WorldWideScience

Sample records for network embedding spike

  1. Deep Spiking Networks

    NARCIS (Netherlands)

    O'Connor, P.; Welling, M.

    2016-01-01

    We introduce an algorithm to do backpropagation on a spiking network. Our network is "spiking" in the sense that our neurons accumulate their activation into a potential over time, and only send out a signal (a "spike") when this potential crosses a threshold and the neuron is reset. Neurons only

  2. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies.

    Science.gov (United States)

    Geminiani, Alice; Casellato, Claudia; Antonietti, Alberto; D'Angelo, Egidio; Pedrocchi, Alessandra

    2017-01-10

    The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.

  3. Spiking neuron network Helmholtz machine

    National Research Council Canada - National Science Library

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    .... This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational...

  4. Computing with Spiking Neuron Networks

    NARCIS (Netherlands)

    H. Paugam-Moisy; S.M. Bohte (Sander); G. Rozenberg; T.H.W. Baeck (Thomas); J.N. Kok (Joost)

    2012-01-01

    htmlabstractAbstract Spiking Neuron Networks (SNNs) are often referred to as the 3rd gener- ation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an ac- curate modeling of synaptic interactions

  5. Spiking Neuron Network Helmholtz Machine

    Directory of Open Access Journals (Sweden)

    Pavel eSountsov

    2015-04-01

    Full Text Available An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.

  6. Epileptiform spike detection via convolutional neural networks

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz

    2016-01-01

    The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated...

  7. Stochastic Variational Learning in Recurrent Spiking Networks

    Directory of Open Access Journals (Sweden)

    Danilo eJimenez Rezende

    2014-04-01

    Full Text Available The ability to learn and perform statistical inference with biologically plausible recurrent network of spiking neurons is an important step towards understanding perception and reasoning. Here we derive and investigate a new learning rule for recurrent spiking networks with hidden neurons, combining principles from variational learning and reinforcement learning. Our network defines a generative model over spike train histories and the derived learning rule has the form of a local Spike Timing Dependent Plasticity rule modulated by global factors (neuromodulators conveying information about ``novelty on a statistically rigorous ground.Simulations show that our model is able to learn bothstationary and non-stationary patterns of spike trains.We also propose one experiment that could potentially be performed with animals in order to test the dynamics of the predicted novelty signal.

  8. Vectorized algorithms for spiking neural network simulation.

    Science.gov (United States)

    Brette, Romain; Goodman, Dan F M

    2011-06-01

    High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.

  9. Macroscopic Description for Networks of Spiking Neurons

    Science.gov (United States)

    Montbrió, Ernest; Pazó, Diego; Roxin, Alex

    2015-04-01

    A major goal of neuroscience, statistical physics, and nonlinear dynamics is to understand how brain function arises from the collective dynamics of networks of spiking neurons. This challenge has been chiefly addressed through large-scale numerical simulations. Alternatively, researchers have formulated mean-field theories to gain insight into macroscopic states of large neuronal networks in terms of the collective firing activity of the neurons, or the firing rate. However, these theories have not succeeded in establishing an exact correspondence between the firing rate of the network and the underlying microscopic state of the spiking neurons. This has largely constrained the range of applicability of such macroscopic descriptions, particularly when trying to describe neuronal synchronization. Here, we provide the derivation of a set of exact macroscopic equations for a network of spiking neurons. Our results reveal that the spike generation mechanism of individual neurons introduces an effective coupling between two biophysically relevant macroscopic quantities, the firing rate and the mean membrane potential, which together govern the evolution of the neuronal network. The resulting equations exactly describe all possible macroscopic dynamical states of the network, including states of synchronous spiking activity. Finally, we show that the firing-rate description is related, via a conformal map, to a low-dimensional description in terms of the Kuramoto order parameter, called Ott-Antonsen theory. We anticipate that our results will be an important tool in investigating how large networks of spiking neurons self-organize in time to process and encode information in the brain.

  10. Training Deep Spiking Neural Networks Using Backpropagation.

    Science.gov (United States)

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael

    2016-01-01

    Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.

  11. Implementing Signature Neural Networks with Spiking Neurons.

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence

  12. Implementing Signature Neural Networks with Spiking Neurons

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the

  13. Communicating embedded systems networks applications

    CERN Document Server

    Krief, Francine

    2013-01-01

    Embedded systems become more and more complex and require having some knowledge in various disciplines such as electronics, data processing, telecommunications and networks. Without detailing all the aspects related to the design of embedded systems, this book, which was written by specialists in electronics, data processing and telecommunications and networks, gives an interesting point of view of communication techniques and problems in embedded systems. This choice is easily justified by the fact that embedded systems are today massively communicating and that telecommunications and network

  14. Phase Diagram of Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamed eSeyed-Allaei

    2015-03-01

    Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.

  15. Communication through resonance in spiking neuronal networks.

    Science.gov (United States)

    Hahn, Gerald; Bujan, Alejandro F; Frégnac, Yves; Aertsen, Ad; Kumar, Arvind

    2014-08-01

    The cortex processes stimuli through a distributed network of specialized brain areas. This processing requires mechanisms that can route neuronal activity across weakly connected cortical regions. Routing models proposed thus far are either limited to propagation of spiking activity across strongly connected networks or require distinct mechanisms that create local oscillations and establish their coherence between distant cortical areas. Here, we propose a novel mechanism which explains how synchronous spiking activity propagates across weakly connected brain areas supported by oscillations. In our model, oscillatory activity unleashes network resonance that amplifies feeble synchronous signals and promotes their propagation along weak connections ("communication through resonance"). The emergence of coherent oscillations is a natural consequence of synchronous activity propagation and therefore the assumption of different mechanisms that create oscillations and provide coherence is not necessary. Moreover, the phase-locking of oscillations is a side effect of communication rather than its requirement. Finally, we show how the state of ongoing activity could affect the communication through resonance and propose that modulations of the ongoing activity state could influence information processing in distributed cortical networks.

  16. A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks.

    Science.gov (United States)

    Xu, Yan; Zeng, Xiaoqin; Han, Lixin; Yang, Jing

    2013-07-01

    We use a supervised multi-spike learning algorithm for spiking neural networks (SNNs) with temporal encoding to simulate the learning mechanism of biological neurons in which the SNN output spike trains are encoded by firing times. We first analyze why existing gradient-descent-based learning methods for SNNs have difficulty in achieving multi-spike learning. We then propose a new multi-spike learning method for SNNs based on gradient descent that solves the problems of error function construction and interference among multiple output spikes during learning. The method could be widely applied to single spiking neurons to learn desired output spike trains and to multilayer SNNs to solve classification problems. By overcoming learning interference among multiple spikes, our method has high learning accuracy when there are a relatively large number of output spikes in need of learning. We also develop an output encoding strategy with respect to multiple spikes for classification problems. This effectively improves the classification accuracy of multi-spike learning compared to that of single-spike learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Solving constraint satisfaction problems with networks of spiking neurons

    Directory of Open Access Journals (Sweden)

    Zeno eJonke

    2016-03-01

    Full Text Available Network of neurons in the brain apply – unlike processors in our current generation ofcomputer hardware – an event-based processing strategy, where short pulses (spikes areemitted sparsely by neurons to signal the occurrence of an event at a particular point intime. Such spike-based computations promise to be substantially more power-efficient thantraditional clocked processing schemes. However it turned out to be surprisingly difficult todesign networks of spiking neurons that can solve difficult computational problems on the levelof single spikes (rather than rates of spikes. We present here a new method for designingnetworks of spiking neurons via an energy function. Furthermore we show how the energyfunction of a network of stochastically firing neurons can be shaped in a quite transparentmanner by composing the networks of simple stereotypical network motifs. We show that thisdesign approach enables networks of spiking neurons to produce approximate solutions todifficult (NP-hard constraint satisfaction problems from the domains of planning/optimizationand verification/logical inference. The resulting networks employ noise as a computationalresource. Nevertheless the timing of spikes (rather than just spike rates plays an essential rolein their computations. Furthermore, networks of spiking neurons carry out for the Traveling Salesman Problem a more efficient stochastic search for good solutions compared with stochastic artificial neural networks (Boltzmann machines and Gibbs sampling.

  18. Phase diagram of spiking neural networks.

    Science.gov (United States)

    Seyed-Allaei, Hamed

    2015-01-01

    In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters - excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli.

  19. Embedded systems handbook networked embedded systems

    CERN Document Server

    Zurawski, Richard

    2009-01-01

    Considered a standard industry resource, the Embedded Systems Handbook provided researchers and technicians with the authoritative information needed to launch a wealth of diverse applications, including those in automotive electronics, industrial automated systems, and building automation and control. Now a new resource is required to report on current developments and provide a technical reference for those looking to move the field forward yet again. Divided into two volumes to accommodate this growth, the Embedded Systems Handbook, Second Edition presents a comprehensive view on this area

  20. Spiking modular neural networks: A neural network modeling approach for hydrological processes

    National Research Council Canada - National Science Library

    Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey

    2006-01-01

    .... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...

  1. Recurrent Spiking Networks Solve Planning Tasks.

    Science.gov (United States)

    Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan

    2016-02-18

    A recurrent spiking neural network is proposed that implements planning as probabilistic inference for finite and infinite horizon tasks. The architecture splits this problem into two parts: The stochastic transient firing of the network embodies the dynamics of the planning task. With appropriate injected input this dynamics is shaped to generate high-reward state trajectories. A general class of reward-modulated plasticity rules for these afferent synapses is presented. The updates optimize the likelihood of getting a reward through a variant of an Expectation Maximization algorithm and learning is guaranteed to convergence to a local maximum. We find that the network dynamics are qualitatively similar to transient firing patterns during planning and foraging in the hippocampus of awake behaving rats. The model extends classical attractor models and provides a testable prediction on identifying modulating contextual information. In a real robot arm reaching and obstacle avoidance task the ability to represent multiple task solutions is investigated. The neural planning method with its local update rules provides the basis for future neuromorphic hardware implementations with promising potentials like large data processing abilities and early initiation of strategies to avoid dangerous situations in robot co-worker scenarios.

  2. Spiking Neural Networks based on OxRAM Synapses for Real-time Unsupervised Spike Sorting

    Directory of Open Access Journals (Sweden)

    Thilo Werner

    2016-11-01

    Full Text Available In this paper, we present an alternative approach to perform spike sorting of complex brain signals based on spiking neural networks (SNN. The proposed architecture is suitable for hardware implementation by using RRAM technology for the implementation of synapses whose low latency (< 1μs enable real-time spike sorting. This offers promising advantagesto conventional spike sorting techniques for brain-computer interface and neural prosthesis applications. Moreover, the ultralow power consumption of the RRAM synapses of the spiking neural network (nW range may enable the design of autonomous implantable devices for rehabilitation purposes. We demonstrate an original methodology to use Oxide based RRAM (OxRAM as easy to program and low power (< 75 pJ synapses. Synaptic weights are modulated through the application of an online learning strategy inspired by biological Spike Timing Dependent Plasticity. Real spiking data have been recorded both intraand extracellularly from an in-vitro preparation of the Crayfish sensory-motor system and used for validation of the proposed OxRAM based SNN. This artificial SNN is able to identify, learn, recognize and distinguish between different spike shapes in the input signal with a recognition rate about 90% without any supervision.

  3. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Fairhall, Adrienne L; Denéve, Sophie; Shea-Brown, Eric T

    2015-07-15

    While spike timing has been shown to carry detailed stimulus information at the sensory periphery, its possible role in network computation is less clear. Most models of computation by neural networks are based on population firing rates. In equivalent spiking implementations, firing is assumed to be random such that averaging across populations of neurons recovers the rate-based approach. Recently, however, Denéve and colleagues have suggested that the spiking behavior of neurons may be fundamental to how neuronal networks compute, with precise spike timing determined by each neuron's contribution to producing the desired output (Boerlin and Denéve, 2011; Boerlin et al., 2013). By postulating that each neuron fires to reduce the error in the network's output, it was demonstrated that linear computations can be performed by networks of integrate-and-fire neurons that communicate through instantaneous synapses. This left open, however, the possibility that realistic networks, with conductance-based neurons with subthreshold nonlinearity and the slower timescales of biophysical synapses, may not fit into this framework. Here, we show how the spike-based approach can be extended to biophysically plausible networks. We then show that our network reproduces a number of key features of cortical networks including irregular and Poisson-like spike times and a tight balance between excitation and inhibition. Lastly, we discuss how the behavior of our model scales with network size or with the number of neurons "recorded" from a larger computing network. These results significantly increase the biological plausibility of the spike-based approach to network computation. We derive a network of neurons with standard spike-generating currents and synapses with realistic timescales that computes based upon the principle that the precise timing of each spike is important for the computation. We then show that our network reproduces a number of key features of cortical networks

  4. Financial time series prediction using spiking neural networks.

    Directory of Open Access Journals (Sweden)

    David Reid

    Full Text Available In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.

  5. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding

    National Research Council Canada - National Science Library

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale...

  6. Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity.

    Science.gov (United States)

    Kim, Sang-Yoon; Lim, Woochang

    2018-01-01

    We consider the Watts-Strogatz small-world network (SWN) consisting of subthreshold neurons which exhibit noise-induced spikings. This neuronal network has adaptive dynamic synaptic strengths governed by the spike-timing-dependent plasticity (STDP). In previous works without STDP, stochastic spike synchronization (SSS) between noise-induced spikings of subthreshold neurons was found to occur in a range of intermediate noise intensities. Here, we investigate the effect of additive STDP on the SSS by varying the noise intensity. Occurrence of a "Matthew" effect in synaptic plasticity is found due to a positive feedback process. As a result, good synchronization gets better via long-term potentiation of synaptic strengths, while bad synchronization gets worse via long-term depression. Emergences of long-term potentiation and long-term depression of synaptic strengths are intensively investigated via microscopic studies based on the pair-correlations between the pre- and the post-synaptic IISRs (instantaneous individual spike rates) as well as the distributions of time delays between the pre- and the post-synaptic spike times. Furthermore, the effects of multiplicative STDP (which depends on states) on the SSS are studied and discussed in comparison with the case of additive STDP (independent of states). These effects of STDP on the SSS in the SWN are also compared with those in the regular lattice and the random graph. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. An FPGA hardware/software co-design towards evolvable spiking neural networks for robotics application.

    Science.gov (United States)

    Johnston, S P; Prasad, G; Maguire, L; McGinnity, T M

    2010-12-01

    This paper presents an approach that permits the effective hardware realization of a novel Evolvable Spiking Neural Network (ESNN) paradigm on Field Programmable Gate Arrays (FPGAs). The ESNN possesses a hybrid learning algorithm that consists of a Spike Timing Dependent Plasticity (STDP) mechanism fused with a Genetic Algorithm (GA). The design and implementation direction utilizes the latest advancements in FPGA technology to provide a partitioned hardware/software co-design solution. The approach achieves the maximum FPGA flexibility obtainable for the ESNN paradigm. The algorithm was applied as an embedded intelligent system robotic controller to solve an autonomous navigation and obstacle avoidance problem.

  8. Neuronal spike sorting based on radial basis function neural networks

    Directory of Open Access Journals (Sweden)

    Taghavi Kani M

    2011-02-01

    Full Text Available "nBackground: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system."n "nMethods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used."n "nResults: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity."n "nConclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.

  9. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Science.gov (United States)

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  10. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Directory of Open Access Journals (Sweden)

    Claudia Casellato

    Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  11. A real-time spike sorting method based on the embedded GPU.

    Science.gov (United States)

    Zelan Yang; Kedi Xu; Xiang Tian; Shaomin Zhang; Xiaoxiang Zheng

    2017-07-01

    Microelectrode arrays with hundreds of channels have been widely used to acquire neuron population signals in neuroscience studies. Online spike sorting is becoming one of the most important challenges for high-throughput neural signal acquisition systems. Graphic processing unit (GPU) with high parallel computing capability might provide an alternative solution for increasing real-time computational demands on spike sorting. This study reported a method of real-time spike sorting through computing unified device architecture (CUDA) which was implemented on an embedded GPU (NVIDIA JETSON Tegra K1, TK1). The sorting approach is based on the principal component analysis (PCA) and K-means. By analyzing the parallelism of each process, the method was further optimized in the thread memory model of GPU. Our results showed that the GPU-based classifier on TK1 is 37.92 times faster than the MATLAB-based classifier on PC while their accuracies were the same with each other. The high-performance computing features of embedded GPU demonstrated in our studies suggested that the embedded GPU provide a promising platform for the real-time neural signal processing.

  12. Synconset waves and chains: spiking onsets in synchronous populations predict and are predicted by network structure.

    Directory of Open Access Journals (Sweden)

    Mohan Raghavan

    Full Text Available Synfire waves are propagating spike packets in synfire chains, which are feedforward chains embedded in random networks. Although synfire waves have proved to be effective quantification for network activity with clear relations to network structure, their utilities are largely limited to feedforward networks with low background activity. To overcome these shortcomings, we describe a novel generalisation of synfire waves, and define 'synconset wave' as a cascade of first spikes within a synchronisation event. Synconset waves would occur in 'synconset chains', which are feedforward chains embedded in possibly heavily recurrent networks with heavy background activity. We probed the utility of synconset waves using simulation of single compartment neuron network models with biophysically realistic conductances, and demonstrated that the spread of synconset waves directly follows from the network connectivity matrix and is modulated by top-down inputs and the resultant oscillations. Such synconset profiles lend intuitive insights into network organisation in terms of connection probabilities between various network regions rather than an adjacency matrix. To test this intuition, we develop a Bayesian likelihood function that quantifies the probability that an observed synfire wave was caused by a given network. Further, we demonstrate it's utility in the inverse problem of identifying the network that caused a given synfire wave. This method was effective even in highly subsampled networks where only a small subset of neurons were accessible, thus showing it's utility in experimental estimation of connectomes in real neuronal-networks. Together, we propose synconset chains/waves as an effective framework for understanding the impact of network structure on function, and as a step towards developing physiology-driven network identification methods. Finally, as synconset chains extend the utilities of synfire chains to arbitrary networks, we suggest

  13. A Neuron Model for FPGA Spiking Neuronal Network Implementation

    Directory of Open Access Journals (Sweden)

    BONTEANU, G.

    2011-11-01

    Full Text Available We propose a neuron model, able to reproduce the basic elements of the neuronal dynamics, optimized for digital implementation of Spiking Neural Networks. Its architecture is structured in two major blocks, a datapath and a control unit. The datapath consists of a membrane potential circuit, which emulates the neuronal dynamics at the soma level, and a synaptic circuit used to update the synaptic weight according to the spike timing dependent plasticity (STDP mechanism. The proposed model is implemented into a Cyclone II-Altera FPGA device. Our results indicate the neuron model can be used to build up 1K Spiking Neural Networks on reconfigurable logic suport, to explore various network topologies.

  14. Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks

    Directory of Open Access Journals (Sweden)

    Daniel ede Santos-Sierra

    2015-11-01

    Full Text Available Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions cite{Pyragas}, where the slave neuron is able to anticipate in time the behaviour of the master one. In this paper we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI, one of the main features of the neural response associated to the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.

  15. Efficiently passing messages in distributed spiking neural network simulation.

    Science.gov (United States)

    Thibeault, Corey M; Minkovich, Kirill; O'Brien, Michael J; Harris, Frederick C; Srinivasa, Narayan

    2013-01-01

    Efficiently passing spiking messages in a neural model is an important aspect of high-performance simulation. As the scale of networks has increased so has the size of the computing systems required to simulate them. In addition, the information exchange of these resources has become more of an impediment to performance. In this paper we explore spike message passing using different mechanisms provided by the Message Passing Interface (MPI). A specific implementation, MVAPICH, designed for high-performance clusters with Infiniband hardware is employed. The focus is on providing information about these mechanisms for users of commodity high-performance spiking simulators. In addition, a novel hybrid method for spike exchange was implemented and benchmarked.

  16. An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks.

    Science.gov (United States)

    Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen

    2016-01-01

    The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper.

  17. Unsupervised clustering with spiking neurons by sparse temporal coding and multi-layer RBF networks

    NARCIS (Netherlands)

    S.M. Bohte (Sander); J.A. La Poutré (Han); J.N. Kok (Joost)

    2000-01-01

    textabstractWe demonstrate that spiking neural networks encoding information in spike times are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike-time coding and Hebbian learning can successfully perform unsupervised clustering on

  18. Learning anticipation via spiking networks: application to navigation control.

    Science.gov (United States)

    Arena, Paolo; Fortuna, Luigi; Frasca, Mattia; Patané, Luca

    2009-02-01

    In this paper, we introduce a network of spiking neurons devoted to navigation control. Three different examples, dealing with stimuli of increasing complexity, are investigated. In the first one, obstacle avoidance in a simulated robot is achieved through a network of spiking neurons. In the second example, a second layer is designed aiming to provide the robot with a target approaching system, making it able to move towards visual targets. Finally, a network of spiking neurons for navigation based on visual cues is introduced. In all cases, the robot was assumed to rely on some a priori known responses to low-level sensors (i.e., to contact sensors in the case of obstacles, to proximity target sensors in the case of visual targets, or to the visual target for navigation with visual cues). Based on their knowledge, the robot has to learn the response to high-level stimuli (i.e., range finder sensors or visual input). The biologically plausible paradigm of spike-timing-dependent plasticity (STDP) is included in the network to make the system able to learn high-level responses that guide navigation through a simple unstructured environment. The learning procedure is based on classical conditioning.

  19. Embedded Network Protocols for Mobile Devices

    Science.gov (United States)

    Galataki, Despo; Radulescu, Andrei; Verstoep, Kees; Fokkink, Wan

    Embedded networks for chip-to-chip networks are emerging as communication infrastructure in mobile devices. We present three novel embedded network protocols: a sliding window protocol, a protocol for opening and closing connections, and a bandwidth reservation protocol. The design of these protocols is tailored to the low power and low cost requirements of mobile devices. The model checker SPIN played an important role in the design and analysis of these protocols. Large instances of the protocols could be analyzed successfully using the distributed model checker DiVinE.

  20. Canonical correlation between LFP network and spike network during working memory task in rat.

    Science.gov (United States)

    Yi, Hu; Zhang, Xiaofan; Bai, Wenwen; Liu, Tiaotiao; Tian, Xin

    2015-08-01

    Working memory refers to a system to temporary holding and manipulation of information. Previous studies suggested that local field potentials (LFPs) and spikes as well as their coordination provide potential mechanism of working memory. Popular methods for LFP-spike coordination only focus on the two modality signals, isolating each channel from multi-channel data, ignoring the entirety of the networked brain. Therefore, we investigated the coordination between the LFP network and spike network to achieve a better understanding of working memory. Multi-channel LFPs and spikes were simultaneously recorded in rat prefrontal cortex via microelectrode array during a Y-maze working memory task. Functional connectivity in the LFP network and spike network was respectively estimated by the directed transfer function (DTF) and maximum likelihood estimation (MLE). Then the coordination between the two networks was quantified via canonical correlation analysis (CCA). The results show that the canonical correlation (CC) varied during the working memory task. The CC-curve peaked before the choice point, describing the coordination between LFP network and spike network enhanced greatly. The CC value in working memory showed a significant higher level than inter-trial interval. Our results indicate that the enhanced canonical correlation between the LFP network and spike network may provide a potential network integration mechanism for working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  2. Enhanced polychronisation in a spiking network with metaplasticity

    Directory of Open Access Journals (Sweden)

    Mira eGuise

    2015-02-01

    Full Text Available Computational models of metaplasticity have usually focused on the modeling of single synapses (Shouval et al., 2002. In this paper we study the effect of metaplasticity on network behavior. Our guiding assumption is that the primary purpose of metaplasticity is to regulate synaptic plasticity, by increasing it when input is low and decreasing it when input is high. For our experiments we adopt a model of metaplasticity that demonstrably has this effect for a single synapse; our primary interest is in how metaplasticity thus defined affects network-level phenomena. We focus on a network-level phenomenon called polychronicity, that has a potential role in representation and memory. A network with polychronicity has the ability to produce non-synchronous but precisely timed sequences of neural firing events that can arise from strongly connected groups of neurons called polychronous neural groups (Izhikevich et al., 2004; Izhikevich, 2006a. Polychronous groups (PNGs develop readily when spiking networks are exposed to repeated spatio-temporal stimuli under the influence of spike-timing-dependent plasticity (STDP, but are sensitive to changes in synaptic weight distribution. We use a technique we have recently developed called Response Fingerprinting to show that PNGs formed in the presence of metaplasticity are significantly larger than those with no metaplasticity. A potential mechanism for this enhancement is proposed that links an inherent property of integrator type neurons called spike latency to an increase in the tolerance of PNG neurons to jitter in their inputs.

  3. Enhanced polychronization in a spiking network with metaplasticity.

    Science.gov (United States)

    Guise, Mira; Knott, Alistair; Benuskova, Lubica

    2015-01-01

    Computational models of metaplasticity have usually focused on the modeling of single synapses (Shouval et al., 2002). In this paper we study the effect of metaplasticity on network behavior. Our guiding assumption is that the primary purpose of metaplasticity is to regulate synaptic plasticity, by increasing it when input is low and decreasing it when input is high. For our experiments we adopt a model of metaplasticity that demonstrably has this effect for a single synapse; our primary interest is in how metaplasticity thus defined affects network-level phenomena. We focus on a network-level phenomenon called polychronicity, that has a potential role in representation and memory. A network with polychronicity has the ability to produce non-synchronous but precisely timed sequences of neural firing events that can arise from strongly connected groups of neurons called polychronous neural groups (Izhikevich et al., 2004). Polychronous groups (PNGs) develop readily when spiking networks are exposed to repeated spatio-temporal stimuli under the influence of spike-timing-dependent plasticity (STDP), but are sensitive to changes in synaptic weight distribution. We use a technique we have recently developed called Response Fingerprinting to show that PNGs formed in the presence of metaplasticity are significantly larger than those with no metaplasticity. A potential mechanism for this enhancement is proposed that links an inherent property of integrator type neurons called spike latency to an increase in the tolerance of PNG neurons to jitter in their inputs.

  4. Spiking network simulation code for petascale computers

    Science.gov (United States)

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M.; Plesser, Hans E.; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682

  5. Spiking network simulation code for petascale computers.

    Science.gov (United States)

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M; Plesser, Hans E; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today.

  6. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    Science.gov (United States)

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  7. Linking structure and activity in nonlinear spiking networks.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2017-06-01

    Full Text Available Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  8. Spiking neural network-based control chart pattern recognition

    Directory of Open Access Journals (Sweden)

    Medhat H.A. Awadalla

    2012-03-01

    Full Text Available Due to an increasing competition in products, consumers have become more critical in choosing products. The quality of products has become more important. Statistical Process Control (SPC is usually used to improve the quality of products. Control charting plays the most important role in SPC. Control charts help to monitor the behavior of the process to determine whether it is stable or not. Unnatural patterns in control charts mean that there are some unnatural causes for variations in SPC. Spiking neural networks (SNNs are the third generation of artificial neural networks that consider time as an important feature for information representation and processing. In this paper, a spiking neural network architecture is proposed to be used for control charts pattern recognition (CCPR. Furthermore, enhancements to the SpikeProp learning algorithm are proposed. These enhancements provide additional learning rules for the synaptic delays, time constants and for the neurons thresholds. Simulated experiments have been conducted and the achieved results show a remarkable improvement in the overall performance compared with artificial neural networks.

  9. Evolving Spiking Neural Networks for Control of Artificial Creatures

    Directory of Open Access Journals (Sweden)

    Arash Ahmadi

    2013-10-01

    Full Text Available To understand and analysis behavior of complicated and intelligent organisms, scientists apply bio-inspired concepts including evolution and learning to mathematical models and analyses. Researchers utilize these perceptions in different applications, searching for improved methods andapproaches for modern computational systems. This paper presents a genetic algorithm based evolution framework in which Spiking Neural Network (SNN of artificial creatures are evolved for higher chance of survival in a virtual environment. The artificial creatures are composed ofrandomly connected Izhikevich spiking reservoir neural networks using population activity rate coding. Inspired by biological neurons, the neuronal connections are considered with different axonal conduction delays. Simulations results prove that the evolutionary algorithm has thecapability to find or synthesis artificial creatures which can survive in the environment successfully.

  10. Fixed latency on-chip interconnect for hardware spiking neural network architectures

    NARCIS (Netherlands)

    Pande, Sandeep; Morgan, Fearghal; Smit, Gerardus Johannes Maria; Bruintjes, Tom; Rutgers, J.H.; Cawley, Seamus; Harkin, Jim; McDaid, Liam

    Information in a Spiking Neural Network (SNN) is encoded as the relative timing between spikes. Distortion in spike timings can impact the accuracy of SNN operation by modifying the precise firing time of neurons within the SNN. Maintaining the integrity of spike timings is crucial for reliable

  11. A Reinforcement Learning Framework for Spiking Networks with Dynamic Synapses

    Directory of Open Access Journals (Sweden)

    Karim El-Laithy

    2011-01-01

    Full Text Available An integration of both the Hebbian-based and reinforcement learning (RL rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.

  12. Macroscopic phase-resetting curves for spiking neural networks

    Science.gov (United States)

    Dumont, Grégory; Ermentrout, G. Bard; Gutkin, Boris

    2017-10-01

    The study of brain rhythms is an open-ended, and challenging, subject of interest in neuroscience. One of the best tools for the understanding of oscillations at the single neuron level is the phase-resetting curve (PRC). Synchronization in networks of neurons, effects of noise on the rhythms, effects of transient stimuli on the ongoing rhythmic activity, and many other features can be understood by the PRC. However, most macroscopic brain rhythms are generated by large populations of neurons, and so far it has been unclear how the PRC formulation can be extended to these more common rhythms. In this paper, we describe a framework to determine a macroscopic PRC (mPRC) for a network of spiking excitatory and inhibitory neurons that generate a macroscopic rhythm. We take advantage of a thermodynamic approach combined with a reduction method to simplify the network description to a small number of ordinary differential equations. From this simplified but exact reduction, we can compute the mPRC via the standard adjoint method. Our theoretical findings are illustrated with and supported by numerical simulations of the full spiking network. Notably our mPRC framework allows us to predict the difference between effects of transient inputs to the excitatory versus the inhibitory neurons in the network.

  13. Different propagation speeds of recalled sequences in plastic spiking neural networks

    Science.gov (United States)

    Huang, Xuhui; Zheng, Zhigang; Hu, Gang; Wu, Si; Rasch, Malte J.

    2015-03-01

    Neural networks can generate spatiotemporal patterns of spike activity. Sequential activity learning and retrieval have been observed in many brain areas, and e.g. is crucial for coding of episodic memory in the hippocampus or generating temporal patterns during song production in birds. In a recent study, a sequential activity pattern was directly entrained onto the neural activity of the primary visual cortex (V1) of rats and subsequently successfully recalled by a local and transient trigger. It was observed that the speed of activity propagation in coordinates of the retinotopically organized neural tissue was constant during retrieval regardless how the speed of light stimulation sweeping across the visual field during training was varied. It is well known that spike-timing dependent plasticity (STDP) is a potential mechanism for embedding temporal sequences into neural network activity. How training and retrieval speeds relate to each other and how network and learning parameters influence retrieval speeds, however, is not well described. We here theoretically analyze sequential activity learning and retrieval in a recurrent neural network with realistic synaptic short-term dynamics and STDP. Testing multiple STDP rules, we confirm that sequence learning can be achieved by STDP. However, we found that a multiplicative nearest-neighbor (NN) weight update rule generated weight distributions and recall activities that best matched the experiments in V1. Using network simulations and mean-field analysis, we further investigated the learning mechanisms and the influence of network parameters on recall speeds. Our analysis suggests that a multiplicative STDP rule with dominant NN spike interaction might be implemented in V1 since recall speed was almost constant in an NMDA-dominant regime. Interestingly, in an AMPA-dominant regime, neural circuits might exhibit recall speeds that instead follow the change in stimulus speeds. This prediction could be tested in

  14. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. II: Spike Shuffling Methods on LIF Networks

    Science.gov (United States)

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations) influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP) and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded), by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF) neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy). PMID:27555816

  15. Getting Embedded in Industry Networks Abroad

    DEFF Research Database (Denmark)

    Gretzinger, Susanne; Dyhr Ulrich, Anna Marie; Hollensen, Svend

    with entering such foreign markets remain significant, especially for inexperienced SMEs. These challenges can include inadequate knowledge about a host country’s culture, norms, values and business environment, and a lack of embeddedness in the industry networks abroad. Such barriers can often hinder...... (Hollensen, 2017). This research project aims to explain how the “incubator” can support the acquisition of lacking experiental knowledge and facilitate the process of getting embedded in markets or industrial networks abroad. Theoretical foundation This paper adopts an industrial network approach in line...... with Mats, et al. (2015) and Johannson/Vahlne (2015). On the one hand it is assumed that resources, actors, exchange- and coordination-mechanism are vital determinants influencing the degree of embeddedness of companies in industry networks abroad (Mats, Holm, Johansson 2015, Johanson and Vahlne, 2015...

  16. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  17. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  18. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm

    Science.gov (United States)

    Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A.; Przekwas, Andrzej; Francis, Joseph T.; Lytton, William W.

    2015-01-01

    Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of

  19. Cortical spiking network interfaced with virtual musculoskeletal arm and robotic arm

    Directory of Open Access Journals (Sweden)

    Salvador eDura-Bernal

    2015-11-01

    Full Text Available Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm.This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuro-prosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility

  20. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.

    Science.gov (United States)

    Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A; Przekwas, Andrzej; Francis, Joseph T; Lytton, William W

    2015-01-01

    Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of

  1. Entrepreneurial networks as culturally embedded phenomena

    Directory of Open Access Journals (Sweden)

    Vlatka Skokic

    2015-06-01

    Full Text Available Entrepreneurship research concerning networks has largely focused on network structure, content and governance. We believe that further research is required in order to gain a richer understanding of why specific network forms and types originated. The purpose of this paper is to explore the existence, importance, values and meanings of both the informal and formal networks and networking behaviours of small-scale hotel owner-managers embedded in the socio-economic context of Croatia. In order to gain richer and more detailed understanding of entrepreneurial networks and to understand the influence of socio-economic setting on entrepreneurial networking, we have employed qualitative, in-depth study with small hotel owners. Results suggest that entrepreneurs do not establish strong personal and firm-to-firm ties, but rather focus on formal associations. Reported findings identify socio-cultural factors apparently unique to the context of former socialist economy which have the potential to explain the reported networking behaviour. The adopted research approach brings another dimension to existing theoretical underpinnings, which can encourage researchers to extend or revise theories with new contextual variables.

  2. Brian: a simulator for spiking neural networks in Python

    Directory of Open Access Journals (Sweden)

    Dan F M Goodman

    2008-11-01

    Full Text Available Brian is a new simulator for spiking neural networks, written in Python (http://brian.di.ens.fr. It is an intuitive and highly flexible tool for rapidly developing new models, especially networks of single-compartment neurons. In addition to using standard types of neuron models, users can define models by writing arbitrary differential equations in ordinary mathematical notation. Python scientific libraries can also be used for defining models and analysing data. Vectorisation techniques allow efficient simulations despite the overheads of an interpreted language. Brian will be especially valuable for working on non-standard neuron models not easily covered by existing software, and as an alternative to using Matlab or C for simulations. With its easy and intuitive syntax, Brian is also very well suited for teaching computational neuroscience.

  3. Fast and Efficient Asynchronous Neural Computation with Adapting Spiking Neural Networks

    NARCIS (Netherlands)

    D. Zambrano (Davide); S.M. Bohte (Sander)

    2016-01-01

    textabstractBiological neurons communicate with a sparing exchange of pulses - spikes. It is an open question how real spiking neurons produce the kind of powerful neural computation that is possible with deep artificial neural networks, using only so very few spikes to communicate. Building on

  4. Brand communities embedded in social networks.

    Science.gov (United States)

    Zaglia, Melanie E

    2013-02-01

    Brand communities represent highly valuable marketing, innovation management, and customer relationship management tools. However, applying successful marketing strategies today, and in the future, also means exploring and seizing the unprecedented opportunities of social network environments. This study combines these two social phenomena which have largely been researched separately, and aims to investigate the existence, functionality and different types of brand communities within social networks. The netnographic approach yields strong evidence of this existence; leading to a better understanding of such embedded brand communities, their peculiarities, and motivational drivers for participation; therefore the findings contribute to theory by combining two separate research streams. Due to the advantages of social networks, brand management is now able to implement brand communities with less time and financial effort; however, choosing the appropriate brand community type, cultivating consumers' interaction, and staying tuned to this social engagement are critical factors to gain anticipated brand outcomes.

  5. Population spikes in cortical networks during different functional states.

    Directory of Open Access Journals (Sweden)

    Shirley eMark

    2012-07-01

    Full Text Available Brain computational challenges vary between behavioral states. Engaged animals react according to incoming sensory information, while in relaxed and sleeping states consolidation of the learned information is believed to take place. Different states are characterized by different forms of cortical activity. We study a possible neuronal mechanism for generating these diverse dynamics and suggest their possible functional significance. Previous studies demonstrated that brief synchronized increase in a neural firing (Population Spikes can be generated in homogenous recurrent neural networks with short-term synaptic depression. Here we consider more realistic networks with clustered architecture. We show that the level of synchronization in neural activity can be controlled smoothly by network parameters. The network shifts from asynchronous activity to a regime in which clusters synchronized separately, then, the synchronization between the clusters increases gradually to fully synchronized state. We examine the effects of different synchrony levels on the transmission of information by the network. We find that the regime of intermediate synchronization is preferential for the flow of information between sparsely connected areas. Based on these results, we suggest that the regime of intermediate synchronization corresponds to engaged behavioral state of the animal, while global synchronization is exhibited during relaxed and sleeping states.

  6. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.

    Science.gov (United States)

    Jimenez-Romero, Cristian; Johnson, Jeffrey

    2017-01-01

    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.

  7. Embedded generation and network management issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This report focuses on the characteristics of power generators that are important to accommodation in a distribution system. Part 1 examines the differences between transmission and distribution systems, and issues such as randomness, diversity, predictability, and controllability associated with accommodation in a distribution system. Part 2 concentrates on technical and operational issues relating to embedded generation, and the possible impact of the New Electricity Trading Arrangements. Commercial issues, contractual relationships for network charging and provision of services, and possible ways forward are examined in the last three parts of the report.

  8. Analog memristive synapse in spiking networks implementing unsupervised learning

    Directory of Open Access Journals (Sweden)

    Erika Covi

    2016-10-01

    Full Text Available Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e. the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity. This implies a device able to change its resistance (synaptic strength, or weight upon proper electrical stimuli (synaptic activity and showing several stable resistive states throughout its dynamic range (analog behavior. Moreover, it should be able to perform spike timing dependent plasticity (STDP, an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO2-based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy characters are displayed and it is robust to a device-to-device variability of up to +/-30%.

  9. The Second Spiking Threshold: Dynamics of Laminar Network Spiking in the Visual Cortex

    DEFF Research Database (Denmark)

    Forsberg, Lars E.; Bonde, Lars H.; Harvey, Michael A.

    2016-01-01

    Most neurons have a threshold separating the silent non-spiking state and the state of producing temporal sequences of spikes. But neurons in vivo also have a second threshold, found recently in granular layer neurons of the primary visual cortex, separating spontaneous ongoing spiking from...... were slow, frequently changing direction. In single trials, sharp as well as smooth and slow transients transform the trajectories to be outward directed, fast and crossing the threshold to become evoked. Although the speeds of the evolution of the evoked states differ, the same domain of the state...... space is explored indicating uniformity of the evoked states. All evoked states return to the spontaneous evoked spiking state as in a typical mono-stable dynamical system. In single trials, neither the original spiking rates, nor the temporal evolution in state space could distinguish simple visual...

  10. SPANNER: A Self-Repairing Spiking Neural Network Hardware Architecture.

    Science.gov (United States)

    Liu, Junxiu; Harkin, Jim; Maguire, Liam P; McDaid, Liam J; Wade, John J

    2017-03-06

    Recent research has shown that a glial cell of astrocyte underpins a self-repair mechanism in the human brain, where spiking neurons provide direct and indirect feedbacks to presynaptic terminals. These feedbacks modulate the synaptic transmission probability of release (PR). When synaptic faults occur, the neuron becomes silent or near silent due to the low PR of synapses; whereby the PRs of remaining healthy synapses are then increased by the indirect feedback from the astrocyte cell. In this paper, a novel hardware architecture of Self-rePAiring spiking Neural NEtwoRk (SPANNER) is proposed, which mimics this self-repairing capability in the human brain. This paper demonstrates that the hardware can self-detect and self-repair synaptic faults without the conventional components for the fault detection and fault repairing. Experimental results show that SPANNER can maintain the system performance with fault densities of up to 40%, and more importantly SPANNER has only a 20% performance degradation when the self-repairing architecture is significantly damaged at a fault density of 80%.

  11. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    Science.gov (United States)

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  12. Social networks as embedded complex adaptive systems.

    Science.gov (United States)

    Benham-Hutchins, Marge; Clancy, Thomas R

    2010-09-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.

  13. A case for spiking neural network simulation based on configurable multiple-FPGA systems.

    Science.gov (United States)

    Yang, Shufan; Wu, Qiang; Li, Renfa

    2011-09-01

    Recent neuropsychological research has begun to reveal that neurons encode information in the timing of spikes. Spiking neural network simulations are a flexible and powerful method for investigating the behaviour of neuronal systems. Simulation of the spiking neural networks in software is unable to rapidly generate output spikes in large-scale of neural network. An alternative approach, hardware implementation of such system, provides the possibility to generate independent spikes precisely and simultaneously output spike waves in real time, under the premise that spiking neural network can take full advantage of hardware inherent parallelism. We introduce a configurable FPGA-oriented hardware platform for spiking neural network simulation in this work. We aim to use this platform to combine the speed of dedicated hardware with the programmability of software so that it might allow neuroscientists to put together sophisticated computation experiments of their own model. A feed-forward hierarchy network is developed as a case study to describe the operation of biological neural systems (such as orientation selectivity of visual cortex) and computational models of such systems. This model demonstrates how a feed-forward neural network constructs the circuitry required for orientation selectivity and provides platform for reaching a deeper understanding of the primate visual system. In the future, larger scale models based on this framework can be used to replicate the actual architecture in visual cortex, leading to more detailed predictions and insights into visual perception phenomenon.

  14. Testing of information condensation in a model reverberating spiking neural network.

    Science.gov (United States)

    Vidybida, Alexander

    2011-06-01

    Information about external world is delivered to the brain in the form of structured in time spike trains. During further processing in higher areas, information is subjected to a certain condensation process, which results in formation of abstract conceptual images of external world, apparently, represented as certain uniform spiking activity partially independent on the input spike trains details. Possible physical mechanism of condensation at the level of individual neuron was discussed recently. In a reverberating spiking neural network, due to this mechanism the dynamics should settle down to the same uniform/ periodic activity in response to a set of various inputs. Since the same periodic activity may correspond to different input spike trains, we interpret this as possible candidate for information condensation mechanism in a network. Our purpose is to test this possibility in a network model consisting of five fully connected neurons, particularly, the influence of geometric size of the network, on its ability to condense information. Dynamics of 20 spiking neural networks of different geometric sizes are modelled by means of computer simulation. Each network was propelled into reverberating dynamics by applying various initial input spike trains. We run the dynamics until it becomes periodic. The Shannon's formula is used to calculate the amount of information in any input spike train and in any periodic state found. As a result, we obtain explicit estimate of the degree of information condensation in the networks, and conclude that it depends strongly on the net's geometric size.

  15. Dynamic Control of Synchronous Activity in Networks of Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Axel Hutt

    Full Text Available Oscillatory brain activity is believed to play a central role in neural coding. Accumulating evidence shows that features of these oscillations are highly dynamic: power, frequency and phase fluctuate alongside changes in behavior and task demands. The role and mechanism supporting this variability is however poorly understood. We here analyze a network of recurrently connected spiking neurons with time delay displaying stable synchronous dynamics. Using mean-field and stability analyses, we investigate the influence of dynamic inputs on the frequency of firing rate oscillations. We show that afferent noise, mimicking inputs to the neurons, causes smoothing of the system's response function, displacing equilibria and altering the stability of oscillatory states. Our analysis further shows that these noise-induced changes cause a shift of the peak frequency of synchronous oscillations that scales with input intensity, leading the network towards critical states. We lastly discuss the extension of these principles to periodic stimulation, in which externally applied driving signals can trigger analogous phenomena. Our results reveal one possible mechanism involved in shaping oscillatory activity in the brain and associated control principles.

  16. A comparison of learning abilities of spiking networks with different spike timing-dependent plasticity forms

    Science.gov (United States)

    Sboev, Alexander; Vlasov, Danila; Serenko, Alexey; Rybka, Roman; Moloshnikov, Ivan

    2016-02-01

    A study of possibility to model the learning process on base of different forms of timing-dependent plasticity (STDP) was performed. It is shown that the learning ability depends on the choice of spike pairing scheme and the type of input signal used for learning. The comparison of performance of several STDP rules along with several neuron models (leaky integrate-and-fire, static, Izhikevich and Hodgkin-Huxley) was carried out using the NEST simulator. The combinations of input signal and STDP spike pairing scheme, which demonstrate the best learning abilities, were extracted.

  17. Bistability induces episodic spike communication by inhibitory neurons in neuronal networks

    Science.gov (United States)

    Kazantsev, V. B.; Asatryan, S. Yu.

    2011-09-01

    Bistability is one of the important features of nonlinear dynamical systems. In neurodynamics, bistability has been found in basic Hodgkin-Huxley equations describing the cell membrane dynamics. When the neuron is clamped near its threshold, the stable rest potential may coexist with the stable limit cycle describing periodic spiking. However, this effect is often neglected in network computations where the neurons are typically reduced to threshold firing units (e.g., integrate-and-fire models). We found that the bistability may induce spike communication by inhibitory coupled neurons in the spiking network. The communication is realized in the form of episodic discharges with synchronous (correlated) spikes during the episodes. A spiking phase map is constructed to describe the synchronization and to estimate basic spike phase locking modes.

  18. Bistability induces episodic spike communication by inhibitory neurons in neuronal networks.

    Science.gov (United States)

    Kazantsev, V B; Asatryan, S Yu

    2011-09-01

    Bistability is one of the important features of nonlinear dynamical systems. In neurodynamics, bistability has been found in basic Hodgkin-Huxley equations describing the cell membrane dynamics. When the neuron is clamped near its threshold, the stable rest potential may coexist with the stable limit cycle describing periodic spiking. However, this effect is often neglected in network computations where the neurons are typically reduced to threshold firing units (e.g., integrate-and-fire models). We found that the bistability may induce spike communication by inhibitory coupled neurons in the spiking network. The communication is realized in the form of episodic discharges with synchronous (correlated) spikes during the episodes. A spiking phase map is constructed to describe the synchronization and to estimate basic spike phase locking modes.

  19. An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation

    Science.gov (United States)

    Wang, Runchun; Cohen, Gregory; Stiefel, Klaus M.; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, André

    2013-01-01

    We present an FPGA implementation of a re-configurable, polychronous spiking neural network with a large capacity for spatial-temporal patterns. The proposed neural network generates delay paths de novo, so that only connections that actually appear in the training patterns will be created. This allows the proposed network to use all the axons (variables) to store information. Spike Timing Dependent Delay Plasticity is used to fine-tune and add dynamics to the network. We use a time multiplexing approach allowing us to achieve 4096 (4k) neurons and up to 1.15 million programmable delay axons on a Virtex 6 FPGA. Test results show that the proposed neural network is capable of successfully recalling more than 95% of all spikes for 96% of the stored patterns. The tests also show that the neural network is robust to noise from random input spikes. PMID:23408739

  20. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.

    Science.gov (United States)

    Ly, Cheng

    2015-12-01

    Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.

  1. Impacts of clustering on noise-induced spiking regularity in the excitatory neuronal networks of subnetworks.

    Science.gov (United States)

    Li, Huiyan; Sun, Xiaojuan; Xiao, Jinghua

    2015-01-01

    In this paper, we investigate how clustering factors influent spiking regularity of the neuronal network of subnetworks. In order to do so, we fix the averaged coupling probability and the averaged coupling strength, and take the cluster number M, the ratio of intra-connection probability and inter-connection probability R, the ratio of intra-coupling strength and inter-coupling strength S as controlled parameters. With the obtained simulation results, we find that spiking regularity of the neuronal networks has little variations with changing of R and S when M is fixed. However, cluster number M could reduce the spiking regularity to low level when the uniform neuronal network's spiking regularity is at high level. Combined the obtained results, we can see that clustering factors have little influences on the spiking regularity when the entire energy is fixed, which could be controlled by the averaged coupling strength and the averaged connection probability.

  2. Structured chaos shapes spike-response noise entropy in balanced neural networks

    Directory of Open Access Journals (Sweden)

    Guillaume eLajoie

    2014-10-01

    Full Text Available Large networks of sparsely coupled, excitatory and inhibitory cells occur throughout the brain. For many models of these networks, a striking feature is that their dynamics are chaotic and thus, are sensitive to small perturbations. How does this chaos manifest in the neural code? Specifically, how variable are the spike patterns that such a network produces in response to an input signal? To answer this, we derive a bound for a general measure of variability -- spike-train entropy. This leads to important insights on the variability of multi-cell spike pattern distributions in large recurrent networks of spiking neurons responding to fluctuating inputs. The analysis is based on results from random dynamical systems theory and is complemented by detailed numerical simulations. We find that the spike pattern entropy is an order of magnitude lower than what would be extrapolated from single cells. This holds despite the fact that network coupling becomes vanishingly sparse as network size grows -- a phenomenon that depends on ``extensive chaos, as previously discovered for balanced networks without stimulus drive. Moreover, we show how spike pattern entropy is controlled by temporal features of the inputs. Our findings provide insight into how neural networks may encode stimuli in the presence of inherently chaotic dynamics.

  3. Distributed FDI of a networked embedded microdrone

    OpenAIRE

    Tanwani, Aneel; Gentil, Sylviane; Lesecq, Suzanne; Thiriet, Jean-Marc

    2006-01-01

    International audience; Embedded systems constitute a category whose safety is critical and where FDI real time constraints are particularly important. Embedded algorithms must be the simplest possible and computations may be distributed between the embedded system and a more powerful distant computer. This paper proposes a bank of observers to diagnose faults of a small helicopter controlled in closed loop. The studied prototype is a 4 rotors mini drone equipped with an attitude central for ...

  4. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

    Science.gov (United States)

    Walter, Florian; Röhrbein, Florian; Knoll, Alois

    2015-12-01

    The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    National Research Council Canada - National Science Library

    Cheung, Kit; Schultz, Simon R; Luk, Wayne

    2015-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs...

  6. Exporting embedded in culture and transnational networks around entrepreneurs

    DEFF Research Database (Denmark)

    Ashourizadeh, Shayegheh; Schøtt, Thomas

    2016-01-01

    Exporting is embedded in transnational networks and other networks around entrepreneurs. We hypothesise that exporting is constrained by networking in the private sphere, but promoted by networking in the public sphere, and benefitting especially from networking in the transnational environment....... This dynamic unfolds in the context of culture, which expectedly moderates benefit of networks for exporting. Networking for advice was surveyed in the Global Entrepreneurship Monitor in 61 societies with 52,968 entrepreneurs. Exporting greatly benefits from transnational networks around entrepreneurs and also...... from networking in the market, professions and work-place, but is impeded by networking for advice in the private sphere. Exporting is embedded in culture in the way that benefits of transnational networking for exporting are higher in secular-rational culture than in traditional culture. This study...

  7. Exploring complex networks via topological embedding on surfaces.

    Science.gov (United States)

    Aste, Tomaso; Gramatica, Ruggero; Di Matteo, T

    2012-09-01

    We demonstrate that graphs embedded on surfaces are a powerful and practical tool to generate, to characterize, and to simulate networks with a broad range of properties. Any network can be embedded on a surface with sufficiently high genus and therefore the study of topologically embedded graphs is non-restrictive. We show that the local properties of the network are affected by the surface genus which determines the average degree, which influences the degree distribution, and which controls the clustering coefficient. The global properties of the graph are also strongly affected by the surface genus which is constraining the degree of interwovenness, changing the scaling properties of the network from large-world kind (small genus) to small- and ultrasmall-world kind (large genus). Two elementary moves allow the exploration of all networks embeddable on a given surface and naturally introduce a tool to develop a statistical mechanics description for these networks. Within such a framework, we study the properties of topologically embedded graphs which dynamically tend to lower their energy towards a ground state with a given reference degree distribution. We show that the cooling dynamics between high and low "temperatures" is strongly affected by the surface genus with the manifestation of a glass-like transition occurring when the distance from the reference distribution is low. We prove, with examples, that topologically embedded graphs can be built in a way to contain arbitrary complex networks as subgraphs. This method opens a new avenue to build geometrically embedded networks on hyperbolic manifolds.

  8. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator.

    Science.gov (United States)

    Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus

    2017-01-01

    Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.

  9. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Lars Buesing

    2011-11-01

    Full Text Available The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

  10. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.

    Science.gov (United States)

    Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang

    2011-11-01

    The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

  11. Hybrid Spintronic-CMOS Spiking Neural Network with On-Chip Learning: Devices, Circuits, and Systems

    Science.gov (United States)

    Sengupta, Abhronil; Banerjee, Aparajita; Roy, Kaushik

    2016-12-01

    Over the past decade, spiking neural networks (SNNs) have emerged as one of the popular architectures to emulate the brain. In SNNs, information is temporally encoded and communication between neurons is accomplished by means of spikes. In such networks, spike-timing-dependent plasticity mechanisms require the online programing of synapses based on the temporal information of spikes transmitted by spiking neurons. In this work, we propose a spintronic synapse with decoupled spike-transmission and programing-current paths. The spintronic synapse consists of a ferromagnet-heavy-metal heterostructure where the programing current through the heavy metal generates spin-orbit torque to modulate the device conductance. Low programing energy and fast programing times demonstrate the efficacy of the proposed device as a nanoelectronic synapse. We perform a simulation study based on an experimentally benchmarked device-simulation framework to demonstrate the interfacing of such spintronic synapses with CMOS neurons and learning circuits operating in the transistor subthreshold region to form a network of spiking neurons that can be utilized for pattern-recognition problems.

  12. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2015-08-01

    Full Text Available The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.

  13. Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers.

    Science.gov (United States)

    Carrillo, Snaider; Harkin, Jim; McDaid, Liam; Pande, Sandeep; Cawley, Seamus; McGinley, Brian; Morgan, Fearghal

    2012-09-01

    The brain is highly efficient in how it processes information and tolerates faults. Arguably, the basic processing units are neurons and synapses that are interconnected in a complex pattern. Computer scientists and engineers aim to harness this efficiency and build artificial neural systems that can emulate the key information processing principles of the brain. However, existing approaches cannot provide the dense interconnect for the billions of neurons and synapses that are required. Recently a reconfigurable and biologically inspired paradigm based on network-on-chip (NoC) and spiking neural networks (SNNs) has been proposed as a new method of realising an efficient, robust computing platform. However, the use of the NoC as an interconnection fabric for large-scale SNNs demands a good trade-off between scalability, throughput, neuron/synapse ratio and power consumption. This paper presents a novel traffic-aware, adaptive NoC router, which forms part of a proposed embedded mixed-signal SNN architecture called EMBRACE (EMulating Biologically-inspiRed ArChitectures in hardwarE). The proposed adaptive NoC router provides the inter-neuron connectivity for EMBRACE, maintaining router communication and avoiding dropped router packets by adapting to router traffic congestion. Results are presented on throughput, power and area performance analysis of the adaptive router using a 90 nm CMOS technology which outperforms existing NoCs in this domain. The adaptive behaviour of the router is also verified on a Stratix II FPGA implementation of a 4 × 2 router array with real-time traffic congestion. The presented results demonstrate the feasibility of using the proposed adaptive NoC router within the EMBRACE architecture to realise large-scale SNNs on embedded hardware. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Using Stochastic Spiking Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems

    Science.gov (United States)

    Fonseca Guerra, Gabriel A.; Furber, Steve B.

    2017-01-01

    Constraint satisfaction problems (CSP) are at the core of numerous scientific and technological applications. However, CSPs belong to the NP-complete complexity class, for which the existence (or not) of efficient algorithms remains a major unsolved question in computational complexity theory. In the face of this fundamental difficulty heuristics and approximation methods are used to approach instances of NP (e.g., decision and hard optimization problems). The human brain efficiently handles CSPs both in perception and behavior using spiking neural networks (SNNs), and recent studies have demonstrated that the noise embedded within an SNN can be used as a computational resource to solve CSPs. Here, we provide a software framework for the implementation of such noisy neural solvers on the SpiNNaker massively parallel neuromorphic hardware, further demonstrating their potential to implement a stochastic search that solves instances of P and NP problems expressed as CSPs. This facilitates the exploration of new optimization strategies and the understanding of the computational abilities of SNNs. We demonstrate the basic principles of the framework by solving difficult instances of the Sudoku puzzle and of the map color problem, and explore its application to spin glasses. The solver works as a stochastic dynamical system, which is attracted by the configuration that solves the CSP. The noise allows an optimal exploration of the space of configurations, looking for the satisfiability of all the constraints; if applied discontinuously, it can also force the system to leap to a new random configuration effectively causing a restart.

  15. Using Stochastic Spiking Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems

    Directory of Open Access Journals (Sweden)

    Gabriel A. Fonseca Guerra

    2017-12-01

    Full Text Available Constraint satisfaction problems (CSP are at the core of numerous scientific and technological applications. However, CSPs belong to the NP-complete complexity class, for which the existence (or not of efficient algorithms remains a major unsolved question in computational complexity theory. In the face of this fundamental difficulty heuristics and approximation methods are used to approach instances of NP (e.g., decision and hard optimization problems. The human brain efficiently handles CSPs both in perception and behavior using spiking neural networks (SNNs, and recent studies have demonstrated that the noise embedded within an SNN can be used as a computational resource to solve CSPs. Here, we provide a software framework for the implementation of such noisy neural solvers on the SpiNNaker massively parallel neuromorphic hardware, further demonstrating their potential to implement a stochastic search that solves instances of P and NP problems expressed as CSPs. This facilitates the exploration of new optimization strategies and the understanding of the computational abilities of SNNs. We demonstrate the basic principles of the framework by solving difficult instances of the Sudoku puzzle and of the map color problem, and explore its application to spin glasses. The solver works as a stochastic dynamical system, which is attracted by the configuration that solves the CSP. The noise allows an optimal exploration of the space of configurations, looking for the satisfiability of all the constraints; if applied discontinuously, it can also force the system to leap to a new random configuration effectively causing a restart.

  16. Exact computation of the Maximum Entropy Potential of spiking neural networks models

    CERN Document Server

    Cofre, Rodrigo

    2014-01-01

    Understanding how stimuli and synaptic connectivity in uence the statistics of spike patterns in neural networks is a central question in computational neuroscience. Maximum Entropy approach has been successfully used to characterize the statistical response of simultaneously recorded spiking neurons responding to stimuli. But, in spite of good performance in terms of prediction, the ?tting parameters do not explain the underlying mechanistic causes of the observed correlations. On the other hand, mathematical models of spiking neurons (neuro-mimetic models) provide a probabilistic mapping between stimulus, network architecture and spike patterns in terms of conditional proba- bilities. In this paper we build an exact analytical mapping between neuro-mimetic and Maximum Entropy models.

  17. Delay selection by spike-timing-dependent plasticity in recurrent networks of spiking neurons receiving oscillatory inputs.

    Directory of Open Access Journals (Sweden)

    Robert R Kerr

    Full Text Available Learning rules, such as spike-timing-dependent plasticity (STDP, change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.

  18. Exact subthreshold integration with continuous spike times in discrete-time neural network simulations.

    Science.gov (United States)

    Morrison, Abigail; Straube, Sirko; Plesser, Hans Ekkehard; Diesmann, Markus

    2007-01-01

    Very large networks of spiking neurons can be simulated efficiently in parallel under the constraint that spike times are bound to an equidistant time grid. Within this scheme, the subthreshold dynamics of a wide class of integrate-and-fire-type neuron models can be integrated exactly from one grid point to the next. However, the loss in accuracy caused by restricting spike times to the grid can have undesirable consequences, which has led to interest in interpolating spike times between the grid points to retrieve an adequate representation of network dynamics. We demonstrate that the exact integration scheme can be combined naturally with off-grid spike events found by interpolation. We show that by exploiting the existence of a minimal synaptic propagation delay, the need for a central event queue is removed, so that the precision of event-driven simulation on the level of single neurons is combined with the efficiency of time-driven global scheduling. Further, for neuron models with linear subthreshold dynamics, even local event queuing can be avoided, resulting in much greater efficiency on the single-neuron level. These ideas are exemplified by two implementations of a widely used neuron model. We present a measure for the efficiency of network simulations in terms of their integration error and show that for a wide range of input spike rates, the novel techniques we present are both more accurate and faster than standard techniques.

  19. Spike-timing computation properties of a feed-forward neural network model

    Directory of Open Access Journals (Sweden)

    Drew Benjamin Sinha

    2014-01-01

    Full Text Available Brain function is characterized by dynamical interactions among networks of neurons. These interactions are mediated by network topology at many scales ranging from microcircuits to brain areas. Understanding how networks operate can be aided by understanding how the transformation of inputs depends upon network connectivity patterns, e.g. serial and parallel pathways. To tractably determine how single synapses or groups of synapses in such pathways shape transformations, we modeled feed-forward networks of 7-22 neurons in which synaptic strength changed according to a spike-timing dependent plasticity rule. We investigated how activity varied when dynamics were perturbed by an activity-dependent electrical stimulation protocol (spike-triggered stimulation; STS in networks of different topologies and background input correlations. STS can successfully reorganize functional brain networks in vivo, but with a variability in effectiveness that may derive partially from the underlying network topology. In a simulated network with a single disynaptic pathway driven by uncorrelated background activity, structured spike-timing relationships between polysynaptically connected neurons were not observed. When background activity was correlated or parallel disynaptic pathways were added, however, robust polysynaptic spike timing relationships were observed, and application of STS yielded predictable changes in synaptic strengths and spike-timing relationships. These observations suggest that precise input-related or topologically induced temporal relationships in network activity are necessary for polysynaptic signal propagation. Such constraints for polysynaptic computation suggest potential roles for higher-order topological structure in network organization, such as maintaining polysynaptic correlation in the face of relatively weak synapses.

  20. Topological Embedding Feature Based Resource Allocation in Network Virtualization

    Directory of Open Access Journals (Sweden)

    Hongyan Cui

    2014-01-01

    Full Text Available Virtualization provides a powerful way to run multiple virtual networks on a shared substrate network, which needs accurate and efficient mathematical models. Virtual network embedding is a challenge in network virtualization. In this paper, considering the degree of convergence when mapping a virtual network onto substrate network, we propose a new embedding algorithm based on topology mapping convergence-degree. Convergence-degree means the adjacent degree of virtual network’s nodes when they are mapped onto a substrate network. The contributions of our method are as below. Firstly, we map virtual nodes onto the substrate nodes with the maximum convergence-degree. The simulation results show that our proposed algorithm largely enhances the network utilization efficiency and decreases the complexity of the embedding problem. Secondly, we define the load balance rate to reflect the load balance of substrate links. The simulation results show our proposed algorithm achieves better load balance. Finally, based on the feature of star topology, we further improve our embedding algorithm and make it suitable for application in the star topology. The test result shows it gets better performance than previous works.

  1. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2018-01-23

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  2. Silicon-embedded copper nanostructure network for high energy storage

    Science.gov (United States)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  3. Versatile Networks of Simulated Spiking Neurons Displaying Winner-Take-All Behavior

    Directory of Open Access Journals (Sweden)

    Yanqing eChen

    2013-03-01

    Full Text Available We describe simulations of large-scale networks of excitatory and inhibitory spiking neurons that can generate dynamically stable winner-take-all (WTA behavior. The network connectivity is a variant of center-surround architecture that we call center-annular-surround (CAS. In this architecture each neuron is excited by nearby neighbors and inhibited by more distant neighbors in an annular-surround region. The neural units of these networks simulate conductance-based spiking neurons that interact via mechanisms susceptible to both short-term synaptic plasticity and STDP. We show that such CAS networks display robust WTA behavior unlike the center-surround networks and other control architectures that we have studied. We find that a large-scale network of spiking neurons with separate populations of excitatory and inhibitory neurons can give rise to smooth maps of sensory input. In addition, we show that a humanoid Brain-Based-Device (BBD under the control of a spiking WTA neural network can learn to reach to target positions in its visual field, thus demonstrating the acquisition of sensorimotor coordination.

  4. Embedded generation connection incentives for distribution network operators

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.; Andrews, S.

    2002-07-01

    This is the final report with respect to work commissioned by the Department of Trade and Industry (DTI) as part of the New and Renewable Energy Programme into incentives for distribution network operators (DNOs) for the connection of embedded generation. This report, which incorporates the contents of the interim report submitted in February 2002, considers the implications of changes in the structure and regulation in the UK electricity industry on the successful technical and commercial integrated of embedded generation into distribution networks. The report examines: the obligations of public electricity suppliers (PESs); current DNO practices regarding the connection of embedded generation; the changes introduced by the Utilities Act 2000, including the impact of new obligations placed on DNOs on the connection of embedded generation and the requirements of the new Electricity Distribution Standard Licence conditions; and problems and prospects for DNO incentives.

  5. FPGA Implementation of Self-Organized Spiking Neural Network Controller for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Fangzheng Xue

    2014-06-01

    Full Text Available Spiking neural network, a computational model which uses spikes to process the information, is good candidate for mobile robot controller. In this paper, we present a novel mechanism for controlling mobile robots based on self-organized spiking neural network (SOSNN and introduce a method for FPGA implementation of this SOSNN. The spiking neuron we used is Izhikevich model. A key feature of this controller is that it can simulate the process of unconditioned reflex (avoid obstacles using infrared sensor signals and conditioned reflex (make right choices in multiple T-maze by spike timing-dependent plasticity (STDP learning and dopamine-receptor modulation. Experimental results show that the proposed controller is effective and is easy to implement. The FPGA implementation method aims to build up a specific network using generic blocks designed in the MATLAB Simulink environment. The main characteristics of this original solution are: on-chip learning algorithm implementation, high reconfiguration capability, and operation under real time constraints. An extended analysis has been carried out on the hardware resources used to implement the whole SOSNN network, as well as each individual component block.

  6. Directional spike propagation in a recurrent network: dynamical firewall as anisotropic recurrent inhibition.

    Science.gov (United States)

    Samura, Toshikazu; Hayashi, Hatsuo

    2012-09-01

    It has been demonstrated that theta rhythm propagates along the septotemporal axis of the hippocampal CA1 of the rat running on a track, and it has been suggested that directional spike propagation in the hippocampal CA3 is reflected in CA1. In this paper, we show that directional spike propagation occurs in a recurrent network model in which neurons are connected locally and connection weights are modified through STDP. The recurrent network model consists of excitatory and inhibitory neurons, which are intrinsic bursting and fast spiking neurons developed by Izhikevich, respectively. The maximum length of connections from excitatory neurons is shorter in the horizontal direction than the vertical direction. Connections from inhibitory neurons have the same maximum length in both directions, and the maximum length of inhibitory connections is the same as that of excitatory connections in the vertical direction. When connection weights between excitatory neurons (E→E) were modified through STDP and those from excitatory neurons to inhibitory neurons (E→I) were constant, spikes propagated in the vertical direction as expected from the network structure. However, when E→I connection weights were modified through STDP, as well as E→E connection weights, spikes propagated in the horizontal direction against the above expectation. This paradoxical propagation was produced by strengthened E→I connections which shifted the timing of inhibition forward. When E→I connections are enhanced, the direction of effective inhibition changes from horizontal to vertical, as if a gate for spike propagation is opened in the horizontal direction and firewalls come out in the vertical direction. These results suggest that the advance of timing of inhibition caused by potentiation of E→I connections is influential in network activity and is an important element in determining the direction of spike propagation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Classification of epileptiform and wicket spike of EEG pattern using backpropagation neural network

    Science.gov (United States)

    Puspita, Juni Wijayanti; Jaya, Agus Indra; Gunadharma, Suryani

    2017-03-01

    Epilepsy is characterized by recurrent seizures that is resulted by permanent brain abnormalities. One of tools to support the diagnosis of epilepsy is Electroencephalograph (EEG), which describes the recording of brain electrical activity. Abnormal EEG patterns in epilepsy patients consist of Spike and Sharp waves. While both waves, there is a normal pattern that sometimes misinterpreted as epileptiform by electroenchepalographer (EEGer), namely Wicket Spike. The main difference of the three waves are on the time duration that related to the frequency. In this study, we proposed a method to classify a EEG wave into Sharp wave, Spike wave or Wicket spike group using Backpropagation Neural Network based on the frequency and amplitude of each wave. The results show that the proposed method can classifies the three group of waves with good accuracy.

  8. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations

    Science.gov (United States)

    Hahne, Jan; Helias, Moritz; Kunkel, Susanne; Igarashi, Jun; Bolten, Matthias; Frommer, Andreas; Diesmann, Markus

    2015-01-01

    Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy in the presence of gap junctions, we present benchmarks for workstations, clusters, and supercomputers. Finally, we discuss limitations of the novel technology. PMID:26441628

  9. Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons

    Science.gov (United States)

    Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang

    2011-01-01

    An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (“explaining away”) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons. PMID:22219717

  10. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Dejan Pecevski

    2011-12-01

    Full Text Available An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows ("explaining away" and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons.

  11. Embedding Design in a Mental Health Network

    OpenAIRE

    Pierri, Paola; Warwick, Laura; Garber, Jake

    2016-01-01

    Service Design in Mind (SDiM) is a programme run by Mind, the national mental health charity. The programme aims to embed service design techniques and methods into a network of local voluntary organisations that deliver mental health services. This case study describes how the programme, based on the idea that everybody designs and everyone can be a designer, aimed to create a diffused design culture (Manzini, 2015) across the charity and its network. By capitalising on existing internal des...

  12. Evolving spiking neural networks: a novel growth algorithm exhibits unintelligent design

    Science.gov (United States)

    Schaffer, J. David

    2015-06-01

    Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.

  13. Spiking, Bursting, and Population Dynamics in a Network of Growth Transform Neurons.

    Science.gov (United States)

    Gangopadhyay, Ahana; Chakrabartty, Shantanu

    2017-04-27

    This paper investigates the dynamical properties of a network of neurons, each of which implements an asynchronous mapping based on polynomial growth transforms. In the first part of this paper, we present a geometric approach for visualizing the dynamics of the network where each of the neurons traverses a trajectory in a dual optimization space, whereas the network itself traverses a trajectory in an equivalent primal optimization space. We show that as the network learns to solve basic classification tasks, different choices of primal-dual mapping produce unique but interpretable neural dynamics like noise shaping, spiking, and bursting. While the proposed framework is general enough, in this paper, we demonstrate its use for designing support vector machines (SVMs) that exhibit noise-shaping properties similar to those of ΣΔ modulators, and for designing SVMs that learn to encode information using spikes and bursts. It is demonstrated that the emergent switching, spiking, and burst dynamics produced by each neuron encodes its respective margin of separation from a classification hyperplane whose parameters are encoded by the network population dynamics. We believe that the proposed growth transform neuron model and the underlying geometric framework could serve as an important tool to connect well-established machine learning algorithms like SVMs to neuromorphic principles like spiking, bursting, population encoding, and noise shaping.

  14. Novel Spiking Neuron-Astrocyte Networks based on nonlinear transistor-like models of tripartite synapses.

    Science.gov (United States)

    Valenza, Gaetano; Tedesco, Luciano; Lanata, Antonio; De Rossi, Danilo; Scilingo, Enzo Pasquale

    2013-01-01

    In this paper a novel and efficient computational implementation of a Spiking Neuron-Astrocyte Network (SNAN) is reported. Neurons are modeled according to the Izhikevich formulation and the neuron-astrocyte interactions are intended as tripartite synapsis and modeled with the previously proposed nonlinear transistor-like model. Concerning the learning rules, the original spike-timing dependent plasticity is used for the neural part of the SNAN whereas an ad-hoc rule is proposed for the astrocyte part. SNAN performances are compared with a standard spiking neural network (SNN) and evaluated using the polychronization concept, i.e., number of co-existing groups that spontaneously generate patterns of polychronous activity. The astrocyte-neuron ratio is the biologically inspired value of 1.5. The proposed SNAN shows higher number of polychronous groups than SNN, remarkably achieved for the whole duration of simulation (24 hours).

  15. Density-dependence of functional spiking networks in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Michael I [Los Alamos National Laboratory; Gintautuas, Vadas [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Bettencourt, Luis M A [Los Alamos National Laboratory; Bennett, Ryan [UNIV OF NORTH TEXAS; Santa Maria, Cara L [UNIV OF NORTH TEXAS

    2008-01-01

    During development, the mammalian brain differentiates into specialized regions with unique functional abilities. While many factors contribute to this functional specialization, we explore the effect neuronal density can have on neuronal interactions. Two types of networks, dense (50,000 neurons and glia support cells) and sparse (12,000 neurons and glia support cells), are studied. A competitive first response model is applied to construct activation graphs that represent pairwise neuronal interactions. By observing the evolution of these graphs during development in vitro we observe that dense networks form activation connections earlier than sparse networks, and that link-!llltropy analysis of the resulting dense activation graphs reveals that balanced directional connections dominate. Information theoretic measures reveal in addition that early functional information interactions (of order 3) are synergetic in both dense and sparse networks. However, during development in vitro, such interactions become redundant in dense, but not sparse networks. Large values of activation graph link-entropy correlate strongly with redundant ensembles observed in the dense networks. Results demonstrate differences between dense and sparse networks in terms of informational groups, pairwise relationships, and activation graphs. These differences suggest that variations in cell density may result in different functional specialization of nervous system tissue also in vivo.

  16. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity

    Science.gov (United States)

    Krause, Bryan M.; Raz, Aeyal; Uhlrich, Daniel J.; Smith, Philip H.; Banks, Matthew I.

    2014-01-01

    The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce “packets” of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2–6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory

  17. Synaptic Plasticity and Spike Synchronisation in Neuronal Networks

    Science.gov (United States)

    Borges, Rafael R.; Borges, Fernando S.; Lameu, Ewandson L.; Protachevicz, Paulo R.; Iarosz, Kelly C.; Caldas, Iberê L.; Viana, Ricardo L.; Macau, Elbert E. N.; Baptista, Murilo S.; Grebogi, Celso; Batista, Antonio M.

    2017-09-01

    Brain plasticity, also known as neuroplasticity, is a fundamental mechanism of neuronal adaptation in response to changes in the environment or due to brain injury. In this review, we show our results about the effects of synaptic plasticity on neuronal networks composed by Hodgkin-Huxley neurons. We show that the final topology of the evolved network depends crucially on the ratio between the strengths of the inhibitory and excitatory synapses. Excitation of the same order of inhibition revels an evolved network that presents the rich-club phenomenon, well known to exist in the brain. For initial networks with considerably larger inhibitory strengths, we observe the emergence of a complex evolved topology, where neurons sparsely connected to other neurons, also a typical topology of the brain. The presence of noise enhances the strength of both types of synapses, but if the initial network has synapses of both natures with similar strengths. Finally, we show how the synchronous behaviour of the evolved network will reflect its evolved topology.

  18. Synaptic Plasticity and Spike Synchronisation in Neuronal Networks

    Science.gov (United States)

    Borges, Rafael R.; Borges, Fernando S.; Lameu, Ewandson L.; Protachevicz, Paulo R.; Iarosz, Kelly C.; Caldas, Iberê L.; Viana, Ricardo L.; Macau, Elbert E. N.; Baptista, Murilo S.; Grebogi, Celso; Batista, Antonio M.

    2017-12-01

    Brain plasticity, also known as neuroplasticity, is a fundamental mechanism of neuronal adaptation in response to changes in the environment or due to brain injury. In this review, we show our results about the effects of synaptic plasticity on neuronal networks composed by Hodgkin-Huxley neurons. We show that the final topology of the evolved network depends crucially on the ratio between the strengths of the inhibitory and excitatory synapses. Excitation of the same order of inhibition revels an evolved network that presents the rich-club phenomenon, well known to exist in the brain. For initial networks with considerably larger inhibitory strengths, we observe the emergence of a complex evolved topology, where neurons sparsely connected to other neurons, also a typical topology of the brain. The presence of noise enhances the strength of both types of synapses, but if the initial network has synapses of both natures with similar strengths. Finally, we show how the synchronous behaviour of the evolved network will reflect its evolved topology.

  19. Modeling spike-wave discharges by a complex network of neuronal oscillators

    NARCIS (Netherlands)

    Medvedeva, T.M.; Sysoeva, M.V.; Luijtelaar, E.L.J.M. van; Sysoev, I.V.

    2018-01-01

    Purpose: The organization of neural networks and the mechanisms, which generate the highly stereotypical for absence epilepsy spike-wave discharges (SWDs) is heavily debated. Here we describe such a model which can both reproduce the characteristics of SWDs and dynamics of coupling between brain

  20. A compound memristive synapse model for statistical learning through STDP in spiking neural networks

    Directory of Open Access Journals (Sweden)

    Johannes eBill

    2014-12-01

    Full Text Available Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network’s spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic

  1. Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task

    Science.gov (United States)

    2017-01-01

    Neural networks with a single plastic layer employing reward modulated spike time dependent plasticity (STDP) are capable of learning simple foraging tasks. Here we demonstrate advanced pattern discrimination and continuous learning in a network of spiking neurons with multiple plastic layers. The network utilized both reward modulated and non-reward modulated STDP and implemented multiple mechanisms for homeostatic regulation of synaptic efficacy, including heterosynaptic plasticity, gain control, output balancing, activity normalization of rewarded STDP and hard limits on synaptic strength. We found that addition of a hidden layer of neurons employing non-rewarded STDP created neurons that responded to the specific combinations of inputs and thus performed basic classification of the input patterns. When combined with a following layer of neurons implementing rewarded STDP, the network was able to learn, despite the absence of labeled training data, discrimination between rewarding patterns and the patterns designated as punishing. Synaptic noise allowed for trial-and-error learning that helped to identify the goal-oriented strategies which were effective in task solving. The study predicts a critical set of properties of the spiking neuronal network with STDP that was sufficient to solve a complex foraging task involving pattern classification and decision making. PMID:28961245

  2. Biological modelling of a computational spiking neural network with neuronal avalanches

    Science.gov (United States)

    Li, Xiumin; Chen, Qing; Xue, Fangzheng

    2017-05-01

    In recent years, an increasing number of studies have demonstrated that networks in the brain can self-organize into a critical state where dynamics exhibit a mixture of ordered and disordered patterns. This critical branching phenomenon is termed neuronal avalanches. It has been hypothesized that the homeostatic level balanced between stability and plasticity of this critical state may be the optimal state for performing diverse neural computational tasks. However, the critical region for high performance is narrow and sensitive for spiking neural networks (SNNs). In this paper, we investigated the role of the critical state in neural computations based on liquid-state machines, a biologically plausible computational neural network model for real-time computing. The computational performance of an SNN when operating at the critical state and, in particular, with spike-timing-dependent plasticity for updating synaptic weights is investigated. The network is found to show the best computational performance when it is subjected to critical dynamic states. Moreover, the active-neuron-dominant structure refined from synaptic learning can remarkably enhance the robustness of the critical state and further improve computational accuracy. These results may have important implications in the modelling of spiking neural networks with optimal computational performance. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  3. Learning by stimulation avoidance: A principle to control spiking neural networks dynamics.

    Science.gov (United States)

    Sinapayen, Lana; Masumori, Atsushi; Ikegami, Takashi

    2017-01-01

    Learning based on networks of real neurons, and learning based on biologically inspired models of neural networks, have yet to find general learning rules leading to widespread applications. In this paper, we argue for the existence of a principle allowing to steer the dynamics of a biologically inspired neural network. Using carefully timed external stimulation, the network can be driven towards a desired dynamical state. We term this principle "Learning by Stimulation Avoidance" (LSA). We demonstrate through simulation that the minimal sufficient conditions leading to LSA in artificial networks are also sufficient to reproduce learning results similar to those obtained in biological neurons by Shahaf and Marom, and in addition explains synaptic pruning. We examined the underlying mechanism by simulating a small network of 3 neurons, then scaled it up to a hundred neurons. We show that LSA has a higher explanatory power than existing hypotheses about the response of biological neural networks to external simulation, and can be used as a learning rule for an embodied application: learning of wall avoidance by a simulated robot. In other works, reinforcement learning with spiking networks can be obtained through global reward signals akin simulating the dopamine system; we believe that this is the first project demonstrating sensory-motor learning with random spiking networks through Hebbian learning relying on environmental conditions without a separate reward system.

  4. Messaging Performance of FIPA Interaction Protocols in Networked Embedded Controllers

    Directory of Open Access Journals (Sweden)

    Omar Jehovani López Orozco

    2007-12-01

    Full Text Available Agent-based technologies in production control systems could facilitate seamless reconfiguration and integration of mechatronic devices/modules into systems. Advances in embedded controllers which are continuously improving computational capabilities allow for software modularization and distribution of decisions. Agent platforms running on embedded controllers could hide the complexity of bootstrap and communication. Therefore, it is important to investigate the messaging performance of the agents whose main motivation is the resource allocation in manufacturing systems (i.e., conveyor system. The tests were implemented using the FIPA-compliant JADE-LEAP agent platform. Agent containers were distributed through networked embedded controllers, and agents were communicating using request and contract-net FIPA interaction protocols. The test scenarios are organized in intercontainer and intracontainer communications. The work shows the messaging performance for the different test scenarios using both interaction protocols.

  5. Virtual Network Embedding via Monte Carlo Tree Search.

    Science.gov (United States)

    Haeri, Soroush; Trajkovic, Ljiljana

    2018-02-01

    Network virtualization helps overcome shortcomings of the current Internet architecture. The virtualized network architecture enables coexistence of multiple virtual networks (VNs) on an existing physical infrastructure. VN embedding (VNE) problem, which deals with the embedding of VN components onto a physical network, is known to be -hard. In this paper, we propose two VNE algorithms: MaVEn-M and MaVEn-S. MaVEn-M employs the multicommodity flow algorithm for virtual link mapping while MaVEn-S uses the shortest-path algorithm. They formalize the virtual node mapping problem by using the Markov decision process (MDP) framework and devise action policies (node mappings) for the proposed MDP using the Monte Carlo tree search algorithm. Service providers may adjust the execution time of the MaVEn algorithms based on the traffic load of VN requests. The objective of the algorithms is to maximize the profit of infrastructure providers. We develop a discrete event VNE simulator to implement and evaluate performance of MaVEn-M, MaVEn-S, and several recently proposed VNE algorithms. We introduce profitability as a new performance metric that captures both acceptance and revenue to cost ratios. Simulation results show that the proposed algorithms find more profitable solutions than the existing algorithms. Given additional computation time, they further improve embedding solutions.

  6. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.

    Science.gov (United States)

    Shim, Yoonsik; Philippides, Andrew; Staras, Kevin; Husbands, Phil

    2016-10-01

    We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.

  7. PAX: A mixed hardware/software simulation platform for spiking neural networks.

    Science.gov (United States)

    Renaud, S; Tomas, J; Lewis, N; Bornat, Y; Daouzli, A; Rudolph, M; Destexhe, A; Saïghi, S

    2010-09-01

    Many hardware-based solutions now exist for the simulation of bio-like neural networks. Less conventional than software-based systems, these types of simulators generally combine digital and analog forms of computation. In this paper we present a mixed hardware-software platform, specifically designed for the simulation of spiking neural networks, using conductance-based models of neurons and synaptic connections with dynamic adaptation rules (Spike-Timing-Dependent Plasticity). The neurons and networks are configurable, and are computed in 'biological real time' by which we mean that the difference between simulated time and simulation time is guaranteed lower than 50 mus. After presenting the issues and context involved in the design and use of hardware-based spiking neural networks, we describe the analog neuromimetic integrated circuits which form the core of the platform. We then explain the organization and computation principles of the modules within the platform, and present experimental results which validate the system. Designed as a tool for computational neuroscience, the platform is exploited in collaborative research projects together with neurobiology and computer science partners. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.

    Directory of Open Access Journals (Sweden)

    Yoonsik Shim

    2016-10-01

    Full Text Available We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP. The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.

  9. Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks.

    Science.gov (United States)

    Martens, Marijn B; Houweling, Arthur R; E Tiesinga, Paul H

    2017-02-01

    Neuronal circuits in the rodent barrel cortex are characterized by stable low firing rates. However, recent experiments show that short spike trains elicited by electrical stimulation in single neurons can induce behavioral responses. Hence, the underlying neural networks provide stability against internal fluctuations in the firing rate, while simultaneously making the circuits sensitive to small external perturbations. Here we studied whether stability and sensitivity are affected by the connectivity structure in recurrently connected spiking networks. We found that anti-correlation between the number of afferent (in-degree) and efferent (out-degree) synaptic connections of neurons increases stability against pathological bursting, relative to networks where the degrees were either positively correlated or uncorrelated. In the stable network state, stimulation of a few cells could lead to a detectable change in the firing rate. To quantify the ability of networks to detect the stimulation, we used a receiver operating characteristic (ROC) analysis. For a given level of background noise, networks with anti-correlated degrees displayed the lowest false positive rates, and consequently had the highest stimulus detection performance. We propose that anti-correlation in the degree distribution may be a computational strategy employed by sensory cortices to increase the detectability of external stimuli. We show that networks with anti-correlated degrees can in principle be formed by applying learning rules comprised of a combination of spike-timing dependent plasticity, homeostatic plasticity and pruning to networks with uncorrelated degrees. To test our prediction we suggest a novel experimental method to estimate correlations in the degree distribution.

  10. Synthesis of neural networks for spatio-temporal spike pattern recognition and processing

    Directory of Open Access Journals (Sweden)

    Jonathan C Tapson

    2013-08-01

    Full Text Available The advent of large scale neural computational platforms has highlighted the lack of algorithms for synthesis of neural structures to perform predefined cognitive tasks. The Neural Engineering Framework offers one such synthesis, but it is most effective for a spike rate representation of neural information, and it requires a large number of neurons to implement simple functions. We describe a neural network synthesis method that generates synaptic connectivity for neurons which process time-encoded neural signals, and which makes very sparse use of neurons. The method allows the user to specify – arbitrarily - neuronal characteristics such as axonal and dendritic delays, and synaptic transfer functions, and then solves for the optimal input-output relationship using computed dendritic weights. The method may be used for batch or online learning and has an extremely fast optimization process. We demonstrate its use in generating a network to recognize speech which is sparsely encoded as spike times.

  11. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system

    Science.gov (United States)

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-01

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  12. Pairwise analysis can account for network structures arising from spike-timing dependent plasticity.

    Directory of Open Access Journals (Sweden)

    Baktash Babadi

    Full Text Available Spike timing-dependent plasticity (STDP modifies synaptic strengths based on timing information available locally at each synapse. Despite this, it induces global structures within a recurrently connected network. We study such structures both through simulations and by analyzing the effects of STDP on pair-wise interactions of neurons. We show how conventional STDP acts as a loop-eliminating mechanism and organizes neurons into in- and out-hubs. Loop-elimination increases when depression dominates and turns into loop-generation when potentiation dominates. STDP with a shifted temporal window such that coincident spikes cause depression enhances recurrent connections and functions as a strict buffering mechanism that maintains a roughly constant average firing rate. STDP with the opposite temporal shift functions as a loop eliminator at low rates and as a potent loop generator at higher rates. In general, studying pairwise interactions of neurons provides important insights about the structures that STDP can produce in large networks.

  13. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    Directory of Open Access Journals (Sweden)

    Stojan Jovanović

    2016-06-01

    Full Text Available The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.

  14. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    Science.gov (United States)

    Jovanović, Stojan; Rotter, Stefan

    2016-06-01

    The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.

  15. CMOS-based Stochastically Spiking Neural Network for Optimization under Uncertainties

    Science.gov (United States)

    2017-03-01

    uncertainties. We discuss a ‘scenario generation’ circuit to non- parametrically estimate/emulate statistics of uncertain cost/constraints...are explored: (1) We discuss a ‘scenario generation’ circuit to non- parametrically estimate and emulate statistics of uncertain cost/constraints...uncertainties. The discussed mixed-signal, CMOS-based architecture of stochastically spiking neural network minimizes area/power of each cell and

  16. Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model.

    Directory of Open Access Journals (Sweden)

    Shinya Ito

    Full Text Available Transfer entropy (TE is an information-theoretic measure which has received recent attention in neuroscience for its potential to identify effective connectivity between neurons. Calculating TE for large ensembles of spiking neurons is computationally intensive, and has caused most investigators to probe neural interactions at only a single time delay and at a message length of only a single time bin. This is problematic, as synaptic delays between cortical neurons, for example, range from one to tens of milliseconds. In addition, neurons produce bursts of spikes spanning multiple time bins. To address these issues, here we introduce a free software package that allows TE to be measured at multiple delays and message lengths. To assess performance, we applied these extensions of TE to a spiking cortical network model (Izhikevich, 2006 with known connectivity and a range of synaptic delays. For comparison, we also investigated single-delay TE, at a message length of one bin (D1TE, and cross-correlation (CC methods. We found that D1TE could identify 36% of true connections when evaluated at a false positive rate of 1%. For extended versions of TE, this dramatically improved to 73% of true connections. In addition, the connections correctly identified by extended versions of TE accounted for 85% of the total synaptic weight in the network. Cross correlation methods generally performed more poorly than extended TE, but were useful when data length was short. A computational performance analysis demonstrated that the algorithm for extended TE, when used on currently available desktop computers, could extract effective connectivity from 1 hr recordings containing 200 neurons in ∼5 min. We conclude that extending TE to multiple delays and message lengths improves its ability to assess effective connectivity between spiking neurons. These extensions to TE soon could become practical tools for experimentalists who record hundreds of spiking neurons.

  17. Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model.

    Science.gov (United States)

    Ito, Shinya; Hansen, Michael E; Heiland, Randy; Lumsdaine, Andrew; Litke, Alan M; Beggs, John M

    2011-01-01

    Transfer entropy (TE) is an information-theoretic measure which has received recent attention in neuroscience for its potential to identify effective connectivity between neurons. Calculating TE for large ensembles of spiking neurons is computationally intensive, and has caused most investigators to probe neural interactions at only a single time delay and at a message length of only a single time bin. This is problematic, as synaptic delays between cortical neurons, for example, range from one to tens of milliseconds. In addition, neurons produce bursts of spikes spanning multiple time bins. To address these issues, here we introduce a free software package that allows TE to be measured at multiple delays and message lengths. To assess performance, we applied these extensions of TE to a spiking cortical network model (Izhikevich, 2006) with known connectivity and a range of synaptic delays. For comparison, we also investigated single-delay TE, at a message length of one bin (D1TE), and cross-correlation (CC) methods. We found that D1TE could identify 36% of true connections when evaluated at a false positive rate of 1%. For extended versions of TE, this dramatically improved to 73% of true connections. In addition, the connections correctly identified by extended versions of TE accounted for 85% of the total synaptic weight in the network. Cross correlation methods generally performed more poorly than extended TE, but were useful when data length was short. A computational performance analysis demonstrated that the algorithm for extended TE, when used on currently available desktop computers, could extract effective connectivity from 1 hr recordings containing 200 neurons in ∼5 min. We conclude that extending TE to multiple delays and message lengths improves its ability to assess effective connectivity between spiking neurons. These extensions to TE soon could become practical tools for experimentalists who record hundreds of spiking neurons.

  18. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    Science.gov (United States)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  19. Energy-aware virtual network embedding in flexi-grid networks.

    Science.gov (United States)

    Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng

    2017-11-27

    Network virtualization technology has been proposed to allow multiple heterogeneous virtual networks (VNs) to coexist on a shared substrate network, which increases the utilization of the substrate network. Efficiently mapping VNs on the substrate network is a major challenge on account of the VN embedding (VNE) problem. Meanwhile, energy efficiency has been widely considered in the network design in terms of operation expenses and the ecological awareness. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the electricity cost of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low electricity cost. Numerical results show that the heuristic algorithm performs closely to the ILP for a small size network, and we also demonstrate its applicability to larger networks.

  20. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    Directory of Open Access Journals (Sweden)

    William eLennon

    2014-12-01

    Full Text Available While the anatomy of the cerebellar microcircuit is well studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs form with the molecular layer interneurons (MLIs – the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1 spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2 adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

  1. A Reconfigurable and Biologically Inspired Paradigm for Computation Using Network-On-Chip and Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Jim Harkin

    2009-01-01

    Full Text Available FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible neuron and synaptic models of SNNs, and current FPGA routing structures cannot accommodate the high levels of interneuron connectivity inherent in complex SNNs. This paper highlights and discusses the current challenges of implementing scalable SNNs on reconfigurable FPGAs. The paper proposes a novel field programmable neural network architecture (EMBRACE, incorporating low-power analogue spiking neurons, interconnected using a Network-on-Chip architecture. Results on the evaluation of the EMBRACE architecture using the XOR benchmark problem are presented, and the performance of the architecture is discussed. The paper also discusses the adaptability of the EMBRACE architecture in supporting fault tolerant computing.

  2. Effect of Heterogeneity on Decorrelation Mechanisms in Spiking Neural Networks: A Neuromorphic-Hardware Study

    Directory of Open Access Journals (Sweden)

    Thomas Pfeil

    2016-05-01

    Full Text Available High-level brain function, such as memory, classification, or reasoning, can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy-efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear subthreshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with nonlinear, conductance-based synapses. Emulations of these networks on the analog neuromorphic-hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm that shared-input correlations are actively suppressed by inhibitory feedback also in highly heterogeneous networks exhibiting broad

  3. [Robustness analysis of adaptive neural network model based on spike timing-dependent plasticity].

    Science.gov (United States)

    Chen, Yunzhi; Xu, Guizhi; Zhou, Qian; Guo, Miaomiao; Guo, Lei; Wan, Xiaowei

    2015-02-01

    To explore the self-organization robustness of the biological neural network, and thus to provide new ideas and methods for the electromagnetic bionic protection, we studied both the information transmission mechanism of neural network and spike timing-dependent plasticity (STDP) mechanism, and then investigated the relationship between synaptic plastic and adaptive characteristic of biology. Then a feedforward neural network with the Izhikevich model and the STDP mechanism was constructed, and the adaptive robust capacity of the network was analyzed. Simulation results showed that the neural network based on STDP mechanism had good rubustness capacity, and this characteristics is closely related to the STDP mechanisms. Based on this simulation work, the cell circuit with neurons and synaptic circuit which can simulate the information processing mechanisms of biological nervous system will be further built, then the electronic circuits with adaptive robustness will be designed based on the cell circuit.

  4. Emergent dynamics from spiking neuron networks through symmetry breaking of connectivity.

    Directory of Open Access Journals (Sweden)

    M Marmaduke Woodman

    Full Text Available Low-dimensional attractive manifolds with flows prescribing the evolution of state variables are commonly used to capture the lawful behavior of behavioral and cognitive variables. Neural network dynamics underlie many of the mechanistic explanations of function and demonstrate the existence of such low-dimensional attractive manifolds. In this study, we focus on exploring the network mechanisms due to asymmetric couplings giving rise to the emergence of arbitrary flows in low dimensional spaces. Here we use a spiking neural network model, specifically the theta neuron model and simple synaptic dynamics, to show how a qualitatively identical set of basic behaviors arises from different combinations of couplings with broken symmetry, in fluctuations of both firing rate and spike timing. We further demonstrate how such network dynamics can be combined to create more complex processes. These results suggest that 1 asymmetric coupling is not always a variance to be averaged over, 2 different networks may produce the same dynamics by different dynamical routes and 3 complex dynamics may be formed by simpler dynamics through a combination of couplings.

  5. A Spiking Neural Network Based Cortex-Like Mechanism and Application to Facial Expression Recognition

    Directory of Open Access Journals (Sweden)

    Si-Yao Fu

    2012-01-01

    Full Text Available In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward, hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs. By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other people’s facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of visual cortex-like mechanism.

  6. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.

    Science.gov (United States)

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  7. Unsupervised Discrimination of Patterns in Spiking Neural Networks with Excitatory and Inhibitory Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Narayan eSrinivasa

    2014-12-01

    Full Text Available A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns – both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  8. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms.

    Science.gov (United States)

    Stromatias, Evangelos; Neil, Daniel; Pfeiffer, Michael; Galluppi, Francesco; Furber, Steve B; Liu, Shih-Chii

    2015-01-01

    Increasingly large deep learning architectures, such as Deep Belief Networks (DBNs) are the focus of current machine learning research and achieve state-of-the-art results in different domains. However, both training and execution of large-scale Deep Networks require vast computing resources, leading to high power requirements and communication overheads. The on-going work on design and construction of spike-based hardware platforms offers an alternative for running deep neural networks with significantly lower power consumption, but has to overcome hardware limitations in terms of noise and limited weight precision, as well as noise inherent in the sensor signal. This article investigates how such hardware constraints impact the performance of spiking neural network implementations of DBNs. In particular, the influence of limited bit precision during execution and training, and the impact of silicon mismatch in the synaptic weight parameters of custom hybrid VLSI implementations is studied. Furthermore, the network performance of spiking DBNs is characterized with regard to noise in the spiking input signal. Our results demonstrate that spiking DBNs can tolerate very low levels of hardware bit precision down to almost two bits, and show that their performance can be improved by at least 30% through an adapted training mechanism that takes the bit precision of the target platform into account. Spiking DBNs thus present an important use-case for large-scale hybrid analog-digital or digital neuromorphic platforms such as SpiNNaker, which can execute large but precision-constrained deep networks in real time.

  9. Energy-aware virtual network embedding in flexi-grid optical networks

    Science.gov (United States)

    Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng; Chen, Bin

    2018-01-01

    Virtual network embedding (VNE) problem is to map multiple heterogeneous virtual networks (VN) on a shared substrate network, which mitigate the ossification of the substrate network. Meanwhile, energy efficiency has been widely considered in the network design. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the power increment of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low energy consumption. Numerical results show the functionality of the heuristic algorithm in a 24-node network.

  10. Stochastic Spiking Neural Networks Enabled by Magnetic Tunnel Junctions: From Nontelegraphic to Telegraphic Switching Regimes

    Science.gov (United States)

    Liyanagedera, Chamika M.; Sengupta, Abhronil; Jaiswal, Akhilesh; Roy, Kaushik

    2017-12-01

    Stochastic spiking neural networks based on nanoelectronic spin devices can be a possible pathway to achieving "brainlike" compact and energy-efficient cognitive intelligence. The computational model attempt to exploit the intrinsic device stochasticity of nanoelectronic synaptic or neural components to perform learning or inference. However, there has been limited analysis on the scaling effect of stochastic spin devices and its impact on the operation of such stochastic networks at the system level. This work attempts to explore the design space and analyze the performance of nanomagnet-based stochastic neuromorphic computing architectures for magnets with different barrier heights. We illustrate how the underlying network architecture must be modified to account for the random telegraphic switching behavior displayed by magnets with low barrier heights as they are scaled into the superparamagnetic regime. We perform a device-to-system-level analysis on a deep neural-network architecture for a digit-recognition problem on the MNIST data set.

  11. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    Directory of Open Access Journals (Sweden)

    Kit eCheung

    2016-01-01

    Full Text Available NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs. Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimised performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP rule for learning. A 6-FPGA system can simulate a network of up to approximately 600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.

  12. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.

    Science.gov (United States)

    Cheung, Kit; Schultz, Simon R; Luk, Wayne

    2015-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.

  13. A stochastic-field description of finite-size spiking neural networks.

    Science.gov (United States)

    Dumont, Grégory; Payeur, Alexandre; Longtin, André

    2017-08-01

    Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity-the density of active neurons per unit time-is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics.

  14. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    Science.gov (United States)

    Cheung, Kit; Schultz, Simon R.; Luk, Wayne

    2016-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation. PMID:26834542

  15. Mechanisms of Winner-Take-All and Group Selection in Neuronal Spiking Networks.

    Science.gov (United States)

    Chen, Yanqing

    2017-01-01

    A major function of central nervous systems is to discriminate different categories or types of sensory input. Neuronal networks accomplish such tasks by learning different sensory maps at several stages of neural hierarchy, such that different neurons fire selectively to reflect different internal or external patterns and states. The exact mechanisms of such map formation processes in the brain are not completely understood. Here we study the mechanism by which a simple recurrent/reentrant neuronal network accomplish group selection and discrimination to different inputs in order to generate sensory maps. We describe the conditions and mechanism of transition from a rhythmic epileptic state (in which all neurons fire synchronized and indiscriminately to any input) to a winner-take-all state in which only a subset of neurons fire for a specific input. We prove an analytic condition under which a stable bump solution and a winner-take-all state can emerge from the local recurrent excitation-inhibition interactions in a three-layer spiking network with distinct excitatory and inhibitory populations, and demonstrate the importance of surround inhibitory connection topology on the stability of dynamic patterns in spiking neural network.

  16. Overcoming barriers to scheduling embedded generation to support distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.J.; Formby, J.R.

    2000-07-01

    Current scheduling of embedded generation for distribution in the UK is limited and patchy. Some DNOs actively schedule while others do none. The literature on the subject is mainly about accommodating volatile wind output, and optimising island systems, for both cost of supply and network stability. The forthcoming NETA will lower prices, expose unpredictable generation to imbalance markets and could introduce punitive constraint payments on DNOs, but at the same time create a dynamic market for both power and ancillary services from embedded generators. Most renewable generators either run as base load (e.g. waste ) or according to the vagaries of the weather (e.g. wind, hydro), so offer little scope for scheduling other than 'off'. CHP plant is normally heat- led for industrial processes or building needs, but supplementary firing or thermal storage often allow considerable scope for scheduling. Micro-CHP with thermal storage could provide short-term scheduling, but tends to be running anyway during the evening peak. Standby generation appears to be ideal for scheduling, but in practice operators may be unwilling to run parallel with the network, and noise and pollution problems may preclude frequent operation. Statistical analysis can be applied to calculate the reliability of several generators compared to one; with a large number of generators such as micro-CHP reliability of a proportion of load is close to unity. The type of communication for generation used will depend on requirements for bandwidth, cost, reliability and whether it is bundled with other services. With high levels of deeply embedded, small-scale generation using induction machines, voltage control and black start capability will become important concerns on 11 kV and LV networks. This will require increased generation monitoring and remote control of switchgear. Examples of cost benefits from scheduling are given, including deferred reinforcement, increased exports on non

  17. Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in Eye Blink Conditioning Paradigms.

    Science.gov (United States)

    Antonietti, Alberto; Casellato, Claudia; Garrido, Jesús A; Luque, Niceto R; Naveros, Francisco; Ros, Eduardo; D' Angelo, Egidio; Pedrocchi, Alessandra

    2016-01-01

    In this study, we defined a realistic cerebellar model through the use of artificial spiking neural networks, testing it in computational simulations that reproduce associative motor tasks in multiple sessions of acquisition and extinction. By evolutionary algorithms, we tuned the cerebellar microcircuit to find out the near-optimal plasticity mechanism parameters that better reproduced human-like behavior in eye blink classical conditioning, one of the most extensively studied paradigms related to the cerebellum. We used two models: one with only the cortical plasticity and another including two additional plasticity sites at nuclear level. First, both spiking cerebellar models were able to well reproduce the real human behaviors, in terms of both "timing" and "amplitude", expressing rapid acquisition, stable late acquisition, rapid extinction, and faster reacquisition of an associative motor task. Even though the model with only the cortical plasticity site showed good learning capabilities, the model with distributed plasticity produced faster and more stable acquisition of conditioned responses in the reacquisition phase. This behavior is explained by the effect of the nuclear plasticities, which have slow dynamics and can express memory consolidation and saving. We showed how the spiking dynamics of multiple interactive neural mechanisms implicitly drive multiple essential components of complex learning processes.  This study presents a very advanced computational model, developed together by biomedical engineers, computer scientists, and neuroscientists. Since its realistic features, the proposed model can provide confirmations and suggestions about neurophysiological and pathological hypotheses and can be used in challenging clinical applications.

  18. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks.

    Science.gov (United States)

    Zenke, Friedemann; Agnes, Everton J; Gerstner, Wulfram

    2015-04-21

    Synaptic plasticity, the putative basis of learning and memory formation, manifests in various forms and across different timescales. Here we show that the interaction of Hebbian homosynaptic plasticity with rapid non-Hebbian heterosynaptic plasticity is, when complemented with slower homeostatic changes and consolidation, sufficient for assembly formation and memory recall in a spiking recurrent network model of excitatory and inhibitory neurons. In the model, assemblies were formed during repeated sensory stimulation and characterized by strong recurrent excitatory connections. Even days after formation, and despite ongoing network activity and synaptic plasticity, memories could be recalled through selective delay activity following the brief stimulation of a subset of assembly neurons. Blocking any component of plasticity prevented stable functioning as a memory network. Our modelling results suggest that the diversity of plasticity phenomena in the brain is orchestrated towards achieving common functional goals.

  19. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks

    Science.gov (United States)

    Zenke, Friedemann; Agnes, Everton J.; Gerstner, Wulfram

    2015-01-01

    Synaptic plasticity, the putative basis of learning and memory formation, manifests in various forms and across different timescales. Here we show that the interaction of Hebbian homosynaptic plasticity with rapid non-Hebbian heterosynaptic plasticity is, when complemented with slower homeostatic changes and consolidation, sufficient for assembly formation and memory recall in a spiking recurrent network model of excitatory and inhibitory neurons. In the model, assemblies were formed during repeated sensory stimulation and characterized by strong recurrent excitatory connections. Even days after formation, and despite ongoing network activity and synaptic plasticity, memories could be recalled through selective delay activity following the brief stimulation of a subset of assembly neurons. Blocking any component of plasticity prevented stable functioning as a memory network. Our modelling results suggest that the diversity of plasticity phenomena in the brain is orchestrated towards achieving common functional goals. PMID:25897632

  20. Bifurcation and chaos in the spontaneously firing spike train of cultured neuronal network

    Science.gov (United States)

    Chen, Wenjuan; Li, Xiangning; Zhu, Geng; Zhou, Wei; Zeng, Shaoqun; Luo, Qingming

    2008-02-01

    Both neuroscience and nonlinear science have focused attention on the dynamics of the neural network. However, litter is known concerning the electrical activity of the cultured neuronal network because of the high complexity and moment change. Instead of traditional methods, we use chaotic time series analysis and temporal coding to analyze the spontaneous firing spike train recorded from hippocampal neuronal network cultured on multi-electrode array. When analyzing interspike interval series of different firing patterns, we found when single spike and burst alternate, the largest Lyapunov exponent of interspike interval (ISI) series is positive. It suggests that chaos should exist. Furthermore, a nonlinear phenomenon of bifurcation is found in the ISI vs. number histogram. It determined that this complex firing pattern of neuron and the irregular ISI series were resulted from deterministic factors and chaos should exist in cultured term.These results suggest that chaotic time series analysis and temporal coding provide us effective methods to investigate the role played by deterministic and stochastic component in neuron information coding, but further research should be carried out because of the high complexity and remarkable noise of the electric activity.

  1. Synchronous digital implementation of the AER communication scheme for emulating large-scale spiking neural networks models

    OpenAIRE

    Moreno Aróstegui, Juan Manuel; Madrenas Boadas, Jordi; Kotynia, L.

    2009-01-01

    In this paper we shall present a fully synchronous digital implementation of the Address Event Representation (AER) communication scheme that has been used in the PERPLEXUS chip in order to permit the emulation of large-scale biologically inspired spiking neural networks models. By introducing specific commands in the AER protocol it is possible to distribute the AER bus among a large number of chips where the functionality of the spiking neurons is being emulated. A c...

  2. Spike-Triggered Regression for Synaptic Connectivity Reconstruction in Neuronal Networks.

    Science.gov (United States)

    Zhang, Yaoyu; Xiao, Yanyang; Zhou, Douglas; Cai, David

    2017-01-01

    How neurons are connected in the brain to perform computation is a key issue in neuroscience. Recently, the development of calcium imaging and multi-electrode array techniques have greatly enhanced our ability to measure the firing activities of neuronal populations at single cell level. Meanwhile, the intracellular recording technique is able to measure subthreshold voltage dynamics of a neuron. Our work addresses the issue of how to combine these measurements to reveal the underlying network structure. We propose the spike-triggered regression (STR) method, which employs both the voltage trace and firing activity of the neuronal population to reconstruct the underlying synaptic connectivity. Our numerical study of the conductance-based integrate-and-fire neuronal network shows that only short data of 20 ~ 100 s is required for an accurate recovery of network topology as well as the corresponding coupling strength. Our method can yield an accurate reconstruction of a large neuronal network even in the case of dense connectivity and nearly synchronous dynamics, which many other network reconstruction methods cannot successfully handle. In addition, we point out that, for sparse networks, the STR method can infer coupling strength between each pair of neurons with high accuracy in the absence of the global information of all other neurons.

  3. Topological dynamics in spike-timing dependent plastic model neural networks

    Directory of Open Access Journals (Sweden)

    David B. Stone

    2013-04-01

    Full Text Available Spike-timing dependent plasticity (STDP is a biologically constrained unsupervised form of learning that potentiates or depresses synaptic connections based on the precise timing of pre-synaptic and post-synaptic firings. The effects of on-going STDP on the topology of evolving model neural networks were assessed in 50 unique simulations which modeled two hours of activity. After a period of stabilization, a number of global and local topological features were monitored periodically to quantify on-going changes in network structure. Global topological features included the total number of remaining synapses, average synaptic strengths, and average number of synapses per neuron (degree. Under a range of different input regimes and initial network configurations, each network maintained a robust and highly stable global structure across time. Local topology was monitored by assessing state changes of all three-neuron subgraphs (triads present in the networks. Overall counts and the range of triad configurations varied little across the simulations; however, a substantial set of individual triads continued to undergo rapid state changes and revealed a dynamic local topology. In addition, specific small-world properties also fluctuated across time. These findings suggest that on-going STDP provides an efficient means of selecting and maintaining a stable yet flexible network organization.

  4. Detection of M-Sequences from Spike Sequence in Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Yoshi Nishitani

    2012-01-01

    Full Text Available In circuit theory, it is well known that a linear feedback shift register (LFSR circuit generates pseudorandom bit sequences (PRBS, including an M-sequence with the maximum period of length. In this study, we tried to detect M-sequences known as a pseudorandom sequence generated by the LFSR circuit from time series patterns of stimulated action potentials. Stimulated action potentials were recorded from dissociated cultures of hippocampal neurons grown on a multielectrode array. We could find several M-sequences from a 3-stage LFSR circuit (M3. These results show the possibility of assembling LFSR circuits or its equivalent ones in a neuronal network. However, since the M3 pattern was composed of only four spike intervals, the possibility of an accidental detection was not zero. Then, we detected M-sequences from random spike sequences which were not generated from an LFSR circuit and compare the result with the number of M-sequences from the originally observed raster data. As a result, a significant difference was confirmed: a greater number of “0–1” reversed the 3-stage M-sequences occurred than would have accidentally be detected. This result suggests that some LFSR equivalent circuits are assembled in neuronal networks.

  5. Runtime reconfiguration in networked embedded systems design and testing practices

    CERN Document Server

    Exarchakos, George

    2016-01-01

    This book focuses on the design and testing of large-scale, distributed signal processing systems, with a special emphasis on systems architecture, tooling and best practices. Architecture modeling, model checking, model-based evaluation and model-based design optimization occupy central roles. Target systems with resource constraints on processing, communication or energy supply require non-trivial methodologies to model their non-functional requirements, such as timeliness, robustness, lifetime and “evolution” capacity. Besides the theoretical foundations of the methodology, an engineering process and toolchain are described. Real-world cases illustrate the theory and practice tested by the authors in the course of the European project ARTEMIS DEMANES. The book can be used as a “cookbook” for designers and practitioners working with complex embedded systems like sensor networks for the structural integrity monitoring of steel bridges, and distributed micro-climate control systems for greenhouses and...

  6. Efficient transmission of subthreshold signals in complex networks of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Joaquin J Torres

    Full Text Available We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances--that naturally balances the network with excitatory and inhibitory synapses--and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.

  7. Efficient transmission of subthreshold signals in complex networks of spiking neurons.

    Science.gov (United States)

    Torres, Joaquin J; Elices, Irene; Marro, J

    2015-01-01

    We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances--that naturally balances the network with excitatory and inhibitory synapses--and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.

  8. Small Modifications to Network Topology Can Induce Stochastic Bistable Spiking Dynamics in a Balanced Cortical Model

    Science.gov (United States)

    McDonnell, Mark D.; Ward, Lawrence M.

    2014-01-01

    Abstract Directed random graph models frequently are used successfully in modeling the population dynamics of networks of cortical neurons connected by chemical synapses. Experimental results consistently reveal that neuronal network topology is complex, however, in the sense that it differs statistically from a random network, and differs for classes of neurons that are physiologically different. This suggests that complex network models whose subnetworks have distinct topological structure may be a useful, and more biologically realistic, alternative to random networks. Here we demonstrate that the balanced excitation and inhibition frequently observed in small cortical regions can transiently disappear in otherwise standard neuronal-scale models of fluctuation-driven dynamics, solely because the random network topology was replaced by a complex clustered one, whilst not changing the in-degree of any neurons. In this network, a small subset of cells whose inhibition comes only from outside their local cluster are the cause of bistable population dynamics, where different clusters of these cells irregularly switch back and forth from a sparsely firing state to a highly active state. Transitions to the highly active state occur when a cluster of these cells spikes sufficiently often to cause strong unbalanced positive feedback to each other. Transitions back to the sparsely firing state rely on occasional large fluctuations in the amount of non-local inhibition received. Neurons in the model are homogeneous in their intrinsic dynamics and in-degrees, but differ in the abundance of various directed feedback motifs in which they participate. Our findings suggest that (i) models and simulations should take into account complex structure that varies for neuron and synapse classes; (ii) differences in the dynamics of neurons with similar intrinsic properties may be caused by their membership in distinctive local networks; (iii) it is important to identify neurons that

  9. A spatially resolved network spike in model neuronal cultures reveals nucleation centers, circular traveling waves and drifting spiral waves

    Science.gov (United States)

    Paraskevov, A. V.; Zendrikov, D. K.

    2017-04-01

    We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.

  10. The effect of increasing levels of embedded generation on the distribution network. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A.; Earp, G.K.; Howson, D.; Owen, R.D.; Wright, A.J.

    1999-10-01

    This report was commissioned as part of the EA Technology Strategic Technology Programme under guidance of the Module 5 (Embedded Generation) Steering Group. This report aims to provide information related to the distribution and supply of electricity in the context of increasing levels of embedded generation. There is a brief description of the operating environment within which electricity companies in the UK must operate. Technical issues related to the connection of generation to the existing distribution infrastructure are highlighted and the design philosophy adopted by network designers in accommodating applications for the connection of embedded generation to the network is discussed. The effects embedded generation has on the network and the issues raised are presented as many of them present barriers to the connection of embedded generators. The final chapters cover the forecast of required connection to 2010 and solutions to restrictions preventing the connection of more embedded generation to the network. (author)

  11. Spiking neural network model for memorizing sequences with forward and backward recall.

    Science.gov (United States)

    Borisyuk, Roman; Chik, David; Kazanovich, Yakov; da Silva Gomes, João

    2013-06-01

    We present an oscillatory network of conductance based spiking neurons of Hodgkin-Huxley type as a model of memory storage and retrieval of sequences of events (or objects). The model is inspired by psychological and neurobiological evidence on sequential memories. The building block of the model is an oscillatory module which contains excitatory and inhibitory neurons with all-to-all connections. The connection architecture comprises two layers. A lower layer represents consecutive events during their storage and recall. This layer is composed of oscillatory modules. Plastic excitatory connections between the modules are implemented using an STDP type learning rule for sequential storage. Excitatory neurons in the upper layer project star-like modifiable connections toward the excitatory lower layer neurons. These neurons in the upper layer are used to tag sequences of events represented in the lower layer. Computer simulations demonstrate good performance of the model including difficult cases when different sequences contain overlapping events. We show that the model with STDP type or anti-STDP type learning rules can be applied for the simulation of forward and backward replay of neural spikes respectively. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Power Quality Investigation of Distribution Networks Embedded Wind Turbines

    Directory of Open Access Journals (Sweden)

    A. Elsherif

    2016-01-01

    Full Text Available In recent years a multitude of events have created a new environment for the electric power infrastructure. The presence of small-scale generation near load spots is becoming common especially with the advent of renewable energy sources such as wind power energy. This type of generation is known as distributed generation (DG. The expansion of the distributed generators- (DGs- based wind energy raises constraints on the distribution networks operation and power quality issues: voltage sag, voltage swell, voltage interruption, harmonic contents, flickering, frequency deviation, unbalance, and so forth. Consequently, the public distribution network conception and connection studies evolve in order to keep the distribution system operating in optimal conditions. In this paper, a comprehensive power quality investigation of a distribution system with embedded wind turbines has been carried out. This investigation is carried out in a comparison aspect between the conventional synchronous generators, as DGs are widely in use at present, and the different wind turbines technologies, which represent the foresightedness of the DGs. The obtained results are discussed with the IEC 61400-21 standard for testing and assessing power quality characteristics of grid-connected wind energy and the IEEE 1547-2003 standard for interconnecting distributed resources with electric power systems.

  13. Emergence of Selectivity to Looming Stimuli in a Spiking Network Model of the Optic Tectum.

    Science.gov (United States)

    Jang, Eric V; Ramirez-Vizcarrondo, Carolina; Aizenman, Carlos D; Khakhalin, Arseny S

    2016-01-01

    The neural circuits in the optic tectum of Xenopus tadpoles are selectively responsive to looming visual stimuli that resemble objects approaching the animal at a collision trajectory. This selectivity is required for adaptive collision avoidance behavior in this species, but its underlying mechanisms are not known. In particular, it is still unclear how the balance between the recurrent spontaneous network activity and the newly arriving sensory flow is set in this structure, and to what degree this balance is important for collision detection. Also, despite the clear indication for the presence of strong recurrent excitation and spontaneous activity, the exact topology of recurrent feedback circuits in the tectum remains elusive. In this study we take advantage of recently published detailed cell-level data from tadpole tectum to build an informed computational model of it, and investigate whether dynamic activation in excitatory recurrent retinotopic networks may on its own underlie collision detection. We consider several possible recurrent connectivity configurations and compare their performance for collision detection under different levels of spontaneous neural activity. We show that even in the absence of inhibition, a retinotopic network of quickly inactivating spiking neurons is naturally selective for looming stimuli, but this selectivity is not robust to neuronal noise, and is sensitive to the balance between direct and recurrent inputs. We also describe how homeostatic modulation of intrinsic properties of individual tectal cells can change selectivity thresholds in this network, and qualitatively verify our predictions in a behavioral experiment in freely swimming tadpoles.

  14. An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks.

    Science.gov (United States)

    Pani, Danilo; Meloni, Paolo; Tuveri, Giuseppe; Palumbo, Francesca; Massobrio, Paolo; Raffo, Luigi

    2017-01-01

    In the last years, the idea to dynamically interface biological neurons with artificial ones has become more and more urgent. The reason is essentially due to the design of innovative neuroprostheses where biological cell assemblies of the brain can be substituted by artificial ones. For closed-loop experiments with biological neuronal networks interfaced with in silico modeled networks, several technological challenges need to be faced, from the low-level interfacing between the living tissue and the computational model to the implementation of the latter in a suitable form for real-time processing. Field programmable gate arrays (FPGAs) can improve flexibility when simple neuronal models are required, obtaining good accuracy, real-time performance, and the possibility to create a hybrid system without any custom hardware, just programming the hardware to achieve the required functionality. In this paper, this possibility is explored presenting a modular and efficient FPGA design of an in silico spiking neural network exploiting the Izhikevich model. The proposed system, prototypically implemented on a Xilinx Virtex 6 device, is able to simulate a fully connected network counting up to 1,440 neurons, in real-time, at a sampling rate of 10 kHz, which is reasonable for small to medium scale extra-cellular closed-loop experiments.

  15. Emergence of selectivity to looming stimuli in a spiking network model of the optic tectum

    Directory of Open Access Journals (Sweden)

    Eric V Jang

    2016-11-01

    Full Text Available The neural circuits in the optic tectum of Xenopus tadpoles are selectively responsive to looming visual stimuli that resemble objects approaching the animal at a collision trajectory. This selectivity is required for adaptive collision avoidance behavior in this species, but its underlying mechanisms are not known. In particular, it is still unclear how the balance between the recurrent spontaneous network activity and the newly arriving sensory flow is set in this structure, and to what degree this balance is important for collision detection. Also, despite the clear indication for the presence of strong recurrent excitation and spontaneous activity, the exact topology of recurrent feedback circuits in the tectum remains elusive. In this study we take advantage of recently published detailed cell-level data from tadpole tectum to build an informed computational model of it, and investigate whether dynamic activation in excitatory recurrent retinotopic networks may on its own underlie collision detection. We consider several possible recurrent connectivity configurations and compare their performance for collision detection under different levels of spontaneous neural activity. We show that even in the absence of inhibition, a retinotopic network of quickly inactivating spiking neurons is naturally selective for looming stimuli, but this selectivity is not robust to neuronal noise and is sensitive to the balance between direct and recurrent inputs. We also describe how homeostatic modulation of intrinsic properties of individual tectal cells can change selectivity thresholds in this network, and qualitatively verify our predictions in a behavioral experiment in freely swimming tadpoles.

  16. Dynamics of Competition between Subnetworks of Spiking Neuronal Networks in the Balanced State

    Science.gov (United States)

    Lagzi, Fereshteh; Rotter, Stefan

    2015-01-01

    We explore and analyze the nonlinear switching dynamics of neuronal networks with non-homogeneous connectivity. The general significance of such transient dynamics for brain function is unclear; however, for instance decision-making processes in perception and cognition have been implicated with it. The network under study here is comprised of three subnetworks of either excitatory or inhibitory leaky integrate-and-fire neurons, of which two are of the same type. The synaptic weights are arranged to establish and maintain a balance between excitation and inhibition in case of a constant external drive. Each subnetwork is randomly connected, where all neurons belonging to a particular population have the same in-degree and the same out-degree. Neurons in different subnetworks are also randomly connected with the same probability; however, depending on the type of the pre-synaptic neuron, the synaptic weight is scaled by a factor. We observed that for a certain range of the “within” versus “between” connection weights (bifurcation parameter), the network activation spontaneously switches between the two sub-networks of the same type. This kind of dynamics has been termed “winnerless competition”, which also has a random component here. In our model, this phenomenon is well described by a set of coupled stochastic differential equations of Lotka-Volterra type that imply a competition between the subnetworks. The associated mean-field model shows the same dynamical behavior as observed in simulations of large networks comprising thousands of spiking neurons. The deterministic phase portrait is characterized by two attractors and a saddle node, its stochastic component is essentially given by the multiplicative inherent noise of the system. We find that the dwell time distribution of the active states is exponential, indicating that the noise drives the system randomly from one attractor to the other. A similar model for a larger number of populations might

  17. A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine

    Directory of Open Access Journals (Sweden)

    Basabdatta Sen-Bhattacharya

    2017-08-01

    Full Text Available We present a spiking neural network model of the thalamic Lateral Geniculate Nucleus (LGN developed on SpiNNaker, which is a state-of-the-art digital neuromorphic hardware built with very-low-power ARM processors. The parallel, event-based data processing in SpiNNaker makes it viable for building massively parallel neuro-computational frameworks. The LGN model has 140 neurons representing a “basic building block” for larger modular architectures. The motivation of this work is to simulate biologically plausible LGN dynamics on SpiNNaker. Synaptic layout of the model is consistent with biology. The model response is validated with existing literature reporting entrainment in steady state visually evoked potentials (SSVEP—brain oscillations corresponding to periodic visual stimuli recorded via electroencephalography (EEG. Periodic stimulus to the model is provided by: a synthetic spike-train with inter-spike-intervals in the range 10–50 Hz at a resolution of 1 Hz; and spike-train output from a state-of-the-art electronic retina subjected to a light emitting diode flashing at 10, 20, and 40 Hz, simulating real-world visual stimulus to the model. The resolution of simulation is 0.1 ms to ensure solution accuracy for the underlying differential equations defining Izhikevichs neuron model. Under this constraint, 1 s of model simulation time is executed in 10 s real time on SpiNNaker; this is because simulations on SpiNNaker work in real time for time-steps dt ⩾ 1 ms. The model output shows entrainment with both sets of input and contains harmonic components of the fundamental frequency. However, suppressing the feed-forward inhibition in the circuit produces subharmonics within the gamma band (>30 Hz implying a reduced information transmission fidelity. These model predictions agree with recent lumped-parameter computational model-based predictions, using conventional computers. Scalability of the framework is demonstrated by a multi

  18. Bio-Inspired Networking — Self-Organizing Networked Embedded Systems

    Science.gov (United States)

    Dressler, Falko

    The turn to nature has brought us many unforeseen great concepts and solutions. This course seems to hold on for many research domains. In this article, we study the applicability of biological mechanisms and techniques in the domain of communications. In particular, we study the behavior and the challenges in networked embedded systems that are meant to self-organize in large groups of nodes. Application examples include wireless sensor networks and sensor/actuator networks. Based on a review of the needs and requirements in such networks, we study selected bio-inspired networking approaches that claim to outperform other methods in specific domains. We study mechanisms in swarm intelligence, the artificial immune system, and approaches based on investigations on the cellular signaling pathways. As a major conclusion, we derive that bio-inspired networking techniques do have advantages compared to engineering methods. Nevertheless, selection and employment must be done carefully to achieve the desired performance gains.

  19. Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes

    Science.gov (United States)

    Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2016-04-01

    Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.

  20. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data

    Directory of Open Access Journals (Sweden)

    Evangelos Stromatias

    2017-06-01

    Full Text Available This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77% and Poker-DVS (100% real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.

  1. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data.

    Science.gov (United States)

    Stromatias, Evangelos; Soto, Miguel; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé

    2017-01-01

    This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN) System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS) chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77%) and Poker-DVS (100%) real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.

  2. FPGA IMPLEMENTATION OF ADAPTIVE INTEGRATED SPIKING NEURAL NETWORK FOR EFFICIENT IMAGE RECOGNITION SYSTEM

    Directory of Open Access Journals (Sweden)

    T. Pasupathi

    2014-05-01

    Full Text Available Image recognition is a technology which can be used in various applications such as medical image recognition systems, security, defense video tracking, and factory automation. In this paper we present a novel pipelined architecture of an adaptive integrated Artificial Neural Network for image recognition. In our proposed work we have combined the feature of spiking neuron concept with ANN to achieve the efficient architecture for image recognition. The set of training images are trained by ANN and target output has been identified. Real time videos are captured and then converted into frames for testing purpose and the image were recognized. The machine can operate at up to 40 frames/sec using images acquired from the camera. The system has been implemented on XC3S400 SPARTAN-3 Field Programmable Gate Arrays.

  3. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Mikail Rubinov

    2011-06-01

    Full Text Available Self-organized criticality refers to the spontaneous emergence of self-similar dynamics in complex systems poised between order and randomness. The presence of self-organized critical dynamics in the brain is theoretically appealing and is supported by recent neurophysiological studies. Despite this, the neurobiological determinants of these dynamics have not been previously sought. Here, we systematically examined the influence of such determinants in hierarchically modular networks of leaky integrate-and-fire neurons with spike-timing-dependent synaptic plasticity and axonal conduction delays. We characterized emergent dynamics in our networks by distributions of active neuronal ensemble modules (neuronal avalanches and rigorously assessed these distributions for power-law scaling. We found that spike-timing-dependent synaptic plasticity enabled a rapid phase transition from random subcritical dynamics to ordered supercritical dynamics. Importantly, modular connectivity and low wiring cost broadened this transition, and enabled a regime indicative of self-organized criticality. The regime only occurred when modular connectivity, low wiring cost and synaptic plasticity were simultaneously present, and the regime was most evident when between-module connection density scaled as a power-law. The regime was robust to variations in other neurobiologically relevant parameters and favored systems with low external drive and strong internal interactions. Increases in system size and connectivity facilitated internal interactions, permitting reductions in external drive and facilitating convergence of postsynaptic-response magnitude and synaptic-plasticity learning rate parameter values towards neurobiologically realistic levels. We hence infer a novel association between self-organized critical neuronal dynamics and several neurobiologically realistic features of structural connectivity. The central role of these features in our model may reflect

  4. Robust working memory in an asynchronously spiking neural network realized in neuromorphic VLSI

    Directory of Open Access Journals (Sweden)

    Massimiliano eGiulioni

    2012-02-01

    Full Text Available We demonstrate bistable attractor dynamics in a spiking neural network implemented with neuromorphic VLSI hardware. The on-chip network consists of three interacting populations (two excitatory, one inhibitory of integrate-and-fire (LIF neurons. One excitatory population is distinguished by strong synaptic self-excitation, which sustains meta-stable states of ‘high’ and ‘low’-firing activity. Depending on the overall excitability, transitions to the ‘high’ state may be evoked by external stimulation, or may occur spontaneously due to random activity fluctuations. In the former case, the ‘high’ state retains a working memory of a stimulus until well after its release. In the latter case, ‘high’ states remain stable for seconds, three orders of magnitude longer than the largest time-scale implemented in the circuitry. Evoked and spontaneous transitions form a continuum and may exhibit a wide range of latencies, depending on the strength of external stimulation and of recurrent synaptic excitation. In addition, we investigated corrupted ‘high’ states comprising neurons of both excitatory populations. Within a basin of attraction, the network dynamics corrects such states and re-establishes the prototypical ‘high’ state. We conclude that, with effective theoretical guidance, full-fledged attractor dynamics can be realized with comparatively small populations of neuromorphic hardware neurons.

  5. Acceleration of spiking neural network based pattern recognition on NVIDIA graphics processors.

    Science.gov (United States)

    Han, Bing; Taha, Tarek M

    2010-04-01

    There is currently a strong push in the research community to develop biological scale implementations of neuron based vision models. Systems at this scale are computationally demanding and generally utilize more accurate neuron models, such as the Izhikevich and the Hodgkin-Huxley models, in favor of the more popular integrate and fire model. We examine the feasibility of using graphics processing units (GPUs) to accelerate a spiking neural network based character recognition network to enable such large scale systems. Two versions of the network utilizing the Izhikevich and Hodgkin-Huxley models are implemented. Three NVIDIA general-purpose (GP) GPU platforms are examined, including the GeForce 9800 GX2, the Tesla C1060, and the Tesla S1070. Our results show that the GPGPUs can provide significant speedup over conventional processors. In particular, the fastest GPGPU utilized, the Tesla S1070, provided a speedup of 5.6 and 84.4 over highly optimized implementations on the fastest central processing unit (CPU) tested, a quadcore 2.67 GHz Xeon processor, for the Izhikevich and the Hodgkin-Huxley models, respectively. The CPU implementation utilized all four cores and the vector data parallelism offered by the processor. The results indicate that GPUs are well suited for this application domain.

  6. Bayesian filtering in spiking neural networks: noise, adaptation, and multisensory integration.

    Science.gov (United States)

    Bobrowski, Omer; Meir, Ron; Eldar, Yonina C

    2009-05-01

    A key requirement facing organisms acting in uncertain dynamic environments is the real-time estimation and prediction of environmental states, based on which effective actions can be selected. While it is becoming evident that organisms employ exact or approximate Bayesian statistical calculations for these purposes, it is far less clear how these putative computations are implemented by neural networks in a strictly dynamic setting. In this work, we make use of rigorous mathematical results from the theory of continuous time point process filtering and show how optimal real-time state estimation and prediction may be implemented in a general setting using simple recurrent neural networks. The framework is applicable to many situations of common interest, including noisy observations, non-Poisson spike trains (incorporating adaptation), multisensory integration, and state prediction. The optimal network properties are shown to relate to the statistical structure of the environment, and the benefits of adaptation are studied and explicitly demonstrated. Finally, we recover several existing results as appropriate limits of our general setting.

  7. Visual language recognition with a feed-forward network of spiking neurons

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Craig E [Los Alamos National Laboratory; Garrett, Kenyan [Los Alamos National Laboratory; Sottile, Matthew [GALOIS; Shreyas, Ns [INDIANA UNIV.

    2010-01-01

    An analogy is made and exploited between the recognition of visual objects and language parsing. A subset of regular languages is used to define a one-dimensional 'visual' language, in which the words are translational and scale invariant. This allows an exploration of the viewpoint invariant languages that can be solved by a network of concurrent, hierarchically connected processors. A language family is defined that is hierarchically tiling system recognizable (HREC). As inspired by nature, an algorithm is presented that constructs a cellular automaton that recognizes strings from a language in the HREC family. It is demonstrated how a language recognizer can be implemented from the cellular automaton using a feed-forward network of spiking neurons. This parser recognizes fixed-length strings from the language in parallel and as the computation is pipelined, a new string can be parsed in each new interval of time. The analogy with formal language theory allows inferences to be drawn regarding what class of objects can be recognized by visual cortex operating in purely feed-forward fashion and what class of objects requires a more complicated network architecture.

  8. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Kendra S Burbank

    2015-12-01

    Full Text Available The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field's Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP, leading to a symmetric combined rule we call Mirrored STDP (mSTDP. We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological

  9. The effects of dynamical synapses on firing rate activity: a spiking neural network model.

    Science.gov (United States)

    Khalil, Radwa; Moftah, Marie Z; Moustafa, Ahmed A

    2017-11-01

    Accumulating evidence relates the fine-tuning of synaptic maturation and regulation of neural network activity to several key factors, including GABA A signaling and a lateral spread length between neighboring neurons (i.e., local connectivity). Furthermore, a number of studies consider short-term synaptic plasticity (STP) as an essential element in the instant modification of synaptic efficacy in the neuronal network and in modulating responses to sustained ranges of external Poisson input frequency (IF). Nevertheless, evaluating the firing activity in response to the dynamical interaction between STP (triggered by ranges of IF) and these key parameters in vitro remains elusive. Therefore, we designed a spiking neural network (SNN) model in which we incorporated the following parameters: local density of arbor essences and a lateral spread length between neighboring neurons. We also created several network scenarios based on these key parameters. Then, we implemented two classes of STP: (1) short-term synaptic depression (STD) and (2) short-term synaptic facilitation (STF). Each class has two differential forms based on the parametric value of its synaptic time constant (either for depressing or facilitating synapses). Lastly, we compared the neural firing responses before and after the treatment with STP. We found that dynamical synapses (STP) have a critical differential role on evaluating and modulating the firing rate activity in each network scenario. Moreover, we investigated the impact of changing the balance between excitation (E) and inhibition (I) on stabilizing this firing activity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. A spiking neural network model of model-free reinforcement learning with high-dimensional sensory input and perceptual ambiguity.

    Science.gov (United States)

    Nakano, Takashi; Otsuka, Makoto; Yoshimoto, Junichiro; Doya, Kenji

    2015-01-01

    A theoretical framework of reinforcement learning plays an important role in understanding action selection in animals. Spiking neural networks provide a theoretically grounded means to test computational hypotheses on neurally plausible algorithms of reinforcement learning through numerical simulation. However, most of these models cannot handle observations which are noisy, or occurred in the past, even though these are inevitable and constraining features of learning in real environments. This class of problem is formally known as partially observable reinforcement learning (PORL) problems. It provides a generalization of reinforcement learning to partially observable domains. In addition, observations in the real world tend to be rich and high-dimensional. In this work, we use a spiking neural network model to approximate the free energy of a restricted Boltzmann machine and apply it to the solution of PORL problems with high-dimensional observations. Our spiking network model solves maze tasks with perceptually ambiguous high-dimensional observations without knowledge of the true environment. An extended model with working memory also solves history-dependent tasks. The way spiking neural networks handle PORL problems may provide a glimpse into the underlying laws of neural information processing which can only be discovered through such a top-down approach.

  11. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks

    Directory of Open Access Journals (Sweden)

    Runchun Mark Wang

    2015-05-01

    Full Text Available We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP and Spike Timing Dependent Delay Plasticity (STDDP. We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 2^26 (64M synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted and/or delayed pre-synaptic spike to the target synapse in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 2^36 (64G synaptic adaptors on a current high-end FPGA platform.

  12. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks.

    Science.gov (United States)

    Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André

    2015-01-01

    We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP) and Spike Timing Dependent Delay Plasticity (STDDP). We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 2(26) (64M) synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted or delayed pre-synaptic spike to the post-synaptic neuron in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 2(36) (64G) synaptic adaptors on a current high-end FPGA platform.

  13. Image aesthetic quality evaluation using convolution neural network embedded learning

    Science.gov (United States)

    Li, Yu-xin; Pu, Yuan-yuan; Xu, Dan; Qian, Wen-hua; Wang, Li-peng

    2017-11-01

    A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.

  14. Design considerations for medium access control in resource constrained embedded wireless networks

    OpenAIRE

    Ansari, Junaid

    2012-01-01

    Recent years have experienced a huge influx of daily life applications based on embedded wireless networks. While new applications with more demanding requirements and challenging deployment conditions are being explored, most of the existing networks suffer from communication deficiencies, inefficient use of resources, and inability to satisfy desired quality of service requirements. In order to carry on exploitation and exploration of embedded wireless networks in different daily life appli...

  15. Self-organization of spiking neural network that generates autonomous behavior in a real mobile robot.

    Science.gov (United States)

    Alnajjar, Fady; Murase, Kazuyuki

    2006-08-01

    In this paper, we propose self-organization algorithm of spiking neural network (SNN) applicable to autonomous robot for generation of adoptive and goal-directed behavior. First, we formulated a SNN model whose inputs and outputs were analog and the hidden unites are interconnected each other. Next, we implemented it into a miniature mobile robot Khepera. In order to see whether or not a solution(s) for the given task(s) exists with the SNN, the robot was evolved with the genetic algorithm in the environment. The robot acquired the obstacle avoidance and navigation task successfully, exhibiting the presence of the solution. After that, a self-organization algorithm based on a use-dependent synaptic potentiation and depotentiation at synapses of input layer to hidden layer and of hidden layer to output layer was formulated and implemented into the robot. In the environment, the robot incrementally organized the network and the given tasks were successfully performed. The time needed to acquire the desired adoptive and goal-directed behavior using the proposed self-organization method was much less than that with the genetic evolution, approximately one fifth.

  16. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights

    Directory of Open Access Journals (Sweden)

    Wilten eNicola

    2016-02-01

    Full Text Available A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF. The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks

  17. Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus.

    Science.gov (United States)

    Kamondi, A; Acsády, L; Buzsáki, G

    1998-05-15

    In vitro experiments suggest that dendritic fast action potentials may influence the efficacy of concurrently active synapses by enhancing Ca2+ influx into the dendrites. However, the exact circumstances leading to these effects in the intact brain are not known. We have addressed these issues by performing intracellular sharp electrode recordings from morphologically identified sites in the apical dendrites of CA1 pyramidal neurons in vivo while simultaneously monitoring extracellular population activity. The amplitude of spontaneous fast action potentials in dendrites decreased as a function of distance from the soma, suggesting that dendritic propagation of fast action potentials is strongly attenuated in vivo. Whereas the amplitude variability of somatic action potentials was very small, the amplitude of fast spikes varied substantially in distal dendrites. Large-amplitude fast spikes in dendrites occurred during population discharges of CA3-CA1 neurons concurrent with field sharp waves. The large-amplitude fast spikes were associated with bursts of smaller-amplitude action potentials and putative Ca2+ spikes. Both current pulse-evoked and spontaneously occurring Ca2+ spikes were always preceded by large-amplitude fast spikes. More spikes were observed in the dendrites during sharp waves than in the soma, suggesting that local dendritic spikes may be generated during this behaviorally relevant population pattern. Because not all dendritic spikes produce somatic action potentials, they may be functionally distinct from action potentials that signal via the axon.

  18. Structural Covariance Network of Cortical Gyrification in Benign Childhood Epilepsy with Centrotemporal Spikes

    Directory of Open Access Journals (Sweden)

    Lin Jiang

    2018-02-01

    Full Text Available Benign childhood epilepsy with centrotemporal spikes (BECTS is associated with cognitive and language problems. According to recent studies, disruptions in brain structure and function in children with BECTS are beyond a Rolandic focus, suggesting atypical cortical development. However, previous studies utilizing surface-based metrics (e.g., cortical gyrification and their structural covariance networks at high resolution in children with BECTS are limited. Twenty-six children with BECTS (15 males/11 females; 10.35 ± 2.91 years and 26 demographically matched controls (15 males/11 females; 11.35 ± 2.51 years were included in this study and subjected to high-resolution structural brain MRI scans. The gyrification index was calculated, and structural brain networks were reconstructed based on the covariance of the cortical folding. In the BECTS group, significantly increased gyrification was observed in the bilateral Sylvain fissures and the left pars triangularis, temporal, rostral middle frontal, lateral orbitofrontal, and supramarginal areas (cluster-corrected p < 0.05. Global brain network measures were not significantly different between the groups; however, the nodal alterations were most pronounced in the insular, frontal, temporal, and occipital lobes (FDR corrected, p < 0.05. In children with BECTS, brain hubs increased in number and tended to shift to sensorimotor and temporal areas. Furthermore, we observed significantly positive relationships between the gyrification index and age (vertex p < 0.001, cluster-level correction as well as duration of epilepsy (vertex p < 0.001, cluster-level correction. Our results suggest that BECTS may be a condition that features abnormal over-folding of the Sylvian fissures and uncoordinated development of structural wiring, disrupted nodal profiles of centrality, and shifted hub distribution, which potentially represents a neuroanatomical hallmark of BECTS in the

  19. Real-time classification and sensor fusion with a spiking deep belief network.

    Science.gov (United States)

    O'Connor, Peter; Neil, Daniel; Liu, Shih-Chii; Delbruck, Tobi; Pfeiffer, Michael

    2013-01-01

    Deep Belief Networks (DBNs) have recently shown impressive performance on a broad range of classification problems. Their generative properties allow better understanding of the performance, and provide a simpler solution for sensor fusion tasks. However, because of their inherent need for feedback and parallel update of large numbers of units, DBNs are expensive to implement on serial computers. This paper proposes a method based on the Siegert approximation for Integrate-and-Fire neurons to map an offline-trained DBN onto an efficient event-driven spiking neural network suitable for hardware implementation. The method is demonstrated in simulation and by a real-time implementation of a 3-layer network with 2694 neurons used for visual classification of MNIST handwritten digits with input from a 128 × 128 Dynamic Vision Sensor (DVS) silicon retina, and sensory-fusion using additional input from a 64-channel AER-EAR silicon cochlea. The system is implemented through the open-source software in the jAER project and runs in real-time on a laptop computer. It is demonstrated that the system can recognize digits in the presence of distractions, noise, scaling, translation and rotation, and that the degradation of recognition performance by using an event-based approach is less than 1%. Recognition is achieved in an average of 5.8 ms after the onset of the presentation of a digit. By cue integration from both silicon retina and cochlea outputs we show that the system can be biased to select the correct digit from otherwise ambiguous input.

  20. A reanalysis of “Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons” [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Rainer Engelken

    2016-08-01

    Full Text Available Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, communicate via spikes and it is a theoretical challenge to obtain similar rate fluctuations in networks of spiking neuron models. A recent study investigated spiking balanced networks of leaky integrate and fire (LIF neurons and compared their dynamics to a matched rate network with identical topology, where single unit input-output functions were chosen from isolated LIF neurons receiving Gaussian white noise input. A mathematical analogy between the chaotic instability in networks of rate units and the spiking network dynamics was proposed. Here we revisit the behavior of the spiking LIF networks and these matched rate networks. We find expected hallmarks of a chaotic instability in the rate network: For supercritical coupling strength near the transition point, the autocorrelation time diverges. For subcritical coupling strengths, we observe critical slowing down in response to small external perturbations. In the spiking network, we found in contrast that the timescale of the autocorrelations is insensitive to the coupling strength and that rate deviations resulting from small input perturbations rapidly decay. The decay speed even accelerates for increasing coupling strength. In conclusion, our reanalysis demonstrates fundamental differences between the behavior of pulse-coupled spiking LIF networks and rate networks with matched topology and input-output function. In particular there is no indication of a corresponding chaotic instability in the spiking network.

  1. Neuronal Networks in Children with Continuous Spikes and Waves during Slow Sleep

    Science.gov (United States)

    Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M.; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich

    2010-01-01

    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least greater than 85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and…

  2. Accuracy evaluation of numerical methods used in state-of-the-art simulators for spiking neural networks.

    Science.gov (United States)

    Henker, Stephan; Partzsch, Johannes; Schüffny, René

    2012-04-01

    With the various simulators for spiking neural networks developed in recent years, a variety of numerical solution methods for the underlying differential equations are available. In this article, we introduce an approach to systematically assess the accuracy of these methods. In contrast to previous investigations, our approach focuses on a completely deterministic comparison and uses an analytically solved model as a reference. This enables the identification of typical sources of numerical inaccuracies in state-of-the-art simulation methods. In particular, with our approach we can separate the error of the numerical integration from the timing error of spike detection and propagation, the latter being prominent in simulations with fixed timestep. To verify the correctness of the testing procedure, we relate the numerical deviations to theoretical predictions for the employed numerical methods. Finally, we give an example of the influence of simulation artefacts on network behaviour and spike-timing-dependent plasticity (STDP), underlining the importance of spike-time accuracy for the simulation of STDP.

  3. Inferring Neuronal Network Connectivity from Spike Data: A Temporal Data Mining Approach

    Directory of Open Access Journals (Sweden)

    Debprakash Patnaik

    2008-01-01

    Full Text Available Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neuroscience. Recent developments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity.

  4. Event management for large scale event-driven digital hardware spiking neural networks.

    Science.gov (United States)

    Caron, Louis-Charles; D'Haene, Michiel; Mailhot, Frédéric; Schrauwen, Benjamin; Rouat, Jean

    2013-09-01

    The interest in brain-like computation has led to the design of a plethora of innovative neuromorphic systems. Individually, spiking neural networks (SNNs), event-driven simulation and digital hardware neuromorphic systems get a lot of attention. Despite the popularity of event-driven SNNs in software, very few digital hardware architectures are found. This is because existing hardware solutions for event management scale badly with the number of events. This paper introduces the structured heap queue, a pipelined digital hardware data structure, and demonstrates its suitability for event management. The structured heap queue scales gracefully with the number of events, allowing the efficient implementation of large scale digital hardware event-driven SNNs. The scaling is linear for memory, logarithmic for logic resources and constant for processing time. The use of the structured heap queue is demonstrated on a field-programmable gate array (FPGA) with an image segmentation experiment and a SNN of 65,536 neurons and 513,184 synapses. Events can be processed at the rate of 1 every 7 clock cycles and a 406×158 pixel image is segmented in 200 ms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Human Brain Networks: Spiking Neuron Models, Multistability, Synchronization, Thermodynamics, Maximum Entropy Production, and Anesthetic Cascade Mechanisms

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2014-07-01

    Full Text Available Advances in neuroscience have been closely linked to mathematical modeling beginning with the integrate-and-fire model of Lapicque and proceeding through the modeling of the action potential by Hodgkin and Huxley to the current era. The fundamental building block of the central nervous system, the neuron, may be thought of as a dynamic element that is “excitable”, and can generate a pulse or spike whenever the electrochemical potential across the cell membrane of the neuron exceeds a threshold. A key application of nonlinear dynamical systems theory to the neurosciences is to study phenomena of the central nervous system that exhibit nearly discontinuous transitions between macroscopic states. A very challenging and clinically important problem exhibiting this phenomenon is the induction of general anesthesia. In any specific patient, the transition from consciousness to unconsciousness as the concentration of anesthetic drugs increases is very sharp, resembling a thermodynamic phase transition. This paper focuses on multistability theory for continuous and discontinuous dynamical systems having a set of multiple isolated equilibria and/or a continuum of equilibria. Multistability is the property whereby the solutions of a dynamical system can alternate between two or more mutually exclusive Lyapunov stable and convergent equilibrium states under asymptotically slowly changing inputs or system parameters. In this paper, we extend the theory of multistability to continuous, discontinuous, and stochastic nonlinear dynamical systems. In particular, Lyapunov-based tests for multistability and synchronization of dynamical systems with continuously differentiable and absolutely continuous flows are established. The results are then applied to excitatory and inhibitory biological neuronal networks to explain the underlying mechanism of action for anesthesia and consciousness from a multistable dynamical system perspective, thereby providing a

  6. Hybrid spiking models.

    Science.gov (United States)

    Izhikevich, Eugene M

    2010-11-13

    I review a class of hybrid models of neurons that combine continuous spike-generation mechanisms and a discontinuous 'after-spike' reset of state variables. Unlike Hodgkin-Huxley-type conductance-based models, the hybrid spiking models have a few parameters derived from the bifurcation theory; instead of matching neuronal electrophysiology, they match neuronal dynamics. I present a method of after-spike resetting suitable for hardware implementation of such models, and a hybrid numerical method for simulations of large-scale biological spiking networks.

  7. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.

    Science.gov (United States)

    Gu, Weiwei; Gong, Li; Lou, Xiaodan; Zhang, Jiang

    2017-10-13

    Network embedding which encodes all vertices in a network as a set of numerical vectors in accordance with it's local and global structures, has drawn widespread attention. Network embedding not only learns significant features of a network, such as the clustering and linking prediction but also learns the latent vector representation of the nodes which provides theoretical support for a variety of applications, such as visualization, link prediction, node classification, and recommendation. As the latest progress of the research, several algorithms based on random walks have been devised. Although those algorithms have drawn much attention for their high scores in learning efficiency and accuracy, there is still a lack of theoretical explanation, and the transparency of those algorithms has been doubted. Here, we propose an approach based on the open-flow network model to reveal the underlying flow structure and its hidden metric space of different random walk strategies on networks. We show that the essence of embedding based on random walks is the latent metric structure defined on the open-flow network. This not only deepens our understanding of random- walk-based embedding algorithms but also helps in finding new potential applications in network embedding.

  8. Spike-timing-dependent plasticity enhanced synchronization transitions induced by autapses in adaptive Newman-Watts neuronal networks.

    Science.gov (United States)

    Gong, Yubing; Wang, Baoying; Xie, Huijuan

    2016-12-01

    In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on synchronization transitions induced by autaptic activity in adaptive Newman-Watts Hodgkin-Huxley neuron networks. It is found that synchronization transitions induced by autaptic delay vary with the adjusting rate Ap of STDP and become strongest at a certain Ap value, and the Ap value increases when network randomness or network size increases. It is also found that the synchronization transitions induced by autaptic delay become strongest at a certain network randomness and network size, and the values increase and related synchronization transitions are enhanced when Ap increases. These results show that there is optimal STDP that can enhance the synchronization transitions induced by autaptic delay in the adaptive neuronal networks. These findings provide a new insight into the roles of STDP and autapses for the information transmission in neural systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Comparison of a spiking neural network and an MLP for robust identification of generator dynamics in a multimachine power system.

    Science.gov (United States)

    Johnson, Cameron; Venayagamoorthy, Ganesh Kumar; Mitra, Pinaki

    2009-01-01

    The application of a spiking neural network (SNN) and a multi-layer perceptron (MLP) for online identification of generator dynamics in a multimachine power system are compared in this paper. An integrate-and-fire model of an SNN which communicates information via the inter-spike interval is applied. The neural network identifiers are used to predict the speed and terminal voltage deviations one time-step ahead of generators in a multimachine power system. The SNN is developed in two steps: (i) neuron centers determined by offline k-means clustering and (ii) output weights obtained by online training. The sensitivity of the SNN to the neuron centers determined in the first step is evaluated on generators of different ratings and parameters. Performances of the SNN and MLP are compared to evaluate robustness on the identification of generator dynamics under small and large disturbances, and to illustrate that SNNs are capable of learning nonlinear dynamics of complex systems.

  10. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.

    Science.gov (United States)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  11. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  12. Neural coordination can be enhanced by occasional interruption of normal firing patterns: a self-optimizing spiking neural network model.

    Science.gov (United States)

    Woodward, Alexander; Froese, Tom; Ikegami, Takashi

    2015-02-01

    The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we demonstrate that it can be transferred to more biologically plausible neural networks by implementing a self-optimizing spiking neural network model. In addition, by using this spiking neural network to emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-based and temporal coding based neural systems. Although further work is required to make this model more realistic, it already suggests that the efficacy of the self-optimizing process is independent from the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural processes that could be responsible for occasional alteration of neural firing patterns in actual brains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Innovation embedded in entrepreneurs’ networks in private and public spheres

    DEFF Research Database (Denmark)

    Schøtt, Thomas; Cheraghi, Maryam; Rezaei, Shahamak

    2014-01-01

    Global studies have found tendencies: traditional culture promotes entrepreneurs' networking in the private sphere, impeding innovation, whereas secular-rational culture facilitates networking in the public sphere, benefiting innovation. This embeddedness is here scrutinised in contrasting...... societies, China and Denmark. Global Entrepreneurship Monitor has surveyed entrepreneurs in China, Denmark and elsewhere. Analyses reconfirm the global tendencies and show that, China in contrast to Denmark, public sphere networking is sparser, but private sphere networking is denser. Innovation...

  14. Innovation embedded in entrepreneurs' networks in private and public spheres

    DEFF Research Database (Denmark)

    Schøtt, Thomas; Cheraghi, Maryam; Rezaei, Shahamak

    2014-01-01

    Global studies have found tendencies: traditional culture promotes entrepreneurs' networking in the private sphere, impeding innovation, whereas secular-rational culture facilitates networking in the public sphere, benefiting innovation. This embeddedness is here scrutinised in contrasting...... societies, China and Denmark. Global Entrepreneurship Monitor has surveyed entrepreneurs in China, Denmark and elsewhere. Analyses reconfirm the global tendencies and show that, China in contrast to Denmark, public sphere networking is sparser, but private sphere networking is denser. Innovation...

  15. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.

    Science.gov (United States)

    Nageswaran, Jayram Moorkanikara; Dutt, Nikil; Krichmar, Jeffrey L; Nicolau, Alex; Veidenbaum, Alexander V

    2009-01-01

    Neural network simulators that take into account the spiking behavior of neurons are useful for studying brain mechanisms and for various neural engineering applications. Spiking Neural Network (SNN) simulators have been traditionally simulated on large-scale clusters, super-computers, or on dedicated hardware architectures. Alternatively, Compute Unified Device Architecture (CUDA) Graphics Processing Units (GPUs) can provide a low-cost, programmable, and high-performance computing platform for simulation of SNNs. In this paper we demonstrate an efficient, biologically realistic, large-scale SNN simulator that runs on a single GPU. The SNN model includes Izhikevich spiking neurons, detailed models of synaptic plasticity and variable axonal delay. We allow user-defined configuration of the GPU-SNN model by means of a high-level programming interface written in C++ but similar to the PyNN programming interface specification. PyNN is a common programming interface developed by the neuronal simulation community to allow a single script to run on various simulators. The GPU implementation (on NVIDIA GTX-280 with 1 GB of memory) is up to 26 times faster than a CPU version for the simulation of 100K neurons with 50 Million synaptic connections, firing at an average rate of 7 Hz. For simulation of 10 Million synaptic connections and 100K neurons, the GPU SNN model is only 1.5 times slower than real-time. Further, we present a collection of new techniques related to parallelism extraction, mapping of irregular communication, and network representation for effective simulation of SNNs on GPUs. The fidelity of the simulation results was validated on CPU simulations using firing rate, synaptic weight distribution, and inter-spike interval analysis. Our simulator is publicly available to the modeling community so that researchers will have easy access to large-scale SNN simulations.

  16. The Embedded Self: A Social Networks Approach to Identity Theory

    Science.gov (United States)

    Walker, Mark H.; Lynn, Freda B.

    2013-01-01

    Despite the fact that key sociological theories of self and identity view the self as fundamentally rooted in networks of interpersonal relationships, empirical research investigating how personal network structure influences the self is conspicuously lacking. To address this gap, we examine links between network structure and role identity…

  17. Cascading failures in spatially-embedded random networks.

    Science.gov (United States)

    Asztalos, Andrea; Sreenivasan, Sameet; Szymanski, Boleslaw K; Korniss, Gyorgy

    2014-01-01

    Cascading failures constitute an important vulnerability of interconnected systems. Here we focus on the study of such failures on networks in which the connectivity of nodes is constrained by geographical distance. Specifically, we use random geometric graphs as representative examples of such spatial networks, and study the properties of cascading failures on them in the presence of distributed flow. The key finding of this study is that the process of cascading failures is non-self-averaging on spatial networks, and thus, aggregate inferences made from analyzing an ensemble of such networks lead to incorrect conclusions when applied to a single network, no matter how large the network is. We demonstrate that this lack of self-averaging disappears with the introduction of a small fraction of long-range links into the network. We simulate the well studied preemptive node removal strategy for cascade mitigation and show that it is largely ineffective in the case of spatial networks. We introduce an altruistic strategy designed to limit the loss of network nodes in the event of a cascade triggering failure and show that it performs better than the preemptive strategy. Finally, we consider a real-world spatial network viz. a European power transmission network and validate that our findings from the study of random geometric graphs are also borne out by simulations of cascading failures on the empirical network.

  18. Understanding the effects of administrative boundary in sampling spatially embedded networks

    Science.gov (United States)

    Chi, Guanghua; Liu, Yu; Shi, Li; Gao, Yong

    2017-01-01

    When analyzing spatially embedded networks, networks consisting of nodes and connections within an administrative boundary are commonly analyzed directly without considering possible errors or biases due to lost connections to nodes outside the network. However, connections exist not only within administrative boundaries but also to nodes outside of the boundaries. This study empirically analyzed the geographical boundary problem using a mobile communication network constructed based on mobile phone data collected in Heilongjiang province, China. We find that although many connections outside of the administrative boundary are lost, sampled networks based on administrative boundaries perform relatively well in terms of degree and clustering coefficient. We find that the mechanisms behind the reliability of these sampled networks include the effects of distance decay and cohesion strength in administrative regions on spatially embedded networks.

  19. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data

    NARCIS (Netherlands)

    Kümmel, Anne; Panke, Sven; Heinemann, Matthias

    2006-01-01

    As one of the most recent members of the omics family, large-scale quantitative metabolomics data are currently complementing our systems biology data pool and offer the chance to integrate the metabolite level into the functional analysis of cellular networks. Network-embedded thermodynamic

  20. Embedded Carbon Nanotube Networks for Damage Precursor Detection

    Science.gov (United States)

    2014-01-01

    Black-Filled Polymeric Concrete . Polymer Engineering and Science 2000, 40 (9), 2101–2104. 12 List of Symbols, Abbreviations, and Acronyms A0...system with CNT- reinforced epoxy. Epoxy is widely used in vehicles, particularly aerospace vehicles, where fiber - reinforced epoxy is integral to the...Monitoring of Glass Fiber Reinforced Composites Using Embedded Carbon Nanotube (CNT) Fibers . Composites Science and Technology 2009, 70 (2), 260–271

  1. Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding

    KAUST Repository

    Cannistraci, Carlo

    2013-06-21

    Motivation: Most functions within the cell emerge thanks to protein-protein interactions (PPIs), yet experimental determination of PPIs is both expensive and time-consuming. PPI networks present significant levels of noise and incompleteness. Predicting interactions using only PPI-network topology (topological prediction) is difficult but essential when prior biological knowledge is absent or unreliable.Methods: Network embedding emphasizes the relations between network proteins embedded in a low-dimensional space, in which protein pairs that are closer to each other represent good candidate interactions. To achieve network denoising, which boosts prediction performance, we first applied minimum curvilinear embedding (MCE), and then adopted shortest path (SP) in the reduced space to assign likelihood scores to candidate interactions. Furthermore, we introduce (i) a new valid variation of MCE, named non-centred MCE (ncMCE); (ii) two automatic strategies for selecting the appropriate embedding dimension; and (iii) two new randomized procedures for evaluating predictions.Results: We compared our method against several unsupervised and supervisedly tuned embedding approaches and node neighbourhood techniques. Despite its computational simplicity, ncMCE-SP was the overall leader, outperforming the current methods in topological link prediction.Conclusion: Minimum curvilinearity is a valuable non-linear framework that we successfully applied to the embedding of protein networks for the unsupervised prediction of novel PPIs. The rationale for our approach is that biological and evolutionary information is imprinted in the non-linear patterns hidden behind the protein network topology, and can be exploited for predicting new protein links. The predicted PPIs represent good candidates for testing in high-throughput experiments or for exploitation in systems biology tools such as those used for network-based inference and prediction of disease-related functional modules. The

  2. A Scalable Neuro-inspired Robot Controller Integrating a Machine Learning Algorithm and a Spiking Cerebellar-like Network

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Lund, Henrik Hautop

    2017-01-01

    the Locally Weighted Projection Regression algorithm (LWPR) and a spiking cerebellar-like microcircuit. The LWPR guarantees both an optimized representation of the input space and the learning of the dynamic internal model (IM) of the robot. However, the cerebellar-like sub-circuit integrates LWPR input......Combining Fable robot, a modular robot, with a neuroinspired controller, we present the proof of principle of a system that can scale to several neurally controlled compliant modules. The motor control and learning of a robot module are carried out by a Unit Learning Machine (ULM) that embeds......-driven contributions to deliver accurate corrective commands to the global IM. This article extends the earlier work by including the Deep Cerebellar Nuclei (DCN) and by reproducing the Purkinje and the DCN layers using a spiking neural network (SNN) implemented on the neuromorphic SpiNNaker platform. The performance...

  3. Polychronization: computation with spikes.

    Science.gov (United States)

    Izhikevich, Eugene M

    2006-02-01

    We present a minimal spiking network that can polychronize, that is, exhibit reproducible time-locked but not synchronous firing patterns with millisecond precision, as in synfire braids. The network consists of cortical spiking neurons with axonal conduction delays and spike-timing-dependent plasticity (STDP); a ready-to-use MATLAB code is included. It exhibits sleeplike oscillations, gamma (40 Hz) rhythms, conversion of firing rates to spike timings, and other interesting regimes. Due to the interplay between the delays and STDP, the spiking neurons spontaneously self-organize into groups and generate patterns of stereotypical polychronous activity. To our surprise, the number of coexisting polychronous groups far exceeds the number of neurons in the network, resulting in an unprecedented memory capacity of the system. We speculate on the significance of polychrony to the theory of neuronal group selection (TNGS, neural Darwinism), cognitive neural computations, binding and gamma rhythm, mechanisms of attention, and consciousness as "attention to memories."

  4. Regenerable Photovoltaic Devices with a Hydrogel-Embedded Microvascular Network

    Science.gov (United States)

    Koo, Hyung-Jun; Velev, Orlin D.

    2013-01-01

    Light-driven degradation of photoactive molecules could be one of the major obstacles to stable long term operation of organic dye-based solar light harvesting devices. One solution to this problem may be mimicking the regeneration functionality of a plant leaf. We report an organic dye photovoltaic system that has been endowed with such microfluidic regeneration functionality. A hydrogel medium with embedded channels allows rapid and uniform supply of photoactive reagents by a convection-diffusion mechanism. A washing-activation cycle enables reliable replacement of the organic component in a dye-sensitized photovoltaic system. Repetitive restoration of photovoltaic performance after intensive device degradation is demonstrated. PMID:23912814

  5. A Modified Izhikevich Model For Circuit Implementation of Spiking Neural Networks

    OpenAIRE

    Ahmadi, Arash; Zwolinski, Mark

    2010-01-01

    The Izhikevich neuron model reproduces the spiking and bursting behaviour of certain types of cortical neurons. This model has a second order nonlinearity that makes it difficult to implement in hardware. We propose a simplified version of the model that has a piecewise-linear relationship. This modification simplifies the hardware implementation but demonstrates similar dynamic behaviour.

  6. Emergence of slow collective oscillations in neural networks with spike-timing dependent plasticity

    DEFF Research Database (Denmark)

    Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro

    2013-01-01

    The collective dynamics of excitatory pulse coupled neurons with spike timing dependent plasticity (STDP) is studied. The introduction of STDP induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain...

  7. Embedding global and collective in a torus network with message class map based tree path selection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong; Coteus, Paul W.; Eisley, Noel A.; Gara, Alan; Heidelberger, Philip; Senger, Robert M; Salapura, Valentina; Steinmacher-Burow, Burkhard; Sugawara, Yutaka; Takken, Todd E.

    2016-06-21

    Embodiments of the invention provide a method, system and computer program product for embedding a global barrier and global interrupt network in a parallel computer system organized as a torus network. The computer system includes a multitude of nodes. In one embodiment, the method comprises taking inputs from a set of receivers of the nodes, dividing the inputs from the receivers into a plurality of classes, combining the inputs of each of the classes to obtain a result, and sending said result to a set of senders of the nodes. Embodiments of the invention provide a method, system and computer program product for embedding a collective network in a parallel computer system organized as a torus network. In one embodiment, the method comprises adding to a torus network a central collective logic to route messages among at least a group of nodes in a tree structure.

  8. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    Science.gov (United States)

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  9. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Mohammed S. Taboun

    2017-09-01

    Full Text Available With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  10. Virtual Network Embedding: A Hybrid Vertex Mapping Solution for Dynamic Resource Allocation

    Directory of Open Access Journals (Sweden)

    Adil Razzaq

    2012-01-01

    Full Text Available Virtual network embedding (VNE is a key area in network virtualization, and the overall purpose of VNE is to map virtual networks onto an underlying physical network referred to as a substrate. Typically, the virtual networks have certain demands, such as resource requirements, that need to be satisfied by the mapping process. A virtual network (VN can be described in terms of vertices (nodes and edges (links with certain resource requirements, and, to embed a VN, substrate resources are assigned to these vertices and edges. Substrate networks have finite resources and utilizing them efficiently is an important objective for a VNE method. This paper analyzes two existing vertex mapping approaches—one which only considers if enough node resources are available for the current VN mapping and one which considers to what degree a node already is utilized by existing VN embeddings before doing the vertex mapping. The paper also proposes a new vertex mapping approach which minimizes complete exhaustion of substrate nodes while still providing good overall resource utilization. Experimental results are presented to show under what circumstances the proposed vertex mapping approach can provide superior VN embedding properties compared to the other approaches.

  11. Effect of Fiber Crimp on the Elasticity of Random Fiber Networks With and Without Embedding Matrices.

    Science.gov (United States)

    Ban, Ehsan; Barocas, Victor H; Shephard, Mark S; Picu, Catalin R

    2016-04-01

    Fiber networks are assemblies of one-dimensional elements representative of materials with fibrous microstructures such as collagen networks and synthetic nonwovens. The mechanics of random fiber networks has been the focus of numerous studies. However, fiber crimp has been explicitly represented only in few cases. In the present work, the mechanics of cross-linked networks with crimped athermal fibers, with and without an embedding elastic matrix, is studied. The dependence of the effective network stiffness on the fraction of nonstraight fibers and the relative crimp amplitude (or tortuosity) is studied using finite element simulations of networks with sinusoidally curved fibers. A semi-analytic model is developed to predict the dependence of network modulus on the crimp amplitude and the bounds of the stiffness reduction associated with the presence of crimp. The transition from the linear to the nonlinear elastic response of the network is rendered more gradual by the presence of crimp, and the effect of crimp on the network tangent stiffness decreases as strain increases. If the network is embedded in an elastic matrix, the effect of crimp becomes negligible even for very small, biologically relevant matrix stiffness values. However, the distribution of the maximum principal stress in the matrix becomes broader in the presence of crimp relative to the similar system with straight fibers, which indicates an increased probability of matrix failure.

  12. The behaviour of basic autocatalytic signalling modules in isolation and embedded in networks

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, J. [Department of Chemical Engineering, Centre for Process Systems Engineering, Institute for Systems and Synthetic Biology, Imperial College London, London SW7 2AZ (United Kingdom); Mois, Kristina; Suwanmajo, Thapanar [Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-11-07

    In this paper, we examine the behaviour of basic autocatalytic feedback modules involving a species catalyzing its own production, either directly or indirectly. We first perform a systematic study of the autocatalytic feedback module in isolation, examining the effect of different factors, showing how this module is capable of exhibiting monostable threshold and bistable switch-like behaviour. We then study the behaviour of this module embedded in different kinds of basic networks including (essentially) irreversible cycles, open and closed reversible chains, and networks with additional feedback. We study the behaviour of the networks deterministically and also stochastically, using simulations, analytical work, and bifurcation analysis. We find that (i) there are significant differences between the behaviour of this module in isolation and in a network: thresholds may be altered or destroyed and bistability may be destroyed or even induced, even when the ambient network is simple. The global characteristics and topology of this network and the position of the module in the ambient network can play important and unexpected roles. (ii) There can be important differences between the deterministic and stochastic dynamics of the module embedded in networks, which may be accentuated by the ambient network. This provides new insights into the functioning of such enzymatic modules individually and as part of networks, with relevance to other enzymatic signalling modules as well.

  13. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.

    Science.gov (United States)

    Beyeler, Michael; Dutt, Nikil D; Krichmar, Jeffrey L

    2013-12-01

    Understanding how the human brain is able to efficiently perceive and understand a visual scene is still a field of ongoing research. Although many studies have focused on the design and optimization of neural networks to solve visual recognition tasks, most of them either lack neurobiologically plausible learning rules or decision-making processes. Here we present a large-scale model of a hierarchical spiking neural network (SNN) that integrates a low-level memory encoding mechanism with a higher-level decision process to perform a visual classification task in real-time. The model consists of Izhikevich neurons and conductance-based synapses for realistic approximation of neuronal dynamics, a spike-timing-dependent plasticity (STDP) synaptic learning rule with additional synaptic dynamics for memory encoding, and an accumulator model for memory retrieval and categorization. The full network, which comprised 71,026 neurons and approximately 133 million synapses, ran in real-time on a single off-the-shelf graphics processing unit (GPU). The network was constructed on a publicly available SNN simulator that supports general-purpose neuromorphic computer chips. The network achieved 92% correct classifications on MNIST in 100 rounds of random sub-sampling, which is comparable to other SNN approaches and provides a conservative and reliable performance metric. Additionally, the model correctly predicted reaction times from psychophysical experiments. Because of the scalability of the approach and its neurobiological fidelity, the current model can be extended to an efficient neuromorphic implementation that supports more generalized object recognition and decision-making architectures found in the brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Embedded Vision Sensor Network for Planogram Maintenance in Retail Environments

    Directory of Open Access Journals (Sweden)

    Emanuele Frontoni

    2015-08-01

    Full Text Available A planogram is a detailed visual map that establishes the position of the products in a retail store. It is designed to supply the best location of a product for suppliers to support an innovative merchandising approach, to increase sales and profits and to better manage the shelves. Deviating from the planogram defeats the purpose of any of these goals, and maintaining the integrity of the planogram becomes a fundamental aspect in retail operations. We propose an embedded system, mainly based on a smart camera, able to detect and to investigate the most important parameters in a retail store by identifying the differences with respect to an “approved” planogram. We propose a new solution that allows concentrating all the surveys and the useful measures on a limited number of devices in communication among them. These devices are simple, low cost and ready for immediate installation, providing an affordable and scalable solution to the problem of planogram maintenance. Moreover, over an Internet of Things (IoT cloud-based architecture, the system supplies many additional data that are not concerning the planogram, e.g., out-of-shelf events, promptly notified through SMS and/or mail. The application of this project allows the realization of highly integrated systems, which are economical, complete and easy to use for a large number of users. Experimental results have proven that the system can efficiently calculate the deviation from a normal situation by comparing the base planogram image with the images grabbed.

  15. Embedded Vision Sensor Network for Planogram Maintenance in Retail Environments.

    Science.gov (United States)

    Frontoni, Emanuele; Mancini, Adriano; Zingaretti, Primo

    2015-08-27

    A planogram is a detailed visual map that establishes the position of the products in a retail store. It is designed to supply the best location of a product for suppliers to support an innovative merchandising approach, to increase sales and profits and to better manage the shelves. Deviating from the planogram defeats the purpose of any of these goals, and maintaining the integrity of the planogram becomes a fundamental aspect in retail operations. We propose an embedded system, mainly based on a smart camera, able to detect and to investigate the most important parameters in a retail store by identifying the differences with respect to an "approved" planogram. We propose a new solution that allows concentrating all the surveys and the useful measures on a limited number of devices in communication among them. These devices are simple, low cost and ready for immediate installation, providing an affordable and scalable solution to the problem of planogram maintenance. Moreover, over an Internet of Things (IoT) cloud-based architecture, the system supplies many additional data that are not concerning the planogram, e.g., out-of-shelf events, promptly notified through SMS and/or mail. The application of this project allows the realization of highly integrated systems, which are economical, complete and easy to use for a large number of users. Experimental results have proven that the system can efficiently calculate the deviation from a normal situation by comparing the base planogram image with the images grabbed.

  16. Embedded Vision Sensor Network for Planogram Maintenance in Retail Environments

    Science.gov (United States)

    Frontoni, Emanuele; Mancini, Adriano; Zingaretti, Primo

    2015-01-01

    A planogram is a detailed visual map that establishes the position of the products in a retail store. It is designed to supply the best location of a product for suppliers to support an innovative merchandising approach, to increase sales and profits and to better manage the shelves. Deviating from the planogram defeats the purpose of any of these goals, and maintaining the integrity of the planogram becomes a fundamental aspect in retail operations. We propose an embedded system, mainly based on a smart camera, able to detect and to investigate the most important parameters in a retail store by identifying the differences with respect to an “approved” planogram. We propose a new solution that allows concentrating all the surveys and the useful measures on a limited number of devices in communication among them. These devices are simple, low cost and ready for immediate installation, providing an affordable and scalable solution to the problem of planogram maintenance. Moreover, over an Internet of Things (IoT) cloud-based architecture, the system supplies many additional data that are not concerning the planogram, e.g., out-of-shelf events, promptly notified through SMS and/or mail. The application of this project allows the realization of highly integrated systems, which are economical, complete and easy to use for a large number of users. Experimental results have proven that the system can efficiently calculate the deviation from a normal situation by comparing the base planogram image with the images grabbed. PMID:26343659

  17. Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration.

    Directory of Open Access Journals (Sweden)

    David J Margolis

    Full Text Available Following photoreceptor degeneration, ON and OFF retinal ganglion cells (RGCs in the rd-1/rd-1 mouse receive rhythmic synaptic input that elicits bursts of action potentials at ∼ 10 Hz. To characterize the properties of this activity, RGCs were targeted for paired recording and morphological classification as either ON alpha, OFF alpha or non-alpha RGCs using two-photon imaging. Identified cell types exhibited rhythmic spike activity. Cross-correlation of spike trains recorded simultaneously from pairs of RGCs revealed that activity was correlated more strongly between alpha RGCs than between alpha and non-alpha cell pairs. Bursts of action potentials in alpha RGC pairs of the same type, i.e. two ON or two OFF cells, were in phase, while bursts in dissimilar alpha cell types, i.e. an ON and an OFF RGC, were 180 degrees out of phase. This result is consistent with RGC activity being driven by an input that provides correlated excitation to ON cells and inhibition to OFF cells. A2 amacrine cells were investigated as a candidate cellular mechanism and found to display 10 Hz oscillations in membrane voltage and current that persisted in the presence of antagonists of fast synaptic transmission and were eliminated by tetrodotoxin. Results support the conclusion that the rhythmic RGC activity originates in a presynaptic network of electrically coupled cells including A2s via a Na(+-channel dependent mechanism. Network activity drives out of phase oscillations in ON and OFF cone bipolar cells, entraining similar frequency fluctuations in RGC spike activity over an area of retina that migrates with changes in the spatial locus of the cellular oscillator.

  18. CLAM - CoLlAborative eMbedded networks for submarine surveillance: An overview

    NARCIS (Netherlands)

    Meratnia, Nirvana; Havinga, Paul J.M.; Casari, Paolo; Petrioli, Chiara; Grythe, Knut; Husoy, Thor; Zorzi, Michele

    2011-01-01

    This paper provides an overview of the CLAM project, which aims at developing a collaborative embedded monitoring and control platform for submarine surveillance by combining cutting edge acoustic vector sensor technology and 1D, 2D, 3D sensor arrays, underwater wireless sensor networks protocol

  19. Networks embedded in n-dimensional space : The impact of dimensionality change

    NARCIS (Netherlands)

    Peli, Gabor; Bruggeman, Jeroen

    2006-01-01

    Social networks can be embedded in an n-dimensional space, where the dimensions may reveal or denote underlying properties of interest. When the pertaining actors occupy niches of resources in this space, e.g., organizational niches of affiliates, we show there exists a non-monotonic effect of

  20. Peri-ictal network dynamics of spike-wave discharges: Phase and spectral characteristics

    NARCIS (Netherlands)

    Luttjohann, A.K.; Schoffelen, J.M.; Luijtelaar, E.L.J.M. van

    2013-01-01

    Purpose: The brain is a highly interconnected neuronal assembly in which network analyses can greatly enlarge our knowledge on seizure generation. The cortico-thalamo-cortical network is the brain-network of interest in absence epilepsy. Here, network synchronization is assessed in a genetic absence

  1. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks

    DEFF Research Database (Denmark)

    Garrido, Jesús A.; Luque, Niceto R.; Tolu, Silvia

    2016-01-01

    The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly...... understood. Here, we have used a simple model of afferent excitatory neurons and interneurons with lateral inhibition, reproducing a network topology found in many brain areas from the cerebellum to cortical columns. When endowed with spike-timing dependent plasticity (STDP) at the excitatory input synapses...... and at the inhibitory interneuron-interneuron synapses, the interneurons rapidly learned complex input patterns. Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity...

  2. Generalized spike and waves: effect of discharge duration on brain networks as revealed by BOLD fMRI.

    Science.gov (United States)

    Pugnaghi, Matteo; Carmichael, David W; Vaudano, Anna E; Chaudhary, Umair J; Benuzzi, Francesca; Di Bonaventura, Carlo; Giallonardo, Anna T; Rodionov, Roman; Walker, Matthew C; Duncan, John S; Meletti, Stefano; Lemieux, Louis

    2014-01-01

    In the past decade, the possibility of combining recordings of EEG and functional MRI (EEG-fMRI), has brought a new insight into the brain network underlying generalized spike wave discharges (GSWD). Nevertheless, how GSWD duration influences this network is not fully understood. In this study we aim to investigate whether GSWD duration had a threshold (non-linear) and/or a linear effect on the amplitude of the associated BOLD changes in any brain regions. This could help in elucidating if there is an hemodynamic background supporting the differentiation between interictal and ictal events. We studied a population of 42 patients with idiopathic generalized epilepsies (IGE) who underwent resting-state EEG-fMRI recordings in three centres (London, UK; Modena, Italy; Rome, Italy), applying a parametric analysis of the GSWD duration. Patients were classified as having Childhood Absence epilepsy, Juvenile Absence Epilepsy, or Juvenile Myoclonic Epilepsy. At the population level linear GSWD duration-related BOLD signal changes were found in a network of brain regions: mainly BOLD increase in thalami and cerebral ventricles, and BOLD decrease in posterior cingulate, precuneus and bilateral parietal regions. No region of significant BOLD change was found in the group analysis for the non-linear effect of GSWD duration. To explore the possible effect of both the different IGE sub-syndromes and the different protocols and scanning equipment used in the study, a full-factorial ANOVA design was performed revealing no significant differences. These findings support the idea that the amplitude of the BOLD changes is linearly related to the GSWD duration with no universal threshold effect of spike and wave duration on the brain network supporting this activity.

  3. Recognition of disturbances with specified morphology in time series. Part 1: Spikes on magnetograms of the worldwide INTERMAGNET network

    Science.gov (United States)

    Bogoutdinov, Sh. R.; Gvishiani, A. D.; Agayan, S. M.; Solovyev, A. A.; Kin, E.

    2010-11-01

    The International Real-time Magnetic Observatory Network (INTERMAGNET) is the world's biggest international network of ground-based observatories, providing geomagnetic data almost in real time (within 72 hours of collection) [Kerridge, 2001]. The observation data are rapidly transferred by the observatories participating in the program to regional Geomagnetic Information Nodes (GINs), which carry out a global exchange of data and process the results. The observations of the main (core) magnetic field of the Earth and its study are one of the key problems of geophysics. The INTERMAGNET system is the basis of monitoring the state of the Earth's magnetic field; therefore, the information provided by the system is required to be very reliable. Despite the rigid high-quality standard of the recording devices, they are subject to external effects that affect the quality of the records. Therefore, an objective and formalized recognition with the subsequent remedy of the anomalies (artifacts) that occur on the records is an important task. Expanding on the ideas of Agayan [Agayan et al., 2005] and Gvishiani [Gvishiani et al., 2008a; 2008b], this paper suggests a new algorithm of automatic recognition of anomalies with specified morphology, capable of identifying both physically- and anthropogenically-derived spikes on the magnetograms. The algorithm is constructed using fuzzy logic and, as such, is highly adaptive and universal. The developed algorithmic system formalizes the work of the expert-interpreter in terms of artificial intelligence. This ensures identical processing of large data arrays, almost unattainable manually. Besides the algorithm, the paper also reports on the application of the developed algorithmic system for identifying spikes at the INTERMAGNET observatories. The main achievement of the work is the creation of an algorithm permitting the almost unmanned extraction of spike-free (definitive) magnetograms from preliminary records. This automated

  4. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks.

    Science.gov (United States)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang; Deng, Bin; Wei, Xile

    2014-09-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.

  5. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn; Deng, Bin; Wei, Xile [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.

  6. Formation of DNA-network embedding ferromagnetic Cobalt nano-particles

    Science.gov (United States)

    Kanki, Teruo; Tanaka, Hidekazu; Shirakawa, Hideaki; Sacho, Yu; Taniguchi, Masateru; Lee, Hea-Yeon; Kawai, Tomoji; Kang, Nam-Jung; Chen, Jinwoo

    2002-03-01

    Formation of DNA-network embedding ferromagnetic Cobalt nano-particles T. Kanki, Hidekazu. Tanaka, H. Shirakawa, Y. Sacho, M. Taniguchi, H. Lee, T. Kawai The Institute of Scientific and Industrial Research, Osaka University, Japan and Nam-Jung Kang, Jinwoo Chen Korea Advanced Institute of Science and Technology (KAIST), Korea DNA can be regarded as a naturally occurring and highly specific functional biopolymer and as a fine nano-wire. Moreover, it was found that large-scale DNA networks can be fabricated on mica surfaces. By using this network structure, we can expect to construct nano-scale assembly of functional nano particle, for example ferromagnetic Co nano particles, toward nano scale spin-electronics based on DNA circuits. When we formed DNA network by 250mg/ml DNA solution of poly(dG)-poly(dC) including ferromagnetic Co nano particles (diameter of 12nm), we have conformed the DNA network structure embedding Co nano-particles (height of about 12nm) by atomic force microscopy. On the other hand, we used 100mg/ml DNA solution, DNA can not connect each other, and many Co nano-particles exist without being embedded.

  7. Modeling and Design of Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded Systems

    Directory of Open Access Journals (Sweden)

    Jürgen Teich

    2006-06-01

    Full Text Available Automotive, avionic, or body-area networks are systems that consist of several communicating control units specialized for certain purposes. Typically, different constraints regarding fault tolerance, availability and also flexibility are imposed on these systems. In this article, we will present a novel framework for increasing fault tolerance and flexibility by solving the problem of hardware/software codesign online. Based on field-programmable gate arrays (FPGAs in combination with CPUs, we allow migrating tasks implemented in hardware or software from one node to another. Moreover, if not enough hardware/software resources are available, the migration of functionality from hardware to software or vice versa is provided. Supporting such flexibility through services integrated in a distributed operating system for networked embedded systems is a substantial step towards self-adaptive systems. Beside the formal definition of methods and concepts, we describe in detail a first implementation of a reconfigurable networked embedded system running automotive applications.

  8. Modeling and Design of Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded Systems

    Directory of Open Access Journals (Sweden)

    Streichert Thilo

    2006-01-01

    Full Text Available Automotive, avionic, or body-area networks are systems that consist of several communicating control units specialized for certain purposes. Typically, different constraints regarding fault tolerance, availability and also flexibility are imposed on these systems. In this article, we will present a novel framework for increasing fault tolerance and flexibility by solving the problem of hardware/software codesign online. Based on field-programmable gate arrays (FPGAs in combination with CPUs, we allow migrating tasks implemented in hardware or software from one node to another. Moreover, if not enough hardware/software resources are available, the migration of functionality from hardware to software or vice versa is provided. Supporting such flexibility through services integrated in a distributed operating system for networked embedded systems is a substantial step towards self-adaptive systems. Beside the formal definition of methods and concepts, we describe in detail a first implementation of a reconfigurable networked embedded system running automotive applications.

  9. Automatic spike detection via an artificial neural network using raw EEG data: effects of data preparation and implications in the limitations of online recognition.

    Science.gov (United States)

    Ko, C W; Chung, H W

    2000-03-01

    Automatic detection of epileptic EEG spikes via an artificial neural network has been reported to be feasible using raw EEG data as input. This study re-investigated its suitability by further exploring the effects of data preparation on classification performance testing. Six hundred EEG files (300 spikes and 300 non-spikes) taken from 20 patients were included in this study. Raw EEG data were sent to the neural network using the architecture reported to give best performance (30 input-layer and 6 hidden-layer neurons). Significantly larger weighting of the 10th input-layer neuron was found after training with prepared raw EEG data. The classification process was thus dominated by the peak location. Subsequent analysis showed that online spike detection with an erroneously trained network yielded an area less than 0.5 under the receiver-operating-characteristic curve, and hence performed inferiorly to random assignments. Networks trained and tested using the same unprepared EEG data achieved no better than about 87% true classification rate at equal sensitivity and specificity. The high true classification rate reported previously is believed to be an artifact arising from erroneous data preparation and off-line validation. Spike detection using raw EEG data as input is unlikely to be feasible under current computer technology.

  10. Implementing 802.11 with microcontrollers wireless networking for embedded systems designers

    CERN Document Server

    Eady, Fred

    2005-01-01

    Wireless networking is poised to have a massive impact on communications, and the 802.11 standard is to wireless networking what Ethernet is to wired networking. There are already over 50 million devices using the dominant IEEE 802.11 (essentially wireless Ethernet) standard, with astronomical growth predicted over the next 10 years. New applications are emerging every day, with wireless capability being embedded in everything from electric meters to hospital patient tracking systems to security devices. This practical reference guides readers through the wireless technology forest, gi

  11. Stable learning of functional maps in self-organizing spiking neural networks with continuous synaptic plasticity.

    Science.gov (United States)

    Srinivasa, Narayan; Jiang, Qin

    2013-01-01

    This study describes a spiking model that self-organizes for stable formation and maintenance of orientation and ocular dominance maps in the visual cortex (V1). This self-organization process simulates three development phases: an early experience-independent phase, a late experience-independent phase and a subsequent refinement phase during which experience acts to shape the map properties. The ocular dominance maps that emerge accommodate the two sets of monocular inputs that arise from the lateral geniculate nucleus (LGN) to layer 4 of V1. The orientation selectivity maps that emerge feature well-developed iso-orientation domains and fractures. During the last two phases of development the orientation preferences at some locations appear to rotate continuously through ±180° along circular paths and referred to as pinwheel-like patterns but without any corresponding point discontinuities in the orientation gradient maps. The formation of these functional maps is driven by balanced excitatory and inhibitory currents that are established via synaptic plasticity based on spike timing for both excitatory and inhibitory synapses. The stability and maintenance of the formed maps with continuous synaptic plasticity is enabled by homeostasis caused by inhibitory plasticity. However, a prolonged exposure to repeated stimuli does alter the formed maps over time due to plasticity. The results from this study suggest that continuous synaptic plasticity in both excitatory neurons and interneurons could play a critical role in the formation, stability, and maintenance of functional maps in the cortex.

  12. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    Science.gov (United States)

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  13. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems.

    Science.gov (United States)

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-12

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  14. Inferring a transcriptional regulatory network from gene expression data using nonlinear manifold embedding.

    Directory of Open Access Journals (Sweden)

    Hossein Zare

    Full Text Available Transcriptional networks consist of multiple regulatory layers corresponding to the activity of global regulators, specialized repressors and activators as well as proteins and enzymes shaping the DNA template. Such intrinsic complexity makes uncovering connections difficult and it calls for corresponding methodologies, which are adapted to the available data. Here we present a new computational method that predicts interactions between transcription factors and target genes using compendia of microarray gene expression data and documented interactions between genes and transcription factors. The proposed method, called Kernel Embedding of Regulatory Networks (KEREN, is based on the concept of gene-regulon association, and captures hidden geometric patterns of the network via manifold embedding. We applied KEREN to reconstruct transcription regulatory interactions on a genome-wide scale in the model bacteria Escherichia coli (E. coli. Application of the method not only yielded accurate predictions of verifiable interactions, which outperformed on certain metrics comparable methodologies, but also demonstrated the utility of a geometric approach in the analysis of high-dimensional biological data. We also described possible applications of kernel embedding techniques to other function and network discovery algorithms.

  15. Inferring a transcriptional regulatory network from gene expression data using nonlinear manifold embedding.

    Science.gov (United States)

    Zare, Hossein; Kaveh, Mostafa; Khodursky, Arkady

    2011-01-01

    Transcriptional networks consist of multiple regulatory layers corresponding to the activity of global regulators, specialized repressors and activators as well as proteins and enzymes shaping the DNA template. Such intrinsic complexity makes uncovering connections difficult and it calls for corresponding methodologies, which are adapted to the available data. Here we present a new computational method that predicts interactions between transcription factors and target genes using compendia of microarray gene expression data and documented interactions between genes and transcription factors. The proposed method, called Kernel Embedding of Regulatory Networks (KEREN), is based on the concept of gene-regulon association, and captures hidden geometric patterns of the network via manifold embedding. We applied KEREN to reconstruct transcription regulatory interactions on a genome-wide scale in the model bacteria Escherichia coli (E. coli). Application of the method not only yielded accurate predictions of verifiable interactions, which outperformed on certain metrics comparable methodologies, but also demonstrated the utility of a geometric approach in the analysis of high-dimensional biological data. We also described possible applications of kernel embedding techniques to other function and network discovery algorithms.

  16. Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity.

    Science.gov (United States)

    Popovych, Oleksandr V; Yanchuk, Serhiy; Tass, Peter A

    2013-10-11

    Intuitively one might expect independent noise to be a powerful tool for desynchronizing a population of synchronized neurons. We here show that, intriguingly, for oscillatory neural populations with adaptive synaptic weights governed by spike timing-dependent plasticity (STDP) the opposite is true. We found that the mean synaptic coupling in such systems increases dynamically in response to the increase of the noise intensity, and there is an optimal noise level, where the amount of synaptic coupling gets maximal in a resonance-like manner as found for the stochastic or coherence resonances, although the mechanism in our case is different. This constitutes a noise-induced self-organization of the synaptic connectivity, which effectively counteracts the desynchronizing impact of independent noise over a wide range of the noise intensity. Given the attempts to counteract neural synchrony underlying tinnitus with noisers and maskers, our results may be of clinical relevance.

  17. iSpike: a spiking neural interface for the iCub robot.

    Science.gov (United States)

    Gamez, D; Fidjeland, A K; Lazdins, E

    2012-06-01

    This paper presents iSpike: a C++ library that interfaces between spiking neural network simulators and the iCub humanoid robot. It uses a biologically inspired approach to convert the robot's sensory information into spikes that are passed to the neural network simulator, and it decodes output spikes from the network into motor signals that are sent to control the robot. Applications of iSpike range from embodied models of the brain to the development of intelligent robots using biologically inspired spiking neural networks. iSpike is an open source library that is available for free download under the terms of the GPL.

  18. Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Todd Vollmer; Jason Wright; Milos Manic

    2011-04-01

    Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.

  19. Wireless and embedded carbon nanotube networks for damage detection in concrete structures.

    Science.gov (United States)

    Saafi, Mohamed

    2009-09-30

    Concrete structures undergo an uncontrollable damage process manifesting in the form of cracks due to the coupling of fatigue loading and environmental effects. In order to achieve long-term durability and performance, continuous health monitoring systems are needed to make critical decisions regarding operation, maintenance and repairs. Recent advances in nanostructured materials such as carbon nanotubes have opened the door for new smart and advanced sensing materials that could effectively be used in health monitoring of structures where wireless and real time sensing could provide information on damage development. In this paper, carbon nanotube networks were embedded into a cement matrix to develop an in situ wireless and embedded sensor for damage detection in concrete structures. By wirelessly measuring the change in the electrical resistance of the carbon nanotube networks, the progress of damage can be detected and monitored. As a proof of concept, wireless cement-carbon nanotube sensors were embedded into concrete beams and subjected to monotonic and cyclic loading to evaluate the effect of damage on their response. Experimental results showed that the wireless response of the embedded nanotube sensors changes due to the formation of cracks during loading. In addition, the nanotube sensors were able to detect the initiation of damage at an early stage of loading.

  20. Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials

    Science.gov (United States)

    Lopour, Beth A.; Staba, Richard J.; Stern, John M.; Fried, Itzhak; Ringach, Dario L.

    2016-04-01

    Objective. Quantifying the relationship between microelectrode-recorded multi-unit activity (MUA) and local field potentials (LFPs) in distinct brain regions can provide detailed information on the extent of functional connectivity in spatially widespread networks. These methods are common in studies of cognition using non-human animal models, but are rare in humans. Here we applied a neuronal spike-triggered impulse response to electrophysiological recordings from the human epileptic brain for the first time, and we evaluate functional connectivity in relation to brain areas supporting the generation of seizures. Approach. Broadband interictal electrophysiological data were recorded from microwires adapted to clinical depth electrodes that were implanted bilaterally using stereotactic techniques in six presurgical patients with medically refractory epilepsy. MUA and LFPs were isolated in each microwire, and we calculated the impulse response between the MUA on one microwire and the LFPs on a second microwire for all possible MUA/LFP pairs. Results were compared to clinical seizure localization, including sites of seizure onset and interictal epileptiform discharges. Main results. We detected significant interictal long-range functional connections in each subject, in some cases across hemispheres. Results were consistent between two independent datasets, and the timing and location of significant impulse responses reflected anatomical connectivity. However, within individual subjects, the spatial distribution of impulse responses was unique. In two subjects with clear seizure localization and successful surgery, the epileptogenic zone was associated with significant impulse responses. Significance. The results suggest that the spike-triggered impulse response can provide valuable information about the neuronal networks that contribute to seizures using only interictal data. This technique will enable testing of specific hypotheses regarding functional connectivity

  1. Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials.

    Science.gov (United States)

    Lopour, Beth A; Staba, Richard J; Stern, John M; Fried, Itzhak; Ringach, Dario L

    2016-04-01

    Quantifying the relationship between microelectrode-recorded multi-unit activity (MUA) and local field potentials (LFPs) in distinct brain regions can provide detailed information on the extent of functional connectivity in spatially widespread networks. These methods are common in studies of cognition using non-human animal models, but are rare in humans. Here we applied a neuronal spike-triggered impulse response to electrophysiological recordings from the human epileptic brain for the first time, and we evaluate functional connectivity in relation to brain areas supporting the generation of seizures. Broadband interictal electrophysiological data were recorded from microwires adapted to clinical depth electrodes that were implanted bilaterally using stereotactic techniques in six presurgical patients with medically refractory epilepsy. MUA and LFPs were isolated in each microwire, and we calculated the impulse response between the MUA on one microwire and the LFPs on a second microwire for all possible MUA/LFP pairs. Results were compared to clinical seizure localization, including sites of seizure onset and interictal epileptiform discharges. We detected significant interictal long-range functional connections in each subject, in some cases across hemispheres. Results were consistent between two independent datasets, and the timing and location of significant impulse responses reflected anatomical connectivity. However, within individual subjects, the spatial distribution of impulse responses was unique. In two subjects with clear seizure localization and successful surgery, the epileptogenic zone was associated with significant impulse responses. The results suggest that the spike-triggered impulse response can provide valuable information about the neuronal networks that contribute to seizures using only interictal data. This technique will enable testing of specific hypotheses regarding functional connectivity in epilepsy and the relationship between

  2. Low-complexity object detection with deep convolutional neural network for embedded systems

    Science.gov (United States)

    Tripathi, Subarna; Kang, Byeongkeun; Dane, Gokce; Nguyen, Truong

    2017-09-01

    We investigate low-complexity convolutional neural networks (CNNs) for object detection for embedded vision applications. It is well-known that consolidation of an embedded system for CNN-based object detection is more challenging due to computation and memory requirement comparing with problems like image classification. To achieve these requirements, we design and develop an end-to-end TensorFlow (TF)-based fully-convolutional deep neural network for generic object detection task inspired by one of the fastest framework, YOLO.1 The proposed network predicts the localization of every object by regressing the coordinates of the corresponding bounding box as in YOLO. Hence, the network is able to detect any objects without any limitations in the size of the objects. However, unlike YOLO, all the layers in the proposed network is fully-convolutional. Thus, it is able to take input images of any size. We pick face detection as an use case. We evaluate the proposed model for face detection on FDDB dataset and Widerface dataset. As another use case of generic object detection, we evaluate its performance on PASCAL VOC dataset. The experimental results demonstrate that the proposed network can predict object instances of different sizes and poses in a single frame. Moreover, the results show that the proposed method achieves comparative accuracy comparing with the state-of-the-art CNN-based object detection methods while reducing the model size by 3× and memory-BW by 3 - 4× comparing with one of the best real-time CNN-based object detectors, YOLO. Our 8-bit fixed-point TF-model provides additional 4× memory reduction while keeping the accuracy nearly as good as the floating-point model. Moreover, the fixed- point model is capable of achieving 20× faster inference speed comparing with the floating-point model. Thus, the proposed method is promising for embedded implementations.

  3. A FPGA embedded web server for remote monitoring and control of smart sensors networks.

    Science.gov (United States)

    Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique

    2013-12-27

    This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.

  4. A FPGA Embedded Web Server for Remote Monitoring and Control of Smart Sensors Networks

    Directory of Open Access Journals (Sweden)

    Eduardo Magdaleno

    2013-12-01

    Full Text Available This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI. The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A. Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.

  5. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    Science.gov (United States)

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  6. Actions with economic elements embedded in the social networks of Danish farmer investors abroad

    DEFF Research Database (Denmark)

    Hajderllari, Luljeta

    are members of an organisation named Danish Farmers Abroad. The survey elicited information regarding their organisational network connections to other DFIs who also have activities abroad. Information about the DFIs’ network was obtained regarding their business relationships (cooperation, competition...... and given advice are positively related to social ties, whereas competition is negatively related to social ties. These results support the idea that business relationships (with the exception of competition) of DFIs are embedded in social relationships. This indicates that the same actors may behave less...

  7. Decision making under uncertainty in a spiking neural network model of the basal ganglia.

    Science.gov (United States)

    Héricé, Charlotte; Khalil, Radwa; Moftah, Marie; Boraud, Thomas; Guthrie, Martin; Garenne, André

    2016-12-01

    The mechanisms of decision-making and action selection are generally thought to be under the control of parallel cortico-subcortical loops connecting back to distinct areas of cortex through the basal ganglia and processing motor, cognitive and limbic modalities of decision-making. We have used these properties to develop and extend a connectionist model at a spiking neuron level based on a previous rate model approach. This model is demonstrated on decision-making tasks that have been studied in primates and the electrophysiology interpreted to show that the decision is made in two steps. To model this, we have used two parallel loops, each of which performs decision-making based on interactions between positive and negative feedback pathways. This model is able to perform two-level decision-making as in primates. We show here that, before learning, synaptic noise is sufficient to drive the decision-making process and that, after learning, the decision is based on the choice that has proven most likely to be rewarded. The model is then submitted to lesion tests, reversal learning and extinction protocols. We show that, under these conditions, it behaves in a consistent manner and provides predictions in accordance with observed experimental data.

  8. Electrical behavior of multi-walled carbon nanotube network embedded in amorphous silicon nitride

    Directory of Open Access Journals (Sweden)

    Buiculescu Raluca

    2011-01-01

    Full Text Available Abstract The electrical behavior of multi-walled carbon nanotube network embedded in amorphous silicon nitride is studied by measuring the voltage and temperature dependences of the current. The microstructure of the network is investigated by cross-sectional transmission electron microscopy. The multi-walled carbon nanotube network has an uniform spatial extension in the silicon nitride matrix. The current-voltage and resistance-temperature characteristics are both linear, proving the metallic behavior of the network. The I-V curves present oscillations that are further analyzed by computing the conductance-voltage characteristics. The conductance presents minima and maxima that appear at the same voltage for both bias polarities, at both 20 and 298 K, and that are not periodic. These oscillations are interpreted as due to percolation processes. The voltage percolation thresholds are identified with the conductance minima.

  9. The role of cortical oscillations in a spiking neural network model of the basal ganglia.

    Directory of Open Access Journals (Sweden)

    Zafeirios Fountas

    Full Text Available Although brain oscillations involving the basal ganglia (BG have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block information flow in the three major BG pathways. In particular, alpha (8-12Hz and beta (13-30Hz oscillations activate the direct BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the subthalamic nucleus-globus pallidus loop. In contrast, gamma (30-90Hz frequencies block the information flow from the cortex completely through activation of the indirect pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to spontaneous activity generated in the globus pallidus. Our results indicate the existence of a multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity. These two findings suggest new insights into the pathophysiology of specific BG disorders.

  10. The role of cortical oscillations in a spiking neural network model of the basal ganglia.

    Science.gov (United States)

    Fountas, Zafeirios; Shanahan, Murray

    2017-01-01

    Although brain oscillations involving the basal ganglia (BG) have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block) information flow in the three major BG pathways. In particular, alpha (8-12Hz) and beta (13-30Hz) oscillations activate the direct BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the subthalamic nucleus-globus pallidus loop. In contrast, gamma (30-90Hz) frequencies block the information flow from the cortex completely through activation of the indirect pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to spontaneous activity generated in the globus pallidus. Our results indicate the existence of a multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity. These two findings suggest new insights into the pathophysiology of specific BG disorders.

  11. A reanalysis of “Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons” [version 1; referees: 2 approved

    OpenAIRE

    Rainer Engelken; Farzad Farkhooi; David Hansel; Carl van Vreeswijk; Fred Wolf

    2016-01-01

    Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, communicate via spikes and it is a theoretical challenge to obtain similar rate fluctuations in networks o...

  12. Default mode network alterations during language task performance in children with benign epilepsy with centrotemporal spikes (BECTS).

    Science.gov (United States)

    Oser, Nadine; Hubacher, Martina; Specht, Karsten; Datta, Alexandre N; Weber, Peter; Penner, Iris-Katharina

    2014-04-01

    Benign epilepsy with centrotemporal spikes (BECTS) is the most common idiopathic epileptic disorder in children. Besides reported cognitive deficits, functional alterations mostly in the reorganization of language areas have also been described. In several publications, it has been reported that activation of the default mode network (DMN) can be reduced or altered in different neuropsychiatric and neurological disorders in adults. Whether this also holds true for children with epilepsy has so far not been clarified. To determine the functional activation of the DMN in children with BECTS, 20 patients and 16 healthy controls were examined using functional magnetic resonance imaging (fMRI), while a sentence generation task and a reading task were applied in a block design manner. To study the default mode network and the functional alterations between groups, an independent component analysis (ICA) was computed and further analyzed using SPM5. Compared with controls, children with BECTS showed not only significantly less activation of the DMN during the rest condition but also less deactivation during cognitive effort. This was most apparent in the precuneus, a key region of the DMN, while subjects were generating sentences. From these findings, we hypothesize that children with BECTS show a functional deficit that is reflected by alterations in the DMN. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Streaming Parallel GPU Acceleration of Large-Scale filter-based Spiking Neural Networks

    NARCIS (Netherlands)

    L.P. Slazynski (Leszek); S.M. Bohte (Sander)

    2012-01-01

    htmlabstractThe arrival of graphics processing (GPU) cards suitable for massively parallel computing promises a↵ordable large-scale neural network simulation previously only available at supercomputing facil- ities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of

  14. A reinforcement sensor embedded vertical handoff controller for vehicular heterogeneous wireless networks.

    Science.gov (United States)

    Li, Limin; Xu, Yubin; Soong, Boon-Hee; Ma, Lin

    2013-11-04

    Vehicular communication platforms that provide real-time access to wireless networks have drawn more and more attention in recent years. IEEE 802.11p is the main radio access technology that supports communication for high mobility terminals, however, due to its limited coverage, IEEE 802.11p is usually deployed by coupling with cellular networks to achieve seamless mobility. In a heterogeneous cellular/802.11p network, vehicular communication is characterized by its short time span in association with a wireless local area network (WLAN). Moreover, for the media access control (MAC) scheme used for WLAN, the network throughput dramatically decreases with increasing user quantity. In response to these compelling problems, we propose a reinforcement sensor (RFS) embedded vertical handoff control strategy to support mobility management. The RFS has online learning capability and can provide optimal handoff decisions in an adaptive fashion without prior knowledge. The algorithm integrates considerations including vehicular mobility, traffic load, handoff latency, and network status. Simulation results verify that the proposed algorithm can adaptively adjust the handoff strategy, allowing users to stay connected to the best network. Furthermore, the algorithm can ensure that RSUs are adequate, thereby guaranteeing a high quality user experience.

  15. A Reinforcement Sensor Embedded Vertical Handoff Controller for Vehicular Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Lin Ma

    2013-11-01

    Full Text Available Vehicular communication platforms that provide real-time access to wireless networks have drawn more and more attention in recent years. IEEE 802.11p is the main radio access technology that supports communication for high mobility terminals, however, due to its limited coverage, IEEE 802.11p is usually deployed by coupling with cellular networks to achieve seamless mobility. In a heterogeneous cellular/802.11p network, vehicular communication is characterized by its short time span in association with a wireless local area network (WLAN. Moreover, for the media access control (MAC scheme used for WLAN, the network throughput dramatically decreases with increasing user quantity. In response to these compelling problems, we propose a reinforcement sensor (RFS embedded vertical handoff control strategy to support mobility management. The RFS has online learning capability and can provide optimal handoff decisions in an adaptive fashion without prior knowledge. The algorithm integrates considerations including vehicular mobility, traffic load, handoff latency, and network status. Simulation results verify that the proposed algorithm can adaptively adjust the handoff strategy, allowing users to stay connected to the best network. Furthermore, the algorithm can ensure that RSUs are adequate, thereby guaranteeing a high quality user experience.

  16. Machine learning meets complex networks via coalescent embedding in the hyperbolic space.

    Science.gov (United States)

    Muscoloni, Alessandro; Thomas, Josephine Maria; Ciucci, Sara; Bianconi, Ginestra; Cannistraci, Carlo Vittorio

    2017-11-20

    Physicists recently observed that realistic complex networks emerge as discrete samples from a continuous hyperbolic geometry enclosed in a circle: the radius represents the node centrality and the angular displacement between two nodes resembles their topological proximity. The hyperbolic circle aims to become a universal space of representation and analysis of many real networks. Yet, inferring the angular coordinates to map a real network back to its latent geometry remains a challenging inverse problem. Here, we show that intelligent machines for unsupervised recognition and visualization of similarities in big data can also infer the network angular coordinates of the hyperbolic model according to a geometrical organization that we term "angular coalescence." Based on this phenomenon, we propose a class of algorithms that offers fast and accurate "coalescent embedding" in the hyperbolic circle even for large networks. This computational solution to an inverse problem in physics of complex systems favors the application of network latent geometry techniques in disciplines dealing with big network data analysis including biology, medicine, and social science.

  17. Phase transitions and self-organized criticality in networks of stochastic spiking neurons

    Science.gov (United States)

    Brochini, Ludmila; de Andrade Costa, Ariadne; Abadi, Miguel; Roque, Antônio C.; Stolfi, Jorge; Kinouchi, Osame

    2016-11-01

    Phase transitions and critical behavior are crucial issues both in theoretical and experimental neuroscience. We report analytic and computational results about phase transitions and self-organized criticality (SOC) in networks with general stochastic neurons. The stochastic neuron has a firing probability given by a smooth monotonic function Φ(V) of the membrane potential V, rather than a sharp firing threshold. We find that such networks can operate in several dynamic regimes (phases) depending on the average synaptic weight and the shape of the firing function Φ. In particular, we encounter both continuous and discontinuous phase transitions to absorbing states. At the continuous transition critical boundary, neuronal avalanches occur whose distributions of size and duration are given by power laws, as observed in biological neural networks. We also propose and test a new mechanism to produce SOC: the use of dynamic neuronal gains - a form of short-term plasticity probably located at the axon initial segment (AIS) - instead of depressing synapses at the dendrites (as previously studied in the literature). The new self-organization mechanism produces a slightly supercritical state, that we called SOSC, in accord to some intuitions of Alan Turing.

  18. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.

    Science.gov (United States)

    Zhang, Xu; Foderaro, Greg; Henriquez, Craig; Ferrari, Silvia

    2016-12-22

    Recent developments in neural stimulation and recording technologies are providing scientists with the ability of recording and controlling the activity of individual neurons in vitro or in vivo, with very high spatial and temporal resolution. Tools such as optogenetics, for example, are having a significant impact in the neuroscience field by delivering optical firing control with the precision and spatiotemporal resolution required for investigating information processing and plasticity in biological brains. While a number of training algorithms have been developed to date for spiking neural network (SNN) models of biological neuronal circuits, exiting methods rely on learning rules that adjust the synaptic strengths (or weights) directly, in order to obtain the desired network-level (or functional-level) performance. As such, they are not applicable to modifying plasticity in biological neuronal circuits, in which synaptic strengths only change as a result of pre- and post-synaptic neuron firings or biological mechanisms beyond our control. This paper presents a weight-free training algorithm that relies solely on adjusting the spatiotemporal delivery of neuron firings in order to optimize the network performance. The proposed weight-free algorithm does not require any knowledge of the SNN model or its plasticity mechanisms. As a result, this training approach is potentially realizable in vitro or in vivo via neural stimulation and recording technologies, such as optogenetics and multielectrode arrays, and could be utilized to control plasticity at multiple scales of biological neuronal circuits. The approach is demonstrated by training SNNs with hundreds of units to control a virtual insect navigating in an unknown environment.

  19. Supporting Symmetric 128-bit AES in Networked Embedded Systems: An Elliptic Curve Key Establishment Protocol-on-Chip

    Directory of Open Access Journals (Sweden)

    Roshan Duraisamy

    2007-02-01

    Full Text Available The secure establishment of cryptographic keys for symmetric encryption via key agreement protocols enables nodes in a network of embedded systems and remote agents to communicate securely in an insecure environment. In this paper, we propose a pure hardware implementation of a key agreement protocol, which uses the elliptic curve Diffie-Hellmann and digital signature algorithms and enables two parties, a remote agent and a networked embedded system, to establish a 128-bit symmetric key for encryption of all transmitted data via the advanced encryption scheme (AES. The resulting implementation is a protocol-on-chip that supports full 128-bit equivalent security (PoC-128. The PoC-128 has been implemented in an FPGA, but it can also be used as an IP within different embedded applications. As 128-bit security is conjectured valid for the foreseeable future, the PoC-128 goes well beyond the state of art in securing networked embedded devices.

  20. Limits of Predictability of Cascading Overload Failures in Spatially-Embedded Networks with Distributed Flows.

    Science.gov (United States)

    Moussawi, A; Derzsy, N; Lin, X; Szymanski, B K; Korniss, G

    2017-09-15

    Cascading failures are a critical vulnerability of complex information or infrastructure networks. Here we investigate the properties of load-based cascading failures in real and synthetic spatially-embedded network structures, and propose mitigation strategies to reduce the severity of damages caused by such failures. We introduce a stochastic method for optimal heterogeneous distribution of resources (node capacities) subject to a fixed total cost. Additionally, we design and compare the performance of networks with N-stable and (N-1)-stable network-capacity allocations by triggering cascades using various real-world node-attack and node-failure scenarios. We show that failure mitigation through increased node protection can be effectively achieved against single-node failures. However, mitigating against multiple node failures is much more difficult due to the combinatorial increase in possible sets of initially failing nodes. We analyze the robustness of the system with increasing protection, and find that a critical tolerance exists at which the system undergoes a phase transition, and above which the network almost completely survives an attack. Moreover, we show that cascade-size distributions measured in this region exhibit a power-law decay. Finally, we find a strong correlation between cascade sizes induced by individual nodes and sets of nodes. We also show that network topology alone is a weak predictor in determining the progression of cascading failures.

  1. SNAVA-A real-time multi-FPGA multi-model spiking neural network simulation architecture.

    Science.gov (United States)

    Sripad, Athul; Sanchez, Giovanny; Zapata, Mireya; Pirrone, Vito; Dorta, Taho; Cambria, Salvatore; Marti, Albert; Krishnamourthy, Karthikeyan; Madrenas, Jordi

    2018-01-01

    Spiking Neural Networks (SNN) for Versatile Applications (SNAVA) simulation platform is a scalable and programmable parallel architecture that supports real-time, large-scale, multi-model SNN computation. This parallel architecture is implemented in modern Field-Programmable Gate Arrays (FPGAs) devices to provide high performance execution and flexibility to support large-scale SNN models. Flexibility is defined in terms of programmability, which allows easy synapse and neuron implementation. This has been achieved by using a special-purpose Processing Elements (PEs) for computing SNNs, and analyzing and customizing the instruction set according to the processing needs to achieve maximum performance with minimum resources. The parallel architecture is interfaced with customized Graphical User Interfaces (GUIs) to configure the SNN's connectivity, to compile the neuron-synapse model and to monitor SNN's activity. Our contribution intends to provide a tool that allows to prototype SNNs faster than on CPU/GPU architectures but significantly cheaper than fabricating a customized neuromorphic chip. This could be potentially valuable to the computational neuroscience and neuromorphic engineering communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Crosstalk-aware virtual network embedding over inter-datacenter optical networks with few-mode fibers

    Science.gov (United States)

    Huang, Haibin; Guo, Bingli; Li, Xin; Yin, Shan; Zhou, Yu; Huang, Shanguo

    2017-12-01

    Virtualization of datacenter (DC) infrastructures enables infrastructure providers (InPs) to provide novel services like virtual networks (VNs). Furthermore, optical networks have been employed to connect the metro-scale geographically distributed DCs. The synergistic virtualization of the DC infrastructures and optical networks enables the efficient VN service over inter-DC optical networks (inter-DCONs). While the capacity of the used standard single-mode fiber (SSMF) is limited by their nonlinear characteristics. Thus, mode-division multiplexing (MDM) technology based on few-mode fibers (FMFs) could be employed to increase the capacity of optical networks. Whereas, modal crosstalk (XT) introduced by optical fibers and components deployed in the MDM optical networks impacts the performance of VN embedding (VNE) over inter-DCONs with FMFs. In this paper, we propose a XT-aware VNE mechanism over inter-DCONs with FMFs. The impact of XT is considered throughout the VNE procedures. The simulation results show that the proposed XT-aware VNE can achieves better performances of blocking probability and spectrum utilization compared to conventional VNE mechanisms.

  3. Solution to the inverse problem of estimating gap-junctional and inhibitory conductance in inferior olive neurons from spike trains by network model simulation.

    Science.gov (United States)

    Onizuka, Miho; Hoang, Huu; Kawato, Mitsuo; Tokuda, Isao T; Schweighofer, Nicolas; Katori, Yuichi; Aihara, Kazuyuki; Lang, Eric J; Toyama, Keisuke

    2013-11-01

    The inferior olive (IO) possesses synaptic glomeruli, which contain dendritic spines from neighboring neurons and presynaptic terminals, many of which are inhibitory and GABAergic. Gap junctions between the spines electrically couple neighboring neurons whereas the GABAergic synaptic terminals are thought to act to decrease the effectiveness of this coupling. Thus, the glomeruli are thought to be important for determining the oscillatory and synchronized activity displayed by IO neurons. Indeed, the tendency to display such activity patterns is enhanced or reduced by the local administration of the GABA-A receptor blocker picrotoxin (PIX) or the gap junction blocker carbenoxolone (CBX), respectively. We studied the functional roles of the glomeruli by solving the inverse problem of estimating the inhibitory (gi) and gap-junctional conductance (gc) using an IO network model. This model was built upon a prior IO network model, in which the individual neurons consisted of soma and dendritic compartments, by adding a glomerular compartment comprising electrically coupled spines that received inhibitory synapses. The model was used in the forward mode to simulate spike data under PIX and CBX conditions for comparison with experimental data consisting of multi-electrode recordings of complex spikes from arrays of Purkinje cells (complex spikes are generated in a one-to-one manner by IO spikes and thus can substitute for directly measuring IO spike activity). The spatiotemporal firing dynamics of the experimental and simulation spike data were evaluated as feature vectors, including firing rates, local variation, auto-correlogram, cross-correlogram, and minimal distance, and were contracted onto two-dimensional principal component analysis (PCA) space. gc and gi were determined as the solution to the inverse problem such that the simulation and experimental spike data were closely matched in the PCA space. The goodness of the match was confirmed by an analysis of variance

  4. Real-time radionuclide identification in γ-emitter mixtures based on spiking neural network.

    Science.gov (United States)

    Bobin, C; Bichler, O; Lourenço, V; Thiam, C; Thévenin, M

    2016-03-01

    Portal radiation monitors dedicated to the prevention of illegal traffic of nuclear materials at international borders need to deliver as fast as possible a radionuclide identification of a potential radiological threat. Spectrometry techniques applied to identify the radionuclides contributing to γ-emitter mixtures are usually performed using off-line spectrum analysis. As an alternative to these usual methods, a real-time processing based on an artificial neural network and Bayes' rule is proposed for fast radionuclide identification. The validation of this real-time approach was carried out using γ-emitter spectra ((241)Am, (133)Ba, (207)Bi, (60)Co, (137)Cs) obtained with a high-efficiency well-type NaI(Tl). The first tests showed that the proposed algorithm enables a fast identification of each γ-emitting radionuclide using the information given by the whole spectrum. Based on an iterative process, the on-line analysis only needs low-statistics spectra without energy calibration to identify the nature of a radiological threat. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Glutamate gated spiking Neuron Model.

    Science.gov (United States)

    Deka, Krisha M; Roy, Soumik

    2014-01-01

    Biological neuron models mainly analyze the behavior of neural networks. Neurons are described in terms of firing rates viz an analog signal. The Izhikevich neuron model is an efficient, powerful model of spiking neuron. This model is a reduction of Hodgkin-Huxley model to a two variable system and is capable of producing rich firing patterns for many biological neurons. In this paper, the Regular Spiking (RS) neuron firing pattern is used to simulate the spiking of Glutamate gated postsynaptic membrane. Simulation is done in MATLAB environment for excitatory action of synapses. Analogous simulation of spiking of excitatory postsynaptic membrane potential is obtained.

  6. Microsensors to the Model Forecasts: Multiscale Embedded Networked Sensing of Nutrients in the Watershed

    Science.gov (United States)

    Harmon, T. C.

    2005-12-01

    Hydrologic and water quality observatories are being planned with a vision of enhancing our ability to better understand, forecast and adaptively manage both water quantity and quality. To adequately cover these spatially and temporally variable systems, distributed, embedded sensor networks must be designed with the proper mix (multimodality) of sensors to quantify key system properties, including temperature and chemical distributions, as well as mass and energy fluxes, and to do so across multiple scales. Given resource limitations, process models need to be coupled to the sensor network to interpolate between sensor data. This work focuses on the spatially distributed flux of nutrients, specifically nitrate, in surface-subsurface environments. It begins at the sensor level, describing the development and testing of nitrate microsensors that are scaleable to large, dense sensor networks required to cover heterogeneous watersheds, including associated soil and sediment systems. First and second generation miniature and inexpensive nitrate sensors (ion selective electrodes) fabricated by depositing conducting polymers on carbon substrates are presented in the context of laboratory and field tests. While these sensors are limited to relatively short deployments (4-8 weeks), there are potential strategies for overcoming this problem. Scale-up to one- and three-dimensional soil/sediment sensor arrays is discussed in the context of two deployments: (1) a groundwater quality protection network, where recycled wastewater that is potentially high in nitrate is being used for agricultural irrigation, and (2) nonpoint source nitrate pollution in rivers and groundwater in agricultural watersheds. Recent hardware (wireless transceivers) and software advancements (e.g., network topology design and debugging, energy management) intended for networks spanning 100s of m in space are outlined in these examples. The discussion extends to sensor form factor, in situ calibration

  7. NetworkViewer: visualizing biochemical reaction networks with embedded rendering of molecular interaction rules.

    Science.gov (United States)

    Cheng, Hsueh-Chien; Angermann, Bastian R; Zhang, Fengkai; Meier-Schellersheim, Martin

    2014-06-16

    Network representations of cell-biological signaling processes frequently contain large numbers of interacting molecular and multi-molecular components that can exist in, and switch between, multiple biochemical and/or structural states. In addition, the interaction categories (associations, dissociations and transformations) in such networks cannot satisfactorily be mapped onto simple arrows connecting pairs of components since their specifications involve information such as reaction rates and conditions with regard to the states of the interacting components. This leads to the challenge of having to reconcile competing objectives: providing a high-level overview without omitting relevant information, and showing interaction specifics while not overwhelming users with too much detail displayed simultaneously. This problem is typically addressed by splitting the information required to understand a reaction network model into several categories that are rendered separately through combinations of visualizations and/or textual and tabular elements, requiring modelers to consult several sources to obtain comprehensive insights into the underlying assumptions of the model. We report the development of an application, the Simmune NetworkViewer, that visualizes biochemical reaction networks using iconographic representations of protein interactions and the conditions under which the interactions take place using the same symbols that were used to specify the underlying model with the Simmune Modeler. This approach not only provides a coherent model representation but, moreover, following the principle of "overview first, zoom and filter, then details-on-demand," can generate an overview visualization of the global network and, upon user request, presents more detailed views of local sub-networks and the underlying reaction rules for selected interactions. This visual integration of information would be difficult to achieve with static network representations or

  8. NetworkViewer: visualizing biochemical reaction networks with embedded rendering of molecular interaction rules

    OpenAIRE

    Cheng, Hsueh-Chien; Angermann, Bastian R.; Zhang, Fengkai; Meier-Schellersheim, Martin

    2014-01-01

    Background Network representations of cell-biological signaling processes frequently contain large numbers of interacting molecular and multi-molecular components that can exist in, and switch between, multiple biochemical and/or structural states. In addition, the interaction categories (associations, dissociations and transformations) in such networks cannot satisfactorily be mapped onto simple arrows connecting pairs of components since their specifications involve information such as reac...

  9. FNS: an event-driven spiking neural network framework for efficient simulations of large-scale brain models

    OpenAIRE

    Susi, Gianluca; Garces, Pilar; Cristini, Alessandro; Paracone, Emanuele; Salerno, Mario; Maestu, Fernando; Pereda, Ernesto

    2018-01-01

    Limitations in processing capabilities and memory of today's computers make spiking neuron-based (human) whole-brain simulations inevitably characterized by a compromise between bio-plausibility and computational cost. It translates into brain models composed of a reduced number of neurons and a simplified neuron's mathematical model. Taking advantage of the sparse character of brain-like computation, eventdriven technique allows us to carry out efficient simulation of large-scale Spiking Neu...

  10. Using strategic movement to calibrate a neural compass: a spiking network for tracking head direction in rats and robots.

    Directory of Open Access Journals (Sweden)

    Peter Stratton

    Full Text Available The head direction (HD system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that 'grounding' of modelled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology, and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.

  11. How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime

    Science.gov (United States)

    Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T.

    2014-01-01

    Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in “intermediate” regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of

  12. Persistence and storage of activity patterns in spiking recurrent cortical networks:Modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine

    Directory of Open Access Journals (Sweden)

    Jesse ePalma

    2012-06-01

    Full Text Available Many cortical networks contain recurrent architectures that transform input patterns before storing them in short-term memory (STM. Theorems in the 1970’s showed how feedback signal functions in rate-based recurrent on-center off-surround networks control this process. A sigmoid signal function induces a quenching threshold below which inputs are suppressed as noise and above which they are contrast-enhanced before pattern storage. This article describes how changes in feedback signaling, neuromodulation, and recurrent connectivity may alter pattern processing in recurrent on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium, and slow after-hyperpolarization (AHP currents control sigmoid signal threshold and slope. Modulation of AHP currents by acetylcholine (ACh can change sigmoid shape and, with it, network dynamics. For example, decreasing signal function threshold and increasing slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell activities to cluster. These results clarify how cholinergic modulation by the basal forebrain may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract features, as predicted by Adaptive Resonance Theory. The analysis includes global, distance-dependent, and interneuron-mediated circuits. With an appropriate degree of recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced pattern for 800 milliseconds or longer after stimuli offset, then resolve to no stored pattern, or to winner-take-all stored patterns with one or multiple winners. Strengthening inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to stability, while strengthening excitation causes more winners

  13. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.

    Directory of Open Access Journals (Sweden)

    Danielle S Bassett

    2010-04-01

    Full Text Available Nervous systems are information processing networks that evolved by natural selection, whereas very large scale integrated (VLSI computer circuits have evolved by commercially driven technology development. Here we follow historic intuition that all physical information processing systems will share key organizational properties, such as modularity, that generally confer adaptivity of function. It has long been observed that modular VLSI circuits demonstrate an isometric scaling relationship between the number of processing elements and the number of connections, known as Rent's rule, which is related to the dimensionality of the circuit's interconnect topology and its logical capacity. We show that human brain structural networks, and the nervous system of the nematode C. elegans, also obey Rent's rule, and exhibit some degree of hierarchical modularity. We further show that the estimated Rent exponent of human brain networks, derived from MRI data, can explain the allometric scaling relations between gray and white matter volumes across a wide range of mammalian species, again suggesting that these principles of nervous system design are highly conserved. For each of these fractal modular networks, the dimensionality of the interconnect topology was greater than the 2 or 3 Euclidean dimensions of the space in which it was embedded. This relatively high complexity entailed extra cost in physical wiring: although all networks were economically or cost-efficiently wired they did not strictly minimize wiring costs. Artificial and biological information processing systems both may evolve to optimize a trade-off between physical cost and topological complexity, resulting in the emergence of homologous principles of economical, fractal and modular design across many different kinds of nervous and computational networks.

  14. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.

    Science.gov (United States)

    Bassett, Danielle S; Greenfield, Daniel L; Meyer-Lindenberg, Andreas; Weinberger, Daniel R; Moore, Simon W; Bullmore, Edward T

    2010-04-22

    Nervous systems are information processing networks that evolved by natural selection, whereas very large scale integrated (VLSI) computer circuits have evolved by commercially driven technology development. Here we follow historic intuition that all physical information processing systems will share key organizational properties, such as modularity, that generally confer adaptivity of function. It has long been observed that modular VLSI circuits demonstrate an isometric scaling relationship between the number of processing elements and the number of connections, known as Rent's rule, which is related to the dimensionality of the circuit's interconnect topology and its logical capacity. We show that human brain structural networks, and the nervous system of the nematode C. elegans, also obey Rent's rule, and exhibit some degree of hierarchical modularity. We further show that the estimated Rent exponent of human brain networks, derived from MRI data, can explain the allometric scaling relations between gray and white matter volumes across a wide range of mammalian species, again suggesting that these principles of nervous system design are highly conserved. For each of these fractal modular networks, the dimensionality of the interconnect topology was greater than the 2 or 3 Euclidean dimensions of the space in which it was embedded. This relatively high complexity entailed extra cost in physical wiring: although all networks were economically or cost-efficiently wired they did not strictly minimize wiring costs. Artificial and biological information processing systems both may evolve to optimize a trade-off between physical cost and topological complexity, resulting in the emergence of homologous principles of economical, fractal and modular design across many different kinds of nervous and computational networks.

  15. Performance evaluation of multi-channel wireless mesh networks with embedded systems.

    Science.gov (United States)

    Lam, Jun Huy; Lee, Sang-Gon; Tan, Whye Kit

    2012-01-01

    Many commercial wireless mesh network (WMN) products are available in the marketplace with their own proprietary standards, but interoperability among the different vendors is not possible. Open source communities have their own WMN implementation in accordance with the IEEE 802.11s draft standard, Linux open80211s project and FreeBSD WMN implementation. While some studies have focused on the test bed of WMNs based on the open80211s project, none are based on the FreeBSD. In this paper, we built an embedded system using the FreeBSD WMN implementation that utilizes two channels and evaluated its performance. This implementation allows the legacy system to connect to the WMN independent of the type of platform and distributes the load between the two non-overlapping channels. One channel is used for the backhaul connection and the other one is used to connect to the stations to wireless mesh network. By using the power efficient 802.11 technology, this device can also be used as a gateway for the wireless sensor network (WSN).

  16. Performance Evaluation of Multi-Channel Wireless Mesh Networks with Embedded Systems

    Directory of Open Access Journals (Sweden)

    Whye Kit Tan

    2012-01-01

    Full Text Available Many commercial wireless mesh network (WMN products are available in the marketplace with their own proprietary standards, but interoperability among the different vendors is not possible. Open source communities have their own WMN implementation in accordance with the IEEE 802.11s draft standard, Linux open80211s project and FreeBSD WMN implementation. While some studies have focused on the test bed of WMNs based on the open80211s project, none are based on the FreeBSD. In this paper, we built an embedded system using the FreeBSD WMN implementation that utilizes two channels and evaluated its performance. This implementation allows the legacy system to connect to the WMN independent of the type of platform and distributes the load between the two non-overlapping channels. One channel is used for the backhaul connection and the other one is used to connect to the stations to wireless mesh network. By using the power efficient 802.11 technology, this device can also be used as a gateway for the wireless sensor network (WSN.

  17. Data compression in wireless sensors network using MDCT and embedded harmonic coding.

    Science.gov (United States)

    Alsalaet, Jaafar K; Ali, Abduladhem A

    2015-05-01

    One of the major applications of wireless sensors networks (WSNs) is vibration measurement for the purpose of structural health monitoring and machinery fault diagnosis. WSNs have many advantages over the wired networks such as low cost and reduced setup time. However, the useful bandwidth is limited, as compared to wired networks, resulting in relatively low sampling. One solution to this problem is data compression which, in addition to enhancing sampling rate, saves valuable power of the wireless nodes. In this work, a data compression scheme, based on Modified Discrete Cosine Transform (MDCT) followed by Embedded Harmonic Components Coding (EHCC) is proposed to compress vibration signals. The EHCC is applied to exploit harmonic redundancy present is most vibration signals resulting in improved compression ratio. This scheme is made suitable for the tiny hardware of wireless nodes and it is proved to be fast and effective. The efficiency of the proposed scheme is investigated by conducting several experimental tests. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Towards Resilient Critical Infrastructures: Application of Type-2 Fuzzy Logic in Embedded Network Security Cyber Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Todd Vollmer; Jim Alves-Foss; Milos Manic

    2011-08-01

    Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL provides a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.

  19. Ag nanowire percolating network embedded in indium tin oxide nanoparticles for printable transparent conducting electrodes

    Science.gov (United States)

    Jeong, Jin-A.; Kim, Han-Ki

    2014-02-01

    Solution-based printable transparent conducting electrodes consisting of Ag nanowire (NW) and indium tin oxide (ITO) nanoparticles (NPs) were fabricated by simple brush painting at room temperature under atmospheric ambient conditions. Effectively embedding the Ag NW percolating network into the ITO NPs provided a conduction path, led to a metallic conduction behavior of the ITO NPs/Ag NW/ITO NPs multilayer and supplied electrons into the ITO NPs. The optimized ITO NPs/Ag NW/ITO NPs multilayer showed a sheet resistance of 16.57 Ω/sq and an optical transparency of 79.50% without post annealing. Based on high resolution transmission electron microscope analysis, we investigated the microstructure and interface structure of the ITO NPs/Ag NW/ITO NPs multilayer electrodes and suggested a possible mechanism to explain the low resistivity of the multilayers.

  20. Embedded XML DOM Parser: An Approach for XML Data Processing on Networked Embedded Systems with Real-Time Requirements

    Directory of Open Access Journals (Sweden)

    Cavia Soto MAngeles

    2008-01-01

    Full Text Available Abstract Trends in control and automation show an increase in data processing and communication in embedded automation controllers. The eXtensible Markup Language (XML is emerging as a dominant data syntax, fostering interoperability, yet little is still known about how to provide predictable real-time performance in XML processing, as required in the domain of industrial automation. This paper presents an XML processor that is designed with such real-time performance in mind. The publication attempts to disclose insight gained in applying techniques such as object pooling and reuse, and other methods targeted at avoiding dynamic memory allocation and its consequent memory fragmentation. Benchmarking tests are reported in order to illustrate the benefits of the approach.

  1. anNET: a tool for network-embedded thermodynamic analysis of quantitative metabolome data

    Directory of Open Access Journals (Sweden)

    Zamboni Nicola

    2008-04-01

    Full Text Available Abstract Background Compared to other omics techniques, quantitative metabolomics is still at its infancy. Complex sample preparation and analytical procedures render exact quantification extremely difficult. Furthermore, not only the actual measurement but also the subsequent interpretation of quantitative metabolome data to obtain mechanistic insights is still lacking behind the current expectations. Recently, the method of network-embedded thermodynamic (NET analysis was introduced to address some of these open issues. Building upon principles of thermodynamics, this method allows for a quality check of measured metabolite concentrations and enables to spot metabolic reactions where active regulation potentially controls metabolic flux. So far, however, widespread application of NET analysis in metabolomics labs was hindered by the absence of suitable software. Results We have developed in Matlab a generalized software called 'anNET' that affords a user-friendly implementation of the NET analysis algorithm. anNET supports the analysis of any metabolic network for which a stoichiometric model can be compiled. The model size can span from a single reaction to a complete genome-wide network reconstruction including compartments. anNET can (i test quantitative data sets for thermodynamic consistency, (ii predict metabolite concentrations beyond the actually measured data, (iii identify putative sites of active regulation in the metabolic reaction network, and (iv help in localizing errors in data sets that were found to be thermodynamically infeasible. We demonstrate the application of anNET with three published Escherichia coli metabolome data sets. Conclusion Our user-friendly and generalized implementation of the NET analysis method in the software anNET allows users to rapidly integrate quantitative metabolome data obtained from virtually any organism. We envision that use of anNET in labs working on quantitative metabolomics will provide the

  2. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks.

    Directory of Open Access Journals (Sweden)

    Nafise Erfanian Saeedi

    2016-04-01

    Full Text Available Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.

  3. Use of adaptive network burst detection methods for multielectrode array data and the generation of artificial spike patterns for method evaluation

    Science.gov (United States)

    Mendis, G. D. C.; Morrisroe, E.; Petrou, S.; Halgamuge, S. K.

    2016-04-01

    Objective. Multielectrode arrays are an informative extracellular recording technology that enables the analysis of cultured neuronal networks and network bursts (NBs) are a dominant feature observed in these recordings. This paper focuses on the validation of NB detection methods on different network activity patterns and developing a detection method that performs robustly across a wide variety of activity patterns. Approach. A firing rate based approach was used to generate artificial spike timestamps where NBs were introduced as episodes where the probability of spiking increases. Variations in firing and bursting characteristics were also included. In addition, an improved methodology of detecting NBs is proposed, based on time-binned average firing rates and time overlaps of single channel bursts. The robustness of the proposed method was compared against three existing algorithms using simulated, publicly available and newly acquired data. Main results. A range of activity patterns were generated by changing simulation variables that correspond to NB duration (40-2200 ms), intervals (0.3-16 s), firing rates (0.1-1 spikes s-1), local burst percentage (0%-90%), number of channels in local bursts (20-40) as well as the number of tonic and frequently-bursting channels. By extracting simulation parameters directly from real data, we generated synthetic data that closely resemble activity of mouse and rat cortical cultures at native and chemically perturbed states. In 50 simulated data sets with randomly selected parameter values, the improved NB detection method performed better (ascertained by the f-measure) than three existing methods (p < 0.005). The improved method was also able to detect clustered, long-tailed and short-frequent NBs on real data. Significance. This work presents an objective method of assessing the applicability of NB detection methods for different neuronal activity patterns. Furthermore, it proposes an improved NB detection method that can

  4. Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks.

    Science.gov (United States)

    Panda, Priyadarshini; Roy, Kaushik

    2017-01-01

    Synaptic Plasticity, the foundation for learning and memory formation in the human brain, manifests in various forms. Here, we combine the standard spike timing correlation based Hebbian plasticity with a non-Hebbian synaptic decay mechanism for training a recurrent spiking neural model to generate sequences. We show that inclusion of the adaptive decay of synaptic weights with standard STDP helps learn stable contextual dependencies between temporal sequences, while reducing the strong attractor states that emerge in recurrent models due to feedback loops. Furthermore, we show that the combined learning scheme suppresses the chaotic activity in the recurrent model substantially, thereby enhancing its' ability to generate sequences consistently even in the presence of perturbations.

  5. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.

    Science.gov (United States)

    Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi

    2011-11-01

    Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes.

    Science.gov (United States)

    Zhou, Lei; Xiang, Heng-Yang; Shen, Su; Li, Yan-Qing; Chen, Jing-De; Xie, Hao-Jun; Goldthorpe, Irene A; Chen, Lin-Sen; Lee, Shuit-Tong; Tang, Jian-Xin

    2014-12-23

    Because of their mechanical flexibility, organic light-emitting diodes (OLEDs) hold great promise as a leading technology for display and lighting applications in wearable electronics. The development of flexible OLEDs requires high-quality transparent conductive electrodes with superior bendability and roll-to-roll manufacturing compatibility to replace indium tin oxide (ITO) anodes. Here, we present a flexible transparent conductor on plastic with embedded silver networks which is used to achieve flexible, highly power-efficient large-area green and white OLEDs. By combining an improved outcoupling structure for simultaneously extracting light in waveguide and substrate modes and reducing the surface plasmonic losses, flexible white OLEDs exhibit a power efficiency of 106 lm W(-1) at 1000 cd m(-2) with angular color stability, which is significantly higher than all other reports of flexible white OLEDs. These results represent an exciting step toward the realization of ITO-free, high-efficiency OLEDs for use in a wide variety of high-performance flexible applications.

  7. Neural Networks with Non-Uniform Embedding and Explicit Validation Phase to Assess Granger Causality

    CERN Document Server

    Montalto, Alessandro; Faes, Luca; Tessitore, Giovanni; Prevete, Roberto; Marinazzo, Daniele

    2015-01-01

    A challenging problem when studying a dynamical system is to find the interdependencies among its individual components. Several algorithms have been proposed to detect directed dynamical influences between time series. Two of the most used approaches are a model-free one (transfer entropy) and a model-based one (Granger causality). Several pitfalls are related to the presence or absence of assumptions in modeling the relevant features of the data. We tried to overcome those pitfalls using a neural network approach in which a model is built without any a priori assumptions. In this sense this method can be seen as a bridge between model-free and model-based approaches. The experiments performed will show that the method presented in this work can detect the correct dynamical information flows occurring in a system of time series. Additionally we adopt a non-uniform embedding framework according to which only the past states that actually help the prediction are entered into the model, improving the prediction...

  8. Altered language network in benign childhood epilepsy patients with spikes from non-dominant side: A resting-state fMRI study.

    Science.gov (United States)

    Fang, Jiajia; Chen, Sihan; Luo, Cheng; Gong, Qiyong; An, Dongmei; Zhou, Dong

    2017-10-01

    Benign childhood epilepsy with centrotemporal spikes (BECTS) is one of the most common childhood epilepsy syndromes, and language deficits associated with BECTS have become a hot topic. This study investigated alterations of the language network in BECTS children with spikes from the non-dominant side in comparison with healthy controls. Twenty-three children with BECTS and 20 age-matched healthy controls were enrolled. Region of interest -based whole brain functional connectivity analysis was used to identify the potential differences in the functional connectivity of the Broca's area between the two groups. Increased positive functional connectivity within the Broca's region was detected mainly at the left superior frontal gyrus (Brodmann area 8), bilateral insula, and anterior and posterior cingulate in the BECTS group. No regions showed significantly decreased connection in the BECTS patients compared to the controls. This study suggested alterations in the language network that was related with the Broca's area in children with BECTS from the non-dominant side. Further studies with longitudinal assessments from the perceptive of functional neuroimaging are needed to illustrate the dynamic course of language development and corresponding neuroimaging evidence. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Brainlab: a Python toolkit to aid in the design, simulation, and analysis of spiking neural networks with the NeoCortical Simulator

    Directory of Open Access Journals (Sweden)

    Richard P Drewes

    2009-05-01

    Full Text Available Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading ``glue'' tool for managing all sorts of complex programmatictasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS environment in particular. Brainlab is an integrated model building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS (the NeoCortical Simulator.

  10. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator.

    Science.gov (United States)

    Drewes, Rich; Zou, Quan; Goodman, Philip H

    2009-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading "glue" tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS.

  11. Sound Source Localization Through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network

    Directory of Open Access Journals (Sweden)

    Christoph Beck

    2016-10-01

    Full Text Available Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.

  12. Spike-contrast: A novel time scale independent and multivariate measure of spike train synchrony.

    Science.gov (United States)

    Ciba, Manuel; Isomura, Takuya; Jimbo, Yasuhiko; Bahmer, Andreas; Thielemann, Christiane

    2018-01-01

    Synchrony within neuronal networks is thought to be a fundamental feature of neuronal networks. In order to quantify synchrony between spike trains, various synchrony measures were developed. Most of them are time scale dependent and thus require the setting of an appropriate time scale. Recently, alternative methods have been developed, such as the time scale independent SPIKE-distance by Kreuz et al. In this study, a novel time-scale independent spike train synchrony measure called Spike-contrast is proposed. The algorithm is based on the temporal "contrast" (activity vs. non-activity in certain temporal bins) and not only provides a single synchrony value, but also a synchrony curve as a function of the bin size. For most test data sets synchrony values obtained with Spike-contrast are highly correlated with those of the SPIKE-distance (Spearman correlation value of 0.99). Correlation was lower for data containing multiple time scales (Spearman correlation value of 0.89). When analyzing large sets of data, Spike-contrast performed faster. Spike-contrast is compared to the SPIKE-distance algorithm. The test data consisted of artificial spike trains with various levels of synchrony, including Poisson spike trains and bursts, spike trains from simulated neuronal Izhikevich networks, and bursts made of smaller bursts (sub-bursts). The high correlation of Spike-contrast with the established SPIKE-distance for most test data, suggests the suitability of the proposed measure. Both measures are complementary as SPIKE-distance provides a synchrony profile over time, whereas Spike-contrast provides a synchrony curve over bin size. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Improved SpikeProp for Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Falah Y. H. Ahmed

    2013-01-01

    Full Text Available A spiking neurons network encodes information in the timing of individual spike times. A novel supervised learning rule for SpikeProp is derived to overcome the discontinuities introduced by the spiking thresholding. This algorithm is based on an error-backpropagation learning rule suited for supervised learning of spiking neurons that use exact spike time coding. The SpikeProp is able to demonstrate the spiking neurons that can perform complex nonlinear classification in fast temporal coding. This study proposes enhancements of SpikeProp learning algorithm for supervised training of spiking networks which can deal with complex patterns. The proposed methods include the SpikeProp particle swarm optimization (PSO and angle driven dependency learning rate. These methods are presented to SpikeProp network for multilayer learning enhancement and weights optimization. Input and output patterns are encoded as spike trains of precisely timed spikes, and the network learns to transform the input trains into target output trains. With these enhancements, our proposed methods outperformed other conventional neural network architectures.

  14. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning.

    Science.gov (United States)

    Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik

    2016-07-13

    Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.

  15. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning

    Science.gov (United States)

    Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik

    2016-07-01

    Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.

  16. Dopamine-signalled reward predictions generated by competitive excitation and inhibition in a spiking neural network model

    Directory of Open Access Journals (Sweden)

    Paul eChorley

    2011-05-01

    Full Text Available Dopaminergic neurons in the mammalian substantia nigra displaycharacteristic phasic responses to stimuli which reliably predict thereceipt of primary rewards. These responses have been suggested toencode reward prediction-errors similar to those used in reinforcementlearning. Here, we propose a model of dopaminergic activity in whichprediction error signals are generated by the joint action ofshort-latency excitation and long-latency inhibition, in a networkundergoing dopaminergic neuromodulation of both spike-timing dependentsynaptic plasticity and neuronal excitability. In contrast toprevious models, sensitivity to recent events is maintained by theselective modification of specific striatal synapses, efferent tocortical neurons exhibiting stimulus-specific, temporally extendedactivity patterns. Our model shows, in the presence of significantbackground activity, (i a shift in dopaminergic response from rewardto reward predicting stimuli, (ii preservation of a response tounexpected rewards, and (iii a precisely-timed below-baseline dip inactivity observed when expected rewards are omitted.

  17. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    National Research Council Canada - National Science Library

    Yang, Kyoung

    2005-01-01

    This final report summarizes the progress during the Phase I SBIR project entitled "Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays...

  18. Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2016-09-30

    This report summarizes technical progress on the program “Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology at Virginia Tech. The objective of this project is to develop a first-of-a-kind technology for remote fiber optic generation and detection of acoustic waves for structural health monitoring in harsh environments. During the project period, which is from April 1, 2013 to Septemeber 30, 2016, three different acoustic generation mechanisms were studied in detail for their applications in building a fiber optic acoustic generation unit (AGU), including laser induced plasma breakdown (LIP), Erbium-doped fiber laser absorption, and metal laser absorption. By comparing the performance of the AGUs designed based on these three mechanisms and analyzing the experimental results with simulations, the metal laser absorption method was selected to build a complete fiber optic structure health monitoring (FO-SHM) system for the proposed high temperature multi-parameter structure health monitoring application. Based on the simulation of elastic wave propagation and fiber Bragg grating acoustic pulse detection, an FO-SHM element together with a completed interrogation system were designed and built. This system was first tested on an aluminum piece in the low-temperature range and successfully demonstrated its capability of multi-parameter monitoring and multi-point sensing. In the later stages of the project, the research was focused on improving the surface attachment design and preparing the FO-SHM element for high temperature environment tests. After several upgrades to the surface attachment methods, the FO-SHM element was able to work reliably up to 600oC when attached to P91 pipes, which are the target material of this project. In the final stage of this project, this FO

  19. Quantitative recognition of flammable and toxic gases with artificial neural network using metal oxide gas sensors in embedded platform

    Directory of Open Access Journals (Sweden)

    B. Mondal

    2015-06-01

    Full Text Available Artificial Neural Network (ANN based pattern recognition technique is used for ensuring the reliable evaluation of responses from an array of Zinc Oxide (ZnO based sensors comprising of pure ZnO nano-rods and composites of ZnO–SnO2. All the sensors were fabricated in the lab. The paper first reports the development of an artificial neural network based model for successfully recognizing different concentration of hydrogen, methane and carbon mono-oxide. Feed forward back propagation neural network was used for the classification of the gases at critical concentrations. The optimized ANN algorithm is then embedded in the microcontroller based circuit and finally verified under lab conditions.

  20. An Electrically Conductive and Organic Solvent Vapors Detecting Composite Composed of an Entangled Network of Carbon Nanotubes Embedded in Polystyrene

    Directory of Open Access Journals (Sweden)

    R. Olejnik

    2012-01-01

    Full Text Available A composite composed of electrically conductive entangled carbon nanotubes embedded in a polystyrene base has been prepared by the innovative procedure, when the nonwoven polystyrene filter membrane is enmeshed with carbon nanotubes. Both constituents are then interlocked by compression molding. The mechanical and electrical resistance testing show that the polymer increases nanotube network mechanical integrity, tensile strength, and the reversibility of electrical resistance in deformation cycles. Another obvious effect of the supporting polymer is the reduction of resistance temperature dependence of composite and the reproducibility of methanol vapor sensing.

  1. From distributed resources to limited slots in multiple-item working memory: a spiking network model with normalization.

    Science.gov (United States)

    Wei, Ziqiang; Wang, Xiao-Jing; Wang, Da-Hui

    2012-08-15

    Recent behavioral studies have given rise to two contrasting models for limited working memory capacity: a "discrete-slot" model in which memory items are stored in a limited number of slots, and a "shared-resource" model in which the neural representation of items is distributed across a limited pool of resources. To elucidate the underlying neural processes, we investigated a continuous network model for working memory of an analog feature. Our model network fundamentally operates with a shared resource mechanism, and stimuli in cue arrays are encoded by a distributed neural population. On the other hand, the network dynamics and performance are also consistent with the discrete-slot model, because multiple objects are maintained by distinct localized population persistent activity patterns (bump attractors). We identified two phenomena of recurrent circuit dynamics that give rise to limited working memory capacity. As the working memory load increases, a localized persistent activity bump may either fade out (so the memory of the corresponding item is lost) or merge with another nearby bump (hence the resolution of mnemonic representation for the merged items becomes blurred). We identified specific dependences of these two phenomena on the strength and tuning of recurrent synaptic excitation, as well as network normalization: the overall population activity is invariant to set size and delay duration; therefore, a constant neural resource is shared by and dynamically allocated to the memorized items. We demonstrate that the model reproduces salient observations predicted by both discrete-slot and shared-resource models, and propose testable predictions of the merging phenomenon.

  2. Stochastic inference with spiking neurons in the high-conductance state

    Science.gov (United States)

    Petrovici, Mihai A.; Bill, Johannes; Bytschok, Ilja; Schemmel, Johannes; Meier, Karlheinz

    2016-10-01

    The highly variable dynamics of neocortical circuits observed in vivo have been hypothesized to represent a signature of ongoing stochastic inference but stand in apparent contrast to the deterministic response of neurons measured in vitro. Based on a propagation of the membrane autocorrelation across spike bursts, we provide an analytical derivation of the neural activation function that holds for a large parameter space, including the high-conductance state. On this basis, we show how an ensemble of leaky integrate-and-fire neurons with conductance-based synapses embedded in a spiking environment can attain the correct firing statistics for sampling from a well-defined target distribution. For recurrent networks, we examine convergence toward stationarity in computer simulations and demonstrate sample-based Bayesian inference in a mixed graphical model. This points to a new computational role of high-conductance states and establishes a rigorous link between deterministic neuron models and functional stochastic dynamics on the network level.

  3. The Right Delay: Detecting Specific Spike Patterns with STDP and

    NARCIS (Netherlands)

    Datadien, A.H.R.; Haselager, W.F.G.; Sprinkhuizen-Kuyper, I.G.; Dobnikar, A.; Lotric, U.; Ster, B.

    2011-01-01

    Axonal conduction delays should not be ignored in simulations of spiking neural networks. Here it is shown that by using axonal conduction delays, neurons can display sensitivity to a specific spatio-temporal spike pattern. By using delays that complement the firing times in a pattern, spikes can

  4. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    Science.gov (United States)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-12-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (EGABA). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (gGABA-extra) and experimentally identified, seizure-induced changes in gGABA-extra and EGABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40-100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30-40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing gGABA-extra reduced the frequency and coherence of FS-BC firing when EGABA was shunting (-74 mV), but failed to alter average FS-BC frequency when EGABA was depolarizing

  5. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    Energy Technology Data Exchange (ETDEWEB)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S. [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Santhakumar, Vijayalakshmi, E-mail: santhavi@njms.rutgers.edu [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States)

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter average

  6. Demystifying embedded systems middleware understanding file systems, databases, virtual machines, networking and more

    CERN Document Server

    Noergaard, Tammy

    2010-01-01

    This practical technical guide to embedded middleware implementation offers a coherent framework that guides readers through all the key concepts necessary to gain an understanding of this broad topic. Big picture theoretical discussion is integrated with down-to-earth advice on successful real-world use via step-by-step examples of each type of middleware implementation. Technically detailed case studies bring it all together, by providing insight into typical engineering situations readers are likely to encounter. Expert author Tammy Noergaard keeps explanations as simple and readable as

  7. Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit.

    Science.gov (United States)

    Yamazaki, Tadashi; Igarashi, Jun

    2013-11-01

    The cerebellum plays an essential role in adaptive motor control. Once we are able to build a cerebellar model that runs in realtime, which means that a computer simulation of 1 s in the simulated world completes within 1 s in the real world, the cerebellar model could be used as a realtime adaptive neural controller for physical hardware such as humanoid robots. In this paper, we introduce "Realtime Cerebellum (RC)", a new implementation of our large-scale spiking network model of the cerebellum, which was originally built to study cerebellar mechanisms for simultaneous gain and timing control and acted as a general-purpose supervised learning machine of spatiotemporal information known as reservoir computing, on a graphics processing unit (GPU). Owing to the massive parallel computing capability of a GPU, RC runs in realtime, while reproducing qualitatively the same simulation results of the Pavlovian delay eyeblink conditioning with the previous version. RC is adopted as a realtime adaptive controller of a humanoid robot, which is instructed to learn a proper timing to swing a bat to hit a flying ball online. These results suggest that RC provides a means to apply the computational power of the cerebellum as a versatile supervised learning machine towards engineering applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Memristors Empower Spiking Neurons With Stochasticity

    KAUST Repository

    Al-Shedivat, Maruan

    2015-06-01

    Recent theoretical studies have shown that probabilistic spiking can be interpreted as learning and inference in cortical microcircuits. This interpretation creates new opportunities for building neuromorphic systems driven by probabilistic learning algorithms. However, such systems must have two crucial features: 1) the neurons should follow a specific behavioral model, and 2) stochastic spiking should be implemented efficiently for it to be scalable. This paper proposes a memristor-based stochastically spiking neuron that fulfills these requirements. First, the analytical model of the memristor is enhanced so it can capture the behavioral stochasticity consistent with experimentally observed phenomena. The switching behavior of the memristor model is demonstrated to be akin to the firing of the stochastic spike response neuron model, the primary building block for probabilistic algorithms in spiking neural networks. Furthermore, the paper proposes a neural soma circuit that utilizes the intrinsic nondeterminism of memristive switching for efficient spike generation. The simulations and analysis of the behavior of a single stochastic neuron and a winner-take-all network built of such neurons and trained on handwritten digits confirm that the circuit can be used for building probabilistic sampling and pattern adaptation machinery in spiking networks. The findings constitute an important step towards scalable and efficient probabilistic neuromorphic platforms. © 2011 IEEE.

  9. Mapping, Learning, Visualization, Classification, and Understanding of fMRI Data in the NeuCube Evolving Spatiotemporal Data Machine of Spiking Neural Networks.

    Science.gov (United States)

    Kasabov, Nikola K; Doborjeh, Maryam Gholami; Doborjeh, Zohreh Gholami

    2017-04-01

    This paper introduces a new methodology for dynamic learning, visualization, and classification of functional magnetic resonance imaging (fMRI) as spatiotemporal brain data. The method is based on an evolving spatiotemporal data machine of evolving spiking neural networks (SNNs) exemplified by the NeuCube architecture [1]. The method consists of several steps: mapping spatial coordinates of fMRI data into a 3-D SNN cube (SNNc) that represents a brain template; input data transformation into trains of spikes; deep, unsupervised learning in the 3-D SNNc of spatiotemporal patterns from data; supervised learning in an evolving SNN classifier; parameter optimization; and 3-D visualization and model interpretation. Two benchmark case study problems and data are used to illustrate the proposed methodology-fMRI data collected from subjects when reading affirmative or negative sentences and another one-on reading a sentence or seeing a picture. The learned connections in the SNNc represent dynamic spatiotemporal relationships derived from the fMRI data. They can reveal new information about the brain functions under different conditions. The proposed methodology allows for the first time to analyze dynamic functional and structural connectivity of a learned SNN model from fMRI data. This can be used for a better understanding of brain activities and also for online generation of appropriate neurofeedback to subjects for improved brain functions. For example, in this paper, tracing the 3-D SNN model connectivity enabled us for the first time to capture prominent brain functional pathways evoked in language comprehension. We found stronger spatiotemporal interaction between left dorsolateral prefrontal cortex and left temporal while reading a negated sentence. This observation is obviously distinguishable from the patterns generated by either reading affirmative sentences or seeing pictures. The proposed NeuCube-based methodology offers also a superior classification accuracy

  10. Embedding global barrier and collective in torus network with each node combining input from receivers according to class map for output to senders

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong; Coteus, Paul W; Eisley, Noel A; Gara, Alan; Heidelberger, Philip; Senger, Robert M; Salapura, Valentina; Steinmacher-Burow, Burkhard; Sugawara, Yutaka; Takken, Todd E

    2013-08-27

    Embodiments of the invention provide a method, system and computer program product for embedding a global barrier and global interrupt network in a parallel computer system organized as a torus network. The computer system includes a multitude of nodes. In one embodiment, the method comprises taking inputs from a set of receivers of the nodes, dividing the inputs from the receivers into a plurality of classes, combining the inputs of each of the classes to obtain a result, and sending said result to a set of senders of the nodes. Embodiments of the invention provide a method, system and computer program product for embedding a collective network in a parallel computer system organized as a torus network. In one embodiment, the method comprises adding to a torus network a central collective logic to route messages among at least a group of nodes in a tree structure.

  11. Design of Spiking Central Pattern Generators for Multiple Locomotion Gaits in Hexapod Robots by Christiansen Grammar Evolution.

    Science.gov (United States)

    Espinal, Andres; Rostro-Gonzalez, Horacio; Carpio, Martin; Guerra-Hernandez, Erick I; Ornelas-Rodriguez, Manuel; Sotelo-Figueroa, Marco

    2016-01-01

    This paper presents a method to design Spiking Central Pattern Generators (SCPGs) to achieve locomotion at different frequencies on legged robots. It is validated through embedding its designs into a Field-Programmable Gate Array (FPGA) and implemented on a real hexapod robot. The SCPGs are automatically designed by means of a Christiansen Grammar Evolution (CGE)-based methodology. The CGE performs a solution for the configuration (synaptic weights and connections) for each neuron in the SCPG. This is carried out through the indirect representation of candidate solutions that evolve to replicate a specific spike train according to a locomotion pattern (gait) by measuring the similarity between the spike trains and the SPIKE distance to lead the search to a correct configuration. By using this evolutionary approach, several SCPG design specifications can be explicitly added into the SPIKE distance-based fitness function, such as looking for Spiking Neural Networks (SNNs) with minimal connectivity or a Central Pattern Generator (CPG) able to generate different locomotion gaits only by changing the initial input stimuli. The SCPG designs have been successfully implemented on a Spartan 6 FPGA board and a real time validation on a 12 Degrees Of Freedom (DOFs) hexapod robot is presented.

  12. Thermo-reversible morphology and conductivity of a conjugated polymer network embedded in polymeric self-assembly

    Science.gov (United States)

    Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; Li, Yunchao; Hong, Kunlun; Sumpter, Bobby G.; Ohl, Michael; Paranthaman, Mariappan Parans; Smith, Gregory S.; Do, Changwoo

    Self-assembly of block copolymers provides opportunities to create nano hybrid materials, utilizing self-assembled micro-domains with a variety of morphology and periodic architectures as templates for functional nano-fillers. Here we report new progress towards the fabrication of a thermally responsive conducting polymer self-assembly made from a water-soluble poly(thiophene) derivative with short PEO side chains and Pluronic L62 solution in water. The structural and electrical properties of conjugated polymer-embedded nanostructures were investigated by combining SANS, SAXS, CGMD simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporating them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellar-to-lamellar phase transition defines the embedded conjugated polymer network. The conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. The research was sponsored by the Scientific User Facilities Division, Office of BES, U.S. DOE and Laboratory Directed Research and Development Program of ORNL, managed by UT-Battelle, LLC.

  13. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Luca Gallucci

    2017-11-01

    Full Text Available Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  14. An Appraisal of Asia-Pacific Cities as Control and Command Centres Embedded in World City Network

    Directory of Open Access Journals (Sweden)

    Z. Li

    2017-08-01

    Full Text Available Since the globalization trend is proliferating at a staggering rate, world cities have emerged as the most dominant vanguard incorporated into global economy. Control and command function is one of the robust integral parts of world city formation, which is closely associated with the corporate headquarter status of some dominant multinational companies. Previous research works on this topic tend to concentrate on the Western Europe and North American arenas neglecting the Asia-Pacific region. Hence, the objective of this paper is to explore control and command functions of Asia-Pacific cities with reference to headquarters’ locations of multinational companies. The methodology will utilize the Forbes global 2000 dataset from the seminal study of GaWC research group, and apply the control and command center model and the interlocking city network model to discover the control and command index, as well as network connectivity of Asia-Pacific cities. Based upon the empirical study of this research, we could identify the hierarchical structure and spatial structure of Asia-Pacific world cities to emerge as some control and command centers embedded in world city network.

  15. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures.

    Science.gov (United States)

    Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco

    2017-11-07

    Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  16. Megamap: flexible representation of a large space embedded with nonspatial information by a hippocampal attractor network.

    Science.gov (United States)

    Hedrick, Kathryn R; Zhang, Kechen

    2016-08-01

    The problem of how the hippocampus encodes both spatial and nonspatial information at the cellular network level remains largely unresolved. Spatial memory is widely modeled through the theoretical framework of attractor networks, but standard computational models can only represent spaces that are much smaller than the natural habitat of an animal. We propose that hippocampal networks are built on a basic unit called a "megamap," or a cognitive attractor map in which place cells are flexibly recombined to represent a large space. Its inherent flexibility gives the megamap a huge representational capacity and enables the hippocampus to simultaneously represent multiple learned memories and naturally carry nonspatial information at no additional cost. On the other hand, the megamap is dynamically stable, because the underlying network of place cells robustly encodes any location in a large environment given a weak or incomplete input signal from the upstream entorhinal cortex. Our results suggest a general computational strategy by which a hippocampal network enjoys the stability of attractor dynamics without sacrificing the flexibility needed to represent a complex, changing world. Copyright © 2016 the American Physiological Society.

  17. Attractiveness-Based Airline Network Models with Embedded Spill and Recapture

    Directory of Open Access Journals (Sweden)

    Desmond Di Wang

    2014-01-01

    Full Text Available Purpose: In airline revenue management, the modeling of the spill and recapture effects is essential for an accurate estimation of the passenger flow and the revenue in a flight network. However, as most current approaches toward spill and recapture involve either non-linearity or a tremendous amount of additional variables, it is computationally intractable to apply those techniques to the classical network design and capacity planning models.Design/methodology: We present a new framework that incorporates the spill and recapture effects, where the spill from an itinerary is recaptured by other itineraries based on their attractiveness. The presented framework distributes the accepted demand of an itinerary according to the currently available itineraries, without adding extra variables for the recaptured spill. Due to its compactness, we integrate the framework with the classical capacity planning and network design models.Findings: Our preliminary computational study shows an increase of 1.07% in profitability anda better utilization of the network capacity, on a medium-size North American airline provided by Sabre Airline Solutions.Originality/value: Our investigation leads to a holistic model that tackles the network design and capacity planning simultaneously with an accurate modeling of the spill and re- capture effects.Furthermore, the presented framework for spill and recapture is versatile and can be easily applied to other disciplines such as the hospitality industry and product line design (PLD problems.

  18. SPADnet: Embedded coincidence in a smart sensor network for PET applications

    Energy Technology Data Exchange (ETDEWEB)

    Bruschini, C., E-mail: claudio.bruschini@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Charbon, E. [Delft University of Technology, Delft (Netherlands); Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Veerappan, C. [Delft University of Technology, Delft (Netherlands); Braga, L.H.C.; Massari, N.; Perenzoni, M.; Gasparini, L.; Stoppa, D. [Fondazione Bruno Kessler (FBK), Trento (Italy); Walker, R.; Erdogan, A.; Henderson, R.K. [University of Edinburgh, Edinburgh (United Kingdom); East, S.; Grant, L. [STMicroelectronics (R and D) Ltd, Edinburgh (United Kingdom); Jatekos, B.; Ujhelyi, F.; Erdei, G.; Lörincz, E. [Budapest University of Technology and Economics (BME), Budapest (Hungary); André, L.; Maingault, L.; Reboud, V. [CEA-LETI, Grenoble (France); and others

    2014-01-11

    In this paper we illustrate the core technologies at the basis of the European SPADnet project ( (www.spadnet.eu)), and present the corresponding first results. SPADnet is aimed at a new generation of MRI-compatible, scalable large area image sensors, based on CMOS technology, that are networked to perform gamma-ray detection and coincidence to be used primarily in (Time-of-Flight) Positron Emission Tomography (PET). The project innovates in several areas of PET systems, from optical coupling to single-photon sensor architectures, from intelligent ring networks to reconstruction algorithms. In addition, SPADnet introduced the first computational model enabling study of the full chain from gamma photons to network coincidence detection through scintillation events, optical coupling, etc.

  19. SPADnet: Embedded coincidence in a smart sensor network for PET applications

    Science.gov (United States)

    Bruschini, C.; Charbon, E.; Veerappan, C.; Braga, L. H. C.; Massari, N.; Perenzoni, M.; Gasparini, L.; Stoppa, D.; Walker, R.; Erdogan, A.; Henderson, R. K.; East, S.; Grant, L.; Jatekos, B.; Ujhelyi, F.; Erdei, G.; Lörincz, E.; André, L.; Maingault, L.; Reboud, V.; Verger, L.; Gros d'Aillon, E.; Major, P.; Papp, Z.; Németh, G.

    2014-01-01

    In this paper we illustrate the core technologies at the basis of the European SPADnet project (www.spadnet.eu), and present the corresponding first results. SPADnet is aimed at a new generation of MRI-compatible, scalable large area image sensors, based on CMOS technology, that are networked to perform gamma-ray detection and coincidence to be used primarily in (Time-of-Flight) Positron Emission Tomography (PET). The project innovates in several areas of PET systems, from optical coupling to single-photon sensor architectures, from intelligent ring networks to reconstruction algorithms. In addition, SPADnet introduced the first computational model enabling study of the full chain from gamma photons to network coincidence detection through scintillation events, optical coupling, etc.

  20. A Case for Hierarchical Routing in in Low-Power Wireless Embedded Networks

    NARCIS (Netherlands)

    Iwanicki, K.S.; van Steen, M.R.

    2012-01-01

    Hierarchical routing has often been mentioned as an appealing point-to-point routing technique for wireless sensor networks (sensornets). While there is a volume of analytical and high-level simulation results demonstrating its merits, there has been little work evaluating it in actual sensornet

  1. On Governance, Embedding and Marketing: Reflections on the Construction of Alternative Sustainable Food Networks.

    Science.gov (United States)

    Roep, Dirk; Wiskerke, Johannes S C

    Based on the reconstruction of the development of 14 food supply chain initiatives in 7 European countries, we developed a conceptual framework that demonstrates that the process of increasing the sustainability of food supply chains is rooted in strategic choices regarding governance, embedding, and marketing and in the coordination of these three dimensions that are inextricably interrelated. The framework also shows that when seeking to further develop an initiative (e.g., through scaling up or product diversification) these interrelations need continuous rebalancing. We argue that the framework can serve different purposes: it can be used as an analytical tool by researchers studying food supply chain dynamics, as a policy tool by policymakers that want to support the development of sustainable food supply chains, and as a reflexive tool by practitioners and their advisors to help them to position themselves, develop a clear strategy, find the right allies, develop their skills, and build the capacities that they need. In this paper, we elaborate upon the latter function of the framework and illustrate this briefly with empirical evidence from three of the initiatives that we studied.

  2. Environmental Assessment for Testing of the Network Embedded Systems Technology (NEST) at Eglin Air Force Base

    Science.gov (United States)

    2004-08-01

    with other sensors and with several hubs located within the network. The hubs (also called gateways) are slightly larger than the sensors and box ...and shallow water grasses. When they are juveniles, they feed on plants and organisms such as crabs, jellyfish , sponges, snails, and worms (Ernst...650 to 1,200 pounds (295 to 545 kilograms [kg]) (Bronsgerma 1976). Leatherbacks are omnivorous, with a diet consisting of sea grasses, jellyfish

  3. New Measurement Base De-embedded CPU Load Model for Power Delivery Network Design

    OpenAIRE

    Okano, Motochika; Watanabe, Koji; Naitoh, Masamichi; Omura, Ichiro

    2015-01-01

    CPU load model including on-chip wiring and package interconnection has been required for printed circuit board (PCB) design of digital products according to the improvement in the speed of CPU operation in recent years. Especially, accurate power delivery network (PDN) information inside CPU is indispensable for PCB design according to requirement of low-impedance and the broadband (from DC to GHz) from the inside of CPU to DC-DC converter. While the detailed impedance information inside CPU...

  4. Intelligent sensor positioning and orientation through constructive neural network-embedded INS/GPS integration algorithms.

    Science.gov (United States)

    Chiang, Kai-Wei; Chang, Hsiu-Wen

    2010-01-01

    Mobile mapping systems have been widely applied for acquiring spatial information in applications such as spatial information systems and 3D city models. Nowadays the most common technologies used for positioning and orientation of a mobile mapping system include a Global Positioning System (GPS) as the major positioning sensor and an Inertial Navigation System (INS) as the major orientation sensor. In the classical approach, the limitations of the Kalman Filter (KF) method and the overall price of multi-sensor systems have limited the popularization of most land-based mobile mapping applications. Although intelligent sensor positioning and orientation schemes consisting of Multi-layer Feed-forward Neural Networks (MFNNs), one of the most famous Artificial Neural Networks (ANNs), and KF/smoothers, have been proposed in order to enhance the performance of low cost Micro Electro Mechanical System (MEMS) INS/GPS integrated systems, the automation of the MFNN applied has not proven as easy as initially expected. Therefore, this study not only addresses the problems of insufficient automation in the conventional methodology that has been applied in MFNN-KF/smoother algorithms for INS/GPS integrated systems proposed in previous studies, but also exploits and analyzes the idea of developing alternative intelligent sensor positioning and orientation schemes that integrate various sensors in more automatic ways. The proposed schemes are implemented using one of the most famous constructive neural networks--the Cascade Correlation Neural Network (CCNNs)--to overcome the limitations of conventional techniques based on KF/smoother algorithms as well as previously developed MFNN-smoother schemes. The CCNNs applied also have the advantage of a more flexible topology compared to MFNNs. Based on the experimental data utilized the preliminary results presented in this article illustrate the effectiveness of the proposed schemes compared to smoother algorithms as well as the MFNN

  5. ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains

    Science.gov (United States)

    Canova, Carlos; Denker, Michael; Gerstein, George; Helias, Moritz

    2016-01-01

    With the ability to observe the activity from large numbers of neurons simultaneously using modern recording technologies, the chance to identify sub-networks involved in coordinated processing increases. Sequences of synchronous spike events (SSEs) constitute one type of such coordinated spiking that propagates activity in a temporally precise manner. The synfire chain was proposed as one potential model for such network processing. Previous work introduced a method for visualization of SSEs in massively parallel spike trains, based on an intersection matrix that contains in each entry the degree of overlap of active neurons in two corresponding time bins. Repeated SSEs are reflected in the matrix as diagonal structures of high overlap values. The method as such, however, leaves the task of identifying these diagonal structures to visual inspection rather than to a quantitative analysis. Here we present ASSET (Analysis of Sequences of Synchronous EvenTs), an improved, fully automated method which determines diagonal structures in the intersection matrix by a robust mathematical procedure. The method consists of a sequence of steps that i) assess which entries in the matrix potentially belong to a diagonal structure, ii) cluster these entries into individual diagonal structures and iii) determine the neurons composing the associated SSEs. We employ parallel point processes generated by stochastic simulations as test data to demonstrate the performance of the method under a wide range of realistic scenarios, including different types of non-stationarity of the spiking activity and different correlation structures. Finally, the ability of the method to discover SSEs is demonstrated on complex data from large network simulations with embedded synfire chains. Thus, ASSET represents an effective and efficient tool to analyze massively parallel spike data for temporal sequences of synchronous activity. PMID:27420734

  6. Shaping Collective Functions in Privatized Agricultural Knowledge and Information Systems: The Positioning and Embedding of a Network Broker in the Dutch Dairy Sector

    Science.gov (United States)

    Klerkx, Laurens; Leeuwis, Cees

    2009-01-01

    This paper examines new organizational arrangements that have emerged in the context of a privatized extension system. It investigates the positioning and embedding of a network broker aimed at enhancing interaction in the privatized agricultural knowledge and information system (AKIS), to assess whether tensions reported in other sectors also…

  7. Advancing Learning Health Systems Through Embedded Research: The 23rd Annual Conference of the Health Care Systems Research Network

    Directory of Open Access Journals (Sweden)

    Harold S. Luft

    2017-08-01

    Full Text Available The 23rd annual conference of the Health Care Systems Research Network (HCSRN, formerly the HMO Research Network was held in San Diego, California, March 21–23, 2017, attracting 387 attendees. As a consortium of 20 research organizations embedded in or affiliated with large health care delivery organizations, the HCSRN has held annual research conferences since 1994. The overall aim of the conferences is to bring researchers, project staff, research funders and other stakeholders together to share latest scientific findings and foster new research ideas and collaborations. The 2017 conference was hosted by the Palo Alto Medical Foundation Research Institute. Each host site takes responsibility for the content and structure of the conference, and the 2017 team introduced several new features. In particular, past conferences used concurrent sessions to present research results in different topical areas, such as chronic disease, cancer, health informatics, mental health or precision medicine. This year, concurrent sessions shifted to panel discussions about how research results were achieved, including the use of methods, partnerships and analytic approaches. The 35 panels were organized into tracks such as engagement, data and informatics, partnerships and research implementation. Scientific results from HCSRN projects were presented via 120 posters in two poster sessions. Plenary sessions included a town hall-style panel with different funding agency representatives, an opening presentation on the range of opportunities and benefits to studying health systems, and a concluding presentation on how researchers can apply design thinking in their work.

  8. A Wireless Sensor Network with Enhanced Power Efficiency and Embedded Strain Cycle Identification for Fatigue Monitoring of Railway Bridges

    Directory of Open Access Journals (Sweden)

    Glauco Feltrin

    2016-01-01

    Full Text Available Wireless sensor networks have been shown to be a cost-effective monitoring tool for many applications on civil structures. Strain cycle monitoring for fatigue life assessment of railway bridges, however, is still a challenge since it is data intensive and requires a reliable operation for several weeks or months. In addition, sensing with electrical resistance strain gauges is expensive in terms of energy consumption. The induced reduction of battery lifetime of sensor nodes increases the maintenance costs and reduces the competitiveness of wireless sensor networks. To overcome this drawback, a signal conditioning hardware was designed that is able to significantly reduce the energy consumption. Furthermore, the communication overhead is reduced to a sustainable level by using an embedded data processing algorithm that extracts the strain cycles from the raw data. Finally, a simple software triggering mechanism that identifies events enabled the discrimination of useful measurements from idle data, thus increasing the efficiency of data processing. The wireless monitoring system was tested on a railway bridge for two weeks. The monitoring system demonstrated a good reliability and provided high quality data.

  9. Private sector embedded water risk: Merging the corn supply chain network and regional watershed depletion

    Science.gov (United States)

    Kim, T.; Brauman, K. A.; Schmitt, J.; Goodkind, A. L.; Smith, T. M.

    2016-12-01

    Water scarcity in US corn farming regions is a significant risk consideration for the ethanol and meat production sectors, which comprise 80% of all US corn demand. Water supply risk can lead to effects across the supply chain, affecting annual corn yields. The purpose of our study is to assess the water risk to the US's most corn-intensive sectors and companies by linking watershed depletion estimates with corn production, linked to downstream companies through a corn transport model. We use a water depletion index as an improved metric for seasonal water scarcity and a corn sourcing supply chain model based on economic cost minimization. Water depletion was calculated as the fraction of renewable (ground and surface) water consumption, with estimates of more than 75% depletion on an annual average basis indicating a significant water risk. We estimated company water risk as the amount of embedded corn coming from three categories of water stressed counties. The ethanol sector had 3.1% of sourced corn grown from counties that were more than 75% depleted while the beef sector had 14.0%. From a firm perspective, Tyson, JBS, Cargill, the top three US corn demanding companies, had 4.5%, 9.6%, 12.8% of their sourced corn respectively, coming from watersheds that are more than 75% depleted. These numbers are significantly higher than the global average of 2.2% of watersheds being classified as more than 75% depleted. Our model enables corn using industries to evaluate their supply chain risk of water scarcity through modeling corn sourcing and watershed depletion, providing the private sector a new method for risk estimation. Our results suggest corn dependent industries are already linked to water scarcity risk in disproportionate amounts due to the spatial heterogeneity of corn sourcing and water scarcity.

  10. Intelligent Sensor Positioning and Orientation Through Constructive Neural Network-Embedded INS/GPS Integration Algorithms

    Directory of Open Access Journals (Sweden)

    Kai-Wei Chiang

    2010-10-01

    Full Text Available Mobile mapping systems have been widely applied for acquiring spatial information in applications such as spatial information systems and 3D city models. Nowadays the most common technologies used for positioning and orientation of a mobile mapping system include a Global Positioning System (GPS as the major positioning sensor and an Inertial Navigation System (INS as the major orientation sensor. In the classical approach, the limitations of the Kalman Filter (KF method and the overall price of multi-sensor systems have limited the popularization of most land-based mobile mapping applications. Although intelligent sensor positioning and orientation schemes consisting of Multi-layer Feed-forward Neural Networks (MFNNs, one of the most famous Artificial Neural Networks (ANNs, and KF/smoothers, have been proposed in order to enhance the performance of low cost Micro Electro Mechanical System (MEMS INS/GPS integrated systems, the automation of the MFNN applied has not proven as easy as initially expected. Therefore, this study not only addresses the problems of insufficient automation in the conventional methodology that has been applied in MFNN-KF/smoother algorithms for INS/GPS integrated systems proposed in previous studies, but also exploits and analyzes the idea of developing alternative intelligent sensor positioning and orientation schemes that integrate various sensors in more automatic ways. The proposed schemes are implemented using one of the most famous constructive neural networks––the Cascade Correlation Neural Network (CCNNs––to overcome the limitations of conventional techniques based on KF/smoother algorithms as well as previously developed MFNN-smoother schemes. The CCNNs applied also have the advantage of a more flexible topology compared to MFNNs. Based on the experimental data utilized the preliminary results presented in this article illustrate the effectiveness of the proposed schemes compared to smoother algorithms

  11. Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation.

    Science.gov (United States)

    Xie, Jiaheng; Liu, Xiao; Dajun Zeng, Daniel

    2018-01-01

    Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers' e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media. Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network. Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed. Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications.

  12. Integrative spike dynamics of rat CA1 neurons: a multineuronal imaging study.

    Science.gov (United States)

    Sasaki, Takuya; Kimura, Rie; Tsukamoto, Masako; Matsuki, Norio; Ikegaya, Yuji

    2006-07-01

    The brain operates through a coordinated interplay of numerous neurons, yet little is known about the collective behaviour of individual neurons embedded in a huge network. We used large-scale optical recordings to address synaptic integration in hundreds of neurons. In hippocampal slice cultures bolus-loaded with Ca2+ fluorophores, we stimulated the Schaffer collaterals and monitored the aggregate presynaptic activity from the stratum radiatum and individual postsynaptic spikes from the CA1 stratum pyramidale. Single neurons responded to varying synaptic inputs with unreliable spikes, but at the population level, the networks stably output a linear sum of synaptic inputs. Nonetheless, the network activity, even though given constant stimuli, varied from trial to trial. This variation emerged through time-varying recruitment of different neuron subsets, which were shaped by correlated background noise. We also mapped the input-frequency preference in spiking activity and found that the majority of CA1 neurons fired in response to a limited range of presynaptic firing rates (20-40 Hz), acting like a band-pass filter, although a few neurons had high pass-like or low pass-like characteristics. This frequency selectivity depended on phasic inhibitory transmission. Thus, our imaging approach enables the linking of single-cell behaviours to their communal dynamics, and we discovered that, even in a relatively simple CA1 circuit, neurons could be engaged in concordant information processing.

  13. Deadlock-free class routes for collective communications embedded in a multi-dimensional torus network

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong; Eisley, Noel A.; Steinmacher-Burow, Burkhard; Heidelberger, Philip

    2013-01-29

    A computer implemented method and a system for routing data packets in a multi-dimensional computer network. The method comprises routing a data packet among nodes along one dimension towards a root node, each node having input and output communication links, said root node not having any outgoing uplinks, and determining at each node if the data packet has reached a predefined coordinate for the dimension or an edge of the subrectangle for the dimension, and if the data packet has reached the predefined coordinate for the dimension or the edge of the subrectangle for the dimension, determining if the data packet has reached the root node, and if the data packet has not reached the root node, routing the data packet among nodes along another dimension towards the root node.

  14. The SysMES Framework: System Management for Networked Embedded Systems and Clusters

    CERN Document Server

    Lara Martinez, Camilo Ernesto

    Automated system management for large distributed and heterogeneous environments is a common challenge in modern computer sciences. Desired properties of such a management system are, among others, a minimal dependency on human operators for problem recognition and solution, adaptability to increasing loads, fault tolerance and the flexibility to integrate new management resources at runtime. Existing tools address parts of these requirements however there is no single integrated framework which possesses all mentioned characteristics. SysMES was developed as an integrated framework for automated monitoring and management of networked devices. In order to achieve the requirements of scalability and fault tolerance, a fully distributed and decentralized architecture has been chosen. The framework comprises a monitoring module, a rule engine and an executive module for the execution of actions. A formal language has been defined which allows administrators to define complex spatial and temporal rule conditions ...

  15. Stimulus-dependent spiking relationships with the EEG

    Science.gov (United States)

    Snyder, Adam C.

    2015-01-01

    The development and refinement of noninvasive techniques for imaging neural activity is of paramount importance for human neuroscience. Currently, the most accessible and popular technique is electroencephalography (EEG). However, nearly all of what we know about the neural events that underlie EEG signals is based on inference, because of the dearth of studies that have simultaneously paired EEG recordings with direct recordings of single neurons. From the perspective of electrophysiologists there is growing interest in understanding how spiking activity coordinates with large-scale cortical networks. Evidence from recordings at both scales highlights that sensory neurons operate in very distinct states during spontaneous and visually evoked activity, which appear to form extremes in a continuum of coordination in neural networks. We hypothesized that individual neurons have idiosyncratic relationships to large-scale network activity indexed by EEG signals, owing to the neurons' distinct computational roles within the local circuitry. We tested this by recording neuronal populations in visual area V4 of rhesus macaques while we simultaneously recorded EEG. We found substantial heterogeneity in the timing and strength of spike-EEG relationships and that these relationships became more diverse during visual stimulation compared with the spontaneous state. The visual stimulus apparently shifts V4 neurons from a state in which they are relatively uniformly embedded in large-scale network activity to a state in which their distinct roles within the local population are more prominent, suggesting that the specific way in which individual neurons relate to EEG signals may hold clues regarding their computational roles. PMID:26108954

  16. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols.

    Science.gov (United States)

    Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon

    2016-06-14

    Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network.

  17. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols

    Directory of Open Access Journals (Sweden)

    Aamir Shahzad

    2016-06-01

    Full Text Available Substantial changes have occurred in the Information Technology (IT sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network.

  18. Testing knowledge sharing effectiveness: trust, motivation, leadership style, workplace spirituality and social network embedded model

    Directory of Open Access Journals (Sweden)

    Rahman Muhammad Sabbir

    2015-12-01

    Full Text Available The aim of this inquiry is to investigate the relationships among the antecedents of knowledge sharing effectiveness under the position of non-academic staff of higher learning institutions through an empirical test of a conceptual model consisting of trust, extrinsic and intrinsic motivation, leadership style, workplace spirituality and online social network. This study used the respondents from the non-academic staff of higher learning institutions in Malaysia (n = 200, utilizing a self-administered survey questionnaire. The structural equation modeling approach was used to test the proposed hypotheses. The outcomes indicate that all the antecedents play a substantial function in knowledge sharing effectiveness. In addition, perceived risk plays a mediating role between trust and knowledge sharing effectiveness. On the other hand, this research also proved the communication skill also plays a mediating role between leadership style and knowledge sharing effectiveness. This study contributes to pioneering empirical findings on knowledge sharing literature under the scope of the non-academic staff perspective.

  19. Compact Printed Arrays with Embedded Coupling Mitigation for Energy-Efficient Wireless Sensor Networking

    Directory of Open Access Journals (Sweden)

    Constantine G. Kakoyiannis

    2010-01-01

    Full Text Available Wireless sensors emerged as narrowband, resource-constrained devices to provide monitoring services over a wide life span. Future applications of sensor networks are multimedia-driven and include sensor mobility. Thus, sensors must combine small size, large bandwidth, and diversity capabilities. Compact arrays, offering transmit/receive diversity, suffer from strong mutual coupling (MC, which causes lower antenna efficiency, loss of bandwidth, and signal correlation. An efficient technique to reduce coupling in compact arrays is described herein: a defect was inserted in the ground plane (GNDP area between each pair of elements. The defect disturbed the GNDP currents and offered multidecibel coupling suppression, bandwidth recovery, and reduction of in-band correlation. Minimal pattern distortion was estimated. Computational results were supported by measurements. The bandwidth of unloaded arrays degraded gracefully from 38% to 28% with decreasing interelement distance (0.25 to 0.10. Defect-loaded arrays exhibited active impedance bandwidths 37–45%, respectively. Measured coupling was reduced by 15–20 dB.

  20. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Yongjia Zhao

    2017-02-01

    Full Text Available The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI. AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1 the McGill University dataset, which is collected under realistic conditions; and (2 the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  1. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.

    Science.gov (United States)

    Zhao, Yongjia; Zhou, Suiping

    2017-02-28

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN's input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  2. Neuronal communication: firing spikes with spikes.

    Science.gov (United States)

    Brecht, Michael

    2012-08-21

    Spikes of single cortical neurons can exert powerful effects even though most cortical synapses are too weak to fire postsynaptic neurons. A recent study combining single-cell stimulation with population imaging has visualized in vivo postsynaptic firing in genetically identified target cells. The results confirm predictions from in vitro work and might help to understand how the brain reads single-neuron activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Prospective Coding by Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Johanni Brea

    2016-06-01

    Full Text Available Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron's firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ.

  4. A fast L(p) spike alignment metric.

    Science.gov (United States)

    Dubbs, Alexander J; Seiler, Brad A; Magnasco, Marcelo O

    2010-11-01

    The metrization of the space of neural responses is an ongoing research program seeking to find natural ways to describe, in geometrical terms, the sets of possible activities in the brain. One component of this program is spike metrics-notions of distance between two spike trains recorded from a neuron. Alignment spike metrics work by identifying "equivalent" spikes in both trains. We present an alignment spike metric having L(p) underlying geometrical structure; the L(2) version is Euclidean and is suitable for further embedding in Euclidean spaces by multidimensional scaling methods or related procedures. We show how to implement a fast algorithm for the computation of this metric based on bipartite graph matching theory.

  5. Nonsmooth dynamics in spiking neuron models

    Science.gov (United States)

    Coombes, S.; Thul, R.; Wedgwood, K. C. A.

    2012-11-01

    Large scale studies of spiking neural networks are a key part of modern approaches to understanding the dynamics of biological neural tissue. One approach in computational neuroscience has been to consider the detailed electrophysiological properties of neurons and build vast computational compartmental models. An alternative has been to develop minimal models of spiking neurons with a reduction in the dimensionality of both parameter and variable space that facilitates more effective simulation studies. In this latter case the single neuron model of choice is often a variant of the classic integrate-and-fire model, which is described by a nonsmooth dynamical system. In this paper we review some of the more popular spiking models of this class and describe the types of spiking pattern that they can generate (ranging from tonic to burst firing). We show that a number of techniques originally developed for the study of impact oscillators are directly relevant to their analysis, particularly those for treating grazing bifurcations. Importantly we highlight one particular single neuron model, capable of generating realistic spike trains, that is both computationally cheap and analytically tractable. This is a planar nonlinear integrate-and-fire model with a piecewise linear vector field and a state dependent reset upon spiking. We call this the PWL-IF model and analyse it at both the single neuron and network level. The techniques and terminology of nonsmooth dynamical systems are used to flesh out the bifurcation structure of the single neuron model, as well as to develop the notion of Lyapunov exponents. We also show how to construct the phase response curve for this system, emphasising that techniques in mathematical neuroscience may also translate back to the field of nonsmooth dynamical systems. The stability of periodic spiking orbits is assessed using a linear stability analysis of spiking times. At the network level we consider linear coupling between voltage

  6. Active health monitoring of an aircraft wing with an embedded piezoelectric sensor/actuator network: II. Wireless approaches

    Science.gov (United States)

    Zhao, Xiaoliang; Qian, Tao; Mei, Gang; Kwan, Chiman; Zane, Regan; Walsh, Christi; Paing, Thurein; Popovic, Zoya

    2007-08-01

    The objective of this study is to develop a wireless ultrasonic structural health monitoring (SHM) system for aircraft wing inspection. In part I of the study (Zhao et al 2007 Smart Mater. Struct. 16 1208-17), small, low cost and light weight piezoelectric (PZT) disc transducers were bonded to various parts of an aircraft wing for detection, localization and growth monitoring of defects. In this part, two approaches for wirelessly interrogating the sensor/actuator network were developed and tested. The first one utilizes a pair of reactive coupling monopoles to deliver 350 kHz RF tone-burst interrogation pulses directly to the PZT transducers for generating ultrasonic guided waves and to receive the response signals from the PZTs. It couples enough energy to and from the PZT transducers for the wing panel inspection, but the signal is quite noisy and the monopoles need to be in close proximity to each other for efficient coupling. In the second approach, a small local diagnostic device was developed that can be embedded into the wing and transmit the digital signals FM-modulated on a 915 MHz carrier. The device has an ultrasonic pulser that can generate 350 kHz, 70 V tone-burst signals, a multiplexed A/D board with a programmable gain amplifier for multi-channel data acquisition, a microprocessor for circuit control and data processing, and a wireless module for data transmission. Power to the electronics is delivered wirelessly at X-band with an antenna-rectifier (rectenna) array conformed to the aircraft body, eliminating the need for batteries and their replacement. It can effectively deliver at least 100 mW of DC power continuously from a transmitter at a range of 1 m. The wireless system was tested with the PZT sensor array on the wing panel and compared well with the wire connection case.

  7. Embedded Leverage

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    Many financial instruments are designed with embedded leverage such as options and leveraged exchange traded funds (ETFs). Embedded leverage alleviates investors’ leverage constraints and, therefore, we hypothesize that embedded leverage lowers required returns. Consistent with this hypothesis, we......, with t-statistics of 8.6 for equity options, 6.3 for index options, and 2.5 for ETFs. We provide extensive robustness tests and discuss the broader implications of embedded leverage for financial economics....

  8. Spike-based population coding and working memory.

    Directory of Open Access Journals (Sweden)

    Martin Boerlin

    2011-02-01

    Full Text Available Compelling behavioral evidence suggests that humans can make optimal decisions despite the uncertainty inherent in perceptual or motor tasks. A key question in neuroscience is how populations of spiking neurons can implement such probabilistic computations. In this article, we develop a comprehensive framework for optimal, spike-based sensory integration and working memory in a dynamic environment. We propose that probability distributions are inferred spike-per-spike in recurrently connected networks of integrate-and-fire neurons. As a result, these networks can combine sensory cues optimally, track the state of a time-varying stimulus and memorize accumulated evidence over periods much longer than the time constant of single neurons. Importantly, we propose that population responses and persistent working memory states represent entire probability distributions and not only single stimulus values. These memories are reflected by sustained, asynchronous patterns of activity which make relevant information available to downstream neurons within their short time window of integration. Model neurons act as predictive encoders, only firing spikes which account for new information that has not yet been signaled. Thus, spike times signal deterministically a prediction error, contrary to rate codes in which spike times are considered to be random samples of an underlying firing rate. As a consequence of this coding scheme, a multitude of spike patterns can reliably encode the same information. This results in weakly correlated, Poisson-like spike trains that are sensitive to initial conditions but robust to even high levels of external neural noise. This spike train variability reproduces the one observed in cortical sensory spike trains, but cannot be equated to noise. On the contrary, it is a consequence of optimal spike-based inference. In contrast, we show that rate-based models perform poorly when implemented with stochastically spiking neurons.

  9. Evoking prescribed spike times in stochastic neurons

    Science.gov (United States)

    Doose, Jens; Lindner, Benjamin

    2017-09-01

    Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing with intermediate firing rates (20-40 Hz) the reliability in evoking the prescribed spike train is close to its theoretical maximum that is mainly determined by the level of intrinsic noise.

  10. Spike-timing dynamics of neuronal groups.

    Science.gov (United States)

    Izhikevich, Eugene M; Gally, Joseph A; Edelman, Gerald M

    2004-08-01

    A neuronal network inspired by the anatomy of the cerebral cortex was simulated to study the self-organization of spiking neurons into neuronal groups. The network consisted of 100 000 reentrantly interconnected neurons exhibiting known types of cortical firing patterns, receptor kinetics, short-term plasticity and long-term spike-timing-dependent plasticity (STDP), as well as a distribution of axonal conduction delays. The dynamics of the network allowed us to study the fine temporal structure of emerging firing patterns with millisecond resolution. We found that the interplay between STDP and conduction delays gave rise to the spontaneous formation of neuronal groups--sets of strongly connected neurons capable of firing time-locked, although not necessarily synchronous, spikes. Despite the noise present in the model, such groups repeatedly generated patterns of activity with millisecond spike-timing precision. Exploration of the model allowed us to characterize various group properties, including spatial distribution, size, growth, rate of birth, lifespan, and persistence in the presence of synaptic turnover. Localized coherent input resulted in shifts of receptive and projective fields in the model similar to those observed in vivo.

  11. Motif-based embedding for graph clustering

    Science.gov (United States)

    Lim, Sungsu; Lee, Jae-Gil

    2016-12-01

    Community detection in complex networks is a fundamental problem that has been extensively studied owing to its wide range of applications. However, because community detection methods typically rely on the relations between vertices in networks, they may fail to discover higher-order graph substructures, called the network motifs. In this paper, we propose a novel embedding method for graph clustering that considers higher-order relationships involving multiple vertices. We show that our embedding method, which we call motif-based embedding, is more effective in detecting communities than existing graph embedding methods, spectral embedding and force-directed embedding, both theoretically and experimentally.

  12. Removing Spikes While Preserving Data and Noise using Wavelet Filter Banks

    Data.gov (United States)

    National Aeronautics and Space Administration — Many diagnostic datasets suffer from the adverse effects of spikes that are embedded in data and noise. For example, this is true for electrical power system data...

  13. Which model to use for cortical spiking neurons?

    Science.gov (United States)

    Izhikevich, Eugene M

    2004-09-01

    We discuss the biological plausibility and computational efficiency of some of the most useful models of spiking and bursting neurons. We compare their applicability to large-scale simulations of cortical neural networks.

  14. Response Features Determining Spike Times

    Directory of Open Access Journals (Sweden)

    Barry J. Richmond

    1999-01-01

    redundant with that carried by the coarse structure. Thus, the existence of precisely timed spike patterns carrying stimulus-related information does not imply control of spike timing at precise time scales.

  15. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics.

    Science.gov (United States)

    Im, Hyeon-Gyun; Jung, Soo-Ho; Jin, Jungho; Lee, Dasom; Lee, Jaemin; Lee, Daewon; Lee, Jung-Yong; Kim, Il-Doo; Bae, Byeong-Soo

    2014-10-28

    We report a flexible high-performance conducting film using an embedded copper nanowire transparent conducting electrode; this material can be used as a transparent electrode platform for typical flexible optoelectronic devices. The monolithic composite structure of our transparent conducting film enables simultaneously an outstanding oxidation stability of the copper nanowire network (14 d at 80 °C), an exceptionally smooth surface topography (R(rms) < 2 nm), and an excellent opto-electrical performances (Rsh = 25 Ω sq(-1) and T = 82%). A flexible organic light emitting diode device is fabricated on the transparent conducting film to demonstrate its potential as a flexible copper nanowire electrode platform.

  16. Embedded Systems

    Indian Academy of Sciences (India)

    An embedded system is a microprocessor-based system that is incorporated into a device to monitor and control the functions of the components of the device. They are used in many devices ranging from a microwave oven to a nuclear reactor. Unlike personal computers that run a variety of applications, embedded.

  17. Effects of nicotine stimulation on spikes, theta frequency oscillations, and spike-theta oscillation relationship in rat medial septum diagonal band Broca slices

    Science.gov (United States)

    Wen, Dong; Peng, Ce; Ou-yang, Gao-xiang; Henderson, Zainab; Li, Xiao-li; Lu, Cheng-biao

    2013-01-01

    Aim: Spiking activities and neuronal network oscillations in the theta frequency range have been found in many cortical areas during information processing. The aim of this study is to determine whether nicotinic acetylcholine receptors (nAChRs) mediate neuronal network activity in rat medial septum diagonal band Broca (MSDB) slices. Methods: Extracellular field potentials were recorded in the slices using an Axoprobe 1A amplifier. Data analysis was performed off-line. Spike sorting and local field potential (LFP) analyses were performed using Spike2 software. The role of spiking activity in the generation of LFP oscillations in the slices was determined by analyzing the phase-time relationship between the spikes and LFP oscillations. Circular statistic analysis based on the Rayleigh test was used to determine the significance of phase relationships between the spikes and LFP oscillations. The timing relationship was examined by quantifying the spike-field coherence (SFC). Results: Application of nicotine (250 nmol/L) induced prominent LFP oscillations in the theta frequency band and both small- and large-amplitude population spiking activity in the slices. These spikes were phase-locked to theta oscillations at specific phases. The Rayleigh test showed a statistically significant relationship in phase-locking between the spikes and theta oscillations. Larger changes in the SFC were observed for large-amplitude spikes, indicating an accurate timing relationship between this type of spike and LFP oscillations. The nicotine-induced spiking activity (large-amplitude population spikes) was suppressed by the nAChR antagonist dihydro-β-erythroidine (0.3 μmol/L). Conclusion: The results demonstrate that large-amplitude spikes are phase-locked to theta oscillations and have a high spike-timing accuracy, which are likely a main contributor to the theta oscillations generated in MSDB during nicotine receptor activation. PMID:23474704

  18. Fast Decision Algorithms in Low-Power Embedded Processors for Quality-of-Service Based Connectivity of Mobile Sensors in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Juan M. Sánchez-Pérez

    2012-02-01

    Full Text Available When a mobile wireless sensor is moving along heterogeneous wireless sensor networks, it can be under the coverage of more than one network many times. In these situations, the Vertical Handoff process can happen, where the mobile sensor decides to change its connection from a network to the best network among the available ones according to their quality of service characteristics. A fitness function is used for the handoff decision, being desirable to minimize it. This is an optimization problem which consists of the adjustment of a set of weights for the quality of service. Solving this problem efficiently is relevant to heterogeneous wireless sensor networks in many advanced applications. Numerous works can be found in the literature dealing with the vertical handoff decision, although they all suffer from the same shortfall: a non-comparable efficiency. Therefore, the aim of this work is twofold: first, to develop a fast decision algorithm that explores the entire space of possible combinations of weights, searching that one that minimizes the fitness function; and second, to design and implement a system on chip architecture based on reconfigurable hardware and embedded processors to achieve several goals necessary for competitive mobile terminals: good performance, low power consumption, low economic cost, and small area integration.

  19. Fast decision algorithms in low-power embedded processors for quality-of-service based connectivity of mobile sensors in heterogeneous wireless sensor networks.

    Science.gov (United States)

    Jaraíz-Simón, María D; Gómez-Pulido, Juan A; Vega-Rodríguez, Miguel A; Sánchez-Pérez, Juan M

    2012-01-01

    When a mobile wireless sensor is moving along heterogeneous wireless sensor networks, it can be under the coverage of more than one network many times. In these situations, the Vertical Handoff process can happen, where the mobile sensor decides to change its connection from a network to the best network among the available ones according to their quality of service characteristics. A fitness function is used for the handoff decision, being desirable to minimize it. This is an optimization problem which consists of the adjustment of a set of weights for the quality of service. Solving this problem efficiently is relevant to heterogeneous wireless sensor networks in many advanced applications. Numerous works can be found in the literature dealing with the vertical handoff decision, although they all suffer from the same shortfall: a non-comparable efficiency. Therefore, the aim of this work is twofold: first, to develop a fast decision algorithm that explores the entire space of possible combinations of weights, searching that one that minimizes the fitness function; and second, to design and implement a system on chip architecture based on reconfigurable hardware and embedded processors to achieve several goals necessary for competitive mobile terminals: good performance, low power consumption, low economic cost, and small area integration.

  20. Millisecond precision spike timing shapes tactile perception.

    Science.gov (United States)

    Mackevicius, Emily L; Best, Matthew D; Saal, Hannes P; Bensmaia, Sliman J

    2012-10-31

    In primates, the sense of touch has traditionally been considered to be a spatial modality, drawing an analogy to the visual system. In this view, stimuli are encoded in spatial patterns of activity over the sheet of receptors embedded in the skin. We propose that the spatial processing mode is complemented by a temporal one. Indeed, the transduction and processing of complex, high-frequency skin vibrations have been shown to play an important role in tactile texture perception, and the frequency composition of vibrations shapes the evoked percept. Mechanoreceptive afferents innervating the glabrous skin exhibit temporal patterning in their responses, but the importance and behavioral relevance of spike timing, particularly for naturalistic stimuli, remains to be elucidated. Based on neurophysiological recordings from Rhesus macaques, we show that spike timing conveys information about the frequency composition of skin vibrations, both for individual afferents and for afferent populations, and that the temporal fidelity varies across afferent class. Furthermore, the perception of skin vibrations, measured in human subjects, is better predicted when spike timing is taken into account, and the resolution that predicts perception best matches the optimal resolution of the respective afferent classes. In light of these results, the peripheral representation of complex skin vibrations draws a powerful analogy with the auditory and vibrissal systems.

  1. Embedded Systems Design with FPGAs

    CERN Document Server

    Pnevmatikatos, Dionisios; Sklavos, Nicolas

    2013-01-01

    This book presents methodologies for modern applications of embedded systems design, using field programmable gate array (FPGA) devices.  Coverage includes state-of-the-art research from academia and industry on a wide range of topics, including advanced electronic design automation (EDA), novel system architectures, embedded processors, arithmetic, dynamic reconfiguration and applications. Describes a variety of methodologies for modern embedded systems design;  Implements methodologies presented on FPGAs; Covers a wide variety of applications for reconfigurable embedded systems, including Bioinformatics, Communications and networking, Application acceleration, Medical solutions, Experiments for high energy physics, Astronomy, Aerospace, Biologically inspired systems and Computational fluid dynamics (CFD).

  2. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities.

    Science.gov (United States)

    MaBouDi, HaDi; Shimazaki, Hideaki; Giurfa, Martin; Chittka, Lars

    2017-06-01

    The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons' outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several-but not all-types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life.

  3. Spike Neural Models Part II: Abstract Neural Models

    OpenAIRE

    Johnson, Melissa G.; Chartier, Sylvain

    2018-01-01

    Neurons are complex cells that require a lot of time and resources to model completely. In spiking neural networks (SNN) though, not all that complexity is required. Therefore simple, abstract models are often used. These models save time, use less computer resources, and are easier to understand. This tutorial presents two such models: Izhikevich's model, which is biologically realistic in the resulting spike trains but not in the parameters, and the Leaky Integrate and Fire (LIF) model whic...

  4. Imagery May Arise from Associations Formed through Sensory Experience: A Network of Spiking Neurons Controlling a Robot Learns Visual Sequences in Order to Perform a Mental Rotation Task.

    Science.gov (United States)

    McKinstry, Jeffrey L; Fleischer, Jason G; Chen, Yanqing; Gall, W Einar; Edelman, Gerald M

    Mental imagery occurs "when a representation of the type created during the initial phases of perception is present but the stimulus is not actually being perceived." How does the capability to perform mental imagery arise? Extending the idea that imagery arises from learned associations, we propose that mental rotation, a specific form of imagery, could arise through the mechanism of sequence learning-that is, by learning to regenerate the sequence of mental images perceived while passively observing a rotating object. To demonstrate the feasibility of this proposal, we constructed a simulated nervous system and embedded it within a behaving humanoid robot. By observing a rotating object, the system learns the sequence of neural activity patterns generated by the visual system in response to the object. After learning, it can internally regenerate a similar sequence of neural activations upon briefly viewing the static object. This system learns to perform a mental rotation task in which the subject must determine whether two objects are identical despite differences in orientation. As with human subjects, the time taken to respond is proportional to the angular difference between the two stimuli. Moreover, as reported in humans, the system fills in intermediate angles during the task, and this putative mental rotation activates the same pathways that are activated when the system views physical rotation. This work supports the proposal that mental rotation arises through sequence learning and the idea that mental imagery aids perception through learned associations, and suggests testable predictions for biological experiments.

  5. TinyCoAP: A Novel Constrained Application Protocol (CoAP Implementation for Embedding RESTful Web Services in Wireless Sensor Networks Based on TinyOS

    Directory of Open Access Journals (Sweden)

    Anna Calveras

    2013-05-01

    Full Text Available In this paper we present the design and implementation of the Constrained Application Protocol (CoAP for TinyOS, which we refer to as TinyCoAP. CoAP seeks to apply the same application transfer paradigm and basic features of HTTP to constrained networks, while maintaining a simple design and low overhead. The design constraints of Wireless Sensor Networks (WSNs require special attention in the design process of the CoAP implementation. We argue that better performance and minimal resource consumption can be achieved developing a native library for the operating system embedded in the network. TinyOS already includes in its distribution an implementation of CoAP called CoapBlip. However, this is based on a library not originally designed to meet the requirements of TinyOS. We demonstrate the effectiveness of our approach by a comprehensive performance evaluation. In particular, we test and evaluate TinyCoAP and CoapBlip in a real scenario, as well as solutions based on HTTP. The evaluation is performed in terms of latency, memory occupation, and energy consumption. Furthermore, we evaluate the reliability of each solution by measuring the goodput obtained in a channel affected by Rayleigh fading. We also include a study on the effects that high workloads have on a server.

  6. Radioxenon spiked air.

    Science.gov (United States)

    Watrous, Matthew G; Delmore, James E; Hague, Robert K; Houghton, Tracy P; Jenson, Douglas D; Mann, Nick R

    2015-12-01

    Four of the radioactive xenon isotopes ((131m)Xe, (133m)Xe, (133)Xe and (135)Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This paper focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification

    Directory of Open Access Journals (Sweden)

    Bodo Rueckauer

    2017-12-01

    Full Text Available Spiking neural networks (SNNs can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-pooling, softmax, batch-normalization and Inception-modules. This paper presents spiking equivalents of these operations therefore allowing conversion of nearly arbitrary CNN architectures. We show conversion of popular CNN architectures, including VGG-16 and Inception-v3, into SNNs that produce the best results reported to date on MNIST, CIFAR-10 and the challenging ImageNet dataset. SNNs can trade off classification error rate against the number of available operations whereas deep continuous-valued neural networks require a fixed number of operations to achieve their classification error rate. From the examples of LeNet for MNIST and BinaryNet for CIFAR-10, we show that with an increase in error rate of a few percentage points, the SNNs can achieve more than 2x reductions in operations compared to the original CNNs. This highlights the potential of SNNs in particular when deployed on power-efficient neuromorphic spiking neuron chips, for use in embedded applications.

  8. Simple model of spiking neurons.

    Science.gov (United States)

    Izhikevich, E M

    2003-01-01

    A model is presented that reproduces spiking and bursting behavior of known types of cortical neurons. The model combines the biologically plausibility of Hodgkin-Huxley-type dynamics and the computational efficiency of integrate-and-fire neurons. Using this model, one can simulate tens of thousands of spiking cortical neurons in real time (1 ms resolution) using a desktop PC.

  9. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  10. Embedding an institution-wide capacity building opportunity around transition pedagogy: First Year Teaching and Learning Network Coordinators

    Directory of Open Access Journals (Sweden)

    Jennifer Clark

    2015-03-01

    Full Text Available A First Year Teaching and Learning Network was established in a regional university with a strong focus on distance education for a very diverse student cohort.  The purpose of the Network, which consisted of a Coordinator in each of nine schools, was to support staff teaching students transitioning into tertiary education. The paper explores the theoretical bases of the structure, its current method of operation, its impact so far, and future plans. The development of the Network illustrates how a university can consciously embed opportunities for staff to take ownership of transition pedagogy and thus encourage widespread capacity building amongst their peers. The experiences of the Network in its first two years provide a case study of how institutional support for the Scholarship of Teaching and Learning, in particular scholarship around capacity building, can be used as a mechanism to promote both staff and student engagement with transition pedagogy resulting in a shift from a second generation approach towards a third generation approach to transition.

  11. Growth-expectations among women entrepreneurs: embedded in networks and culture in Algeria, Morocco, Tunisia and in Belgium and France

    DEFF Research Database (Denmark)

    Cheraghi, Maryam; Setti, Zakia; Schøtt, Thomas

    2014-01-01

    and secular-rational culture differ in roles for women, which influence women entrepreneurs' networking and expectations. The design compares cultures, with data from three traditional societies, Algeria, Morocco and Tunisia and two secular-rational societies, France and Belgium, surveyed in the Global...

  12. Statistical technique for analysing functional connectivity of multiple spike trains.

    Science.gov (United States)

    Masud, Mohammad Shahed; Borisyuk, Roman

    2011-03-15

    A new statistical technique, the Cox method, used for analysing functional connectivity of simultaneously recorded multiple spike trains is presented. This method is based on the theory of modulated renewal processes and it estimates a vector of influence strengths from multiple spike trains (called reference trains) to the selected (target) spike train. Selecting another target spike train and repeating the calculation of the influence strengths from the reference spike trains enables researchers to find all functional connections among multiple spike trains. In order to study functional connectivity an "influence function" is identified. This function recognises the specificity of neuronal interactions and reflects the dynamics of postsynaptic potential. In comparison to existing techniques, the Cox method has the following advantages: it does not use bins (binless method); it is applicable to cases where the sample size is small; it is sufficiently sensitive such that it estimates weak influences; it supports the simultaneous analysis of multiple influences; it is able to identify a correct connectivity scheme in difficult cases of "common source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data generated by the neural network model of the leaky integrate and fire neurons with a prescribed architecture of connections. The results suggest that this method is highly successful for analysing functional connectivity of simultaneously recorded multiple spike trains. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. A Simple Deep Learning Method for Neuronal Spike Sorting

    Science.gov (United States)

    Yang, Kai; Wu, Haifeng; Zeng, Yu

    2017-10-01

    Spike sorting is one of key technique to understand brain activity. With the development of modern electrophysiology technology, some recent multi-electrode technologies have been able to record the activity of thousands of neuronal spikes simultaneously. The spike sorting in this case will increase the computational complexity of conventional sorting algorithms. In this paper, we will focus spike sorting on how to reduce the complexity, and introduce a deep learning algorithm, principal component analysis network (PCANet) to spike sorting. The introduced method starts from a conventional model and establish a Toeplitz matrix. Through the column vectors in the matrix, we trains a PCANet, where some eigenvalue vectors of spikes could be extracted. Finally, support vector machine (SVM) is used to sort spikes. In experiments, we choose two groups of simulated data from public databases availably and compare this introduced method with conventional methods. The results indicate that the introduced method indeed has lower complexity with the same sorting errors as the conventional methods.

  14. Security Aspects of Smart Cards vs. Embedded Security in Machine-to-Machine (M2M) Advanced Mobile Network Applications

    Science.gov (United States)

    Meyerstein, Mike; Cha, Inhyok; Shah, Yogendra

    The Third Generation Partnership Project (3GPP) standardisation group currently discusses advanced applications of mobile networks such as Machine-to-Machine (M2M) communication. Several security issues arise in these contexts which warrant a fresh look at mobile networks’ security foundations, resting on smart cards. This paper contributes a security/efficiency analysis to this discussion and highlights the role of trusted platform technology to approach these issues.

  15. Mapping spikes to sensations

    Directory of Open Access Journals (Sweden)

    Maik Christopher Stüttgen

    2011-11-01

    Full Text Available Single-unit recordings conducted during perceptual decision-making tasks have yielded tremendous insights into the neural coding of sensory stimuli. In such experiments, detection or discrimination behavior (the psychometric data is observed in parallel with spike trains in sensory neurons (the neurometric data. Frequently, candidate neural codes for information read-out are pitted against each other by transforming the neurometric data in some way and asking which code’s performance most closely approximates the psychometric performance. The code that matches the psychometric performance best is retained as a viable candidate and the others are rejected. In following this strategy, psychometric data is often considered to provide an unbiased measure of perceptual sensitivity. It is rarely acknowledged that psychometric data result from a complex interplay of sensory and non-sensory processes and that neglect of these processes may result in misestimating psychophysical sensitivity. This again may lead to erroneous conclusions regarding the adequacy of neural candidate codes. In this review, we first discuss requirements on the neural data for a subsequent neurometric-psychometric comparison. We then focus on different psychophysical tasks for the assessment of detection and discrimination performance and the cognitive processes that may underlie their execution. We discuss further factors that may compromise psychometric performance and how they can be detected or avoided. We believe that these considerations point to shortcomings in our understanding of the processes underlying perceptual decisions, and therefore offer potential for future research.

  16. Optimizing embedded sensor network design for catchment-scale snow-depth estimation using LiDAR and machine learning

    Science.gov (United States)

    Oroza, Carlos A.; Zheng, Zeshi; Glaser, Steven D.; Tuia, Devis; Bales, Roger C.

    2016-10-01

    We evaluate the accuracy of a machine-learning algorithm that uses LiDAR data to optimize ground-based sensor placements for catchment-scale snow measurements. Sampling locations that best represent catchment physiographic variables are identified with the Expectation Maximization algorithm for a Gaussian mixture model. A Gaussian process is then used to model the snow depth in a 1 km2 area surrounding the network, and additional sensors are placed to minimize the model uncertainty. The aim of the study is to determine the distribution of sensors that minimizes the bias and RMSE of the model. We compare the accuracy of the snow-depth model using the proposed placements to an existing sensor network at the Southern Sierra Critical Zone Observatory. Each model is validated with a 1 m2 LiDAR-derived snow-depth raster from 14 March 2010. The proposed algorithm exhibits higher accuracy with fewer sensors (8 sensors, RMSE 38.3 cm, bias = 3.49 cm) than the existing network (23 sensors, RMSE 53.0 cm, bias = 15.5 cm) and randomized placements (8 sensors, RMSE 63.7 cm, bias = 24.7 cm). We then evaluate the spatial and temporal transferability of the method using 14 LiDAR scenes from two catchments within the JPL Airborne Snow Observatory. In each region, the optimized sensor placements are determined using the first available snow raster for the year. The accuracy in the remaining LiDAR surveys is then compared to 100 configurations of sensors selected at random. We find the error statistics (bias and RMSE) to be more consistent across the additional surveys than the average random configuration.

  17. Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment.

    Science.gov (United States)

    Karri, Rama Rao; Sahu, J N

    2018-01-15

    Zn (II) is one the common pollutant among heavy metals found in industrial effluents. Removal of pollutant from industrial effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil kernel shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like initial concentration, pH, residence time, activated carbon (AC) dosage and process temperature on the removal of Zn (II) by palm kernel shell based AC from batch adsorption process are studied systematically. Based on the design of experimental matrix, 50 experimental runs are performed with each process variable in the experimental range. The optimal values of process variables to achieve maximum removal efficiency is studied using response surface methodology (RSM) and artificial neural network (ANN) approaches. A quadratic model, which consists of first order and second order degree regressive model is developed using the analysis of variance and RSM - CCD framework. The particle swarm optimization which is a meta-heuristic optimization is embedded on the ANN architecture to optimize the search space of neural network. The optimized trained neural network well depicts the testing data and validation data with R2 equal to 0.9106 and 0.9279 respectively. The outcomes indicates that the superiority of ANN-PSO based model predictions over the quadratic model predictions provided by RSM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Wavelet analysis of epileptic spikes

    CERN Document Server

    Latka, M; Kozik, A; West, B J; Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.

    2003-01-01

    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous, pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.

  19. Embedded Hardware

    CERN Document Server

    Ganssle, Jack G; Eady, Fred; Edwards, Lewin; Katz, David J; Gentile, Rick

    2007-01-01

    The Newnes Know It All Series takes the best of what our authors have written to create hard-working desk references that will be an engineer's first port of call for key information, design techniques and rules of thumb. Guaranteed not to gather dust on a shelf!. Circuit design using microcontrollers is both a science and an art. This book covers it all. It details all of the essential theory and facts to help an engineer design a robust embedded system. Processors, memory, and the hot topic of interconnects (I/O) are completely covered. Our authors bring a wealth of experience and ideas; thi

  20. Deep Learning with Dynamic Spiking Neurons and Fixed Feedback Weights.

    Science.gov (United States)

    Samadi, Arash; Lillicrap, Timothy P; Tweed, Douglas B

    2017-03-01

    Recent work in computer science has shown the power of deep learning driven by the backpropagation algorithm in networks of artificial neurons. But real neurons in the brain are different from most of these artificial ones in at least three crucial ways: they emit spikes rather than graded outputs, their inputs and outputs are related dynamically rather than by piecewise-smooth functions, and they have no known way to coordinate arrays of synapses in separate forward and feedback pathways so that they change simultaneously and identically, as they do in backpropagation. Given these differences, it is unlikely that current deep learning algorithms can operate in the brain, but we that show these problems can be solved by two simple devices: learning rules can approximate dynamic input-output relations with piecewise-smooth functions, and a variation on the feedback alignment algorithm can train deep networks without having to coordinate forward and feedback synapses. Our results also show that deep spiking networks learn much better if each neuron computes an intracellular teaching signal that reflects that cell's nonlinearity. With this mechanism, networks of spiking neurons show useful learning in synapses at least nine layers upstream from the output cells and perform well compared to other spiking networks in the literature on the MNIST digit recognition task.

  1. Event-Driven Contrastive Divergence for Spiking Neuromorphic Systems

    Directory of Open Access Journals (Sweden)

    Emre eNeftci

    2014-01-01

    Full Text Available Restricted Boltzmann Machines (RBMs and Deep Belief Networks have been demonstrated to perform efficiently in variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The reverberating activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP carries out the weight updates in an online, asynchronous fashion.We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.

  2. Compression embedding

    Science.gov (United States)

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  3. Embedding Graphs in Lorentzian Spacetime

    CERN Document Server

    Clough, James R

    2016-01-01

    Geometric approaches to network analysis combine simply defined models with great descriptive power. In this work we provide a method for embedding directed acyclic graphs into Minkowski spacetime using Multidimensional scaling (MDS). First we generalise the classical MDS algorithm, defined only for metrics with a Euclidean signature, to manifolds of any metric signature. We then use this general method to develop an algorithm to be used on networks which have causal structure allowing them to be embedded in Lorentzian manifolds. The method is demonstrated by calculating embeddings for both causal sets and citation networks in Minkowski spacetime. We finally suggest a number of applications in citation analysis such as paper recommendation, identifying missing citations and fitting citation models to data using this geometric approach.

  4. Automatic fitting of spiking neuron models to electrophysiological recordings

    Directory of Open Access Journals (Sweden)

    Cyrille Rossant

    2010-03-01

    Full Text Available Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer simulations and in terms of code writing. We present algorithms to fit spiking models to electrophysiological data (time-varying input and spike trains that can run in parallel on graphics processing units (GPUs. The model fitting library is interfaced with Brian, a neural network simulator in Python. If a GPU is present it uses just-in-time compilation to translate model equations into optimized code. Arbitrary models can then be defined at script level and run on the graphics card. This tool can be used to obtain empirically validated spiking models of neurons in various systems. We demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009 competition by comparing the performance of a number of neuron spiking models.

  5. Feasibility of real-time soil state and flux characterization for wastewater reuse using an embedded sensor network data assimilation approach

    Science.gov (United States)

    Wu, Che-Chuan; Margulis, Steven A.

    2011-03-01

    SummaryWastewater reuse via irrigation provides the potential for significant increases in water use efficiency; however, excessive solutes from wastewater can pollute the groundwater beneath the irrigated lands. To avoid this adverse impact and provide a mechanism for informing optimal management practices, this study develops a monitoring and modeling system to assimilate embedded sensor network measurements into a hydrologic model to provide real-time soil state and flux estimates. The feasibility of soil characterization with a data assimilation algorithm is investigated through a series of observing system simulation experiments (OSSEs) at a wastewater reuse testbed in Palmdale, California. Results show that state (i.e. soil moisture) estimation in isolation can lead to significant errors if flux estimates are a primary objective of the estimation framework and parameters are not well characterized. Overall, the OSSEs indicate that with sufficient measurement information, the system is capable of providing an accurate characterization of real-time soil state, model parameter, and flux estimates (even in the presence of biases) that could be useful in managing wastewater irrigation to avoid hazardous contamination of the underlying groundwater system.

  6. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials

    Science.gov (United States)

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-01-01

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908 S cm−1, 28.20 emu g−1, 16.66 emu g−1 and 3604.79 Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed. PMID:26218269

  7. Magnetoencephalographic signatures of insular epileptic spikes based on functional connectivity.

    Science.gov (United States)

    Zerouali, Younes; Pouliot, Philippe; Robert, Manon; Mohamed, Ismail; Bouthillier, Alain; Lesage, Frédéric; Nguyen, Dang K

    2016-09-01

    Failure to recognize insular cortex seizures has recently been identified as a cause of epilepsy surgeries targeting the temporal, parietal, or frontal lobe. Such failures are partly due to the fact that current noninvasive localization techniques fare poorly in recognizing insular epileptic foci. Our group recently demonstrated that magnetoencephalography (MEG) is sensitive to epileptiform spikes generated by the insula. In this study, we assessed the potential of distributed source imaging and functional connectivity analyses to distinguish insular networks underlying the generation of spikes. Nineteen patients with operculo-insular epilepsy were investigated. Each patient underwent MEG as well as T1-weighted magnetic resonance imaging (MRI) as part of their standard presurgical evaluation. Cortical sources of MEG spikes were reconstructed with the maximum entropy on the mean algorithm, and their time courses served to analyze source functional connectivity. The results indicate that the anterior and posterior subregions of the insula have specific patterns of functional connectivity mainly involving frontal and parietal regions, respectively. In addition, while their connectivity patterns are qualitatively similar during rest and during spikes, couplings within these networks are much stronger during spikes. These results show that MEG can establish functional connectivity-based signatures that could help in the diagnosis of different subtypes of insular cortex epilepsy. Hum Brain Mapp 37:3250-3261, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Stress-induced impairment of a working memory task: role of spiking rate and spiking history predicted discharge.

    Science.gov (United States)

    Devilbiss, David M; Jenison, Rick L; Berridge, Craig W

    2012-01-01

    Stress, pervasive in society, contributes to over half of all work place accidents a year and over time can contribute to a variety of psychiatric disorders including depression, schizophrenia, and post-traumatic stress disorder. Stress impairs higher cognitive processes, dependent on the prefrontal cortex (PFC) and that involve maintenance and integration of information over extended periods, including working memory and attention. Substantial evidence has demonstrated a relationship between patterns of PFC neuron spiking activity (action-potential discharge) and components of delayed-response tasks used to probe PFC-dependent cognitive function in rats and monkeys. During delay periods of these tasks, persistent spiking activity is posited to be essential for the maintenance of information for working memory and attention. However, the degree to which stress-induced impairment in PFC-dependent cognition involves changes in task-related spiking rates or the ability for PFC neurons to retain information over time remains unknown. In the current study, spiking activity was recorded from the medial PFC of rats performing a delayed-response task of working memory during acute noise stress (93 db). Spike history-predicted discharge (SHPD) for PFC neurons was quantified as a measure of the degree to which ongoing neuronal discharge can be predicted by past spiking activity and reflects the degree to which past information is retained by these neurons over time. We found that PFC neuron discharge is predicted by their past spiking patterns for nearly one second. Acute stress impaired SHPD, selectively during delay intervals of the task, and simultaneously impaired task performance. Despite the reduction in delay-related SHPD, stress increased delay-related spiking rates. These findings suggest that neural codes utilizing SHPD within PFC networks likely reflects an additional important neurophysiological mechanism for maintenance of past information over time. Stress

  9. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    Directory of Open Access Journals (Sweden)

    Zedong eBi

    2016-02-01

    Full Text Available In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis. Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e. synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons. Neurons (including the post-synaptic neuron in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1 synchronous firing and burstiness tend to increase DiffV, (2 heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3 heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our

  10. Trusted computing for embedded systems

    CERN Document Server

    Soudris, Dimitrios; Anagnostopoulos, Iraklis

    2015-01-01

    This book describes the state-of-the-art in trusted computing for embedded systems. It shows how a variety of security and trusted computing problems are addressed currently and what solutions are expected to emerge in the coming years. The discussion focuses on attacks aimed at hardware and software for embedded systems, and the authors describe specific solutions to create security features. Case studies are used to present new techniques designed as industrial security solutions. Coverage includes development of tamper resistant hardware and firmware mechanisms for lightweight embedded devices, as well as those serving as security anchors for embedded platforms required by applications such as smart power grids, smart networked and home appliances, environmental and infrastructure sensor networks, etc. ·         Enables readers to address a variety of security threats to embedded hardware and software; ·         Describes design of secure wireless sensor networks, to address secure authen...

  11. When less is more: non-monotonic spike sequence processing in neurons.

    Directory of Open Access Journals (Sweden)

    Hinrich Arnoldt

    2015-02-01

    Full Text Available Fundamental response properties of neurons centrally underly the computational capabilities of both individual nerve cells and neural networks. Most studies on neuronal input-output relations have focused on continuous-time inputs such as constant or noisy sinusoidal currents. Yet, most neurons communicate via exchanging action potentials (spikes at discrete times. Here, we systematically analyze the stationary spiking response to regular spiking inputs and reveal that it is generically non-monotonic. Our theoretical analysis shows that the underlying mechanism relies solely on a combination of the discrete nature of the communication by spikes, the capability of locking output to input spikes and limited resources required for spike processing. Numerical simulations of mathematically idealized and biophysically detailed models, as well as neurophysiological experiments confirm and illustrate our theoretical predictions.

  12. Emergent properties of interacting populations of spiking neurons

    Directory of Open Access Journals (Sweden)

    Stefano eCardanobile

    2011-12-01

    Full Text Available Dynamic neuronal networks are a key paradigm of increasing importance in brain research, concerned with the functional analysis of biological neuronal networks and, at the same time, with the synthesis of artificial brain-like systems. In this context, neuronal network models serve as mathematical tools to understand the function of brains, but they might as well develop into future tools for enhancing certain functions of our nervous system.Here, we discuss our recent achievements in developing multiplicative point processes into a viable mathematical framework for spiking network modeling. The perspective is that the dynamic behavior of these neuronal networks on the population level is faithfully reflected by a set of non-linear rate equations, describing all interactions on this level. These equations, in turn, are similar in structure to the Lotka-Volterra equations, well known by their use in modeling predator-prey relationships in population biology, but abundant applications to economic theory have also been described.We present a number of biologically relevant examples for spiking network function, which can be studied with the help of the aforementioned correspondence between spike trains and specific systems of non-linear coupled ordinary differential equations. We claim that, enabled by the use of multiplicative point processes, we can make essential contributions to a more thorough understanding of the dynamical properties of neural populations.

  13. Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation.

    Science.gov (United States)

    Liu, Qian; Pineda-García, Garibaldi; Stromatias, Evangelos; Serrano-Gotarredona, Teresa; Furber, Steve B

    2016-01-01

    Today, increasing attention is being paid to research into spike-based neural computation both to gain a better understanding of the brain and to explore biologically-inspired computation. Within this field, the primate visual pathway and its hierarchical organization have been extensively studied. Spiking Neural Networks (SNNs), inspired by the understanding of observed biological structure and function, have been successfully applied to visual recognition and classification tasks. In addition, implementations on neuromorphic hardware have enabled large-scale networks to run in (or even faster than) real time, making spike-based neural vision processing accessible on mobile robots. Neuromorphic sensors such as silicon retinas are able to feed such mobile systems with real-time visual stimuli. A new set of vision benchmarks for spike-based neural processing are now needed to measure progress quantitatively within this rapidly advancing field. We propose that a large dataset of spike-based visual stimuli is needed to provide meaningful comparisons between different systems, and a corresponding evaluation methodology is also required to measure the performance of SNN models and their hardware implementations. In this paper we first propose an initial NE (Neuromorphic Engineering) dataset based on standard computer vision benchmarksand that uses digits from the MNIST database. This dataset is compatible with the state of current research on spike-based image recognition. The corresponding spike trains are produced using a range of techniques: rate-based Poisson spike generation, rank order encoding, and recorded output from a silicon retina with both flashing and oscillating input stimuli. In addition, a complementary evaluation methodology is presented to assess both model-level and hardware-level performance. Finally, we demonstrate the use of the dataset and the evaluation methodology using two SNN models to validate the performance of the models and their hardware

  14. Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware

    Directory of Open Access Journals (Sweden)

    Andreas Stöckel

    2017-08-01

    Full Text Available Large-scale neuromorphic hardware platforms, specialized computer systems for energy efficient simulation of spiking neural networks, are being developed around the world, for example as part of the European Human Brain Project (HBP. Due to conceptual differences, a universal performance analysis of these systems in terms of runtime, accuracy and energy efficiency is non-trivial, yet indispensable for further hard- and software development. In this paper we describe a scalable benchmark based on a spiking neural network implementation of the binary neural associative memory. We treat neuromorphic hardware and software simulators as black-boxes and execute exactly the same network description across all devices. Experiments on the HBP platforms under varying configurations of the associative memory show that the presented method allows to test the quality of the neuron model implementation, and to explain significant deviations from the expected reference output.

  15. Detecting dependencies between spike trains of pairs of neurons through copulas

    OpenAIRE

    Sacerdote, Laura; Tamborrino, Massimiliano; Zucca, Cristina

    2011-01-01

    The dynamics of a neuron are influenced by the connections with the network where it lies. Recorded spike trains exhibit patterns due to the interactions between neurons. However, the structure of the network is not known. A challenging task is to investigate it from the analysis of simultaneously recorded spike trains. We develop a non-parametric method based on copulas, that we apply to simulated data according to different bivariate Leaky In- tegrate and Fire models. The method discerns de...

  16. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  17. Proceedings of the ARO Planning Workshop on Embedded Systems and Network Security Held in Raleigh, North Carolina on February 22-23, 2007

    Science.gov (United States)

    2007-10-28

    attacks of probabilistic nature may be resource and computationally efficient than active attacks in WSN/ RFID .” • Designing security protocols that leak...protect these intellectual property on embedded devices and to restrict their usage have be- come a new design challenge. The recent incident of hacking ...Andrew Huang. Hacking the Xbox: An Introduction to Reverse Engineering. No Starch Press, 2003. [2] Philip Koopman. Embedded System Security. IEEE

  18. Memory recall and spike-frequency adaptation

    Science.gov (United States)

    Roach, James P.; Sander, Leonard M.; Zochowski, Michal R.

    2016-05-01

    The brain can reproduce memories from partial data; this ability is critical for memory recall. The process of memory recall has been studied using autoassociative networks such as the Hopfield model. This kind of model reliably converges to stored patterns that contain the memory. However, it is unclear how the behavior is controlled by the brain so that after convergence to one configuration, it can proceed with recognition of another one. In the Hopfield model, this happens only through unrealistic changes of an effective global temperature that destabilizes all stored configurations. Here we show that spike-frequency adaptation (SFA), a common mechanism affecting neuron activation in the brain, can provide state-dependent control of pattern retrieval. We demonstrate this in a Hopfield network modified to include SFA, and also in a model network of biophysical neurons. In both cases, SFA allows for selective stabilization of attractors with different basins of attraction, and also for temporal dynamics of attractor switching that is not possible in standard autoassociative schemes. The dynamics of our models give a plausible account of different sorts of memory retrieval.

  19. Firing Correlation in Spiking Neurons with Watts-Strogatz Rewiring

    Science.gov (United States)

    Yamanishi, Teruya; Nishimura, Haruhiko

    The brain is organized as neuron assemblies with hierarchies of complex network connectivity. In 1998, Watts and Strogatz conjectured that the structures of most complex networks in the real world have the so-called small-world properties of a small mean path between nodes and a high cluster value, regardless of whether they are artificial networks, such as the Internet, or natural networks, such as the brain. Here we explore the nature of a small-world network of neuron assemblies by simulating the network structural dependence of Izhikevich's spiking neuron model. The synchronized rhythmical firing is estimated in terms of rewiring probabilities, and the structural dependence of the firing correlation coefficient is discussed.

  20. Integration and transmission of distributed deterministic neural activity in feed-forward networks.

    Science.gov (United States)

    Asai, Yoshiyuki; Villa, Alessandro E P

    2012-01-24

    A ten layer feed-forward network characterized by diverging/converging patterns of projection between successive layers of regular spiking (RS) neurons is activated by an external spatiotemporal input pattern fed to Layer 1 in presence of stochastic background activities fed to all layers. We used three dynamical systems to derive the external input spike trains including the temporal information, and three types of neuron models for the network, i.e. either a network formed either by neurons modeled by exponential integrate-and-fire dynamics (RS-EIF, Fourcaud-Trocmé et al., 2003), or by simple spiking neurons (RS-IZH, Izhikevich, 2004) or by multiple-timescale adaptive threshold neurons (RS-MAT, Kobayashi et al., 2009), given five intensities for the background activity. The assessment of the temporal structure embedded in the output spike trains was carried out by detecting the preferred firing sequences for the reconstruction of de-noised spike trains (Asai and Villa, 2008). We confirmed that the RS-MAT model is likely to be more efficient in integrating and transmitting the temporal structure embedded in the external input. We observed that this structure could be propagated not only up to the 10th layer but in some cases it was retained better beyond the 4th downstream layers. This study suggests that diverging/converging network structures, by the propagation of synfire activity, could play a key role in the transmission of complex temporal patterns of discharges associated to deterministic nonlinear activity. This article is part of a Special Issue entitled Neural Coding. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  2. Efficient architecture for spike sorting in reconfigurable hardware.

    Science.gov (United States)

    Hwang, Wen-Jyi; Lee, Wei-Hao; Lin, Shiow-Jyu; Lai, Sheng-Ying

    2013-11-01

    This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.

  3. Graph Embedded Extreme Learning Machine.

    Science.gov (United States)

    Iosifidis, Alexandros; Tefas, Anastasios; Pitas, Ioannis

    2016-01-01

    In this paper, we propose a novel extension of the extreme learning machine (ELM) algorithm for single-hidden layer feedforward neural network training that is able to incorporate subspace learning (SL) criteria on the optimization process followed for the calculation of the network's output weights. The proposed graph embedded ELM (GEELM) algorithm is able to naturally exploit both intrinsic and penalty SL criteria that have been (or will be) designed under the graph embedding framework. In addition, we extend the proposed GEELM algorithm in order to be able to exploit SL criteria in arbitrary (even infinite) dimensional ELM spaces. We evaluate the proposed approach on eight standard classification problems and nine publicly available datasets designed for three problems related to human behavior analysis, i.e., the recognition of human face, facial expression, and activity. Experimental results denote the effectiveness of the proposed approach, since it outperforms other ELM-based classification schemes in all the cases.

  4. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Science.gov (United States)

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  5. On the relation between encoding and decoding of neuronal spikes.

    Science.gov (United States)

    Koyama, Shinsuke

    2012-06-01

    Neural coding is a field of study that concerns how sensory information is represented in the brain by networks of neurons. The link between external stimulus and neural response can be studied from two parallel points of view. The first, neural encoding, refers to the mapping from stimulus to response. It focuses primarily on understanding how neurons respond to a wide variety of stimuli and constructing models that accurately describe the stimulus-response relationship. Neural decoding refers to the reverse mapping, from response to stimulus, where the challenge is to reconstruct a stimulus from the spikes it evokes. Since neuronal response is stochastic, a one-to-one mapping of stimuli into neural responses does not exist, causing a mismatch between the two viewpoints of neural coding. Here we use these two perspectives to investigate the question of what rate coding is, in the simple setting of a single stationary stimulus parameter and a single stationary spike train represented by a renewal process. We show that when rate codes are defined in terms of encoding, that is, the stimulus parameter is mapped onto the mean firing rate, the rate decoder given by spike counts or the sample mean does not always efficiently decode the rate codes, but it can improve efficiency in reading certain rate codes when correlations within a spike train are taken into account.

  6. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Laureline Logiaco

    2015-08-01

    Full Text Available The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  7. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns

    Directory of Open Access Journals (Sweden)

    Takashi Matsubara

    2017-11-01

    Full Text Available Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  8. Embedding graphs in Lorentzian spacetime.

    Directory of Open Access Journals (Sweden)

    James R Clough

    Full Text Available Geometric approaches to network analysis combine simply defined models with great descriptive power. In this work we provide a method for embedding directed acyclic graphs (DAG into Minkowski spacetime using Multidimensional scaling (MDS. First we generalise the classical MDS algorithm, defined only for metrics with a Riemannian signature, to manifolds of any metric signature. We then use this general method to develop an algorithm which exploits the causal structure of a DAG to assign space and time coordinates in a Minkowski spacetime to each vertex. As in the causal set approach to quantum gravity, causal connections in the discrete graph correspond to timelike separation in the continuous spacetime. The method is demonstrated by calculating embeddings for simple models of causal sets and random DAGs, as well as real citation networks. We find that the citation networks we test yield significantly more accurate embeddings that random DAGs of the same size. Finally we suggest a number of applications in citation analysis such as paper recommendation, identifying missing citations and fitting citation models to data using this geometric approach.

  9. Functional connectivity among spike trains in neural assemblies during rat working memory task.

    Science.gov (United States)

    Xie, Jiacun; Bai, Wenwen; Liu, Tiaotiao; Tian, Xin

    2014-11-01

    Working memory refers to a brain system that provides temporary storage to manipulate information for complex cognitive tasks. As the brain is a more complex, dynamic and interwoven network of connections and interactions, the questions raised here: how to investigate the mechanism of working memory from the view of functional connectivity in brain network? How to present most characteristic features of functional connectivity in a low-dimensional network? To address these questions, we recorded the spike trains in prefrontal cortex with multi-electrodes when rats performed a working memory task in Y-maze. The functional connectivity matrix among spike trains was calculated via maximum likelihood estimation (MLE). The average connectivity value Cc, mean of the matrix, was calculated and used to describe connectivity strength quantitatively. The spike network was constructed by the functional connectivity matrix. The information transfer efficiency Eglob was calculated and used to present the features of the network. In order to establish a low-dimensional spike network, the active neurons with higher firing rates than average rate were selected based on sparse coding. The results show that the connectivity Cc and the network transfer efficiency Eglob vaired with time during the task. The maximum values of Cc and Eglob were prior to the working memory behavior reference point. Comparing with the results in the original network, the feature network could present more characteristic features of functional connectivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Detecting dependencies between spike trains of pairs of neurons through copulas

    DEFF Research Database (Denmark)

    Sacerdote, Laura; Tamborrino, Massimiliano; Zucca, Cristina

    2011-01-01

    The dynamics of a neuron are influenced by the connections with the network where it lies. Recorded spike trains exhibit patterns due to the interactions between neurons. However, the structure of the network is not known. A challenging task is to investigate it from the analysis of simultaneously...... recorded spike trains. We develop a non-parametric method based on copulas, that we apply to simulated data according to different bivariate Leaky In- tegrate and Fire models. The method discerns dependencies determined by the surround- ing network, from those determined by direct interactions between...

  11. Multineuronal Spike Sequences Repeat with Millisecond Precision

    Directory of Open Access Journals (Sweden)

    Koki eMatsumoto

    2013-06-01

    Full Text Available Cortical microcircuits are nonrandomly wired by neurons. As a natural consequence, spikes emitted by microcircuits are also nonrandomly patterned in time and space. One of the prominent spike organizations is a repetition of fixed patterns of spike series across multiple neurons. However, several questions remain unsolved, including how precisely spike sequences repeat, how the sequences are spatially organized, how many neurons participate in sequences, and how different sequences are functionally linked. To address these questions, we monitored spontaneous spikes of hippocampal CA3 neurons ex vivo using a high-speed functional multineuron calcium imaging technique that allowed us to monitor spikes with millisecond resolution and to record the location of spiking and nonspiking neurons. Multineuronal spike sequences were overrepresented in spontaneous activity compared to the statistical chance level. Approximately 75% of neurons participated in at least one sequence during our observation period. The participants were sparsely dispersed and did not show specific spatial organization. The number of sequences relative to the chance level decreased when larger time frames were used to detect sequences. Thus, sequences were precise at the millisecond level. Sequences often shared common spikes with other sequences; parts of sequences were subsequently relayed by following sequences, generating complex chains of multiple sequences.

  12. Development of an embedded thin-film strain-gauge-based SHM network into 3D-woven composite structure for wind turbine blades

    Science.gov (United States)

    Zhao, Dongning; Rasool, Shafqat; Forde, Micheal; Weafer, Bryan; Archer, Edward; McIlhagger, Alistair; McLaughlin, James

    2017-04-01

    Recently, there has been increasing demand in developing low-cost, effective structure health monitoring system to be embedded into 3D-woven composite wind turbine blades to determine structural integrity and presence of defects. With measuring the strain and temperature inside composites at both in-situ blade resin curing and in-service stages, we are developing a novel scheme to embed a resistive-strain-based thin-metal-film sensory into the blade spar-cap that is made of composite laminates to determine structural integrity and presence of defects. Thus, with fiberglass, epoxy, and a thinmetal- film sensing element, a three-part, low-cost, smart composite laminate is developed. Embedded strain sensory inside composite laminate prototype survived after laminate curing process. The internal strain reading from embedded strain sensor under three-point-bending test standard is comparable. It proves that our proposed method will provide another SHM alternative to reduce sensing costs during the renewable green energy generation.

  13. An investigation on the role of spike latency in an artificial olfactory system.

    Science.gov (United States)

    Martinelli, Eugenio; Polese, Davide; Dini, Francesca; Paolesse, Roberto; Filippini, Daniel; Lundström, Ingemar; Di Natale, Corrado

    2011-01-01

    Experimental studies have shown that the reactions to external stimuli may appear only few hundreds of milliseconds after the physical interaction of the stimulus with the proper receptor. This behavior suggests that neurons transmit the largest meaningful part of their signal in the first spikes, and than that the spike latency is a good descriptor of the information content in biological neural networks. In this paper this property has been investigated in an artificial sensorial system where a single layer of spiking neurons is trained with the data generated by an artificial olfactory platform based on a large array of chemical sensors. The capability to discriminate between distinct chemicals and mixtures of them was studied with spiking neural networks endowed with and without lateral inhibitions and considering as output feature of the network both the spikes latency and the average firing rate. Results show that the average firing rate of the output spikes sequences shows the best separation among the experienced vapors, however the latency code is able in a shorter time to correctly discriminate all the tested volatile compounds. This behavior is qualitatively similar to those recently found in natural olfaction, and noteworthy it provides practical suggestions to tail the measurement conditions of artificial olfactory systems defining for each specific case a proper measurement time.

  14. Technical solutions to enable embedded generation growth

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, C.A.; Todd, S.; Millar, W.; Wood, H.S.

    2003-07-01

    This report describes the results of one of a series of studies commissioned by the UK Department of Trade and Industry into various aspects of embedded generation with the aim of supporting the development and deployment of electrical sources (particularly their ease of connection to the network) to deliver power to consumers. The first phase of the project involved a literature review and meetings with embedded generation developers and planning engineers from distribution network operators (DNOs). The second phase investigated embedded generation at different levels of the distribution network and included modelling a representative network. Technologies that could facilitate a significant increase in embedded generation were identified and estimates made of when and where significant development would be needed. Technical problems identified by DNOs were concerned with thermal loading, voltage regulation, fault levels, protection and network operation. A number of non-technical (commercial and regulatory) problems were also identified. The report describes the UK regulatory framework, the present situation, the British power system, the accommodation of embedded generation by established means, the representative model and technical innovations.

  15. Polymorphic Embedding of DSLs

    DEFF Research Database (Denmark)

    Hofer, Christian; Ostermann, Klaus; Rendel, Tillmann

    2008-01-01

    propose polymorphic embedding of DSLs, where many different interpretations of a DSL can be provided as reusable components, and show how polymorphic embedding can be realized in the programming language Scala. With polymorphic embedding, the static type-safety, modularity, composability and rapid......The influential pure embedding methodology of embedding domain-specific languages (DSLs) as libraries into a general-purpose host language forces the DSL designer to commit to a single semantics. This precludes the subsequent addition of compilation, optimization or domain-specific analyses. We...

  16. Modified Embedded Switched Inductor Z Source Inverter

    OpenAIRE

    V. Saravanan; R. Ramanujam; M. Arumugam

    2014-01-01

    A novel modified embedded switched inductor Z-source inverter is proposed by inserting the photovoltaic panels at various locations to improve the output voltage boosting performance. The proposed inverter have the concepts of embedded and switched inductor Z source network to have better features in terms of increased voltage boost inversion ability, continuous input current, reduced voltage stress on the switches/capacitors. Simulations are carried out by employing (120°) pulse width modula...

  17. Spike voltage topography in temporal lobe epilepsy.

    Science.gov (United States)

    Asadi-Pooya, Ali A; Asadollahi, Marjan; Shimamoto, Shoichi; Lorenzo, Matthew; Sperling, Michael R

    2016-07-15

    We investigated the voltage topography of interictal spikes in patients with temporal lobe epilepsy (TLE) to see whether topography was related to etiology for TLE. Adults with TLE, who had epilepsy surgery for drug-resistant seizures from 2011 until 2014 at Jefferson Comprehensive Epilepsy Center were selected. Two groups of patients were studied: patients with mesial temporal sclerosis (MTS) on MRI and those with other MRI findings. The voltage topography maps of the interictal spikes at the peak were created using BESA software. We classified the interictal spikes as polar, basal, lateral, or others. Thirty-four patients were studied, from which the characteristics of 340 spikes were investigated. The most common type of spike orientation was others (186 spikes; 54.7%), followed by lateral (146; 42.9%), polar (5; 1.5%), and basal (3; 0.9%). Characteristics of the voltage topography maps of the spikes between the two groups of patients were somewhat different. Five spikes in patients with MTS had polar orientation, but none of the spikes in patients with other MRI findings had polar orientation (odds ratio=6.98, 95% confidence interval=0.38 to 127.38; p=0.07). Scalp topographic mapping of interictal spikes has the potential to offer different information than visual inspection alone. The present results do not allow an immediate clinical application of our findings; however, detecting a polar spike in a patient with TLE may increase the possibility of mesial temporal sclerosis as the underlying etiology. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Galactic center gamma-ray excess from dark matter annihilation: is there a black hole spike?

    Science.gov (United States)

    Fields, Brian D; Shapiro, Stuart L; Shelton, Jessie

    2014-10-10

    If the supermassive black hole Sgr A* at the center of the Milky Way grew adiabatically from an initial seed embedded in a Navarro-Frenk-White dark matter (DM) halo, then the DM profile near the hole has steepened into a spike. We calculate the dramatic enhancement to the gamma-ray flux from the Galactic center (GC) from such a spike if the 1-3 GeV excess observed in Fermi data is due to DM annihilations. We find that for the parameter values favored in recent fits, the point-source-like flux from the spike is 35 times greater than the flux from the inner 1° of the halo, far exceeding all Fermi point source detections near the GC. We consider the dependence of the spike signal on astrophysical and particle parameters and conclude that if the GC excess is due to DM, then a canonical adiabatic spike is disfavored by the data. We discuss alternative Galactic histories that predict different spike signals, including (i) the nonadiabatic growth of the black hole, possibly associated with halo and/or black hole mergers, (ii) gravitational interaction of DM with baryons in the dense core, such as heating by stars, or (iii) DM self-interactions. We emphasize that the spike signal is sensitive to a different combination of particle parameters than the halo signal and that the inclusion of a spike component to any DM signal in future analyses would provide novel information about both the history of the GC and the particle physics of DM annihilations.

  19. The Chronotron: A Neuron That Learns to Fire Temporally Precise Spike Patterns

    Science.gov (United States)

    Florian, Răzvan V.

    2012-01-01

    In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons), one that provides high memory capacity (E-learning), and one that has a higher biological plausibility (I-learning). With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm. PMID:22879876

  20. Conceptualizing Embedded Configuration

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole

    2006-01-01

    Installing and servicing complex electromechanical systems is more tedious than is necessary. By putting the product knowledge into the product itself, which then would allow automation in constructing the product from modules, could solve that. It would support personnel in aftersales installation...... and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make embedded...... configuration systems. That will include requirements to product modelling techniques. An example with consumer electronics will illuminate the elements of embedded configuration in settings that most can relate to. The question of where embedded configuration would be relevant is discussed, and the current...

  1. Spin-orbit torque induced spike-timing dependent plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Abhronil, E-mail: asengup@purdue.edu; Al Azim, Zubair; Fong, Xuanyao; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-03-02

    Nanoelectronic devices that mimic the functionality of synapses are a crucial requirement for performing cortical simulations of the brain. In this work, we propose a ferromagnet-heavy metal heterostructure that employs spin-orbit torque to implement spike-timing dependent plasticity. The proposed device offers the advantage of decoupled spike transmission and programming current paths, thereby leading to reliable operation during online learning. Possible arrangement of such devices in a crosspoint architecture can pave the way for ultra-dense neural networks. Simulation studies indicate that the device has the potential of achieving pico-Joule level energy consumption (maximum 2 pJ per synaptic event) which is comparable to the energy consumption for synaptic events in biological synapses.

  2. The MNC as an Externally Embedded Organization

    DEFF Research Database (Denmark)

    Nell, Phillip Christopher; Ambos, Björn; Schlegelmilch, Bodo B.

    2011-01-01

    MNCs have been conceptualized as differentiated networks that, in turn, are embedded in external networks. Previous research has predominantly focused on the embeddedness of established subsidiaries into their local environment, omitting to shed light on the phenomenon of headquarters linkages to...... more overlapping network ties when subsidiaries are high performers, hold important resources, operate in turbulent environments, and are closely connected to multinational actors as opposed to purely domestic firms....

  3. Linking investment spikes and productivity growth

    NARCIS (Netherlands)

    Geylani, P.C.; Stefanou, S.E.

    2013-01-01

    We investigate the relationship between productivity growth and investment spikes using Census Bureau’s plant-level dataset for the U.S. food manufacturing industry. There are differences in productivity growth and investment spike patterns across different sub-industries and food manufacturing

  4. Spiking neural P systems with multiple channels.

    Science.gov (United States)

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.

    Directory of Open Access Journals (Sweden)

    Philip J Tully

    2016-05-01

    Full Text Available Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model's feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx. We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison.

  6. Spike neural models (part I: The Hodgkin-Huxley model

    Directory of Open Access Journals (Sweden)

    Johnson, Melissa G.

    2017-05-01

    Full Text Available Artificial neural networks, or ANNs, have grown a lot since their inception back in the 1940s. But no matter the changes, one of the most important components of neural networks is still the node, which represents the neuron. Within spiking neural networks, the node is especially important because it contains the functions and properties of neurons that are necessary for their network. One important aspect of neurons is the ionic flow which produces action potentials, or spikes. Forces of diffusion and electrostatic pressure work together with the physical properties of the cell to move ions around changing the cell membrane potential which ultimately produces the action potential. This tutorial reviews the Hodkgin-Huxley model and shows how it simulates the ionic flow of the giant squid axon via four differential equations. The model is implemented in Matlab using Euler's Method to approximate the differential equations. By using Euler's method, an extra parameter is created, the time step. This new parameter needs to be carefully considered or the results of the node may be impaired.

  7. PySpike - A Python library for analyzing spike train synchrony

    CERN Document Server

    Mulansky, Mario

    2016-01-01

    Understanding how the brain functions is one of the biggest challenges of our time. The analysis of experimentally recorded neural firing patterns (spike trains) plays a crucial role in addressing this problem. Here, the PySpike library is introduced, a Python package for spike train analysis providing parameter-free and time-scale independent measures of spike train synchrony. It allows to compute bi- and multivariate dissimilarity profiles, averaged values and bivariate matrices. Although mainly focusing on neuroscience, PySpike can also be applied in other contexts like climate research or social sciences. The package is available as Open Source on Github and PyPI.

  8. Use of Student Experiments for Teaching Embedded Software Development Including HW/SW Co-Design

    Science.gov (United States)

    Mitsui, H.; Kambe, H.; Koizumi, H.

    2009-01-01

    Embedded systems have been applied widely, not only to consumer products and industrial machines, but also to new applications such as ubiquitous or sensor networking. The increasing role of software (SW) in embedded system development has caused a great demand for embedded SW engineers, and university education for embedded SW engineering has…

  9. Goulds Belt, Interstellar Clouds, and the Eocene-Oligocene Helium-3 Spike

    Science.gov (United States)

    Rubincam, David Parry

    2015-01-01

    Drag from hydrogen in the interstellar cloud which formed Gould's Belt may have sent small meteoroids with embedded helium to the Earth, perhaps explaining part or all of the (sup 3) He spike seen in the sedimentary record at the Eocene-Oligocene transition. Assuming the Solar System passed through part of the cloud, meteoroids in the asteroid belt up to centimeter size may have been dragged to the resonances, where their orbital eccentricities were pumped up into Earth-crossing orbits.

  10. Detecting dependencies between spike trains of pairs of neurons through copulas.

    Science.gov (United States)

    Sacerdote, Laura; Tamborrino, Massimiliano; Zucca, Cristina

    2012-01-24

    The dynamics of a neuron are influenced by the connections with the network where it lies. Recorded spike trains exhibit patterns due to the interactions between neurons. However, the structure of the network is not known. A challenging task is to investigate it from the analysis of simultaneously recorded spike trains. We develop a non-parametric method based on copulas, that we apply to simulated data according to different bivariate Leaky Integrate and Fire models. The method discerns dependencies determined by the surrounding network, from those determined by direct interactions between the two neurons. Furthermore, the method recognizes the presence of delays in the spike propagation. This article is part of a Special Issue entitled "Neural Coding". Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Embedded EZ-Source Inverters

    DEFF Research Database (Denmark)

    Chiang Loh, Poh; Gao, Feng; Blaabjerg, Frede

    2010-01-01

    Z-source inverters are recent topological options proposed for buck–boost energy conversion with a number of possible voltage- and current-type circuitries already reported in the literature. Comparing them, a common feature noted is their inclusion of an LC impedance network, placed between the dc...... input source and inverter bridge. This impedance network allows the output end of a voltage-type Z-source inverter to be shorted for voltage boosting without causing a large current flow and the terminal current of a current-type inverter to be interrupted for current boosting without introducing...... of embedded EZ-source inverters that can produce the same gain as the Z-source inverters but with smoother and smaller current/voltage maintained across the dc input source and within the impedance network. These latter features are attained without using any additional passive filter, which surely...

  12. Supervised learning with complex spikes and spike-timing-dependent plasticity.

    Directory of Open Access Journals (Sweden)

    Conor Houghton

    Full Text Available One distinctive feature of Purkinje cells is that they have two types of discharge: in addition to simple spikes they fire complex spikes in response to input from the climbing fibers. These complex spikes have an initial rapid burst of spikes and spikelets followed by a sustained depolarization; in some models of cerebellar function this climbing fiber input supervises learning in Purkinje cells. On the other hand, synaptic plasticity is often thought to rely on the timing of pre-synaptic and post-synaptic spikes. It is suggested here that the period of depolarization following a complex spike, combined with a simple spike-timing-dependent plasticity rule, gives a mechanism for the climbing fiber to supervise learning in the Purkinje cell. This proposal is illustrated using a simple simulation in which it is seen that the climbing fiber succeeds in supervising the learning.

  13. Reconfigurable embedded system architecture for next-generation Neural Signal Processing.

    Science.gov (United States)

    Balasubramanian, Karthikeyan; Obeid, Iyad

    2010-01-01

    This work presents a new architectural framework for next generation Neural Signal Processing (NSP). The essential features of the NSP hardware platform include scalability, reconfigurability, real-time processing ability and data storage. This proposed framework has been implemented in a proof-of-concept NSP prototype using an embedded system architecture synthesized in a Xilinx(®)Virtex(®)5 development board. The prototype includes a threshold-based spike detector and a fuzzy logic-based spike sorter.

  14. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    National Research Council Canada - National Science Library

    Yang, Kyoung

    2005-01-01

    ... (the Electro-optic Sensor Network, or ESN) for the performance evaluation of phased antenna arrays at the end of their development/production cycle, and furthermore, for onsite test and calibration of deployed large-scale phased arrays...

  15. Modern Embedded Computing Designing Connected, Pervasive, Media-Rich Systems

    CERN Document Server

    Barry, Peter

    2012-01-01

    Modern embedded systems are used for connected, media-rich, and highly integrated handheld devices such as mobile phones, digital cameras, and MP3 players. All of these embedded systems require networking, graphic user interfaces, and integration with PCs, as opposed to traditional embedded processors that can perform only limited functions for industrial applications. While most books focus on these controllers, Modern Embedded Computing provides a thorough understanding of the platform architecture of modern embedded computing systems that drive mobile devices. The book offers a comprehen

  16. Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events.

    Science.gov (United States)

    Shahi, Mina; van Vreeswijk, Carl; Pipa, Gordon

    2016-01-01

    Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spike correlation, these methods typically model the spike trains as a Poisson process implying that the generation of each spike is independent of all the other spikes. However, studies have shown that neural spike trains exhibit dependence among spike sequences, such as the absolute and relative refractory periods which govern the spike probability of the oncoming action potential based on the time of the last spike, or the bursting behavior, which is characterized by short epochs of rapid action potentials, followed by longer episodes of silence. Here we investigate non-renewal processes with the inter-spike interval distribution model that incorporates spike-history dependence of individual neurons. For that, we use the Monte Carlo method to estimate the full shape of the coincidence count distribution and to generate false positives for coincidence detection. The results show that compared to the distributions based on homogeneous Poisson processes, and also non-Poisson processes, the width of the distribution of joint spike events changes. Non-renewal processes can lead to both heavy tailed or narrow coincidence distribution. We conclude that small differences in the exact autostructure of the point process can cause large differences in the width of a coincidence distribution. Therefore, manipulations of the autostructure for the estimation of significance of joint spike events seem to be inadequate.

  17. Synchronicity and Rhythmicity of Purkinje Cell Firing during Generalized Spike-and-Wave Discharges in a Natural Mouse Model of Absence Epilepsy Complex Spike Synchronicity during GSWDs

    Directory of Open Access Journals (Sweden)

    Lieke Kros

    2017-10-01

    Full Text Available Absence epilepsy is characterized by the occurrence of generalized spike and wave discharges (GSWDs in electrocorticographical (ECoG recordings representing oscillatory activity in thalamocortical networks. The oscillatory nature of GSWDs has been shown to be reflected in the simple spike activity of cerebellar Purkinje cells and in the activity of their target neurons in the cerebellar nuclei, but it is unclear to what extent complex spike activity is implicated in generalized epilepsy. Purkinje cell complex spike firing is elicited by climbing fiber activation and reflects action potential firing in the inferior olive. Here, we investigated to what extent modulation of complex spike firing is reflected in the temporal patterns of seizures. Extracellular single-unit recordings in awake, head-restrained homozygous tottering mice, which suffer from a mutation in the voltage-gated CaV2.1 calcium channel, revealed that a substantial proportion of Purkinje cells (26% showed increased complex spike activity and rhythmicity during GSWDs. Moreover, Purkinje cells, recorded either electrophysiologically or by using Ca2+-imaging, showed a significant increase in complex spike synchronicity for both adjacent and remote Purkinje cells during ictal events. These seizure-related changes in firing frequency, rhythmicity and synchronicity were most prominent in the lateral cerebellum, a region known to receive cerebral input via the inferior olive. These data indicate profound and widespread changes in olivary firing that are most likely induced by seizure-related activity changes in the thalamocortical network, thereby highlighting the possibility that olivary neurons can compensate for pathological brain-state changes by dampening oscillations.

  18. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna

    2016-01-01

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  19. Embedded systems handbook

    CERN Document Server

    Zurawski, Richard

    2005-01-01

    Embedded systems are nearly ubiquitous, and books on individual topics or components of embedded systems are equally abundant. Unfortunately, for those designers who thirst for knowledge of the big picture of embedded systems there is not a drop to drink. Until now. The Embedded Systems Handbook is an oasis of information, offering a mix of basic and advanced topics, new solutions and technologies arising from the most recent research efforts, and emerging trends to help you stay current in this ever-changing field.With preeminent contributors from leading industrial and academic institutions

  20. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    DEFF Research Database (Denmark)

    Huys, Raoul; Jirsa, Viktor K; Darokhan, Ziauddin

    2016-01-01

    attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization...

  1. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    Science.gov (United States)

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  2. Motor control by precisely timed spike patterns

    DEFF Research Database (Denmark)

    Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel

    2017-01-01

    A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time...... that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior-namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision....

  3. The data embedding method

    Energy Technology Data Exchange (ETDEWEB)

    Sandford, M.T. II; Bradley, J.N.; Handel, T.G.

    1996-06-01

    Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in Microsoft{reg_sign} bitmap (.BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits, is termed {open_quote}steganography.{close_quote} Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or {open_quote}lossy{close_quote} compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is in data an analysis algorithm.

  4. Professional Windows Embedded Compact 7

    CERN Document Server

    Phung, Samuel; Joubert, Thierry; Hall, Mike

    2011-01-01

    Learn to program an array of customized devices and solutions As a compact, highly efficient, scalable operating system, Windows Embedded Compact 7 (WEC7) is one of the best options for developing a new generation of network-enabled, media-rich, and service-oriented devices. This in-depth resource takes you through the benefits and capabilities of WEC7 so that you can start using this performance development platform today. Divided into several major sections, the book begins with an introduction and then moves on to coverage of OS design, application development, advanced application developm

  5. Hippocampal theta modulation of neocortical spike times and gamma rhythm: a biophysical model study.

    Directory of Open Access Journals (Sweden)

    Eelke Spaak

    Full Text Available The hippocampal theta and neocortical gamma rhythms are two prominent examples of oscillatory neuronal activity. The hippocampus has often been hypothesized to influence neocortical networks by its theta rhythm, and, recently, evidence for such a direct influence has been found. We examined a possible mechanism for this influence by means of a biophysical model study using conductance-based model neurons. We found, in agreement with previous studies, that networks of fast-spiking GABA-ergic interneurons, coupled with shunting inhibition, synchronize their spike activity at a gamma frequency and are able to impose this rhythm on a network of pyramidal cells to which they are coupled. When our model was supplied with hippocampal theta-modulated input fibres, the theta rhythm biased the spike timings of both the fast-spiking and pyramidal cells. Furthermore, both the amplitude and frequency of local field potential gamma oscillations were influenced by the phase of the theta rhythm. We show that the fast-spiking cells, not pyramidal cells, are essential for this latter phenomenon, thus highlighting their crucial role in the interplay between hippocampus and neocortex.

  6. Embeddings of Heyting Algebras

    NARCIS (Netherlands)

    Jongh, D.H.J. de; Visser, A.

    In this paper we study embeddings of Heyting Algebras. It is pointed out that such embeddings are naturally connected with Derived Rules. We compare the Heyting Algebras embeddable in the Heyting Algebra of the Intuitionistic Propositional Calculus (IPC), i.e. the free Heyting Algebra on countably

  7. Embedded engineering education

    CERN Document Server

    Kaštelan, Ivan; Temerinac, Miodrag; Barak, Moshe; Sruk, Vlado

    2016-01-01

    This book focuses on the outcome of the European research project “FP7-ICT-2011-8 / 317882: Embedded Engineering Learning Platform” E2LP. Additionally, some experiences and researches outside this project have been included. This book provides information about the achieved results of the E2LP project as well as some broader views about the embedded engineering education. It captures project results and applications, methodologies, and evaluations. It leads to the history of computer architectures, brings a touch of the future in education tools and provides a valuable resource for anyone interested in embedded engineering education concepts, experiences and material. The book contents 12 original contributions and will open a broader discussion about the necessary knowledge and appropriate learning methods for the new profile of embedded engineers. As a result, the proposed Embedded Computer Engineering Learning Platform will help to educate a sufficient number of future engineers in Europe, capable of d...

  8. Motor control by precisely timed spike patterns

    DEFF Research Database (Denmark)

    Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel

    2017-01-01

    that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior-namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision.......A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time...... whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence...

  9. Inferring oscillatory modulation in neural spike trains.

    Directory of Open Access Journals (Sweden)

    Kensuke Arai

    2017-10-01

    Full Text Available Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG and local field potential (LFP in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak.

  10. Inferring oscillatory modulation in neural spike trains.

    Science.gov (United States)

    Arai, Kensuke; Kass, Robert E

    2017-10-01

    Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak.

  11. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

    Directory of Open Access Journals (Sweden)

    Gregor Strobbe

    2016-01-01

    epochs were in the same range as the LORETA and ECD techniques. We found distances smaller than 23 mm, with robust results for all the patients. For the finite difference models, we found that the distances to the resection border for the MSVP inversions of the full spike time epochs were generally smaller compared to the MSVP inversions of the time epochs before the spike peak. The results also suggest that the inversions using the finite difference models resulted in slightly smaller distances to the resection border compared to the spherical models. The results we obtained are promising because the MSVP approach allows to study the network of the estimated source-intensities and allows to characterize the spatial extent of the underlying sources.

  12. Towards statistical summaries of spike train data.

    Science.gov (United States)

    Wu, Wei; Srivastava, Anuj

    2011-01-30

    Statistical inference has an important role in analysis of neural spike trains. While current approaches are mostly model-based, and designed for capturing the temporal evolution of the underlying stochastic processes, we focus on a data-driven approach where statistics are defined and computed in function spaces where individual spike trains are viewed as points. The first contribution of this paper is to endow spike train space with a parameterized family of metrics that takes into account different time warpings and generalizes several currently used metrics. These metrics are essentially penalized L(p) norms, involving appropriate functions of spike trains, with penalties associated with time-warpings. The second contribution of this paper is to derive a notion of a mean spike train in the case when p=2. We present an efficient recursive algorithm, termed Matching-Minimization algorithm, to compute the sample mean of a set of spike trains. The proposed metrics as well as the mean computations are demonstrated using an experimental recording from the motor cortex. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Embedded Linux in het onderwijs

    NARCIS (Netherlands)

    Dr Ruud Ermers

    2008-01-01

    Embedded Linux wordt bij steeds meer grote bedrijven ingevoerd als embedded operating system. Binnen de opleiding Technische Informatica van Fontys Hogeschool ICT is Embedded Linux geïntroduceerd in samenwerking met het lectoraat Architectuur van Embedded Systemen. Embedded Linux is als vakgebied

  14. Spotting neural spike patterns using an adversary background model.

    Science.gov (United States)

    Gat, I; Tishby, N

    2001-12-01

    The detection of a specific stochastic pattern embedded in an unknown background noise is a difficult pattern recognition problem, encountered in many applications such as word spotting in speech. A similar problem emerges when trying to detect a multineural spike pattern in a single electrical recording, embedded in the complex cortical activity of a behaving animal. Solving this problem is crucial for the identification of neuronal code words with specific meaning. The technical difficulty of this detection is due to the lack of a good statistical model for the background activity, which rapidly changes with the recording conditions and activity of the animal. This work introduces the use of an adversary background model. This model assumes that the background "knows" the pattern sought, up to a first-order statistics, and this "knowledge" creates a background composed of all the permutations of our pattern. We show that this background model is tightly connected to the type-based information-theoretic approach. Furthermore, we show that computing the likelihood ratio is actually decomposing the log-likelihood distribution according to types of the empirical counts. We demonstrate the application of this method for detection of the reward patterns in the basal ganglia of behaving monkeys, yielding some unexpected biological results.

  15. Computers as components principles of embedded computing system design

    CERN Document Server

    Wolf, Marilyn

    2012-01-01

    Computers as Components: Principles of Embedded Computing System Design, 3e, presents essential knowledge on embedded systems technology and techniques. Updated for today's embedded systems design methods, this edition features new examples including digital signal processing, multimedia, and cyber-physical systems. Author Marilyn Wolf covers the latest processors from Texas Instruments, ARM, and Microchip Technology plus software, operating systems, networks, consumer devices, and more. Like the previous editions, this textbook: Uses real processors to demonstrate both technology and tec

  16. On the Computational Power of Spiking Neural P Systems with Self-Organization

    Science.gov (United States)

    Wang, Xun; Song, Tao; Gong, Faming; Zheng, Pan

    2016-06-01

    Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun.

  17. Web Service Architecture Framework for Embedded Devices

    Science.gov (United States)

    Yanzick, Paul David

    2009-01-01

    The use of Service Oriented Architectures, namely web services, has become a widely adopted method for transfer of data between systems across the Internet as well as the Enterprise. Adopting a similar approach to embedded devices is also starting to emerge as personal devices and sensor networks are becoming more common in the industry. This…

  18. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.

    Science.gov (United States)

    Hagen, Espen; Ness, Torbjørn V; Khosrowshahi, Amir; Sørensen, Christina; Fyhn, Marianne; Hafting, Torkel; Franke, Felix; Einevoll, Gaute T

    2015-04-30

    New, silicon-based multielectrodes comprising hundreds or more electrode contacts offer the possibility to record spike trains from thousands of neurons simultaneously. This potential cannot be realized unless accurate, reliable automated methods for spike sorting are developed, in turn requiring benchmarking data sets with known ground-truth spike times. We here present a general simulation tool for computing benchmarking data for evaluation of spike-sorting algorithms entitled ViSAPy (Virtual Spiking Activity in Python). The tool is based on a well-established biophysical forward-modeling scheme and is implemented as a Python package built on top of the neuronal simulator NEURON and the Python tool LFPy. ViSAPy allows for arbitrary combinations of multicompartmental neuron models and geometries of recording multielectrodes. Three example benchmarking data sets are generated, i.e., tetrode and polytrode data mimicking in vivo cortical recordings and microelectrode array (MEA) recordings of in vitro activity in salamander retinas. The synthesized example benchmarking data mimics salient features of typical experimental recordings, for example, spike waveforms depending on interspike interval. ViSAPy goes beyond existing methods as it includes biologically realistic model noise, synaptic activation by recurrent spiking networks, finite-sized electrode contacts, and allows for inhomogeneous electrical conductivities. ViSAPy is optimized to allow for generation of long time series of benchmarking data, spanning minutes of biological time, by parallel execution on multi-core computers. ViSAPy is an open-ended tool as it can be generalized to produce benchmarking data or arbitrary recording-electrode geometries and with various levels of complexity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Spike-driven synaptic plasticity: theory, simulation, VLSI implementation.

    Science.gov (United States)

    Fusi, S; Annunziato, M; Badoni, D; Salamon, A; Amit, D J

    2000-10-01

    We present a model for spike-driven dynamics of a plastic synapse, suited for aVLSI implementation. The synaptic device behaves as a capacitor on short timescales and preserves the memory of two stable states (efficacies) on long timescales. The transitions (LTP/LTD) are stochastic because both the number and the distribution of neural spikes in any finite (stimulation) interval fluctuate, even at fixed pre- and postsynaptic spike rates. The dynamics of the single synapse is studied analytically by extending the solution to a classic problem in queuing theory (Takacs process). The model of the synapse is implemented in aVLSI and consists of only 18 transistors. It is also directly simulated. The simulations indicate that LTP/LTD probabilities versus rates are robust to fluctuations of the electronic parameters in a wide range of rates. The solutions for these probabilities are in very good agreement with both the simulations and measurements. Moreover, the probabilities are readily manipulable by variations of the chip's parameters, even in ranges where they are very small. The tests of the electronic device cover the range from spontaneous activity (3-4 Hz) to stimulus-driven rates (50 Hz). Low transition probabilities can be maintained in all ranges, even though the intrinsic time constants of the device are short (approximately 100 ms). Synaptic transitions are triggered by elevated presynaptic rates: for low presynaptic rates, there are essentially no transitions. The synaptic device can preserve its memory for years in the absence of stimulation. Stochasticity of learning is a result of the variability of interspike intervals; noise is a feature of the distributed dynamics of the network. The fact that the synapse is binary on long timescales solves the stability problem of synaptic efficacies in the absence of stimulation. Yet stochastic learning theory ensures that it does not affect the collective behavior of the network, if the transition probabilities are

  20. Brauer type embedding problems

    CERN Document Server

    Ledet, Arne

    2005-01-01

    This monograph is concerned with Galois theoretical embedding problems of so-called Brauer type with a focus on 2-groups and on finding explicit criteria for solvability and explicit constructions of the solutions. The advantage of considering Brauer type embedding problems is their comparatively simple condition for solvability in the form of an obstruction in the Brauer group of the ground field. This book presupposes knowledge of classical Galois theory and the attendant algebra. Before considering questions of reducing the embedding problems and reformulating the solvability criteria, the

  1. Applying Distributed Object Technology to Distributed Embedded Control Systems

    DEFF Research Database (Denmark)

    Jørgensen, Bo Nørregaard; Dalgaard, Lars

    2012-01-01

    In this paper, we describe our Java RMI inspired Object Request Broker architecture MicroRMI for use with networked embedded devices. MicroRMI relieves the software developer from the tedious and error-prone job of writing communication protocols for interacting with such embedded devices. Micro...

  2. Relationships between spike-free local field potentials and spike timing in human temporal cortex.

    Science.gov (United States)

    Zanos, Stavros; Zanos, Theodoros P; Marmarelis, Vasilis Z; Ojemann, George A; Fetz, Eberhard E

    2012-04-01

    Intracortical recordings comprise both fast events, action potentials (APs), and slower events, known as local field potentials (LFPs). Although it is believed that LFPs mostly reflect local synaptic activity, it is unclear which of their signal components are most closely related to synaptic potentials and would therefore be causally related to the occurrence of individual APs. This issue is complicated by the significant contribution from AP waveforms, especially at higher LFP frequencies. In recordings of single-cell activity and LFPs from the human temporal cortex, we computed quantitative, nonlinear, causal dynamic models for the prediction of AP timing from LFPs, at millisecond resolution, before and after removing AP contributions to the LFP. In many cases, the timing of a significant number of single APs could be predicted from spike-free LFPs at different frequencies. Not surprisingly, model performance was superior when spikes