La Rioja, Logrono (Spain); Monteiro, Claudio; Sousa, Joao; Bessa, Ricardo [FEUP, Fac. Engenharia Univ. Porto (Portugal)]|[INESC - Instituto de Engenharia de Sistemas e Computadores do Porto, Porto (Portugal)

    2009-07-15

    This paper presents a comparison of two new advanced statistical short-term wind-power forecasting systems developed by two independent research teams. The input variables used in both systems were the same: forecasted meteorological variable values obtained from a numerical weather prediction model; and electric power-generation registers from the SCADA system of the wind farm. Both systems are described in detail and the forecasting results compared, revealing great similarities, although the proposed structures of the two systems are different. The forecast horizon for both systems is 72 h, allowing the use of the forecasted values in electric market operations, as diary and intra-diary power generation bid offers, and in wind-farm maintenance planning. (author)

  1. Real-time flood forecasts & risk assessment using a possibility-theory based fuzzy neural network

    Science.gov (United States)

    Khan, U. T.

    2016-12-01

    Globally floods are one of the most devastating natural disasters and improved flood forecasting methods are essential for better flood protection in urban areas. Given the availability of high resolution real-time datasets for flood variables (e.g. streamflow and precipitation) in many urban areas, data-driven models have been effectively used to predict peak flow rates in river; however, the selection of input parameters for these types of models is often subjective. Additionally, the inherit uncertainty associated with data models along with errors in extreme event observations means that uncertainty quantification is essential. Addressing these concerns will enable improved flood forecasting methods and provide more accurate flood risk assessments. In this research, a new type of data-driven model, a quasi-real-time updating fuzzy neural network is developed to predict peak flow rates in urban riverine watersheds. A possibility-to-probability transformation is first used to convert observed data into fuzzy numbers. A possibility theory based training regime is them used to construct the fuzzy parameters and the outputs. A new entropy-based optimisation criterion is used to train the network. Two existing methods to select the optimum input parameters are modified to account for fuzzy number inputs, and compared. These methods are: Entropy-Wavelet-based Artificial Neural Network (EWANN) and Combined Neural Pathway Strength Analysis (CNPSA). Finally, an automated algorithm design to select the optimum structure of the neural network is implemented. The overall impact of each component of training this network is to replace the traditional ad hoc network configuration methods, with one based on objective criteria. Ten years of data from the Bow River in Calgary, Canada (including two major floods in 2005 and 2013) are used to calibrate and test the network. The EWANN method selected lagged peak flow as a candidate input, whereas the CNPSA method selected lagged

  2. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.

    Directory of Open Access Journals (Sweden)

    Svitlana Volkova

    Full Text Available This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs units capable of nowcasting (predicting in "real-time" and forecasting (predicting the future ILI dynamics in the 2011 - 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus

  3. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.

    Science.gov (United States)

    Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine; Corley, Courtney D

    2017-01-01

    This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in "real-time") and forecasting (predicting the future) ILI dynamics in the 2011 - 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from

  4. Inferential, non-parametric statistics to assess the quality of probabilistic forecast systems

    NARCIS (Netherlands)

    Maia, A.H.N.; Meinke, H.B.; Lennox, S.; Stone, R.C.

    2007-01-01

    Many statistical forecast systems are available to interested users. To be useful for decision making, these systems must be based on evidence of underlying mechanisms. Once causal connections between the mechanism and its statistical manifestation have been firmly established, the forecasts must

  5. Mediterranea Forecasting System: a focus on wave-current coupling

    Science.gov (United States)

    Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina

    2016-04-01

    The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully

  6. Forecasting of Energy Expenditure of Induced Seismicity with Use of Artificial Neural Network

    Science.gov (United States)

    Cichy, Tomasz; Banka, Piotr

    2017-12-01

    Coal mining in many Polish mines in the Upper Silesian Coal Basin is accompanied by high levels of induced seismicity. In mining plants, the methods of shock monitoring are improved, allowing for more accurate localization of the occurring phenomena and determining their seismic energy. Equally important is the development of ways of forecasting seismic hazards that may occur while implementing mine design projects. These methods, depending on the length of time for which the forecasts are made, can be divided into: longterm, medium-term, short-term and so-called alarm. Long-term forecasts are particularly useful for the design of seam exploitations. The paper presents a method of predicting changes in energy expenditure of shock using a properly trained artificial neural network. This method allows to make long-term forecasts at the stage of the mine’s exploitation design, thus enabling the mining work plans to be reviewed to minimize the potential for tremors. The information given at the input of the neural network is indicative of the specific energy changes of the elastic deformation occurring in the selected, thick, resistant rock layers (tremor-prone layers). Energy changes, taking place in one or more tremor-prone layers are considered. These indicators describe only the specific energy changes of the elastic deformation accumulating in the rock as a consequence of the mining operation, but does not determine the amount of energy released during the destruction of a given volume of rock. In this process, the potential energy of elastic strain transforms into other, non-measurable energy types, including the seismic energy of recorded tremors. In this way, potential energy changes affect the observed induced seismicity. The parameters used are characterized by increases (declines) of specific energy with separation to occur before the hypothetical destruction of the rock and after it. Additional input information is an index characterizing the rate of

  7. Development of an Adaptive Forecasting System: A Case Study of a PC Manufacturer in South Korea

    Directory of Open Access Journals (Sweden)

    Chihyun Jung

    2016-03-01

    Full Text Available We present a case study of the development of an adaptive forecasting system for a leading personal computer (PC manufacturer in South Korea. It is widely accepted that demand forecasting for products with short product life cycles (PLCs is difficult, and the PLC of a PC is generally very short. The firm has various types of products, and the volatile demand patterns differ by product. Moreover, we found that different departments have different requirements when it comes to the accuracy, point-of-time and range of the forecasts. We divide the demand forecasting process into three stages depending on the requirements and purposes. The systematic forecasting process is then introduced to improve the accuracy of demand forecasting and to meet the department-specific requirements. Moreover, a newly devised short-term forecasting method is presented, which utilizes the long-term forecasting results of the preceding stages. We evaluate our systematic forecasting methods based on actual sales data from the PC manufacturer, where our forecasting methods have been implemented.

  8. Towards a GME ensemble forecasting system: Ensemble initialization using the breeding technique

    Directory of Open Access Journals (Sweden)

    Jan D. Keller

    2008-12-01

    Full Text Available The quantitative forecast of precipitation requires a probabilistic background particularly with regard to forecast lead times of more than 3 days. As only ensemble simulations can provide useful information of the underlying probability density function, we built a new ensemble forecasting system (GME-EFS based on the GME model of the German Meteorological Service (DWD. For the generation of appropriate initial ensemble perturbations we chose the breeding technique developed by Toth and Kalnay (1993, 1997, which develops perturbations by estimating the regions of largest model error induced uncertainty. This method is applied and tested in the framework of quasi-operational forecasts for a three month period in 2007. The performance of the resulting ensemble forecasts are compared to the operational ensemble prediction systems ECMWF EPS and NCEP GFS by means of ensemble spread of free atmosphere parameters (geopotential and temperature and ensemble skill of precipitation forecasting. This comparison indicates that the GME ensemble forecasting system (GME-EFS provides reasonable forecasts with spread skill score comparable to that of the NCEP GFS. An analysis with the continuous ranked probability score exhibits a lack of resolution for the GME forecasts compared to the operational ensembles. However, with significant enhancements during the 3 month test period, the first results of our work with the GME-EFS indicate possibilities for further development as well as the potential for later operational usage.

  9. The Eruption Forecasting Information System (EFIS) database project

    Science.gov (United States)

    Ogburn, Sarah; Harpel, Chris; Pesicek, Jeremy; Wellik, Jay; Pallister, John; Wright, Heather

    2016-04-01

    The Eruption Forecasting Information System (EFIS) project is a new initiative of the U.S. Geological Survey-USAID Volcano Disaster Assistance Program (VDAP) with the goal of enhancing VDAP's ability to forecast the outcome of volcanic unrest. The EFIS project seeks to: (1) Move away from relying on the collective memory to probability estimation using databases (2) Create databases useful for pattern recognition and for answering common VDAP questions; e.g. how commonly does unrest lead to eruption? how commonly do phreatic eruptions portend magmatic eruptions and what is the range of antecedence times? (3) Create generic probabilistic event trees using global data for different volcano 'types' (4) Create background, volcano-specific, probabilistic event trees for frequently active or particularly hazardous volcanoes in advance of a crisis (5) Quantify and communicate uncertainty in probabilities A major component of the project is the global EFIS relational database, which contains multiple modules designed to aid in the construction of probabilistic event trees and to answer common questions that arise during volcanic crises. The primary module contains chronologies of volcanic unrest, including the timing of phreatic eruptions, column heights, eruptive products, etc. and will be initially populated using chronicles of eruptive activity from Alaskan volcanic eruptions in the GeoDIVA database (Cameron et al. 2013). This database module allows us to query across other global databases such as the WOVOdat database of monitoring data and the Smithsonian Institution's Global Volcanism Program (GVP) database of eruptive histories and volcano information. The EFIS database is in the early stages of development and population; thus, this contribution also serves as a request for feedback from the community.

  10. Development of distributed topographical forecasting model for wind resource assessment using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, P.B. [Green Life Energy Solutions LLP, Secunderabad (India); Rao, S.S. [National Institute of Technology. Dept. of Mechanical Engineering, Warangal (India); Reddy, K.H. [JNT Univ.. Dept. of Mechanical Engineering, Anantapur (India)

    2012-07-01

    Economics of wind power projects largely depend on the availability of wind power density. Wind resource assessment is a study estimating wind speeds and wind power densities in the region under consideration. The accuracy and reliability of data sets comprising of wind speeds and wind power densities at different heights per topographic region characterized by elevation or mean sea level, is important for wind power projects. Indian Wind Resource Assessment program conducted in 80's consisted of wind data measured by monitoring stations at different topographies in order to measure wind power density values at 25 and 50 meters above the ground level. In this paper, an attempt has been made to assess wind resource at a given location using artificial neural networks. Existing wind resource data has been used to train the neural networks. Location topography (characterized by longitude, latitude and mean sea level), air density, mean annual wind speed (MAWS) are used as inputs to the neural network. Mean annual wind power density (MAWPD) in watt/m{sup 2} is predicted for a new topographic location. Simple back propagation based neural network has been found to be sufficient for predicting these values with suitable accuracy. This model is closely linked to the problem of wind energy forecasting considering the variations of specific atmospheric variables with time horizons. This model will help the wind farm developers to have an initial estimation of the wind energy potential at a particular topography. (Author)

  11. Towards an Australian ensemble streamflow forecasting system for flood prediction and water management

    Science.gov (United States)

    Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.

    2016-12-01

    Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.

  12. Load forecasting using different architectures of neural networks with the assistance of the MATLAB toolboxes; Previsao de cargas eletricas utilizando diferentes arquiteturas de redes neurais artificiais com o auxilio das toolboxes do MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Nose Filho, Kenji; Araujo, Klayton A.M.; Maeda, Jorge L.Y.; Lotufo, Anna Diva P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil)], Emails: kenjinose@yahoo.com.br, klayton_ama@hotmail.com, jorge-maeda@hotmail.com, annadiva@dee.feis.unesp.br

    2009-07-01

    This paper presents a development and implementation of a program to electrical load forecasting with data from a Brazilian electrical company, using four different architectures of neural networks of the MATLAB toolboxes: multilayer backpropagation gradient descendent with momentum, multilayer backpropagation Levenberg-Marquardt, adaptive network based fuzzy inference system and general regression neural network. The program presented a satisfactory performance, guaranteeing very good results. (author)

  13. Forecasting of Hourly Photovoltaic Energy in Canarian Electrical System

    Science.gov (United States)

    Henriquez, D.; Castaño, C.; Nebot, R.; Piernavieja, G.; Rodriguez, A.

    2010-09-01

    The Canarian Archipelago face similar problems as most insular region lacking of endogenous conventional energy resources and not connected to continental electrical grids. A consequence of the "insular fact" is the existence of isolated electrical systems that are very difficult to interconnect due to the considerable sea depths between the islands. Currently, the Canary Islands have six isolated electrical systems, only one utility generating most of the electricity (burning fuel), a recently arrived TSO (REE) and still a low implementation of Renewable Energy Resources (RES). The low level of RES deployment is a consequence of two main facts: the weakness of the stand-alone grids (from 12 MW in El Hierro up to only 1 GW in Gran Canaria) and the lack of space to install RES systems (more than 50% of the land protected due to environmental reasons). To increase the penetration of renewable energy generation, like solar or wind energy, is necessary to develop tools to manage them. The penetration of non manageable sources into weak grids like the Canarian ones causes a big problem to the grid operator. There are currently 104 MW of PV connected to the islands grids (Dec. 2009) and additional 150 MW under licensing. This power presents a serious challenge for the operation and stability of the electrical system. ITC, together with the local TSO (Red Eléctrica de España, REE) started in 2008 and R&D project to develop a PV energy prediction tool for the six Canarian Insular electrical systems. The objective is to supply reliable information for hourly forecast of the generation dispatch programme and to predict daily solar radiation patterns, in order to help program spinning reserves. ITC has approached the task of weather forecasting using different numerical model (MM5 and WRF) in combination with MSG (Meteosat Second Generation) images. From the online data recorded at several monitored PV plants and meteorological stations, PV nominal power and energy produced

  14. Forecasting the Dst index using a swarm-optimized neural network

    Science.gov (United States)

    Lazzús, J. A.; Vega, P.; Rojas, P.; Salfate, I.

    2017-08-01

    A hybrid technique that combines an artificial neural network with a particle swarm optimization (ANN+PSO) was used to forecast the disturbance storm time (Dst) index from 1 to 6 h ahead. Our ANN was optimized by PSO to update ANN weights and to predict the short-term Dst index using past values as input parameters. The database used contains 233,760 hourly data from 1 January 1990 to 31 August 2016, considering storms and quiet period, grouped into three data sets: learning set (with 116,880 hourly data points), validation set (with 58,440 data points), and testing set (with 58,440 data points). Several ANN topologies were studied, and the best architecture was determined by systematically adding neurons and evaluating the root-mean-square error (RMSE) and the correlation coefficient (R) during the training process. These results show that the hybrid algorithm is a powerful technique for forecasting the Dst index a short time in advance like t + 1 to t + 3, with RMSE from 3.5 nT to 7.5 nT, and R from 0.98 to 0.90. However, t + 4 to t + 6 predictions become slightly more uncertain, with RMSE from 8.8 nT to 10.9 nT, and R from 0.86 to 0.79. Additionally, an exhaustive analysis according to geomagnetic storm magnitude was conducted. In general, the results show that our hybrid algorithm can be correctly trained to forecast the Dst index with appropriate precision and that Dst past behavior significantly affects adequate training and predicting capabilities of the implemented ANN.

  15. An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting

    Directory of Open Access Journals (Sweden)

    F. Anctil

    2009-11-01

    Full Text Available Hydrological forecasting consists in the assessment of future streamflow. Current deterministic forecasts do not give any information concerning the uncertainty, which might be limiting in a decision-making process. Ensemble forecasts are expected to fill this gap.

    In July 2007, the Meteorological Service of Canada has improved its ensemble prediction system, which has been operational since 1998. It uses the GEM model to generate a 20-member ensemble on a 100 km grid, at mid-latitudes. This improved system is used for the first time for hydrological ensemble predictions. Five watersheds in Quebec (Canada are studied: Chaudière, Châteauguay, Du Nord, Kénogami and Du Lièvre. An interesting 17-day rainfall event has been selected in October 2007. Forecasts are produced in a 3 h time step for a 3-day forecast horizon. The deterministic forecast is also available and it is compared with the ensemble ones. In order to correct the bias of the ensemble, an updating procedure has been applied to the output data. Results showed that ensemble forecasts are more skilful than the deterministic ones, as measured by the Continuous Ranked Probability Score (CRPS, especially for 72 h forecasts. However, the hydrological ensemble forecasts are under dispersed: a situation that improves with the increasing length of the prediction horizons. We conjecture that this is due in part to the fact that uncertainty in the initial conditions of the hydrological model is not taken into account.

  16. Crime Forecasting System (An exploratory web-based approach

    Directory of Open Access Journals (Sweden)

    Yaseen Ahmed Meenai

    2011-08-01

    Full Text Available With the continuous rise in crimes in some big cities of the world like Karachi and the increasing complexity of these crimes, the difficulties the law enforcing agencies are facing in tracking down and taking out culprits have increased manifold. To help cut back the crime rate, a Crime Forecasting System (CFS can be used which uses historical information maintained by the local Police to help them predict crime patterns with the support of a huge and self-updating database. This system operates to prevent crime, helps in apprehending criminals, and to reduce disorder. This system is also vital in helping the law enforcers in forming a proactive approach by helping them in identifying early warning signs, take timely and necessary actions, and eventually help stop crime before it actually happens. It will also be beneficial in maintaining an up to date database of criminal suspects includes information on arrest records, communication with police department, associations with other known suspects, and membership in gangs/activist groups. After exploratory analysis of the online data acquired from the victims of these crimes, a broad picture of the scenario can be analyzed. The degree of vulnerability of an area at some particular moment can be highlighted by different colors aided by Google Maps. Some statistical diagrams have also been incorporated. The future of CFS can be seen as an information engine for the analysis, study and prediction of crimes.

  17. Logical design of a decision support system to forecast technology, prices and costs for the national communications system

    Science.gov (United States)

    Williams, K. A.; Partridge, E. C., III

    1984-09-01

    Originally envisioned as a means to integrate the many systems found throughout the government, the general mission of the NCS continues to be to ensure the survivability of communications during and subsequent to any national emergency. In order to accomplish this mission the NCS is an arrangement of heterogeneous telecommunications systems which are provided by their sponsor Federal agencies. The physical components of Federal telecommunications systems and networks include telephone and digital data switching facilities and primary common user communications centers; Special purpose local delivery message switching and exchange facilities; Government owned or leased radio systems; Technical control facilities which are under exclusive control of a government agency. This thesis describes the logical design of a proposed decision support system for use by the National Communications System in forecasting technology, prices, and costs. It is general in nature and only includes those forecasting models which are suitable for computer implementation. Because it is a logical design it can be coded and applied in many different hardware and/or software configurations.

  18. Forecasting Method for Urban Rail Transit Ridership at Station Level Using Back Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Junfang Li

    2016-01-01

    Full Text Available Direct forecasting method for Urban Rail Transit (URT ridership at the station level is not able to reflect nonlinear relationship between ridership and its predictors. Also, population is inappropriately expressed in this method since it is not uniformly distributed by area. In this paper, a new variable, population per distance band, is considered and a back propagation neural network (BPNN model which can reflect nonlinear relationship between ridership and its predictors is proposed to forecast ridership. Key predictors are obtained through partial correlation analysis. The performance of the proposed model is compared with three other benchmark models, which are linear model with population per distance band, BPNN model with total population, and linear model with total population, using four measures of effectiveness (MOEs, maximum relative error (MRE, smallest relative error (SRE, average relative error (ARE, and mean square root of relative error (MSRRE. Also, another model for contribution rate of population per distance band to ridership is formulated based on the BPNN model with nonpopulation variables fixed. Case studies with Japanese data show that BPNN model with population per distance band outperforms other three models and the contribution rate of population within special distance band to ridership calculated through the contribution rate model is 70%~92.9% close to actual statistical value. The result confirms the effectiveness of models proposed in this paper.

  19. Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach

    Directory of Open Access Journals (Sweden)

    Karin Kandananond

    2011-08-01

    Full Text Available Demand planning for electricity consumption is a key success factor for the development of any countries. However, this can only be achieved if the demand is forecasted accurately. In this research, different forecasting methods—autoregressive integrated moving average (ARIMA, artificial neural network (ANN and multiple linear regression (MLR—were utilized to formulate prediction models of the electricity demand in Thailand. The objective was to compare the performance of these three approaches and the empirical data used in this study was the historical data regarding the electricity demand (population, gross domestic product: GDP, stock index, revenue from exporting industrial products and electricity consumption in Thailand from 1986 to 2010. The results showed that the ANN model reduced the mean absolute percentage error (MAPE to 0.996%, while those of ARIMA and MLR were 2.80981 and 3.2604527%, respectively. Based on these error measures, the results indicated that the ANN approach outperformed the ARIMA and MLR methods in this scenario. However, the paired test indicated that there was no significant difference among these methods at α = 0.05. According to the principle of parsimony, the ARIMA and MLR models might be preferable to the ANN one because of their simple structure and competitive performance

  20. Treatment of Outliers via Interpolation Method with Neural Network Forecast Performances

    Science.gov (United States)

    Wahir, N. A.; Nor, M. E.; Rusiman, M. S.; Gopal, K.

    2018-04-01

    Outliers often lurk in many datasets, especially in real data. Such anomalous data can negatively affect statistical analyses, primarily normality, variance, and estimation aspects. Hence, handling the occurrences of outliers require special attention. Therefore, it is important to determine the suitable ways in treating outliers so as to ensure that the quality of the analyzed data is indeed high. As such, this paper discusses an alternative method to treat outliers via linear interpolation method. In fact, assuming outlier as a missing value in the dataset allows the application of the interpolation method to interpolate the outliers thus, enabling the comparison of data series using forecast accuracy before and after outlier treatment. With that, the monthly time series of Malaysian tourist arrivals from January 1998 until December 2015 had been used to interpolate the new series. The results indicated that the linear interpolation method, which was comprised of improved time series data, displayed better results, when compared to the original time series data in forecasting from both Box-Jenkins and neural network approaches.

  1. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Tian; Chernyakhovskiy, Ilya; Brancucci Martinez-Anido, Carlo

    2016-04-01

    This document is the Spanish version of 'Greening the Grid- Forecasting Wind and Solar Generation Improving System Operations'. It discusses improving system operations with forecasting with and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  2. Space-time wind speed forecasting for improved power system dispatch

    KAUST Repository

    Zhu, Xinxin; Genton, Marc G.; Gu, Yingzhong; Xie, Le

    2014-01-01

    direction and with the seasons, hence avoiding a subjective choice of regimes. Then, results from the wind forecasts are incorporated into a power system economic dispatch model, the cost of which is used as a loss measure of the quality of the forecast

  3. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    International Nuclear Information System (INIS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Chenwei, Nie; Dong, Ren

    2014-01-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps

  4. Skill of a global seasonal streamflow forecasting system, relative roles of initial conditions and meteorological forcing

    NARCIS (Netherlands)

    Candogan Yossef, N.; Winsemius, H.C.; Weerts, A.; Van Beek, R.; Bierkens, M.F.P.

    2013-01-01

    We investigate the relative contributions of initial conditions (ICs) and meteorological forcing (MF) to the skill of the global seasonal streamflow forecasting system FEWS-World, using the global hydrological model PCRaster Global Water Balance. Potential improvement in forecasting skill through

  5. Artificial Neural Networks (ANNs for flood forecasting at Dongola Station in the River Nile, Sudan

    Directory of Open Access Journals (Sweden)

    Sulafa Hag Elsafi

    2014-09-01

    Full Text Available Heavy seasonal rains cause the River Nile in Sudan to overflow and flood the surroundings areas. The floods destroy houses, crops, roads, and basic infrastructure, resulting in the displacement of people. This study aimed to forecast the River Nile flow at Dongola Station in Sudan using an Artificial Neural Network (ANN as a modeling tool and validated the accuracy of the model against actual flow. The ANN model was formulated to simulate flows at a certain location in the river reach, based on flow at upstream locations. Different procedures were applied to predict flooding by the ANN. Readings from stations along the Blue Nile, White Nile, Main Nile, and River Atbara between 1965 and 2003 were used to predict the likelihood of flooding at Dongola Station. The analysis indicated that the ANN provides a reliable means of detecting the flood hazard in the River Nile.

  6. Application of Artificial Neural Network into the Water Level Modeling and Forecast

    Directory of Open Access Journals (Sweden)

    Marzenna Sztobryn

    2013-06-01

    Full Text Available The dangerous sea and river water level increase does not only destroy the human lives, but also generate the severe flooding in coastal areas. The rapidly changes in the direction and velocity of wind and associated with them sea level changes could be the severe threat for navigation, especially on the fairways of small fishery harbors located in the river mouth. There is the area of activity of two external forcing: storm surges and flood wave. The aim of the work was the description of an application of Artificial Neural Network (ANN methodology into the water level forecast in the case study field in Swibno harbor located is located at 938.7 km of the Wisla River and at a distance of about 3 km up the mouth (Gulf of Gdansk - Baltic Sea.

  7. A combined road weather forecast system to prevent road ice formation in the Adige Valley (Italy)

    Science.gov (United States)

    Di Napoli, Claudia; Piazza, Andrea; Antonacci, Gianluca; Todeschini, Ilaria; Apolloni, Roberto; Pretto, Ilaria

    2016-04-01

    Road ice is a dangerous meteorological hazard to a nation's transportation system and economy. By reducing the pavement friction with vehicle tyres, ice formation on pavements increases accident risk and delays travelling times thus posing a serious threat to road users' safety and the running of economic activities. Keeping roads clear and open is therefore essential, especially in mountainous areas where ice is likely to form during the winter period. Winter road maintenance helps to restore road efficiency and security, and its benefits are up to 8 times the costs sustained for anti-icing strategies [1]. However, the optimization of maintenance costs and the reduction of the environmental damage from over-salting demand further improvements. These can be achieved by reliable road weather forecasts, and in particular by the prediction of road surface temperatures (RSTs). RST is one of the most important parameters in determining road surface conditions. It is well known from literature that ice forms on pavements in high-humidity conditions when RSTs are below 0°C. We have therefore implemented an automatic forecast system to predict critical RSTs on a test route along the Adige Valley complex terrain, in the Italian Alps. The system considers two physical models, each computing heat and energy fluxes between the road and the atmosphere. One is Reuter's radiative cooling model, which predicts RSTs at sunrise as a function of surface temperatures at sunset and the time passed since then [2]. One is METRo (Model of the Environment and Temperature of Roads), a road weather forecast software which also considers heat conduction through road material [3]. We have applied the forecast system to a network of road weather stations (road weather information system, RWIS) installed on the test route [4]. Road and atmospheric observations from RWIS have been used as initial conditions for both METRo and Reuter's model. In METRo observations have also been coupled to

  8. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization.

    Science.gov (United States)

    Huang, Daizheng; Wu, Zhihui

    2017-01-01

    Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods.

  9. Flood forecasting and early warning system for Dungun River Basin

    International Nuclear Information System (INIS)

    Hafiz, I; Sidek, L M; Basri, H; Fukami, K; Hanapi, M N; Livia, L; Nor, M D

    2013-01-01

    Floods can bring such disasters to the affected dweller due to loss of properties, crops and even deaths. The damages to properties and crops by the severe flooding are occurred due to the increase in the economic value of the properties as well as the extent of the flood. Flood forecasting and warning system is one of the examples of the non-structural measures which can give early warning to the affected people. People who live near the flood-prone areas will be warned so that they can evacuate themselves and their belongings before the arrival of the flood. This can considerably reduce flood loss and damage and above all, the loss of human lives. Integrated Flood Analysis System (IFAS) model is a runoff analysis model converting rainfall into runoff for a given river basin. The simulation can be done using either ground or satellite-based rainfall to produce calculated discharge within the river. The calculated discharge is used to generate the flood inundation map within the catchment area for the selected flood event using Infowork RS.

  10. Computer Networks A Systems Approach

    CERN Document Server

    Peterson, Larry L

    2011-01-01

    This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur

  11. The Stevens Integrated Maritime Surveillance Forecast System: Expansion and Enhancement

    National Research Council Canada - National Science Library

    Bruno, Michael S; Blumberg, Alan F

    2006-01-01

    ... for the real-time assessment of ocean, weather, environmental, and vessel traffic conditions throughout the New York Harbor region, and the forecast of conditions in the near and long-term and under specific threat scenarios...

  12. The Impact of Distributed Generation Systems in the Load Forecasting

    OpenAIRE

    Benedicto Llorens, Juan Manuel

    2009-01-01

    Projecte fet en col.laboració amb l'Instituto Superior Tecnico. Universidade Técnica de Lisboa Load forecasting is vitally important for the electric industry in the deregulated economy. It has many applications including energy purchasing and generation, load switching, contract evaluation and infrastructure development. Because of this, a large variety of mathematical methods have been developed for load forecasting. In addition, the large-scale integration of wind power, now...

  13. The state of the art of flood forecasting - Hydrological Ensemble Prediction Systems

    Science.gov (United States)

    Thielen-Del Pozo, J.; Pappenberger, F.; Salamon, P.; Bogner, K.; Burek, P.; de Roo, A.

    2010-09-01

    Flood forecasting systems form a key part of ‘preparedness' strategies for disastrous floods and provide hydrological services, civil protection authorities and the public with information of upcoming events. Provided the warning leadtime is sufficiently long, adequate preparatory actions can be taken to efficiently reduce the impacts of the flooding. Because of the specific characteristics of each catchment, varying data availability and end-user demands, the design of the best flood forecasting system may differ from catchment to catchment. However, despite the differences in concept and data needs, there is one underlying issue that spans across all systems. There has been an growing awareness and acceptance that uncertainty is a fundamental issue of flood forecasting and needs to be dealt with at the different spatial and temporal scales as well as the different stages of the flood generating processes. Today, operational flood forecasting centres change increasingly from single deterministic forecasts to probabilistic forecasts with various representations of the different contributions of uncertainty. The move towards these so-called Hydrological Ensemble Prediction Systems (HEPS) in flood forecasting represents the state of the art in forecasting science, following on the success of the use of ensembles for weather forecasting (Buizza et al., 2005) and paralleling the move towards ensemble forecasting in other related disciplines such as climate change predictions. The use of HEPS has been internationally fostered by initiatives such as "The Hydrologic Ensemble Prediction Experiment" (HEPEX), created with the aim to investigate how best to produce, communicate and use hydrologic ensemble forecasts in hydrological short-, medium- und long term prediction of hydrological processes. The advantages of quantifying the different contributions of uncertainty as well as the overall uncertainty to obtain reliable and useful flood forecasts also for extreme events

  14. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition.

    Science.gov (United States)

    Wang, Wen-chuan; Chau, Kwok-wing; Qiu, Lin; Chen, Yang-bo

    2015-05-01

    Hydrological time series forecasting is one of the most important applications in modern hydrology, especially for the effective reservoir management. In this research, an artificial neural network (ANN) model coupled with the ensemble empirical mode decomposition (EEMD) is presented for forecasting medium and long-term runoff time series. First, the original runoff time series is decomposed into a finite and often small number of intrinsic mode functions (IMFs) and a residual series using EEMD technique for attaining deeper insight into the data characteristics. Then all IMF components and residue are predicted, respectively, through appropriate ANN models. Finally, the forecasted results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original annual runoff series. Two annual reservoir runoff time series from Biuliuhe and Mopanshan in China, are investigated using the developed model based on four performance evaluation measures (RMSE, MAPE, R and NSEC). The results obtained in this work indicate that EEMD can effectively enhance forecasting accuracy and the proposed EEMD-ANN model can attain significant improvement over ANN approach in medium and long-term runoff time series forecasting. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate

    Science.gov (United States)

    Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert

    2017-11-01

    Hydropower production requires optimal dam and reservoir management to prevent flooding damage and avoid operation losses. In a northern climate, where spring freshet constitutes the main inflow volume, seasonal forecasts can help to establish a yearly strategy. Long-term hydrological forecasts often rely on past observations of streamflow or meteorological data. Another alternative is to use ensemble meteorological forecasts produced by climate models. In this paper, those produced by the ECMWF (European Centre for Medium-Range Forecast) System 4 are examined and bias is characterized. Bias correction, through the linear scaling method, improves the performance of the raw ensemble meteorological forecasts in terms of continuous ranked probability score (CRPS). Then, three seasonal ensemble hydrological forecasting systems are compared: (1) the climatology of simulated streamflow, (2) the ensemble hydrological forecasts based on climatology (ESP) and (3) the hydrological forecasts based on bias-corrected ensemble meteorological forecasts from System 4 (corr-DSP). Simulated streamflow computed using observed meteorological data is used as benchmark. Accounting for initial conditions is valuable even for long-term forecasts. ESP and corr-DSP both outperform the climatology of simulated streamflow for lead times from 1 to 5 months depending on the season and watershed. Integrating information about future meteorological conditions also improves monthly volume forecasts. For the 1-month lead time, a gain exists for almost all watersheds during winter, summer and fall. However, volume forecasts performance for spring varies from one watershed to another. For most of them, the performance is close to the performance of ESP. For longer lead times, the CRPS skill score is mostly in favour of ESP, even if for many watersheds, ESP and corr-DSP have comparable skill. Corr-DSP appears quite reliable but, in some cases, under-dispersion or bias is observed. A more complex bias

  16. Hydro-economic assessment of hydrological forecasting systems

    Science.gov (United States)

    Boucher, M.-A.; Tremblay, D.; Delorme, L.; Perreault, L.; Anctil, F.

    2012-01-01

    SummaryAn increasing number of publications show that ensemble hydrological forecasts exhibit good performance when compared to observed streamflow. Many studies also conclude that ensemble forecasts lead to a better performance than deterministic ones. This investigation takes one step further by not only comparing ensemble and deterministic forecasts to observed values, but by employing the forecasts in a stochastic decision-making assistance tool for hydroelectricity production, during a flood event on the Gatineau River in Canada. This allows the comparison between different types of forecasts according to their value in terms of energy, spillage and storage in a reservoir. The motivation for this is to adopt the point of view of an end-user, here a hydroelectricity production society. We show that ensemble forecasts exhibit excellent performances when compared to observations and are also satisfying when involved in operation management for electricity production. Further improvement in terms of productivity can be reached through the use of a simple post-processing method.

  17. Gas analysis modeling system forecast for the Energy Modeling Forum North American Natural Gas Market Study

    International Nuclear Information System (INIS)

    Mariner-Volpe, B.; Trapmann, W.

    1989-01-01

    The Gas Analysis Modeling System is a large computer-based model for analyzing the complex US natural gas industry, including production, transportation, and consumption activities. The model was developed and first used in 1982 after the passage of the NGPA, which initiated a phased decontrol of most natural gas prices at the wellhead. The categorization of gas under the NGPA and the contractual nature of the natural gas market, which existed at the time, were primary factors in the development of the basic structure of the model. As laws and regulations concerning the natural gas market have changed, the model has evolved accordingly. Recent increases in competition in the wellhead market have also led to changes in the model. GAMS produces forecasts of natural gas production, consumption, and prices annually through 2010. It is an engineering-economic model that incorporates several different mathematical structures in order to represent the interaction of the key groups involved in the natural gas market. GAMS has separate supply and demand components that are equilibrated for each year of the forecast by means of a detailed transaction network

  18. Daily Reservoir Runoff Forecasting Method Using Artificial Neural Network Based on Quantum-behaved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Chun-tian Cheng

    2015-07-01

    Full Text Available Accurate daily runoff forecasting is of great significance for the operation control of hydropower station and power grid. Conventional methods including rainfall-runoff models and statistical techniques usually rely on a number of assumptions, leading to some deviation from the exact results. Artificial neural network (ANN has the advantages of high fault-tolerance, strong nonlinear mapping and learning ability, which provides an effective method for the daily runoff forecasting. However, its training has certain drawbacks such as time-consuming, slow learning speed and easily falling into local optimum, which cannot be ignored in the real world application. In order to overcome the disadvantages of ANN model, the artificial neural network model based on quantum-behaved particle swarm optimization (QPSO, ANN-QPSO for short, is presented for the daily runoff forecasting in this paper, where QPSO was employed to select the synaptic weights and thresholds of ANN, while ANN was used for the prediction. The proposed model can combine the advantages of both QPSO and ANN to enhance the generalization performance of the forecasting model. The methodology is assessed by using the daily runoff data of Hongjiadu reservoir in southeast Guizhou province of China from 2006 to 2014. The results demonstrate that the proposed approach achieves much better forecast accuracy than the basic ANN model, and the QPSO algorithm is an alternative training technique for the ANN parameters selection.

  19. Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch

    KAUST Repository

    Xie, Le

    2014-01-01

    We propose a novel statistical wind power forecast framework, which leverages the spatio-temporal correlation in wind speed and direction data among geographically dispersed wind farms. Critical assessment of the performance of spatio-temporal wind power forecast is performed using realistic wind farm data from West Texas. It is shown that spatio-temporal wind forecast models are numerically efficient approaches to improving forecast quality. By reducing uncertainties in near-term wind power forecasts, the overall cost benefits on system dispatch can be quantified. We integrate the improved forecast with an advanced robust look-ahead dispatch framework. This integrated forecast and economic dispatch framework is tested in a modified IEEE RTS 24-bus system. Numerical simulation suggests that the overall generation cost can be reduced by up to 6% using a robust look-ahead dispatch coupled with spatio-temporal wind forecast as compared with persistent wind forecast models. © 2013 IEEE.

  20. System learning approach to assess sustainability and forecast trends in regional dynamics: The San Luis Basin study, Colorado, U.S.A.

    Science.gov (United States)

    This paper presents a methodology that combines the power of an Artificial Neural Network and Information Theory to forecast variables describing the condition of a regional system. The novelty and strength of this approach is in the application of Fisher information, a key metho...

  1. Short-term streamflow forecasting with global climate change implications A comparative study between genetic programming and neural network models

    Science.gov (United States)

    Makkeasorn, A.; Chang, N. B.; Zhou, X.

    2008-05-01

    SummarySustainable water resources management is a critically important priority across the globe. While water scarcity limits the uses of water in many ways, floods may also result in property damages and the loss of life. To more efficiently use the limited amount of water under the changing world or to resourcefully provide adequate time for flood warning, the issues have led us to seek advanced techniques for improving streamflow forecasting on a short-term basis. This study emphasizes the inclusion of sea surface temperature (SST) in addition to the spatio-temporal rainfall distribution via the Next Generation Radar (NEXRAD), meteorological data via local weather stations, and historical stream data via USGS gage stations to collectively forecast discharges in a semi-arid watershed in south Texas. Two types of artificial intelligence models, including genetic programming (GP) and neural network (NN) models, were employed comparatively. Four numerical evaluators were used to evaluate the validity of a suite of forecasting models. Research findings indicate that GP-derived streamflow forecasting models were generally favored in the assessment in which both SST and meteorological data significantly improve the accuracy of forecasting. Among several scenarios, NEXRAD rainfall data were proven its most effectiveness for a 3-day forecast, and SST Gulf-to-Atlantic index shows larger impacts than the SST Gulf-to-Pacific index on the streamflow forecasts. The most forward looking GP-derived models can even perform a 30-day streamflow forecast ahead of time with an r-square of 0.84 and RMS error 5.4 in our study.

  2. Recent advances in operational seasonal forecasting in South Africa: Models, infrastructure and networks

    CSIR Research Space (South Africa)

    Landman, WA

    2011-11-01

    Full Text Available The various institutions involved with seasonal forecast development and production are discussed. New modelling approaches and the establishment of infrastructures to improve forecast dissemination are discussed....

  3. Network speech systems technology program

    Science.gov (United States)

    Weinstein, C. J.

    1981-09-01

    This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.

  4. Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    Science.gov (United States)

    Prive, N. C.; Errico, Ronald M.

    2015-01-01

    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.

  5. ECMWF seasonal forecast system 3 and its prediction of sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stockdale, Timothy N.; Anderson, David L.T.; Balmaseda, Magdalena A.; Ferranti, Laura; Mogensen, Kristian; Palmer, Timothy N.; Molteni, Franco; Vitart, Frederic [ECMWF, Reading (United Kingdom); Doblas-Reyes, Francisco [ECMWF, Reading (United Kingdom); Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain)

    2011-08-15

    The latest operational version of the ECMWF seasonal forecasting system is described. It shows noticeably improved skill for sea surface temperature (SST) prediction compared with previous versions, particularly with respect to El Nino related variability. Substantial skill is shown for lead times up to 1 year, although at this range the spread in the ensemble forecast implies a loss of predictability large enough to account for most of the forecast error variance, suggesting only moderate scope for improving long range El Nino forecasts. At shorter ranges, particularly 3-6 months, skill is still substantially below the model-estimated predictability limit. SST forecast skill is higher for more recent periods than earlier ones. Analysis shows that although various factors can affect scores in particular periods, the improvement from 1994 onwards seems to be robust, and is most plausibly due to improvements in the observing system made at that time. The improvement in forecast skill is most evident for 3-month forecasts starting in February, where predictions of NINO3.4 SST from 1994 to present have been almost without fault. It is argued that in situations where the impact of model error is small, the value of improved observational data can be seen most clearly. Significant skill is also shown in the equatorial Indian Ocean, although predictive skill in parts of the tropical Atlantic are relatively poor. SST forecast errors can be especially high in the Southern Ocean. (orig.)

  6. Looking toward to the next-generation space weather forecast system. Comments former a former space weather forecaster

    International Nuclear Information System (INIS)

    Tomita, Fumihiko

    1999-01-01

    In the 21st century, man's space-based activities will increase significantly and many kinds of space utilization technologies will assume a vital role in the infrastructure, creating new businesses, securing the global environment, contributing much to human welfare in the world. Communications Research Laboratory (CRL) has been contributing to the safety of human activity in space and to the further understanding of the solar terrestrial environment through the study of space weather, including the upper atmosphere, magnetosphere, interplanetary space, and the sun. The next-generation Space Weather Integrated Monitoring System (SWIMS) for future space activities based on the present international space weather forecasting system is introduced in this paper. (author)

  7. Application of a Hybrid Method Combining Grey Model and Back Propagation Artificial Neural Networks to Forecast Hepatitis B in China

    Directory of Open Access Journals (Sweden)

    Ruijing Gan

    2015-01-01

    Full Text Available Accurate incidence forecasting of infectious disease provides potentially valuable insights in its own right. It is critical for early prevention and may contribute to health services management and syndrome surveillance. This study investigates the use of a hybrid algorithm combining grey model (GM and back propagation artificial neural networks (BP-ANN to forecast hepatitis B in China based on the yearly numbers of hepatitis B and to evaluate the method’s feasibility. The results showed that the proposal method has advantages over GM (1, 1 and GM (2, 1 in all the evaluation indexes.

  8. Application of a hybrid method combining grey model and back propagation artificial neural networks to forecast hepatitis B in china.

    Science.gov (United States)

    Gan, Ruijing; Chen, Xiaojun; Yan, Yu; Huang, Daizheng

    2015-01-01

    Accurate incidence forecasting of infectious disease provides potentially valuable insights in its own right. It is critical for early prevention and may contribute to health services management and syndrome surveillance. This study investigates the use of a hybrid algorithm combining grey model (GM) and back propagation artificial neural networks (BP-ANN) to forecast hepatitis B in China based on the yearly numbers of hepatitis B and to evaluate the method's feasibility. The results showed that the proposal method has advantages over GM (1, 1) and GM (2, 1) in all the evaluation indexes.

  9. Identification of the actual state and entity availability forecasting in power engineering using neural-network technologies

    Science.gov (United States)

    Protalinsky, O. M.; Shcherbatov, I. A.; Stepanov, P. V.

    2017-11-01

    A growing number of severe accidents in RF call for the need to develop a system that could prevent emergency situations. In a number of cases accident rate is stipulated by careless inspections and neglects in developing repair programs. Across the country rates of accidents are growing because of a so-called “human factor”. In this regard, there has become urgent the problem of identification of the actual state of technological facilities in power engineering using data on engineering processes running and applying artificial intelligence methods. The present work comprises four model states of manufacturing equipment of engineering companies: defect, failure, preliminary situation, accident. Defect evaluation is carried out using both data from SCADA and ASEPCR and qualitative information (verbal assessments of experts in subject matter, photo- and video materials of surveys processed using pattern recognition methods in order to satisfy the requirements). Early identification of defects makes possible to predict the failure of manufacturing equipment using mathematical techniques of artificial neural network. In its turn, this helps to calculate predicted characteristics of reliability of engineering facilities using methods of reliability theory. Calculation of the given parameters provides the real-time estimation of remaining service life of manufacturing equipment for the whole operation period. The neural networks model allows evaluating possibility of failure of a piece of equipment consistent with types of actual defects and their previous reasons. The article presents the grounds for a choice of training and testing samples for the developed neural network, evaluates the adequacy of the neural networks model, and shows how the model can be used to forecast equipment failure. There have been carried out simulating experiments using a computer and retrospective samples of actual values for power engineering companies. The efficiency of the developed

  10. Experimental Analysis of the Input Variables’ Relevance to Forecast Next Day’s Aggregated Electric Demand Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Pablo García

    2013-06-01

    Full Text Available Thanks to the built in intelligence (deployment of new intelligent devices and sensors in places where historically they were not present, the Smart Grid and Microgrid paradigms are able to take advantage from aggregated load forecasting, which opens the door for the implementation of new algorithms to seize this information for optimization and advanced planning. Therefore, accuracy in load forecasts will potentially have a big impact on key operation factors for the future Smart Grid/Microgrid-based energy network like user satisfaction and resource saving, and new methods to achieve an efficient prediction in future energy landscapes (very different from the centralized, big area networks studied so far. This paper proposes different improved models to forecast next day’s aggregated load using artificial neural networks, taking into account the variables that are most relevant for the aggregated. In particular, seven models based on the multilayer perceptron will be proposed, progressively adding input variables after analyzing the influence of climate factors on aggregated load. The results section presents the forecast from the proposed models, obtained from real data.

  11. An Operational Short-Term Forecasting System for Regional Hydropower Management

    Science.gov (United States)

    Gronewold, A.; Labuhn, K. A.; Calappi, T. J.; MacNeil, A.

    2017-12-01

    The Niagara River is the natural outlet of Lake Erie and drains four of the five Great lakes. The river is used to move commerce and is home to both sport fishing and tourism industries. It also provides nearly 5 million kilowatts of hydropower for approximately 3.9 million homes. Due to a complex international treaty and the necessity of balancing water needs for an extensive tourism industry, the power entities operating on the river require detailed and accurate short-term river flow forecasts to maximize power output. A new forecast system is being evaluated that takes advantage of several previously independent components including the NOAA Lake Erie operational Forecast System (LEOFS), a previously developed HEC-RAS model, input from the New York Power Authority(NYPA) and Ontario Power Generation (OPG) and lateral flow forecasts for some of the tributaries provided by the NOAA Northeast River Forecast Center (NERFC). The Corps of Engineers updated the HEC-RAS model of the upper Niagara River to use the output forcing from LEOFS and a planned Grass Island Pool elevation provided by the power entities. The entire system has been integrated at the NERFC; it will be run multiple times per day with results provided to the Niagara River Control Center operators. The new model helps improve discharge forecasts by better accounting for dynamic conditions on Lake Erie. LEOFS captures seiche events on the lake that are often several meters of displacement from still water level. These seiche events translate into flow spikes that HEC-RAS routes downstream. Knowledge of the peak arrival time helps improve operational decisions at the Grass Island Pool. This poster will compare and contrast results from the existing operational flow forecast and the new integrated LEOFS/HEC-RAS forecast. This additional model will supply the Niagara River Control Center operators with multiple forecasts of flow to help improve forecasting under a wider variety of conditions.

  12. Comparison of short term rainfall forecasts for model based flow prediction in urban drainage systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Poulsen, Troels Sander; Bøvith, Thomas

    2012-01-01

    Forecast based flow prediction in drainage systems can be used to implement real time control of drainage systems. This study compares two different types of rainfall forecasts – a radar rainfall extrapolation based nowcast model and a numerical weather prediction model. The models are applied...... performance of the system is found using the radar nowcast for the short leadtimes and weather model for larger lead times....

  13. Comparison of short-term rainfall forecasts for modelbased flow prediction in urban drainage systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Ahm, Malte; Nielsen, Jesper Ellerbek

    2013-01-01

    Forecast-based flow prediction in drainage systems can be used to implement real-time control of drainage systems. This study compares two different types of rainfall forecast - a radar rainfall extrapolation-based nowcast model and a numerical weather prediction model. The models are applied...... performance of the system is found using the radar nowcast for the short lead times and the weather model for larger lead times....

  14. Short-Term State Forecasting-Based Optimal Voltage Regulation in Distribution Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui; Jiang, Huaiguang; Zhang, Yingchen

    2017-05-17

    A novel short-term state forecasting-based optimal power flow (OPF) approach for distribution system voltage regulation is proposed in this paper. An extreme learning machine (ELM) based state forecaster is developed to accurately predict system states (voltage magnitudes and angles) in the near future. Based on the forecast system states, a dynamically weighted three-phase AC OPF problem is formulated to minimize the voltage violations with higher penalization on buses which are forecast to have higher voltage violations in the near future. By solving the proposed OPF problem, the controllable resources in the system are optimally coordinated to alleviate the potential severe voltage violations and improve the overall voltage profile. The proposed approach has been tested in a 12-bus distribution system and simulation results are presented to demonstrate the performance of the proposed approach.

  15. Evaluation of the Plant-Craig stochastic convection scheme in an ensemble forecasting system

    Science.gov (United States)

    Keane, R. J.; Plant, R. S.; Tennant, W. J.

    2015-12-01

    The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic element only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.

  16. Wave ensemble forecast system for tropical cyclones in the Australian region

    Science.gov (United States)

    Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.

    2018-05-01

    Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.

  17. Box Office Forecasting considering Competitive Environment and Word-of-Mouth in Social Networks: A Case Study of Korean Film Market.

    Science.gov (United States)

    Kim, Taegu; Hong, Jungsik; Kang, Pilsung

    2017-01-01

    Accurate box office forecasting models are developed by considering competition and word-of-mouth (WOM) effects in addition to screening-related information. Nationality, genre, ratings, and distributors of motion pictures running concurrently with the target motion picture are used to describe the competition, whereas the numbers of informative, positive, and negative mentions posted on social network services (SNS) are used to gauge the atmosphere spread by WOM. Among these candidate variables, only significant variables are selected by genetic algorithm (GA), based on which machine learning algorithms are trained to build forecasting models. The forecasts are combined to improve forecasting performance. Experimental results on the Korean film market show that the forecasting accuracy in early screening periods can be significantly improved by considering competition. In addition, WOM has a stronger influence on total box office forecasting. Considering both competition and WOM improves forecasting performance to a larger extent than when only one of them is considered.

  18. Box Office Forecasting considering Competitive Environment and Word-of-Mouth in Social Networks: A Case Study of Korean Film Market

    Directory of Open Access Journals (Sweden)

    Taegu Kim

    2017-01-01

    Full Text Available Accurate box office forecasting models are developed by considering competition and word-of-mouth (WOM effects in addition to screening-related information. Nationality, genre, ratings, and distributors of motion pictures running concurrently with the target motion picture are used to describe the competition, whereas the numbers of informative, positive, and negative mentions posted on social network services (SNS are used to gauge the atmosphere spread by WOM. Among these candidate variables, only significant variables are selected by genetic algorithm (GA, based on which machine learning algorithms are trained to build forecasting models. The forecasts are combined to improve forecasting performance. Experimental results on the Korean film market show that the forecasting accuracy in early screening periods can be significantly improved by considering competition. In addition, WOM has a stronger influence on total box office forecasting. Considering both competition and WOM improves forecasting performance to a larger extent than when only one of them is considered.

  19. Radar Based Flow and Water Level Forecasting in Sewer Systems:a danisk case study

    OpenAIRE

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.; Neve, S. L.

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Both radar data and flow/water level model are continuously updated using online rain gauges and online in-sewer measurements, in order to make the best possible predictions. The project show very promis...

  20. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    Science.gov (United States)

    Shukla, Shraddhanand; Arsenault, Kristi R.; Getirana, Augusto; Kumar, Sujay V.; Roningen, Jeanne; Zaitchik, Ben; McNally, Amy; Koster, Randal D.; Peters-Lidard, Christa

    2017-04-01

    Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. A seamless and effective monitoring and early warning system is needed by regional/national stakeholders. Such system should support a proactive drought management approach and mitigate the socio-economic losses up to the extent possible. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of the LIS models used for drought and water availability monitoring in the region. The second part will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the monitoring and forecasting products through NASA's web-services. The water deficit forecasting system thus far incorporates NOAA's Noah land surface model (LSM), version 3.3, the Variable Infiltration Capacity (VIC) model, version 4.12, NASA GMAO's Catchment LSM, and the Noah Multi-Physics (MP) LSM (the latter two incorporate prognostic water table schemes). In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. The LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. The LIS software framework integrates these forcing datasets and drives the four LSMs and HyMAP. The Land Verification Toolkit (LVT) is used for the evaluation of the

  1. Forecasting water demand using back propagation networks in the operation of reservoirs in the citarum cascade, west java, indonesia

    Directory of Open Access Journals (Sweden)

    Mulya R. Mashudi

    2017-11-01

    Full Text Available This study investigates the use of Neural Networks (NN as a potential means of more accurately forecasting water demand in the Citarum River basin cascade. Neural Networks have the ability to recognise nonlinear patterns when sufficiently trained with historical data. The study constructs a NN model of the cascade, based on Back Propagation Networks (BPN. Data representing physical characteristics and meteorological conditions in the Citarum River basin from 1989 through 1995 were used to train the BPN. Nonlinear activation functions (sigmoid, tangent, and gaussian functions and hidden layers in the BPN were chosen for the study.

  2. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  3. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2004-01-01

    .... The results of this forecasting system would provide real-time information to the National Hurricane Center during the tropical cyclone season in the Atlantic for establishing improved advisories...

  4. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T; Augustus, Ellsworth H; Colonnese, Christopher P

    2003-01-01

    .... The results of this forecasting system would provide real-time information to the National Hurricane Center during the tropical cyclone season in the Atlantic for establishing improved advisories...

  5. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2005-01-01

    .... The results of this forecasting system would provide real-time information to the National Hurricane Center during the tropical cyclone season in the Atlantic for establishing improved advisories...

  6. Performance of the ocean state forecast system at Indian National Centre for Ocean Information Services

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, T.M.B.; Sirisha, P.; Sandhya, K.G.; Srinivas, K.; SanilKumar, V.; Sabique, L.; Nherakkol, A.; KrishnaPrasad, B.; RakhiKumari; Jeyakumar, C.; Kaviyazhahu, K.; RameshKumar, M.; Harikumar, R.; Shenoi, S.S.C.; Nayak, S.

    The reliability of the operational Ocean State Forecast system at the Indian National Centre for Ocean Information Services (INCOIS) during tropical cyclones that affect the coastline of India is described in this article. The performance...

  7. COAWST Forecast System : USGS : US East Coast and Gulf of Mexico (Experimental)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Experimental forecast model product from the USGS Coupled Ocean Atmosphere Wave Sediment-Transport (COAWST) modeling system. Data required to drive the modeling...

  8. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2005-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  9. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T

    2006-01-01

    ... of tropical cyclones The results of this forecasting system would provide real-time information to the National Hurricane Center during the tropical cyclone season in the Atlantic for establishing improved...

  10. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2004-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  11. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T; Augustus, Ellsworth H; Colonnese, Christopher P

    2003-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  12. The impact of implementing a demand forecasting system into a low-income country's supply chain.

    Science.gov (United States)

    Mueller, Leslie E; Haidari, Leila A; Wateska, Angela R; Phillips, Roslyn J; Schmitz, Michelle M; Connor, Diana L; Norman, Bryan A; Brown, Shawn T; Welling, Joel S; Lee, Bruce Y

    2016-07-12

    To evaluate the potential impact and value of applications (e.g. adjusting ordering levels, storage capacity, transportation capacity, distribution frequency) of data from demand forecasting systems implemented in a lower-income country's vaccine supply chain with different levels of population change to urban areas. Using our software, HERMES, we generated a detailed discrete event simulation model of Niger's entire vaccine supply chain, including every refrigerator, freezer, transport, personnel, vaccine, cost, and location. We represented the introduction of a demand forecasting system to adjust vaccine ordering that could be implemented with increasing delivery frequencies and/or additions of cold chain equipment (storage and/or transportation) across the supply chain during varying degrees of population movement. Implementing demand forecasting system with increased storage and transport frequency increased the number of successfully administered vaccine doses and lowered the logistics cost per dose up to 34%. Implementing demand forecasting system without storage/transport increases actually decreased vaccine availability in certain circumstances. The potential maximum gains of a demand forecasting system may only be realized if the system is implemented to both augment the supply chain cold storage and transportation. Implementation may have some impact but, in certain circumstances, may hurt delivery. Therefore, implementation of demand forecasting systems with additional storage and transport may be the better approach. Significant decreases in the logistics cost per dose with more administered vaccines support investment in these forecasting systems. Demand forecasting systems have the potential to greatly improve vaccine demand fulfilment, and decrease logistics cost/dose when implemented with storage and transportation increases. Simulation modeling can demonstrate the potential health and economic benefits of supply chain improvements. Copyright

  13. AIRS Impact on Analysis and Forecast of an Extreme Rainfall Event (Indus River Valley 2010) with a Global Data Assimilation and Forecast System

    Science.gov (United States)

    Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.

    2011-01-01

    A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.

  14. Improved Short-Term Load Forecasting Based on Two-Stage Predictions with Artificial Neural Networks in a Microgrid Environment

    Directory of Open Access Journals (Sweden)

    Jaime Lloret

    2013-08-01

    Full Text Available Short-Term Load Forecasting plays a significant role in energy generation planning, and is specially gaining momentum in the emerging Smart Grids environment, which usually presents highly disaggregated scenarios where detailed real-time information is available thanks to Communications and Information Technologies, as it happens for example in the case of microgrids. This paper presents a two stage prediction model based on an Artificial Neural Network in order to allow Short-Term Load Forecasting of the following day in microgrid environment, which first estimates peak and valley values of the demand curve of the day to be forecasted. Those, together with other variables, will make the second stage, forecast of the entire demand curve, more precise than a direct, single-stage forecast. The whole architecture of the model will be presented and the results compared with recent work on the same set of data, and on the same location, obtaining a Mean Absolute Percentage Error of 1.62% against the original 2.47% of the single stage model.

  15. [Network structures in biological systems].

    Science.gov (United States)

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  16. Global Ocean Forecast System 3.1 Validation Test

    Science.gov (United States)

    2017-05-04

    the relative skill of one analysis region with another. 49 An ice score card similar to the ocean score card has not yet been refined, so...the water column. GOFS nowcasts/forecasts the ocean’s “ weather ”, which includes the three-dimensional ocean temperature, salinity and current...42 4.0 SUMMARY, SCORE CARDS AND RECOMMENDATIONS ..................................................... 46

  17. A New Coastal Flood Forecasting System for the Netherlands

    NARCIS (Netherlands)

    De Kleermaeker, S.; Verlaan, M.; Kroos, J.; Zijl, F.

    2012-01-01

    The North Sea is one of the busiest seas in the world with dense ship traffic, fisheries, wind farming, recreation and many other activities. All these activities depend on the ‘marine weather’. Accurate forecasts of waves, currents and sea level are crucial for operational management and for

  18. Space-time wind speed forecasting for improved power system dispatch

    KAUST Repository

    Zhu, Xinxin

    2014-02-27

    To support large-scale integration of wind power into electric energy systems, state-of-the-art wind speed forecasting methods should be able to provide accurate and adequate information to enable efficient, reliable, and cost-effective scheduling of wind power. Here, we incorporate space-time wind forecasts into electric power system scheduling. First, we propose a modified regime-switching, space-time wind speed forecasting model that allows the forecast regimes to vary with the dominant wind direction and with the seasons, hence avoiding a subjective choice of regimes. Then, results from the wind forecasts are incorporated into a power system economic dispatch model, the cost of which is used as a loss measure of the quality of the forecast models. This, in turn, leads to cost-effective scheduling of system-wide wind generation. Potential economic benefits arise from the system-wide generation of cost savings and from the ancillary service cost savings. We illustrate the economic benefits using a test system in the northwest region of the United States. Compared with persistence and autoregressive models, our model suggests that cost savings from integration of wind power could be on the scale of tens of millions of dollars annually in regions with high wind penetration, such as Texas and the Pacific northwest. © 2014 Sociedad de Estadística e Investigación Operativa.

  19. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    Science.gov (United States)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  20. Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks

    Directory of Open Access Journals (Sweden)

    Hakan Tongal

    2013-07-01

    Full Text Available This paper evaluates the forecasting performance of two nonlinear models, k-nearest neighbor (kNN and feed-forward neural networks (FFNN, using stream flow data of the Kızılırmak River, the longest river in Turkey. For the kNN model, the required parameters are delay time, number of nearest neigh- bors and embedding dimension. The optimal delay time was obtained with the mutual information function; the number of nearest neighbors was obtained with the optimization process that minimi- zes RMSE as a function of the neighbor number and the embedding dimension was obtained with the correlation dimension method. The correlation dimension of the Kızılırmak River was d = 2.702, which was used in forming the input structure of the FFNN. The nearest integer above the correlation dimension (i.e., 3 provided the minimal number of required variables to characterize the system, and the maximum number of required variables was obtained with the nearest integer above the value 2d + 1 (Takens, 1981 (i.e., 7. Two FFNN models were developed that incorporate 3 and 7 lagged discharge values and the predicted performance compared to that of the kNN model. The results showed that the kNN model was superior to the FFNN model in stream flow forecasting. However, as a result from the kNN model structure, the model failed in the prediction of peak values. Additionally, it was found that the correlation dimension (if it existed could successfully be used in time series where the determina- tion of the input structure is difficult because of high inter-dependency, as in stream flow time series.  Resumen Este trabajo evalúa el desempeño de pronóstico de dos modelos no lineares, de método de clasificación no paramétrico kNN y de redes neuronales con alimentación avanzada (FNNN, usando datos de flujo del río Kizilirmak, el mayor de Turquía. Para el modelo kNN, los parámetros requeridos son tiempo de retraso, número de vecindarios cercanos y dimensión de

  1. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, Adel [Department of Electronics, Faculty of Sciences and Technology, LAMEL, Jijel University, Ouled-aissa, P.O. Box 98, Jijel 18000 (Algeria); Pavan, Alessandro Massi [Department of Materials and Natural Resources, University of Trieste Via A. Valerio, 2 - 34127 Trieste (Italy)

    2010-05-15

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  2. Improving Arctic Sea Ice Edge Forecasts by Assimilating High Horizontal Resolution Sea Ice Concentration Data into the US Navy’s Ice Forecast Systems

    Science.gov (United States)

    2016-06-13

    1735-2015 © Author(s) 2015. CC Attribution 3.0 License. Improving Arctic sea ice edge forecasts by assimilating high horizontal resolution sea ice...concentration data into the US Navy’s ice forecast systems P. G. Posey1, E. J. Metzger1, A. J. Wallcraft1, D. A. Hebert1, R. A. Allard1, O. M. Smedstad2...error within the US Navy’s operational sea ice forecast systems gained by assimilating high horizontal resolution satellite-derived ice concentration

  3. Data mining in forecasting PVT correlations of crude oil systems based on Type1 fuzzy logic inference systems

    Science.gov (United States)

    El-Sebakhy, Emad A.

    2009-09-01

    Pressure-volume-temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson-Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization.

  4. Language Networks as Complex Systems

    Science.gov (United States)

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  5. Financial Network Systemic Risk Contributions

    NARCIS (Netherlands)

    Hautsch, N.; Schaumburg, J.; Schienle, M.

    2015-01-01

    We propose the realized systemic risk beta as a measure of financial companies' contribution to systemic risk, given network interdependence between firms' tail risk exposures. Conditional on statistically pre-identified network spillover effects and market and balance sheet information, we define

  6. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    Science.gov (United States)

    Radziukynas, V.; Klementavičius, A.

    2016-04-01

    The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).

  7. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    Directory of Open Access Journals (Sweden)

    Radziukynas V.

    2016-04-01

    Full Text Available The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011 and planned wind power capacities (the year 2023.

  8. Forecast products from the Gulf of Mexico created by the NOAA Harmful Algal Bloom Operational Forecast System (HAB-OFS) from 2007-09-10 to the present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains outputs from the NOAA Harmful Algal Bloom Operational Forecast System (HAB-OFS) in the form of bulletin documents beginning on 2007-09-10....

  9. Electrical Energy Forecasting and Optimal Allocation of ESS in a Hybrid Wind-Diesel Power System

    Directory of Open Access Journals (Sweden)

    Hai Lan

    2017-02-01

    Full Text Available Due to the increasingly serious energy crisis and environmental pollution problem, traditional fossil energy is gradually being replaced by renewable energy in recent years. However, the introduction of renewable energy into power systems will lead to large voltage fluctuations and high capital costs. To solve these problems, an energy storage system (ESS is employed into a power system to reduce total costs and greenhouse gas emissions. Hence, this paper proposes a two-stage method based on a back-propagation neural network (BPNN and hybrid multi-objective particle swarm optimization (HMOPSO to determine the optimal placements and sizes of ESSs in a transmission system. Owing to the uncertainties of renewable energy, a BPNN is utilized to forecast the outputs of the wind power and load demand based on historic data in the city of Madison, USA. Furthermore, power-voltage (P-V sensitivity analysis is conducted in this paper to improve the converge speed of the proposed algorithm, and continuous wind distribution is discretized by a three-point estimation method. The Institute of Electrical and Electronic Engineers (IEEE 30-bus system is adopted to perform case studies. The simulation results of each case clearly demonstrate the necessity for optimal storage allocation and the efficiency of the proposed method.

  10. Test operation of a real-time tsunami inundation forecast system using actual data observed by S-net