WorldWideScience

Sample records for network flow algorithms

  1. Flow enforcement algorithms for ATM networks

    DEFF Research Database (Denmark)

    Dittmann, Lars; Jacobsen, Søren B.; Moth, Klaus

    1991-01-01

    Four measurement algorithms for flow enforcement in asynchronous transfer mode (ATM) networks are presented. The algorithms are the leaky bucket, the rectangular sliding window, the triangular sliding window, and the exponentially weighted moving average. A comparison, based partly on teletraffic...

  2. A network flow algorithm to position tiles for LAMOST

    International Nuclear Information System (INIS)

    Li Guangwei; Zhao Gang

    2009-01-01

    We introduce the network flow algorithm used by the Sloan Digital Sky Survey (SDSS) into the sky survey of the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) to position tiles. Because fibers in LAMOST's focal plane are distributed uniformly, we cannot use SDSS' method directly. To solve this problem, firstly we divide the sky into many small blocks, and we also assume that all the targets that are in the same block have the same position, which is the center of the block. Secondly, we give a value to limit the number of the targets that the LAMOST focal plane can collect in one square degree so that it cannot collect too many targets in one small block. Thirdly, because the network flow algorithm used in this paper is a bipartite network, we do not use the general solution algorithm that was used by SDSS. Instead, we give our new faster solution method for this special network. Compared with the Convergent Mean Shift Algorithm, the network flow algorithm can decrease observation times with improved mean imaging quality. This algorithm also has a very fast running speed. It can distribute millions of targets in a few minutes using a common personal computer.

  3. Distributed Multi-Commodity Network Flow Algorithm for Energy Optimal Routing in Wireless Sensor Networks.

    Directory of Open Access Journals (Sweden)

    J. Trdlicka

    2010-12-01

    Full Text Available This work proposes a distributed algorithm for energy optimal routing in a wireless sensor network. The routing problem is described as a mathematical problem by the minimum-cost multi-commodity network flow problem. Due to the separability of the problem, we use the duality theorem to derive the distributed algorithm. The algorithm computes the energy optimal routing in the network without any central node or knowledge of the whole network structure. Each node only needs to know the flow which is supposed to send or receive and the costs and capacities of the neighboring links. An evaluation of the presented algorithm on benchmarks for the energy optimal data flow routing in sensor networks with up to 100 nodes is presented.

  4. A dual exterior point simplex type algorithm for the minimum cost network flow problem

    Directory of Open Access Journals (Sweden)

    Geranis George

    2009-01-01

    Full Text Available A new dual simplex type algorithm for the Minimum Cost Network Flow Problem (MCNFP is presented. The proposed algorithm belongs to a special 'exterior- point simplex type' category. Similarly to the classical network dual simplex algorithm (NDSA, this algorithm starts with a dual feasible tree-solution and reduces the primal infeasibility, iteration by iteration. However, contrary to the NDSA, the new algorithm does not always maintain a dual feasible solution. Instead, the new algorithm might reach a basic point (tree-solution outside the dual feasible area (exterior point - dual infeasible tree.

  5. Combining neural networks and genetic algorithms for hydrological flow forecasting

    Science.gov (United States)

    Neruda, Roman; Srejber, Jan; Neruda, Martin; Pascenko, Petr

    2010-05-01

    We present a neural network approach to rainfall-runoff modeling for small size river basins based on several time series of hourly measured data. Different neural networks are considered for short time runoff predictions (from one to six hours lead time) based on runoff and rainfall data observed in previous time steps. Correlation analysis shows that runoff data, short time rainfall history, and aggregated API values are the most significant data for the prediction. Neural models of multilayer perceptron and radial basis function networks with different numbers of units are used and compared with more traditional linear time series predictors. Out of possible 48 hours of relevant history of all the input variables, the most important ones are selected by means of input filters created by a genetic algorithm. The genetic algorithm works with population of binary encoded vectors defining input selection patterns. Standard genetic operators of two-point crossover, random bit-flipping mutation, and tournament selection were used. The evaluation of objective function of each individual consists of several rounds of building and testing a particular neural network model. The whole procedure is rather computational exacting (taking hours to days on a desktop PC), thus a high-performance mainframe computer has been used for our experiments. Results based on two years worth data from the Ploucnice river in Northern Bohemia suggest that main problems connected with this approach to modeling are ovetraining that can lead to poor generalization, and relatively small number of extreme events which makes it difficult for a model to predict the amplitude of the event. Thus, experiments with both absolute and relative runoff predictions were carried out. In general it can be concluded that the neural models show about 5 per cent improvement in terms of efficiency coefficient over liner models. Multilayer perceptrons with one hidden layer trained by back propagation algorithm and

  6. A polynomial time algorithm for solving the maximum flow problem in directed networks

    International Nuclear Information System (INIS)

    Tlas, M.

    2015-01-01

    An efficient polynomial time algorithm for solving maximum flow problems has been proposed in this paper. The algorithm is basically based on the binary representation of capacities; it solves the maximum flow problem as a sequence of O(m) shortest path problems on residual networks with nodes and m arcs. It runs in O(m"2r) time, where is the smallest integer greater than or equal to log B , and B is the largest arc capacity of the network. A numerical example has been illustrated using this proposed algorithm.(author)

  7. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.

    Science.gov (United States)

    Gu, Weiwei; Gong, Li; Lou, Xiaodan; Zhang, Jiang

    2017-10-13

    Network embedding which encodes all vertices in a network as a set of numerical vectors in accordance with it's local and global structures, has drawn widespread attention. Network embedding not only learns significant features of a network, such as the clustering and linking prediction but also learns the latent vector representation of the nodes which provides theoretical support for a variety of applications, such as visualization, link prediction, node classification, and recommendation. As the latest progress of the research, several algorithms based on random walks have been devised. Although those algorithms have drawn much attention for their high scores in learning efficiency and accuracy, there is still a lack of theoretical explanation, and the transparency of those algorithms has been doubted. Here, we propose an approach based on the open-flow network model to reveal the underlying flow structure and its hidden metric space of different random walk strategies on networks. We show that the essence of embedding based on random walks is the latent metric structure defined on the open-flow network. This not only deepens our understanding of random- walk-based embedding algorithms but also helps in finding new potential applications in network embedding.

  8. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    Science.gov (United States)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  9. Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization

    Science.gov (United States)

    Sochi, Taha

    2016-09-01

    Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.

  10. A new cut-based algorithm for the multi-state flow network reliability problem

    International Nuclear Information System (INIS)

    Yeh, Wei-Chang; Bae, Changseok; Huang, Chia-Ling

    2015-01-01

    Many real-world systems can be modeled as multi-state network systems in which reliability can be derived in terms of the lower bound points of level d, called d-minimal cuts (d-MCs). This study proposes a new method to find and verify obtained d-MCs with simple and useful found properties for the multi-state flow network reliability problem. The proposed algorithm runs in O(mσp) time, which represents a significant improvement over the previous O(mp 2 σ) time bound based on max-flow/min-cut, where p, σ and m denote the number of MCs, d-MC candidates and edges, respectively. The proposed algorithm also conquers the weakness of some existing methods, which failed to remove duplicate d-MCs in special cases. A step-by-step example is given to demonstrate how the proposed algorithm locates and verifies all d-MC candidates. As evidence of the utility of the proposed approach, we present extensive computational results on 20 benchmark networks in another example. The computational results compare favorably with a previously developed algorithm in the literature. - Highlights: • A new method is proposed to find all d-MCs for the multi-state flow networks. • The proposed method can prevent the generation of d-MC duplicates. • The proposed method is simpler and more efficient than the best-known algorithms

  11. Evaluation of multilayer perceptron algorithms for an analysis of network flow data

    Science.gov (United States)

    Bieniasz, Jedrzej; Rawski, Mariusz; Skowron, Krzysztof; Trzepiński, Mateusz

    2016-09-01

    The volume of exchanged information through IP networks is larger than ever and still growing. It creates a space for both benign and malicious activities. The second one raises awareness on security network devices, as well as network infrastructure and a system as a whole. One of the basic tools to prevent cyber attacks is Network Instrusion Detection System (NIDS). NIDS could be realized as a signature-based detector or an anomaly-based one. In the last few years the emphasis has been placed on the latter type, because of the possibility of applying smart and intelligent solutions. An ideal NIDS of next generation should be composed of self-learning algorithms that could react on known and unknown malicious network activities respectively. In this paper we evaluated a machine learning approach for detection of anomalies in IP network data represented as NetFlow records. We considered Multilayer Perceptron (MLP) as the classifier and we used two types of learning algorithms - Backpropagation (BP) and Particle Swarm Optimization (PSO). This paper includes a comprehensive survey on determining the most optimal MLP learning algorithm for the classification problem in application to network flow data. The performance, training time and convergence of BP and PSO methods were compared. The results show that PSO algorithm implemented by the authors outperformed other solutions if accuracy of classifications is considered. The major disadvantage of PSO is training time, which could be not acceptable for larger data sets or in real network applications. At the end we compared some key findings with the results from the other papers to show that in all cases results from this study outperformed them.

  12. The Average Network Flow Problem: Shortest Path and Minimum Cost Flow Formulations, Algorithms, Heuristics, and Complexity

    Science.gov (United States)

    2012-09-13

    46, 1989. [75] S. Melkote and M.S. Daskin . An integrated model of facility location and transportation network design. Transportation Research Part A ... a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT/DS/ENS/12-09 THE AVERAGE NETWORK FLOW PROBLEM...focused thinking (VFT) are used sparingly, as is the case across the entirety of the supply chain literature. We provide a VFT tutorial for supply chain

  13. Decision Diagram Based Symbolic Algorithm for Evaluating the Reliability of a Multistate Flow Network

    Directory of Open Access Journals (Sweden)

    Rongsheng Dong

    2016-01-01

    Full Text Available Evaluating the reliability of Multistate Flow Network (MFN is an NP-hard problem. Ordered binary decision diagram (OBDD or variants thereof, such as multivalued decision diagram (MDD, are compact and efficient data structures suitable for dealing with large-scale problems. Two symbolic algorithms for evaluating the reliability of MFN, MFN_OBDD and MFN_MDD, are proposed in this paper. In the algorithms, several operating functions are defined to prune the generated decision diagrams. Thereby the state space of capacity combinations is further compressed and the operational complexity of the decision diagrams is further reduced. Meanwhile, the related theoretical proofs and complexity analysis are carried out. Experimental results show the following: (1 compared to the existing decomposition algorithm, the proposed algorithms take less memory space and fewer loops. (2 The number of nodes and the number of variables of MDD generated in MFN_MDD algorithm are much smaller than those of OBDD built in the MFN_OBDD algorithm. (3 In two cases with the same number of arcs, the proposed algorithms are more suitable for calculating the reliability of sparse networks.

  14. A network-flow based valve-switching aware binding algorithm for flow-based microfluidic biochips

    DEFF Research Database (Denmark)

    Tseng, Kai-Han; You, Sheng-Chi; Minhass, Wajid Hassan

    2013-01-01

    -flow based resource binding algorithm based on breadth-first search (BFS) and minimum cost maximum flow (MCMF) in architectural-level synthesis. The experimental results show that our methodology not only makes significant reduction of valve-switching activities but also diminishes the application completion......Designs of flow-based microfluidic biochips are receiving much attention recently because they replace conventional biological automation paradigm and are able to integrate different biochemical analysis functions on a chip. However, as the design complexity increases, a flow-based microfluidic...... biochip needs more chip-integrated micro-valves, i.e., the basic unit of fluid-handling functionality, to manipulate the fluid flow for biochemical applications. Moreover, frequent switching of micro-valves results in decreased reliability. To minimize the valve-switching activities, we develop a network...

  15. A Distributed Flow Rate Control Algorithm for Networked Agent System with Multiple Coding Rates to Optimize Multimedia Data Transmission

    Directory of Open Access Journals (Sweden)

    Shuai Zeng

    2013-01-01

    Full Text Available With the development of wireless technologies, mobile communication applies more and more extensively in the various walks of life. The social network of both fixed and mobile users can be seen as networked agent system. At present, kinds of devices and access network technology are widely used. Different users in this networked agent system may need different coding rates multimedia data due to their heterogeneous demand. This paper proposes a distributed flow rate control algorithm to optimize multimedia data transmission of the networked agent system with the coexisting various coding rates. In this proposed algorithm, transmission path and upload bandwidth of different coding rate data between source node, fixed and mobile nodes are appropriately arranged and controlled. On the one hand, this algorithm can provide user nodes with differentiated coding rate data and corresponding flow rate. On the other hand, it makes the different coding rate data and user nodes networked, which realizes the sharing of upload bandwidth of user nodes which require different coding rate data. The study conducts mathematical modeling on the proposed algorithm and compares the system that adopts the proposed algorithm with the existing system based on the simulation experiment and mathematical analysis. The results show that the system that adopts the proposed algorithm achieves higher upload bandwidth utilization of user nodes and lower upload bandwidth consumption of source node.

  16. Distributed routing algorithms to manage power flow in agent-based active distribution network

    NARCIS (Netherlands)

    Nguyen, H.P.; Kling, W.L.; Georgiadis, G.; Papatriantafilou, M.; Anh-Tuan, L.; Bertling, L.

    2010-01-01

    The current transition from passive to active electric distribution networks comes with problems and challenges on bi-directional power flow in the network and the uncertainty in the forecast of power generation from grid-connected renewable and distributed energy sources. The power flow management

  17. A simple MC-based algorithm for evaluating reliability of stochastic-flow network with unreliable nodes

    International Nuclear Information System (INIS)

    Yeh, W.-C.

    2004-01-01

    A MP/minimal cutset (MC) is a path/cut set such that if any edge is removed from this path/cut set, then the remaining set is no longer a path/cut set. An intuitive method is proposed to evaluate the reliability in terms of MCs in a stochastic-flow network subject to both edge and node failures under the condition that all of the MCs are given in advance. This is an extension of the best of known algorithms for solving the d-MC (a special MC but formatted in a system-state vector, where d is the lower bound points of the system capacity level) problem from the stochastic-flow network without unreliable nodes to with unreliable nodes by introducing some simple concepts. These concepts were first developed in the literature to implement the proposed algorithm to reduce the number of d-MC candidates. This method is more efficient than the best of known existing algorithms regardless if the network has or does not have unreliable nodes. Two examples are illustrated to show how the reliability is determined using the proposed algorithm in the network with or without unreliable nodes. The computational complexity of the proposed algorithm is analyzed and compared with the existing methods

  18. Network-based Type-2 Fuzzy System with Water Flow Like Algorithm for System Identification and Signal Processing

    Directory of Open Access Journals (Sweden)

    Che-Ting Kuo

    2015-02-01

    Full Text Available This paper introduces a network-based interval type-2 fuzzy inference system (NT2FIS with a dynamic solution agent algorithm water flow like algorithm (WFA, for nonlinear system identification and blind source separation (BSS problem. The NT2FIS consists of interval type-2 asymmetric fuzzy membership functions and TSK-type consequent parts to enhance the performance. The proposed scheme is optimized by a new heuristic learning algorithm, WFA, with dynamic solution agents. The proposed WFA is inspired by the natural behavior of water flow. Splitting, moving, merging, evaporation, and precipitation have all been introduced for optimization. Some modifications, including new moving strategies, such as the application of tabu searching and gradient-descent techniques, are proposed to enhance the performance of the WFA in training the NT2FIS systems. Simulation and comparison results for nonlinear system identification and blind signal separation are presented to illustrate the performance and effectiveness of the proposed approach.

  19. Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm

    Directory of Open Access Journals (Sweden)

    Jeng-Fung Chen

    2014-11-01

    Full Text Available The accuracy of reservoir flow forecasting has the most significant influence on the assurance of stability and annual operations of hydro-constructions. For instance, accurate forecasting on the ebb and flow of Vietnam’s Hoabinh Reservoir can aid in the preparation and prevention of lowland flooding and drought, as well as regulating electric energy. This raises the need to propose a model that accurately forecasts the incoming flow of the Hoabinh Reservoir. In this study, a solution to this problem based on neural network with the Cuckoo Search (CS algorithm is presented. In particular, we used hydrographic data and predicted total incoming flows of the Hoabinh Reservoir over a period of 10 days. The Cuckoo Search algorithm was utilized to train the feedforward neural network (FNN for prediction. The algorithm optimized the weights between layers and biases of the neuron network. Different forecasting models for the three scenarios were developed. The constructed models have shown high forecasting performance based on the performance indices calculated. These results were also compared with those obtained from the neural networks trained by the particle swarm optimization (PSO and back-propagation (BP, indicating that the proposed approach performed more effectively. Based on the experimental results, the scenario using the rainfall and the flow as input yielded the highest forecasting accuracy when compared with other scenarios. The performance criteria RMSE, MAPE, and R obtained by the CS-FNN in this scenario were calculated as 48.7161, 0.067268 and 0.8965, respectively. These results were highly correlated to actual values. It is expected that this work may be useful for hydrographic forecasting.

  20. Imaging the Flow Networks from a Harmonic Pumping in a Karstic Field with an Inversion Algorithm

    Science.gov (United States)

    Fischer, P.; Lecoq, N.; Jardani, A.; Jourde, H.; Wang, X.; Chedeville, S.; Cardiff, M. A.

    2017-12-01

    Identifying flow paths within karstic fields remains a complex task because of the high dependency of the hydraulic responses to the relative locations between the observation boreholes and the karstic conduits and interconnected fractures that control the main flows of the hydrosystem. In this context, harmonic pumping is a new investigation tool that permits to inform on the flow paths connectivity between the boreholes. We have shown that the amplitude and phase offset values in the periodic responses of a hydrosystem to a harmonic pumping test characterize three different type of flow behavior between the measurement boreholes and the pumping borehole: a direct connectivity response (conduit flow), an indirect connectivity (conduit and short matrix flows), and an absence of connectivity (matrix). When the hydraulic responses to study are numerous and complex, the interpretation of the flow paths requires an inverse modeling. Therefore, we have recently developed a Cellular Automata-based Deterministic Inversion (CADI) approach that permits to infer the spatial distribution of field hydraulic conductivities in a structurally constrained model. This method distributes hydraulic conductivities along linear structures (i.e. karst conduits) and iteratively modifies the structural geometry of this conduits network to progressively match the observed responses to the modeled ones. As a result, this method produces a conductivity model that is composed of a discrete conduit network embedded in the background matrix, capable of producing the same flow behavior as the investigated hydrologic system. We applied the CADI approach in order to reproduce, in a model, the amplitude and phase offset values of a set of periodic responses generated from harmonic pumping tests conducted in different boreholes at the Terrieu karstic field site (Southern France). This association of oscillatory responses with the CADI method provides an interpretation of the flow paths within the

  1. Vector Network Coding Algorithms

    OpenAIRE

    Ebrahimi, Javad; Fragouli, Christina

    2010-01-01

    We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algori...

  2. Network-Oblivious Algorithms

    DEFF Research Database (Denmark)

    Bilardi, Gianfranco; Pietracaprina, Andrea; Pucci, Geppino

    2016-01-01

    A framework is proposed for the design and analysis of network-oblivious algorithms, namely algorithms that can run unchanged, yet efficiently, on a variety of machines characterized by different degrees of parallelism and communication capabilities. The framework prescribes that a network......-oblivious algorithm be specified on a parallel model of computation where the only parameter is the problem’s input size, and then evaluated on a model with two parameters, capturing parallelism granularity and communication latency. It is shown that for a wide class of network-oblivious algorithms, optimality...... of cache hierarchies, to the realm of parallel computation. Its effectiveness is illustrated by providing optimal network-oblivious algorithms for a number of key problems. Some limitations of the oblivious approach are also discussed....

  3. Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms

    International Nuclear Information System (INIS)

    Amanifard, N.; Nariman-Zadeh, N.; Borji, M.; Khalkhali, A.; Habibdoust, A.

    2008-01-01

    Three-dimensional heat transfer characteristics and pressure drop of water flow in a set of rectangular microchannels are numerically investigated using Fluent and compared with those of experimental results. Two metamodels based on the evolved group method of data handling (GMDH) type neural networks are then obtained for modelling of both pressure drop (ΔP) and Nusselt number (Nu) with respect to design variables such as geometrical parameters of microchannels, the amount of heat flux and the Reynolds number. Using such obtained polynomial neural networks, multi-objective genetic algorithms (GAs) (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism is then used for Pareto based optimization of microchannels considering two conflicting objectives such as (ΔP) and (Nu). It is shown that some interesting and important relationships as useful optimal design principles involved in the performance of microchannels can be discovered by Pareto based multi-objective optimization of the obtained polynomial metamodels representing their heat transfer and flow characteristics. Such important optimal principles would not have been obtained without the use of both GMDH type neural network modelling and the Pareto optimization approach

  4. Artificial neural network analysis based on genetic algorithm to predict the performance characteristics of a cross flow cooling tower

    Science.gov (United States)

    Wu, Jiasheng; Cao, Lin; Zhang, Guoqiang

    2018-02-01

    Cooling tower of air conditioning has been widely used as cooling equipment, and there will be broad application prospect if it can be reversibly used as heat source under heat pump heating operation condition. In view of the complex non-linear relationship of each parameter in the process of heat and mass transfer inside tower, In this paper, the BP neural network model based on genetic algorithm optimization (GABP neural network model) is established for the reverse use of cross flow cooling tower. The model adopts the structure of 6 inputs, 13 hidden nodes and 8 outputs. With this model, the outlet air dry bulb temperature, wet bulb temperature, water temperature, heat, sensible heat ratio and heat absorbing efficiency, Lewis number, a total of 8 the proportion of main performance parameters were predicted. Furthermore, the established network model is used to predict the water temperature and heat absorption of the tower at different inlet temperatures. The mean relative error MRE between BP predicted value and experimental value are 4.47%, 3.63%, 2.38%, 3.71%, 6.35%,3.14%, 13.95% and 6.80% respectively; the mean relative error MRE between GABP predicted value and experimental value are 2.66%, 3.04%, 2.27%, 3.02%, 6.89%, 3.17%, 11.50% and 6.57% respectively. The results show that the prediction results of GABP network model are better than that of BP network model; the simulation results are basically consistent with the actual situation. The GABP network model can well predict the heat and mass transfer performance of the cross flow cooling tower.

  5. Genetic Algorithm for Solving Location Problem in a Supply Chain Network with Inbound and Outbound Product Flows

    Directory of Open Access Journals (Sweden)

    Suprayogi Suprayogi

    2016-12-01

    Full Text Available This paper considers a location problem in a supply chain network. The problem addressed in this paper is motivated by an initiative to develop an efficient supply chain network for supporting the agricultural activities. The supply chain network consists of regions, warehouses, distribution centers, plants, and markets. The products include a set of inbound products and a set of outbound products. In this paper, definitions of the inbound and outbound products are seen from the region’s point of view.  The inbound product is the product demanded by regions and produced by plants which flows on a sequence of the following entities: plants, distribution centers, warehouses, and regions. The outbound product is the product demanded by markets and produced by regions and it flows on a sequence of the following entities: regions, warehouses, and markets. The problem deals with determining locations of the warehouses and the distribution centers to be opened and shipment quantities associated with all links on the network that minimizes the total cost. The problem can be considered as a strategic supply chain network problem. A solution approach based on genetic algorithm (GA is proposed. The proposed GA is examined using hypothetical instances and its results are compared to the solution obtained by solving the mixed integer linear programming (MILP model. The comparison shows that there is a small gap (0.23%, on average between the proposed GA and MILP model in terms of the total cost. The proposed GA consistently provides solutions with least total cost. In terms of total cost, based on the experiment, it is demonstrated that coefficients of variation are closed to 0.

  6. Research on network maximum flows algorithm of cascade level graph%级连层次图的网络最大流算法研究

    Institute of Scientific and Technical Information of China (English)

    潘荷新; 伊崇信; 李满

    2011-01-01

    给出一种通过构造网络级连层次图的方法,来间接求出最大网络流的算法.对于给定的有n个顶点,P条边的网络N=(G,s,t,C),该算法可在O(n2)时间内快速求出流经网络N的最大网络流及达最大流时的网络流.%This paper gives an algoritm that structures a network cascade level graph to find out maximum flow of the network indirectly.For the given network N=(G,s,t,C) that has n vetexes and e arcs,this algorithm finds out the maximum value of the network flow fast in O(n2) time that flows from the network N and the network flows when the value of the one reach maximum.

  7. Subcubic Control Flow Analysis Algorithms

    DEFF Research Database (Denmark)

    Midtgaard, Jan; Van Horn, David

    We give the first direct subcubic algorithm for performing control flow analysis of higher-order functional programs. Despite the long held belief that inclusion-based flow analysis could not surpass the ``cubic bottleneck, '' we apply known set compression techniques to obtain an algorithm...... that runs in time O(n^3/log n) on a unit cost random-access memory model machine. Moreover, we refine the initial flow analysis into two more precise analyses incorporating notions of reachability. We give subcubic algorithms for these more precise analyses and relate them to an existing analysis from...

  8. Linear Programming and Network Flows

    CERN Document Server

    Bazaraa, Mokhtar S; Sherali, Hanif D

    2011-01-01

    The authoritative guide to modeling and solving complex problems with linear programming-extensively revised, expanded, and updated The only book to treat both linear programming techniques and network flows under one cover, Linear Programming and Network Flows, Fourth Edition has been completely updated with the latest developments on the topic. This new edition continues to successfully emphasize modeling concepts, the design and analysis of algorithms, and implementation strategies for problems in a variety of fields, including industrial engineering, management science, operations research

  9. Gossip algorithms in quantum networks

    Science.gov (United States)

    Siomau, Michael

    2017-01-01

    Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up - in the best case exponentially - the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication.

  10. Gossip algorithms in quantum networks

    International Nuclear Information System (INIS)

    Siomau, Michael

    2017-01-01

    Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up – in the best case exponentially – the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication. - Highlights: • We analyze the performance of gossip algorithms in quantum networks. • Local operations and classical communication (LOCC) can speed the performance up. • The speed-up is exponential in the best case; the number of LOCC is polynomial.

  11. Gossip algorithms in quantum networks

    Energy Technology Data Exchange (ETDEWEB)

    Siomau, Michael, E-mail: siomau@nld.ds.mpg.de [Physics Department, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia); Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany)

    2017-01-23

    Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up – in the best case exponentially – the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication. - Highlights: • We analyze the performance of gossip algorithms in quantum networks. • Local operations and classical communication (LOCC) can speed the performance up. • The speed-up is exponential in the best case; the number of LOCC is polynomial.

  12. Solving Bi-Objective Optimal Power Flow using Hybrid method of Biogeography-Based Optimization and Differential Evolution Algorithm: A case study of the Algerian Electrical Network

    Directory of Open Access Journals (Sweden)

    Ouafa Herbadji

    2016-03-01

    Full Text Available This paper proposes a new hybrid metaheuristique algorithm based on the hybridization of Biogeography-based optimization with the Differential Evolution for solving the optimal power flow problem with emission control. The biogeography-based optimization (BBO algorithm is strongly influenced by equilibrium theory of island biogeography, mainly through two steps: Migration and Mutation. Differential Evolution (DE is one of the best Evolutionary Algorithms for global optimization. The hybridization of these two methods is used to overcome traps of local optimal solutions and problems of time consumption. The objective of this paper is to minimize the total fuel cost of generation, total emission, total real power loss and also maintain an acceptable system performance in terms of limits on generator real power, bus voltages and power flow of transmission lines. In the present work, BBO/DE has been applied to solve the optimal power flow problems on IEEE 30-bus test system and the Algerian electrical network 114 bus. The results obtained from this method show better performances compared with DE, BBO and other well known metaheuristique and evolutionary optimization methods.

  13. Operation and Power Flow Control of Multi-Terminal DC Networks for Grid Integration of Offshore Wind Farms Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Rodrigo Teixeira Pinto

    2012-12-01

    Full Text Available For achieving the European renewable electricity targets, a significant contribution is foreseen to come from offshore wind energy. Considering the large scale of the future planned offshore wind farms and the increasing distances to shore, grid integration through a transnational DC network is desirable for several reasons. This article investigates a nine-node DC grid connecting three northern European countries — namely UK, The Netherlands and Germany. The power-flow control inside the multi-terminal DC grid based on voltage-source converters is achieved through a novel method, called distributed voltage control (DVC. In this method, an optimal power flow (OPF is solved in order to minimize the transmission losses in the network. The main contribution of the paper is the utilization of a genetic algorithm (GA to solve the OPF problem while maintaining an N-1 security constraint. After describing main DC network component models, several case studies illustrate the dynamic behavior of the proposed control method.

  14. Hardness and Approximation for Network Flow Interdiction

    OpenAIRE

    Chestnut, Stephen R.; Zenklusen, Rico

    2015-01-01

    In the Network Flow Interdiction problem an adversary attacks a network in order to minimize the maximum s-t-flow. Very little is known about the approximatibility of this problem despite decades of interest in it. We present the first approximation hardness, showing that Network Flow Interdiction and several of its variants cannot be much easier to approximate than Densest k-Subgraph. In particular, any $n^{o(1)}$-approximation algorithm for Network Flow Interdiction would imply an $n^{o(1)}...

  15. Airport Network Flow Simulator

    Science.gov (United States)

    1978-10-01

    The Airport Network Flow Simulator is a FORTRAN IV simulation of the flow of air traffic in the nation's 600 commercial airports. It calculates for any group of selected airports: (a) the landing and take-off (Type A) delays; and (b) the gate departu...

  16. Optimal Allocation of Wind Turbines in Active Distribution Networks by Using Multi-Period Optimal Power Flow and Genetic Algorithms

    DEFF Research Database (Denmark)

    Siano, P.; Chen, Peiyuan; Chen, Zhe

    2012-01-01

    In order to achieve an effective reduction of green house gas emissions, the future electrical distribution networks will need to accommodate higher amount of renewable energy based on distributed generation such as Wind Turbines. This will require a re-evaluation and most likely a revision...... of traditional methodologies, so that they can be used for the planning and management of future electrical distribution networks. Such networks evolve from the current passive systems to active networks and smart grids, managed through systems based on Information Communication Technology. This chapter proposes...

  17. A digital elevation analysis: Spatially distributed flow apportioning algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Hyun; Kim, Kyung-Hyun [Pusan National University, Pusan(Korea); Jung, Sun-Hee [Korea Environment Institute, (Korea)

    2001-06-30

    A flow determination algorithm is proposed for the distributed hydrologic model. The advantages of a single flow direction scheme and multiple flow direction schemes are selectively considered to address the drawbacks of existing algorithms. A spatially varied flow apportioning factor is introduced in order to accommodate the accumulated area from upslope cells. The channel initiation threshold area(CIT) concept is expanded and integrated into the spatially distributed flow apportioning algorithm in order to delineate a realistic channel network. An application of a field example suggests that the linearly distributed flow apportioning scheme provides some advantages over existing approaches, such as the relaxation of over-dissipation problems near channel cells, the connectivity feature of river cells, the continuity of saturated areas and the negligence of the optimization of few parameters in existing algorithms. The effects of grid sizes are explored spatially as well as statistically. (author). 28 refs., 7 figs.

  18. Serial Network Flow Monitor

    Science.gov (United States)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  19. Dynamic Traffic Congestion Simulation and Dissipation Control Based on Traffic Flow Theory Model and Neural Network Data Calibration Algorithm

    Directory of Open Access Journals (Sweden)

    Li Wang

    2017-01-01

    Full Text Available Traffic congestion is a common problem in many countries, especially in big cities. At present, China’s urban road traffic accidents occur frequently, the occurrence frequency is high, the accident causes traffic congestion, and accidents cause traffic congestion and vice versa. The occurrence of traffic accidents usually leads to the reduction of road traffic capacity and the formation of traffic bottlenecks, causing the traffic congestion. In this paper, the formation and propagation of traffic congestion are simulated by using the improved medium traffic model, and the control strategy of congestion dissipation is studied. From the point of view of quantitative traffic congestion, the paper provides the fact that the simulation platform of urban traffic integration is constructed, and a feasible data analysis, learning, and parameter calibration method based on RBF neural network is proposed, which is used to determine the corresponding decision support system. The simulation results prove that the control strategy proposed in this paper is effective and feasible. According to the temporal and spatial evolution of the paper, we can see that the network has been improved on the whole.

  20. Particle algorithms for population dynamics in flows

    International Nuclear Information System (INIS)

    Perlekar, Prasad; Toschi, Federico; Benzi, Roberto; Pigolotti, Simone

    2011-01-01

    We present and discuss particle based algorithms to numerically study the dynamics of population subjected to an advecting flow condition. We discuss few possible variants of the algorithms and compare them in a model compressible flow. A comparison against appropriate versions of the continuum stochastic Fisher equation (sFKPP) is also presented and discussed. The algorithms can be used to study populations genetics in fluid environments.

  1. Dynamic training algorithm for dynamic neural networks

    International Nuclear Information System (INIS)

    Tan, Y.; Van Cauwenberghe, A.; Liu, Z.

    1996-01-01

    The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper

  2. Evolutionary algorithms for mobile ad hoc networks

    CERN Document Server

    Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal

    2014-01-01

    Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...

  3. Duality based optical flow algorithms with applications

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X......-ray images of different hands, taken using different imaging devices are registered using a TV-L1 optical flow algorithm. We propose to regularize the input images, using sparsity enhancing regularization of the image gradient to improve registration results. The second application is registration of 2D...

  4. Pinning impulsive control algorithms for complex network

    International Nuclear Information System (INIS)

    Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo

    2014-01-01

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms

  5. Organization of signal flow in directed networks

    International Nuclear Information System (INIS)

    Bányai, M; Bazsó, F; Négyessy, L

    2011-01-01

    Confining an answer to the question of whether and how the coherent operation of network elements is determined by the network structure is the topic of our work. We map the structure of signal flow in directed networks by analysing the degree of edge convergence and the overlap between the in- and output sets of an edge. Definitions of convergence degree and overlap are based on the shortest paths, thus they encapsulate global network properties. Using the defining notions of convergence degree and overlapping set we clarify the meaning of network causality and demonstrate the crucial role of chordless circles. In real-world networks the flow representation distinguishes nodes according to their signal transmitting, processing and control properties. The analysis of real-world networks in terms of flow representation was in accordance with the known functional properties of the network nodes. It is shown that nodes with different signal processing, transmitting and control properties are randomly connected at the global scale, while local connectivity patterns depart from randomness. The grouping of network nodes according to their signal flow properties was unrelated to the network's community structure. We present evidence that the signal flow properties of small-world-like, real-world networks cannot be reconstructed by algorithms used to generate small-world networks. Convergence degree values were calculated for regular oriented trees, and the probability density function for networks grown with the preferential attachment mechanism. For Erdos–Rényi graphs we calculated the probability density function of both convergence degrees and overlaps

  6. Joint control algorithm in access network

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To deal with long probing delay and inaccurate probing results in the endpoint admission control method,a joint local and end-to-end admission control algorithm is proposed,which introduces local probing of access network besides end-to-end probing.Through local probing,the algorithm accurately estimated the resource status of the access network.Simulation shows that this algorithm can improve admission control performance and reduce users' average waiting time when the access network is heavily loaded.

  7. Flow whitelisting in SCADA networks

    DEFF Research Database (Denmark)

    Barbosa, Rafael Ramos Regis; Sadre, Ramin; Pras, Aiko

    2013-01-01

    and the Internet. This paper describes an approach for improving the security of SCADA networks using flow whitelisting. A flow whitelist describes legitimate traffic based on four properties of network packets: client address, server address, server-side port and transport protocol. The proposed approach...

  8. Algorithm For Hypersonic Flow In Chemical Equilibrium

    Science.gov (United States)

    Palmer, Grant

    1989-01-01

    Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.

  9. Principal component analysis networks and algorithms

    CERN Document Server

    Kong, Xiangyu; Duan, Zhansheng

    2017-01-01

    This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.

  10. Solving Hub Network Problem Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mursyid Hasan Basri

    2012-01-01

    Full Text Available This paper addresses a network problem that described as follows. There are n ports that interact, and p of those will be designated as hubs. All hubs are fully interconnected. Each spoke will be allocated to only one of available hubs. Direct connection between two spokes is allowed only if they are allocated to the same hub. The latter is a distinct characteristic that differs it from pure hub-and-spoke system. In case of pure hub-and-spoke system, direct connection between two spokes is not allowed. The problem is where to locate hub ports and to which hub a spoke should be allocated so that total transportation cost is minimum. In the first model, there are some additional aspects are taken into consideration in order to achieve a better representation of the problem. The first, weekly service should be accomplished. Secondly, various vessel types should be considered. The last, a concept of inter-hub discount factor is introduced. Regarding the last aspect, it represents cost reduction factor at hub ports due to economies of scale. In practice, it is common that the cost rate for inter-hub movement is less than the cost rate for movement between hub and origin/destination. In this first model, inter-hub discount factor is assumed independent with amount of flows on inter-hub links (denoted as flow-independent discount policy. The results indicated that the patterns of enlargement of container ship size, to some degree, are similar with those in Kurokawa study. However, with regard to hub locations, the results have not represented the real practice. In the proposed model, unsatisfactory result on hub locations is addressed. One aspect that could possibly be improved to find better hub locations is inter-hub discount factor. Then inter-hub discount factor is assumed to depend on amount of inter-hub flows (denoted as flow-dependent discount policy. There are two discount functions examined in this paper. Both functions are characterized by

  11. Applying the sequential neural-network approximation and orthogonal array algorithm to optimize the axial-flow cooling system for rapid thermal processes

    International Nuclear Information System (INIS)

    Hung, Shih-Yu; Shen, Ming-Ho; Chang, Ying-Pin

    2009-01-01

    The sequential neural-network approximation and orthogonal array (SNAOA) were used to shorten the cooling time for the rapid cooling process such that the normalized maximum resolved stress in silicon wafer was always below one in this study. An orthogonal array was first conducted to obtain the initial solution set. The initial solution set was treated as the initial training sample. Next, a back-propagation sequential neural network was trained to simulate the feasible domain to obtain the optimal parameter setting. The size of the training sample was greatly reduced due to the use of the orthogonal array. In addition, a restart strategy was also incorporated into the SNAOA so that the searching process may have a better opportunity to reach a near global optimum. In this work, we considered three different cooling control schemes during the rapid thermal process: (1) downward axial gas flow cooling scheme; (2) upward axial gas flow cooling scheme; (3) dual axial gas flow cooling scheme. Based on the maximum shear stress failure criterion, the other control factors such as flow rate, inlet diameter, outlet width, chamber height and chamber diameter were also examined with respect to cooling time. The results showed that the cooling time could be significantly reduced using the SNAOA approach

  12. Neural Network Algorithm for Particle Loading

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given

  13. Optical flow optimization using parallel genetic algorithm

    Science.gov (United States)

    Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe

    2011-06-01

    A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.

  14. Genetic algorithm for neural networks optimization

    Science.gov (United States)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  15. Fast, Distributed Algorithms in Deep Networks

    Science.gov (United States)

    2016-05-11

    shallow networks, additional work will need to be done in order to allow for the application of ADMM to deep nets. The ADMM method allows for quick...Quock V Le, et al. Large scale distributed deep networks. In Advances in Neural Information Processing Systems, pages 1223–1231, 2012. [11] Ken-Ichi...A TRIDENT SCHOLAR PROJECT REPORT NO. 446 Fast, Distributed Algorithms in Deep Networks by Midshipman 1/C Ryan J. Burmeister, USN

  16. Algorithms for optimization of branching gravity-driven water networks

    Science.gov (United States)

    Dardani, Ian; Jones, Gerard F.

    2018-05-01

    The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs), this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011) to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel roughness values.

  17. Algorithms for optimization of branching gravity-driven water networks

    Directory of Open Access Journals (Sweden)

    I. Dardani

    2018-05-01

    Full Text Available The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs, this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011 to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel

  18. Pinning impulsive control algorithms for complex network

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wen [School of Information and Mathematics, Yangtze University, Jingzhou 434023 (China); Lü, Jinhu [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Shihua [College of Mathematics and Statistics, Wuhan University, Wuhan 430072 (China); Yu, Xinghuo [School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001 (Australia)

    2014-03-15

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

  19. Function-Oriented Networking and On-Demand Routing System in Network Using Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Young-Bo Sim

    2017-11-01

    Full Text Available In this paper, we proposed and developed Function-Oriented Networking (FON, a platform for network users. It has a different philosophy as opposed to technologies for network managers of Software-Defined Networking technology, OpenFlow. It is a technology that can immediately reflect the demands of the network users in the network, unlike the existing OpenFlow and Network Functions Virtualization (NFV, which do not reflect directly the needs of the network users. It allows the network user to determine the policy of the direct network, so it can be applied more precisely than the policy applied by the network manager. This is expected to increase the satisfaction of the service users when the network users try to provide new services. We developed FON function that performs on-demand routing for Low-Delay Required service. We analyzed the characteristics of the Ant Colony Optimization (ACO algorithm and found that the algorithm is suitable for low-delay required services. It was also the first in the world to implement the routing software using ACO Algorithm in the real Ethernet network. In order to improve the routing performance, several algorithms of the ACO Algorithm have been developed to enable faster path search-routing and path recovery. The relationship between the network performance index and the ACO routing parameters is derived, and the results are compared and analyzed. Through this, it was possible to develop the ACO algorithm.

  20. ALGORITHMS FOR TETRAHEDRAL NETWORK (TEN) GENERATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Tetrahedral Network(TEN) is a powerful 3-D vector structure in GIS, which has a lot of advantages such as simple structure, fast topological relation processing and rapid visualization. The difficulty of TEN application is automatic creating data structure. Al though a raster algorithm has been introduced by some authors, the problems in accuracy, memory requirement, speed and integrity are still existent. In this paper, the raster algorithm is completed and a vector algorithm is presented after a 3-D data model and structure of TEN have been introducted. Finally, experiment, conclusion and future work are discussed.

  1. Novel quantum inspired binary neural network algorithm

    Indian Academy of Sciences (India)

    This parameter is taken as the threshold of neuron for learning of neural network. This algorithm is tested with three benchmark datasets and ... Author Affiliations. OM PRAKASH PATEL1 ARUNA TIWARI. Department of Computer Science and Engineering, Indian Institute of Technology Indore, Indore 453552, India ...

  2. Routing algorithms in networks-on-chip

    CERN Document Server

    Daneshtalab, Masoud

    2014-01-01

    This book provides a single-source reference to routing algorithms for Networks-on-Chip (NoCs), as well as in-depth discussions of advanced solutions applied to current and next generation, many core NoC-based Systems-on-Chip (SoCs). After a basic introduction to the NoC design paradigm and architectures, routing algorithms for NoC architectures are presented and discussed at all abstraction levels, from the algorithmic level to actual implementation.  Coverage emphasizes the role played by the routing algorithm and is organized around key problems affecting current and next generation, many-core SoCs. A selection of routing algorithms is included, specifically designed to address key issues faced by designers in the ultra-deep sub-micron (UDSM) era, including performance improvement, power, energy, and thermal issues, fault tolerance and reliability.   ·         Provides a comprehensive overview of routing algorithms for Networks-on-Chip and NoC-based, manycore systems; ·         Describe...

  3. A new mutually reinforcing network node and link ranking algorithm.

    Science.gov (United States)

    Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E

    2015-10-23

    This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity.

  4. A new mutually reinforcing network node and link ranking algorithm

    Science.gov (United States)

    Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E.

    2015-10-01

    This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity.

  5. A new mutually reinforcing network node and link ranking algorithm

    Science.gov (United States)

    Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E.

    2015-01-01

    This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity. PMID:26492958

  6. Network-based recommendation algorithms: A review

    Science.gov (United States)

    Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš

    2016-06-01

    Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.

  7. An explicit multi-time-stepping algorithm for aerodynamic flows

    OpenAIRE

    Niemann-Tuitman, B.E.; Veldman, A.E.P.

    1997-01-01

    An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for aerodynamic turbulent flows. For two-dimensional flows speedups in the order of five with respect to single time stepping are obtained.

  8. An explicit multi-time-stepping algorithm for aerodynamic flows

    NARCIS (Netherlands)

    Niemann-Tuitman, B.E.; Veldman, A.E.P.

    1997-01-01

    An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for

  9. Software-Defined Congestion Control Algorithm for IP Networks

    Directory of Open Access Journals (Sweden)

    Yao Hu

    2017-01-01

    Full Text Available The rapid evolution of computer networks, increase in the number of Internet users, and popularity of multimedia applications have exacerbated the congestion control problem. Congestion control is a key factor in ensuring network stability and robustness. When the underlying network and flow information are unknown, the transmission control protocol (TCP must increase or reduce the size of the congestion window to adjust to the changes of traffic in the Internet Protocol (IP network. However, it is possible that a software-defined approach can relieve the network congestion problem more efficiently. This approach has the characteristic of centralized control and can obtain a global topology for unified network management. In this paper, we propose a software-defined congestion control (SDCC algorithm for an IP network. We consider the difference between TCP and the user datagram protocol (UDP and propose a new method to judge node congestion. We initially apply the congestion control mechanism in the congested nodes and then optimize the link utilization to control network congestion.

  10. Traffic sharing algorithms for hybrid mobile networks

    Science.gov (United States)

    Arcand, S.; Murthy, K. M. S.; Hafez, R.

    1995-01-01

    In a hybrid (terrestrial + satellite) mobile personal communications networks environment, a large size satellite footprint (supercell) overlays on a large number of smaller size, contiguous terrestrial cells. We assume that the users have either a terrestrial only single mode terminal (SMT) or a terrestrial/satellite dual mode terminal (DMT) and the ratio of DMT to the total terminals is defined gamma. It is assumed that the call assignments to and handovers between terrestrial cells and satellite supercells take place in a dynamic fashion when necessary. The objectives of this paper are twofold, (1) to propose and define a class of traffic sharing algorithms to manage terrestrial and satellite network resources efficiently by handling call handovers dynamically, and (2) to analyze and evaluate the algorithms by maximizing the traffic load handling capability (defined in erl/cell) over a wide range of terminal ratios (gamma) given an acceptable range of blocking probabilities. Two of the algorithms (G & S) in the proposed class perform extremely well for a wide range of gamma.

  11. A flood-based information flow analysis and network minimization method for gene regulatory networks.

    Science.gov (United States)

    Pavlogiannis, Andreas; Mozhayskiy, Vadim; Tagkopoulos, Ilias

    2013-04-24

    Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition- specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context. This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data. The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various "omics" levels.

  12. A decoupled power flow algorithm using particle swarm optimization technique

    International Nuclear Information System (INIS)

    Acharjee, P.; Goswami, S.K.

    2009-01-01

    A robust, nondivergent power flow method has been developed using the particle swarm optimization (PSO) technique. The decoupling properties between the power system quantities have been exploited in developing the power flow algorithm. The speed of the power flow algorithm has been improved using a simple perturbation technique. The basic power flow algorithm and the improvement scheme have been designed to retain the simplicity of the evolutionary approach. The power flow is rugged, can determine the critical loading conditions and also can handle the flexible alternating current transmission system (FACTS) devices efficiently. Test results on standard test systems show that the proposed method can find the solution when the standard power flows fail.

  13. Finding Elephant Flows for Optical Networks

    NARCIS (Netherlands)

    Fioreze, Tiago; Oude Wolbers, Mattijs; van de Meent, R.; Pras, Aiko

    2007-01-01

    Optical networks are fast and reliable networks that enable, amongst others, dedicated light paths to be established for elephant IP flows. Elephant IP flows are characterized by being small in number, but long in time and high in traffic volume. Moving these flows from the general IP network to

  14. Localization Algorithms of Underwater Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Han, Guangjie; Jiang, Jinfang; Shu, Lei; Xu, Yongjun; Wang, Feng

    2012-01-01

    In Underwater Wireless Sensor Networks (UWSNs), localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes’ mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs. PMID:22438752

  15. Using a genetic algorithm to solve fluid-flow problems

    International Nuclear Information System (INIS)

    Pryor, R.J.

    1990-01-01

    Genetic algorithms are based on the mechanics of the natural selection and natural genetics processes. These algorithms are finding increasing application to a wide variety of engineering optimization and machine learning problems. In this paper, the authors demonstrate the use of a genetic algorithm to solve fluid flow problems. Specifically, the authors use the algorithm to solve the one-dimensional flow equations for a pipe

  16. An Improved Harmony Search Algorithm for Power Distribution Network Planning

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Distribution network planning because of involving many variables and constraints is a multiobjective, discrete, nonlinear, and large-scale optimization problem. Harmony search (HS algorithm is a metaheuristic algorithm inspired by the improvisation process of music players. HS algorithm has several impressive advantages, such as easy implementation, less adjustable parameters, and quick convergence. But HS algorithm still has some defects such as premature convergence and slow convergence speed. According to the defects of the standard algorithm and characteristics of distribution network planning, an improved harmony search (IHS algorithm is proposed in this paper. We set up a mathematical model of distribution network structure planning, whose optimal objective function is to get the minimum annual cost and constraint conditions are overload and radial network. IHS algorithm is applied to solve the complex optimization mathematical model. The empirical results strongly indicate that IHS algorithm can effectively provide better results for solving the distribution network planning problem compared to other optimization algorithms.

  17. Evolutionary Algorithms For Neural Networks Binary And Real Data Classification

    Directory of Open Access Journals (Sweden)

    Dr. Hanan A.R. Akkar

    2015-08-01

    Full Text Available Artificial neural networks are complex networks emulating the way human rational neurons process data. They have been widely used generally in prediction clustering classification and association. The training algorithms that used to determine the network weights are almost the most important factor that influence the neural networks performance. Recently many meta-heuristic and Evolutionary algorithms are employed to optimize neural networks weights to achieve better neural performance. This paper aims to use recently proposed algorithms for optimizing neural networks weights comparing these algorithms performance with other classical meta-heuristic algorithms used for the same purpose. However to evaluate the performance of such algorithms for training neural networks we examine such algorithms to classify four opposite binary XOR clusters and classification of continuous real data sets such as Iris and Ecoli.

  18. The Algorithm of Link Prediction on Social Network

    Directory of Open Access Journals (Sweden)

    Liyan Dong

    2013-01-01

    Full Text Available At present, most link prediction algorithms are based on the similarity between two entities. Social network topology information is one of the main sources to design the similarity function between entities. But the existing link prediction algorithms do not apply the network topology information sufficiently. For lack of traditional link prediction algorithms, we propose two improved algorithms: CNGF algorithm based on local information and KatzGF algorithm based on global information network. For the defect of the stationary of social network, we also provide the link prediction algorithm based on nodes multiple attributes information. Finally, we verified these algorithms on DBLP data set, and the experimental results show that the performance of the improved algorithm is superior to that of the traditional link prediction algorithm.

  19. A genetic algorithm for solving supply chain network design model

    Science.gov (United States)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  20. CUFID-query: accurate network querying through random walk based network flow estimation.

    Science.gov (United States)

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive

  1. A Decomposition Algorithm for Learning Bayesian Network Structures from Data

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Cordero Hernandez, Jorge

    2008-01-01

    It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...... the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks....

  2. Ends and Ways: The Algorithmic Politics of Network Neutrality

    Directory of Open Access Journals (Sweden)

    Fenwick McKelvey

    2010-01-01

    Full Text Available The Internet in Canada is an assemblage of private and public networks. A variety of institutions and networking codes manage these networks. Conflicts exist between these parties despite their interconnection. Tensions heightened when commercial ISPs began managing traffic on their network using sophisticated routing algorithms. Concerned parties demanded legislation based on a network neutrality principle to prevent undue discrimination. While the network neutrality controversy has been addressed as a question of public policy, the controversy also includes a conflict between various codes constituting networks in Canada. The conflict between codes involve two key networking software that manifest incongruous networks. Their algorithms, the logics embedded in code, differentiate the different types of networking code. The two types of algorithms are Quality of Service and End-to-End. These algorithms treat different modalities of Internet communication differently, in part due to their deployment by different institutions. Quality of Service allows for the tiering of traffic by carriers. Commercial carriers have popularized this algorithm to promote value-added services and prevent network congestions. End-to-end algorithms, on the other hand, enforce a strict equality between modalities of communication. Peer-to-peer applications have popularized an extreme version of the end-to-algorithm, treating all nodes as equals. The popularity and growth of both these algorithms pulls the Internet in different directions, creating conflicts over its future. Through an extended review of these two algorithms and their intersection, this paper confronts how code plays a role in the network neutrality controversy.

  3. The production route selection algorithm in virtual manufacturing networks

    Science.gov (United States)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2017-08-01

    The increasing requirements and competition in the global market are challenges for the companies profitability in production and supply chain management. This situation became the basis for construction of virtual organizations, which are created in response to temporary needs. The problem of the production flow planning in virtual manufacturing networks is considered. In the paper the algorithm of the production route selection from the set of admissible routes, which meets the technology and resource requirements and in the context of the criterion of minimum cost is proposed.

  4. One Kind of Routing Algorithm Modified in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wei Ni Ni

    2016-01-01

    Full Text Available The wireless sensor networks are the emerging next generation sensor networks, Routing technology is the wireless sensor network communication layer of the core technology. To build reliable paths in wireless sensor networks, we can consider two ways: providing multiple paths utilizing the redundancy to assure the communication reliability or constructing transmission reliability mechanism to assure the reliability of every hop. Braid multipath algorithm and ReInforM routing algorithm are the realizations of these two mechanisms. After the analysis of these two algorithms, this paper proposes a ReInforM routing algorithm based braid multipath routing algorithm.

  5. ISINA: INTEGRAL Source Identification Network Algorithm

    Science.gov (United States)

    Scaringi, S.; Bird, A. J.; Clark, D. J.; Dean, A. J.; Hill, A. B.; McBride, V. A.; Shaw, S. E.

    2008-11-01

    We give an overview of ISINA: INTEGRAL Source Identification Network Algorithm. This machine learning algorithm, using random forests, is applied to the IBIS/ISGRI data set in order to ease the production of unbiased future soft gamma-ray source catalogues. First, we introduce the data set and the problems encountered when dealing with images obtained using the coded mask technique. The initial step of source candidate searching is introduced and an initial candidate list is created. A description of the feature extraction on the initial candidate list is then performed together with feature merging for these candidates. Three training and testing sets are created in order to deal with the diverse time-scales encountered when dealing with the gamma-ray sky. Three independent random forests are built: one dealing with faint persistent source recognition, one dealing with strong persistent sources and a final one dealing with transients. For the latter, a new transient detection technique is introduced and described: the transient matrix. Finally the performance of the network is assessed and discussed using the testing set and some illustrative source examples. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain), Czech Republic and Poland, and the participation of Russia and the USA. E-mail: simo@astro.soton.ac.uk

  6. Research on Segmentation Monitoring Control of IA-RWA Algorithm with Probe Flow

    Science.gov (United States)

    Ren, Danping; Guo, Kun; Yao, Qiuyan; Zhao, Jijun

    2018-04-01

    The impairment-aware routing and wavelength assignment algorithm with probe flow (P-IA-RWA) can make an accurate estimation for the transmission quality of the link when the connection request comes. But it also causes some problems. The probe flow data introduced in the P-IA-RWA algorithm can result in the competition for wavelength resources. In order to reduce the competition and the blocking probability of the network, a new P-IA-RWA algorithm with segmentation monitoring-control mechanism (SMC-P-IA-RWA) is proposed. The algorithm would reduce the holding time of network resources for the probe flow. It segments the candidate path suitably for the data transmitting. And the transmission quality of the probe flow sent by the source node will be monitored in the endpoint of each segment. The transmission quality of data can also be monitored, so as to make the appropriate treatment to avoid the unnecessary probe flow. The simulation results show that the proposed SMC-P-IA-RWA algorithm can effectively reduce the blocking probability. It brings a better solution to the competition for resources between the probe flow and the main data to be transferred. And it is more suitable for scheduling control in the large-scale network.

  7. Stochastic cycle selection in active flow networks

    Science.gov (United States)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

    2016-11-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  8. Power laws and fragility in flow networks.

    Science.gov (United States)

    Shore, Jesse; Chu, Catherine J; Bianchi, Matt T

    2013-01-01

    What makes economic and ecological networks so unlike other highly skewed networks in their tendency toward turbulence and collapse? Here, we explore the consequences of a defining feature of these networks: their nodes are tied together by flow. We show that flow networks tend to the power law degree distribution (PLDD) due to a self-reinforcing process involving position within the global network structure, and thus present the first random graph model for PLDDs that does not depend on a rich-get-richer function of nodal degree. We also show that in contrast to non-flow networks, PLDD flow networks are dramatically more vulnerable to catastrophic failure than non-PLDD flow networks, a finding with potential explanatory power in our age of resource- and financial-interdependence and turbulence.

  9. Asymmetric intimacy and algorithm for detecting communities in bipartite networks

    Science.gov (United States)

    Wang, Xingyuan; Qin, Xiaomeng

    2016-11-01

    In this paper, an algorithm to choose a good partition in bipartite networks has been proposed. Bipartite networks have more theoretical significance and broader prospect of application. In view of distinctive structure of bipartite networks, in our method, two parameters are defined to show the relationships between the same type nodes and heterogeneous nodes respectively. Moreover, our algorithm employs a new method of finding and expanding the core communities in bipartite networks. Two kinds of nodes are handled separately and merged, and then the sub-communities are obtained. After that, objective communities will be found according to the merging rule. The proposed algorithm has been simulated in real-world networks and artificial networks, and the result verifies the accuracy and reliability of the parameters on intimacy for our algorithm. Eventually, comparisons with similar algorithms depict that the proposed algorithm has better performance.

  10. Extension algorithm for generic low-voltage networks

    Science.gov (United States)

    Marwitz, S.; Olk, C.

    2018-02-01

    Distributed energy resources (DERs) are increasingly penetrating the energy system which is driven by climate and sustainability goals. These technologies are mostly connected to low- voltage electrical networks and change the demand and supply situation in these networks. This can cause critical network states. Network topologies vary significantly and depend on several conditions including geography, historical development, network design or number of network connections. In the past, only some of these aspects were taken into account when estimating the network investment needs for Germany on the low-voltage level. Typically, fixed network topologies are examined or a Monte Carlo approach is used to quantify the investment needs at this voltage level. Recent research has revealed that DERs differ substantially between rural, suburban and urban regions. The low-voltage network topologies have different design concepts in these regions, so that different network topologies have to be considered when assessing the need for network extensions and investments due to DERs. An extension algorithm is needed to calculate network extensions and investment needs for the different typologies of generic low-voltage networks. We therefore present a new algorithm, which is capable of calculating the extension for generic low-voltage networks of any given topology based on voltage range deviations and thermal overloads. The algorithm requires information about line and cable lengths, their topology and the network state only. We test the algorithm on a radial, a loop, and a heavily meshed network. Here we show that the algorithm functions for electrical networks with these topologies. We found that the algorithm is able to extend different networks efficiently by placing cables between network nodes. The main value of the algorithm is that it does not require any information about routes for additional cables or positions for additional substations when it comes to estimating

  11. A Wavelet Analysis-Based Dynamic Prediction Algorithm to Network Traffic

    Directory of Open Access Journals (Sweden)

    Meng Fan-Bo

    2016-01-01

    Full Text Available Network traffic is a significantly important parameter for network traffic engineering, while it holds highly dynamic nature in the network. Accordingly, it is difficult and impossible to directly predict traffic amount of end-to-end flows. This paper proposes a new prediction algorithm to network traffic using the wavelet analysis. Firstly, network traffic is converted into the time-frequency domain to capture time-frequency feature of network traffic. Secondly, in different frequency components, we model network traffic in the time-frequency domain. Finally, we build the prediction model about network traffic. At the same time, the corresponding prediction algorithm is presented to attain network traffic prediction. Simulation results indicates that our approach is promising.

  12. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.

  13. Study of Power Flow Algorithm of AC/DC Distribution System including VSC-MTDC

    Directory of Open Access Journals (Sweden)

    Haifeng Liang

    2015-08-01

    Full Text Available In recent years, distributed generation and a large number of sensitive AC and DC loads have been connected to distribution networks, which introduce a series of challenges to distribution network operators (DNOs. In addition, the advantages of DC distribution networks, such as the energy conservation and emission reduction, mean that the voltage source converter based multi-terminal direct current (VSC-MTDC for AC/DC distribution systems demonstrates a great potential, hence drawing growing research interest. In this paper, considering losses of the reactor, the filter and the converter, a mathematical model of VSC-HVDC for the load flow analysis is derived. An AC/DC distribution network architecture has been built, based on which the differences in modified equations of the VSC-MTDC-based network under different control modes are analyzed. In addition, corresponding interface functions under five control modes are provided, and a back/forward iterative algorithm which is applied to power flow calculation of the AC/DC distribution system including VSC-MTDC is proposed. Finally, by calculating the power flow of the modified IEEE14 AC/DC distribution network, the efficiency and validity of the model and algorithm are evaluated. With various distributed generations connected to the network at appropriate locations, power flow results show that network losses and utilization of transmission networks are effectively reduced.

  14. An Efficient Hierarchy Algorithm for Community Detection in Complex Networks

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2014-01-01

    Full Text Available Community structure is one of the most fundamental and important topology characteristics of complex networks. The research on community structure has wide applications and is very important for analyzing the topology structure, understanding the functions, finding the hidden properties, and forecasting the time-varying of the networks. This paper analyzes some related algorithms and proposes a new algorithm—CN agglomerative algorithm based on graph theory and the local connectedness of network to find communities in network. We show this algorithm is distributed and polynomial; meanwhile the simulations show it is accurate and fine-grained. Furthermore, we modify this algorithm to get one modified CN algorithm and apply it to dynamic complex networks, and the simulations also verify that the modified CN algorithm has high accuracy too.

  15. Computer program for compressible flow network analysis

    Science.gov (United States)

    Wilton, M. E.; Murtaugh, J. P.

    1973-01-01

    Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.

  16. Algorithms for parallel flow solvers on message passing architectures

    Science.gov (United States)

    Vanderwijngaart, Rob F.

    1995-01-01

    The purpose of this project has been to identify and test suitable technologies for implementation of fluid flow solvers -- possibly coupled with structures and heat equation solvers -- on MIMD parallel computers. In the course of this investigation much attention has been paid to efficient domain decomposition strategies for ADI-type algorithms. Multi-partitioning derives its efficiency from the assignment of several blocks of grid points to each processor in the parallel computer. A coarse-grain parallelism is obtained, and a near-perfect load balance results. In uni-partitioning every processor receives responsibility for exactly one block of grid points instead of several. This necessitates fine-grain pipelined program execution in order to obtain a reasonable load balance. Although fine-grain parallelism is less desirable on many systems, especially high-latency networks of workstations, uni-partition methods are still in wide use in production codes for flow problems. Consequently, it remains important to achieve good efficiency with this technique that has essentially been superseded by multi-partitioning for parallel ADI-type algorithms. Another reason for the concentration on improving the performance of pipeline methods is their applicability in other types of flow solver kernels with stronger implied data dependence. Analytical expressions can be derived for the size of the dynamic load imbalance incurred in traditional pipelines. From these it can be determined what is the optimal first-processor retardation that leads to the shortest total completion time for the pipeline process. Theoretical predictions of pipeline performance with and without optimization match experimental observations on the iPSC/860 very well. Analysis of pipeline performance also highlights the effect of uncareful grid partitioning in flow solvers that employ pipeline algorithms. If grid blocks at boundaries are not at least as large in the wall-normal direction as those

  17. A Location-Aware Vertical Handoff Algorithm for Hybrid Networks

    KAUST Repository

    Mehbodniya, Abolfazl

    2010-07-01

    One of the main objectives of wireless networking is to provide mobile users with a robust connection to different networks so that they can move freely between heterogeneous networks while running their computing applications with no interruption. Horizontal handoff, or generally speaking handoff, is a process which maintains a mobile user\\'s active connection as it moves within a wireless network, whereas vertical handoff (VHO) refers to handover between different types of networks or different network layers. Optimizing VHO process is an important issue, required to reduce network signalling and mobile device power consumption as well as to improve network quality of service (QoS) and grade of service (GoS). In this paper, a VHO algorithm in multitier (overlay) networks is proposed. This algorithm uses pattern recognition to estimate user\\'s position, and decides on the handoff based on this information. For the pattern recognition algorithm structure, the probabilistic neural network (PNN) which has considerable simplicity and efficiency over existing pattern classifiers is used. Further optimization is proposed to improve the performance of the PNN algorithm. Performance analysis and comparisons with the existing VHO algorithm are provided and demonstrate a significant improvement with the proposed algorithm. Furthermore, incorporating the proposed algorithm, a structure is proposed for VHO from the medium access control (MAC) layer point of view. © 2010 ACADEMY PUBLISHER.

  18. Current-flow efficiency of networks

    Science.gov (United States)

    Liu, Kai; Yan, Xiaoyong

    2018-02-01

    Many real-world networks, from infrastructure networks to social and communication networks, can be formulated as flow networks. How to realistically measure the transport efficiency of these networks is of fundamental importance. The shortest-path-based efficiency measurement has limitations, as it assumes that flow travels only along those shortest paths. Here, we propose a new metric named current-flow efficiency, in which we calculate the average reciprocal effective resistance between all pairs of nodes in the network. This metric takes the multipath effect into consideration and is more suitable for measuring the efficiency of many real-world flow equilibrium networks. Moreover, this metric can handle a disconnected graph and can thus be used to identify critical nodes and edges from the efficiency-loss perspective. We further analyze how the topological structure affects the current-flow efficiency of networks based on some model and real-world networks. Our results enable a better understanding of flow networks and shed light on the design and improvement of such networks with higher transport efficiency.

  19. Effectiveness of firefly algorithm based neural network in time series ...

    African Journals Online (AJOL)

    Effectiveness of firefly algorithm based neural network in time series forecasting. ... In the experiments, three well known time series were used to evaluate the performance. Results obtained were compared with ... Keywords: Time series, Artificial Neural Network, Firefly Algorithm, Particle Swarm Optimization, Overfitting ...

  20. An improved algorithm for connectivity analysis of distribution networks

    International Nuclear Information System (INIS)

    Kansal, M.L.; Devi, Sunita

    2007-01-01

    In the present paper, an efficient algorithm for connectivity analysis of moderately sized distribution networks has been suggested. Algorithm is based on generation of all possible minimal system cutsets. The algorithm is efficient as it identifies only the necessary and sufficient conditions of system failure conditions in n-out-of-n type of distribution networks. The proposed algorithm is demonstrated with the help of saturated and unsaturated distribution networks. The computational efficiency of the algorithm is justified by comparing the computational efforts with the previously suggested appended spanning tree (AST) algorithm. The proposed technique has the added advantage as it can be utilized for generation of system inequalities which is useful in reliability estimation of capacitated networks

  1. A Newton-type neural network learning algorithm

    International Nuclear Information System (INIS)

    Ivanov, V.V.; Puzynin, I.V.; Purehvdorzh, B.

    1993-01-01

    First- and second-order learning methods for feed-forward multilayer networks are considered. A Newton-type algorithm is proposed and compared with the common back-propagation algorithm. It is shown that the proposed algorithm provides better learning quality. Some recommendations for their usage are given. 11 refs.; 1 fig.; 1 tab

  2. Flow whitelisting in SCADA networks

    NARCIS (Netherlands)

    Barbosa, Rafael Ramos Regis; Sadre, Ramin; Pras, Aiko

    2013-01-01

    Supervisory control and data acquisition (SCADA) networks are commonly deployed in large industrial facilities. Modern SCADA networks are becoming more vulnerable to cyber attacks due to the common use of standard communications protocols and increased interconnections with corporate networks and

  3. Enhancements of LEACH Algorithm for Wireless Networks: A Review

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2013-12-01

    Full Text Available Low Energy Adaptive Clustering Hierarchy (LEACH protocol is the first hierarchical cluster based routing protocol successfully used in the Wireless Sensor Networks (WSN. In this paper, various enhancements used in the original LEACH protocol are examined. The basic operations, advantages and limitations of the modified LEACH algorithms are compared to identify the research issues to be solved and to give the suggestions for the future proposed routing algorithms of wireless networks based on LEACH routing algorithm.

  4. A generic algorithm for layout of biological networks.

    Science.gov (United States)

    Schreiber, Falk; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

    2009-11-12

    Biological networks are widely used to represent processes in biological systems and to capture interactions and dependencies between biological entities. Their size and complexity is steadily increasing due to the ongoing growth of knowledge in the life sciences. To aid understanding of biological networks several algorithms for laying out and graphically representing networks and network analysis results have been developed. However, current algorithms are specialized to particular layout styles and therefore different algorithms are required for each kind of network and/or style of layout. This increases implementation effort and means that new algorithms must be developed for new layout styles. Furthermore, additional effort is necessary to compose different layout conventions in the same diagram. Also the user cannot usually customize the placement of nodes to tailor the layout to their particular need or task and there is little support for interactive network exploration. We present a novel algorithm to visualize different biological networks and network analysis results in meaningful ways depending on network types and analysis outcome. Our method is based on constrained graph layout and we demonstrate how it can handle the drawing conventions used in biological networks. The presented algorithm offers the ability to produce many of the fundamental popular drawing styles while allowing the exibility of constraints to further tailor these layouts.

  5. Neural Network Predictive Control for Vanadium Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Hai-Feng Shen

    2013-01-01

    Full Text Available The vanadium redox flow battery (VRB is a nonlinear system with unknown dynamics and disturbances. The flowrate of the electrolyte is an important control mechanism in the operation of a VRB system. Too low or too high flowrate is unfavorable for the safety and performance of VRB. This paper presents a neural network predictive control scheme to enhance the overall performance of the battery. A radial basis function (RBF network is employed to approximate the dynamics of the VRB system. The genetic algorithm (GA is used to obtain the optimum initial values of the RBF network parameters. The gradient descent algorithm is used to optimize the objective function of the predictive controller. Compared with the constant flowrate, the simulation results show that the flowrate optimized by neural network predictive controller can increase the power delivered by the battery during the discharge and decrease the power consumed during the charge.

  6. Flows in networks under fuzzy conditions

    CERN Document Server

    Bozhenyuk, Alexander Vitalievich; Kacprzyk, Janusz; Rozenberg, Igor Naymovich

    2017-01-01

    This book offers a comprehensive introduction to fuzzy methods for solving flow tasks in both transportation and networks. It analyzes the problems of minimum cost and maximum flow finding with fuzzy nonzero lower flow bounds, and describes solutions to minimum cost flow finding in a network with fuzzy arc capacities and transmission costs. After a concise introduction to flow theory and tasks, the book analyzes two important problems. The first is related to determining the maximum volume for cargo transportation in the presence of uncertain network parameters, such as environmental changes, measurement errors and repair work on the roads. These parameters are represented here as fuzzy triangular, trapezoidal numbers and intervals. The second problem concerns static and dynamic flow finding in networks under fuzzy conditions, and an effective method that takes into account the network’s transit parameters is presented here. All in all, the book provides readers with a practical reference guide to state-of-...

  7. The application of artificial neural networks to TLD dose algorithm

    International Nuclear Information System (INIS)

    Moscovitch, M.

    1997-01-01

    We review the application of feed forward neural networks to multi element thermoluminescence dosimetry (TLD) dose algorithm development. A Neural Network is an information processing method inspired by the biological nervous system. A dose algorithm based on a neural network is a fundamentally different approach from conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with a given response of a multi-element dosimeter (input) many times.The algorithm, being trained that way, eventually is able to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personnel dosimetry, the output consists of the desired dose components: deep dose, shallow dose, and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. For this application, a neural network architecture was developed based on the concept of functional links network (FLN). The FLN concept allowed an increase in the dimensionality of the input space and construction of a neural network without any hidden layers. This simplifies the problem and results in a relatively simple and reliable dose calculation algorithm. Overall, the neural network dose algorithm approach has been shown to significantly improve the precision and accuracy of dose calculations. (authors)

  8. Power control algorithms for mobile ad hoc networks

    Directory of Open Access Journals (Sweden)

    Nuraj L. Pradhan

    2011-07-01

    We will also focus on an adaptive distributed power management (DISPOW algorithm as an example of the multi-parameter optimization approach which manages the transmit power of nodes in a wireless ad hoc network to preserve network connectivity and cooperatively reduce interference. We will show that the algorithm in a distributed manner builds a unique stable network topology tailored to its surrounding node density and propagation environment over random topologies in a dynamic mobile wireless channel.

  9. Efficient Parallel Algorithms for Unsteady Incompressible Flows

    KAUST Repository

    Guermond, Jean-Luc; Minev, Peter D.

    2013-01-01

    The objective of this paper is to give an overview of recent developments on splitting schemes for solving the time-dependent incompressible Navier–Stokes equations and to discuss possible extensions to the variable density/viscosity case. A particular attention is given to algorithms that can be implemented efficiently on large parallel clusters.

  10. Predicting Information Flows in Network Traffic.

    Science.gov (United States)

    Hinich, Melvin J.; Molyneux, Robert E.

    2003-01-01

    Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)

  11. Physics of flow in weighted complex networks

    Science.gov (United States)

    Wu, Zhenhua

    This thesis uses concepts from statistical physics to understand the physics of flow in weighted complex networks. The traditional model for random networks is the Erdoḧs-Renyi (ER.) network, where a network of N nodes is created by connecting each of the N(N - 1)/2 pairs of nodes with a probability p. The degree distribution, which is the probability distribution of the number of links per node, is a Poisson distribution. Recent studies of the topology in many networks such as the Internet and the world-wide airport network (WAN) reveal a power law degree distribution, known as a scale-free (SF) distribution. To yield a better description of network dynamics, we study weighted networks, where each link or node is given a number. One asks how the weights affect the static and the dynamic properties of the network. In this thesis, two important dynamic problems are studied: the current flow problem, described by Kirchhoff's laws, and the maximum flow problem, which maximizes the flow between two nodes. Percolation theory is applied to these studies of the dynamics in complex networks. We find that the current flow in disordered media belongs to the same universality class as the optimal path. In a randomly weighted network, we identify the infinite incipient percolation cluster as the "superhighway", which contains most of the traffic in a network. We propose an efficient strategy to improve significantly the global transport by improving the superhighways, which comprise a small fraction of the network. We also propose a network model with correlated weights to describe weighted networks such as the WAN. Our model agrees with WAN data, and provides insight into the advantages of correlated weights in networks. Lastly, the upper critical dimension is evaluated using two different numerical methods, and the result is consistent with the theoretical prediction.

  12. BFL: a node and edge betweenness based fast layout algorithm for large scale networks

    Science.gov (United States)

    Hashimoto, Tatsunori B; Nagasaki, Masao; Kojima, Kaname; Miyano, Satoru

    2009-01-01

    Background Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements. Results To overcome these problems, we propose the use of a biologically important graph metric, betweenness, a measure of network flow. This metric is highly correlated with many biological phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach reduces the expected runtime of the algorithm to O(n2) when considering edge crossings, and to O(n log n) when considering only density and edge lengths. Conclusion Our BFL algorithm is compared against fast graph layout algorithms and approaches requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all layout algorithms tested while providing readability on par with intensive optimization algorithms. We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard desktop computer. PMID:19146673

  13. Accurate solution algorithms for incompressible multiphase flows

    International Nuclear Information System (INIS)

    Rider, W.J.; Kothe, D.B.; Mosso, S.J.; Cerutti, J.H.; Hochstein, J.I.

    1994-01-01

    A number of advances in modeling multiphase incompressible flow are described. These advances include high-order Godunov projection methods, piecewise linear interface reconstruction and tracking and the continuum surface force model. Examples are given

  14. Algorithm-structured computer arrays and networks architectures and processes for images, percepts, models, information

    CERN Document Server

    Uhr, Leonard

    1984-01-01

    Computer Science and Applied Mathematics: Algorithm-Structured Computer Arrays and Networks: Architectures and Processes for Images, Percepts, Models, Information examines the parallel-array, pipeline, and other network multi-computers.This book describes and explores arrays and networks, those built, being designed, or proposed. The problems of developing higher-level languages for systems and designing algorithm, program, data flow, and computer structure are also discussed. This text likewise describes several sequences of successively more general attempts to combine the power of arrays wi

  15. Modeling flow and transport in fracture networks using graphs

    Science.gov (United States)

    Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.

    2018-03-01

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than

  16. Congested Link Inference Algorithms in Dynamic Routing IP Network

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2017-01-01

    Full Text Available The performance descending of current congested link inference algorithms is obviously in dynamic routing IP network, such as the most classical algorithm CLINK. To overcome this problem, based on the assumptions of Markov property and time homogeneity, we build a kind of Variable Structure Discrete Dynamic Bayesian (VSDDB network simplified model of dynamic routing IP network. Under the simplified VSDDB model, based on the Bayesian Maximum A Posteriori (BMAP and Rest Bayesian Network Model (RBNM, we proposed an Improved CLINK (ICLINK algorithm. Considering the concurrent phenomenon of multiple link congestion usually happens, we also proposed algorithm CLILRS (Congested Link Inference algorithm based on Lagrangian Relaxation Subgradient to infer the set of congested links. We validated our results by the experiments of analogy, simulation, and actual Internet.

  17. A practical algorithm for reconstructing level-1 phylogenetic networks

    NARCIS (Netherlands)

    Huber, K.T.; Iersel, van L.J.J.; Kelk, S.M.; Suchecki, R.

    2011-01-01

    Recently, much attention has been devoted to the construction of phylogenetic networks which generalize phylogenetic trees in order to accommodate complex evolutionary processes. Here, we present an efficient, practical algorithm for reconstructing level-1 phylogenetic networks-a type of network

  18. Flowbca : A flow-based cluster algorithm in Stata

    NARCIS (Netherlands)

    Meekes, J.; Hassink, W.H.J.

    In this article, we introduce the Stata implementation of a flow-based cluster algorithm written in Mata. The main purpose of the flowbca command is to identify clusters based on relational data of flows. We illustrate the command by providing multiple applications, from the research fields of

  19. Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows

    Science.gov (United States)

    Moitra, Stuti; Gatski, Thomas B.

    1997-01-01

    A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.

  20. A new algorithm to construct phylogenetic networks from trees.

    Science.gov (United States)

    Wang, J

    2014-03-06

    Developing appropriate methods for constructing phylogenetic networks from tree sets is an important problem, and much research is currently being undertaken in this area. BIMLR is an algorithm that constructs phylogenetic networks from tree sets. The algorithm can construct a much simpler network than other available methods. Here, we introduce an improved version of the BIMLR algorithm, QuickCass. QuickCass changes the selection strategy of the labels of leaves below the reticulate nodes, i.e., the nodes with an indegree of at least 2 in BIMLR. We show that QuickCass can construct simpler phylogenetic networks than BIMLR. Furthermore, we show that QuickCass is a polynomial-time algorithm when the output network that is constructed by QuickCass is binary.

  1. Multidimensional Scaling Localization Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-02-01

    Full Text Available Due to the localization algorithm in large-scale wireless sensor network exists shortcomings both in positioning accuracy and time complexity compared to traditional localization algorithm, this paper presents a fast multidimensional scaling location algorithm. By positioning algorithm for fast multidimensional scaling, fast mapping initialization, fast mapping and coordinate transform can get schematic coordinates of node, coordinates Initialize of MDS algorithm, an accurate estimate of the node coordinates and using the PRORUSTES to analysis alignment of the coordinate and final position coordinates of nodes etc. There are four steps, and the thesis gives specific implementation steps of the algorithm. Finally, compared with stochastic algorithms and classical MDS algorithm experiment, the thesis takes application of specific examples. Experimental results show that: the proposed localization algorithm has fast multidimensional scaling positioning accuracy in ensuring certain circumstances, but also greatly improves the speed of operation.

  2. Clustering and Flow Conservation Monitoring Tool for Software Defined Networks

    Directory of Open Access Journals (Sweden)

    Jesús Antonio Puente Fernández

    2018-04-01

    Full Text Available Prediction systems present some challenges on two fronts: the relation between video quality and observed session features and on the other hand, dynamics changes on the video quality. Software Defined Networks (SDN is a new concept of network architecture that provides the separation of control plane (controller and data plane (switches in network devices. Due to the existence of the southbound interface, it is possible to deploy monitoring tools to obtain the network status and retrieve a statistics collection. Therefore, achieving the most accurate statistics depends on a strategy of monitoring and information requests of network devices. In this paper, we propose an enhanced algorithm for requesting statistics to measure the traffic flow in SDN networks. Such an algorithm is based on grouping network switches in clusters focusing on their number of ports to apply different monitoring techniques. Such grouping occurs by avoiding monitoring queries in network switches with common characteristics and then, by omitting redundant information. In this way, the present proposal decreases the number of monitoring queries to switches, improving the network traffic and preventing the switching overload. We have tested our optimization in a video streaming simulation using different types of videos. The experiments and comparison with traditional monitoring techniques demonstrate the feasibility of our proposal maintaining similar values decreasing the number of queries to the switches.

  3. Clustering and Flow Conservation Monitoring Tool for Software Defined Networks.

    Science.gov (United States)

    Puente Fernández, Jesús Antonio; García Villalba, Luis Javier; Kim, Tai-Hoon

    2018-04-03

    Prediction systems present some challenges on two fronts: the relation between video quality and observed session features and on the other hand, dynamics changes on the video quality. Software Defined Networks (SDN) is a new concept of network architecture that provides the separation of control plane (controller) and data plane (switches) in network devices. Due to the existence of the southbound interface, it is possible to deploy monitoring tools to obtain the network status and retrieve a statistics collection. Therefore, achieving the most accurate statistics depends on a strategy of monitoring and information requests of network devices. In this paper, we propose an enhanced algorithm for requesting statistics to measure the traffic flow in SDN networks. Such an algorithm is based on grouping network switches in clusters focusing on their number of ports to apply different monitoring techniques. Such grouping occurs by avoiding monitoring queries in network switches with common characteristics and then, by omitting redundant information. In this way, the present proposal decreases the number of monitoring queries to switches, improving the network traffic and preventing the switching overload. We have tested our optimization in a video streaming simulation using different types of videos. The experiments and comparison with traditional monitoring techniques demonstrate the feasibility of our proposal maintaining similar values decreasing the number of queries to the switches.

  4. Network structure of subway passenger flows

    Science.gov (United States)

    Xu, Q.; Mao, B. H.; Bai, Y.

    2016-03-01

    The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.

  5. Pressure algorithm for elliptic flow calculations with the PDF method

    Science.gov (United States)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  6. Flow whitelisting in SCADA networks

    NARCIS (Netherlands)

    Barbosa, Rafael Ramos Regis; Pras, Aiko; Sadre, Ramin

    Supervisory Control And Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities. Modern SCADA networks are becoming more vulnerable to network attacks, due to the now common use of standard communication protocols and increased interconnection to

  7. Flow Whitelisting in SCADA Networks

    NARCIS (Netherlands)

    Barbosa, R.R.R.; Pras, Aiko; Sadre, R.

    2013-01-01

    Supervisory Control And Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities. Modern SCADA networks are becoming more vulnerable to network attacks, due to the now common use of standard communication protocols and increased interconnection to

  8. An algorithm for link restoration of wavelength routing optical networks

    DEFF Research Database (Denmark)

    Limal, Emmanuel; Stubkjær, Kristian

    1999-01-01

    We present an algorithm for restoration of single link failure in wavelength routing multihop optical networks. The algorithm is based on an innovative study of networks using graph theory. It has the following original features: it (i) assigns working and spare channels simultaneously, (ii......) prevents the search for unacceptable routing paths by pointing out channels required for restoration, (iii) offers a high utilization of the capacity resources and (iv) allows a trivial search for the restoration paths. The algorithm is for link restoration of networks without wavelength translation. Its...

  9. Real-world experimentation of distributed DSA network algorithms

    DEFF Research Database (Denmark)

    Tonelli, Oscar; Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão

    2013-01-01

    such as a dynamic propagation environment, human presence impact and terminals mobility. This chapter focuses on the practical aspects related to the real world-experimentation with distributed DSA network algorithms over a testbed network. Challenges and solutions are extensively discussed, from the testbed design......The problem of spectrum scarcity in uncoordinated and/or heterogeneous wireless networks is the key aspect driving the research in the field of flexible management of frequency resources. In particular, distributed dynamic spectrum access (DSA) algorithms enable an efficient sharing...... to the setup of experiments. A practical example of experimentation process with a DSA algorithm is also provided....

  10. SPECIAL LIBRARIES OF FRAGMENTS OF ALGORITHMIC NETWORKS TO AUTOMATE THE DEVELOPMENT OF ALGORITHMIC MODELS

    Directory of Open Access Journals (Sweden)

    V. E. Marley

    2015-01-01

    Full Text Available Summary. The concept of algorithmic models appeared from the algorithmic approach in which the simulated object, the phenomenon appears in the form of process, subject to strict rules of the algorithm, which placed the process of operation of the facility. Under the algorithmic model is the formalized description of the scenario subject specialist for the simulated process, the structure of which is comparable with the structure of the causal and temporal relationships between events of the process being modeled, together with all information necessary for its software implementation. To represent the structure of algorithmic models used algorithmic network. Normally, they were defined as loaded finite directed graph, the vertices which are mapped to operators and arcs are variables, bound by operators. The language of algorithmic networks has great features, the algorithms that it can display indifference the class of all random algorithms. In existing systems, automation modeling based on algorithmic nets, mainly used by operators working with real numbers. Although this reduces their ability, but enough for modeling a wide class of problems related to economy, environment, transport, technical processes. The task of modeling the execution of schedules and network diagrams is relevant and useful. There are many counting systems, network graphs, however, the monitoring process based analysis of gaps and terms of graphs, no analysis of prediction execution schedule or schedules. The library is designed to build similar predictive models. Specifying source data to obtain a set of projections from which to choose one and take it for a new plan.

  11. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks

    Directory of Open Access Journals (Sweden)

    Kazeem B. Adedeji

    2017-10-01

    Full Text Available Water loss through leaking pipes constitutes a major challenge to the operational service of water utilities. In recent years, increasing concern about the financial loss and environmental pollution caused by leaking pipes has been driving the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s of the network and the exact leaking pipelines connected to this segment(s where higher background leakage outflow occurs is a challenging task. Background leakage concerns the outflow from small cracks or deteriorated joints. In addition, because they are diffuse flow, they are not characterised by quick pressure drop and are not detectable by measuring instruments. Consequently, they go unreported for a long period of time posing a threat to water loss volume. Most of the existing research focuses on the detection and localisation of burst type leakages which are characterised by a sudden pressure drop. In this work, an algorithm for detecting and estimating background leakage in water distribution networks is presented. The algorithm integrates a leakage model into a classical WDN hydraulic model for solving the network leakage flows. The applicability of the developed algorithm is demonstrated on two different water networks. The results of the tested networks are discussed and the solutions obtained show the benefits of the proposed algorithm. A noteworthy evidence is that the algorithm permits the detection of critical segments or pipes of the network experiencing higher leakage outflow and indicates the probable pipes of the network where pressure control can be performed. However, the possible position of pressure control elements along such critical pipes will be addressed in future work.

  12. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

    Science.gov (United States)

    Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

    2017-12-01

    Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

  13. Improved Degree Search Algorithms in Unstructured P2P Networks

    Directory of Open Access Journals (Sweden)

    Guole Liu

    2012-01-01

    Full Text Available Searching and retrieving the demanded correct information is one important problem in networks; especially, designing an efficient search algorithm is a key challenge in unstructured peer-to-peer (P2P networks. Breadth-first search (BFS and depth-first search (DFS are the current two typical search methods. BFS-based algorithms show the perfect performance in the aspect of search success rate of network resources, while bringing the huge search messages. On the contrary, DFS-based algorithms reduce the search message quantity and also cause the dropping of search success ratio. To address the problem that only one of performances is excellent, we propose two memory function degree search algorithms: memory function maximum degree algorithm (MD and memory function preference degree algorithm (PD. We study their performance including the search success rate and the search message quantity in different networks, which are scale-free networks, random graph networks, and small-world networks. Simulations show that the two performances are both excellent at the same time, and the performances are improved at least 10 times.

  14. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    African Journals Online (AJOL)

    NJD

    Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous ... process by training a number of neural networks. .... Matlab® version 6.1 was employed for building principal component ... provide a fair simulation of calibration data set with some degree.

  15. A Family of Algorithms for Computing Consensus about Node State from Network Data

    Science.gov (United States)

    Brush, Eleanor R.; Krakauer, David C.; Flack, Jessica C.

    2013-01-01

    Biological and social networks are composed of heterogeneous nodes that contribute differentially to network structure and function. A number of algorithms have been developed to measure this variation. These algorithms have proven useful for applications that require assigning scores to individual nodes–from ranking websites to determining critical species in ecosystems–yet the mechanistic basis for why they produce good rankings remains poorly understood. We show that a unifying property of these algorithms is that they quantify consensus in the network about a node's state or capacity to perform a function. The algorithms capture consensus by either taking into account the number of a target node's direct connections, and, when the edges are weighted, the uniformity of its weighted in-degree distribution (breadth), or by measuring net flow into a target node (depth). Using data from communication, social, and biological networks we find that that how an algorithm measures consensus–through breadth or depth– impacts its ability to correctly score nodes. We also observe variation in sensitivity to source biases in interaction/adjacency matrices: errors arising from systematic error at the node level or direct manipulation of network connectivity by nodes. Our results indicate that the breadth algorithms, which are derived from information theory, correctly score nodes (assessed using independent data) and are robust to errors. However, in cases where nodes “form opinions” about other nodes using indirect information, like reputation, depth algorithms, like Eigenvector Centrality, are required. One caveat is that Eigenvector Centrality is not robust to error unless the network is transitive or assortative. In these cases the network structure allows the depth algorithms to effectively capture breadth as well as depth. Finally, we discuss the algorithms' cognitive and computational demands. This is an important consideration in systems in which

  16. Optimization of multicast optical networks with genetic algorithm

    Science.gov (United States)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  17. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    Science.gov (United States)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  18. The Forward-Reverse Algorithm for Stochastic Reaction Networks

    KAUST Repository

    Bayer, Christian; Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro

    2015-01-01

    In this work, we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem

  19. Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm

    Directory of Open Access Journals (Sweden)

    O. G. Monahov

    2014-01-01

    Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously

  20. Information flow analysis of interactome networks.

    Directory of Open Access Journals (Sweden)

    Patrycja Vasilyev Missiuro

    2009-04-01

    Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we

  1. Schwarz-based algorithms for compressible flows

    Energy Technology Data Exchange (ETDEWEB)

    Tidriri, M.D. [ICASE, Hampton, VA (United States)

    1996-12-31

    To compute steady compressible flows one often uses an implicit discretization approach which leads to a large sparse linear system that must be solved at each time step. In the derivation of this system one often uses a defect-correction procedure, in which the left-hand side of the system is discretized with a lower order approximation than that used for the right-hand side. This is due to storage considerations and computational complexity, and also to the fact that the resulting lower order matrix is better conditioned than the higher order matrix. The resulting schemes are only moderately implicit. In the case of structured, body-fitted grids, the linear system can easily be solved using approximate factorization (AF), which is among the most widely used methods for such grids. However, for unstructured grids, such techniques are no longer valid, and the system is solved using direct or iterative techniques. Because of the prohibitive computational costs and large memory requirements for the solution of compressible flows, iterative methods are preferred. In these defect-correction methods, which are implemented in most CFD computer codes, the mismatch in the right and left hand side operators, together with explicit treatment of the boundary conditions, lead to a severely limited CFL number, which results in a slow convergence to steady state aerodynamic solutions. Many authors have tried to replace explicit boundary conditions with implicit ones. Although they clearly demonstrate that high CFL numbers are possible, the reduction in CPU time is not clear cut.

  2. Recommending Learning Activities in Social Network Using Data Mining Algorithms

    Science.gov (United States)

    Mahnane, Lamia

    2017-01-01

    In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). "NSN-AP-CF" processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the…

  3. Research of Ad Hoc Networks Access Algorithm

    Science.gov (United States)

    Xiang, Ma

    With the continuous development of mobile communication technology, Ad Hoc access network has become a hot research, Ad Hoc access network nodes can be used to expand capacity of multi-hop communication range of mobile communication system, even business adjacent to the community, improve edge data rates. When the ad hoc network is the access network of the internet, the gateway discovery protocol is very important to choose the most appropriate gateway to guarantee the connectivity between ad hoc network and IP based fixed networks. The paper proposes a QoS gateway discovery protocol which uses the time delay and stable route to the gateway selection conditions. And according to the gateway discovery protocol, it also proposes a fast handover scheme which can decrease the handover time and improve the handover efficiency.

  4. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    African Journals Online (AJOL)

    Marquardt algorithm by varying conditions such as inputs, hidden neurons, initialization, training sets and random Gaussian noise injection to ... Several such ensembles formed the population which was evolved to generate the fittest ensemble.

  5. THE ALGORITHM OF DETERMINATION OF EYE FUNDUS VESSELS BLOOD FLOW CHARACTERISTICS ON VIDEOSEQUENCE

    Directory of Open Access Journals (Sweden)

    O. V. Nedzvedz

    2018-01-01

    Full Text Available The method of determination of the dynamic characteristics like the vessel diameter change, the linear and volume blood velocities in the vessels of the eye fundus is considered. Such characteristics allow to determine blood flow changes in the microvasculature affecting the blood flow in the brain, kidneys and coronary vessels. Developed algorithm includes four stages: the video sequence stabilization, the vessels segmentation with the help of a neural network, the determination of the instantaneous velocity in the vessels based on the optical flow and the analysis of the results.

  6. Agricultural informational flow in informal communication networks ...

    African Journals Online (AJOL)

    Agricultural informational flow in informal communication networks of farmers in Ghana. ... should identify such farmers who can serve as intermediaries between actors to help disseminate information in rural communities. Keywords: key communicators, farmers, rural communities, social networks, extension agents ...

  7. Brain network clustering with information flow motifs

    NARCIS (Netherlands)

    Märtens, M.; Meier, J.M.; Hillebrand, Arjan; Tewarie, Prejaas; Van Mieghem, P.F.A.

    2017-01-01

    Recent work has revealed frequency-dependent global patterns of information flow by a network analysis of magnetoencephalography data of the human brain. However, it is unknown which properties on a small subgraph-scale of those functional brain networks are dominant at different frequencies bands.

  8. Brocade: Optimal flow placement in SDN networks

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Today' network poses several challanges to network providers. These challanges fall in to a variety of areas ranging from determining efficient utilization of network bandwidth to finding out which user applications consume majority of network resources. Also, how to protect a given network from volumetric and botnet attacks. Optimal placement of flows deal with identifying network issues and addressing them in a real-time. The overall solution helps in building new services where a network is more secure and more efficient. Benefits derived as a result are increased network efficiency due to better capacity and resource planning, better security with real-time threat mitigation, and improved user experience as a result of increased service velocity.

  9. Filtering Undesirable Flows in Networks

    NARCIS (Netherlands)

    Polevoy, G.; Trajanovski, S.; Grosso, P.; de Laat, C.; Gao, X.; Du, H.; Han, M.

    2017-01-01

    We study the problem of fully mitigating the effects of denial of service by filtering the minimum necessary set of the undesirable flows. First, we model this problem and then we concentrate on a subproblem where every good flow has a bottleneck. We prove that unless P=NP, this subproblem is

  10. A TLD dose algorithm using artificial neural networks

    International Nuclear Information System (INIS)

    Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.

    1995-01-01

    An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters

  11. A Novel Algorithm for Power Flow Transferring Identification Based on WAMS

    Directory of Open Access Journals (Sweden)

    Xu Yan

    2015-01-01

    Full Text Available After a faulted transmission line is removed, power flow on it will be transferred to other lines in the network. If those lines are heavily loaded beforehand, the transferred flow may cause the nonfault overload and the incorrect operation of far-ranging backup relays, which are considered as the key factors leading to cascading trips. In this paper, a novel algorithm for power flow transferring identification based on wide area measurement system (WAMS is proposed, through which the possible incorrect tripping of backup relays will be blocked in time. A new concept of Transferred Flow Characteristic Ratio (TFCR is presented and is applied to the identification criteria. Mathematical derivation of TFCR is carried out in detail by utilization of power system short circuit fault modeling. The feasibility and effectiveness of the proposed algorithm to prevent the malfunction of backup relays are demonstrated by a large number of simulations.

  12. Behavioural modelling using the MOESP algorithm, dynamic neural networks and the Bartels-Stewart algorithm

    NARCIS (Netherlands)

    Schilders, W.H.A.; Meijer, P.B.L.; Ciggaar, E.

    2008-01-01

    In this paper we discuss the use of the state-space modelling MOESP algorithm to generate precise information about the number of neurons and hidden layers in dynamic neural networks developed for the behavioural modelling of electronic circuits. The Bartels–Stewart algorithm is used to transform

  13. Wireless Sensor Networks : Structure and Algorithms

    NARCIS (Netherlands)

    van Dijk, T.C.

    2014-01-01

    In this thesis we look at various problems in wireless networking. First we consider two problems in physical-model networks. We introduce a new model for localisation. The model is based on a range-free model of radio transmissions. The first scheme is randomised and we analyse its expected

  14. Insertion algorithms for network model database management systems

    Science.gov (United States)

    Mamadolimov, Abdurashid; Khikmat, Saburov

    2017-12-01

    The network model is a database model conceived as a flexible way of representing objects and their relationships. Its distinguishing feature is that the schema, viewed as a graph in which object types are nodes and relationship types are arcs, forms partial order. When a database is large and a query comparison is expensive then the efficiency requirement of managing algorithms is minimizing the number of query comparisons. We consider updating operation for network model database management systems. We develop a new sequantial algorithm for updating operation. Also we suggest a distributed version of the algorithm.

  15. Information Flows in Networked Engineering Design Projects

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Maier, Anja

    Complex engineering design projects need to manage simultaneously multiple information flows across design activities associated with different areas of the design process. Previous research on this area has mostly focused on either analysing the “required information flows” through activity...... networks at the project level or in studying the social networks that deliver the “actual information flow”. In this paper we propose and empirically test a model and method that integrates both social and activity networks into one compact representation, allowing to compare actual and required...... information flows between design spaces, and to assess the influence that these misalignments could have on the performance of engineering design projects....

  16. On Event Detection and Localization in Acyclic Flow Networks

    KAUST Repository

    Suresh, Mahima Agumbe

    2013-05-01

    Acyclic flow networks, present in many infrastructures of national importance (e.g., oil and gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against these infrastructures have been proven costly and imprecise, particularly when dealing with large-scale distribution systems. In this article, to the best of our knowledge, for the first time, we investigate how mobile sensor networks can be used for optimal event detection and localization in acyclic flow networks. We propose the idea of using sensors that move along the edges of the network and detect events (i.e., attacks). To localize the events, sensors detect proximity to beacons, which are devices with known placement in the network. We formulate the problem of minimizing the cost of monitoring infrastructure (i.e., minimizing the number of sensors and beacons deployed) in a predetermined zone of interest, while ensuring a degree of coverage by sensors and a required accuracy in locating events using beacons. We propose algorithms for solving the aforementioned problem and demonstrate their effectiveness with results obtained from a realistic flow network simulator.

  17. A Practical Algorithm for Reconstructing Level-1 Phylogenetic Networks

    NARCIS (Netherlands)

    K.T. Huber; L.J.J. van Iersel (Leo); S.M. Kelk (Steven); R. Suchecki

    2010-01-01

    htmlabstractRecently much attention has been devoted to the construction of phylogenetic networks which generalize phylogenetic trees in order to accommodate complex evolutionary processes. Here we present an efficient, practical algorithm for reconstructing level-1 phylogenetic networks - a type of

  18. Column generation algorithms for virtual network embedding in flexi-grid optical networks.

    Science.gov (United States)

    Lin, Rongping; Luo, Shan; Zhou, Jingwei; Wang, Sheng; Chen, Bin; Zhang, Xiaoning; Cai, Anliang; Zhong, Wen-De; Zukerman, Moshe

    2018-04-16

    Network virtualization provides means for efficient management of network resources by embedding multiple virtual networks (VNs) to share efficiently the same substrate network. Such virtual network embedding (VNE) gives rise to a challenging problem of how to optimize resource allocation to VNs and to guarantee their performance requirements. In this paper, we provide VNE algorithms for efficient management of flexi-grid optical networks. We provide an exact algorithm aiming to minimize the total embedding cost in terms of spectrum cost and computation cost for a single VN request. Then, to achieve scalability, we also develop a heuristic algorithm for the same problem. We apply these two algorithms for a dynamic traffic scenario where many VN requests arrive one-by-one. We first demonstrate by simulations for the case of a six-node network that the heuristic algorithm obtains very close blocking probabilities to exact algorithm (about 0.2% higher). Then, for a network of realistic size (namely, USnet) we demonstrate that the blocking probability of our new heuristic algorithm is about one magnitude lower than a simpler heuristic algorithm, which was a component of an earlier published algorithm.

  19. A method for classification of network traffic based on C5.0 Machine Learning Algorithm

    DEFF Research Database (Denmark)

    Bujlow, Tomasz; Riaz, M. Tahir; Pedersen, Jens Myrup

    2012-01-01

    current network traffic. To overcome the drawbacks of existing methods for traffic classification, usage of C5.0 Machine Learning Algorithm (MLA) was proposed. On the basis of statistical traffic information received from volunteers and C5.0 algorithm we constructed a boosted classifier, which was shown...... and classification, an algorithm for recognizing flow direction and the C5.0 itself. Classified applications include Skype, FTP, torrent, web browser traffic, web radio, interactive gaming and SSH. We performed subsequent tries using different sets of parameters and both training and classification options...

  20. A range-based predictive localization algorithm for WSID networks

    Science.gov (United States)

    Liu, Yuan; Chen, Junjie; Li, Gang

    2017-11-01

    Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.

  1. Interest communities and flow roles in directed networks: the Twitter network of the UK riots.

    Science.gov (United States)

    Beguerisse-Díaz, Mariano; Garduño-Hernández, Guillermo; Vangelov, Borislav; Yaliraki, Sophia N; Barahona, Mauricio

    2014-12-06

    Directionality is a crucial ingredient in many complex networks in which information, energy or influence are transmitted. In such directed networks, analysing flows (and not only the strength of connections) is crucial to reveal important features of the network that might go undetected if the orientation of connections is ignored. We showcase here a flow-based approach for community detection through the study of the network of the most influential Twitter users during the 2011 riots in England. Firstly, we use directed Markov Stability to extract descriptions of the network at different levels of coarseness in terms of interest communities, i.e. groups of nodes within which flows of information are contained and reinforced. Such interest communities reveal user groupings according to location, profession, employer and topic. The study of flows also allows us to generate an interest distance, which affords a personalized view of the attention in the network as viewed from the vantage point of any given user. Secondly, we analyse the profiles of incoming and outgoing long-range flows with a combined approach of role-based similarity and the novel relaxed minimum spanning tree algorithm to reveal that the users in the network can be classified into five roles. These flow roles go beyond the standard leader/follower dichotomy and differ from classifications based on regular/structural equivalence. We then show that the interest communities fall into distinct informational organigrams characterized by a different mix of user roles reflecting the quality of dialogue within them. Our generic framework can be used to provide insight into how flows are generated, distributed, preserved and consumed in directed networks.

  2. Incremental Centrality Algorithms for Dynamic Network Analysis

    Science.gov (United States)

    2013-08-01

    literature.   7.1.3 Small World Networks In 1998, Watts and Strogatz introduced a model that starts with a regular lattice (ring) of n nodes and...and S. Strogatz , "Collective Dynamics of ‘Small-World’ Networks," Nature, vol. 393, pp. 440-442, 1998. [13] T. Opsahl, "Structure and Evolution of...34On Random Graphs," Publicationes Mathematicae, vol. 6, 1959. [167] D.J. Watts and S.H. Strogatz , "Collective Dynamics of ‘Small-World’ Networks

  3. Practical Algorithms for Subgroup Detection in Covert Networks

    DEFF Research Database (Denmark)

    Memon, Nasrullah; Wiil, Uffe Kock; Qureshi, Pir Abdul Rasool

    2010-01-01

    In this paper, we present algorithms for subgroup detection and demonstrated them with a real-time case study of USS Cole bombing terrorist network. The algorithms are demonstrated in an application by a prototype system. The system finds associations between terrorist and terrorist organisations...... and is capable of determining links between terrorism plots occurred in the past, their affiliation with terrorist camps, travel record, funds transfer, etc. The findings are represented by a network in the form of an Attributed Relational Graph (ARG). Paths from a node to any other node in the network indicate...

  4. ANOMALY DETECTION IN NETWORKING USING HYBRID ARTIFICIAL IMMUNE ALGORITHM

    Directory of Open Access Journals (Sweden)

    D. Amutha Guka

    2012-01-01

    Full Text Available Especially in today’s network scenario, when computers are interconnected through internet, security of an information system is very important issue. Because no system can be absolutely secure, the timely and accurate detection of anomalies is necessary. The main aim of this research paper is to improve the anomaly detection by using Hybrid Artificial Immune Algorithm (HAIA which is based on Artificial Immune Systems (AIS and Genetic Algorithm (GA. In this research work, HAIA approach is used to develop Network Anomaly Detection System (NADS. The detector set is generated by using GA and the anomalies are identified using Negative Selection Algorithm (NSA which is based on AIS. The HAIA algorithm is tested with KDD Cup 99 benchmark dataset. The detection rate is used to measure the effectiveness of the NADS. The results and consistency of the HAIA are compared with earlier approaches and the results are presented. The proposed algorithm gives best results when compared to the earlier approaches.

  5. A Distributed Algorithm for Energy Optimization in Hydraulic Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Wisniewski, Rafal; Jensen, Tom Nørgaard

    2014-01-01

    An industrial case study in the form of a large-scale hydraulic network underlying a district heating system is considered. A distributed control is developed that minimizes the aggregated electrical energy consumption of the pumps in the network without violating the control demands. The algorithm...... a Plug & Play control system as most commissioning can be done during the manufacture of the pumps. Only information on the graph-structure of the hydraulic network is needed during installation....

  6. Designing synthetic networks in silico: a generalised evolutionary algorithm approach.

    Science.gov (United States)

    Smith, Robert W; van Sluijs, Bob; Fleck, Christian

    2017-12-02

    Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.

  7. Using network properties to evaluate targeted immunization algorithms

    Directory of Open Access Journals (Sweden)

    Bita Shams

    2014-09-01

    Full Text Available Immunization of complex network with minimal or limited budget is a challenging issue for research community. In spite of much literature in network immunization, no comprehensive research has been conducted for evaluation and comparison of immunization algorithms. In this paper, we propose an evaluation framework for immunization algorithms regarding available amount of vaccination resources, goal of immunization program, and time complexity. The evaluation framework is designed based on network topological metrics which is extensible to all epidemic spreading model. Exploiting evaluation framework on well-known targeted immunization algorithms shows that in general, immunization based on PageRank centrality outperforms other targeting strategies in various types of networks, whereas, closeness and eigenvector centrality exhibit the worst case performance.

  8. Node-Dependence-Based Dynamic Incentive Algorithm in Opportunistic Networks

    Directory of Open Access Journals (Sweden)

    Ruiyun Yu

    2014-01-01

    Full Text Available Opportunistic networks lack end-to-end paths between source nodes and destination nodes, so the communications are mainly carried out by the “store-carry-forward” strategy. Selfish behaviors of rejecting packet relay requests will severely worsen the network performance. Incentive is an efficient way to reduce selfish behaviors and hence improves the reliability and robustness of the networks. In this paper, we propose the node-dependence-based dynamic gaming incentive (NDI algorithm, which exploits the dynamic repeated gaming to motivate nodes relaying packets for other nodes. The NDI algorithm presents a mechanism of tolerating selfish behaviors of nodes. Reward and punishment methods are also designed based on the node dependence degree. Simulation results show that the NDI algorithm is effective in increasing the delivery ratio and decreasing average latency when there are a lot of selfish nodes in the opportunistic networks.

  9. Community Clustering Algorithm in Complex Networks Based on Microcommunity Fusion

    Directory of Open Access Journals (Sweden)

    Jin Qi

    2015-01-01

    Full Text Available With the further research on physical meaning and digital features of the community structure in complex networks in recent years, the improvement of effectiveness and efficiency of the community mining algorithms in complex networks has become an important subject in this area. This paper puts forward a concept of the microcommunity and gets final mining results of communities through fusing different microcommunities. This paper starts with the basic definition of the network community and applies Expansion to the microcommunity clustering which provides prerequisites for the microcommunity fusion. The proposed algorithm is more efficient and has higher solution quality compared with other similar algorithms through the analysis of test results based on network data set.

  10. Algorithms for Scheduling and Network Problems

    Science.gov (United States)

    1991-09-01

    time. We already know, by Lemma 2.2.1, that WOPT = O(log( mpU )), so if we could solve this integer program optimally we would be done. However, the...Folydirat, 15:177-191, 1982. [6] I.S. Belov and Ya. N. Stolin. An algorithm in a single path operations scheduling problem. In Mathematical Economics and

  11. Control algorithm for multiscale flow simulations of water

    DEFF Research Database (Denmark)

    Kotsalis, E. M.; Walther, Jens Honore; Kaxiras, E.

    2009-01-01

    We present a multiscale algorithm to couple atomistic water models with continuum incompressible flow simulations via a Schwarz domain decomposition approach. The coupling introduces an inhomogeneity in the description of the atomistic domain and prevents the use of periodic boundary conditions...

  12. Software defined networking with OpenFlow

    CERN Document Server

    Azodolmolky, Siamak

    2013-01-01

    A step-by-step, example-based guide which will help you gain hands-on experience with the platforms and debugging tools on OpenFlow.If you are a network engineer, architect, junior researcher or an application developer, this book is ideal for you. You will need to have some level of network experience, knowledge of broad networking concepts, and some familiarity with day- to- day operation of computer networks. Ideally, you should also be familiar with programing scripting/languages (especially Python and Java), and system virtualization.

  13. A trust region interior point algorithm for optimal power flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Wang Min [Hefei University of Technology (China). Dept. of Electrical Engineering and Automation; Liu Shengsong [Jiangsu Electric Power Dispatching and Telecommunication Company (China). Dept. of Automation

    2005-05-01

    This paper presents a new algorithm that uses the trust region interior point method to solve nonlinear optimal power flow (OPF) problems. The OPF problem is solved by a primal/dual interior point method with multiple centrality corrections as a sequence of linearized trust region sub-problems. It is the trust region that controls the linear step size and ensures the validity of the linear model. The convergence of the algorithm is improved through the modification of the trust region sub-problem. Numerical results of standard IEEE systems and two realistic networks ranging in size from 14 to 662 buses are presented. The computational results show that the proposed algorithm is very effective to optimal power flow applications, and favors the successive linear programming (SLP) method. Comparison with the predictor/corrector primal/dual interior point (PCPDIP) method is also made to demonstrate the superiority of the multiple centrality corrections technique. (author)

  14. The guitar chord-generating algorithm based on complex network

    Science.gov (United States)

    Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais

    2016-02-01

    This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.

  15. A Hybrid Genetic Algorithm Approach for Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Sydulu Maheswarapu

    2011-08-01

    Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.

  16. Quantum Google algorithm. Construction and application to complex networks

    Science.gov (United States)

    Paparo, G. D.; Müller, M.; Comellas, F.; Martin-Delgado, M. A.

    2014-07-01

    We review the main findings on the ranking capabilities of the recently proposed Quantum PageRank algorithm (G.D. Paparo et al., Sci. Rep. 2, 444 (2012) and G.D. Paparo et al., Sci. Rep. 3, 2773 (2013)) applied to large complex networks. The algorithm has been shown to identify unambiguously the underlying topology of the network and to be capable of clearly highlighting the structure of secondary hubs of networks. Furthermore, it can resolve the degeneracy in importance of the low-lying part of the list of rankings. Examples of applications include real-world instances from the WWW, which typically display a scale-free network structure and models of hierarchical networks. The quantum algorithm has been shown to display an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance among the nodes, as compared to the classical algorithm.

  17. Phase retrieval via incremental truncated amplitude flow algorithm

    Science.gov (United States)

    Zhang, Quanbing; Wang, Zhifa; Wang, Linjie; Cheng, Shichao

    2017-10-01

    This paper considers the phase retrieval problem of recovering the unknown signal from the given quadratic measurements. A phase retrieval algorithm based on Incremental Truncated Amplitude Flow (ITAF) which combines the ITWF algorithm and the TAF algorithm is proposed. The proposed ITAF algorithm enhances the initialization by performing both of the truncation methods used in ITWF and TAF respectively, and improves the performance in the gradient stage by applying the incremental method proposed in ITWF to the loop stage of TAF. Moreover, the original sampling vector and measurements are preprocessed before initialization according to the variance of the sensing matrix. Simulation experiments verified the feasibility and validity of the proposed ITAF algorithm. The experimental results show that it can obtain higher success rate and faster convergence speed compared with other algorithms. Especially, for the noiseless random Gaussian signals, ITAF can recover any real-valued signal accurately from the magnitude measurements whose number is about 2.5 times of the signal length, which is close to the theoretic limit (about 2 times of the signal length). And it usually converges to the optimal solution within 20 iterations which is much less than the state-of-the-art algorithms.

  18. Optimal power flow using the league championship algorithm: A case study of the Algerian power system

    International Nuclear Information System (INIS)

    Bouchekara, H.R.E.H.; Abido, M.A.; Chaib, A.E.; Mehasni, R.

    2014-01-01

    Highlights: • Optimal power flow. • Reducing electrical energy loss. • Saving electrical energy. • Optimal operation. - Abstract: A new efficient optimization method, called the League Championship Algorithm (LCA) is proposed in this paper for solving the optimal power flow problem. This method is inspired by the competition of sport teams in an artificial sport league for several weeks and over a number of seasons. The proposed method has been applied to the Algerian power system network for different objectives. Furthermore, in order to assess the effectiveness of the proposed LCA method the obtained results using this method have been compared to those obtained using other methods reported in the literature. The obtained results and the comparison with other techniques indicate that the league championship algorithm provides effective and high-quality solution when solving the optimal power flow problem

  19. An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2013-01-01

    Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.

  20. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    Science.gov (United States)

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  1. Block Least Mean Squares Algorithm over Distributed Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    T. Panigrahi

    2012-01-01

    Full Text Available In a distributed parameter estimation problem, during each sampling instant, a typical sensor node communicates its estimate either by the diffusion algorithm or by the incremental algorithm. Both these conventional distributed algorithms involve significant communication overheads and, consequently, defeat the basic purpose of wireless sensor networks. In the present paper, we therefore propose two new distributed algorithms, namely, block diffusion least mean square (BDLMS and block incremental least mean square (BILMS by extending the concept of block adaptive filtering techniques to the distributed adaptation scenario. The performance analysis of the proposed BDLMS and BILMS algorithms has been carried out and found to have similar performances to those offered by conventional diffusion LMS and incremental LMS algorithms, respectively. The convergence analyses of the proposed algorithms obtained from the simulation study are also found to be in agreement with the theoretical analysis. The remarkable and interesting aspect of the proposed block-based algorithms is that their communication overheads per node and latencies are less than those of the conventional algorithms by a factor as high as the block size used in the algorithms.

  2. Road Network Vulnerability Analysis Based on Improved Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2014-01-01

    Full Text Available We present an improved ant colony algorithm-based approach to assess the vulnerability of a road network and identify the critical infrastructures. This approach improves computational efficiency and allows for its applications in large-scale road networks. This research involves defining the vulnerability conception, modeling the traffic utility index and the vulnerability of the road network, and identifying the critical infrastructures of the road network. We apply the approach to a simple test road network and a real road network to verify the methodology. The results show that vulnerability is directly related to traffic demand and increases significantly when the demand approaches capacity. The proposed approach reduces the computational burden and may be applied in large-scale road network analysis. It can be used as a decision-supporting tool for identifying critical infrastructures in transportation planning and management.

  3. Algorithmic Complexity and Reprogrammability of Chemical Structure Networks

    KAUST Repository

    Zenil, Hector; Kiani, Narsis A.; Shang, Ming-mei; Tegner, Jesper

    2018-01-01

    Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.

  4. Algorithmic Complexity and Reprogrammability of Chemical Structure Networks

    KAUST Repository

    Zenil, Hector

    2018-04-02

    Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.

  5. Algorithmic Complexity and Reprogrammability of Chemical Structure Networks

    KAUST Repository

    Zenil, Hector

    2018-02-16

    Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.

  6. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. The algorithms depend heavily on accurate estimation of the position of particles as they traverse the inner detector elements. An artificial neural network algorithm is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The method recovers otherwise lost tracks in dense environments where particles are separated by distances comparable to the size of the detector read-out elements. Such environments are highly relevant for LHC run 2, e.g. in searches for heavy resonances. Within the scope of run 2 track reconstruction performance and upgrades, the robustness of the neural network algorithm will be presented. The robustness has been studied by evaluating the stability of the algorithm’s performance under a range of variations in the pixel detector conditions.

  7. Decoding Algorithms for Random Linear Network Codes

    DEFF Research Database (Denmark)

    Heide, Janus; Pedersen, Morten Videbæk; Fitzek, Frank

    2011-01-01

    We consider the problem of efficient decoding of a random linear code over a finite field. In particular we are interested in the case where the code is random, relatively sparse, and use the binary finite field as an example. The goal is to decode the data using fewer operations to potentially...... achieve a high coding throughput, and reduce energy consumption.We use an on-the-fly version of the Gauss-Jordan algorithm as a baseline, and provide several simple improvements to reduce the number of operations needed to perform decoding. Our tests show that the improvements can reduce the number...

  8. Algorithm for Wireless Sensor Networks Based on Grid Management

    Directory of Open Access Journals (Sweden)

    Geng Zhang

    2014-05-01

    Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.

  9. Evaluation of the reliability of transport networks based on the stochastic flow of moving objects

    International Nuclear Information System (INIS)

    Wu Weiwei; Ning, Angelika; Ning Xuanxi

    2008-01-01

    In transport networks, human beings are moving objects whose moving direction is stochastic in emergency situations. Based on this idea, a new model-stochastic moving network (SMN) is proposed. It is different from binary-state networks and stochastic-flow networks. The flow of SMNs has multiple-saturated states, that correspond to different flow values in each arc. In this paper, we try to evaluate the system reliability, defined as the probability that the saturated flow of the network is not less than a given demand d. Based on this new model, we obtain the flow probability distribution of every arc by simulation. An algorithm based on the blocking cutset of the SMN is proposed to evaluate the network reliability. An example is used to show how to calculate the corresponding reliabilities for different given demands of the SMN. Simulation experiments of different size were made and the system reliability precision was calculated. The precision of simulation results also discussed

  10. A high-precision algorithm for axisymmetric flow

    Directory of Open Access Journals (Sweden)

    A. Gokhman

    1995-01-01

    Full Text Available We present a new algorithm for highly accurate computation of axisymmetric potential flow. The principal feature of the algorithm is the use of orthogonal curvilinear coordinates. These coordinates are used to write down the equations and to specify quadrilateral elements following the boundary. In particular, boundary conditions for the Stokes' stream-function are satisfied exactly. The velocity field is determined by differentiating the stream-function. We avoid the use of quadratures in the evaluation of Galerkin integrals, and instead use splining of the boundaries of elements to take the double integrals of the shape functions in closed form. This is very accurate and not time consuming.

  11. Models and algorithms for biomolecules and molecular networks

    CERN Document Server

    DasGupta, Bhaskar

    2016-01-01

    By providing expositions to modeling principles, theories, computational solutions, and open problems, this reference presents a full scope on relevant biological phenomena, modeling frameworks, technical challenges, and algorithms. * Up-to-date developments of structures of biomolecules, systems biology, advanced models, and algorithms * Sampling techniques for estimating evolutionary rates and generating molecular structures * Accurate computation of probability landscape of stochastic networks, solving discrete chemical master equations * End-of-chapter exercises

  12. Fault location algorithms for optical networks

    OpenAIRE

    Mas Machuca, Carmen; Thiran, Patrick

    2005-01-01

    Today, there is no doubt that optical networks are the solution to the explosion of Internet traffic that two decades ago we only dreamed about. They offer high capacity with the use of Wavelength Division Multiplexing (WDM) techniques among others. However, this increase of available capacity can be betrayed by the high quantity of information that can be lost when a failure occurs because not only one, but several channels will then be interrupted. Efficient fault detection and location mec...

  13. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    International Nuclear Information System (INIS)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young; Park, Hong Seok

    2015-01-01

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β_h, chord angle β_c, cascade solidity of chord σ_c and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design

  14. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young [Pusan National University, Busan (Korea, Republic of); Park, Hong Seok [Ulsan University, Ulsan (Korea, Republic of)

    2015-11-15

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β{sub h}, chord angle β{sub c}, cascade solidity of chord σ{sub c} and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design.

  15. A solution algorithm for fluid-particle flows across all flow regimes

    Science.gov (United States)

    Kong, Bo; Fox, Rodney O.

    2017-09-01

    Many fluid-particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are close-packed as well as very dilute regions where particle-particle collisions are rare. Thus, in order to simulate such fluid-particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in the flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas-particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid-particle flows.

  16. Evaluation of Topology-Aware Broadcast Algorithms for Dragonfly Networks

    Energy Technology Data Exchange (ETDEWEB)

    Dorier, Matthieu; Mubarak, Misbah; Ross, Rob; Li, Jianping Kelvin; Carothers, Christopher D.; Ma, Kwan-Liu

    2016-09-12

    Two-tiered direct network topologies such as Dragonflies have been proposed for future post-petascale and exascale machines, since they provide a high-radix, low-diameter, fast interconnection network. Such topologies call for redesigning MPI collective communication algorithms in order to attain the best performance. Yet as increasingly more applications share a machine, it is not clear how these topology-aware algorithms will react to interference with concurrent jobs accessing the same network. In this paper, we study three topology-aware broadcast algorithms, including one designed by ourselves. We evaluate their performance through event-driven simulation for small- and large-sized broadcasts (in terms of both data size and number of processes). We study the effect of different routing mechanisms on the topology-aware collective algorithms, as well as their sensitivity to network contention with other jobs. Our results show that while topology-aware algorithms dramatically reduce link utilization, their advantage in terms of latency is more limited.

  17. Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Jianyong Liu

    2015-01-01

    Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.

  18. Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models

    Science.gov (United States)

    Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.

    2013-12-01

    Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.

  19. Spike Code Flow in Cultured Neuronal Networks.

    Science.gov (United States)

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei

    2016-01-01

    We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

  20. Spike Code Flow in Cultured Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Shinichi Tamura

    2016-01-01

    Full Text Available We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of “1101” and “1011,” which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the “maximum cross-correlations” among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

  1. Optimal Power Flow for resistive DC Network : A Port-Hamiltonian approach

    NARCIS (Netherlands)

    Benedito, Ernest; del Puerto-Flores, D.; Doria-Cerezo, A.; Scherpen, Jacquelien M.A.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    This paper studies the optimal power flow problem for resistive DC networks. The gradient method algorithm is written in a port-Hamiltonian form and the stability of the resulting dynamics is studied. Stability conditions are provided for general cyclic networks and a solution, when these conditions

  2. An Optimal Routing Algorithm in Service Customized 5G Networks

    Directory of Open Access Journals (Sweden)

    Haipeng Yao

    2016-01-01

    Full Text Available With the widespread use of Internet, the scale of mobile data traffic grows explosively, which makes 5G networks in cellular networks become a growing concern. Recently, the ideas related to future network, for example, Software Defined Networking (SDN, Content-Centric Networking (CCN, and Big Data, have drawn more and more attention. In this paper, we propose a service-customized 5G network architecture by introducing the ideas of separation between control plane and data plane, in-network caching, and Big Data processing and analysis to resolve the problems traditional cellular radio networks face. Moreover, we design an optimal routing algorithm for this architecture, which can minimize average response hops in the network. Simulation results reveal that, by introducing the cache, the network performance can be obviously improved in different network conditions compared to the scenario without a cache. In addition, we explore the change of cache hit rate and average response hops under different cache replacement policies, cache sizes, content popularity, and network topologies, respectively.

  3. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

    Directory of Open Access Journals (Sweden)

    Christian L Barrett

    2006-05-01

    Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

  4. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm

    Directory of Open Access Journals (Sweden)

    Haizhou Wu

    2016-01-01

    Full Text Available Symbiotic organisms search (SOS is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs. In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared.

  5. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    Science.gov (United States)

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  6. AdaBoost-based algorithm for network intrusion detection.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  7. ZAP: a distributed channel assignment algorithm for cognitive radio networks

    OpenAIRE

    Junior , Paulo Roberto ,; Fonseca , Mauro; Munaretto , Anelise; Viana , Aline ,; Ziviani , Artur

    2011-01-01

    Abstract We propose ZAP, an algorithm for the distributed channel assignment in cognitive radio (CR) networks. CRs are capable of identifying underutilized licensed bands of the spectrum, allowing their reuse by secondary users without interfering with primary users. In this context, efficient channel assignment is challenging as ideally it must be simple, incur acceptable communication overhead, provide timely response, and be adaptive to accommodate frequent changes in the network. Another ...

  8. Sensor and ad-hoc networks theoretical and algorithmic aspects

    CERN Document Server

    Makki, S Kami; Pissinou, Niki; Makki, Shamila; Karimi, Masoumeh; Makki, Kia

    2008-01-01

    This book brings together leading researchers and developers in the field of wireless sensor networks to explain the special problems and challenges of the algorithmic aspects of sensor and ad-hoc networks. The book also fosters communication not only between the different sensor and ad-hoc communities, but also between those communities and the distributed systems and information systems communities. The topics addressed pertain to the sensors and mobile environment.

  9. Behavioral Profiling of Scada Network Traffic Using Machine Learning Algorithms

    Science.gov (United States)

    2014-03-27

    Acquisition ( SCADA ) System Overview SCADA systems control and monitor processes for water distribution, oil and natural gas pipelines , electrical...the desire for remote control and monitoring of industrial processes. The ability to identify SCADA devices on a mixed traffic network with zero...optimal attribute subset, while maintaining the desired TPR of .99 for SCADA network traffic. The attributes and ML algorithms chosen for

  10. A multilevel algorithm for flow observables in gauge theories

    International Nuclear Information System (INIS)

    Garcia Vera, Miguel; Humboldt-Universitaet, Berlin; Schaefer, Stefan

    2016-03-01

    We study the possibility of using multilevel algorithms for the computation of correlation functions of gradient flow observables. For each point in the correlation function an approximate flow is defined which depends only on links in a subset of the lattice. Together with a local action this allows for independent updates and consequently a convergence of the Monte Carlo process faster than the inverse square root of the number of measurements. We demonstrate the feasibility of this idea in the correlation functions of the topological charge and the energy density.

  11. Flow shop scheduling algorithm to optimize warehouse activities

    Directory of Open Access Journals (Sweden)

    P. Centobelli

    2016-01-01

    Full Text Available Successful flow-shop scheduling outlines a more rapid and efficient process of order fulfilment in warehouse activities. Indeed the way and the speed of order processing and, in particular, the operations concerning materials handling between the upper stocking area and a lower forward picking one must be optimized. The two activities, drops and pickings, have considerable impact on important performance parameters for Supply Chain wholesaler companies. In this paper, a new flow shop scheduling algorithm is formulated in order to process a greater number of orders by replacing the FIFO logic for the drops activities of a wholesaler company on a daily basis. The System Dynamics modelling and simulation have been used to simulate the actual scenario and the output solutions. Finally, a t-Student test validates the modelled algorithm, granting that it can be used for all wholesalers based on drop and picking activities.

  12. Weighted Flow Algorithms (WFA) for stochastic particle coagulation

    International Nuclear Information System (INIS)

    DeVille, R.E.L.; Riemer, N.; West, M.

    2011-01-01

    Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangian trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.

  13. Weighted Flow Algorithms (WFA) for stochastic particle coagulation

    Science.gov (United States)

    DeVille, R. E. L.; Riemer, N.; West, M.

    2011-09-01

    Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangian trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.

  14. Fast grid layout algorithm for biological networks with sweep calculation.

    Science.gov (United States)

    Kojima, Kaname; Nagasaki, Masao; Miyano, Satoru

    2008-06-15

    Properly drawn biological networks are of great help in the comprehension of their characteristics. The quality of the layouts for retrieved biological networks is critical for pathway databases. However, since it is unrealistic to manually draw biological networks for every retrieval, automatic drawing algorithms are essential. Grid layout algorithms handle various biological properties such as aligning vertices having the same attributes and complicated positional constraints according to their subcellular localizations; thus, they succeed in providing biologically comprehensible layouts. However, existing grid layout algorithms are not suitable for real-time drawing, which is one of requisites for applications to pathway databases, due to their high-computational cost. In addition, they do not consider edge directions and their resulting layouts lack traceability for biochemical reactions and gene regulations, which are the most important features in biological networks. We devise a new calculation method termed sweep calculation and reduce the time complexity of the current grid layout algorithms through its encoding and decoding processes. We conduct practical experiments by using 95 pathway models of various sizes from TRANSPATH and show that our new grid layout algorithm is much faster than existing grid layout algorithms. For the cost function, we introduce a new component that penalizes undesirable edge directions to avoid the lack of traceability in pathways due to the differences in direction between in-edges and out-edges of each vertex. Java implementations of our layout algorithms are available in Cell Illustrator. masao@ims.u-tokyo.ac.jp Supplementary data are available at Bioinformatics online.

  15. Ripple-Spreading Network Model Optimization by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Hu

    2013-01-01

    Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.

  16. Complex network analysis in inclined oil–water two-phase flow

    International Nuclear Information System (INIS)

    Zhong-Ke, Gao; Ning-De, Jin

    2009-01-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil–water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil–water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil–water flow patterns. To investigate the dynamic characteristics of the inclined oil–water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil–water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil–water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice. (general)

  17. A multi-scale network method for two-phase flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Khayrat, Karim, E-mail: khayratk@ifd.mavt.ethz.ch; Jenny, Patrick

    2017-08-01

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.

  18. A multi-scale network method for two-phase flow in porous media

    International Nuclear Information System (INIS)

    Khayrat, Karim; Jenny, Patrick

    2017-01-01

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.

  19. Towards Optimal Event Detection and Localization in Acyclic Flow Networks

    KAUST Repository

    Agumbe Suresh, Mahima

    2012-01-03

    Acyclic flow networks, present in many infrastructures of national importance (e.g., oil & gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against these infrastructures, have been proven costly and imprecise, especially when dealing with large scale distribution systems. In this paper, to the best of our knowledge for the first time, we investigate how mobile sensor networks can be used for optimal event detection and localization in acyclic flow networks. Sensor nodes move along the edges of the network and detect events (i.e., attacks) and proximity to beacon nodes with known placement in the network. We formulate the problem of minimizing the cost of monitoring infrastructure (i.e., minimizing the number of sensor and beacon nodes deployed), while ensuring a degree of sensing coverage in a zone of interest and a required accuracy in locating events. We propose algorithms for solving these problems and demonstrate their effectiveness with results obtained from a high fidelity simulator.

  20. Flow control and routing techniques for integrated voice and data networks

    Science.gov (United States)

    Ibe, O. C.

    1981-10-01

    We consider a model of integrated voice and data networks. In this model the network flow problem is formulated as a convex optimization problem. The objective function comprises two types of cost functions: the congestion cost functions, which limit the average input traffic to values compatible with the network conditions; and the rate limitation cost functions, which ensure that all conversations are fairly treated. A joint flow control and routing algorithm is constructed which determines the routes for each conversation, and effects flow control by setting voice packet lengths and data input rates in a manner that achieves optimal tradeoff between each user's satisfaction and the cost of network congestion. An additional congestion control protocol is specified which could be used in conjunction with the algorithm to make the latter respond more dynamically to network congestion.

  1. A similarity based agglomerative clustering algorithm in networks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong

    2018-04-01

    The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.

  2. Optimization of composite panels using neural networks and genetic algorithms

    NARCIS (Netherlands)

    Ruijter, W.; Spallino, R.; Warnet, Laurent; de Boer, Andries

    2003-01-01

    The objective of this paper is to present first results of a running study on optimization of aircraft components (composite panels of a typical vertical tail plane) by using Genetic Algorithms (GA) and Neural Networks (NN). The panels considered are standardized to some extent but still there is a

  3. Back propagation and Monte Carlo algorithms for neural network computations

    International Nuclear Information System (INIS)

    Junczys, R.; Wit, R.

    1996-01-01

    Results of teaching procedures for neural network for two different algorithms are presented. The first one is based on the well known back-propagation technique, the second is an adopted version of the Monte Carlo global minimum seeking method. Combination of these two, different in nature, approaches provides promising results. (author) nature, approaches provides promising results. (author)

  4. An Algorithm for the Mixed Transportation Network Design Problem.

    Science.gov (United States)

    Liu, Xinyu; Chen, Qun

    2016-01-01

    This paper proposes an optimization algorithm, the dimension-down iterative algorithm (DDIA), for solving a mixed transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraint (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of the existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) problem. The idea of the proposed solution algorithm (DDIA) is to reduce the dimensions of the problem. A group of variables (discrete/continuous) is fixed to optimize another group of variables (continuous/discrete) alternately; then, the problem is transformed into solving a series of CNDPs (continuous network design problems) and DNDPs (discrete network design problems) repeatedly until the problem converges to the optimal solution. The advantage of the proposed algorithm is that its solution process is very simple and easy to apply. Numerical examples show that for the MNDP without budget constraint, the optimal solution can be found within a few iterations with DDIA. For the MNDP with budget constraint, however, the result depends on the selection of initial values, which leads to different optimal solutions (i.e., different local optimal solutions). Some thoughts are given on how to derive meaningful initial values, such as by considering the budgets of new and reconstruction projects separately.

  5. An Algorithm for the Mixed Transportation Network Design Problem.

    Directory of Open Access Journals (Sweden)

    Xinyu Liu

    Full Text Available This paper proposes an optimization algorithm, the dimension-down iterative algorithm (DDIA, for solving a mixed transportation network design problem (MNDP, which is generally expressed as a mathematical programming with equilibrium constraint (MPEC. The upper level of the MNDP aims to optimize the network performance via both the expansion of the existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE problem. The idea of the proposed solution algorithm (DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous is fixed to optimize another group of variables (continuous/discrete alternately; then, the problem is transformed into solving a series of CNDPs (continuous network design problems and DNDPs (discrete network design problems repeatedly until the problem converges to the optimal solution. The advantage of the proposed algorithm is that its solution process is very simple and easy to apply. Numerical examples show that for the MNDP without budget constraint, the optimal solution can be found within a few iterations with DDIA. For the MNDP with budget constraint, however, the result depends on the selection of initial values, which leads to different optimal solutions (i.e., different local optimal solutions. Some thoughts are given on how to derive meaningful initial values, such as by considering the budgets of new and reconstruction projects separately.

  6. Multimedia over cognitive radio networks algorithms, protocols, and experiments

    CERN Document Server

    Hu, Fei

    2014-01-01

    PrefaceAbout the EditorsContributorsNetwork Architecture to Support Multimedia over CRNA Management Architecture for Multimedia Communication in Cognitive Radio NetworksAlexandru O. Popescu, Yong Yao, Markus Fiedler , and Adrian P. PopescuPaving a Wider Way for Multimedia over Cognitive Radios: An Overview of Wideband Spectrum Sensing AlgorithmsBashar I. Ahmad, Hongjian Sun, Cong Ling, and Arumugam NallanathanBargaining-Based Spectrum Sharing for Broadband Multimedia Services in Cognitive Radio NetworkYang Yan, Xiang Chen, Xiaofeng Zhong, Ming Zhao, and Jing WangPhysical Layer Mobility Challen

  7. Efficient algorithms for flow simulation related to nuclear reactor safety

    International Nuclear Information System (INIS)

    Gornak, Tatiana

    2013-01-01

    Safety analysis is of ultimate importance for operating Nuclear Power Plants (NPP). The overall modeling and simulation of physical and chemical processes occuring in the course of an accident is an interdisciplinary problem and has origins in fluid dynamics, numerical analysis, reactor technology and computer programming. The aim of the study is therefore to create the foundations of a multi-dimensional non-isothermal fluid model for a NPP containment and software tool based on it. The numerical simulations allow to analyze and predict the behavior of NPP systems under different working and accident conditions, and to develop proper action plans for minimizing the risks of accidents, and/or minimizing the consequences of possible accidents. A very large number of scenarios have to be simulated, and at the same time acceptable accuracy for the critical parameters, such as radioactive pollution, temperature, etc., have to be achieved. The existing software tools are either too slow, or not accurate enough. This thesis deals with developing customized algorithm and software tools for simulation of isothermal and non-isothermal flows in a containment pool of NPP. Requirements to such a software are formulated, and proper algorithms are presented. The goal of the work is to achieve a balance between accuracy and speed of calculation, and to develop customized algorithm for this special case. Different discretization and solution approaches are studied and those which correspond best to the formulated goal are selected, adjusted, and when possible, analysed. Fast directional splitting algorithm for Navier-Stokes equations in complicated geometries, in presence of solid and porous obstacles, is in the core of the algorithm. Developing suitable pre-processor and customized domain decomposition algorithms are essential part of the overall algorithm amd software. Results from numerical simulations in test geometries and in real geometries are presented and discussed.

  8. A Compression Algorithm in Wireless Sensor Networks of Bearing Monitoring

    International Nuclear Information System (INIS)

    Zheng Bin; Meng Qingfeng; Wang Nan; Li Zhi

    2011-01-01

    The energy consumption of wireless sensor networks (WSNs) is always an important problem in the application of wireless sensor networks. This paper proposes a data compression algorithm to reduce amount of data and energy consumption during the data transmission process in the on-line WSNs-based bearing monitoring system. The proposed compression algorithm is based on lifting wavelets, Zerotree coding and Hoffman coding. Among of that, 5/3 lifting wavelets is used for dividing data into different frequency bands to extract signal characteristics. Zerotree coding is applied to calculate the dynamic thresholds to retain the attribute data. The attribute data are then encoded by Hoffman coding to further enhance the compression ratio. In order to validate the algorithm, simulation is carried out by using Matlab. The result of simulation shows that the proposed algorithm is very suitable for the compression of bearing monitoring data. The algorithm has been successfully used in online WSNs-based bearing monitoring system, in which TI DSP TMS320F2812 is used to realize the algorithm.

  9. Metaheuristic Algorithms for Convolution Neural Network.

    Science.gov (United States)

    Rere, L M Rasdi; Fanany, Mohamad Ivan; Arymurthy, Aniati Murni

    2016-01-01

    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).

  10. Metaheuristic Algorithms for Convolution Neural Network

    Directory of Open Access Journals (Sweden)

    L. M. Rasdi Rere

    2016-01-01

    Full Text Available A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN, a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent.

  11. Highway Passenger Transport Based Express Parcel Service Network Design: Model and Algorithm

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2017-01-01

    Full Text Available Highway passenger transport based express parcel service (HPTB-EPS is an emerging business that uses unutilised room of coach trunk to ship parcels between major cities. While it is reaping more and more express market, the managers are facing difficult decisions to design the service network. This paper investigates the HPTB-EPS network design problem and analyses the time-space characteristics of such network. A mixed-integer programming model is formulated integrating the service decision, frequency, and network flow distribution. To solve the model, a decomposition-based heuristic algorithm is designed by decomposing the problem as three steps: construction of service network, service path selection, and distribution of network flow. Numerical experiment using real data from our partner company demonstrates the effectiveness of our model and algorithm. We found that our solution could reduce the total cost by up to 16.3% compared to the carrier’s solution. The sensitivity analysis demonstrates the robustness and flexibility of the solutions of the model.

  12. Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms

    International Nuclear Information System (INIS)

    Zio, E.; Golea, L.R.; Rocco S, C.M.

    2012-01-01

    In this paper, an analysis of the vulnerability of the Italian high-voltage (380 kV) electrical transmission network (HVIET) is carried out for the identification of the groups of links (or edges, or arcs) most critical considering the network structure and flow. Betweenness centrality and network connection efficiency variations are considered as measures of the importance of the network links. The search of the most critical ones is carried out within a multi-objective optimization problem aimed at the maximization of the importance of the groups and minimization of their dimension. The problem is solved using a genetic algorithm. The analysis is based only on information on the topology of the network and leads to the identification of the most important single component, couples of components, triplets and so forth. The comparison of the results obtained with those reported by previous analyses indicates that the proposed approach provides useful complementary information.

  13. Information dynamics algorithm for detecting communities in networks

    Science.gov (United States)

    Massaro, Emanuele; Bagnoli, Franco; Guazzini, Andrea; Lió, Pietro

    2012-11-01

    The problem of community detection is relevant in many scientific disciplines, from social science to statistical physics. Given the impact of community detection in many areas, such as psychology and social sciences, we have addressed the issue of modifying existing well performing algorithms by incorporating elements of the domain application fields, i.e. domain-inspired. We have focused on a psychology and social network-inspired approach which may be useful for further strengthening the link between social network studies and mathematics of community detection. Here we introduce a community-detection algorithm derived from the van Dongen's Markov Cluster algorithm (MCL) method [4] by considering networks' nodes as agents capable to take decisions. In this framework we have introduced a memory factor to mimic a typical human behavior such as the oblivion effect. The method is based on information diffusion and it includes a non-linear processing phase. We test our method on two classical community benchmark and on computer generated networks with known community structure. Our approach has three important features: the capacity of detecting overlapping communities, the capability of identifying communities from an individual point of view and the fine tuning the community detectability with respect to prior knowledge of the data. Finally we discuss how to use a Shannon entropy measure for parameter estimation in complex networks.

  14. An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks.

    Science.gov (United States)

    Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen

    2016-01-01

    The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper.

  15. A Modified Load Flow Algorithm in Power Systems with Alternative Energy Sources

    International Nuclear Information System (INIS)

    Contreras, D.L.; Cañedo, J.M.

    2017-01-01

    In this paper an algorithm for calculating the steady state of electrical networks including wind and photovoltaic generation is presented. The wind generators considered are; asynchronous (squirrel cage and doubly fed) and synchronous generators using permanent magnets. The proposed algorithm is based on the formulation of nodal power injections that is solved with the modified Newton Raphson technique in its polar formulation using complex matrices notation. Each power injection of wind and photovoltaic generators is calculated independently in each iteration according to its particular mathematical model, which is generally non-linear. Results are presented with a 30-node test system. The computation time of the proposed algorithm is compared with the conventional methodology to include alternative energy sources in power flows studies. (author)

  16. Development of target-tracking algorithms using neural network

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Sun; Lee, Joon Whaoan; Yoon, Sook; Baek, Seong Hyun; Lee, Myung Jae [Chonbuk National University, Chonjoo (Korea)

    1998-04-01

    The utilization of remote-control robot system in atomic power plants or nuclear-related facilities grows rapidly, to protect workers form high radiation environments. Such applications require complete stability of the robot system, so that precisely tracking the robot is essential for the whole system. This research is to accomplish the goal by developing appropriate algorithms for remote-control robot systems. A neural network tracking system is designed and experimented to trace a robot Endpoint. This model is aimed to utilized the excellent capabilities of neural networks; nonlinear mapping between inputs and outputs, learning capability, and generalization capability. The neural tracker consists of two networks for position detection and prediction. Tracking algorithms are developed and experimented for the two models. Results of the experiments show that both models are promising as real-time target-tracking systems for remote-control robot systems. (author). 10 refs., 47 figs.

  17. Algorithm for queueing networks with multi-rate traffic

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk; Ko, King-Tim

    2011-01-01

    the nodes behave as independent nodes. For closed queueing networks with multiple servers in every node and multi-rate services we may apply multidimensional convolution algorithm to aggregate the nodes so that we end up with two nodes, the aggregated node and a single node, for which we can calculate......In this paper we present a new algorithm for evaluating queueing networks with multi-rate traffic. The detailed state space of a node is evaluated by explicit formulæ. We consider reversible nodes with multi-rate traffic and find the state probabilities by taking advantage of local balance. Theory...... of queueing networks in general, presumes that we have product form between the nodes. Otherwise, we have the state space explosion. Even so, the detailed state space of each node may become very large because there is no product form between chains inside a node. A prerequisite for product form...

  18. A blind matching algorithm for cognitive radio networks

    KAUST Repository

    Hamza, Doha R.

    2016-08-15

    We consider a cognitive radio network where secondary users (SUs) are allowed access time to the spectrum belonging to the primary users (PUs) provided that they relay primary messages. PUs and SUs negotiate over allocations of the secondary power that will be used to relay PU data. We formulate the problem as a generalized assignment market to find an epsilon pairwise stable matching. We propose a distributed blind matching algorithm (BLMA) to produce the pairwise-stable matching plus the associated power allocations. We stipulate a limited information exchange in the network so that agents only calculate their own utilities but no information is available about the utilities of any other users in the network. We establish convergence to epsilon pairwise stable matchings in finite time. Finally we show that our algorithm exhibits a limited degradation in PU utility when compared with the Pareto optimal results attained using perfect information assumptions. © 2016 IEEE.

  19. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    In this paper, the configuration of a district heating network which connects from the heating plant to the end users is optimized. Each end user in the network represents a building block. The connections between the heat generation plant and the end users are represented with mixed integer...... and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...... and it is optimized in terms of the net present cost. The optimization results indicates that the optimal DH network configuration is determined by multiple factors such as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding the pressure and temperature...

  20. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  1. Resource-Aware Data Fusion Algorithms for Wireless Sensor Networks

    CERN Document Server

    Abdelgawad, Ahmed

    2012-01-01

    This book introduces resource-aware data fusion algorithms to gather and combine data from multiple sources (e.g., sensors) in order to achieve inferences.  These techniques can be used in centralized and distributed systems to overcome sensor failure, technological limitation, and spatial and temporal coverage problems. The algorithms described in this book are evaluated with simulation and experimental results to show they will maintain data integrity and make data useful and informative.   Describes techniques to overcome real problems posed by wireless sensor networks deployed in circumstances that might interfere with measurements provided, such as strong variations of pressure, temperature, radiation, and electromagnetic noise; Uses simulation and experimental results to evaluate algorithms presented and includes real test-bed; Includes case study implementing data fusion algorithms on a remote monitoring framework for sand production in oil pipelines.

  2. Consensus algorithm in smart grid and communication networks

    Science.gov (United States)

    Alfagee, Husain Abdulaziz

    On a daily basis, consensus theory attracts more and more researches from different areas of interest, to apply its techniques to solve technical problems in a way that is faster, more reliable, and even more precise than ever before. A power system network is one of those fields that consensus theory employs extensively. The use of the consensus algorithm to solve the Economic Dispatch and Load Restoration Problems is a good example. Instead of a conventional central controller, some researchers have explored an algorithm to solve the above mentioned problems, in a distribution manner, using the consensus algorithm, which is based on calculation methods, i.e., non estimation methods, for updating the information consensus matrix. Starting from this point of solving these types of problems mentioned, specifically, in a distribution fashion, using the consensus algorithm, we have implemented a new advanced consensus algorithm. It is based on the adaptive estimation techniques, such as the Gradient Algorithm and the Recursive Least Square Algorithm, to solve the same problems. This advanced work was tested on different case studies that had formerly been explored, as seen in references 5, 7, and 18. Three and five generators, or agents, with different topologies, correspond to the Economic Dispatch Problem and the IEEE 16-Bus power system corresponds to the Load Restoration Problem. In all the cases we have studied, the results met our expectations with extreme accuracy, and completely matched the results of the previous researchers. There is little question that this research proves the capability and dependability of using the consensus algorithm, based on the estimation methods as the Gradient Algorithm and the Recursive Least Square Algorithm to solve such power problems.

  3. Properties of healthcare teaming networks as a function of network construction algorithms.

    Directory of Open Access Journals (Sweden)

    Martin S Zand

    Full Text Available Network models of healthcare systems can be used to examine how providers collaborate, communicate, refer patients to each other, and to map how patients traverse the network of providers. Most healthcare service network models have been constructed from patient claims data, using billing claims to link a patient with a specific provider in time. The data sets can be quite large (106-108 individual claims per year, making standard methods for network construction computationally challenging and thus requiring the use of alternate construction algorithms. While these alternate methods have seen increasing use in generating healthcare networks, there is little to no literature comparing the differences in the structural properties of the generated networks, which as we demonstrate, can be dramatically different. To address this issue, we compared the properties of healthcare networks constructed using different algorithms from 2013 Medicare Part B outpatient claims data. Three different algorithms were compared: binning, sliding frame, and trace-route. Unipartite networks linking either providers or healthcare organizations by shared patients were built using each method. We find that each algorithm produced networks with substantially different topological properties, as reflected by numbers of edges, network density, assortativity, clustering coefficients and other structural measures. Provider networks adhered to a power law, while organization networks were best fit by a power law with exponential cutoff. Censoring networks to exclude edges with less than 11 shared patients, a common de-identification practice for healthcare network data, markedly reduced edge numbers and network density, and greatly altered measures of vertex prominence such as the betweenness centrality. Data analysis identified patterns in the distance patients travel between network providers, and a striking set of teaming relationships between providers in the Northeast

  4. Neural network fusion capabilities for efficient implementation of tracking algorithms

    Science.gov (United States)

    Sundareshan, Malur K.; Amoozegar, Farid

    1997-03-01

    The ability to efficiently fuse information of different forms to facilitate intelligent decision making is one of the major capabilities of trained multilayer neural networks that is now being recognized. While development of innovative adaptive control algorithms for nonlinear dynamical plants that attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. We describe the capabilities and functionality of neural network algorithms for data fusion and implementation of tracking filters. To discuss details and to serve as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target- tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes from the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. A system architecture that efficiently integrates the fusion capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described. The innovation lies in the way the fusion of multisensor data is accomplished to facilitate improved estimation without increasing the computational complexity of the dynamical state estimator itself.

  5. GPS-Free Localization Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2010-06-01

    Full Text Available Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time.

  6. Distributed interference alignment iterative algorithms in symmetric wireless network

    Directory of Open Access Journals (Sweden)

    YANG Jingwen

    2015-02-01

    Full Text Available Interference alignment is a novel interference alignment way,which is widely noted all of the world.Interference alignment overlaps interference in the same signal space at receiving terminal by precoding so as to thoroughly eliminate the influence of interference impacted on expected signals,thus making the desire user achieve the maximum degree of freedom.In this paper we research three typical algorithms for realizing interference alignment,including minimizing the leakage interference,maximizing Signal to Interference plus Noise Ratio (SINR and minimizing mean square error(MSE.All of these algorithms utilize the reciprocity of wireless network,and iterate the precoders between original network and the reverse network so as to achieve interference alignment.We use the uplink transmit rate to analyze the performance of these three algorithms.Numerical simulation results show the advantages of these algorithms.which is the foundation for the further study in the future.The feasibility and future of interference alignment are also discussed at last.

  7. Solution of weakly compressible isothermal flow in landfill gas collection networks

    Energy Technology Data Exchange (ETDEWEB)

    Nec, Y [Thompson Rivers University, Kamloops, British Columbia (Canada); Huculak, G, E-mail: cranberryana@gmail.com, E-mail: greg@gnhconsulting.ca [GNH Consulting, Delta, British Columbia (Canada)

    2017-12-15

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy–Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein. (paper)

  8. Solution of weakly compressible isothermal flow in landfill gas collection networks

    Science.gov (United States)

    Nec, Y.; Huculak, G.

    2017-12-01

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy-Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein.

  9. Solution of weakly compressible isothermal flow in landfill gas collection networks

    International Nuclear Information System (INIS)

    Nec, Y; Huculak, G

    2017-01-01

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy–Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein. (paper)

  10. An evaluation of the multi-state node networks reliability using the traditional binary-state networks reliability algorithm

    International Nuclear Information System (INIS)

    Yeh, W.-C.

    2003-01-01

    A system where the components and system itself are allowed to have a number of performance levels is called the Multi-state system (MSS). A multi-state node network (MNN) is a generalization of the MSS without satisfying the flow conservation law. Evaluating the MNN reliability arises at the design and exploitation stage of many types of technical systems. Up to now, the known existing methods can only evaluate a special MNN reliability called the multi-state node acyclic network (MNAN) in which no cyclic is allowed. However, no method exists for evaluating the general MNN reliability. The main purpose of this article is to show first that each MNN reliability can be solved using any the traditional binary-state networks (TBSN) reliability algorithm with a special code for the state probability. A simple heuristic SDP algorithm based on minimal cuts (MC) for estimating the MNN reliability is presented as an example to show how the TBSN reliability algorithm is revised to solve the MNN reliability problem. To the author's knowledge, this study is the first to discuss the relationships between MNN and TBSN and also the first to present methods to solve the exact and approximated MNN reliability. One example is illustrated to show how the exact MNN reliability is obtained using the proposed algorithm

  11. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2016-07-01

    Full Text Available With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC. The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.

  12. A Hybrid Harmony Search Algorithm Approach for Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Mimoun YOUNES

    2012-08-01

    Full Text Available Optimal Power Flow (OPF is one of the main functions of Power system operation. It determines the optimal settings of generating units, bus voltage, transformer tap and shunt elements in Power System with the objective of minimizing total production costs or losses while the system is operating within its security limits. The aim of this paper is to propose a novel methodology (BCGAs-HSA that solves OPF including both active and reactive power dispatch It is based on combining the binary-coded genetic algorithm (BCGAs and the harmony search algorithm (HSA to determine the optimal global solution. This method was tested on the modified IEEE 30 bus test system. The results obtained by this method are compared with those obtained with BCGAs or HSA separately. The results show that the BCGAs-HSA approach can converge to the optimum solution with accuracy compared to those reported recently in the literature.

  13. An Adaptive Power Efficient Packet Scheduling Algorithm for Wimax Networks

    OpenAIRE

    R Murali Prasad; P. Satish Kumar

    2010-01-01

    Admission control schemes and scheduling algorithms are designed to offer QoS services in 802.16/802.16e networks and a number of studies have investigated these issues. But the channel condition and priority of traffic classes are very rarely considered in the existing scheduling algorithms. Although a number of energy saving mechanisms have been proposed for the IEEE 802.16e, to minimize the power consumption of IEEE 802.16e mobile stations with multiple real-time connections has not yet be...

  14. Fluid Flow in a Porous Tree-Shaped Network

    OpenAIRE

    Miguel, A. F.

    2014-01-01

    Tree-shaped flow networks connect one point to an infinity of points and are everywhere in Nature. These networks often own minimal flow resistance and vessel sizes obey to scaling power-laws. In this paper presents a model for fluid flow through a tree-shaped network with porous tubes. Hagen–Poiseuille flow is assumed for tubes and Darcy flow for the porous wall.

  15. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2011-01-01

    In this paper, the configuration of a district heating (DH) network which connects from the heating plant to the end users was optimized with emphasizing the network thermal performance. Each end user in the network represents a building block. The locations of the building blocks are fixed while...... the heating plant location is allowed to vary. The connection between the heat generation plant and the end users can be represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal DH distribution pipeline configuration, the genetic algorithm...... by multi factors as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding pressure and temperature limitation, as well as the corresponding network heat loss....

  16. ZAP: a distributed channel assignment algorithm for cognitive radio networks

    Directory of Open Access Journals (Sweden)

    Munaretto Anelise

    2011-01-01

    Full Text Available Abstract We propose ZAP, an algorithm for the distributed channel assignment in cognitive radio (CR networks. CRs are capable of identifying underutilized licensed bands of the spectrum, allowing their reuse by secondary users without interfering with primary users. In this context, efficient channel assignment is challenging as ideally it must be simple, incur acceptable communication overhead, provide timely response, and be adaptive to accommodate frequent changes in the network. Another challenge is the optimization of network capacity through interference minimization. In contrast to related work, ZAP addresses these challenges with a fully distributed approach based only on local (neighborhood knowledge, while significantly reducing computational costs and the number of messages required for channel assignment. Simulations confirm the efficiency of ZAP in terms of (i the performance tradeoff between different metrics and (ii the fast achievement of a suitable assignment solution regardless of network size and density.

  17. VSMURF: A Novel Sliding Window Cleaning Algorithm for RFID Networks

    Directory of Open Access Journals (Sweden)

    He Xu

    2017-01-01

    Full Text Available Radio Frequency Identification (RFID is one of the key technologies of the Internet of Things (IoT and is used in many areas, such as mobile payments, public transportation, smart lock, and environment protection. However, the performance of RFID equipment can be easily affected by the surrounding environment, such as electronic productions and metal appliances. These can impose an impact on the RF signal, which makes the collection of RFID data unreliable. Usually, the unreliability of RFID source data includes three aspects: false negatives, false positives, and dirty data. False negatives are the key problem, as the probability of false positives and dirty data occurrence is relatively small. This paper proposes a novel sliding window cleaning algorithm called VSMURF, which is based on the traditional SMURF algorithm which combines the dynamic change of tags and the value analysis of confidence. Experimental results show that VSMURF algorithm performs better in most conditions and when the tag’s speed is low or high. In particular, if the velocity parameter is set to 2 m/epoch, our proposed VSMURF algorithm performs better than SMURF. The results also show that VSMURF algorithm has better performance than other algorithms in solving the problem of false negatives for RFID networks.

  18. A HYBRID HOPFIELD NEURAL NETWORK AND TABU SEARCH ALGORITHM TO SOLVE ROUTING PROBLEM IN COMMUNICATION NETWORK

    Directory of Open Access Journals (Sweden)

    MANAR Y. KASHMOLA

    2012-06-01

    Full Text Available The development of hybrid algorithms for solving complex optimization problems focuses on enhancing the strengths and compensating for the weakness of two or more complementary approaches. The goal is to intelligently combine the key elements of these approaches to find superior solutions to solve optimization problems. Optimal routing in communication network is considering a complex optimization problem. In this paper we propose a hybrid Hopfield Neural Network (HNN and Tabu Search (TS algorithm, this algorithm called hybrid HNN-TS algorithm. The paradigm of this hybridization is embedded. We embed the short-term memory and tabu restriction features from TS algorithm in the HNN model. The short-term memory and tabu restriction control the neuron selection process in the HNN model in order to get around the local minima problem and find an optimal solution using the HNN model to solve complex optimization problem. The proposed algorithm is intended to find the optimal path for packet transmission in the network which is fills in the field of routing problem. The optimal path that will be selected is depending on 4-tuples (delay, cost, reliability and capacity. Test results show that the propose algorithm can find path with optimal cost and a reasonable number of iterations. It also shows that the complexity of the network model won’t be a problem since the neuron selection is done heuristically.

  19. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  20. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  1. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    International Nuclear Information System (INIS)

    Bornholdt, S.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback

  2. Reliability-oriented multi-resource allocation in a stochastic-flow network

    International Nuclear Information System (INIS)

    Hsieh, C.-C.; Lin, M.-H.

    2003-01-01

    A stochastic-flow network consists of a set of nodes, including source nodes which supply various resources and sink nodes at which resource demands take place, and a collection of arcs whose capacities have multiple operational states. The network reliability of such a stochastic-flow network is the probability that resources can be successfully transmitted from source nodes through multi-capacitated arcs to sink nodes. Although the evaluation schemes of network reliability in stochastic-flow networks have been extensively studied in the literature, how to allocate various resources at source nodes in a reliable means remains unanswered. In this study, a resource allocation problem in a stochastic-flow network is formulated that aims to determine the optimal resource allocation policy at source nodes subject to given resource demands at sink nodes such that the network reliability of the stochastic-flow network is maximized, and an algorithm for computing the optimal resource allocation is proposed that incorporates the principle of minimal path vectors. A numerical example is given to illustrate the proposed algorithm

  3. ID card number detection algorithm based on convolutional neural network

    Science.gov (United States)

    Zhu, Jian; Ma, Hanjie; Feng, Jie; Dai, Leiyan

    2018-04-01

    In this paper, a new detection algorithm based on Convolutional Neural Network is presented in order to realize the fast and convenient ID information extraction in multiple scenarios. The algorithm uses the mobile device equipped with Android operating system to locate and extract the ID number; Use the special color distribution of the ID card, select the appropriate channel component; Use the image threshold segmentation, noise processing and morphological processing to take the binary processing for image; At the same time, the image rotation and projection method are used for horizontal correction when image was tilting; Finally, the single character is extracted by the projection method, and recognized by using Convolutional Neural Network. Through test shows that, A single ID number image from the extraction to the identification time is about 80ms, the accuracy rate is about 99%, It can be applied to the actual production and living environment.

  4. On system behaviour using complex networks of a compression algorithm

    Science.gov (United States)

    Walker, David M.; Correa, Debora C.; Small, Michael

    2018-01-01

    We construct complex networks of scalar time series using a data compression algorithm. The structure and statistics of the resulting networks can be used to help characterize complex systems, and one property, in particular, appears to be a useful discriminating statistic in surrogate data hypothesis tests. We demonstrate these ideas on systems with known dynamical behaviour and also show that our approach is capable of identifying behavioural transitions within electroencephalogram recordings as well as changes due to a bifurcation parameter of a chaotic system. The technique we propose is dependent on a coarse grained quantization of the original time series and therefore provides potential for a spatial scale-dependent characterization of the data. Finally the method is as computationally efficient as the underlying compression algorithm and provides a compression of the salient features of long time series.

  5. Energy Efficient Distributed Fault Identification Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Meenakshi Panda

    2014-01-01

    Full Text Available A distributed fault identification algorithm is proposed here to find both hard and soft faulty sensor nodes present in wireless sensor networks. The algorithm is distributed, self-detectable, and can detect the most common byzantine faults such as stuck at zero, stuck at one, and random data. In the proposed approach, each sensor node gathered the observed data from the neighbors and computed the mean to check whether faulty sensor node is present or not. If a node found the presence of faulty sensor node, then compares observed data with the data of the neighbors and predict probable fault status. The final fault status is determined by diffusing the fault information from the neighbors. The accuracy and completeness of the algorithm are verified with the help of statistical model of the sensors data. The performance is evaluated in terms of detection accuracy, false alarm rate, detection latency and message complexity.

  6. Using neural networks to speed up optimization algorithms

    CERN Document Server

    Bazan, M

    2000-01-01

    The paper presents the application of radial-basis-function (RBF) neural networks to speed up deterministic search algorithms used for the design and optimization of superconducting LHC magnets. The optimization of the iron yoke of the main dipoles requires a number of numerical field computations per trial solution as the field quality depends on the excitation of the magnets. This results in computation times of about 30 minutes for each objective function evaluation (on a DEC-Alpha 600/333) and only the most robust (deterministic) optimization algorithms can be applied. Using a RBF function approximator, the achieved speed-up of the search algorithm is in the order of 25% for problems with two parameters and about 18% for problems with three and five design variables. (13 refs).

  7. Two-phase hybrid cryptography algorithm for wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Rawya Rizk

    2015-12-01

    Full Text Available For achieving security in wireless sensor networks (WSNs, cryptography plays an important role. In this paper, a new security algorithm using combination of both symmetric and asymmetric cryptographic techniques is proposed to provide high security with minimized key maintenance. It guarantees three cryptographic primitives, integrity, confidentiality and authentication. Elliptical Curve Cryptography (ECC and Advanced Encryption Standard (AES are combined to provide encryption. XOR-DUAL RSA algorithm is considered for authentication and Message Digest-5 (MD5 for integrity. The results show that the proposed hybrid algorithm gives better performance in terms of computation time, the size of cipher text, and the energy consumption in WSN. It is also robust against different types of attacks in the case of image encryption.

  8. Improved Differential Evolution Algorithm for Wireless Sensor Network Coverage Optimization

    Directory of Open Access Journals (Sweden)

    Xing Xu

    2014-04-01

    Full Text Available In order to serve for the ecological monitoring efficiency of Poyang Lake, an improved hybrid algorithm, mixed with differential evolution and particle swarm optimization, is proposed and applied to optimize the coverage problem of wireless sensor network. And then, the affect of the population size and the number of iterations on the coverage performance are both discussed and analyzed. The four kinds of statistical results about the coverage rate are obtained through lots of simulation experiments.

  9. Energy Demodulation Algorithm for Flow Velocity Measurement of Oil-Gas-Water Three-Phase Flow

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    Full Text Available Flow velocity measurement was an important research of oil-gas-water three-phase flow parameter measurements. In order to satisfy the increasing demands for flow detection technology, the paper presented a gas-liquid phase flow velocity measurement method which was based on energy demodulation algorithm combing with time delay estimation technology. First, a gas-liquid phase separation method of oil-gas-water three-phase flow based on energy demodulation algorithm and blind signal separation technology was proposed. The separation of oil-gas-water three-phase signals which were sampled by conductance sensor performed well, so the gas-phase signal and the liquid-phase signal were obtained. Second, we used the time delay estimation technology to get the delay time of gas-phase signals and liquid-phase signals, respectively, and the gas-phase velocity and the liquid-phase velocity were derived. At last, the experiment was performed at oil-gas-water three-phase flow loop, and the results indicated that the measurement errors met the need of velocity measurement. So it provided a feasible method for gas-liquid phase velocity measurement of the oil-gas-water three-phase flow.

  10. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    Science.gov (United States)

    Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.

    2014-01-01

    The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339

  11. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Omar Elizarraras

    2014-01-01

    Full Text Available The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15% compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput.

  12. Improved Optical Flow Algorithm for a Intelligent Traffic Tracking System

    Directory of Open Access Journals (Sweden)

    Xia Yupeng

    2013-05-01

    Full Text Available It is known that to get the contours and segmentations of moving cars is the essential step of image processing in intelligent traffic tracking systems. As an effective way, the optical flow algorithm is widely used for this kind of applications. But in traditional gradient-based approaches, in order to make the data responding to the edges of moving objects expand to the area, which gray level is flat, it needs to keep the iteration times large enough. It takes a large amount of calculation time, and the accuracy of the result is not as good as expected. In order to improve the numerical reliability of image gradient data, Hessian matrix distinguishing, Gaussian filtering standard deviation amending, mean model amending and multi-image comparing, the four algorithms were investigated by applying them to track moving objects. From the experimental results, it is shown that both the calculation convergence speed and accuracy of our methods have greatly improved comparing with traditional algorithms, the feasibility and validity of those methods were confirmed.

  13. An efficient algorithm for incompressible N-phase flows

    International Nuclear Information System (INIS)

    Dong, S.

    2014-01-01

    We present an efficient algorithm within the phase field framework for simulating the motion of a mixture of N (N⩾2) immiscible incompressible fluids, with possibly very different physical properties such as densities, viscosities, and pairwise surface tensions. The algorithm employs a physical formulation for the N-phase system that honors the conservations of mass and momentum and the second law of thermodynamics. We present a method for uniquely determining the mixing energy density coefficients involved in the N-phase model based on the pairwise surface tensions among the N fluids. Our numerical algorithm has several attractive properties that make it computationally very efficient: (i) it has completely de-coupled the computations for different flow variables, and has also completely de-coupled the computations for the (N−1) phase field functions; (ii) the algorithm only requires the solution of linear algebraic systems after discretization, and no nonlinear algebraic solve is needed; (iii) for each flow variable the linear algebraic system involves only constant and time-independent coefficient matrices, which can be pre-computed during pre-processing, despite the variable density and variable viscosity of the N-phase mixture; (iv) within a time step the semi-discretized system involves only individual de-coupled Helmholtz-type (including Poisson) equations, despite the strongly-coupled phase–field system of fourth spatial order at the continuum level; (v) the algorithm is suitable for large density contrasts and large viscosity contrasts among the N fluids. Extensive numerical experiments have been presented for several problems involving multiple fluid phases, large density contrasts and large viscosity contrasts. In particular, we compare our simulations with the de Gennes theory, and demonstrate that our method produces physically accurate results for multiple fluid phases. We also demonstrate the significant and sometimes dramatic effects of the

  14. A CR Spectrum Allocation Algorithm in Smart Grid Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wei He

    2014-10-01

    Full Text Available Cognitive radio (CR method was introduced in smart grid communication systems to resolve potential maladies such as the coexistence of heterogeneous networks, overloaded data flow, diversity in data structures, and unstable quality of service (QOS. In this paper, a cognitive spectrum allocation algorithm based on non-cooperative game theory is proposed. The CR spectrum allocation model was developed by modifying the traditional game model via the insertion of a time variable and a critical function. The computing simulation result shows that the improved spectrum allocation algorithm can achieve stable spectrum allocation strategies and avoid the appearance of multi-Nash equilibrium at the expense of certain sacrifices in the system utility. It is suitable for application in distributed cognitive networks in power grids, thus contributing to the improvement of the isomerism and data capacity of power communication systems.

  15. Flow Oriented Channel Assignment for Multi-radio Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Niu Zhisheng

    2010-01-01

    Full Text Available We investigate channel assignment for a multichannel wireless mesh network backbone, where each router is equipped with multiple interfaces. Of particular interest is the development of channel assignment heuristics for multiple flows. We present an optimization formulation and then propose two iterative flow oriented heuristics for the conflict-free and interference-aware cases, respectively. To maximize the aggregate useful end-to-end flow rates, both algorithms identify and resolve congestion at instantaneous bottleneck link in each iteration. Then the link rate is optimally allocated among contending flows that share this link by solving a linear programming (LP problem. A thorough performance evaluation is undertaken as a function of the number of channels and interfaces/node and the number of contending flows. The performance of our algorithm is shown to be significantly superior to best known algorithm in its class in multichannel limited radio scenarios.

  16. Energy Aware Simple Ant Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sohail Jabbar

    2015-01-01

    Full Text Available Network lifetime is one of the most prominent barriers in deploying wireless sensor networks for large-scale applications because these networks employ sensors with nonrenewable scarce energy resources. Sensor nodes dissipate most of their energy in complex routing mechanisms. To cope with limited energy problem, we present EASARA, an energy aware simple ant routing algorithm based on ant colony optimization. Unlike most algorithms, EASARA strives to avoid low energy routes and optimizes the routing process through selection of least hop count path with more energy. It consists of three phases, that is, route discovery, forwarding node, and route selection. We have improved the route discovery procedure and mainly concentrate on energy efficient forwarding node and route selection, so that the network lifetime can be prolonged. The four possible cases of forwarding node and route selection are presented. The performance of EASARA is validated through simulation. Simulation results demonstrate the performance supremacy of EASARA over contemporary scheme in terms of various metrics.

  17. Parallelizing flow-accumulation calculations on graphics processing units—From iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm

    Science.gov (United States)

    Qin, Cheng-Zhi; Zhan, Lijun

    2012-06-01

    As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU

  18. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    Science.gov (United States)

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  19. MODA: an efficient algorithm for network motif discovery in biological networks.

    Science.gov (United States)

    Omidi, Saeed; Schreiber, Falk; Masoudi-Nejad, Ali

    2009-10-01

    In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/

  20. Algorithm for queueing networks with multi-rate traffic

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk; King-Tim, Ko

    2011-01-01

    the nodes behave as independent nodes. For closed queueing networks with multiple servers in every node and multi-rate services we may apply multidimensional convolutions to aggregate the nodes so that we end up with two nodes, the aggregated node and a single node, for which we can calculate the detailed......In this paper we present a new algorithm for evaluating queueing networks with multi-rate traffic. The detailed state space of a node is evaluated by explicit formulæ. We consider reversible nodes with multi-rate traffic and find the state probabilities by taking advantage of local balance. Theory...... of queueing networks in general presumes that we have product form between the nodes. Other ways we have the state space explosion. Even so the detailed state space of each node may easily become very large because there is no product form between chains inside a node. A prerequisite for product form...

  1. Secure Multicast Routing Algorithm for Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Rakesh Matam

    2016-01-01

    Full Text Available Multicast is an indispensable communication technique in wireless mesh network (WMN. Many applications in WMN including multicast TV, audio and video conferencing, and multiplayer social gaming use multicast transmission. On the other hand, security in multicast transmissions is crucial, without which the network services are significantly disrupted. Existing secure routing protocols that address different active attacks are still vulnerable due to subtle nature of flaws in protocol design. Moreover, existing secure routing protocols assume that adversarial nodes cannot share an out-of-band communication channel which rules out the possibility of wormhole attack. In this paper, we propose SEMRAW (SEcure Multicast Routing Algorithm for Wireless mesh network that is resistant against all known active threats including wormhole attack. SEMRAW employs digital signatures to prevent a malicious node from gaining illegitimate access to the message contents. Security of SEMRAW is evaluated using the simulation paradigm approach.

  2. A conservative fully implicit algorithm for predicting slug flows

    Science.gov (United States)

    Krasnopolsky, Boris I.; Lukyanov, Alexander A.

    2018-02-01

    An accurate and predictive modelling of slug flows is required by many industries (e.g., oil and gas, nuclear engineering, chemical engineering) to prevent undesired events potentially leading to serious environmental accidents. For example, the hydrodynamic and terrain-induced slugging leads to unwanted unsteady flow conditions. This demands the development of fast and robust numerical techniques for predicting slug flows. The presented in this paper study proposes a multi-fluid model and its implementation method accounting for phase appearance and disappearance. The numerical modelling of phase appearance and disappearance presents a complex numerical challenge for all multi-component and multi-fluid models. Numerical challenges arise from the singular systems of equations when some phases are absent and from the solution discontinuity when some phases appear or disappear. This paper provides a flexible and robust solution to these issues. A fully implicit formulation described in this work enables to efficiently solve governing fluid flow equations. The proposed numerical method provides a modelling capability of phase appearance and disappearance processes, which is based on switching procedure between various sets of governing equations. These sets of equations are constructed using information about the number of phases present in the computational domain. The proposed scheme does not require an explicit truncation of solutions leading to a conservative scheme for mass and linear momentum. A transient two-fluid model is used to verify and validate the proposed algorithm for conditions of hydrodynamic and terrain-induced slug flow regimes. The developed modelling capabilities allow to predict all the major features of the experimental data, and are in a good quantitative agreement with them.

  3. Efficient Reactive Power Compensation Algorithm for Distribution Network

    Directory of Open Access Journals (Sweden)

    J. Jerome

    2017-12-01

    Full Text Available The use of automation and energy efficient equipment with electronic control would greatly improve industrial production.  These new devices are more sensitive to supply voltage deviation and the characteristics of the power system that was previously ignored are now very important. Hence the benefits of distribution automation have been widely acknowledged in recent years. This paper proposes an efficient load flow solution technique extended to find optimum location for reactive power compensation and network reconfiguration for planning and day-to-day operation of distribution networks.  This is required as a part of the distribution automation system (DAS for taking various control and operation decisions.  The method exploits the radial nature of the network and uses forward and backward propagation technique to calculate branch currents and node voltages.  The proposed method has been tested to analyze several practical distribution networks of various voltage levels and also having high R/X ratio.

  4. A gene network simulator to assess reverse engineering algorithms.

    Science.gov (United States)

    Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2009-03-01

    In the context of reverse engineering of biological networks, simulators are helpful to test and compare the accuracy of different reverse-engineering approaches in a variety of experimental conditions. A novel gene-network simulator is presented that resembles some of the main features of transcriptional regulatory networks related to topology, interaction among regulators of transcription, and expression dynamics. The simulator generates network topology according to the current knowledge of biological network organization, including scale-free distribution of the connectivity and clustering coefficient independent of the number of nodes in the network. It uses fuzzy logic to represent interactions among the regulators of each gene, integrated with differential equations to generate continuous data, comparable to real data for variety and dynamic complexity. Finally, the simulator accounts for saturation in the response to regulation and transcription activation thresholds and shows robustness to perturbations. It therefore provides a reliable and versatile test bed for reverse engineering algorithms applied to microarray data. Since the simulator describes regulatory interactions and expression dynamics as two distinct, although interconnected aspects of regulation, it can also be used to test reverse engineering approaches that use both microarray and protein-protein interaction data in the process of learning. A first software release is available at http://www.dei.unipd.it/~dicamill/software/netsim as an R programming language package.

  5. Algorithms for energy efficiency in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Busse, M

    2007-01-21

    The recent advances in microsensor and semiconductor technology have opened a new field within computer science: the networking of small-sized sensors which are capable of sensing, processing, and communicating. Such wireless sensor networks offer new applications in the areas of habitat and environment monitoring, disaster control and operation, military and intelligence control, object tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely that the deployed sensors will be battery-powered, which will limit the energy capacity significantly. Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and the design of energy-efficient algorithms is a major contribution of this thesis. As the wireless communication in the network is one of the main energy consumers, we first consider in detail the characteristics of wireless communication. By using the embedded sensor board (ESB) platform recently developed by the Free University of Berlin, we analyze the means of forward error correction and propose an appropriate resync mechanism, which improves the communication between two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forwarding (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize the number of data bytes delivered per energy unit, LEF additionally takes into account the residual energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy savings due to data aggregation and in-network processing are exploited by EEAF. Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless medium by sending packets to several (potential

  6. Algorithms for energy efficiency in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Busse, M.

    2007-01-21

    The recent advances in microsensor and semiconductor technology have opened a new field within computer science: the networking of small-sized sensors which are capable of sensing, processing, and communicating. Such wireless sensor networks offer new applications in the areas of habitat and environment monitoring, disaster control and operation, military and intelligence control, object tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely that the deployed sensors will be battery-powered, which will limit the energy capacity significantly. Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and the design of energy-efficient algorithms is a major contribution of this thesis. As the wireless communication in the network is one of the main energy consumers, we first consider in detail the characteristics of wireless communication. By using the embedded sensor board (ESB) platform recently developed by the Free University of Berlin, we analyze the means of forward error correction and propose an appropriate resync mechanism, which improves the communication between two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forwarding (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize the number of data bytes delivered per energy unit, LEF additionally takes into account the residual energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy savings due to data aggregation and in-network processing are exploited by EEAF. Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless medium by sending packets to several (potential

  7. Ultrasonic particle image velocimetry for improved flow gradient imaging: algorithms, methodology and validation

    International Nuclear Information System (INIS)

    Niu Lili; Qian Ming; Yu Wentao; Jin Qiaofeng; Ling Tao; Zheng Hairong; Wan Kun; Gao Shen

    2010-01-01

    This paper presents a new algorithm for ultrasonic particle image velocimetry (Echo PIV) for improving the flow velocity measurement accuracy and efficiency in regions with high velocity gradients. The conventional Echo PIV algorithm has been modified by incorporating a multiple iterative algorithm, sub-pixel method, filter and interpolation method, and spurious vector elimination algorithm. The new algorithms' performance is assessed by analyzing simulated images with known displacements, and ultrasonic B-mode images of in vitro laminar pipe flow, rotational flow and in vivo rat carotid arterial flow. Results of the simulated images show that the new algorithm produces much smaller bias from the known displacements. For laminar flow, the new algorithm results in 1.1% deviation from the analytically derived value, and 8.8% for the conventional algorithm. The vector quality evaluation for the rotational flow imaging shows that the new algorithm produces better velocity vectors. For in vivo rat carotid arterial flow imaging, the results from the new algorithm deviate 6.6% from the Doppler-measured peak velocities averagely compared to 15% of that from the conventional algorithm. The new Echo PIV algorithm is able to effectively improve the measurement accuracy in imaging flow fields with high velocity gradients.

  8. Research on wind field algorithm of wind lidar based on BP neural network and grey prediction

    Science.gov (United States)

    Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei

    2018-01-01

    This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.

  9. Design of artificial neural networks using a genetic algorithm to predict collection efficiency in venturi scrubbers.

    Science.gov (United States)

    Taheri, Mahboobeh; Mohebbi, Ali

    2008-08-30

    In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm (GA), has been used to predict collection efficiency in venturi scrubbers. The experimental input data, including particle diameter, throat gas velocity, liquid to gas flow rate ratio, throat hydraulic diameter, pressure drop across the venturi scrubber and collection efficiency as an output, have been used to create a GA-artificial neural network (ANN) model. The testing results from the model are in good agreement with the experimental data. Comparison of the results of the GA optimized ANN model with the results from the trial-and-error calibrated ANN model indicates that the GA-ANN model is more efficient. Finally, the effects of operating parameters such as liquid to gas flow rate ratio, throat gas velocity, and particle diameter on collection efficiency were determined.

  10. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    Science.gov (United States)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  11. Comparison of evolutionary algorithms in gene regulatory network model inference.

    LENUS (Irish Health Repository)

    2010-01-01

    ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

  12. A Nodes Deployment Algorithm in Wireless Sensor Network Based on Distribution

    Directory of Open Access Journals (Sweden)

    Song Yuli

    2014-07-01

    Full Text Available Wireless sensor network coverage is a basic problem of wireless sensor network. In this paper, we propose a wireless sensor network node deployment algorithm base on distribution in order to form an efficient wireless sensor network. The iteratively greedy algorithm is used in this paper to choose priority nodes into active until the entire network is covered by wireless sensor nodes, the whole network to multiply connected. The simulation results show that the distributed wireless sensor network node deployment algorithm can form a multiply connected wireless sensor network.

  13. Graphs, Ideal Flow, and the Transportation Network

    OpenAIRE

    Teknomo, Kardi

    2016-01-01

    This lecture discusses the mathematical relationship between network structure and network utilization of transportation network. Network structure means the graph itself. Network utilization represent the aggregation of trajectories of agents in using the network graph. I show the similarity and relationship between the structural pattern of the network and network utilization.

  14. On-line validation of feedwater flow rate in nuclear power plants using neural networks

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1994-01-01

    On-line calibration of feedwater flow rate measurement in nuclear power plants provides a continuous realistic value of feedwater flow rate. It also reduces the manpower required for periodic calibration needed due to the fouling and defouling of the venturi meter surface condition. This paper presents a method for on-line validation of feedwater flow rate in nuclear power plants. The method is an improvement of the previously developed method which is based on the use of a set of process variables dynamically related to the feedwater flow rate. The online measurements of this set of variables are used as inputs to a neural network to obtain an estimate of the feedwater flow rate reading. The difference between the on-line feedwater flow rate reading, and the neural network estimate establishes whether there is a need to apply a correction factor to the feedwater flow rate measurement for calculation of the actual reactor power. The method was applied to the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant. The venturi meters used for flow measurements are susceptible to frequent fouling that degrades their measurement accuracy. The fouling effects can cause an inaccuracy of up to 3% relative error in feedwater flow rate reading. A neural network, whose inputs were the readings of a set of reference instruments, was designed to predict both feedwater flow rates simultaneously. A multi-layer feedforward neural network employing the backpropagation algorithm was used. A number of neural network training tests were performed to obtain an optimum filtering technique of the input/output data of the neural networks. The result of the selection of the filtering technique was confirmed by numerous Fast Fourier Transform (FFT) tests. Training and testing were done on data from TMI-1 nuclear power plant. The results show that the neural network can predict the correct flow rates with an absolute relative error of less than 2%

  15. Comparison of Firefly algorithm and Artificial Immune System algorithm for lot streaming in -machine flow shop scheduling

    Directory of Open Access Journals (Sweden)

    G. Vijay Chakaravarthy

    2012-11-01

    Full Text Available Lot streaming is a technique used to split the processing of lots into several sublots (transfer batches to allow the overlapping of operations in a multistage manufacturing systems thereby shortening the production time (makespan. The objective of this paper is to minimize the makespan and total flow time of -job, -machine lot streaming problem in a flow shop with equal and variable size sublots and also to determine the optimal sublot size. In recent times researchers are concentrating and applying intelligent heuristics to solve flow shop problems with lot streaming. In this research, Firefly Algorithm (FA and Artificial Immune System (AIS algorithms are used to solve the problem. The results obtained by the proposed algorithms are also compared with the performance of other worked out traditional heuristics. The computational results shows that the identified algorithms are more efficient, effective and better than the algorithms already tested for this problem.

  16. Hodge Decomposition of Information Flow on Small-World Networks.

    Science.gov (United States)

    Haruna, Taichi; Fujiki, Yuuya

    2016-01-01

    We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular components, respectively. The Watts-Strogatz model bridges the two extreme network topologies, a lattice network and a random network, by a single parameter that is the probability of random rewiring. The small-world topology is realized within a certain range between them. By numerical simulation we found that as networks become more random the ratio of harmonic flow to the total magnitude of information flow increases whereas the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced from the level when only network structure is considered for the network close to a random network and a lattice network, respectively. Finally, the sum of these two ratios takes its maximum value within the small-world region. These findings suggest that the dynamical information counterpart of global integration and that of local segregation are the harmonic flow and the curl flow, respectively, and that a part of the small-world region is dominated by internal circulation of information flow.

  17. Hodge decomposition of information flow on small-world networks

    Directory of Open Access Journals (Sweden)

    Taichi Haruna

    2016-09-01

    Full Text Available We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular components, respectively. The Watts-Strogatz model bridges the two extreme network topologies, a lattice network and a random network, by a single parameter that is the probability of random rewiring. The small-world topology is realized within a certain range between them. By numerical simulation we found that as networks become more random the ratio of harmonic flow to the total magnitude of information flow increases whereas the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced from the level when only network structure is considered for the network close to a random network and a lattice network, respectively. Finally, the sum of these two ratios takes its maximum value within the small-world region. These findings suggest that the dynamical information counterpart of global integration and that of local segregation are the harmonic flow and the curl flow, respectively, and that a part of the small-world region is dominated by internal circulation of information flow.

  18. A Flexible Reservation Algorithm for Advance Network Provisioning

    Energy Technology Data Exchange (ETDEWEB)

    Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

    2010-04-12

    Many scientific applications need support from a communication infrastructure that provides predictable performance, which requires effective algorithms for bandwidth reservations. Network reservation systems such as ESnet's OSCARS, establish guaranteed bandwidth of secure virtual circuits for a certain bandwidth and length of time. However, users currently cannot inquire about bandwidth availability, nor have alternative suggestions when reservation requests fail. In general, the number of reservation options is exponential with the number of nodes n, and current reservation commitments. We present a novel approach for path finding in time-dependent networks taking advantage of user-provided parameters of total volume and time constraints, which produces options for earliest completion and shortest duration. The theoretical complexity is only O(n2r2) in the worst-case, where r is the number of reservations in the desired time interval. We have implemented our algorithm and developed efficient methodologies for incorporation into network reservation frameworks. Performance measurements confirm the theoretical predictions.

  19. Novel Spectrum Sensing Algorithms for OFDM Cognitive Radio Networks.

    Science.gov (United States)

    Shi, Zhenguo; Wu, Zhilu; Yin, Zhendong; Cheng, Qingqing

    2015-06-15

    Spectrum sensing technology plays an increasingly important role in cognitive radio networks. Consequently, several spectrum sensing algorithms have been proposed in the literature. In this paper, we present a new spectrum sensing algorithm "Differential Characteristics-Based OFDM (DC-OFDM)" for detecting OFDM signal on account of differential characteristics. We put the primary value on channel gain θ around zero to detect the presence of primary user. Furthermore, utilizing the same method of differential operation, we improve two traditional OFDM sensing algorithms (cyclic prefix and pilot tones detecting algorithms), and propose a "Differential Characteristics-Based Cyclic Prefix (DC-CP)" detector and a "Differential Characteristics-Based Pilot Tones (DC-PT)" detector, respectively. DC-CP detector is based on auto-correlation vector to sense the spectrum, while the DC-PT detector takes the frequency-domain cross-correlation of PT as the test statistic to detect the primary user. Moreover, the distributions of the test statistics of the three proposed methods have been derived. Simulation results illustrate that all of the three proposed methods can achieve good performance under low signal to noise ratio (SNR) with the presence of timing delay. Specifically, the DC-OFDM detector gets the best performance among the presented detectors. Moreover, both of the DC-CP and DC-PT detector achieve significant improvements compared with their corresponding original detectors.

  20. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.

    Science.gov (United States)

    Garro, Beatriz A; Vázquez, Roberto A

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.

  1. Optimization of heat exchanger networks using genetic algorithms

    International Nuclear Information System (INIS)

    Teyssedou, A.; Dipama, J.; Sorin, M.

    2004-01-01

    Most thermal processes encountered in the power industry (chemical, metallurgical, nuclear and thermal power stations) necessitate the transfer of large amounts of heat between fluids having different thermal potentials. A common practice applied to achieve such a requirement consists of using heat exchangers. In general, each current of fluid is conveniently cooled or heated independently from each other in the power plant. When the number of heat exchangers is large enough, however, a convenient arrangement of different flow currents may allow a considerable reduction in energy consumption to be obtained (Linnhoff and Hidmarsh, 1983). In such a case the heat exchangers form a 'Heat Exchanger Network' (HEN) that can be optimized to reduce the overall energy consumption. This type of optimization problem, involves two separates calculation procedures. First, it is necessary to optimize the topology of the HEN that will permit a reduction in energy consumption to be obtained. In a second step the power distribution across the HEN should be optimized without violating the second law of thermodynamics. The numerical treatment of this kind of problem requires the use of both discrete variables (for taking into account each heat exchanger unit) and continuous variables for handling the thermal load of each unit. It is obvious that for a large number of heat exchangers, the use of conventional calculation methods, i.e., Simplexe, becomes almost impossible. Therefore, in this paper we present a 'Genetic Algorithm' (GA), that has been implemented and successfully used to treat complex HENs, containing a large number of heat exchangers. As opposed to conventional optimization techniques that require the knowledge of the derivatives of a function, GAs start the calculation process from a large population of possible solutions of a given problem (Goldberg, 1999). Each possible solution is in turns evaluated according to a 'fitness' criterion obtained from an objective

  2. Improved Road-Network-Flow Control Strategy Based on Macroscopic Fundamental Diagrams and Queuing Length in Connected-Vehicle Network

    Directory of Open Access Journals (Sweden)

    Xiaohui Lin

    2017-01-01

    Full Text Available Connected-vehicles network provides opportunities and conditions for improving traffic signal control, and macroscopic fundamental diagrams (MFD can control the road network at the macrolevel effectively. This paper integrated proposed real-time access to the number of mobile vehicles and the maximum road queuing length in the Connected-vehicles network. Moreover, when implementing a simple control strategy to limit the boundary flow of a road network based on MFD, we determined whether the maximum queuing length of each boundary section exceeds the road-safety queuing length in real-time calculations and timely adjusted the road-network influx rate to avoid the overflow phenomenon in the boundary section. We established a road-network microtraffic simulation model in VISSIM software taking a district as the experimental area, determined MFD of the region based on the number of mobile vehicles, and weighted traffic volume of the road network. When the road network was tending to saturate, we implemented a simple control strategy and our algorithm limits the boundary flow. Finally, we compared the traffic signal control indicators with three strategies: (1 no control strategy, (2 boundary control, and (3 boundary control with limiting queue strategy. The results show that our proposed algorithm is better than the other two.

  3. The Forward-Reverse Algorithm for Stochastic Reaction Networks

    KAUST Repository

    Bayer, Christian

    2015-01-07

    In this work, we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem of approximating the reaction coefficients based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which we solve a set of deterministic optimization problems where the SRNs are replaced by the classical ODE rates; then, during the second phase, the Monte Carlo version of the EM algorithm is applied starting from the output of the previous phase. Starting from a set of over-dispersed seeds, the output of our two-phase method is a cluster of maximum likelihood estimates obtained by using convergence assessment techniques from the theory of Markov chain Monte Carlo.

  4. APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Musson, John C. [JLAB; Seaton, Chad [JLAB; Spata, Mike F. [JLAB; Yan, Jianxun [JLAB

    2012-11-01

    Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.

  5. A Max-Flow Based Algorithm for Connected Target Coverage with Probabilistic Sensors

    Directory of Open Access Journals (Sweden)

    Anxing Shan

    2017-05-01

    Full Text Available Coverage is a fundamental issue in the research field of wireless sensor networks (WSNs. Connected target coverage discusses the sensor placement to guarantee the needs of both coverage and connectivity. Existing works largely leverage on the Boolean disk model, which is only a coarse approximation to the practical sensing model. In this paper, we focus on the connected target coverage issue based on the probabilistic sensing model, which can characterize the quality of coverage more accurately. In the probabilistic sensing model, sensors are only be able to detect a target with certain probability. We study the collaborative detection probability of target under multiple sensors. Armed with the analysis of collaborative detection probability, we further formulate the minimum ϵ-connected target coverage problem, aiming to minimize the number of sensors satisfying the requirements of both coverage and connectivity. We map it into a flow graph and present an approximation algorithm called the minimum vertices maximum flow algorithm (MVMFA with provable time complex and approximation ratios. To evaluate our design, we analyze the performance of MVMFA theoretically and also conduct extensive simulation studies to demonstrate the effectiveness of our proposed algorithm.

  6. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.

    Directory of Open Access Journals (Sweden)

    Huan Chen

    Full Text Available This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN. Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.

  7. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.

    Science.gov (United States)

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.

  8. OpenFlow Extensions for Programmable Quantum Networks

    Science.gov (United States)

    2017-06-19

    Introduction 1 2. Background 1 2.1 Quantum Networks 2 2.2 Software -Defined Networks 3 3. Approach 3 3.1 Metadata 4 3.2 Switch 4 3.3 Controller 5... software -defined networks . Stanford (CA): Stanford University HotNets; 2010. 9. Raychev N. Algorithm for switching 4-bit packages in full quantum...applications to communicate. Advances in network protocols and architectures have led to the development of software -defined programmable networks

  9. Optimization of neural network algorithm of the land market description

    Directory of Open Access Journals (Sweden)

    M. A. Karpovich

    2016-01-01

    Full Text Available The advantages of neural network technology is shown in comparison of traditional descriptions of dynamically changing systems, which include a modern land market. The basic difficulty arising in the practical implementation of neural network models of the land market and construction products is revealed It is the formation of a representative set of training and test examples. The requirements which are necessary for the correct description of the current economic situation has been determined, it consists in the fact that Train-paid-set in the feature space should not has the ranges with a low density of observations. The methods of optimization of empirical array, which allow to avoid the long-range extrapolation of data from range of concentration of the set of examples are formulated. It is shown that a radical method of optimization a set of training and test examples enclosing to collect supplemantary information, is associated with significant costs time and resources for the economic problems and the ratio of cost / efficiency is less efficient than an algorithm optimization neural network models the earth market fixed set of empirical data. Algorithm of optimization based on the transformation of arrays of information which represents the expansion of the ranges of concentration of the set of examples and compression the ranges of low density of observations is analyzed in details. The significant reduction in the relative error of land price description is demonstrated on the specific example of Voronezh region market of lands which intend for road construction, it makes the using of radical method of empirical optimization of the array costeffective with accounting the significant absolute value of the land. The high economic efficiency of the proposed algorithms is demonstrated.

  10. Employment growth through labor flow networks.

    Science.gov (United States)

    Guerrero, Omar A; Axtell, Robert L

    2013-01-01

    It is conventional in labor economics to treat all workers who are seeking new jobs as belonging to a labor pool, and all firms that have job vacancies as an employer pool, and then match workers to jobs. Here we develop a new approach to study labor and firm dynamics. By combining the emerging science of networks with newly available employment micro-data, comprehensive at the level of whole countries, we are able to broadly characterize the process through which workers move between firms. Specifically, for each firm in an economy as a node in a graph, we draw edges between firms if a worker has migrated between them, possibly with a spell of unemployment in between. An economy's overall graph of firm-worker interactions is an object we call the labor flow network (LFN). This is the first study that characterizes a LFN for an entire economy. We explore the properties of this network, including its topology, its community structure, and its relationship to economic variables. It is shown that LFNs can be useful in identifying firms with high growth potential. We relate LFNs to other notions of high performance firms. Specifically, it is shown that fewer than 10% of firms account for nearly 90% of all employment growth. We conclude with a model in which empirically-salient LFNs emerge from the interaction of heterogeneous adaptive agents in a decentralized labor market.

  11. Employment growth through labor flow networks.

    Directory of Open Access Journals (Sweden)

    Omar A Guerrero

    Full Text Available It is conventional in labor economics to treat all workers who are seeking new jobs as belonging to a labor pool, and all firms that have job vacancies as an employer pool, and then match workers to jobs. Here we develop a new approach to study labor and firm dynamics. By combining the emerging science of networks with newly available employment micro-data, comprehensive at the level of whole countries, we are able to broadly characterize the process through which workers move between firms. Specifically, for each firm in an economy as a node in a graph, we draw edges between firms if a worker has migrated between them, possibly with a spell of unemployment in between. An economy's overall graph of firm-worker interactions is an object we call the labor flow network (LFN. This is the first study that characterizes a LFN for an entire economy. We explore the properties of this network, including its topology, its community structure, and its relationship to economic variables. It is shown that LFNs can be useful in identifying firms with high growth potential. We relate LFNs to other notions of high performance firms. Specifically, it is shown that fewer than 10% of firms account for nearly 90% of all employment growth. We conclude with a model in which empirically-salient LFNs emerge from the interaction of heterogeneous adaptive agents in a decentralized labor market.

  12. Path searching in switching networks using cellular algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Koczy, L T; Langer, J; Legendi, T

    1981-01-01

    After a survey of the important statements in the paper A Mathematical Model of Path Searching in General Type Switching Networks (see IBID., vol.25, no.1, p.31-43, 1981) the authors consider the possible implementation for cellular automata of the algorithm introduced there. The cellular field used consists of 5 neighbour 8 state cells. Running times required by a traditional serial processor and by the cellular field, respectively, are compared. By parallel processing this running time can be reduced. 5 references.

  13. Novel image reconstruction algorithm for multi-phase flow tomography system using γ ray method

    International Nuclear Information System (INIS)

    Hao Kuihong; Wang Huaxiang; Gao Mei

    2007-01-01

    After analyzing the reason of image reconstructed algorithm by using the conventional back projection (IBP) is prone to produce spurious line, and considering the characteristic of multi-phase flow tomography, a novel image reconstruction algorithm is proposed, which carries out the intersection calculation using back projection data. This algorithm can obtain a perfect system point spread function, and can eliminate spurious line better. Simulating results show that the algorithm is effective for identifying multi-phase flow pattern. (authors)

  14. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    Science.gov (United States)

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  15. Robustness and Optimization of Complex Networks : Reconstructability, Algorithms and Modeling

    NARCIS (Netherlands)

    Liu, D.

    2013-01-01

    The infrastructure networks, including the Internet, telecommunication networks, electrical power grids, transportation networks (road, railway, waterway, and airway networks), gas networks and water networks, are becoming more and more complex. The complex infrastructure networks are crucial to our

  16. Evaluation of clustering algorithms for protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    van Helden Jacques

    2006-11-01

    Full Text Available Abstract Background Protein interactions are crucial components of all cellular processes. Recently, high-throughput methods have been developed to obtain a global description of the interactome (the whole network of protein interactions for a given organism. In 2002, the yeast interactome was estimated to contain up to 80,000 potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass spectrometry, two-hybrid methods, genetic studies. High-throughput methods are known, however, to yield a non-negligible rate of false positives, and to miss a fraction of existing interactions. The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise interactions. In recent years clustering methods have been developed and applied in order to extract relevant modules from such graphs. These algorithms require the specification of parameters that may drastically affect the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL, Restricted Neighborhood Search Clustering (RNSC, Super Paramagnetic Clustering (SPC, and Molecular Complex Detection (MCODE. Results A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from or adding edges to the test graph in various proportions. Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were compared with the annotated complexes. We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values. We also evaluated their robustness to alterations of the test graph. We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the resulting clusters with the annotated complexes. Conclusion This

  17. An algorithm of opinion leaders mining based on signed network

    Science.gov (United States)

    Cao, Linlin; Zheng, Mingchun; Zhang, Yuanyuan; Zhang, Fuming

    2018-04-01

    With the rapid development of mobile Internet, user gradually become the leader of social media, the abruptly rise of new media has changed the traditional information's dissemination pattern and regularity. There is new era significance of opinion leaders, gatekeepers in the classical theory of mass communication, and it has further expansion and extension to a certain extent. In the existing mining of opinion leaders, it is mainly from the research of network structure and user behavior without considering an important attribute: whether the user has a real impact. In this paper, we take the symbolic network as the research tool, by giving symbol which correspondingly represents support or oppose to the link about point of view relationship between users and combining traditional algorithms of mining with symbolism which can describe the change of view between users, we will get the opinion leader who has real impact on users, then the result is more accurate and effective.

  18. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    Science.gov (United States)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic

  19. Validating module network learning algorithms using simulated data.

    Science.gov (United States)

    Michoel, Tom; Maere, Steven; Bonnet, Eric; Joshi, Anagha; Saeys, Yvan; Van den Bulcke, Tim; Van Leemput, Koenraad; van Remortel, Piet; Kuiper, Martin; Marchal, Kathleen; Van de Peer, Yves

    2007-05-03

    In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators. We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing and improving module network

  20. Unwinding the hairball graph: Pruning algorithms for weighted complex networks

    Science.gov (United States)

    Dianati, Navid

    2016-01-01

    Empirical networks of weighted dyadic relations often contain "noisy" edges that alter the global characteristics of the network and obfuscate the most important structures therein. Graph pruning is the process of identifying the most significant edges according to a generative null model and extracting the subgraph consisting of those edges. Here, we focus on integer-weighted graphs commonly arising when weights count the occurrences of an "event" relating the nodes. We introduce a simple and intuitive null model related to the configuration model of network generation and derive two significance filters from it: the marginal likelihood filter (MLF) and the global likelihood filter (GLF). The former is a fast algorithm assigning a significance score to each edge based on the marginal distribution of edge weights, whereas the latter is an ensemble approach which takes into account the correlations among edges. We apply these filters to the network of air traffic volume between US airports and recover a geographically faithful representation of the graph. Furthermore, compared with thresholding based on edge weight, we show that our filters extract a larger and significantly sparser giant component.

  1. Solving Minimum Cost Multi-Commodity Network Flow Problem ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-03-23

    Mar 23, 2018 ... network-based modeling framework for integrated fixed and mobile ... Minimum Cost Network Flow Problem (MCNFP) and some ..... Unmanned Aerial Vehicle Routing in Traffic. Incident ... Ph.D. Thesis, Dept. of Surveying &.

  2. EVENT, Explosive Transients in Flow Networks

    International Nuclear Information System (INIS)

    Andrae, R.W.; Tang, P.K.; Bolstad, J.W.; Gregory, W.S.

    1985-01-01

    1 - Description of problem or function: A major concern of the chemical, nuclear, and mining industries is the occurrence of an explosion in one part of a facility and subsequent transmission of explosive effects through the ventilation system. An explosive event can cause performance degradation of the ventilation system or even structural failures. A more serious consequence is the release of hazardous materials to the environment if vital protective devices such as air filters, are damaged. EVENT was developed to investigate the effects of explosive transients through fluid-flow networks. Using the principles of fluid mechanics and thermodynamics, governing equations for the conservation of mass, energy, and momentum are formulated. These equations are applied to the complete network subdivided into two general components: nodes and branches. The nodes represent boundaries and internal junctions where the conservation of mass and energy applies. The branches can be ducts, valves, blowers, or filters. Since in EVENT the effect of the explosion, not the characteristics of the explosion itself, is of interest, the transient is simulated in the simplest possible way. A rapid addition of mass and energy to the system at certain locations is used. This representation is adequate for all of the network except the region where the explosion actually occurs. EVENT84 is a modification of EVENT which includes a new explosion chamber model subroutine based on the NOL BLAST program developed at the Naval Ordnance Laboratory, Silver Spring, Maryland. This subroutine calculates the confined explosion near-field parameters and supplies the time functions of energy and mass injection. Solid-phase or TNT-equivalent explosions (which simulate 'point source' explosions in nuclear facilities) as well as explosions in gas-air mixtures can be simulated. The four types of explosions EVENT84 simulates are TNT, hydrogen in air, acetylene in air, and tributyl phosphate (TBP or 'red oil

  3. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.

    Science.gov (United States)

    Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar

    2017-08-01

    Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

  4. Water evaporation algorithm: A new metaheuristic algorithm towards the solution of optimal power flow

    Directory of Open Access Journals (Sweden)

    Anulekha Saha

    2017-12-01

    Full Text Available A relatively new technique to solve the optimal power flow (OPF problem inspired by the evaporation (vaporization of small quantity water particles from dense surfaces is presented in this paper. IEEE 30 bus and IEEE 118 bus test systems are assessed for various objectives to determine water evaporation algorithm’s (WEA efficiency in handling the OPF problem after satisfying constraints. Comparative study with other established techniques demonstrate competitiveness of WEA in treating varied objectives. It achieved superior results for all the objectives considered. The algorithm is found to minimize its objective values by great margins even in case of large test system. Statistical analysis of all the cases using Wilcoxon’s signed rank test resulted in p-values much lower than the required value of 0.05, thereby establishing the robustness of the applied technique. Best performance of the algorithm are obtained for voltage deviation minimization and voltage stability index minimization objectives in case of IEEE 30 and IEEE 118 bus test systems respectively.

  5. A modified GO-FLOW methodology with common cause failure based on Discrete Time Bayesian Network

    International Nuclear Information System (INIS)

    Fan, Dongming; Wang, Zili; Liu, Linlin; Ren, Yi

    2016-01-01

    Highlights: • Identification of particular causes of failure for common cause failure analysis. • Comparison two formalisms (GO-FLOW and Discrete Time Bayesian network) and establish the correlation between them. • Mapping the GO-FLOW model into Bayesian network model. • Calculated GO-FLOW model with common cause failures based on DTBN. - Abstract: The GO-FLOW methodology is a success-oriented system reliability modelling technique for multi-phase missions involving complex time-dependent, multi-state and common cause failure (CCF) features. However, the analysis algorithm cannot easily handle the multiple shared signals and CCFs. In addition, the simulative algorithm is time consuming when vast multi-state components exist in the model, and the multiple time points of phased mission problems increases the difficulty of the analysis method. In this paper, the Discrete Time Bayesian Network (DTBN) and the GO-FLOW methodology are integrated by the unified mapping rules. Based on these rules, the multi operators can be mapped into DTBN followed by, a complete GO-FLOW model with complex characteristics (e.g. phased mission, multi-state, and CCF) can be converted to the isomorphic DTBN and easily analyzed by utilizing the DTBN. With mature algorithms and tools, the multi-phase mission reliability parameter can be efficiently obtained via the proposed approach without considering the shared signals and the various complex logic operation. Meanwhile, CCF can also arise in the computing process.

  6. Multilevel Bloom Filters for P2P Flows Identification Based on Cluster Analysis in Wireless Mesh Network

    Directory of Open Access Journals (Sweden)

    Xia-an Bi

    2015-01-01

    Full Text Available With the development of wireless mesh networks and distributed computing, lots of new P2P services have been deployed and enrich the Internet contents and applications. The rapid growth of P2P flows brings great pressure to the regular network operation. So the effective flow identification and management of P2P applications become increasingly urgent. In this paper, we build a multilevel bloom filters data structure to identify the P2P flows through researches on the locality characteristics of P2P flows. Different level structure stores different numbers of P2P flow rules. According to the characteristics values of the P2P flows, we adjust the parameters of the data structure of bloom filters. The searching steps of the scheme traverse from the first level to the last level. Compared with the traditional algorithms, our method solves the drawbacks of previous schemes. The simulation results demonstrate that our algorithm effectively enhances the performance of P2P flows identification. Then we deploy our flow identification algorithm in the traffic monitoring sensors which belong to the network traffic monitoring system at the export link in the campus network. In the real environment, the experiment results demonstrate that our algorithm has a fast speed and high accuracy to identify the P2P flows; therefore, it is suitable for actual deployment.

  7. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

    Science.gov (United States)

    Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

    2014-12-01

    Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

  8. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    Science.gov (United States)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  9. Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization

    Directory of Open Access Journals (Sweden)

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.

  10. Hierarchical artificial bee colony algorithm for RFID network planning optimization.

    Science.gov (United States)

    Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong

    2014-01-01

    This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.

  11. A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks.

    Science.gov (United States)

    Li, Yuhong; Gong, Guanghong; Li, Ni

    2018-01-01

    In this paper, we propose a novel algorithm-parallel adaptive quantum genetic algorithm-which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes.

  12. Complex networks from experimental horizontal oil–water flows: Community structure detection versus flow pattern discrimination

    International Nuclear Information System (INIS)

    Gao, Zhong-Ke; Fang, Peng-Cheng; Ding, Mei-Shuang; Yang, Dan; Jin, Ning-De

    2015-01-01

    We propose a complex network-based method to distinguish complex patterns arising from experimental horizontal oil–water two-phase flow. We first use the adaptive optimal kernel time–frequency representation (AOK TFR) to characterize flow pattern behaviors from the energy and frequency point of view. Then, we infer two-phase flow complex networks from experimental measurements and detect the community structures associated with flow patterns. The results suggest that the community detection in two-phase flow complex network allows objectively discriminating complex horizontal oil–water flow patterns, especially for the segregated and dispersed flow patterns, a task that existing method based on AOK TFR fails to work. - Highlights: • We combine time–frequency analysis and complex network to identify flow patterns. • We explore the transitional flow behaviors in terms of betweenness centrality. • Our analysis provides a novel way for recognizing complex flow patterns. • Broader applicability of our method is demonstrated and articulated

  13. The Determinants of International News Flow: A Network Analysis.

    Science.gov (United States)

    Kim, Kyungmo; Barnett, George A.

    1996-01-01

    Examines the structure of international news flow and its determinants. Reveals inequality of international news flow between core and periphery, with Western industrialized countries at the center. Finds that the news flow network is structured into eight geographic-linguistic groups. Indicates flow is influenced by a country's economic…

  14. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    International Nuclear Information System (INIS)

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate. (geophysics, astronomy, and astrophysics)

  15. Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network

    Science.gov (United States)

    Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao

    2018-03-01

    Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.

  16. Energy Efficient Routing Algorithms in Dynamic Optical Core Networks with Dual Energy Sources

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    This paper proposes new energy efficient routing algorithms in optical core networks, with the application of solar energy sources and bundled links. A comprehensive solar energy model is described in the proposed network scenarios. Network performance in energy savings, connection blocking...... probability, resource utilization and bundled link usage are evaluated with dynamic network simulations. Results show that algorithms proposed aiming for reducing the dynamic part of the energy consumption of the network may raise the fixed part of the energy consumption meanwhile....

  17. Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network.

    Science.gov (United States)

    Rahman, Ziaur; Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A; Othman, Mohamed

    2018-01-01

    Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26

  18. Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network

    Science.gov (United States)

    Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A.; Othman, Mohamed

    2018-01-01

    Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26

  19. Optimal Location and Sizing of UPQC in Distribution Networks Using Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Seyed Abbas Taher

    2012-01-01

    Full Text Available Differential evolution (DE algorithm is used to determine optimal location of unified power quality conditioner (UPQC considering its size in the radial distribution systems. The problem is formulated to find the optimum location of UPQC based on an objective function (OF defined for improving of voltage and current profiles, reducing power loss and minimizing the investment costs considering the OF's weighting factors. Hence, a steady-state model of UPQC is derived to set in forward/backward sweep load flow. Studies are performed on two IEEE 33-bus and 69-bus standard distribution networks. Accuracy was evaluated by reapplying the procedures using both genetic (GA and immune algorithms (IA. Comparative results indicate that DE is capable of offering a nearer global optimal in minimizing the OF and reaching all the desired conditions than GA and IA.

  20. Software defined networks reactive flow programming and load balance switching

    OpenAIRE

    Καλλιανιώτης, Νικόλαος; Kallianiotis, Nikolaos

    2017-01-01

    This project serves as a Master Thesis as the requirements of the master’s programme Master of Digital Communications and Networks. It proposes load balancing algorithms applied to Software-Defined Networks to achieve the best possible resource utilisation of each of the links present in a network. The open-sources Opendaylight project and Floodlight project are used as SDN controllers, and the network is emulated using Mininet software

  1. Predicting commuter flows in spatial networks using a radiation model based on temporal ranges

    Science.gov (United States)

    Ren, Yihui; Ercsey-Ravasz, Mária; Wang, Pu; González, Marta C.; Toroczkai, Zoltán

    2014-11-01

    Understanding network flows such as commuter traffic in large transportation networks is an ongoing challenge due to the complex nature of the transportation infrastructure and human mobility. Here we show a first-principles based method for traffic prediction using a cost-based generalization of the radiation model for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events.

  2. A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow

    NARCIS (Netherlands)

    Hunt, T.A.; Hunt, Thomas A.; Bernardi, Stefano; Todd, B.D.

    2010-01-01

    In this work, we develop a new algorithm for nonequilibrium molecular dynamics of fluids under planar mixed flow, a linear combination of planar elongational flow and planar Couette flow. To date, the only way of simulating mixed flow using nonequilibrium molecular dynamics techniques was to impose

  3. Algorithmic Optimal Management of a Potable Water Distribution System: Application to the Primary Network of Bonaberi (Douala, Cameroon

    Directory of Open Access Journals (Sweden)

    Zineb Simeu-Abazi

    2009-11-01

    Full Text Available The optimal management of a potable water distribution system requires the control of the reference (standard data, the control points, control of the drainage parameters (pressure, flow, etc. and maintenance parameters. The control of the mentioned data defines the network learning process [1]. Besides classic IT functions of acquisition, storage and data processing, a geographical information system (GIS can be used as the basis for an alarm system, allowing one to identify and to localize the presence of water leaks in the network [2]. In this article we propose an algorithm coupling the various drainage parameters for the management of the network. The algorithm leads to an optimal management of leaks. An application is in progress on the primary network in the region of Bonaberi in Douala, the largest city of Cameroon.

  4. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Directory of Open Access Journals (Sweden)

    Wensheng Guo

    Full Text Available In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  5. Traffic Flow Prediction Model for Large-Scale Road Network Based on Cloud Computing

    Directory of Open Access Journals (Sweden)

    Zhaosheng Yang

    2014-01-01

    Full Text Available To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface. The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.

  6. Radioactivity nuclide identification based on BP and LM algorithm neural network

    International Nuclear Information System (INIS)

    Wang Jihong; Sun Jian; Wang Lianghou

    2012-01-01

    The paper provides the method which can identify radioactive nuclide based on the BP and LM algorithm neural network. Then, this paper compares the above-mentioned method with FR algorithm. Through the result of the Matlab simulation, the method of radioactivity nuclide identification based on the BP and LM algorithm neural network is superior to the FR algorithm. With the better effect and the higher accuracy, it will be the best choice. (authors)

  7. Improved Artificial Fish Algorithm for Parameters Optimization of PID Neural Network

    OpenAIRE

    Jing Wang; Yourui Huang

    2013-01-01

    In order to solve problems such as initial weights are difficult to be determined, training results are easy to trap in local minima in optimization process of PID neural network parameters by traditional BP algorithm, this paper proposed a new method based on improved artificial fish algorithm for parameters optimization of PID neural network. This improved artificial fish algorithm uses a composite adaptive artificial fish algorithm based on optimal artificial fish and nearest artificial fi...

  8. Discrete bat algorithm for optimal problem of permutation flow shop scheduling.

    Science.gov (United States)

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.

  9. Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling

    Science.gov (United States)

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220

  10. Modelling flow dynamics in water distribution networks using ...

    African Journals Online (AJOL)

    One such approach is the Artificial Neural Networks (ANNs) technique. The advantage of ANNs is that they are robust and can be used to model complex linear and non-linear systems without making implicit assumptions. ANNs can be trained to forecast flow dynamics in a water distribution network. Such flow dynamics ...

  11. Multiobjective genetic algorithm conjunctive use optimization for production, cost, and energy with dynamic return flow

    Science.gov (United States)

    Peralta, Richard C.; Forghani, Ali; Fayad, Hala

    2014-04-01

    Many real water resources optimization problems involve conflicting objectives for which the main goal is to find a set of optimal solutions on, or near to the Pareto front. E-constraint and weighting multiobjective optimization techniques have shortcomings, especially as the number of objectives increases. Multiobjective Genetic Algorithms (MGA) have been previously proposed to overcome these difficulties. Here, an MGA derives a set of optimal solutions for multiobjective multiuser conjunctive use of reservoir, stream, and (un)confined groundwater resources. The proposed methodology is applied to a hydraulically and economically nonlinear system in which all significant flows, including stream-aquifer-reservoir-diversion-return flow interactions, are simulated and optimized simultaneously for multiple periods. Neural networks represent constrained state variables. The addressed objectives that can be optimized simultaneously in the coupled simulation-optimization model are: (1) maximizing water provided from sources, (2) maximizing hydropower production, and (3) minimizing operation costs of transporting water from sources to destinations. Results show the efficiency of multiobjective genetic algorithms for generating Pareto optimal sets for complex nonlinear multiobjective optimization problems.

  12. Optimal groundwater remediation using artificial neural networks and the genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Leah L. [Stanford Univ., CA (United States)

    1992-08-01

    An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the GA searches through realizations or patterns of pumping and uses the trained network to predict the outcome of the realizations. This approach has advantages of parallel processing of the groundwater simulations and the ability to ``recycle`` or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models.

  13. Optimal groundwater remediation using artificial neural networks and the genetic algorithm

    International Nuclear Information System (INIS)

    Rogers, L.L.

    1992-08-01

    An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the GA searches through realizations or patterns of pumping and uses the trained network to predict the outcome of the realizations. This approach has advantages of parallel processing of the groundwater simulations and the ability to ''recycle'' or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models

  14. Application of BP Neural Network Algorithm in Traditional Hydrological Model for Flood Forecasting

    Directory of Open Access Journals (Sweden)

    Jianjin Wang

    2017-01-01

    Full Text Available Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in this paper and knowledge-based method (traditional hydrological model may booster simulation accuracy. In this study, we proposed a new back-propagation (BP neural network algorithm and applied it in the semi-distributed Xinanjiang (XAJ model. The improved hydrological model is capable of updating the flow forecasting error without losing the leading time. The proposed method was tested in a real case study for both single period corrections and real-time corrections. The results reveal that the proposed method could significantly increase the accuracy of flood forecasting and indicate that the global correction effect is superior to the second-order autoregressive correction method in real-time correction.

  15. A DSP-based neural network non-uniformity correction algorithm for IRFPA

    Science.gov (United States)

    Liu, Chong-liang; Jin, Wei-qi; Cao, Yang; Liu, Xiu

    2009-07-01

    An effective neural network non-uniformity correction (NUC) algorithm based on DSP is proposed in this paper. The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with a fixed-pattern noise(FPN).We introduced and analyzed the artificial neural network scene-based non-uniformity correction (SBNUC) algorithm. A design of DSP-based NUC development platform for IRFPA is described. The DSP hardware platform designed is of low power consumption, with 32-bit fixed point DSP TMS320DM643 as the kernel processor. The dependability and expansibility of the software have been improved by DSP/BIOS real-time operating system and Reference Framework 5. In order to realize real-time performance, the calibration parameters update is set at a lower task priority then video input and output in DSP/BIOS. In this way, calibration parameters updating will not affect video streams. The work flow of the system and the strategy of real-time realization are introduced. Experiments on real infrared imaging sequences demonstrate that this algorithm requires only a few frames to obtain high quality corrections. It is computationally efficient and suitable for all kinds of non-uniformity.

  16. Genetic Algorithms vs. Artificial Neural Networks in Economic Forecasting Process

    Directory of Open Access Journals (Sweden)

    Nicolae Morariu

    2008-01-01

    Full Text Available This paper aims to describe the implementa-tion of a neural network and a genetic algorithm system in order to forecast certain economic indicators of a free market economy. In a free market economy forecasting process precedes the economic planning (a management function, providing important information for the result of the last process. Forecasting represents a starting point in setting of target for a firm, an organization or even a branch of the economy. Thus, the forecasting method used can influence in a significant mode the evolution of an entity. In the following we will describe the forecasting of an economic indicator using two intelligent systems. The difference between the results obtained by this two systems are described in chapter IV.

  17. Understanding "Understanding" Flow for Network-Centric Warfare: Military Knowledge-Flow Mechanics

    National Research Council Canada - National Science Library

    Nissen, Mark

    2002-01-01

    Network-centric warfare (NCW) emphasizes information superiority for battlespace efficacy, but it is clear that the mechanics of how knowledge flows are just as important as those pertaining to the networks and communication...

  18. Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed

    Science.gov (United States)

    Tian, Ye; Song, Qi; Cattafesta, Louis

    2005-01-01

    This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.

  19. Algorithmic network monitoring for a modern water utility: a case study in Jerusalem.

    Science.gov (United States)

    Armon, A; Gutner, S; Rosenberg, A; Scolnicov, H

    2011-01-01

    We report on the design, deployment, and use of TaKaDu, a real-time algorithmic Water Infrastructure Monitoring solution, with a strong focus on water loss reduction and control. TaKaDu is provided as a commercial service to several customers worldwide. It has been in use at HaGihon, the Jerusalem utility, since mid 2009. Water utilities collect considerable real-time data from their networks, e.g. by means of a SCADA system and sensors measuring flow, pressure, and other data. We discuss how an algorithmic statistical solution analyses this wealth of raw data, flexibly using many types of input and picking out and reporting significant events and failures in the network. Of particular interest to most water utilities is the early detection capability for invisible leaks, also a means for preventing large visible bursts. The system also detects sensor and SCADA failures, various water quality issues, DMA boundary breaches, unrecorded or unintended network changes (like a valve or pump state change), and other events, including types unforeseen during system design. We discuss results from use at HaGihon, showing clear operational value.

  20. Parallel Computation of Unsteady Flows on a Network of Workstations

    Science.gov (United States)

    1997-01-01

    Parallel computation of unsteady flows requires significant computational resources. The utilization of a network of workstations seems an efficient solution to the problem where large problems can be treated at a reasonable cost. This approach requires the solution of several problems: 1) the partitioning and distribution of the problem over a network of workstation, 2) efficient communication tools, 3) managing the system efficiently for a given problem. Of course, there is the question of the efficiency of any given numerical algorithm to such a computing system. NPARC code was chosen as a sample for the application. For the explicit version of the NPARC code both two- and three-dimensional problems were studied. Again both steady and unsteady problems were investigated. The issues studied as a part of the research program were: 1) how to distribute the data between the workstations, 2) how to compute and how to communicate at each node efficiently, 3) how to balance the load distribution. In the following, a summary of these activities is presented. Details of the work have been presented and published as referenced.

  1. Optimal power flow for distribution networks with distributed generation

    Directory of Open Access Journals (Sweden)

    Radosavljević Jordan

    2015-01-01

    Full Text Available This paper presents a genetic algorithm (GA based approach for the solution of the optimal power flow (OPF in distribution networks with distributed generation (DG units, including fuel cells, micro turbines, diesel generators, photovoltaic systems and wind turbines. The OPF is formulated as a nonlinear multi-objective optimization problem with equality and inequality constraints. Due to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties, a probabilisticalgorithm is introduced in the OPF analysis. The Weibull and normal distributions are employed to model the input random variables, namely the wind speed, solar irradiance and load power. The 2m+1 point estimate method and the Gram Charlier expansion theory are used to obtain the statistical moments and the probability density functions (PDFs of the OPF results. The proposed approach is examined and tested on a modified IEEE 34 node test feeder with integrated five different DG units. The obtained results prove the efficiency of the proposed approach to solve both deterministic and probabilistic OPF problems for different forms of the multi-objective function. As such, it can serve as a useful decision-making supporting tool for distribution network operators. [Projekat Ministarstva nauke Republike Srbije, br. TR33046

  2. Development of flow network analysis code for block type VHTR core by linear theory method

    International Nuclear Information System (INIS)

    Lee, J. H.; Yoon, S. J.; Park, J. W.; Park, G. C.

    2012-01-01

    VHTR (Very High Temperature Reactor) is high-efficiency nuclear reactor which is capable of generating hydrogen with high temperature of coolant. PMR (Prismatic Modular Reactor) type reactor consists of hexagonal prismatic fuel blocks and reflector blocks. The flow paths in the prismatic VHTR core consist of coolant holes, bypass gaps and cross gaps. Complicated flow paths are formed in the core since the coolant holes and bypass gap are connected by the cross gap. Distributed coolant was mixed in the core through the cross gap so that the flow characteristics could not be modeled as a simple parallel pipe system. It requires lot of effort and takes very long time to analyze the core flow with CFD analysis. Hence, it is important to develop the code for VHTR core flow which can predict the core flow distribution fast and accurate. In this study, steady state flow network analysis code is developed using flow network algorithm. Developed flow network analysis code was named as FLASH code and it was validated with the experimental data and CFD simulation results. (authors)

  3. Novel maximum-margin training algorithms for supervised neural networks.

    Science.gov (United States)

    Ludwig, Oswaldo; Nunes, Urbano

    2010-06-01

    This paper proposes three novel training methods, two of them based on the backpropagation approach and a third one based on information theory for multilayer perceptron (MLP) binary classifiers. Both backpropagation methods are based on the maximal-margin (MM) principle. The first one, based on the gradient descent with adaptive learning rate algorithm (GDX) and named maximum-margin GDX (MMGDX), directly increases the margin of the MLP output-layer hyperplane. The proposed method jointly optimizes both MLP layers in a single process, backpropagating the gradient of an MM-based objective function, through the output and hidden layers, in order to create a hidden-layer space that enables a higher margin for the output-layer hyperplane, avoiding the testing of many arbitrary kernels, as occurs in case of support vector machine (SVM) training. The proposed MM-based objective function aims to stretch out the margin to its limit. An objective function based on Lp-norm is also proposed in order to take into account the idea of support vectors, however, overcoming the complexity involved in solving a constrained optimization problem, usually in SVM training. In fact, all the training methods proposed in this paper have time and space complexities O(N) while usual SVM training methods have time complexity O(N (3)) and space complexity O(N (2)) , where N is the training-data-set size. The second approach, named minimization of interclass interference (MICI), has an objective function inspired on the Fisher discriminant analysis. Such algorithm aims to create an MLP hidden output where the patterns have a desirable statistical distribution. In both training methods, the maximum area under ROC curve (AUC) is applied as stop criterion. The third approach offers a robust training framework able to take the best of each proposed training method. The main idea is to compose a neural model by using neurons extracted from three other neural networks, each one previously trained by

  4. Optimization the Initial Weights of Artificial Neural Networks via Genetic Algorithm Applied to Hip Bone Fracture Prediction

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Chang

    2012-01-01

    Full Text Available This paper aims to find the optimal set of initial weights to enhance the accuracy of artificial neural networks (ANNs by using genetic algorithms (GA. The sample in this study included 228 patients with first low-trauma hip fracture and 215 patients without hip fracture, both of them were interviewed with 78 questions. We used logistic regression to select 5 important factors (i.e., bone mineral density, experience of fracture, average hand grip strength, intake of coffee, and peak expiratory flow rate for building artificial neural networks to predict the probabilities of hip fractures. Three-layer (one hidden layer ANNs models with back-propagation training algorithms were adopted. The purpose in this paper is to find the optimal initial weights of neural networks via genetic algorithm to improve the predictability. Area under the ROC curve (AUC was used to assess the performance of neural networks. The study results showed the genetic algorithm obtained an AUC of 0.858±0.00493 on modeling data and 0.802 ± 0.03318 on testing data. They were slightly better than the results of our previous study (0.868±0.00387 and 0.796±0.02559, resp.. Thus, the preliminary study for only using simple GA has been proved to be effective for improving the accuracy of artificial neural networks.

  5. Algorithm for solving multicriteria problem of appointments on the networks

    Directory of Open Access Journals (Sweden)

    Yu. V. Bugaeev

    2017-01-01

    Full Text Available To describe complex projects or various jobs that make up a set of interrelated activities, use the network schedule. Several variants of network models are used. 1. For practical use, the Gantt chart is the most widely used - it is a graphical representation of consecutive intervals of time and the use of resources. 2. The network graph is represented as a graph, where the vertices are an event (or its state at a certain point in time, and the connecting arcs (or edges are works. The graph model is used in the work. In this case, the events (the fact of the completion or the beginning of the work correspond to the vertices of the graph, and the work to the arcs, the orientation of which corresponds to the technology of this process. An important role in the project management model is played by the optimal assignment of performers to the existing list of works. With this formulation of the problem, the total implementation time or the length of the critical path on the graph can be used as a criterion. In this case, the criterion is imposed a restriction on the deadline for the execution of work (or the project as a whole. Thus, the total time spent on the project and the length of the critical path are represented by equally important characteristics of the project implementation, and they should be considered as two equivalent criteria for the multicriteria project management task. We have proposed an algorithm, in general, an approximate determination of the set of Pareto-optimal solutions of a given problem.

  6. An analytical phantom for the evaluation of medical flow imaging algorithms

    International Nuclear Information System (INIS)

    Pashaei, A; Fatouraee, N

    2009-01-01

    Blood flow characteristics (e.g. velocity, pressure, shear stress, streamline and volumetric flow rate) are effective tools in diagnosis of cardiovascular diseases such as atherosclerotic plaque, aneurism and cardiac muscle failure. Noninvasive estimation of cardiovascular blood flow characteristics is mostly limited to the measurement of velocity components by medical imaging modalities. Once the velocity field is obtained from the images, other flow characteristics within the cardiovascular system can be determined using algorithms relating them to the velocity components. In this work, we propose an analytical flow phantom to evaluate these algorithms accurately. The Navier-Stokes equations are used to derive this flow phantom. The exact solution of these equations obtains analytical expression for the flow characteristics inside the domain. Features such as pulsatility, incompressibility and viscosity of flow are included in a three-dimensional domain. The velocity domain of the resulted system is presented as reference images. These images could be employed to evaluate the performance of different flow characteristic algorithms. In this study, we also present some applications of the obtained phantom. The calculation of pressure domain from velocity data, volumetric flow rate, wall shear stress and particle trace are the characteristics whose algorithms are evaluated here. We also present the application of this phantom in the analysis of noisy and low-resolution images. The presented phantom can be considered as a benchmark test to compare the accuracy of different flow characteristic algorithms.

  7. Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions

    International Nuclear Information System (INIS)

    Liu, Hui; Tian, Hong-qi; Li, Yan-fei; Zhang, Lei

    2015-01-01

    Highlights: • Four hybrid algorithms are proposed for the wind speed decomposition. • Adaboost algorithm is adopted to provide a hybrid training framework. • MLP neural networks are built to do the forecasting computation. • Four important network training algorithms are included in the MLP networks. • All the proposed hybrid algorithms are suitable for the wind speed predictions. - Abstract: The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are proposed for the high-precision multi-step wind speed predictions based on the Adaboost (Adaptive Boosting) algorithm and the MLP (Multilayer Perceptron) neural networks. In the hybrid Adaboost–MLP forecasting architecture, four important algorithms are adopted for the training and modeling of the MLP neural networks, including GD-ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm and BFGS algorithm. The aim of the study is to investigate the promoted forecasting percentages of the MLP neural networks by the Adaboost algorithm’ optimization under various training algorithms. The hybrid models in the performance comparison include Adaboost–GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results show that: (1) the proposed hybrid Adaboost–MLP forecasting architecture is effective for the wind speed predictions; (2) the Adaboost algorithm has promoted the forecasting performance of the MLP neural networks considerably; (3) among the proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-FR–MLP model has the best performance; and (4) the improved percentages of the MLP neural networks by the Adaboost algorithm decrease step by step with the following sequence of training algorithms as: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS

  8. Transitions from Trees to Cycles in Adaptive Flow Networks

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Klemm, Konstantin

    2017-01-01

    -world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization...... principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances). We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable......Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real...

  9. Multi-objective optimal power flow for active distribution network considering the stochastic characteristic of photovoltaic

    Science.gov (United States)

    Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming

    2017-05-01

    To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.

  10. Traffic Flow Prediction Using MI Algorithm and Considering Noisy and Data Loss Conditions: An Application to Minnesota Traffic Flow Prediction

    Directory of Open Access Journals (Sweden)

    Seyed Hadi Hosseini

    2014-10-01

    Full Text Available Traffic flow forecasting is useful for controlling traffic flow, traffic lights, and travel times. This study uses a multi-layer perceptron neural network and the mutual information (MI technique to forecast traffic flow and compares the prediction results with conventional traffic flow forecasting methods. The MI method is used to calculate the interdependency of historical traffic data and future traffic flow. In numerical case studies, the proposed traffic flow forecasting method was tested against data loss, changes in weather conditions, traffic congestion, and accidents. The outcomes were highly acceptable for all cases and showed the robustness of the proposed flow forecasting method.

  11. Approximation algorithms for the parallel flow shop problem

    NARCIS (Netherlands)

    X. Zhang (Xiandong); S.L. van de Velde (Steef)

    2012-01-01

    textabstractWe consider the NP-hard problem of scheduling n jobs in m two-stage parallel flow shops so as to minimize the makespan. This problem decomposes into two subproblems: assigning the jobs to parallel flow shops; and scheduling the jobs assigned to the same flow shop by use of Johnson's

  12. Flow network QSAR for the prediction of physicochemical properties by mapping an electrical resistance network onto a chemical reaction poset.

    Science.gov (United States)

    Ivanciuc, Ovidiu; Ivanciuc, Teodora; Klein, Douglas J

    2013-06-01

    Usual quantitative structure-activity relationship (QSAR) models are computed from unstructured input data, by using a vector of molecular descriptors for each chemical in the dataset. Another alternative is to consider the structural relationships between the chemical structures, such as molecular similarity, presence of certain substructures, or chemical transformations between compounds. We defined a class of network-QSAR models based on molecular networks induced by a sequence of substitution reactions on a chemical structure that generates a partially ordered set (or poset) oriented graph that may be used to predict various molecular properties with quantitative superstructure-activity relationships (QSSAR). The network-QSAR interpolation models defined on poset graphs, namely average poset, cluster expansion, and spline poset, were tested with success for the prediction of several physicochemical properties for diverse chemicals. We introduce the flow network QSAR, a new poset regression model in which the dataset of chemicals, represented as a reaction poset, is transformed into an oriented network of electrical resistances in which the current flow results in a potential at each node. The molecular property considered in the QSSAR model is represented as the electrical potential, and the value of this potential at a particular node is determined by the electrical resistances assigned to each edge and by a system of batteries. Each node with a known value for the molecular property is attached to a battery that sets the potential on that node to the value of the respective molecular property, and no external battery is attached to nodes from the prediction set, representing chemicals for which the values of the molecular property are not known or are intended to be predicted. The flow network QSAR algorithm determines the values of the molecular property for the prediction set of molecules by applying Ohm's law and Kirchhoff's current law to the poset

  13. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

    Science.gov (United States)

    Walter, Florian; Röhrbein, Florian; Knoll, Alois

    2015-12-01

    The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Information Flow Between Resting-State Networks.

    Science.gov (United States)

    Diez, Ibai; Erramuzpe, Asier; Escudero, Iñaki; Mateos, Beatriz; Cabrera, Alberto; Marinazzo, Daniele; Sanz-Arigita, Ernesto J; Stramaglia, Sebastiano; Cortes Diaz, Jesus M

    2015-11-01

    The resting brain dynamics self-organize into a finite number of correlated patterns known as resting-state networks (RSNs). It is well known that techniques such as independent component analysis can separate the brain activity at rest to provide such RSNs, but the specific pattern of interaction between RSNs is not yet fully understood. To this aim, we propose here a novel method to compute the information flow (IF) between different RSNs from resting-state magnetic resonance imaging. After hemodynamic response function blind deconvolution of all voxel signals, and under the hypothesis that RSNs define regions of interest, our method first uses principal component analysis to reduce dimensionality in each RSN to next compute IF (estimated here in terms of transfer entropy) between the different RSNs by systematically increasing k (the number of principal components used in the calculation). When k=1, this method is equivalent to computing IF using the average of all voxel activities in each RSN. For k≥1, our method calculates the k multivariate IF between the different RSNs. We find that the average IF among RSNs is dimension dependent, increasing from k=1 (i.e., the average voxel activity) up to a maximum occurring at k=5 and to finally decay to zero for k≥10. This suggests that a small number of components (close to five) is sufficient to describe the IF pattern between RSNs. Our method--addressing differences in IF between RSNs for any generic data--can be used for group comparison in health or disease. To illustrate this, we have calculated the inter-RSN IF in a data set of Alzheimer's disease (AD) to find that the most significant differences between AD and controls occurred for k=2, in addition to AD showing increased IF w.r.t. The spatial localization of the k=2 component, within RSNs, allows the characterization of IF differences between AD and controls.

  15. Node Load Balance Multi-flow Opportunistic Routing in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2014-04-01

    Full Text Available Opportunistic routing (OR has been proposed to improve the performance of wireless networks by exploiting the multi-user diversity and broadcast nature of the wireless medium. It involves multiple candidate forwarders to relay packets every hop. The existing OR doesn’t take account of the traffic load and load balance, therefore some nodes may be overloaded while the others may not, leading to network performance decline. In this paper, we focus on opportunities routing selection with node load balance which is described as a convex optimization problem. To solve the problem, by combining primal-dual and sub-gradient methods, a fully distributed Node load balance Multi-flow Opportunistic Routing algorithm (NMOR is proposed. With node load balance constraint, NMOR allocates the flow rate iteratively and the rate allocation decides the candidate forwarder selection of opportunities routing. The simulation results show that NMOR algorithm improves 100 %, 62 % of the aggregative throughput than ETX and EAX, respectively.

  16. A Line Search Multilevel Truncated Newton Algorithm for Computing the Optical Flow

    Directory of Open Access Journals (Sweden)

    Lluís Garrido

    2015-06-01

    Full Text Available We describe the implementation details and give the experimental results of three optimization algorithms for dense optical flow computation. In particular, using a line search strategy, we evaluate the performance of the unilevel truncated Newton method (LSTN, a multiresolution truncated Newton (MR/LSTN and a full multigrid truncated Newton (FMG/LSTN. We use three image sequences and four models of optical flow for performance evaluation. The FMG/LSTN algorithm is shown to lead to better optical flow estimation with less computational work than both the LSTN and MR/LSTN algorithms.

  17. Distributed k-Means Algorithm and Fuzzy c-Means Algorithm for Sensor Networks Based on Multiagent Consensus Theory.

    Science.gov (United States)

    Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing

    2016-03-03

    This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.

  18. A Hybrid Adaptive Routing Algorithm for Event-Driven Wireless Sensor Networks

    Science.gov (United States)

    Figueiredo, Carlos M. S.; Nakamura, Eduardo F.; Loureiro, Antonio A. F.

    2009-01-01

    Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption. PMID:22423207

  19. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework

    Directory of Open Access Journals (Sweden)

    Xiangmin Guan

    2015-01-01

    Full Text Available Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology.

  20. LEARNING ALGORITHM EFFECT ON MULTILAYER FEED FORWARD ARTIFICIAL NEURAL NETWORK PERFORMANCE IN IMAGE CODING

    Directory of Open Access Journals (Sweden)

    OMER MAHMOUD

    2007-08-01

    Full Text Available One of the essential factors that affect the performance of Artificial Neural Networks is the learning algorithm. The performance of Multilayer Feed Forward Artificial Neural Network performance in image compression using different learning algorithms is examined in this paper. Based on Gradient Descent, Conjugate Gradient, Quasi-Newton techniques three different error back propagation algorithms have been developed for use in training two types of neural networks, a single hidden layer network and three hidden layers network. The essence of this study is to investigate the most efficient and effective training methods for use in image compression and its subsequent applications. The obtained results show that the Quasi-Newton based algorithm has better performance as compared to the other two algorithms.

  1. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation.

    Science.gov (United States)

    Du, Tingsong; Hu, Yang; Ke, Xianting

    2015-01-01

    An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.

  2. Betweenness centrality and its applications from modeling traffic flows to network community detection

    Science.gov (United States)

    Ren, Yihui

    As real-world complex networks are heterogeneous structures, not all their components such as nodes, edges and subgraphs carry the same role or importance in the functions performed by the networks: some elements are more critical than others. Understanding the roles of the components of a network is crucial for understanding the behavior of the network as a whole. One the most basic function of networks is transport; transport of vehicles/people, information, materials, forces, etc., and these quantities are transported along edges between source and destination nodes. For this reason, network path-based importance measures, also called centralities, play a crucial role in the understanding of the transport functions of the network and the network's structural and dynamical behavior in general. In this thesis we study the notion of betweenness centrality, which measures the fraction of lowest-cost (or shortest) paths running through a network component, in particular through a node or an edge. High betweenness centrality nodes/edges are those that will be frequently used by the entities transported through the network and thus they play a key role in the overall transport properties of the network. In the first part of the thesis we present a first-principles based method for traffic prediction using a cost-based generalization of the radiation model (emission/absorbtion model) for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. We then focus on studying the extent of changes in traffic flows in the wake of a localized damage or alteration to the

  3. ANFIS Based Time Series Prediction Method of Bank Cash Flow Optimized by Adaptive Population Activity PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2015-06-01

    Full Text Available In order to improve the accuracy and real-time of all kinds of information in the cash business, and solve the problem which accuracy and stability is not high of the data linkage between cash inventory forecasting and cash management information in the commercial bank, a hybrid learning algorithm is proposed based on adaptive population activity particle swarm optimization (APAPSO algorithm combined with the least squares method (LMS to optimize the adaptive network-based fuzzy inference system (ANFIS model parameters. Through the introduction of metric function of population diversity to ensure the diversity of population and adaptive changes in inertia weight and learning factors, the optimization ability of the particle swarm optimization (PSO algorithm is improved, which avoids the premature convergence problem of the PSO algorithm. The simulation comparison experiments are carried out with BP-LMS algorithm and standard PSO-LMS by adopting real commercial banks’ cash flow data to verify the effectiveness of the proposed time series prediction of bank cash flow based on improved PSO-ANFIS optimization method. Simulation results show that the optimization speed is faster and the prediction accuracy is higher.

  4. A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem

    International Nuclear Information System (INIS)

    Yuan, Xiaohui; Wang, Pengtao; Yuan, Yanbin; Huang, Yuehua; Zhang, Xiaopan

    2015-01-01

    Highlights: • Quantum theory is introduced to artificial bee colony algorithm (ABC) to increase population diversity. • A chaotic local search operator is used to enhance local search ability of ABC. • Quantum inspired chaotic ABC method (QCABC) is proposed to solve optimal power flow. • The feasibility and effectiveness of the proposed QCABC is verified by examples. - Abstract: This paper proposes a new artificial bee colony algorithm with quantum theory and the chaotic local search strategy (QCABC), and uses it to solve the optimal power flow (OPF) problem. Under the quantum computing theory, the QCABC algorithm encodes each individual with quantum bits to form a corresponding quantum bit string. By determining each quantum bits value, we can get the value of the individual. After the scout bee stage of the artificial bee colony algorithm, we begin the chaotic local search in the vicinity of the best individual found so far. Finally, the quantum rotation gate is used to process each quantum bit so that all individuals can update toward the direction of the best individual. The QCABC algorithm is carried out to deal with the OPF problem in the IEEE 30-bus and IEEE 118-bus standard test systems. The results of the QCABC algorithm are compared with other algorithms (artificial bee colony algorithm, genetic algorithm, particle swarm optimization algorithm). The comparison shows that the QCABC algorithm can effectively solve the OPF problem and it can get the better optimal results than those of other algorithms

  5. Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network

    Science.gov (United States)

    Xu, Xiao-Feng

    2018-03-01

    Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.

  6. Wavelength converter placement for different RWA algorithms in wavelength-routed all-optical networks

    Science.gov (United States)

    Chu, Xiaowen; Li, Bo; Chlamtac, Imrich

    2002-07-01

    Sparse wavelength conversion and appropriate routing and wavelength assignment (RWA) algorithms are the two key factors in improving the blocking performance in wavelength-routed all-optical networks. It has been shown that the optimal placement of a limited number of wavelength converters in an arbitrary mesh network is an NP complete problem. There have been various heuristic algorithms proposed in the literature, in which most of them assume that a static routing and random wavelength assignment RWA algorithm is employed. However, the existing work shows that fixed-alternate routing and dynamic routing RWA algorithms can achieve much better blocking performance. Our study in this paper further demonstrates that the wavelength converter placement and RWA algorithms are closely related in the sense that a well designed wavelength converter placement mechanism for a particular RWA algorithm might not work well with a different RWA algorithm. Therefore, the wavelength converter placement and the RWA have to be considered jointly. The objective of this paper is to investigate the wavelength converter placement problem under fixed-alternate routing algorithm and least-loaded routing algorithm. Under the fixed-alternate routing algorithm, we propose a heuristic algorithm called Minimum Blocking Probability First (MBPF) algorithm for wavelength converter placement. Under the least-loaded routing algorithm, we propose a heuristic converter placement algorithm called Weighted Maximum Segment Length (WMSL) algorithm. The objective of the converter placement algorithm is to minimize the overall blocking probability. Extensive simulation studies have been carried out over three typical mesh networks, including the 14-node NSFNET, 19-node EON and 38-node CTNET. We observe that the proposed algorithms not only outperform existing wavelength converter placement algorithms by a large margin, but they also can achieve almost the same performance comparing with full wavelength

  7. Energy-efficient algorithm for classification of states of wireless sensor network using machine learning methods

    Science.gov (United States)

    Yuldashev, M. N.; Vlasov, A. I.; Novikov, A. N.

    2018-05-01

    This paper focuses on the development of an energy-efficient algorithm for classification of states of a wireless sensor network using machine learning methods. The proposed algorithm reduces energy consumption by: 1) elimination of monitoring of parameters that do not affect the state of the sensor network, 2) reduction of communication sessions over the network (the data are transmitted only if their values can affect the state of the sensor network). The studies of the proposed algorithm have shown that at classification accuracy close to 100%, the number of communication sessions can be reduced by 80%.

  8. Flow distributions and spatial correlations in human brain capillary networks

    Science.gov (United States)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  9. An improved algorithm for finding all minimal paths in a network

    International Nuclear Information System (INIS)

    Bai, Guanghan; Tian, Zhigang; Zuo, Ming J.

    2016-01-01

    Minimal paths (MPs) play an important role in network reliability evaluation. In this paper, we report an efficient recursive algorithm for finding all MPs in two-terminal networks, which consist of a source node and a sink node. A linked path structure indexed by nodes is introduced, which accepts both directed and undirected form of networks. The distance between each node and the sink node is defined, and a simple recursive algorithm is presented for labeling the distance for each node. Based on the distance between each node and the sink node, additional conditions for backtracking are incorporated to reduce the number of search branches. With the newly introduced linked node structure, the distances between each node and the sink node, and the additional backtracking conditions, an improved backtracking algorithm for searching for all MPs is developed. In addition, the proposed algorithm can be adapted to search for all minimal paths for each source–sink pair in networks consisting of multiple source nodes and/or multiple sink nodes. Through computational experiments, it is demonstrated that the proposed algorithm is more efficient than existing algorithms when the network size is not too small. The proposed algorithm becomes more advantageous as the size of the network grows. - Highlights: • A linked path structure indexed by nodes is introduced to represent networks. • Additional conditions for backtracking are proposed based on the distance of each node. • An efficient algorithm is developed to find all MPs for two-terminal networks. • The computational efficiency of the algorithm for two-terminal networks is investigated. • The computational efficiency of the algorithm for multi-terminal networks is investigated.

  10. Cilia driven flow networks in the brain

    Science.gov (United States)

    Wang, Yong; Faubel, Regina; Westendorf, Chrsitian; Eichele, Gregor; Bodenschatz, Eberhard

    Neurons exchange soluble substances via the cerebrospinal fluid (CSF) that fills the ventricular system. The walls of the ventricular cavities are covered with motile cilia that constantly beat and thereby induce a directional flow. We recently discovered that cilia in the third ventricle generate a complex flow pattern leading to partitioning of the ventricular volume and site-directed transport paths along the walls. Transient and daily recurrent alterations in the cilia beating direction lead to changes in the flow pattern. This has consequences for delivery of CSF components along the near wall flow. The contribution of this cilia-induced flow to overall CSF flow remains to be investigated. The state-of-art lattice Boltzmann method is adapted for studying the CFS flow. The 3D geometry of the third ventricle at high resolution was reconstructed. Simulation of CSF flow without cilia in this geometry confirmed that the previous idea about unidirectional flow does not explain how different components of CSF can be delivered to their various target sites. We study the contribution of the cilia-induced flow pattern to overall CSF flow and identify target areas for site-specific delivery of CSF-constituents with respect to the temporal changes.

  11. Efficient Online Learning Algorithms Based on LSTM Neural Networks.

    Science.gov (United States)

    Ergen, Tolga; Kozat, Suleyman Serdar

    2017-09-13

    We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.

  12. A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks

    Science.gov (United States)

    Li, Yuhong

    2018-01-01

    In this paper, we propose a novel algorithm—parallel adaptive quantum genetic algorithm—which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes. PMID:29554140

  13. Matching algorithm of missile tail flame based on back-propagation neural network

    Science.gov (United States)

    Huang, Da; Huang, Shucai; Tang, Yidong; Zhao, Wei; Cao, Wenhuan

    2018-02-01

    This work presents a spectral matching algorithm of missile plume detection that based on neural network. The radiation value of the characteristic spectrum of the missile tail flame is taken as the input of the network. The network's structure including the number of nodes and layers is determined according to the number of characteristic spectral bands and missile types. We can get the network weight matrixes and threshold vectors through training the network using training samples, and we can determine the performance of the network through testing the network using the test samples. A small amount of data cause the network has the advantages of simple structure and practicality. Network structure composed of weight matrix and threshold vector can complete task of spectrum matching without large database support. Network can achieve real-time requirements with a small quantity of data. Experiment results show that the algorithm has the ability to match the precise spectrum and strong robustness.

  14. Exploiting the Vulnerability of Flow Table Overflow in Software-Defined Network: Attack Model, Evaluation, and Defense

    Directory of Open Access Journals (Sweden)

    Yadong Zhou

    2018-01-01

    Full Text Available As the most competitive solution for next-generation network, SDN and its dominant implementation OpenFlow are attracting more and more interests. But besides convenience and flexibility, SDN/OpenFlow also introduces new kinds of limitations and security issues. Of these limitations, the most obvious and maybe the most neglected one is the flow table capacity of SDN/OpenFlow switches. In this paper, we proposed a novel inference attack targeting at SDN/OpenFlow network, which is motivated by the limited flow table capacities of SDN/OpenFlow switches and the following measurable network performance decrease resulting from frequent interactions between data and control plane when the flow table is full. To the best of our knowledge, this is the first proposed inference attack model of this kind for SDN/OpenFlow. We implemented an inference attack framework according to our model and examined its efficiency and accuracy. The evaluation results demonstrate that our framework can infer the network parameters (flow table capacity and usage with an accuracy of 80% or higher. We also proposed two possible defense strategies for the discovered vulnerability, including routing aggregation algorithm and multilevel flow table architecture. These findings give us a deeper understanding of SDN/OpenFlow limitations and serve as guidelines to future improvements of SDN/OpenFlow.

  15. Computer network prepared to handle massive data flow

    CERN Multimedia

    2006-01-01

    "Massive quantities of data will soon begin flowing from the largest scientific instrument ever built into an internationl network of computer centers, including one operated jointly by the University of Chicago and Indiana University." (2 pages)

  16. Intelligent Network Flow Optimization (INFLO) prototype acceptance test summary.

    Science.gov (United States)

    2015-05-01

    This report summarizes the results of System Acceptance Testing for the implementation of the Intelligent Network : Flow Optimization (INFLO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected : Vehicle Program. ...

  17. Validating User Flows to Protect Software Defined Network Environments

    Directory of Open Access Journals (Sweden)

    Ihsan H. Abdulqadder

    2018-01-01

    Full Text Available Software Defined Network is a promising network paradigm which has led to several security threats in SDN applications that involve user flows, switches, and controllers in the network. Threats as spoofing, tampering, information disclosure, Denial of Service, flow table overloading, and so on have been addressed by many researchers. In this paper, we present novel SDN design to solve three security threats: flow table overloading is solved by constructing a star topology-based architecture, unsupervised hashing method mitigates link spoofing attack, and fuzzy classifier combined with L1-ELM running on a neural network for isolating anomaly packets from normal packets. For effective flow migration Discrete-Time Finite-State Markov Chain model is applied. Extensive simulations using OMNeT++ demonstrate the performance of our proposed approach, which is better at preserving holding time than are other state-of-the-art works from the literature.

  18. On Event Detection and Localization in Acyclic Flow Networks

    KAUST Repository

    Suresh, Mahima Agumbe; Stoleru, Radu; Zechman, Emily M.; Shihada, Basem

    2013-01-01

    Acyclic flow networks, present in many infrastructures of national importance (e.g., oil and gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against

  19. A Location-Aware Vertical Handoff Algorithm for Hybrid Networks

    KAUST Repository

    Mehbodniya, Abolfazl; Aissa, Sonia; Chitizadeh, Jalil

    2010-01-01

    . Horizontal handoff, or generally speaking handoff, is a process which maintains a mobile user's active connection as it moves within a wireless network, whereas vertical handoff (VHO) refers to handover between different types of networks or different network

  20. Analysis and Enhancements of Leader Elections algorithms in Mobile Ad Hoc Networks

    OpenAIRE

    Shayeji, Mohammad H. Al; Al-Azmi, AbdulRahman R.; Al-Azmi, AbdulAziz R.; Samrajesh, M. D.

    2012-01-01

    Mobile Ad Hoc networks (MANET), distinct from traditional distributed systems, are dynamic and self-organizing networks. MANET requires a leader to coordinate and organize tasks. The challenge is to have the right election algorithm that chooses the right leader based on various factors in MANET. In this paper, we analyze four leader election algorithms used in mobile Ad Hoc Networks. Factors considered in our analysis are time complexity, message complexity, assumptions considered, fault tol...

  1. Near-Optimal Resource Allocation in Cooperative Cellular Networks Using Genetic Algorithms

    OpenAIRE

    Luo, Zihan; Armour, Simon; McGeehan, Joe

    2015-01-01

    This paper shows how a genetic algorithm can be used as a method of obtaining the near-optimal solution of the resource block scheduling problem in a cooperative cellular network. An exhaustive search is initially implementedto guarantee that the optimal result, in terms of maximizing the bandwidth efficiency of the overall network, is found, and then the genetic algorithm with the properly selected termination conditions is used in the same network. The simulation results show that the genet...

  2. Parameterized Algorithms for Survivable Network Design with Uniform Demands

    DEFF Research Database (Denmark)

    Bang-Jensen, Jørgen; Klinkby Knudsen, Kristine Vitting; Saurabh, Saket

    2018-01-01

    problem in combinatorial optimization that captures numerous well-studied problems in graph theory and graph algorithms. Consequently, there is a long line of research into exact-polynomial time algorithms as well as approximation algorithms for various restrictions of this problem. An important...... that SNDP is W[1]-hard for both arc and vertex connectivity versions on digraphs. The core of our algorithms is composed of new combinatorial results on connectivity in digraphs and undirected graphs....

  3. Nested sampling algorithm for subsurface flow model selection, uncertainty quantification, and nonlinear calibration

    KAUST Repository

    Elsheikh, A. H.; Wheeler, M. F.; Hoteit, Ibrahim

    2013-01-01

    Calibration of subsurface flow models is an essential step for managing ground water aquifers, designing of contaminant remediation plans, and maximizing recovery from hydrocarbon reservoirs. We investigate an efficient sampling algorithm known

  4. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    Science.gov (United States)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  5. Detection of the dominant direction of information flow and feedback links in densely interconnected regulatory networks

    Directory of Open Access Journals (Sweden)

    Ispolatov Iaroslav

    2008-10-01

    Full Text Available Abstract Background Finding the dominant direction of flow of information in densely interconnected regulatory or signaling networks is required in many applications in computational biology and neuroscience. This is achieved by first identifying and removing links which close up feedback loops in the original network and hierarchically arranging nodes in the remaining network. In mathematical language this corresponds to a problem of making a graph acyclic by removing as few links as possible and thus altering the original graph in the least possible way. The exact solution of this problem requires enumeration of all cycles and combinations of removed links, which, as an NP-hard problem, is computationally prohibitive even for modest-size networks. Results We introduce and compare two approximate numerical algorithms for solving this problem: the probabilistic one based on a simulated annealing of the hierarchical layout of the network which minimizes the number of "backward" links going from lower to higher hierarchical levels, and the deterministic, "greedy" algorithm that sequentially cuts the links that participate in the largest number of feedback cycles. We find that the annealing algorithm outperforms the deterministic one in terms of speed, memory requirement, and the actual number of removed links. To further improve a visual perception of the layout produced by the annealing algorithm, we perform an additional minimization of the length of hierarchical links while keeping the number of anti-hierarchical links at their minimum. The annealing algorithm is then tested on several examples of regulatory and signaling networks/pathways operating in human cells. Conclusion The proposed annealing algorithm is powerful enough to performs often optimal layouts of protein networks in whole organisms, consisting of around ~104 nodes and ~105 links, while the applicability of the greedy algorithm is limited to individual pathways with ~100

  6. Flow Regime Identification of Co-Current Downward Two-Phase Flow With Neural Network Approach

    International Nuclear Information System (INIS)

    Hiroshi Goda; Seungjin Kim; Ye Mi; Finch, Joshua P.; Mamoru Ishii; Jennifer Uhle

    2002-01-01

    Flow regime identification for an adiabatic vertical co-current downward air-water two-phase flow in the 25.4 mm ID and the 50.8 mm ID round tubes was performed by employing an impedance void meter coupled with the neural network classification approach. This approach minimizes the subjective judgment in determining the flow regimes. The signals obtained by an impedance void meter were applied to train the self-organizing neural network to categorize these impedance signals into a certain number of groups. The characteristic parameters set into the neural network classification included the mean, standard deviation and skewness of impedance signals in the present experiment. The classification categories adopted in the present investigation were four widely accepted flow regimes, viz. bubbly, slug, churn-turbulent, and annular flows. These four flow regimes were recognized based upon the conventional flow visualization approach by a high-speed motion analyzer. The resulting flow regime maps classified by the neural network were compared with the results obtained through the flow visualization method, and consequently the efficiency of the neural network classification for flow regime identification was demonstrated. (authors)

  7. The application of a 3D-PTV algorithm to a mixed convection flow

    NARCIS (Netherlands)

    Kieft, R.N.; Schreel, K.R.A.M.; Plas, van der G.A.J.; Rindt, C.C.M.

    2002-01-01

    A 3D particle-tracking velocimetry (PTV) algorithm is applied to the wake flow behind a heated cylinder. The method is tested in advance with respect to its accuracy and performance. In the accuracy tests, its capability to locate particles in 3D space is tested. It appears that the algorithm can

  8. DISTRIBUTION NETWORK RECONFIGURATION FOR POWER LOSS MINIMIZATION AND VOLTAGE PROFILE ENHANCEMENT USING ANT LION ALGORITHM

    Directory of Open Access Journals (Sweden)

    Maryam Shokouhi

    2017-06-01

    Full Text Available Distribution networks are designed as a ring and operated as a radial form. Therefore, the reconfiguration is a simple and cost-effective way to use existing facilities without the need for any new equipment in distribution networks to achieve various objectives such as: power loss reduction, feeder overload reduction, load balancing, voltage profile improvement, reducing the number of switching considering constraints that ultimately result in the power loss reduction. In this paper, a new method based on the Ant Lion algorithm (a modern meta-heuristic algorithm is provided for the reconfiguration of distribution networks. Considering the extension of the distribution networks and complexity of their communications networks, and the various parameters, using smart techniques is inevitable. The proposed approach is tested on the IEEE 33 & 69-bus radial standard distribution networks. The Evaluation of results in MATLAB software shows the effectiveness of the Ant Lion algorithm in the distribution network reconfiguration.

  9. Reliable Ant Colony Routing Algorithm for Dual-Channel Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    YongQiang Li

    2018-01-01

    Full Text Available For the problem of poor link reliability caused by high-speed dynamic changes and congestion owing to low network bandwidth in ad hoc networks, an ant colony routing algorithm, based on reliable path under dual-channel condition (DSAR, is proposed. First, dual-channel communication mode is used to improve network bandwidth, and a hierarchical network model is proposed to optimize the dual-layer network. Thus, we reduce network congestion and communication delay. Second, a comprehensive reliable path selection strategy is designed, and the reliable path is selected ahead of time to reduce the probability of routing restart. Finally, the ant colony algorithm is used to improve the adaptability of the routing algorithm to changes of network topology. Simulation results show that DSAR improves the reliability of routing, packet delivery, and throughput.

  10. Development and evaluation of a micro-macro algorithm for the simulation of polymer flow

    International Nuclear Information System (INIS)

    Feigl, Kathleen; Tanner, Franz X.

    2006-01-01

    A micro-macro algorithm for the calculation of polymer flow is developed and numerically evaluated. The system being solved consists of the momentum and mass conservation equations from continuum mechanics coupled with a microscopic-based rheological model for polymer stress. Standard finite element techniques are used to solve the conservation equations for velocity and pressure, while stochastic simulation techniques are used to compute polymer stress from the simulated polymer dynamics in the rheological model. The rheological model considered combines aspects of reptation, network and continuum models. Two types of spatial approximation are considered for the configuration fields defining the dynamics in the model: piecewise constant and piecewise linear. The micro-macro algorithm is evaluated by simulating the abrupt planar die entry flow of a polyisobutylene solution described in the literature. The computed velocity and stress fields are found to be essentially independent of mesh size and ensemble size, while there is some dependence of the results on the order of spatial approximation to the configuration fields close to the die entry. Comparison with experimental data shows that the piecewise linear approximation leads to better predictions of the centerline first normal stress difference. Finally, the computational time associated with the piecewise constant spatial approximation is found to be about 2.5 times lower than that associated with the piecewise linear approximation. This is the result of the more efficient time integration scheme that is possible with the former type of approximation due to the pointwise incompressibility guaranteed by the choice of velocity-pressure finite element

  11. Performance of Flow-Aware Networking in LTE backbone

    DEFF Research Database (Denmark)

    Sniady, Aleksander; Soler, José

    2012-01-01

    technologies, such as Long Term Evolution (LTE). This paper proposes usage of a modified Flow Aware Networking (FAN) technique for enhancing Quality of Service (QoS) in the all-IP transport networks underlying LTE backbone. The results obtained with OPNET Modeler show that FAN, in spite of being relatively...

  12. Transitions from Trees to Cycles in Adaptive Flow Networks

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Klemm, Konstantin

    2017-01-01

    . The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two......Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real......-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization...

  13. Solution of optimal power flow using evolutionary-based algorithms

    African Journals Online (AJOL)

    It aims to estimate the optimal settings of real generator output power, bus voltage, ...... Lansey, K. E., 2003, Optimization of water distribution network design using ... Pandit, M., 2016, Economic load dispatch of wind-solar-thermal system using ...

  14. Color Image Encryption Algorithm Based on TD-ERCS System and Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2015-01-01

    Full Text Available In order to solve the security problem of transmission image across public networks, a new image encryption algorithm based on TD-ERCS system and wavelet neural network is proposed in this paper. According to the permutation process and the binary XOR operation from the chaotic series by producing TD-ERCS system and wavelet neural network, it can achieve image encryption. This encryption algorithm is a reversible algorithm, and it can achieve original image in the rule inverse process of encryption algorithm. Finally, through computer simulation, the experiment results show that the new chaotic encryption algorithm based on TD-ERCS system and wavelet neural network is valid and has higher security.

  15. A Scheduling Algorithm for Minimizing the Packet Error Probability in Clusterized TDMA Networks

    Directory of Open Access Journals (Sweden)

    Arash T. Toyserkani

    2009-01-01

    Full Text Available We consider clustered wireless networks, where transceivers in a cluster use a time-slotted mechanism (TDMA to access a wireless channel that is shared among several clusters. An approximate expression for the packet-loss probability is derived for networks with one or more mutually interfering clusters in Rayleigh fading environments, and the approximation is shown to be good for relevant scenarios. We then present a scheduling algorithm, based on Lagrangian duality, that exploits the derived packet-loss model in an attempt to minimize the average packet-loss probability in the network. Computer simulations of the proposed scheduling algorithm show that a significant increase in network throughput can be achieved compared to uncoordinated scheduling. Empirical trials also indicate that the proposed optimization algorithm almost always converges to an optimal schedule with a reasonable number of iterations. Thus, the proposed algorithm can also be used for bench-marking suboptimal scheduling algorithms.

  16. The Dynamic Enterprise Network Composition Algorithm for Efficient Operation in Cloud Manufacturing

    Directory of Open Access Journals (Sweden)

    Gilseung Ahn

    2016-11-01

    Full Text Available As a service oriented and networked model, cloud manufacturing (CM has been proposed recently for solving a variety of manufacturing problems, including diverse requirements from customers. In CM, on-demand manufacturing services are provided by a temporary production network composed of several enterprises participating within an enterprise network. In other words, the production network is the main agent of production and a subset of an enterprise network. Therefore, it is essential to compose the enterprise network in a way that can respond to demands properly. A properly-composed enterprise network means the network can handle demands that arrive at the CM, with minimal costs, such as network composition and operation costs, such as participation contract costs, system maintenance costs, and so forth. Due to trade-offs among costs (e.g., contract cost and opportunity cost of production, it is a non-trivial problem to find the optimal network enterprise composition. In addition, this includes probabilistic constraints, such as forecasted demand. In this paper, we propose an algorithm, named the dynamic enterprise network composition algorithm (DENCA, based on a genetic algorithm to solve the enterprise network composition problem. A numerical simulation result is provided to demonstrate the performance of the proposed algorithm.

  17. Design of Supply Chain Networks with Supply Disruptions using Genetic Algorithm

    OpenAIRE

    Taha, Raghda; Abdallah, Khaled; Sadek, Yomma; El-Kharbotly, Amin; Afia, Nahid

    2014-01-01

    The design of supply chain networks subject to disruptions is tackled. A genetic algorithm with the objective of minimizing the design cost and regret cost is developed to achieve a reliable supply chain network. The improvement of supply chain network reliability is measured against the supply chain cost.

  18. Leakage detection and estimation algorithm for loss reduction in water piping networks

    CSIR Research Space (South Africa)

    Adedeji, KB

    2017-10-01

    Full Text Available the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs) are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s) of the network and the exact...

  19. Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network.

    Science.gov (United States)

    Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun

    2017-03-08

    Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links.

  20. Interior point algorithm-based power flow optimisation of a combined AC and DC multi-terminal grid

    Directory of Open Access Journals (Sweden)

    Farhan Beg

    2015-01-01

    Full Text Available The high cost of power electronic equipment, lower reliability and poor power handling capacity of the semiconductor devices had stalled the deployment of systems based on DC (multi-terminal direct current system (MTDC networks. The introduction of voltage source converters (VSCs for transmission has renewed the interest in the development of large interconnected grids based on both alternate current (AC and DC transmission networks. Such a grid platform also realises the added advantage of integrating the renewable energy sources into the grid. Thus a grid based on DC MTDC network is a possible solution to improve energy security and check the increasing supply demand gap. An optimal power solution for combined AC and DC grids obtained by the solution of the interior point algorithm is proposed in this study. Multi-terminal HVDC grids lie at the heart of various suggested transmission capacity increases. A significant difference is observed when MTDC grids are solved for power flows in place of conventional AC grids. This study deals with the power flow problem of a combined MTDC and an AC grid. The AC side is modelled with the full power flow equations and the VSCs are modelled using a connecting line, two generators and an AC node. The VSC and the DC losses are also considered. The optimisation focuses on several different goals. Three different scenarios are presented in an arbitrary grid network with ten AC nodes and five converter stations.

  1. Flow-Based Network Analysis of the Caenorhabditis elegans Connectome.

    Science.gov (United States)

    Bacik, Karol A; Schaub, Michael T; Beguerisse-Díaz, Mariano; Billeh, Yazan N; Barahona, Mauricio

    2016-08-01

    We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios.

  2. Transitions from Trees to Cycles in Adaptive Flow Networks

    Directory of Open Access Journals (Sweden)

    Erik A. Martens

    2017-11-01

    Full Text Available Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances. We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two distinct regions with cyclic and tree-like structures. The location of the boundary between these two regions is determined by the amplitude of the fluctuations. These findings may explain why natural transport networks display cyclic structures in the micro-vascular regions near terminal nodes, but tree-like features in the regions with larger veins.

  3. Upper-Lower Bounds Candidate Sets Searching Algorithm for Bayesian Network Structure Learning

    Directory of Open Access Journals (Sweden)

    Guangyi Liu

    2014-01-01

    Full Text Available Bayesian network is an important theoretical model in artificial intelligence field and also a powerful tool for processing uncertainty issues. Considering the slow convergence speed of current Bayesian network structure learning algorithms, a fast hybrid learning method is proposed in this paper. We start with further analysis of information provided by low-order conditional independence testing, and then two methods are given for constructing graph model of network, which is theoretically proved to be upper and lower bounds of the structure space of target network, so that candidate sets are given as a result; after that a search and scoring algorithm is operated based on the candidate sets to find the final structure of the network. Simulation results show that the algorithm proposed in this paper is more efficient than similar algorithms with the same learning precision.

  4. The spectral positioning algorithm of new spectrum vehicle based on convex programming in wireless sensor network

    Science.gov (United States)

    Zhang, Yongjun; Lu, Zhixin

    2017-10-01

    Spectrum resources are very precious, so it is increasingly important to locate interference signals rapidly. Convex programming algorithms in wireless sensor networks are often used as localization algorithms. But in view of the traditional convex programming algorithm is too much overlap of wireless sensor nodes that bring low positioning accuracy, the paper proposed a new algorithm. Which is mainly based on the traditional convex programming algorithm, the spectrum car sends unmanned aerial vehicles (uses) that can be used to record data periodically along different trajectories. According to the probability density distribution, the positioning area is segmented to further reduce the location area. Because the algorithm only increases the communication process of the power value of the unknown node and the sensor node, the advantages of the convex programming algorithm are basically preserved to realize the simple and real-time performance. The experimental results show that the improved algorithm has a better positioning accuracy than the original convex programming algorithm.

  5. FLOW-BASED NETWORK MEASURES OF BRAIN CONNECTIVITY IN ALZHEIMER'S DISEASE.

    Science.gov (United States)

    Prasad, Gautam; Joshi, Shantanu H; Nir, Talia M; Toga, Arthur W; Thompson, Paul M

    2013-01-01

    We present a new flow-based method for modeling brain structural connectivity. The method uses a modified maximum-flow algorithm that is robust to noise in the diffusion data and guided by biologically viable pathways and structure of the brain. A flow network is first created using a lattice graph by connecting all lattice points (voxel centers) to all their neighbors by edges. Edge weights are based on the orientation distribution function (ODF) value in the direction of the edge. The maximum-flow is computed based on this flow graph using the flow or the capacity between each region of interest (ROI) pair by following the connected tractography fibers projected onto the flow graph edges. Network measures such as global efficiency, transitivity, path length, mean degree, density, modularity, small world, and assortativity are computed from the flow connectivity matrix. We applied our method to diffusion-weighted images (DWIs) from 110 subjects (28 normal elderly, 56 with early and 11 with late mild cognitive impairment, and 15 with AD) and segmented co-registered anatomical MRIs into cortical regions. Experimental results showed better performance compared to the standard fiber-counting methods when distinguishing Alzheimer's disease from normal aging.

  6. Hybrid fuzzy charged system search algorithm based state estimation in distribution networks

    Directory of Open Access Journals (Sweden)

    Sachidananda Prasad

    2017-06-01

    Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.

  7. Fault Tolerant Mechanism for Multimedia Flows in Wireless Ad Hoc Networks Based on Fast Switching Paths

    Directory of Open Access Journals (Sweden)

    Juan R. Diaz

    2014-01-01

    Full Text Available Multimedia traffic can be forwarded through a wireless ad hoc network using the available resources of the nodes. Several models and protocols have been designed in order to organize and arrange the nodes to improve transmissions along the network. We use a cluster-based framework, called MWAHCA architecture, which optimizes multimedia transmissions over a wireless ad hoc network. It was proposed by us in a previous research work. This architecture is focused on decreasing quality of service (QoS parameters like latency, jitter, and packet loss, but other network features were not developed, like load balance or fault tolerance. In this paper, we propose a new fault tolerance mechanism, using as a base the MWAHCA architecture, in order to recover any multimedia flow crossing the wireless ad hoc network when there is a node failure. The algorithm can run independently for each multimedia flow. The main objective is to keep the QoS parameters as low as possible. To achieve this goal, the convergence time must be controlled and reduced. This paper provides the designed protocol, the analytical model of the algorithm, and a software application developed to test its performance in a real laboratory.

  8. A Multicast Sparse-Grooming Algorithm Based on Network Coding in WDM Networks

    Science.gov (United States)

    Zhang, Shengfeng; Peng, Han; Sui, Meng; Liu, Huanlin

    2015-03-01

    To improve the limited number of wavelength utilization and decrease the traffic blocking probability in sparse-grooming wavelength-division multiplexing (WDM) networks, a multicast sparse-grooming algorithm based on network coding (MCSA-NC) is put forward to solve the routing problem for dynamic multicast requests in this paper. In the proposed algorithm, a traffic partition strategy, that the coarse-granularity multicast request with grooming capability on the source node is split into several fine-granularity multicast requests, is designed so as to increase the probability for traffic grooming successfully in MCSA-NC. Besides considering that multiple destinations should receive the data from source of the multicast request at the same time, the traditional transmission mechanism is improved by constructing edge-disjoint paths for each split multicast request. Moreover, in order to reduce the number of wavelengths required and further decrease the traffic blocking probability, a light-tree reconfiguration mechanism is presented in the MCSA-NC, which can select a minimal cost light tree from the established edge-disjoint paths for a new multicast request.

  9. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.

    Science.gov (United States)

    Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che

    2014-01-16

    To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high

  10. New approach for simulating groundwater flow in discrete fracture network

    Science.gov (United States)

    Fang, H.; Zhu, J.

    2017-12-01

    In this study, we develop a new approach to calculate groundwater flowrate and hydraulic head distribution in two-dimensional discrete fracture network (DFN) where both laminar and turbulent flows co-exist in individual fractures. The cubic law is used to calculate hydraulic head distribution and flow behaviors in fractures where flow is laminar, while the Forchheimer's law is used to quantify turbulent flow behaviors. Reynolds number is used to distinguish flow characteristics in individual fractures. The combination of linear and non-linear equations is solved iteratively to determine flowrates in all fractures and hydraulic heads at all intersections. We examine potential errors in both flowrate and hydraulic head from the approach of uniform flow assumption. Applying the cubic law in all fractures regardless of actual flow conditions overestimates the flowrate when turbulent flow may exist while applying the Forchheimer's law indiscriminately underestimate the flowrate when laminar flows exist in the network. The contrast of apertures of large and small fractures in the DFN has significant impact on the potential errors of using only the cubic law or the Forchheimer's law. Both the cubic law and Forchheimer's law simulate similar hydraulic head distributions as the main difference between these two approaches lies in predicting different flowrates. Fracture irregularity does not significantly affect the potential errors from using only the cubic law or the Forchheimer's law if network configuration remains similar. Relative density of fractures does not significantly affect the relative performance of the cubic law and Forchheimer's law.

  11. CIME course on Modelling and Optimisation of Flows on Networks

    CERN Document Server

    Ambrosio, Luigi; Helbing, Dirk; Klar, Axel; Zuazua, Enrique

    2013-01-01

    In recent years flows in networks have attracted the interest of many researchers from different areas, e.g. applied mathematicians, engineers, physicists, economists. The main reason for this ubiquity is the wide and diverse range of applications, such as vehicular traffic, supply chains, blood flow, irrigation channels, data networks and others. This book presents an extensive set of notes by world leaders on the main mathematical techniques used to address such problems, together with investigations into specific applications. The main focus is on partial differential equations in networks, but ordinary differential equations and optimal transport are also included. Moreover, the modeling is completed by analysis, numerics, control and optimization of flows in networks. The book will be a valuable resource for every researcher or student interested in the subject.

  12. Bridging Minds: A Mixed Methodology to Assess Networked Flow.

    Science.gov (United States)

    Galimberti, Carlo; Chirico, Alice; Brivio, Eleonora; Mazzoni, Elvis; Riva, Giuseppe; Milani, Luca; Gaggioli, Andrea

    2015-01-01

    The main goal of this contribution is to present a methodological framework to study Networked Flow, a bio-psycho-social theory of collective creativity applying it on creative processes occurring via a computer network. First, we draw on the definition of Networked Flow to identify the key methodological requirements of this model. Next, we present the rationale of a mixed methodology, which aims at combining qualitative, quantitative and structural analysis of group dynamics to obtain a rich longitudinal dataset. We argue that this integrated strategy holds potential for describing the complex dynamics of creative collaboration, by linking the experiential features of collaborative experience (flow, social presence), with the structural features of collaboration dynamics (network indexes) and the collaboration outcome (the creative product). Finally, we report on our experience with using this methodology in blended collaboration settings (including both face-to-face and virtual meetings), to identify open issues and provide future research directions.

  13. Handoff Triggering and Network Selection Algorithms for Load-Balancing Handoff in CDMA-WLAN Integrated Networks

    Directory of Open Access Journals (Sweden)

    Khalid Qaraqe

    2008-10-01

    Full Text Available This paper proposes a novel vertical handoff algorithm between WLAN and CDMA networks to enable the integration of these networks. The proposed vertical handoff algorithm assumes a handoff decision process (handoff triggering and network selection. The handoff trigger is decided based on the received signal strength (RSS. To reduce the likelihood of unnecessary false handoffs, the distance criterion is also considered. As a network selection mechanism, based on the wireless channel assignment algorithm, this paper proposes a context-based network selection algorithm and the corresponding communication algorithms between WLAN and CDMA networks. This paper focuses on a handoff triggering criterion which uses both the RSS and distance information, and a network selection method which uses context information such as the dropping probability, blocking probability, GoS (grade of service, and number of handoff attempts. As a decision making criterion, the velocity threshold is determined to optimize the system performance. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations using four handoff strategies. The four handoff strategies are evaluated and compared with each other in terms of GOS. Finally, the proposed scheme is validated by computer simulations.

  14. Handoff Triggering and Network Selection Algorithms for Load-Balancing Handoff in CDMA-WLAN Integrated Networks

    Directory of Open Access Journals (Sweden)

    Kim Jang-Sub

    2008-01-01

    Full Text Available This paper proposes a novel vertical handoff algorithm between WLAN and CDMA networks to enable the integration of these networks. The proposed vertical handoff algorithm assumes a handoff decision process (handoff triggering and network selection. The handoff trigger is decided based on the received signal strength (RSS. To reduce the likelihood of unnecessary false handoffs, the distance criterion is also considered. As a network selection mechanism, based on the wireless channel assignment algorithm, this paper proposes a context-based network selection algorithm and the corresponding communication algorithms between WLAN and CDMA networks. This paper focuses on a handoff triggering criterion which uses both the RSS and distance information, and a network selection method which uses context information such as the dropping probability, blocking probability, GoS (grade of service, and number of handoff attempts. As a decision making criterion, the velocity threshold is determined to optimize the system performance. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations using four handoff strategies. The four handoff strategies are evaluated and compared with each other in terms of GOS. Finally, the proposed scheme is validated by computer simulations.

  15. A Topology Visualization Early Warning Distribution Algorithm for Large-Scale Network Security Incidents

    Directory of Open Access Journals (Sweden)

    Hui He

    2013-01-01

    Full Text Available It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system’s emergency response capabilities, alleviate the cyber attacks’ damage, and strengthen the system’s counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system’s plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks’ topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  16. Hydraulic tomography of discrete networks of conduits and fractures in a karstic aquifer by using a deterministic inversion algorithm

    Science.gov (United States)

    Fischer, P.; Jardani, A.; Lecoq, N.

    2018-02-01

    In this paper, we present a novel inverse modeling method called Discrete Network Deterministic Inversion (DNDI) for mapping the geometry and property of the discrete network of conduits and fractures in the karstified aquifers. The DNDI algorithm is based on a coupled discrete-continuum concept to simulate numerically water flows in a model and a deterministic optimization algorithm to invert a set of observed piezometric data recorded during multiple pumping tests. In this method, the model is partioned in subspaces piloted by a set of parameters (matrix transmissivity, and geometry and equivalent transmissivity of the conduits) that are considered as unknown. In this way, the deterministic optimization process can iteratively correct the geometry of the network and the values of the properties, until it converges to a global network geometry in a solution model able to reproduce the set of data. An uncertainty analysis of this result can be performed from the maps of posterior uncertainties on the network geometry or on the property values. This method has been successfully tested for three different theoretical and simplified study cases with hydraulic responses data generated from hypothetical karstic models with an increasing complexity of the network geometry, and of the matrix heterogeneity.

  17. Construction and analysis of compressible flow calculation algorithms

    International Nuclear Information System (INIS)

    Desideri, Jean-Antoine

    1993-01-01

    The aim of this study is to give a theoretical rationale of a 'paradox' related to the behavior at the stagnation point of some numerical solutions obtained by conventional methods for Eulerian non-equilibrium flows. This 'paradox' concerns the relationship between the solutions given by equilibrium and non-equilibrium models and was raised by several experts during the 'Workshop on Hypersonic Flows for Reentry Problems, Part 1. Antibes 1990'. In the first part, we show that equilibrium conditions are reached at the stagnation point and we analyse the sensitivity of these equilibrium conditions to the flow variables. In the second part, we develop an analysis of the behavior of the mathematical solution to an Eulerian non-equilibrium flow in the vicinity of the stagnation point, which gives an explanation to the described 'paradox'. Then, a numerical procedure, integrating the species convection equations projected on the stagnation point streamline in a Lagrangian time approach, gives a numerical support to the theoretical predictions. We also propose two numerical integration procedures, that allow us to recompute, starting from the equilibrium conditions at the stagnation point, the flow characteristics at the body. The validity limits of these procedures are discussed and the results obtained for a Workshop test-case are compared with the results given by several contributors. Finally, we survey briefly the influence of the local behavior of the solution on the coupling technique to a boundary layer calculation. (author) [fr

  18. Neural network modeling for near wall turbulent flow

    International Nuclear Information System (INIS)

    Milano, Michele; Koumoutsakos, Petros

    2002-01-01

    A neural network methodology is developed in order to reconstruct the near wall field in a turbulent flow by exploiting flow fields provided by direct numerical simulations. The results obtained from the neural network methodology are compared with the results obtained from prediction and reconstruction using proper orthogonal decomposition (POD). Using the property that the POD is equivalent to a specific linear neural network, a nonlinear neural network extension is presented. It is shown that for a relatively small additional computational cost nonlinear neural networks provide us with improved reconstruction and prediction capabilities for the near wall velocity fields. Based on these results advantages and drawbacks of both approaches are discussed with an outlook toward the development of near wall models for turbulence modeling and control

  19. Network flow of mobile agents enhances the evolution of cooperation

    Science.gov (United States)

    Ichinose, G.; Satotani, Y.; Nagatani, T.

    2018-01-01

    We study the effect of contingent movement on the persistence of cooperation on complex networks with empty nodes. Each agent plays the Prisoner's Dilemma game with its neighbors and then it either updates the strategy depending on the payoff difference with neighbors or it moves to another empty node if not satisfied with its own payoff. If no neighboring node is empty, each agent stays at the same site. By extensive evolutionary simulations, we show that the medium density of agents enhances cooperation where the network flow of mobile agents is also medium. Moreover, if the movements of agents are more frequent than the strategy updating, cooperation is further promoted. In scale-free networks, the optimal density for cooperation is lower than other networks because agents get stuck at hubs. Our study suggests that keeping a smooth network flow is significant for the persistence of cooperation in ever-changing societies.

  20. Topology, the Wilson flow and the HMC algorithm

    CERN Document Server

    Luscher, Martin

    2010-01-01

    An old and apparently persistent problem in numerical lattice QCD is that the simulations tend to get trapped in a sector of fixed topological charge when the lattice spacing is taken to zero. The effect sets in very rapidly and may invalidate the simulation results in certain cases. In this talk, the issue is discussed using the Wilson flow as a tool. The flow has a simple scaling behaviour and allows one to understand how exactly the topological sectors emerge in the continuum limit. Further studies however suggest that the observed slowdown of the simulations at small lattice spacings is only partly caused by the emergence of the sectors.

  1. Towards Effective Intra-flow Network Coding in Software Defined Wireless Mesh Networks

    OpenAIRE

    Donghai Zhu; Xinyu Yang Yang; Peng Zhao; Wei Yu

    2016-01-01

    Wireless Mesh Networks (WMNs) have potential to provide convenient broadband wireless Internet access to mobile users.With the support of Software-Defined Networking (SDN) paradigm that separates control plane and data plane, WMNs can be easily deployed and managed. In addition, by exploiting the broadcast nature of the wireless medium and the spatial diversity of multi-hop wireless networks, intra-flow network coding has shown a greater benefit in comparison with traditional routing paradigm...

  2. Optimization of Gas Flow Network using the Traveling Salesman ...

    African Journals Online (AJOL)

    The overall goal of this paper is to develop a general formulation for an optimal infrastructure layout design of gas pipeline distribution networks using algorithm developed from the application of two industrial engineering concepts: the traveling salesman problem (TSP) and the nearest neighbor (NN). The focus is on the ...

  3. Development of automated system based on neural network algorithm for detecting defects on molds installed on casting machines

    Science.gov (United States)

    Bazhin, V. Yu; Danilov, I. V.; Petrov, P. A.

    2018-05-01

    During the casting of light alloys and ligatures based on aluminum and magnesium, problems of the qualitative distribution of the metal and its crystallization in the mold arise. To monitor the defects of molds on the casting conveyor, a camera with a resolution of 780 x 580 pixels and a shooting rate of 75 frames per second was selected. Images of molds from casting machines were used as input data for neural network algorithm. On the preparation of a digital database and its analytical evaluation stage, the architecture of the convolutional neural network was chosen for the algorithm. The information flow from the local controller is transferred to the OPC server and then to the SCADA system of foundry. After the training, accuracy of neural network defect recognition was about 95.1% on a validation split. After the training, weight coefficients of the neural network were used on testing split and algorithm had identical accuracy with validation images. The proposed technical solutions make it possible to increase the efficiency of the automated process control system in the foundry by expanding the digital database.

  4. Phase-synchronisation in continuous flow models of production networks

    Science.gov (United States)

    Scholz-Reiter, Bernd; Tervo, Jan Topi; Freitag, Michael

    2006-04-01

    To improve their position at the market, many companies concentrate on their core competences and hence cooperate with suppliers and distributors. Thus, between many independent companies strong linkages develop and production and logistics networks emerge. These networks are characterised by permanently increasing complexity, and are nowadays forced to adapt to dynamically changing markets. This factor complicates an enterprise-spreading production planning and control enormously. Therefore, a continuous flow model for production networks will be derived regarding these special logistic problems. Furthermore, phase-synchronisation effects will be presented and their dependencies to the set of network parameters will be investigated.

  5. Smooth Information Flow in Temperature Climate Network Reflects Mass Transport

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Jajcay, Nikola; Hartman, David; Paluš, Milan

    2017-01-01

    Roč. 27, č. 3 (2017), č. článku 035811. ISSN 1054-1500 R&D Projects: GA ČR GCP103/11/J068; GA MŠk LH14001 Institutional support: RVO:67985807 Keywords : directed network * causal network * Granger causality * climate network * information flow * temperature network Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.283, year: 2016

  6. Energy efficient topology control algorithm for wireless mesh networks

    CSIR Research Space (South Africa)

    Aron, FO

    2008-08-01

    Full Text Available The control of the topology of a network makes it possible for the network nodes to reduce their power of transmission while ensuring that network connectivity is preserved. This paper explains the need for energy consumption control in Wireless...

  7. Numerical simulation for gas-liquid two-phase flow in pipe networks

    International Nuclear Information System (INIS)

    Li Xiaoyan; Kuang Bo; Zhou Guoliang; Xu Jijun

    1998-01-01

    The complex pipe network characters can not directly presented in single phase flow, gas-liquid two phase flow pressure drop and void rate change model. Apply fluid network theory and computer numerical simulation technology to phase flow pipe networks carried out simulate and compute. Simulate result shows that flow resistance distribution is non-linear in two phase pipe network

  8. Periodic transonic flow simulation using fourier-based algorithm

    International Nuclear Information System (INIS)

    Mohaghegh, Mohammad Reza; Malekjafarian, Majid

    2014-01-01

    The present research simulates time-periodic unsteady transonic flow around pitching airfoils via the solution of unsteady Euler and Navier-Stokes equations, using time spectral method (TSM) and compares it with the traditional methods like BDF and explicit structured adaptive grid method. The TSM uses a Fourier representation in time and hence solves for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). Mathematical tools used here are discrete Fourier transformations. The TSM has been validated with 2D external aerodynamics test cases. These test cases are NACA 64A010 (CT6) and NACA 0012 (CT1 and CT5) pitching airfoils. Because of turbulent nature of flow, Baldwin-Lomax turbulence model has been used in viscous flow analysis with large oscillation amplitude (CT5 type). The results presented by the TSM are compared with experimental data and the two other methods. By enforcing periodicity and using Fourier representation in time that has a spectral accuracy, tremendous reduction of computational cost has been obtained compared to the conventional time-accurate methods. Results verify the small number of time intervals per pitching cycle (just four time intervals) required to capture the flow physics with small oscillation amplitude (CT6) and large oscillation amplitude (CT5) as compared to the other two methods.

  9. Multiobjecitve Sampling Design for Calibration of Water Distribution Network Model Using Genetic Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    Kourosh Behzadian

    2008-03-01

    Full Text Available In this paper, a novel multiobjective optimization model is presented for selecting optimal locations in the water distribution network (WDN with the aim of installing pressure loggers. The pressure data collected at optimal locations will be used later on in the calibration of the proposed WDN model. Objective functions consist of maximization of calibrated model prediction accuracy and minimization of the total cost for sampling design. In order to decrease the model run time, an optimization model has been developed using multiobjective genetic algorithm and adaptive neural network (MOGA-ANN. Neural networks (NNs are initially trained after a number of initial GA generations and periodically retrained and updated after generation of a specified number of full model-analyzed solutions. Trained NNs are replaced with the fitness evaluation of some chromosomes within the GA progress. Using cache prevents objective function evaluation of repetitive chromosomes within GA. Optimal solutions are obtained through pareto-optimal front with respect to the two objective functions. Results show that jointing NNs in MOGA for approximating portions of chromosomes’ fitness in each generation leads to considerable savings in model run time and can be promising for reducing run-time in optimization models with significant computational effort.

  10. PSO-RBF Neural Network PID Control Algorithm of Electric Gas Pressure Regulator

    Directory of Open Access Journals (Sweden)

    Yuanchang Zhong

    2014-01-01

    Full Text Available The current electric gas pressure regulator often adopts the conventional PID control algorithm to take drive control of the core part (micromotor of electric gas pressure regulator. In order to further improve tracking performance and to shorten response time, this paper presents an improved PID intelligent control algorithm which applies to the electric gas pressure regulator. The algorithm uses the improved RBF neural network based on PSO algorithm to make online adjustment on PID parameters. Theoretical analysis and simulation result show that the algorithm shortens the step response time and improves tracking performance.

  11. Modified multiblock partial least squares path modeling algorithm with backpropagation neural networks approach

    Science.gov (United States)

    Yuniarto, Budi; Kurniawan, Robert

    2017-03-01

    PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.

  12. Seamless Vertical Handoff using Invasive Weed Optimization (IWO algorithm for heterogeneous wireless networks

    Directory of Open Access Journals (Sweden)

    T. Velmurugan

    2016-03-01

    Full Text Available Heterogeneous wireless networks are an integration of two different networks. For better performance, connections are to be exchanged among the different networks using seamless Vertical Handoff. The evolutionary algorithm of invasive weed optimization algorithm popularly known as the IWO has been used in this paper, to solve the Vertical Handoff (VHO and Horizontal Handoff (HHO problems. This integer coded algorithm is based on the colonizing behavior of weed plants and has been developed to optimize the system load and reduce the battery power consumption of the Mobile Node (MN. Constraints such as Receiver Signal Strength (RSS, battery lifetime, mobility, load and so on are taken into account. Individual as well as a combination of a number of factors are considered during decision process to make it more effective. This paper brings out the novel method of IWO algorithm for decision making during Vertical Handoff. Therefore the proposed VHO decision making algorithm is compared with the existing SSF and OPTG methods.

  13. An optical flow algorithm based on gradient constancy assumption for PIV image processing

    International Nuclear Information System (INIS)

    Zhong, Qianglong; Yang, Hua; Yin, Zhouping

    2017-01-01

    Particle image velocimetry (PIV) has matured as a flow measurement technique. It enables the description of the instantaneous velocity field of the flow by analyzing the particle motion obtained from digitally recorded images. Correlation based PIV evaluation technique is widely used because of its good accuracy and robustness. Although very successful, correlation PIV technique has some weakness which can be avoided by optical flow based PIV algorithms. At present, most of the optical flow methods applied to PIV are based on brightness constancy assumption. However, some factors of flow imaging technology and the nature property of the fluids make the brightness constancy assumption less appropriate in real PIV cases. In this paper, an implementation of a 2D optical flow algorithm (GCOF) based on gradient constancy assumption is introduced. The proposed GCOF assumes the edges of the illuminated PIV particles are constant during motion. It comprises two terms: a combined local-global gradient data term and a first-order divergence and vorticity smooth term. The approach can provide accurate dense motion fields. The approach are tested on synthetic images and on two experimental flows. The comparison of GCOF with other optical flow algorithms indicates the proposed method is more accurate especially in conditions of illumination variation. The comparison of GCOF with correlation PIV technique shows that the proposed GCOF has advantages on preserving small divergence and vorticity structures of the motion field and getting less outliers. As a consequence, the GCOF acquire a more accurate and better topological description of the turbulent flow. (paper)

  14. A Novel User Classification Method for Femtocell Network by Using Affinity Propagation Algorithm and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Afaz Uddin Ahmed

    2014-01-01

    Full Text Available An artificial neural network (ANN and affinity propagation (AP algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation.

  15. A Novel User Classification Method for Femtocell Network by Using Affinity Propagation Algorithm and Artificial Neural Network

    Science.gov (United States)

    Ahmed, Afaz Uddin; Tariqul Islam, Mohammad; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina

    2014-01-01

    An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation. PMID:25133214

  16. Location-Based Self-Adaptive Routing Algorithm for Wireless Sensor Networks in Home Automation

    Directory of Open Access Journals (Sweden)

    Hong SeungHo

    2011-01-01

    Full Text Available The use of wireless sensor networks in home automation (WSNHA is attractive due to their characteristics of self-organization, high sensing fidelity, low cost, and potential for rapid deployment. Although the AODVjr routing algorithm in IEEE 802.15.4/ZigBee and other routing algorithms have been designed for wireless sensor networks, not all are suitable for WSNHA. In this paper, we propose a location-based self-adaptive routing algorithm for WSNHA called WSNHA-LBAR. It confines route discovery flooding to a cylindrical request zone, which reduces the routing overhead and decreases broadcast storm problems in the MAC layer. It also automatically adjusts the size of the request zone using a self-adaptive algorithm based on Bayes' theorem. This makes WSNHA-LBAR more adaptable to the changes of the network state and easier to implement. Simulation results show improved network reliability as well as reduced routing overhead.

  17. An efficient distributed localisation algorithm for wireless sensor networks: based on smart reference-selection method

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2013-05-01

    Full Text Available Determining the location of nodes is a key part of wireless sensor networks (WSNs). Many WSN applications require knowledge of nodes’ locations to perform their functions successfully. Several localisation algorithms rely on using all or most...

  18. Elements of an algorithm for optimizing a parameter-structural neural network

    Science.gov (United States)

    Mrówczyńska, Maria

    2016-06-01

    The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.

  19. An Efficient Forward-Reverse EM Algorithm for Statistical Inference in Stochastic Reaction Networks

    KAUST Repository

    Bayer, Christian; Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro

    2016-01-01

    In this work [1], we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem

  20. A fast identification algorithm for Box-Cox transformation based radial basis function neural network.

    Science.gov (United States)

    Hong, Xia

    2006-07-01

    In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

  1. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    International Nuclear Information System (INIS)

    Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim

    2014-01-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems

  2. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Elsheikh, Ahmed H., E-mail: aelsheikh@ices.utexas.edu [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wheeler, Mary F. [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Hoteit, Ibrahim [Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)

    2014-02-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems.

  3. Computationally efficient model predictive control algorithms a neural network approach

    CERN Document Server

    Ławryńczuk, Maciej

    2014-01-01

    This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: ·         A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. ·         Implementation details of the MPC algorithms for feedforward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. ·         The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). ·         The MPC algorithms with neural approximation with no on-line linearization. ·         The MPC algorithms with guaranteed stability and robustness. ·         Cooperation between the MPC algorithms and set-point optimization. Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require d...

  4. Modified SIMPLE algorithm for the numerical analysis of incompressible flows with free surface

    International Nuclear Information System (INIS)

    Mok, Jin Ho; Hong, Chun Pyo; Lee, Jin Ho

    2005-01-01

    While the SIMPLE algorithm is most widely used for the simulations of flow phenomena that take place in the industrial equipment or the manufacturing processes, it is less adopted for the simulations of the free surface flow. Though the SIMPLE algorithm is free from the limitation of time step, the free surface behavior imposes the restriction on the time step. As a result, the explicit schemes are faster than the implicit scheme in terms of computation time when the same time step is applied to, since the implicit scheme includes the numerical method to solve the simultaneous equations in its procedure. If the computation time of SIMPLE algorithm can be reduced when it is applied to the unsteady free surface flow problems, the calculation can be carried out in the more stable way and, in the design process, the process variables can be controlled based on the more accurate data base. In this study, a modified SIMPLE algorithm is presented for the free surface flow. The broken water column problem is adopted for the validation of the modified algorithm (MoSIMPLE) and for comparison to the conventional SIMPLE algorithm

  5. Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction

    International Nuclear Information System (INIS)

    Zemouri, Ryad; Racoceanu, Daniel; Zerhouni, Noureddine; Minca, Eugenia; Filip, Florin

    2009-01-01

    In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.

  6. Sequential Uniformly Reweighted Sum-Product Algorithm for Cooperative Localization in Wireless Networks

    OpenAIRE

    Li, Wei; Yang, Zhen; Hu, Haifeng

    2014-01-01

    Graphical models have been widely applied in solving distributed inference problems in wireless networks. In this paper, we formulate the cooperative localization problem in a mobile network as an inference problem on a factor graph. Using a sequential schedule of message updates, a sequential uniformly reweighted sum-product algorithm (SURW-SPA) is developed for mobile localization problems. The proposed algorithm combines the distributed nature of belief propagation (BP) with the improved p...

  7. Introduction to Focus Issue: Complex network perspectives on flow systems.

    Science.gov (United States)

    Donner, Reik V; Hernández-García, Emilio; Ser-Giacomi, Enrico

    2017-03-01

    During the last few years, complex network approaches have demonstrated their great potentials as versatile tools for exploring the structural as well as dynamical properties of dynamical systems from a variety of different fields. Among others, recent successful examples include (i) functional (correlation) network approaches to infer hidden statistical interrelationships between macroscopic regions of the human brain or the Earth's climate system, (ii) Lagrangian flow networks allowing to trace dynamically relevant fluid-flow structures in atmosphere, ocean or, more general, the phase space of complex systems, and (iii) time series networks unveiling fundamental organization principles of dynamical systems. In this spirit, complex network approaches have proven useful for data-driven learning of dynamical processes (like those acting within and between sub-components of the Earth's climate system) that are hidden to other analysis techniques. This Focus Issue presents a collection of contributions addressing the description of flows and associated transport processes from the network point of view and its relationship to other approaches which deal with fluid transport and mixing and/or use complex network techniques.

  8. Improved teaching-learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

    Science.gov (United States)

    Buddala, Raviteja; Mahapatra, Siba Sankar

    2017-11-01

    Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.

  9. Loan and nonloan flows in the Australian interbank network

    Science.gov (United States)

    Sokolov, Andrey; Webster, Rachel; Melatos, Andrew; Kieu, Tien

    2012-05-01

    High-value transactions between banks in Australia are settled in the Reserve Bank Information and Transfer System (RITS) administered by the Reserve Bank of Australia. RITS operates on a real-time gross settlement (RTGS) basis and settles payments and transfers sourced from the SWIFT payment delivery system, the Austraclear securities settlement system, and the interbank transactions entered directly into RITS. In this paper, we analyse a dataset received from the Reserve Bank of Australia that includes all interbank transactions settled in RITS on an RTGS basis during five consecutive weekdays from 19 February 2007 inclusive, a week of relatively quiescent market conditions. The source, destination, and value of each transaction are known, which allows us to separate overnight loans from other transactions (nonloans) and reconstruct monetary flows between banks for every day in our sample. We conduct a novel analysis of the flow stability and examine the connection between loan and nonloan flows. Our aim is to understand the underlying causal mechanism connecting loan and nonloan flows. We find that the imbalances in the banks' exchange settlement funds resulting from the daily flows of nonloan transactions are almost exactly counterbalanced by the flows of overnight loans. The correlation coefficient between loan and nonloan imbalances is about -0.9 on most days. Some flows that persist over two consecutive days can be highly variable, but overall the flows are moderately stable in value. The nonloan network is characterised by a large fraction of persistent flows, whereas only half of the flows persist over any two consecutive days in the loan network. Moreover, we observe an unusual degree of coherence between persistent loan flow values on Tuesday and Wednesday. We probe static topological properties of the Australian interbank network and find them consistent with those observed in other countries.

  10. Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems

    International Nuclear Information System (INIS)

    Tien, Iris; Der Kiureghian, Armen

    2016-01-01

    Novel algorithms are developed to enable the modeling of large, complex infrastructure systems as Bayesian networks (BNs). These include a compression algorithm that significantly reduces the memory storage required to construct the BN model, and an updating algorithm that performs inference on compressed matrices. These algorithms address one of the major obstacles to widespread use of BNs for system reliability assessment, namely the exponentially increasing amount of information that needs to be stored as the number of components in the system increases. The proposed compression and inference algorithms are described and applied to example systems to investigate their performance compared to that of existing algorithms. Orders of magnitude savings in memory storage requirement are demonstrated using the new algorithms, enabling BN modeling and reliability analysis of larger infrastructure systems. - Highlights: • Novel algorithms developed for Bayesian network modeling of infrastructure systems. • Algorithm presented to compress information in conditional probability tables. • Updating algorithm presented to perform inference on compressed matrices. • Algorithms applied to example systems to investigate their performance. • Orders of magnitude savings in memory storage requirement demonstrated.

  11. Horizontal two phase flow pattern identification by neural networks

    International Nuclear Information System (INIS)

    Crivelaro, Kelen Cristina Oliveira; Seleghim Junior, Paulo; Hervieu, Eric

    1999-01-01

    A multiphase fluid can flow according to several flow regimes. The problem associated with multiphase systems are basically related to the behavior of macroscopic parameters, such as pressure drop, thermal exchanges and so on, and their strong correlation to the flow regime. From the industrial applications point of view, the safety and longevity of equipment and systems can only be assured when they work according to the flow regimes for which they were designed to. This implies in the need to diagnose flow regimes in real time. The automatic diagnosis of flow regimes represents an objective of extreme importance, mainly for applications on nuclear and petrochemical industries. In this work, a neural network is used in association to a probe of direct visualization for the identification of a gas-liquid flow horizontal regimes, developed in an experimental circuit. More specifically, the signals produced by the probe are used to compose a qualitative image of the flow, which is promptly sent to the network for the recognition of the regimes. Results are presented for different transitions among the flow regimes, which demonstrate the extremely satisfactory performance of the diagnosis system. (author)

  12. Social networks and trade of services: modelling interregional flows with spatial and network autocorrelation effects

    Science.gov (United States)

    de la Mata, Tamara; Llano, Carlos

    2013-07-01

    Recent literature on border effect has fostered research on informal barriers to trade and the role played by network dependencies. In relation to social networks, it has been shown that intensity of trade in goods is positively correlated with migration flows between pairs of countries/regions. In this article, we investigate whether such a relation also holds for interregional trade of services. We also consider whether interregional trade flows in services linked with tourism exhibit spatial and/or social network dependence. Conventional empirical gravity models assume the magnitude of bilateral flows between regions is independent of flows to/from regions located nearby in space, or flows to/from regions related through social/cultural/ethic network connections. With this aim, we provide estimates from a set of gravity models showing evidence of statistically significant spatial and network (demographic) dependence in the bilateral flows of the trade of services considered. The analysis has been applied to the Spanish intra- and interregional monetary flows of services from the accommodation, restaurants and travel agencies for the period 2000-2009, using alternative datasets for the migration stocks and definitions of network effects.

  13. Node localization algorithm of wireless sensor networks for large electrical equipment monitoring application

    DEFF Research Database (Denmark)

    Chen, Qinyin; Hu, Y.; Chen, Zhe

    2016-01-01

    Node localization technology is an important technology for the Wireless Sensor Networks (WSNs) applications. An improved 3D node localization algorithm is proposed in this paper, which is based on a Multi-dimensional Scaling (MDS) node localization algorithm for large electrical equipment monito...

  14. Evaluation of Opportunistic Routing Algorithms on Opportunistic Mobile Sensor Networks with Infrastructure Assistance

    NARCIS (Netherlands)

    Le Viet Duc, L Duc; Scholten, Johan; Havinga, Paul J.M.

    2012-01-01

    Recently the increasing number of sensors integrated in smartphones, especially the iPhone and Android phones, has motivated the development of routing algorithms for Opportunistic Mobile Sensor Networks (OppMSNs). Although there are many existing opportunistic routing algorithms, researchers still

  15. Identification of chaotic systems by neural network with hybrid learning algorithm

    International Nuclear Information System (INIS)

    Pan, S.-T.; Lai, C.-C.

    2008-01-01

    Based on the genetic algorithm (GA) and steepest descent method (SDM), this paper proposes a hybrid algorithm for the learning of neural networks to identify chaotic systems. The systems in question are the logistic map and the Duffing equation. Different identification schemes are used to identify both the logistic map and the Duffing equation, respectively. Simulation results show that our hybrid algorithm is more efficient than that of other methods

  16. An Overlapping Communities Detection Algorithm via Maxing Modularity in Opportunistic Networks

    Directory of Open Access Journals (Sweden)

    Gao Zhi-Peng

    2016-01-01

    Full Text Available Community detection in opportunistic networks has been a significant and hot issue, which is used to understand characteristics of networks through analyzing structure of it. Community is used to represent a group of nodes in a network where nodes inside the community have more internal connections than external connections. However, most of the existing community detection algorithms focus on binary networks or disjoint community detection. In this paper, we propose a novel algorithm via maxing modularity of communities (MMCto find overlapping community structure in opportunistic networks. It utilizes contact history of nodes to calculate the relation intensity between nodes. It finds nodes with high relation intensity as the initial community and extend the community with nodes of higher belong degree. The algorithm achieves a rapid and efficient overlapping community detection method by maxing the modularity of community continuously. The experiments prove that MMC is effective for uncovering overlapping communities and it achieves better performance than COPRA and Conductance.

  17. Improved algorithms for circuit fault diagnosis based on wavelet packet and neural network

    International Nuclear Information System (INIS)

    Zhang, W-Q; Xu, C

    2008-01-01

    In this paper, two improved BP neural network algorithms of fault diagnosis for analog circuit are presented through using optimal wavelet packet transform(OWPT) or incomplete wavelet packet transform(IWPT) as preprocessor. The purpose of preprocessing is to reduce the nodes in input layer and hidden layer of BP neural network, so that the neural network gains faster training and convergence speed. At first, we apply OWPT or IWPT to the response signal of circuit under test(CUT), and then calculate the normalization energy of each frequency band. The normalization energy is used to train the BP neural network to diagnose faulty components in the analog circuit. These two algorithms need small network size, while have faster learning and convergence speed. Finally, simulation results illustrate the two algorithms are effective for fault diagnosis

  18. Algorithms

    Indian Academy of Sciences (India)

    polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

  19. Historical Feature Pattern Extraction Based Network Attack Situation Sensing Algorithm

    OpenAIRE

    Zeng, Yong; Liu, Dacheng; Lei, Zhou

    2014-01-01

    The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE). First, HFPE algorithm seeks similar indications from the history si...

  20. Three-phase Power Flow Calculation of Low Voltage Distribution Network Considering Characteristics of Residents Load

    Science.gov (United States)

    Wang, Yaping; Lin, Shunjiang; Yang, Zhibin

    2017-05-01

    In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.

  1. Parameter-free Network Sparsification and Data Reduction by Minimal Algorithmic Information Loss

    KAUST Repository

    Zenil, Hector

    2018-02-16

    The study of large and complex datasets, or big data, organized as networks has emerged as one of the central challenges in most areas of science and technology. Cellular and molecular networks in biology is one of the prime examples. Henceforth, a number of techniques for data dimensionality reduction, especially in the context of networks, have been developed. Yet, current techniques require a predefined metric upon which to minimize the data size. Here we introduce a family of parameter-free algorithms based on (algorithmic) information theory that are designed to minimize the loss of any (enumerable computable) property contributing to the object\\'s algorithmic content and thus important to preserve in a process of data dimension reduction when forcing the algorithm to delete first the least important features. Being independent of any particular criterion, they are universal in a fundamental mathematical sense. Using suboptimal approximations of efficient (polynomial) estimations we demonstrate how to preserve network properties outperforming other (leading) algorithms for network dimension reduction. Our method preserves all graph-theoretic indices measured, ranging from degree distribution, clustering-coefficient, edge betweenness, and degree and eigenvector centralities. We conclude and demonstrate numerically that our parameter-free, Minimal Information Loss Sparsification (MILS) method is robust, has the potential to maximize the preservation of all recursively enumerable features in data and networks, and achieves equal to significantly better results than other data reduction and network sparsification methods.

  2. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    International Nuclear Information System (INIS)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-01-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body

  3. System network planning expansion using mathematical programming, genetic algorithms and tabu search

    International Nuclear Information System (INIS)

    Sadegheih, A.; Drake, P.R.

    2008-01-01

    In this paper, system network planning expansion is formulated for mixed integer programming, a genetic algorithm (GA) and tabu search (TS). Compared with other optimization methods, GAs are suitable for traversing large search spaces, since they can do this relatively rapidly and because the use of mutation diverts the method away from local minima, which will tend to become more common as the search space increases in size. GA's give an excellent trade off between solution quality and computing time and flexibility for taking into account specific constraints in real situations. TS has emerged as a new, highly efficient, search paradigm for finding quality solutions to combinatorial problems. It is characterized by gathering knowledge during the search and subsequently profiting from this knowledge. The attractiveness of the technique comes from its ability to escape local optimality. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. The DC load flow equations for the network are embedded in the constraints of the mathematical model to avoid sub-optimal solutions that can arise if the enforcement of such constraints is done in an indirect way. The solution of the model gives the best line additions and also provides information regarding the optimal generation at each generation point. This method of solution is demonstrated on the expansion of a 10 bus bar system to 18 bus bars. Finally, a steady-state genetic algorithm is employed rather than generational replacement, also uniform crossover is used

  4. The stationary flow in a heterogeneous compliant vessel network

    International Nuclear Information System (INIS)

    Filoche, Marcel; Florens, Magali

    2011-01-01

    We introduce a mathematical model of the hydrodynamic transport into systems consisting in a network of connected flexible pipes. In each pipe of the network, the flow is assumed to be steady and one-dimensional. The fluid-structure interaction is described through tube laws which relate the pipe diameter to the pressure difference across the pipe wall. We show that the resulting one-dimensional differential equation describing the flow in the pipe can be exactly integrated if one is able to estimate averages of the Reynolds number along the pipe. The differential equation is then transformed into a non linear scalar equation relating pressures at both ends of the pipe and the flow rate in the pipe. These equations are coupled throughout the network with mass conservation equations for the flow and zero pressure losses at the branching points of the network. This allows us to derive a general model for the computation of the flow into very large inhomogeneous networks consisting of several thousands of flexible pipes. This model is then applied to perform numerical simulations of the human lung airway system at exhalation. The topology of the system and the tube laws are taken from morphometric and physiological data in the literature. We find good qualitative and quantitative agreement between the simulation results and flow-volume loops measured in real patients. In particular, expiratory flow limitation which is an essential characteristic of forced expiration is found to be well reproduced by our simulations. Finally, a mathematical model of a pathology (Chronic Obstructive Pulmonary Disease) is introduced which allows us to quantitatively assess the influence of a moderate or severe alteration of the airway compliances.

  5. Field-effect Flow Control in Polymer Microchannel Networks

    Science.gov (United States)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.

    2003-01-01

    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  6. A New Artificial Immune System Algorithm for Multiobjective Fuzzy Flow Shop Problems

    Directory of Open Access Journals (Sweden)

    Cengiz Kahraman

    2009-12-01

    Full Text Available In this paper a new artificial immune system (AIS algorithm is proposed to solve multi objective fuzzy flow shop scheduling problems. A new mutation operator is also described for this AIS. Fuzzy sets are used to model processing times and due dates. The objectives are to minimize the average tardiness and the number of tardy jobs. The developed new AIS algorithm is tested on real world data collected at an engine cylinder liner manufacturing process. The feasibility and effectiveness of the proposed AIS is demonstrated by comparing it with genetic algorithms. Computational results demonstrate that the proposed AIS algorithm is more effective meta-heuristic for multi objective flow shop scheduling problems with fuzzy processing time and due date.

  7. Efficient Algorithms for Network-Wide Road Traffic Control

    NARCIS (Netherlands)

    van de Weg, G.S.

    2017-01-01

    Controlling road traffic networks is a complex problem. One of the difficulties is the coordination of actuators, such as traffic lights, variables speed limits, ramp metering and route guidance, with the aim to improve the network performance over a near-future time horizon. This dissertation

  8. Influence Maximization in Social Networks with Genetic Algorithms

    NARCIS (Netherlands)

    Bucur, Doina; Iacca, Giovanni; Squillero, Giovanni; Burelli, Paolo

    We live in a world of social networks. Our everyday choices are often influenced by social interactions. Word of mouth, meme diffusion on the Internet, and viral marketing are all examples of how social networks can affect our behaviour. In many practical applications, it is of great interest to

  9. Cell outage compensation in LTE networks: Algorithms and performance assessment

    NARCIS (Netherlands)

    Amirijoo, M.; Jorguseski, L.; Litjens, R.; Schmelz, L.C.

    2011-01-01

    Cell outage compensation is a self-healing function and as such part of the Self-Organising Networks concept for mobile wireless networks. It aims at mitigating the degradation of coverage, capacity and service quality caused by a cell or site level outage. Upon detection of such an outage, cell

  10. Collaborative Algorithms for Communication in Wireless Sensor Networks

    NARCIS (Netherlands)

    Nieberg, T.; Dulman, S.O.; Havinga, Paul J.M.; van Hoesel, L.F.W.; Wu Jian, W.J.; Basten, Twan; Geilen, Marc; de Groot, Harmke

    2003-01-01

    In this paper, we present the design of the communication in a wireless sensor network. The resource limitations of a wireless sensor network, especially in terms of energy, require an integrated, and collaborative approach for the different layers of communication. In particular, energy-efficient

  11. Multi-objective ant algorithm for wireless sensor network positioning

    International Nuclear Information System (INIS)

    Fidanova, S.; Shindarov, M.; Marinov, P.

    2013-01-01

    It is impossible to imagine our modern life without telecommunications. Wireless networks are a part of telecommunications. Wireless sensor networks (WSN) consist of spatially distributed sensors, which communicate in wireless way. This network monitors physical or environmental conditions. The objective is the full coverage of the monitoring region and less energy consumption of the network. The most appropriate approach to solve the problem is metaheuristics. In this paper the full coverage of the area is treated as a constrain. The objectives which are optimized are a minimal number of sensors and energy (lifetime) of the network. We apply multi-objective Ant Colony Optimization to solve this important telecommunication problem. We chose MAX-MIN Ant System approach, because it is proven to converge to the global optima

  12. Transmission Scheduling and Routing Algorithms for Delay Tolerant Networks

    Science.gov (United States)

    Dudukovich, Rachel; Raible, Daniel E.

    2016-01-01

    The challenges of data processing, transmission scheduling and routing within a space network present a multi-criteria optimization problem. Long delays, intermittent connectivity, asymmetric data rates and potentially high error rates make traditional networking approaches unsuitable. The delay tolerant networking architecture and protocols attempt to mitigate many of these issues, yet transmission scheduling is largely manually configured and routes are determined by a static contact routing graph. A high level of variability exists among the requirements and environmental characteristics of different missions, some of which may allow for the use of more opportunistic routing methods. In all cases, resource allocation and constraints must be balanced with the optimization of data throughput and quality of service. Much work has been done researching routing techniques for terrestrial-based challenged networks in an attempt to optimize contact opportunities and resource usage. This paper examines several popular methods to determine their potential applicability to space networks.

  13. A Research of RSSI-AM Localization Algorithm Based on Data Encryption in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2014-07-01

    Full Text Available In practical application of wireless sensor networks, because of open environment, signal is easy to be attacked and traditional RSSI location technology produces errors. By analyzing the location modal of RSSI, this paper proposes a new encryption modulation algorithm: RSSI-AM, which is unlike most approaches. The location algorithm has the following advantages: simple calculation, strong security, powerful anti-interference ability and no hardware expansion required. Besides, the simulation experiment shows the location precision of ranging method based on RSSI-AM has obvious improvement compared with traditional algorithm. It can be used in the environment of wireless sensor network nodes with low cost and performance of hardware.

  14. Finite element methods for viscous incompressible flows a guide to theory, practice, and algorithms

    CERN Document Server

    Gunzburger, Max D

    2012-01-01

    In this book, the author examines mathematical aspects of finite element methods for the approximate solution of incompressible flow problems. The principal goal is to present some of the important mathematical results that are relevant to practical computations. In so doing, useful algorithms are also discussed. Although rigorous results are stated, no detailed proofs are supplied; rather, the intention is to present these results so that they can serve as a guide for the selection and, in certain respects, the implementation of algorithms.

  15. Application of the load flow and random flow models for the analysis of power transmission networks

    International Nuclear Information System (INIS)

    Zio, Enrico; Piccinelli, Roberta; Delfanti, Maurizio; Olivieri, Valeria; Pozzi, Mauro

    2012-01-01

    In this paper, the classical load flow model and the random flow model are considered for analyzing the performance of power transmission networks. The analysis concerns both the system performance and the importance of the different system elements; this latter is computed by power flow and random walk betweenness centrality measures. A network system from the literature is analyzed, representing a simple electrical power transmission network. The results obtained highlight the differences between the LF “global approach” to flow dispatch and the RF local approach of randomized node-to-node load transfer. Furthermore, computationally the LF model is less consuming than the RF model but problems of convergence may arise in the LF calculation.

  16. Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range.

    Science.gov (United States)

    He, Chenlong; Feng, Zuren; Ren, Zhigang

    2018-02-03

    For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham's Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm.

  17. A genetic algorithm solution for the operation of green LTE networks with energy and environment considerations

    KAUST Repository

    Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.

    2012-01-01

    , as additional power sources in smart grids, becomes a real challenge to network operators to reduce power costs. In this paper, we propose a method based on genetic algorithms that decreases the energy consumption of a Long-Term Evolution (LTE) cellular network

  18. Algorithms for finding optimal paths in network games with p players

    Directory of Open Access Journals (Sweden)

    R. Boliac

    1997-08-01

    Full Text Available We study the problem of finding optimal paths in network games with p players. Some polynomial-time algorithms for finding optimal paths and optimal by Nash strategies of the players in network games with p players are proposed.

  19. COM-LOC: A Distributed Range-Free Localization Algorithm in Wireless Networks

    NARCIS (Netherlands)

    Dil, B.J.; Havinga, Paul J.M.; Marusic, S; Palaniswami, M; Gubbi, J.; Law, Y.W.

    2009-01-01

    This paper investigates distributed range-free localization in wireless networks using a communication protocol called sum-dist which is commonly employed by localization algorithms. With this protocol, the reference nodes flood the network in order to estimate the shortest distance between the

  20. ISTA-Net: Iterative Shrinkage-Thresholding Algorithm Inspired Deep Network for Image Compressive Sensing

    KAUST Repository

    Zhang, Jian; Ghanem, Bernard

    2017-01-01

    and the performance/speed of network-based ones. We propose a novel structured deep network, dubbed ISTA-Net, which is inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a general $l_1$ norm CS reconstruction model. ISTA-Net essentially