WorldWideScience

Sample records for network comput neural

  1. Computational capabilities of graph neural networks.

    Science.gov (United States)

    Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner, Markus; Monfardini, Gabriele

    2009-01-01

    In this paper, we will consider the approximation properties of a recently introduced neural network model called graph neural network (GNN), which can be used to process-structured data inputs, e.g., acyclic graphs, cyclic graphs, and directed or undirected graphs. This class of neural networks implements a function tau(G,n) is an element of IR(m) that maps a graph G and one of its nodes n onto an m-dimensional Euclidean space. We characterize the functions that can be approximated by GNNs, in probability, up to any prescribed degree of precision. This set contains the maps that satisfy a property called preservation of the unfolding equivalence, and includes most of the practically useful functions on graphs; the only known exception is when the input graph contains particular patterns of symmetries when unfolding equivalence may not be preserved. The result can be considered an extension of the universal approximation property established for the classic feedforward neural networks (FNNs). Some experimental examples are used to show the computational capabilities of the proposed model.

  2. Fuzzy logic, neural networks, and soft computing

    Science.gov (United States)

    Zadeh, Lofti A.

    1994-01-01

    The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial

  3. Computationally Efficient Neural Network Intrusion Security Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  4. Computational intelligence synergies of fuzzy logic, neural networks and evolutionary computing

    CERN Document Server

    Siddique, Nazmul

    2013-01-01

    Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspect

  5. Artificial Neural Network Metamodels of Stochastic Computer Simulations

    Science.gov (United States)

    1994-08-10

    23 Haddock, J. and O’Keefe, R., "Using Artificial Intelligence to Facilitate Manufacturing Systems Simulation," Computers & Industrial Engineering , Vol...Feedforward Neural Networks," Computers & Industrial Engineering , Vol. 21, No. 1- 4, (1991), pp. 247-251. 87 Proceedings of the 1992 Summer Computer...Using Simulation Experiments," Computers & Industrial Engineering , Vol. 22, No. 2 (1992), pp. 195-209. 119 Kuei, C. and Madu, C., "Polynomial

  6. Advances in neural networks computational and theoretical issues

    CERN Document Server

    Esposito, Anna; Morabito, Francesco

    2015-01-01

    This book collects research works that exploit neural networks and machine learning techniques from a multidisciplinary perspective. Subjects covered include theoretical, methodological and computational topics which are grouped together into chapters devoted to the discussion of novelties and innovations related to the field of Artificial Neural Networks as well as the use of neural networks for applications, pattern recognition, signal processing, and special topics such as the detection and recognition of multimodal emotional expressions and daily cognitive functions, and  bio-inspired memristor-based networks.  Providing insights into the latest research interest from a pool of international experts coming from different research fields, the volume becomes valuable to all those with any interest in a holistic approach to implement believable, autonomous, adaptive, and context-aware Information Communication Technologies.

  7. Fish species recognition using computer vision and a neural network

    NARCIS (Netherlands)

    Storbeck, F.; Daan, B.

    2001-01-01

    A system is described to recognize fish species by computer vision and a neural network program. The vision system measures a number of features of fish as seen by a camera perpendicular to a conveyor belt. The features used here are the widths and heights at various locations along the fish. First

  8. Large Scale Evolution of Convolutional Neural Networks Using Volunteer Computing

    OpenAIRE

    Desell, Travis

    2017-01-01

    This work presents a new algorithm called evolutionary exploration of augmenting convolutional topologies (EXACT), which is capable of evolving the structure of convolutional neural networks (CNNs). EXACT is in part modeled after the neuroevolution of augmenting topologies (NEAT) algorithm, with notable exceptions to allow it to scale to large scale distributed computing environments and evolve networks with convolutional filters. In addition to multithreaded and MPI versions, EXACT has been ...

  9. Fast and Efficient Asynchronous Neural Computation with Adapting Spiking Neural Networks

    NARCIS (Netherlands)

    D. Zambrano (Davide); S.M. Bohte (Sander)

    2016-01-01

    textabstractBiological neurons communicate with a sparing exchange of pulses - spikes. It is an open question how real spiking neurons produce the kind of powerful neural computation that is possible with deep artificial neural networks, using only so very few spikes to communicate. Building on

  10. Regional Computation of TEC Using a Neural Network Model

    Science.gov (United States)

    Leandro, R. F.; Santos, M. C.

    2004-05-01

    One of the main sources of errors of GPS measurements is the ionosphere refraction. As a dispersive medium, the ionosphere allow its influence to be computed by using dual frequency receivers. In the case of single frequency receivers it is necessary to use models that tell us how big the ionospheric refraction is. The GPS broadcast message carries parameters of this model, namely Klobuchar model. Dual frequency receivers allow to estimate the influence of ionosphere in the GPS signal by the computation of TEC (Total Electron Content) values, that have a direct relationship with the magnitude of the delay caused by the ionosphere. One alternative is to create a regional model based on a network of dual frequency receivers. In this case, the regional behaviour of ionosphere is modelled in a way that it is possible to estimate the TEC values into or near this region. This regional model can be based on polynomials, for example. In this work we will present a Neural Network-based model to the regional computation of TEC. The advantage of using a Neural Network is that it is not necessary to have a great knowledge on the behaviour of the modelled surface due to the adaptation capability of neural networks training process, that is an iterative adjust of the synaptic weights in function of residuals, using the training parameters. Therefore, the previous knowledge of the modelled phenomena is important to define what kind of and how many parameters are needed to train the neural network so that reasonable results are obtained from the estimations. We have used data from the GPS tracking network in Brazil, and we have tested the accuracy of the new model to all locations where there is a station, accessing the efficiency of the model everywhere. TEC values were computed for each station of the network. After that the training parameters data set for the test station was formed, with the TEC values of all others (all stations, except the test one). The Neural Network was

  11. A modular architecture for transparent computation in recurrent neural networks.

    Science.gov (United States)

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Review On Applications Of Neural Network To Computer Vision

    Science.gov (United States)

    Li, Wei; Nasrabadi, Nasser M.

    1989-03-01

    Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.

  13. Fundamentals of computational intelligence neural networks, fuzzy systems, and evolutionary computation

    CERN Document Server

    Keller, James M; Fogel, David B

    2016-01-01

    This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basi function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzz...

  14. Advances in neural networks computational intelligence for ICT

    CERN Document Server

    Esposito, Anna; Morabito, Francesco; Pasero, Eros

    2016-01-01

    This carefully edited book is putting emphasis on computational and artificial intelligent methods for learning and their relative applications in robotics, embedded systems, and ICT interfaces for psychological and neurological diseases. The book is a follow-up of the scientific workshop on Neural Networks (WIRN 2015) held in Vietri sul Mare, Italy, from the 20th to the 22nd of May 2015. The workshop, at its 27th edition became a traditional scientific event that brought together scientists from many countries, and several scientific disciplines. Each chapter is an extended version of the original contribution presented at the workshop, and together with the reviewers’ peer revisions it also benefits from the live discussion during the presentation. The content of book is organized in the following sections. 1. Introduction, 2. Machine Learning, 3. Artificial Neural Networks: Algorithms and models, 4. Intelligent Cyberphysical and Embedded System, 5. Computational Intelligence Methods for Biomedical ICT in...

  15. Computational modeling of neural plasticity for self-organization of neural networks.

    Science.gov (United States)

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Introduction to neural networks

    CERN Document Server

    James, Frederick E

    1994-02-02

    1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.

  17. Eye tracking using artificial neural networks for human computer interaction.

    Science.gov (United States)

    Demjén, E; Aboši, V; Tomori, Z

    2011-01-01

    This paper describes an ongoing project that has the aim to develop a low cost application to replace a computer mouse for people with physical impairment. The application is based on an eye tracking algorithm and assumes that the camera and the head position are fixed. Color tracking and template matching methods are used for pupil detection. Calibration is provided by neural networks as well as by parametric interpolation methods. Neural networks use back-propagation for learning and bipolar sigmoid function is chosen as the activation function. The user's eye is scanned with a simple web camera with backlight compensation which is attached to a head fixation device. Neural networks significantly outperform parametric interpolation techniques: 1) the calibration procedure is faster as they require less calibration marks and 2) cursor control is more precise. The system in its current stage of development is able to distinguish regions at least on the level of desktop icons. The main limitation of the proposed method is the lack of head-pose invariance and its relative sensitivity to illumination (especially to incidental pupil reflections).

  18. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    Science.gov (United States)

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  19. Application of artificial neural networks in computer-aided diagnosis.

    Science.gov (United States)

    Liu, Bei

    2015-01-01

    Computer-aided diagnosis is a diagnostic procedure in which a radiologist uses the outputs of computer analysis of medical images as a second opinion in the interpretation of medical images, either to help with lesion detection or to help determine if the lesion is benign or malignant. Artificial neural networks (ANNs) are usually employed to formulate the statistical models for computer analysis. Receiver operating characteristic curves are used to evaluate the performance of the ANN alone, as well as the diagnostic performance of radiologists who take into account the ANN output as a second opinion. In this chapter, we use mammograms to illustrate how an ANN model is trained, tested, and evaluated, and how a radiologist should use the ANN output as a second opinion in CAD.

  20. 3-D components of a biological neural network visualized in computer generated imagery. II - Macular neural network organization

    Science.gov (United States)

    Ross, Muriel D.; Meyer, Glenn; Lam, Tony; Cutler, Lynn; Vaziri, Parshaw

    1990-01-01

    Computer-assisted reconstructions of small parts of the macular neural network show how the nerve terminals and receptive fields are organized in 3-dimensional space. This biological neural network is anatomically organized for parallel distributed processing of information. Processing appears to be more complex than in computer-based neural network, because spatiotemporal factors figure into synaptic weighting. Serial reconstruction data show anatomical arrangements which suggest that (1) assemblies of cells analyze and distribute information with inbuilt redundancy, to improve reliability; (2) feedforward/feedback loops provide the capacity for presynaptic modulation of output during processing; (3) constrained randomness in connectivities contributes to adaptability; and (4) local variations in network complexity permit differing analyses of incoming signals to take place simultaneously. The last inference suggests that there may be segregation of information flow to central stations subserving particular functions.

  1. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  2. Electricity market price forecasting by grid computing optimizing artificial neural networks

    OpenAIRE

    Niimura, T.; Ozawa, K.; Sakamoto, N.

    2007-01-01

    This paper presents a grid computing approach to parallel-process a neural network time-series model for forecasting electricity market prices. A grid computing environment introduced in a university computing laboratory provides access to otherwise underused computing resources. The grid computing of the neural network model not only processes several times faster than a single iterative process, but also provides chances of improving forecasting accuracy. Results of numerical tests using re...

  3. Hardware Neural Networks Modeling for Computing Different Performance Parameters of Rectangular, Circular, and Triangular Microstrip Antennas

    Directory of Open Access Journals (Sweden)

    Taimoor Khan

    2014-01-01

    Full Text Available In the last one decade, neural networks-based modeling has been used for computing different performance parameters of microstrip antennas because of learning and generalization features. Most of the created neural models are based on software simulation. As the neural networks show massive parallelism inherently, a parallel hardware needs to be created for creating faster computing machine by taking the advantages of the parallelism of the neural networks. This paper demonstrates a generalized neural networks model created on field programmable gate array- (FPGA- based reconfigurable hardware platform for computing different performance parameters of microstrip antennas. Thus, the proposed approach provides a platform for developing low-cost neural network-based FPGA simulators for microwave applications. Also, the results obtained by this approach are in very good agreement with the measured results available in the literature.

  4. Advanced neural network-based computational schemes for robust fault diagnosis

    CERN Document Server

    Mrugalski, Marcin

    2014-01-01

    The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...

  5. Honey characterization using computer vision system and artificial neural networks.

    Science.gov (United States)

    Shafiee, Sahameh; Minaei, Saeid; Moghaddam-Charkari, Nasrollah; Barzegar, Mohsen

    2014-09-15

    This paper reports the development of a computer vision system (CVS) for non-destructive characterization of honey based on colour and its correlated chemical attributes including ash content (AC), antioxidant activity (AA), and total phenolic content (TPC). Artificial neural network (ANN) models were applied to transform RGB values of images to CIE L*a*b* colourimetric measurements and to predict AC, TPC and AA from colour features of images. The developed ANN models were able to convert RGB values to CIE L*a*b* colourimetric parameters with low generalization error of 1.01±0.99. In addition, the developed models for prediction of AC, TPC and AA showed high performance based on colour parameters of honey images, as the R(2) values for prediction were 0.99, 0.98, and 0.87, for AC, AA and TPC, respectively. The experimental results show the effectiveness and possibility of applying CVS for non-destructive honey characterization by the industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    Science.gov (United States)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  7. Computationally efficient locally-recurrent neural networks for online signal processing

    CERN Document Server

    Hussain, A; Shim, I

    1999-01-01

    A general class of computationally efficient locally recurrent networks (CERN) is described for real-time adaptive signal processing. The structure of the CERN is based on linear-in-the- parameters single-hidden-layered feedforward neural networks such as the radial basis function (RBF) network, the Volterra neural network (VNN) and the functionally expanded neural network (FENN), adapted to employ local output feedback. The corresponding learning algorithms are derived and key structural and computational complexity comparisons are made between the CERN and conventional recurrent neural networks. Two case studies are performed involving the real- time adaptive nonlinear prediction of real-world chaotic, highly non- stationary laser time series and an actual speech signal, which show that a recurrent FENN based adaptive CERN predictor can significantly outperform the corresponding feedforward FENN and conventionally employed linear adaptive filtering models. (13 refs).

  8. Biological modelling of a computational spiking neural network with neuronal avalanches

    Science.gov (United States)

    Li, Xiumin; Chen, Qing; Xue, Fangzheng

    2017-05-01

    In recent years, an increasing number of studies have demonstrated that networks in the brain can self-organize into a critical state where dynamics exhibit a mixture of ordered and disordered patterns. This critical branching phenomenon is termed neuronal avalanches. It has been hypothesized that the homeostatic level balanced between stability and plasticity of this critical state may be the optimal state for performing diverse neural computational tasks. However, the critical region for high performance is narrow and sensitive for spiking neural networks (SNNs). In this paper, we investigated the role of the critical state in neural computations based on liquid-state machines, a biologically plausible computational neural network model for real-time computing. The computational performance of an SNN when operating at the critical state and, in particular, with spike-timing-dependent plasticity for updating synaptic weights is investigated. The network is found to show the best computational performance when it is subjected to critical dynamic states. Moreover, the active-neuron-dominant structure refined from synaptic learning can remarkably enhance the robustness of the critical state and further improve computational accuracy. These results may have important implications in the modelling of spiking neural networks with optimal computational performance. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  9. Quantum perceptron over a field and neural network architecture selection in a quantum computer.

    Science.gov (United States)

    da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa

    2016-04-01

    In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Neural network computation for the evaluation of process rendering: application to thermally sprayed coatings

    Directory of Open Access Journals (Sweden)

    Guessasma Sofiane

    2017-01-01

    Full Text Available In this work, neural network computation is attempted to relate alumina and titania phase changes of a coating microstructure with respect to energetic parameters of atmospheric plasma straying (APS process. Experimental results were analysed using standard fitting routines and neural computation to quantify the effect of arc current, hydrogen ratio and total plasma flow rate. For a large parameter domain, phase changes were 10% for alumina and 8% for titania with a significant control of titania phase.

  11. Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation.

    Science.gov (United States)

    Hambli, Ridha; Katerchi, Houda; Benhamou, Claude-Laurent

    2011-02-01

    The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate the process of bone remodelling. As whole bone simulation, including the 3D reconstruction of trabecular level bone, is time consuming, finite element calculation is only performed at the macroscopic level, whilst trained neural networks are employed as numerical substitutes for the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at the macroscopic scale depending on the morphological and mechanical adaptation at the mesoscopic scale computed by the trained neural network. The digital image-based modelling technique using μ-CT and voxel finite element analysis is used to capture volume elements representative of 2 mm³ at the mesoscale level of the femoral head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied stress. The output data are the updated bone properties and some trabecular bone factors. The current approach is the first model, to our knowledge, that incorporates both finite element analysis and neural network computation to rapidly simulate multilevel bone adaptation.

  12. Characterization of physiological networks in sleep apnea patients using artificial neural networks for Granger causality computation

    Science.gov (United States)

    Cárdenas, Jhon; Orjuela-Cañón, Alvaro D.; Cerquera, Alexander; Ravelo, Antonio

    2017-11-01

    Different studies have used Transfer Entropy (TE) and Granger Causality (GC) computation to quantify interconnection between physiological systems. These methods have disadvantages in parametrization and availability in analytic formulas to evaluate the significance of the results. Other inconvenience is related with the assumptions in the distribution of the models generated from the data. In this document, the authors present a way to measure the causality that connect the Central Nervous System (CNS) and the Cardiac System (CS) in people diagnosed with obstructive sleep apnea syndrome (OSA) before and during treatment with continuous positive air pressure (CPAP). For this purpose, artificial neural networks were used to obtain models for GC computation, based on time series of normalized powers calculated from electrocardiography (EKG) and electroencephalography (EEG) signals recorded in polysomnography (PSG) studies.

  13. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  14. The super-Turing computational power of plastic recurrent neural networks.

    Science.gov (United States)

    Cabessa, Jérémie; Siegelmann, Hava T

    2014-12-01

    We study the computational capabilities of a biologically inspired neural model where the synaptic weights, the connectivity pattern, and the number of neurons can evolve over time rather than stay static. Our study focuses on the mere concept of plasticity of the model so that the nature of the updates is assumed to be not constrained. In this context, we show that the so-called plastic recurrent neural networks (RNNs) are capable of the precise super-Turing computational power--as the static analog neural networks--irrespective of whether their synaptic weights are modeled by rational or real numbers, and moreover, irrespective of whether their patterns of plasticity are restricted to bi-valued updates or expressed by any other more general form of updating. Consequently, the incorporation of only bi-valued plastic capabilities in a basic model of RNNs suffices to break the Turing barrier and achieve the super-Turing level of computation. The consideration of more general mechanisms of architectural plasticity or of real synaptic weights does not further increase the capabilities of the networks. These results support the claim that the general mechanism of plasticity is crucially involved in the computational and dynamical capabilities of biological neural networks. They further show that the super-Turing level of computation reflects in a suitable way the capabilities of brain-like models of computation.

  15. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    Science.gov (United States)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  16. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Lars Buesing

    2011-11-01

    Full Text Available The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

  17. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.

    Science.gov (United States)

    Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang

    2011-11-01

    The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

  18. Artificial neural networks and support vector machine in banking computer systems

    Directory of Open Access Journals (Sweden)

    Jerzy Balicki

    2013-12-01

    Full Text Available In this paper, some artificial neural networks as well as a support vector machines have been studied due to bank computer system development. These approaches with the contact-less microprocessor technologies can upsurge the bank competitiveness by adding new functionalities. Moreover, some financial crisis influences can be declines.

  19. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Directory of Open Access Journals (Sweden)

    Lukas Falat

    2016-01-01

    Full Text Available This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  20. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    Science.gov (United States)

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  1. ARACHNE: A neural-neuroglial network builder with remotely controlled parallel computing

    Science.gov (United States)

    Rusakov, Dmitri A.; Savtchenko, Leonid P.

    2017-01-01

    Creating and running realistic models of neural networks has hitherto been a task for computing professionals rather than experimental neuroscientists. This is mainly because such networks usually engage substantial computational resources, the handling of which requires specific programing skills. Here we put forward a newly developed simulation environment ARACHNE: it enables an investigator to build and explore cellular networks of arbitrary biophysical and architectural complexity using the logic of NEURON and a simple interface on a local computer or a mobile device. The interface can control, through the internet, an optimized computational kernel installed on a remote computer cluster. ARACHNE can combine neuronal (wired) and astroglial (extracellular volume-transmission driven) network types and adopt realistic cell models from the NEURON library. The program and documentation (current version) are available at GitHub repository https://github.com/LeonidSavtchenko/Arachne under the MIT License (MIT). PMID:28362877

  2. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  3. Biological neural networks as model systems for designing future parallel processing computers

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  4. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ruchi D. Chande

    2017-01-01

    Full Text Available Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  5. Computing single step operators of logic programming in radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  6. Modeling and computing of stock index forecasting based on neural network and Markov chain.

    Science.gov (United States)

    Dai, Yonghui; Han, Dongmei; Dai, Weihui

    2014-01-01

    The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market.

  7. Pulmonary Nodule Classification with Deep Convolutional Neural Networks on Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-01-01

    Full Text Available Computer aided detection (CAD systems can assist radiologists by offering a second opinion on early diagnosis of lung cancer. Classification and feature representation play critical roles in false-positive reduction (FPR in lung nodule CAD. We design a deep convolutional neural networks method for nodule classification, which has an advantage of autolearning representation and strong generalization ability. A specified network structure for nodule images is proposed to solve the recognition of three types of nodules, that is, solid, semisolid, and ground glass opacity (GGO. Deep convolutional neural networks are trained by 62,492 regions-of-interest (ROIs samples including 40,772 nodules and 21,720 nonnodules from the Lung Image Database Consortium (LIDC database. Experimental results demonstrate the effectiveness of the proposed method in terms of sensitivity and overall accuracy and that it consistently outperforms the competing methods.

  8. Pulmonary Nodule Classification with Deep Convolutional Neural Networks on Computed Tomography Images

    Science.gov (United States)

    Li, Wei; Zhao, Dazhe; Wang, Junbo

    2016-01-01

    Computer aided detection (CAD) systems can assist radiologists by offering a second opinion on early diagnosis of lung cancer. Classification and feature representation play critical roles in false-positive reduction (FPR) in lung nodule CAD. We design a deep convolutional neural networks method for nodule classification, which has an advantage of autolearning representation and strong generalization ability. A specified network structure for nodule images is proposed to solve the recognition of three types of nodules, that is, solid, semisolid, and ground glass opacity (GGO). Deep convolutional neural networks are trained by 62,492 regions-of-interest (ROIs) samples including 40,772 nodules and 21,720 nonnodules from the Lung Image Database Consortium (LIDC) database. Experimental results demonstrate the effectiveness of the proposed method in terms of sensitivity and overall accuracy and that it consistently outperforms the competing methods. PMID:28070212

  9. A Computational Estimation of Cyclic Material Properties Using Artificial Neural Networks

    OpenAIRE

    Tomasella, A.; Dsoki, C. el; H. Hanselka; Kaufmann, H.

    2011-01-01

    The structural durability design of components requires the knowledge of cyclic material properties. These parameters are strongly dependent on environmental conditions and manufacturing processes, and require many experimental tests to be correctly determined. Considering time and costs, it is not possible to include in the tests all the variables that influence the material behaviour. For this reason, the computational method of the Artificial Neural Network (ANN) can be implemented to supp...

  10. Utilizing neural networks in magnetic media modeling and field computation: A review

    OpenAIRE

    Amr A. Adly; Abd-El-Hafiz, Salwa K.

    2013-01-01

    Magnetic materials are considered as crucial components for a wide range of products and devices. Usually, complexity of such materials is defined by their permeability classification and coupling extent to non-magnetic properties. Hence, development of models that could accurately simulate the complex nature of these materials becomes crucial to the multi-dimensional field-media interactions and computations. In the past few decades, artificial neural networks (ANNs) have been utilized in ma...

  11. Forecast and restoration of geomagnetic activity indices by using the software-computational neural network complex

    Science.gov (United States)

    Barkhatov, Nikolay; Revunov, Sergey

    2010-05-01

    It is known that currently used indices of geomagnetic activity to some extent reflect the physical processes occurring in the interaction of the perturbed solar wind with Earth's magnetosphere. Therefore, they are connected to each other and with the parameters of near-Earth space. The establishment of such nonlinear connections is interest. For such purposes when the physical problem is complex or has many parameters the technology of artificial neural networks is applied. Such approach for development of the automated forecast and restoration method of geomagnetic activity indices with the establishment of creative software-computational neural network complex is used. Each neural network experiments were carried out at this complex aims to search for a specific nonlinear relation between the analyzed indices and parameters. At the core of the algorithm work program a complex scheme of the functioning of artificial neural networks (ANN) of different types is contained: back propagation Elman network, feed forward network, fuzzy logic network and Kohonen layer classification network. Tools of the main window of the complex (the application) the settings used by neural networks allow you to change: the number of hidden layers, the number of neurons in the layer, the input and target data, the number of cycles of training. Process and the quality of training the ANN is a dynamic plot of changing training error. Plot of comparison of network response with the test sequence is result of the network training. The last-trained neural network with established nonlinear connection for repeated numerical experiments can be run. At the same time additional training is not executed and the previously trained network as a filter input parameters get through and output parameters with the test event are compared. At statement of the large number of different experiments provided the ability to run the program in a "batch" mode is stipulated. For this purpose the user a

  12. Can computational efficiency alone drive the evolution of modularity in neural networks?

    Science.gov (United States)

    Tosh, Colin R

    2016-08-30

    Some biologists have abandoned the idea that computational efficiency in processing multipart tasks or input sets alone drives the evolution of modularity in biological networks. A recent study confirmed that small modular (neural) networks are relatively computationally-inefficient but large modular networks are slightly more efficient than non-modular ones. The present study determines whether these efficiency advantages with network size can drive the evolution of modularity in networks whose connective architecture can evolve. The answer is no, but the reason why is interesting. All simulations (run in a wide variety of parameter states) involving gradualistic connective evolution end in non-modular local attractors. Thus while a high performance modular attractor exists, such regions cannot be reached by gradualistic evolution. Non-gradualistic evolutionary simulations in which multi-modularity is obtained through duplication of existing architecture appear viable. Fundamentally, this study indicates that computational efficiency alone does not drive the evolution of modularity, even in large biological networks, but it may still be a viable mechanism when networks evolve by non-gradualistic means.

  13. Low-cost autonomous perceptron neural network inspired by quantum computation

    Science.gov (United States)

    Zidan, Mohammed; Abdel-Aty, Abdel-Haleem; El-Sadek, Alaa; Zanaty, E. A.; Abdel-Aty, Mahmoud

    2017-11-01

    Achieving low cost learning with reliable accuracy is one of the important goals to achieve intelligent machines to save time, energy and perform learning process over limited computational resources machines. In this paper, we propose an efficient algorithm for a perceptron neural network inspired by quantum computing composite from a single neuron to classify inspirable linear applications after a single training iteration O(1). The algorithm is applied over a real world data set and the results are outer performs the other state-of-the art algorithms.

  14. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.

    Directory of Open Access Journals (Sweden)

    Daniel Durstewitz

    2017-06-01

    Full Text Available The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast maximum-likelihood estimation framework for PLRNNs that may enable to recover

  15. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.

    Science.gov (United States)

    Durstewitz, Daniel

    2017-06-01

    The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic) network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional) state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs) are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs) within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC) obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast) maximum-likelihood estimation framework for PLRNNs that may enable to recover relevant aspects

  16. A Reconfigurable and Biologically Inspired Paradigm for Computation Using Network-On-Chip and Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Jim Harkin

    2009-01-01

    Full Text Available FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible neuron and synaptic models of SNNs, and current FPGA routing structures cannot accommodate the high levels of interneuron connectivity inherent in complex SNNs. This paper highlights and discusses the current challenges of implementing scalable SNNs on reconfigurable FPGAs. The paper proposes a novel field programmable neural network architecture (EMBRACE, incorporating low-power analogue spiking neurons, interconnected using a Network-on-Chip architecture. Results on the evaluation of the EMBRACE architecture using the XOR benchmark problem are presented, and the performance of the architecture is discussed. The paper also discusses the adaptability of the EMBRACE architecture in supporting fault tolerant computing.

  17. Recurrent neural networks in computer-based clinical decision support for laryngopathies: an experimental study.

    Science.gov (United States)

    Szkoła, Jarosław; Pancerz, Krzysztof; Warchoł, Jan

    2011-01-01

    The main goal of this paper is to give the basis for creating a computer-based clinical decision support (CDS) system for laryngopathies. One of approaches which can be used in the proposed CDS is based on the speech signal analysis using recurrent neural networks (RNNs). RNNs can be used for pattern recognition in time series data due to their ability of memorizing some information from the past. The Elman networks (ENs) are a classical representative of RNNs. To improve learning ability of ENs, we may modify and combine them with another kind of RNNs, namely, with the Jordan networks. The modified Elman-Jordan networks (EJNs) manifest a faster and more exact achievement of the target pattern. Validation experiments were carried out on speech signals of patients from the control group and with two kinds of laryngopathies.

  18. Data systems and computer science: Neural networks base R/T program overview

    Science.gov (United States)

    Gulati, Sandeep

    1991-01-01

    The research base, in the U.S. and abroad, for the development of neural network technology is discussed. The technical objectives are to develop and demonstrate adaptive, neural information processing concepts. The leveraging of external funding is also discussed.

  19. Characterizing Deep Brain Stimulation effects in computationally efficient neural network models.

    Science.gov (United States)

    Latteri, Alberta; Arena, Paolo; Mazzone, Paolo

    2011-04-15

    Recent studies on the medical treatment of Parkinson's disease (PD) led to the introduction of the so called Deep Brain Stimulation (DBS) technique. This particular therapy allows to contrast actively the pathological activity of various Deep Brain structures, responsible for the well known PD symptoms. This technique, frequently joined to dopaminergic drugs administration, replaces the surgical interventions implemented to contrast the activity of specific brain nuclei, called Basal Ganglia (BG). This clinical protocol gave the possibility to analyse and inspect signals measured from the electrodes implanted into the deep brain regions. The analysis of these signals led to the possibility to study the PD as a specific case of dynamical synchronization in biological neural networks, with the advantage to apply the theoretical analysis developed in such scientific field to find efficient treatments to face with this important disease. Experimental results in fact show that the PD neurological diseases are characterized by a pathological signal synchronization in BG. Parkinsonian tremor, for example, is ascribed to be caused by neuron populations of the Thalamic and Striatal structures that undergo an abnormal synchronization. On the contrary, in normal conditions, the activity of the same neuron populations do not appear to be correlated and synchronized. To study in details the effect of the stimulation signal on a pathological neural medium, efficient models of these neural structures were built, which are able to show, without any external input, the intrinsic properties of a pathological neural tissue, mimicking the BG synchronized dynamics.We start considering a model already introduced in the literature to investigate the effects of electrical stimulation on pathologically synchronized clusters of neurons. This model used Morris Lecar type neurons. This neuron model, although having a high level of biological plausibility, requires a large computational effort

  20. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  1. Application of artificial neural networks to identify equilibration in computer simulations

    Science.gov (United States)

    Leibowitz, Mitchell H.; Miller, Evan D.; Henry, Michael M.; Jankowski, Eric

    2017-11-01

    Determining which microstates generated by a thermodynamic simulation are representative of the ensemble for which sampling is desired is a ubiquitous, underspecified problem. Artificial neural networks are one type of machine learning algorithm that can provide a reproducible way to apply pattern recognition heuristics to underspecified problems. Here we use the open-source TensorFlow machine learning library and apply it to the problem of identifying which hypothetical observation sequences from a computer simulation are “equilibrated” and which are not. We generate training populations and test populations of observation sequences with embedded linear and exponential correlations. We train a two-neuron artificial network to distinguish the correlated and uncorrelated sequences. We find that this simple network is good enough for > 98% accuracy in identifying exponentially-decaying energy trajectories from molecular simulations.

  2. Simulation of Neurocomputing Based on Photophobic Reactions of Euglena: Toward Microbe-Based Neural Network Computing

    Science.gov (United States)

    Ozasa, Kazunari; Aono, Masashi; Maeda, Mizuo; Hara, Masahiko

    In order to develop an adaptive computing system, we investigate microscopic optical feedback to a group of microbes (Euglena gracilis in this study) with a neural network algorithm, expecting that the unique characteristics of microbes, especially their strategies to survive/adapt against unfavorable environmental stimuli, will explicitly determine the temporal evolution of the microbe-based feedback system. The photophobic reactions of Euglena are extracted from experiments, and built in the Monte-Carlo simulation of a microbe-based neurocomputing. The simulation revealed a good performance of Euglena-based neurocomputing. Dynamic transition among the solutions is discussed from the viewpoint of feedback instability.

  3. The Prediction of Bandwidth On Need Computer Network Through Artificial Neural Network Method of Backpropagation

    Directory of Open Access Journals (Sweden)

    Ikhthison Mekongga

    2014-02-01

    Full Text Available The need for bandwidth has been increasing recently. This is because the development of internet infrastructure is also increasing so that we need an economic and efficient provider system. This can be achieved through good planning and a proper system. The prediction of the bandwidth consumption is one of the factors that support the planning for an efficient internet service provider system. Bandwidth consumption is predicted using ANN. ANN is an information processing system which has similar characteristics as the biologic al neural network.  ANN  is  chosen  to  predict  the  consumption  of  the  bandwidth  because  ANN  has  good  approachability  to  non-linearity.  The variable used in ANN is the historical load data. A bandwidth consumption information system was built using neural networks  with a backpropagation algorithm to make the use of bandwidth more efficient in the future both in the rental rate of the bandwidth and in the usage of the bandwidth.Keywords: Forecasting, Bandwidth, Backpropagation

  4. A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems

    Science.gov (United States)

    Pawlicki, Ted

    1988-03-01

    Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions

  5. The prediction in computer color matching of dentistry based on GA+BP neural network.

    Science.gov (United States)

    Li, Haisheng; Lai, Long; Chen, Li; Lu, Cheng; Cai, Qiang

    2015-01-01

    Although the use of computer color matching can reduce the influence of subjective factors by technicians, matching the color of a natural tooth with a ceramic restoration is still one of the most challenging topics in esthetic prosthodontics. Back propagation neural network (BPNN) has already been introduced into the computer color matching in dentistry, but it has disadvantages such as unstable and low accuracy. In our study, we adopt genetic algorithm (GA) to optimize the initial weights and threshold values in BPNN for improving the matching precision. To our knowledge, we firstly combine the BPNN with GA in computer color matching in dentistry. Extensive experiments demonstrate that the proposed method improves the precision and prediction robustness of the color matching in restorative dentistry.

  6. Artificial Neural Networks for Reducing Computational Effort in Active Truncated Model Testing of Mooring Lines

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Voie, Per Erlend Torbergsen; Høgsberg, Jan Becker

    2015-01-01

    simultaneously, this method is very demanding in terms of numerical efficiency and computational power. Therefore, this method has not yet proved to be feasible. It has recently been shown how a hybrid method combining classical numerical models and artificial neural networks (ANN) can provide a dramatic...... model. Hence, in principal it is possible to achieve reliable experimental data for much larger water depths than what the actual depth of the test basin would suggest. However, since the computations must be faster than real time, as the numerical simulations and the physical experiment run...... reduction in computational effort when performing time domain simulation of mooring lines. The hybrid method uses a classical numerical model to generate simulation data, which are then subsequently used to train the ANN. After successful training the ANN is able to take over the simulation at a speed two...

  7. COMPUTER-SIMULATED NEURAL NETWORKS - AN APPROPRIATE MODEL FOR MOTOR DEVELOPMENT

    NARCIS (Netherlands)

    VOS, JE; SCHEEPSTRA, KA

    The idea of an artificial neural network is introduced in a historical context, and the essential aspect of it, viz., the modifiable synapse, is compared to the aspect of plasticity in the natural nervous system. Based on such an artificial neural network, a model is presented for the way in which

  8. Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain

    Directory of Open Access Journals (Sweden)

    Yonghui Dai

    2014-01-01

    Full Text Available The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market.

  9. Exact computation of the Maximum Entropy Potential of spiking neural networks models

    CERN Document Server

    Cofre, Rodrigo

    2014-01-01

    Understanding how stimuli and synaptic connectivity in uence the statistics of spike patterns in neural networks is a central question in computational neuroscience. Maximum Entropy approach has been successfully used to characterize the statistical response of simultaneously recorded spiking neurons responding to stimuli. But, in spite of good performance in terms of prediction, the ?tting parameters do not explain the underlying mechanistic causes of the observed correlations. On the other hand, mathematical models of spiking neurons (neuro-mimetic models) provide a probabilistic mapping between stimulus, network architecture and spike patterns in terms of conditional proba- bilities. In this paper we build an exact analytical mapping between neuro-mimetic and Maximum Entropy models.

  10. Brain without mind: Computer simulation of neural networks with modifiable neuronal interactions

    Science.gov (United States)

    Clark, John W.; Rafelski, Johann; Winston, Jeffrey V.

    1985-07-01

    Aspects of brain function are examined in terms of a nonlinear dynamical system of highly interconnected neuron-like binary decision elements. The model neurons operate synchronously in discrete time, according to deterministic or probabilistic equations of motion. Plasticity of the nervous system, which underlies such cognitive collective phenomena as adaptive development, learning, and memory, is represented by temporal modification of interneuronal connection strengths depending on momentary or recent neural activity. A formal basis is presented for the construction of local plasticity algorithms, or connection-modification routines, spanning a large class. To build an intuitive understanding of the behavior of discrete-time network models, extensive computer simulations have been carried out (a) for nets with fixed, quasirandom connectivity and (b) for nets with connections that evolve under one or another choice of plasticity algorithm. From the former experiments, insights are gained concerning the spontaneous emergence of order in the form of cyclic modes of neuronal activity. In the course of the latter experiments, a simple plasticity routine (“brainwashing,” or “anti-learning”) was identified which, applied to nets with initially quasirandom connectivity, creates model networks which provide more felicitous starting points for computer experiments on the engramming of content-addressable memories and on learning more generally. The potential relevance of this algorithm to developmental neurobiology and to sleep states is discussed. The model considered is at the same time a synthesis of earlier synchronous neural-network models and an elaboration upon them; accordingly, the present article offers both a focused review of the dynamical properties of such systems and a selection of new findings derived from computer simulation.

  11. Computer vision system for egg volume prediction using backpropagation neural network

    Science.gov (United States)

    Siswantoro, J.; Hilman, M. Y.; Widiasri, M.

    2017-11-01

    Volume is one of considered aspects in egg sorting process. A rapid and accurate volume measurement method is needed to develop an egg sorting system. Computer vision system (CVS) provides a promising solution for volume measurement problem. Artificial neural network (ANN) has been used to predict the volume of egg in several CVSs. However, volume prediction from ANN could have less accuracy due to inappropriate input features or inappropriate ANN structure. This paper proposes a CVS for predicting the volume of egg using ANN. The CVS acquired an image of egg from top view and then processed the image to extract its 1D and 2 D size features. The features were used as input for ANN in predicting the volume of egg. The experiment results show that the proposed CSV can predict the volume of egg with a good accuracy and less computation time.

  12. Utilizing neural networks in magnetic media modeling and field computation: A review.

    Science.gov (United States)

    Adly, Amr A; Abd-El-Hafiz, Salwa K

    2014-11-01

    Magnetic materials are considered as crucial components for a wide range of products and devices. Usually, complexity of such materials is defined by their permeability classification and coupling extent to non-magnetic properties. Hence, development of models that could accurately simulate the complex nature of these materials becomes crucial to the multi-dimensional field-media interactions and computations. In the past few decades, artificial neural networks (ANNs) have been utilized in many applications to perform miscellaneous tasks such as identification, approximation, optimization, classification and forecasting. The purpose of this review article is to give an account of the utilization of ANNs in modeling as well as field computation involving complex magnetic materials. Mostly used ANN types in magnetics, advantages of this usage, detailed implementation methodologies as well as numerical examples are given in the paper.

  13. Utilizing neural networks in magnetic media modeling and field computation: A review

    Directory of Open Access Journals (Sweden)

    Amr A. Adly

    2014-11-01

    Full Text Available Magnetic materials are considered as crucial components for a wide range of products and devices. Usually, complexity of such materials is defined by their permeability classification and coupling extent to non-magnetic properties. Hence, development of models that could accurately simulate the complex nature of these materials becomes crucial to the multi-dimensional field-media interactions and computations. In the past few decades, artificial neural networks (ANNs have been utilized in many applications to perform miscellaneous tasks such as identification, approximation, optimization, classification and forecasting. The purpose of this review article is to give an account of the utilization of ANNs in modeling as well as field computation involving complex magnetic materials. Mostly used ANN types in magnetics, advantages of this usage, detailed implementation methodologies as well as numerical examples are given in the paper.

  14. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method

    CERN Document Server

    Barkaoui, Abdelwahed; Tarek, Merzouki; Hambli, Ridha; Ali, Mkaddem

    2014-01-01

    The complexity and heterogeneity of bone tissue require a multiscale modelling to understand its mechanical behaviour and its remodelling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network computation and homogenisation equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained neural network simulation. Finite element (FE) calculation is performed at nanoscopic levels to provide a database to train an in-house neural network program; (iii) in steps 2 to 10 from fibril to continuum cortical bone tissue, homogenisation equations are used to perform the computation at the higher s...

  15. Neural network technologies

    Science.gov (United States)

    Villarreal, James A.

    1991-01-01

    A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.

  16. Computer-Aided Diagnosis of Parkinson's Disease Using Enhanced Probabilistic Neural Network.

    Science.gov (United States)

    Hirschauer, Thomas J; Adeli, Hojjat; Buford, John A

    2015-11-01

    Early and accurate diagnosis of Parkinson's disease (PD) remains challenging. Neuropathological studies using brain bank specimens have estimated that a large percentages of clinical diagnoses of PD may be incorrect especially in the early stages. In this paper, a comprehensive computer model is presented for the diagnosis of PD based on motor, non-motor, and neuroimaging features using the recently-developed enhanced probabilistic neural network (EPNN). The model is tested for differentiating PD patients from those with scans without evidence of dopaminergic deficit (SWEDDs) using the Parkinson's Progression Markers Initiative (PPMI) database, an observational, multi-center study designed to identify PD biomarkers for diagnosis and disease progression. The results are compared to four other commonly-used machine learning algorithms: the probabilistic neural network (PNN), support vector machine (SVM), k-nearest neighbors (k-NN) algorithm, and classification tree (CT). The EPNN had the highest classification accuracy at 92.5% followed by the PNN (91.6%), k-NN (90.8%) and CT (90.2%). The EPNN exhibited an accuracy of 98.6% when classifying healthy control (HC) versus PD, higher than any previous studies.

  17. Computational connectionism within neurons: A model of cytoskeletal automata subserving neural networks

    Science.gov (United States)

    Rasmussen, Steen; Karampurwala, Hasnain; Vaidyanath, Rajesh; Jensen, Klaus S.; Hameroff, Stuart

    1990-06-01

    Neural network” models of brain function assume neurons and their synaptic connections to be the fundamental units of information processing, somewhat like switches within computers. However, neurons and synapses are extremely complex and resemble entire computers rather than switches. The interiors of the neurons (and other eucaryotic cells) are now known to contain highly ordered parallel networks of filamentous protein polymers collectively termed the cytoskeleton. Originally assumed to provide merely structural “bone-like” support, cytoskeletal structures such as microtubules are now recognized to organize cell interiors dynamically. The cytoskeleton is the internal communication network for the eucaryotic cell, both by means of simple transport and by means of coordinating extremely complicated events like cell division, growth and differentiation. The cytoskeleton may therefore be viewed as the cell's “nervous system”. Consequently the neuronal cytoskeleton may be involved in molecular level information processing which subserves higher, collective neuronal functions ultimately relating to cognition. Numerous models of information processing within the cytoskeleton (in particular, microtubules) have been proposed. We have utilized cellular automata as a means to model and demonstrate the potential for information processing in cytoskeletal microtubules. In this paper, we extend previous work and simulate associative learning in a cytoskeletal network as well as assembly and disassembly of microtubules. We also discuss possible relevance and implications of cytoskeletal information processing to cognition.

  18. Convolutional neural networks for P300 detection with application to brain-computer interfaces.

    Science.gov (United States)

    Cecotti, Hubert; Gräser, Axel

    2011-03-01

    A Brain-Computer Interface (BCI) is a specific type of human-computer interface that enables the direct communication between human and computers by analyzing brain measurements. Oddball paradigms are used in BCI to generate event-related potentials (ERPs), like the P300 wave, on targets selected by the user. A P300 speller is based on this principle, where the detection of P300 waves allows the user to write characters. The P300 speller is composed of two classification problems. The first classification is to detect the presence of a P300 in the electroencephalogram (EEG). The second one corresponds to the combination of different P300 responses for determining the right character to spell. A new method for the detection of P300 waves is presented. This model is based on a convolutional neural network (CNN). The topology of the network is adapted to the detection of P300 waves in the time domain. Seven classifiers based on the CNN are proposed: four single classifiers with different features set and three multiclassifiers. These models are tested and compared on the Data set II of the third BCI competition. The best result is obtained with a multiclassifier solution with a recognition rate of 95.5 percent, without channel selection before the classification. The proposed approach provides also a new way for analyzing brain activities due to the receptive field of the CNN models.

  19. Quantum neural network-based EEG filtering for a brain-computer interface.

    Science.gov (United States)

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  20. Assessment of locomotion in chlorine exposed mice by computer vision and neural networks.

    Science.gov (United States)

    Filippidis, Aristotelis S; Zarogiannis, Sotirios G; Randich, Alan; Ness, Timothy J; Matalon, Sadis

    2012-03-01

    Assessment of locomotion following exposure of animals to noxious or painful stimuli can offer significant insights into underlying mechanisms of injury and the effectiveness of various treatments. We developed a novel method to track the movement of mice in two dimensions using computer vision and neural network algorithms. By using this system we demonstrated that mice exposed to chlorine (Cl(2)) gas developed impaired locomotion and increased immobility for up to 9 h postexposure. Postexposure administration of buprenorphine, a common analgesic agent, increased locomotion and decreased immobility times in Cl(2)- but not air-exposed mice, most likely by decreasing Cl(2)-induced pain. This method can be adapted to assess the effectiveness of various therapies following exposure to a variety of chemical and behavioral noxious stimuli.

  1. A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography.

    Science.gov (United States)

    Yang, Xiaogang; De Carlo, Francesco; Phatak, Charudatta; Gürsoy, Dogˇa

    2017-03-01

    This paper presents an algorithm to calibrate the center-of-rotation for X-ray tomography by using a machine learning approach, the Convolutional Neural Network (CNN). The algorithm shows excellent accuracy from the evaluation of synthetic data with various noise ratios. It is further validated with experimental data of four different shale samples measured at the Advanced Photon Source and at the Swiss Light Source. The results are as good as those determined by visual inspection and show better robustness than conventional methods. CNN has also great potential for reducing or removing other artifacts caused by instrument instability, detector non-linearity, etc. An open-source toolbox, which integrates the CNN methods described in this paper, is freely available through GitHub at tomography/xlearn and can be easily integrated into existing computational pipelines available at various synchrotron facilities. Source code, documentation and information on how to contribute are also provided.

  2. The Study of Learners' Preference for Visual Complexity on Small Screens of Mobile Computers Using Neural Networks

    Science.gov (United States)

    Wang, Lan-Ting; Lee, Kun-Chou

    2014-01-01

    The vision plays an important role in educational technologies because it can produce and communicate quite important functions in teaching and learning. In this paper, learners' preference for the visual complexity on small screens of mobile computers is studied by neural networks. The visual complexity in this study is divided into five…

  3. Computer-Aided Cobb Measurement Based on Automatic Detection of Vertebral Slopes Using Deep Neural Network.

    Science.gov (United States)

    Zhang, Junhua; Li, Hongjian; Lv, Liang; Zhang, Yufeng

    2017-01-01

    To develop a computer-aided method that reduces the variability of Cobb angle measurement for scoliosis assessment. A deep neural network (DNN) was trained with vertebral patches extracted from spinal model radiographs. The Cobb angle of the spinal curve was calculated automatically from the vertebral slopes predicted by the DNN. Sixty-five in vivo radiographs and 40 model radiographs were analyzed. An experienced surgeon performed manual measurements on the aforementioned radiographs. Two examiners used both the proposed and the manual measurement methods to analyze the aforementioned radiographs. For model radiographs, the intraclass correlation coefficients were greater than 0.98, and the mean absolute differences were less than 3°. This indicates that the proposed system showed high repeatability for measurements of model radiographs. For the in vivo radiographs, the reliabilities were lower than those from the model radiographs, and the differences between the computer-aided measurement and the manual measurement by the surgeon were higher than 5°. The variability of Cobb angle measurements can be reduced if the DNN system is trained with enough vertebral patches. Training data of in vivo radiographs must be included to improve the performance of DNN. Vertebral slopes can be predicted by DNN. The computer-aided system can be used to perform automatic measurements of Cobb angle, which is used to make reliable and objective assessments of scoliosis.

  4. Novel quantum inspired binary neural network algorithm

    Indian Academy of Sciences (India)

    In this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically ...

  5. Ensemble of Neural Network Conditional Random Fields for Self-Paced Brain Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Hossein Bashashati

    2017-07-01

    Full Text Available Classification of EEG signals in self-paced Brain Computer Interfaces (BCI is an extremely challenging task. The main difficulty stems from the fact that start time of a control task is not defined. Therefore it is imperative to exploit the characteristics of the EEG data to the extent possible. In sensory motor self-paced BCIs, while performing the mental task, the user’s brain goes through several well-defined internal state changes. Applying appropriate classifiers that can capture these state changes and exploit the temporal correlation in EEG data can enhance the performance of the BCI. In this paper, we propose an ensemble learning approach for self-paced BCIs. We use Bayesian optimization to train several different classifiers on different parts of the BCI hyper- parameter space. We call each of these classifiers Neural Network Conditional Random Field (NNCRF. NNCRF is a combination of a neural network and conditional random field (CRF. As in the standard CRF, NNCRF is able to model the correlation between adjacent EEG samples. However, NNCRF can also model the nonlinear dependencies between the input and the output, which makes it more powerful than the standard CRF. We compare the performance of our algorithm to those of three popular sequence labeling algorithms (Hidden Markov Models, Hidden Markov Support Vector Machines and CRF, and to two classical classifiers (Logistic Regression and Support Vector Machines. The classifiers are compared for the two cases: when the ensemble learning approach is not used and when it is. The data used in our studies are those from the BCI competition IV and the SM2 dataset. We show that our algorithm is considerably superior to the other approaches in terms of the Area Under the Curve (AUC of the BCI system.

  6. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning

    Science.gov (United States)

    Hoo-Chang, Shin; Roth, Holger R.; Gao, Mingchen; Lu, Le; Xu, Ziyue; Nogues, Isabella; Yao, Jianhua; Mollura, Daniel

    2016-01-01

    Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets (i.e. ImageNet) and the revival of deep convolutional neural networks (CNN). CNNs enable learning data-driven, highly representative, layered hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models (supervised) pre-trained from natural image dataset to medical image tasks (although domain transfer between two medical image datasets is also possible). In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computeraided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, with 85% sensitivity at 3 false positive per patient, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance

  7. Corticostriatal response selection in sentence production: Insights from neural network simulation with reservoir computing.

    Science.gov (United States)

    Hinaut, Xavier; Lance, Florian; Droin, Colas; Petit, Maxime; Pointeau, Gregoire; Dominey, Peter Ford

    2015-11-01

    Language production requires selection of the appropriate sentence structure to accommodate the communication goal of the speaker - the transmission of a particular meaning. Here we consider event meanings, in terms of predicates and thematic roles, and we address the problem that a given event can be described from multiple perspectives, which poses a problem of response selection. We present a model of response selection in sentence production that is inspired by the primate corticostriatal system. The model is implemented in the context of reservoir computing where the reservoir - a recurrent neural network with fixed connections - corresponds to cortex, and the readout corresponds to the striatum. We demonstrate robust learning, and generalization properties of the model, and demonstrate its cross linguistic capabilities in English and Japanese. The results contribute to the argument that the corticostriatal system plays a role in response selection in language production, and to the stance that reservoir computing is a valid potential model of corticostriatal processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Computer vision-based method for classification of wheat grains using artificial neural network.

    Science.gov (United States)

    Sabanci, Kadir; Kayabasi, Ahmet; Toktas, Abdurrahim

    2017-06-01

    A simplified computer vision-based application using artificial neural network (ANN) depending on multilayer perceptron (MLP) for accurately classifying wheat grains into bread or durum is presented. The images of 100 bread and 100 durum wheat grains are taken via a high-resolution camera and subjected to pre-processing. The main visual features of four dimensions, three colors and five textures are acquired using image-processing techniques (IPTs). A total of 21 visual features are reproduced from the 12 main features to diversify the input population for training and testing the ANN model. The data sets of visual features are considered as input parameters of the ANN model. The ANN with four different input data subsets is modelled to classify the wheat grains into bread or durum. The ANN model is trained with 180 grains and its accuracy tested with 20 grains from a total of 200 wheat grains. Seven input parameters that are most effective on the classifying results are determined using the correlation-based CfsSubsetEval algorithm to simplify the ANN model. The results of the ANN model are compared in terms of accuracy rate. The best result is achieved with a mean absolute error (MAE) of 9.8 × 10 -6 by the simplified ANN model. This shows that the proposed classifier based on computer vision can be successfully exploited to automatically classify a variety of grains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Classification of dried vegetables using computer image analysis and artificial neural networks

    Science.gov (United States)

    Koszela, K.; Łukomski, M.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Zaborowicz, M.; Wojcieszak, D.

    2017-07-01

    In the recent years, there has been a continuously increasing demand for vegetables and dried vegetables. This trend affects the growth of the dehydration industry in Poland helping to exploit excess production. More and more often dried vegetables are used in various sectors of the food industry, both due to their high nutritional qualities and changes in consumers' food preferences. As we observe an increase in consumer awareness regarding a healthy lifestyle and a boom in health food, there is also an increase in the consumption of such food, which means that the production and crop area can increase further. Among the dried vegetables, dried carrots play a strategic role due to their wide application range and high nutritional value. They contain high concentrations of carotene and sugar which is present in the form of crystals. Carrots are also the vegetables which are most often subjected to a wide range of dehydration processes; this makes it difficult to perform a reliable qualitative assessment and classification of this dried product. The many qualitative properties of dried carrots determining their positive or negative quality assessment include colour and shape. The aim of the research was to develop and implement the model of a computer system for the recognition and classification of freeze-dried, convection-dried and microwave vacuum dried products using the methods of computer image analysis and artificial neural networks.

  10. DEVELOPMENT OF A COMPUTER SYSTEM FOR IDENTITY AUTHENTICATION USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Timur Kartbayev

    2017-03-01

    Full Text Available The aim of the study is to increase the effectiveness of automated face recognition to authenticate identity, considering features of change of the face parameters over time. The improvement of the recognition accuracy, as well as consideration of the features of temporal changes in a human face can be based on the methodology of artificial neural networks. Hybrid neural networks, combining the advantages of classical neural networks and fuzzy logic systems, allow using the network learnability along with the explanation of the findings. The structural scheme of intelligent system for identification based on artificial neural networks is proposed in this work. It realizes the principles of digital information processing and identity recognition taking into account the forecast of key characteristics’ changes over time (e.g., due to aging. The structural scheme has a three-tier architecture and implements preliminary processing, recognition and identification of images obtained as a result of monitoring. On the basis of expert knowledge, the fuzzy base of products is designed. It allows assessing possible changes in key characteristics, used to authenticate identity based on the image. To take this possibility into consideration, a neuro-fuzzy network of ANFIS type was used, which implements the algorithm of Tagaki-Sugeno. The conducted experiments showed high efficiency of the developed neural network and a low value of learning errors, which allows recommending this approach for practical implementation. Application of the developed system of fuzzy production rules that allow predicting changes in individuals over time, will improve the recognition accuracy, reduce the number of authentication failures and improve the efficiency of information processing and decision-making in applications, such as authentication of bank customers, users of mobile applications, or in video monitoring systems of sensitive sites.

  11. Neural-like growing networks

    Science.gov (United States)

    Yashchenko, Vitaliy A.

    2000-03-01

    On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.

  12. Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    Kuo Men

    2017-12-01

    Full Text Available BackgroundRadiotherapy is one of the main treatment methods for nasopharyngeal carcinoma (NPC. It requires exact delineation of the nasopharynx gross tumor volume (GTVnx, the metastatic lymph node gross tumor volume (GTVnd, the clinical target volume (CTV, and organs at risk in the planning computed tomography images. However, this task is time-consuming and operator dependent. In the present study, we developed an end-to-end deep deconvolutional neural network (DDNN for segmentation of these targets.MethodsThe proposed DDNN is an end-to-end architecture enabling fast training and testing. It consists of two important components: an encoder network and a decoder network. The encoder network was used to extract the visual features of a medical image and the decoder network was used to recover the original resolution by deploying deconvolution. A total of 230 patients diagnosed with NPC stage I or stage II were included in this study. Data from 184 patients were chosen randomly as a training set to adjust the parameters of DDNN, and the remaining 46 patients were the test set to assess the performance of the model. The Dice similarity coefficient (DSC was used to quantify the segmentation results of the GTVnx, GTVnd, and CTV. In addition, the performance of DDNN was compared with the VGG-16 model.ResultsThe proposed DDNN method outperformed the VGG-16 in all the segmentation. The mean DSC values of DDNN were 80.9% for GTVnx, 62.3% for the GTVnd, and 82.6% for CTV, whereas VGG-16 obtained 72.3, 33.7, and 73.7% for the DSC values, respectively.ConclusionDDNN can be used to segment the GTVnx and CTV accurately. The accuracy for the GTVnd segmentation was relatively low due to the considerable differences in its shape, volume, and location among patients. The accuracy is expected to increase with more training data and combination of MR images. In conclusion, DDNN has the potential to improve the consistency of contouring and streamline radiotherapy

  13. Computer vision-based limestone rock-type classification using probabilistic neural network

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Patel

    2016-01-01

    Full Text Available Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper, a computer vision-based rock-type classification algorithm is proposed for fast and reliable identification without human intervention. A laboratory scale vision-based model was developed using probabilistic neural network (PNN where color histogram features are used as input. The color image histogram-based features that include weighted mean, skewness and kurtosis features are extracted for all three color space red, green, and blue. A total nine features are used as input for the PNN classification model. The smoothing parameter for PNN model is selected judicially to develop an optimal or close to the optimum classification model. The developed PPN is validated using the test data set and results reveal that the proposed vision-based model can perform satisfactorily for classifying limestone rock-types. Overall the error of mis-classification is below 6%. When compared with other three classification algorithms, it is observed that the proposed method performs substantially better than all three classification algorithms.

  14. A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaogang; De Carlo, Francesco; Phatak, Charudatta; Gürsoy, Dogˇa

    2017-01-24

    This paper presents an algorithm to calibrate the center-of-rotation for X-ray tomography by using a machine learning approach, the Convolutional Neural Network (CNN). The algorithm shows excellent accuracy from the evaluation of synthetic data with various noise ratios. It is further validated with experimental data of four different shale samples measured at the Advanced Photon Source and at the Swiss Light Source. The results are as good as those determined by visual inspection and show better robustness than conventional methods. CNN has also great potential forreducing or removingother artifacts caused by instrument instability, detector non-linearity,etc. An open-source toolbox, which integrates the CNN methods described in this paper, is freely available through GitHub at tomography/xlearn and can be easily integrated into existing computational pipelines available at various synchrotron facilities. Source code, documentation and information on how to contribute are also provided.

  15. Brain-Computer Interface for Control of Wheelchair Using Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Rahib H. Abiyev

    2016-01-01

    Full Text Available The design of brain-computer interface for the wheelchair for physically disabled people is presented. The design of the proposed system is based on receiving, processing, and classification of the electroencephalographic (EEG signals and then performing the control of the wheelchair. The number of experimental measurements of brain activity has been done using human control commands of the wheelchair. Based on the mental activity of the user and the control commands of the wheelchair, the design of classification system based on fuzzy neural networks (FNN is considered. The design of FNN based algorithm is used for brain-actuated control. The training data is used to design the system and then test data is applied to measure the performance of the control system. The control of the wheelchair is performed under real conditions using direction and speed control commands of the wheelchair. The approach used in the paper allows reducing the probability of misclassification and improving the control accuracy of the wheelchair.

  16. Abstract Computation in Schizophrenia Detection through Artificial Neural Network Based Systems

    Directory of Open Access Journals (Sweden)

    L. Cardoso

    2015-01-01

    Full Text Available Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason of defective information.

  17. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  18. Development of a computational model on the neural activity patterns of a visual working memory in a hierarchical feedforward Network

    Science.gov (United States)

    An, Soyoung; Choi, Woochul; Paik, Se-Bum

    2015-11-01

    Understanding the mechanism of information processing in the human brain remains a unique challenge because the nonlinear interactions between the neurons in the network are extremely complex and because controlling every relevant parameter during an experiment is difficult. Therefore, a simulation using simplified computational models may be an effective approach. In the present study, we developed a general model of neural networks that can simulate nonlinear activity patterns in the hierarchical structure of a neural network system. To test our model, we first examined whether our simulation could match the previously-observed nonlinear features of neural activity patterns. Next, we performed a psychophysics experiment for a simple visual working memory task to evaluate whether the model could predict the performance of human subjects. Our studies show that the model is capable of reproducing the relationship between memory load and performance and may contribute, in part, to our understanding of how the structure of neural circuits can determine the nonlinear neural activity patterns in the human brain.

  19. Unconventional computing using evolution-in-nanomaterio: neural networks meet nanoparticle networks

    NARCIS (Netherlands)

    Greff, Klaus; van Damme, Rudolf M.J.; Koutnik, Jan; Broersma, Haitze J.; Mikhal, Julia Olegivna; Lawrence, Celestine Preetham; van der Wiel, Wilfred Gerard; Schmidhuber, Jürgen

    2016-01-01

    Recently published experimental work on evolution-in-materio applied to nanoscale materials shows promising results for future reconfigurable devices. These experiments were performed on disordered nano-particle networks that have no predefined design. The material has been treated as a blackbox,

  20. Optics in neural computation

    Science.gov (United States)

    Levene, Michael John

    In all attempts to emulate the considerable powers of the brain, one is struck by both its immense size, parallelism, and complexity. While the fields of neural networks, artificial intelligence, and neuromorphic engineering have all attempted oversimplifications on the considerable complexity, all three can benefit from the inherent scalability and parallelism of optics. This thesis looks at specific aspects of three modes in which optics, and particularly volume holography, can play a part in neural computation. First, holography serves as the basis of highly-parallel correlators, which are the foundation of optical neural networks. The huge input capability of optical neural networks make them most useful for image processing and image recognition and tracking. These tasks benefit from the shift invariance of optical correlators. In this thesis, I analyze the capacity of correlators, and then present several techniques for controlling the amount of shift invariance. Of particular interest is the Fresnel correlator, in which the hologram is displaced from the Fourier plane. In this case, the amount of shift invariance is limited not just by the thickness of the hologram, but by the distance of the hologram from the Fourier plane. Second, volume holography can provide the huge storage capacity and high speed, parallel read-out necessary to support large artificial intelligence systems. However, previous methods for storing data in volume holograms have relied on awkward beam-steering or on as-yet non- existent cheap, wide-bandwidth, tunable laser sources. This thesis presents a new technique, shift multiplexing, which is capable of very high densities, but which has the advantage of a very simple implementation. In shift multiplexing, the reference wave consists of a focused spot a few millimeters in front of the hologram. Multiplexing is achieved by simply translating the hologram a few tens of microns or less. This thesis describes the theory for how shift

  1. A neutron spectrum unfolding computer code based on artificial neural networks

    Science.gov (United States)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2014-02-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding in

  2. Fuzzy neural networks: theory and applications

    Science.gov (United States)

    Gupta, Madan M.

    1994-10-01

    During recent years, significant advances have been made in two distinct technological areas: fuzzy logic and computational neural networks. The theory of fuzzy logic provides a mathematical framework to capture the uncertainties associated with human cognitive processes, such as thinking and reasoning. It also provides a mathematical morphology to emulate certain perceptual and linguistic attributes associated with human cognition. On the other hand, the computational neural network paradigms have evolved in the process of understanding the incredible learning and adaptive features of neuronal mechanisms inherent in certain biological species. Computational neural networks replicate, on a small scale, some of the computational operations observed in biological learning and adaptation. The integration of these two fields, fuzzy logic and neural networks, have given birth to an emerging technological field -- fuzzy neural networks. Fuzzy neural networks, have the potential to capture the benefits of these two fascinating fields, fuzzy logic and neural networks, into a single framework. The intent of this tutorial paper is to describe the basic notions of biological and computational neuronal morphologies, and to describe the principles and architectures of fuzzy neural networks. Towards this goal, we develop a fuzzy neural architecture based upon the notion of T-norm and T-conorm connectives. An error-based learning scheme is described for this neural structure.

  3. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  4. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience.

    Science.gov (United States)

    Komeda, Yoriaki; Handa, Hisashi; Watanabe, Tomohiro; Nomura, Takanobu; Kitahashi, Misaki; Sakurai, Toshiharu; Okamoto, Ayana; Minami, Tomohiro; Kono, Masashi; Arizumi, Tadaaki; Takenaka, Mamoru; Hagiwara, Satoru; Matsui, Shigenaga; Nishida, Naoshi; Kashida, Hiroshi; Kudo, Masatoshi

    2017-01-01

    Computer-aided diagnosis (CAD) is becoming a next-generation tool for the diagnosis of human disease. CAD for colon polyps has been suggested as a particularly useful tool for trainee colonoscopists, as the use of a CAD system avoids the complications associated with endoscopic resections. In addition to conventional CAD, a convolutional neural network (CNN) system utilizing artificial intelligence (AI) has been developing rapidly over the past 5 years. We attempted to generate a unique CNN-CAD system with an AI function that studied endoscopic images extracted from movies obtained with colonoscopes used in routine examinations. Here, we report our preliminary results of this novel CNN-CAD system for the diagnosis of colon polyps. A total of 1,200 images from cases of colonoscopy performed between January 2010 and December 2016 at Kindai University Hospital were used. These images were extracted from the video of actual endoscopic examinations. Additional video images from 10 cases of unlearned processes were retrospectively assessed in a pilot study. They were simply diagnosed as either an adenomatous or nonadenomatous polyp. The number of images used by AI to learn to distinguish adenomatous from nonadenomatous was 1,200:600. These images were extracted from the videos of actual endoscopic examinations. The size of each image was adjusted to 256 × 256 pixels. A 10-hold cross-validation was carried out. The accuracy of the 10-hold cross-validation is 0.751, where the accuracy is the ratio of the number of correct answers over the number of all the answers produced by the CNN. The decisions by the CNN were correct in 7 of 10 cases. A CNN-CAD system using routine colonoscopy might be useful for the rapid diagnosis of colorectal polyp classification. Further prospective studies in an in vivo setting are required to confirm the effectiveness of a CNN-CAD system in routine colonoscopy. © 2017 S. Karger AG, Basel.

  5. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.

    Science.gov (United States)

    Nakao, Takahiro; Hanaoka, Shouhei; Nomura, Yukihiro; Sato, Issei; Nemoto, Mitsutaka; Miki, Soichiro; Maeda, Eriko; Yoshikawa, Takeharu; Hayashi, Naoto; Abe, Osamu

    2017-08-24

    The usefulness of computer-assisted detection (CAD) for detecting cerebral aneurysms has been reported; therefore, the improved performance of CAD will help to detect cerebral aneurysms. To develop a CAD system for intracranial aneurysms on unenhanced magnetic resonance angiography (MRA) images based on a deep convolutional neural network (CNN) and a maximum intensity projection (MIP) algorithm, and to demonstrate the usefulness of the system by training and evaluating it using a large dataset. Retrospective study. There were 450 cases with intracranial aneurysms. The diagnoses of brain aneurysms were made on the basis of MRA, which was performed as part of a brain screening program. Noncontrast-enhanced 3D time-of-flight (TOF) MRA on 3T MR scanners. In our CAD, we used a CNN classifier that predicts whether each voxel is inside or outside aneurysms by inputting MIP images generated from a volume of interest (VOI) around the voxel. The CNN was trained in advance using manually inputted labels. We evaluated our method using 450 cases with intracranial aneurysms, 300 of which were used for training, 50 for parameter tuning, and 100 for the final evaluation. Free-response receiver operating characteristic (FROC) analysis. Our CAD system detected 94.2% (98/104) of aneurysms with 2.9 false positives per case (FPs/case). At a sensitivity of 70%, the number of FPs/case was 0.26. We showed that the combination of a CNN and an MIP algorithm is useful for the detection of intracranial aneurysms. 4 Technical Efficacy Stage 1 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  7. Cat Swarm Optimization Based Functional Link Artificial Neural Network Filter for Gaussian Noise Removal from Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2016-01-01

    Full Text Available Gaussian noise is one of the dominant noises, which degrades the quality of acquired Computed Tomography (CT image data. It creates difficulties in pathological identification or diagnosis of any disease. Gaussian noise elimination is desirable to improve the clarity of a CT image for clinical, diagnostic, and postprocessing applications. This paper proposes an evolutionary nonlinear adaptive filter approach, using Cat Swarm Functional Link Artificial Neural Network (CS-FLANN to remove the unwanted noise. The structure of the proposed filter is based on the Functional Link Artificial Neural Network (FLANN and the Cat Swarm Optimization (CSO is utilized for the selection of optimum weight of the neural network filter. The applied filter has been compared with the existing linear filters, like the mean filter and the adaptive Wiener filter. The performance indices, such as peak signal to noise ratio (PSNR, have been computed for the quantitative analysis of the proposed filter. The experimental evaluation established the superiority of the proposed filtering technique over existing methods.

  8. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  9. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction.

    Science.gov (United States)

    Casey, M

    1996-08-15

    Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.

  10. Neural network applications

    Science.gov (United States)

    Padgett, Mary L.; Desai, Utpal; Roppel, T.A.; White, Charles R.

    1993-01-01

    A design procedure is suggested for neural networks which accommodates the inclusion of such knowledge-based systems techniques as fuzzy logic and pairwise comparisons. The use of these procedures in the design of applications combines qualitative and quantitative factors with empirical data to yield a model with justifiable design and parameter selection procedures. The procedure is especially relevant to areas of back-propagation neural network design which are highly responsive to the use of precisely recorded expert knowledge.

  11. Optoelectronic Implementation of Neural Networks

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 9. Optoelectronic Implementation of Neural Networks - Use of Optics in Computing. R Ramachandran. General Article Volume 3 Issue 9 September 1998 pp 45-55. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Pediatric Nutritional Requirements Determination with Neural Networks

    OpenAIRE

    Karlık, Bekir; Ece, Aydın

    1998-01-01

    To calculate daily nutritional requirements of children, a computer program has been developed based upon neural network. Three parameters, daily protein, energy and water requirements, were calculated through trained artificial neural networks using a database of 312 children The results were compared with those of calculated from dietary requirements tables of World Health Organisation. No significant difference was found between two calculations. In conclusion, a simple neural network may ...

  13. Computational Models of Financial Price Prediction: A Survey of Neural Networks, Kernel Machines and Evolutionary Computation Approaches

    Directory of Open Access Journals (Sweden)

    Javier Sandoval

    2011-12-01

    Full Text Available A review of the representative models of machine learning research applied to the foreign exchange rate and stock price prediction problem is conducted.  The article is organized as follows: The first section provides a context on the definitions and importance of foreign exchange rate and stock markets.  The second section reviews machine learning models for financial prediction focusing on neural networks, SVM and evolutionary methods. Lastly, the third section draws some conclusions.

  14. Neural networks and applications tutorial

    Science.gov (United States)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  15. COMPUTATIONAL ANALYSIS BASED ON ARTIFICIAL NEURAL NETWORKS FOR AIDING IN DIAGNOSING OSTEOARTHRITIS OF THE LUMBAR SPINE.

    Science.gov (United States)

    Veronezi, Carlos Cassiano Denipotti; de Azevedo Simões, Priscyla Waleska Targino; Dos Santos, Robson Luiz; da Rocha, Edroaldo Lummertz; Meláo, Suelen; de Mattos, Merisandra Côrtes; Cechinel, Cristian

    2011-01-01

    To ascertain the advantages of applying artificial neural networks to recognize patterns on lumbar spine radiographies in order to aid in the process of diagnosing primary osteoarthritis. This was a cross-sectional descriptive analytical study with a quantitative approach and an emphasis on diagnosis. The training set was composed of images collected between January and July 2009 from patients who had undergone lateral-view digital radiographies of the lumbar spine, which were provided by a radiology clinic located in the municipality of Criciúma (SC). Out of the total of 260 images gathered, those with distortions, those presenting pathological conditions that altered the architecture of the lumbar spine and those with patterns that were difficult to characterize were discarded, resulting in 206 images. The image data base (n = 206) was then subdivided, resulting in 68 radiographies for the training stage, 68 images for tests and 70 for validation. A hybrid neural network based on Kohonen self-organizing maps and on Multilayer Perceptron networks was used. After 90 cycles, the validation was carried out on the best results, achieving accuracy of 62.85%, sensitivity of 65.71% and specificity of 60%. Even though the effectiveness shown was moderate, this study is still innovative. The values show that the technique used has a promising future, pointing towards further studies on image and cycle processing methodology with a larger quantity of radiographies.

  16. Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Chen Jiun-Ching

    2007-05-01

    Full Text Available Abstract Background Genome-wide identification of specific oligonucleotides (oligos is a computationally-intensive task and is a requirement for designing microarray probes, primers, and siRNAs. An artificial neural network (ANN is a machine learning technique that can effectively process complex and high noise data. Here, ANNs are applied to process the unique subsequence distribution for prediction of specific oligos. Results We present a novel and efficient algorithm, named the integration of ANN and BLAST (IAB algorithm, to identify specific oligos. We establish the unique marker database for human and rat gene index databases using the hash table algorithm. We then create the input vectors, via the unique marker database, to train and test the ANN. The trained ANN predicted the specific oligos with high efficiency, and these oligos were subsequently verified by BLAST. To improve the prediction performance, the ANN over-fitting issue was avoided by early stopping with the best observed error and a k-fold validation was also applied. The performance of the IAB algorithm was about 5.2, 7.1, and 6.7 times faster than the BLAST search without ANN for experimental results of 70-mer, 50-mer, and 25-mer specific oligos, respectively. In addition, the results of polymerase chain reactions showed that the primers predicted by the IAB algorithm could specifically amplify the corresponding genes. The IAB algorithm has been integrated into a previously published comprehensive web server to support microarray analysis and genome-wide iterative enrichment analysis, through which users can identify a group of desired genes and then discover the specific oligos of these genes. Conclusion The IAB algorithm has been developed to construct SpecificDB, a web server that provides a specific and valid oligo database of the probe, siRNA, and primer design for the human genome. We also demonstrate the ability of the IAB algorithm to predict specific oligos through

  17. Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis.

    Science.gov (United States)

    Liu, Chun-Chi; Lin, Chin-Chung; Li, Ker-Chau; Chen, Wen-Shyen E; Chen, Jiun-Ching; Yang, Ming-Te; Yang, Pan-Chyr; Chang, Pei-Chun; Chen, Jeremy J W

    2007-05-22

    Genome-wide identification of specific oligonucleotides (oligos) is a computationally-intensive task and is a requirement for designing microarray probes, primers, and siRNAs. An artificial neural network (ANN) is a machine learning technique that can effectively process complex and high noise data. Here, ANNs are applied to process the unique subsequence distribution for prediction of specific oligos. We present a novel and efficient algorithm, named the integration of ANN and BLAST (IAB) algorithm, to identify specific oligos. We establish the unique marker database for human and rat gene index databases using the hash table algorithm. We then create the input vectors, via the unique marker database, to train and test the ANN. The trained ANN predicted the specific oligos with high efficiency, and these oligos were subsequently verified by BLAST. To improve the prediction performance, the ANN over-fitting issue was avoided by early stopping with the best observed error and a k-fold validation was also applied. The performance of the IAB algorithm was about 5.2, 7.1, and 6.7 times faster than the BLAST search without ANN for experimental results of 70-mer, 50-mer, and 25-mer specific oligos, respectively. In addition, the results of polymerase chain reactions showed that the primers predicted by the IAB algorithm could specifically amplify the corresponding genes. The IAB algorithm has been integrated into a previously published comprehensive web server to support microarray analysis and genome-wide iterative enrichment analysis, through which users can identify a group of desired genes and then discover the specific oligos of these genes. The IAB algorithm has been developed to construct SpecificDB, a web server that provides a specific and valid oligo database of the probe, siRNA, and primer design for the human genome. We also demonstrate the ability of the IAB algorithm to predict specific oligos through polymerase chain reaction experiments. Specific

  18. A Computationally Inexpensive Optimal Guidance via Radial-Basis-Function Neural Network for Autonomous Soft Landing on Asteroids.

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    Full Text Available Optimal guidance is essential for the soft landing task. However, due to its high computational complexities, it is hardly applied to the autonomous guidance. In this paper, a computationally inexpensive optimal guidance algorithm based on the radial basis function neural network (RBFNN is proposed. The optimization problem of the trajectory for soft landing on asteroids is formulated and transformed into a two-point boundary value problem (TPBVP. Combining the database of initial states with the relative initial co-states, an RBFNN is trained offline. The optimal trajectory of the soft landing is determined rapidly by applying the trained network in the online guidance. The Monte Carlo simulations of soft landing on the Eros433 are performed to demonstrate the effectiveness of the proposed guidance algorithm.

  19. A Computationally Inexpensive Optimal Guidance via Radial-Basis-Function Neural Network for Autonomous Soft Landing on Asteroids.

    Science.gov (United States)

    Zhang, Peng; Liu, Keping; Zhao, Bo; Li, Yuanchun

    2015-01-01

    Optimal guidance is essential for the soft landing task. However, due to its high computational complexities, it is hardly applied to the autonomous guidance. In this paper, a computationally inexpensive optimal guidance algorithm based on the radial basis function neural network (RBFNN) is proposed. The optimization problem of the trajectory for soft landing on asteroids is formulated and transformed into a two-point boundary value problem (TPBVP). Combining the database of initial states with the relative initial co-states, an RBFNN is trained offline. The optimal trajectory of the soft landing is determined rapidly by applying the trained network in the online guidance. The Monte Carlo simulations of soft landing on the Eros433 are performed to demonstrate the effectiveness of the proposed guidance algorithm.

  20. Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm.

    Science.gov (United States)

    Arabasadi, Zeinab; Alizadehsani, Roohallah; Roshanzamir, Mohamad; Moosaei, Hossein; Yarifard, Ali Asghar

    2017-04-01

    Cardiovascular disease is one of the most rampant causes of death around the world and was deemed as a major illness in Middle and Old ages. Coronary artery disease, in particular, is a widespread cardiovascular malady entailing high mortality rates. Angiography is, more often than not, regarded as the best method for the diagnosis of coronary artery disease; on the other hand, it is associated with high costs and major side effects. Much research has, therefore, been conducted using machine learning and data mining so as to seek alternative modalities. Accordingly, we herein propose a highly accurate hybrid method for the diagnosis of coronary artery disease. As a matter of fact, the proposed method is able to increase the performance of neural network by approximately 10% through enhancing its initial weights using genetic algorithm which suggests better weights for neural network. Making use of such methodology, we achieved accuracy, sensitivity and specificity rates of 93.85%, 97% and 92% respectively, on Z-Alizadeh Sani dataset. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Spike-timing computation properties of a feed-forward neural network model

    Directory of Open Access Journals (Sweden)

    Drew Benjamin Sinha

    2014-01-01

    Full Text Available Brain function is characterized by dynamical interactions among networks of neurons. These interactions are mediated by network topology at many scales ranging from microcircuits to brain areas. Understanding how networks operate can be aided by understanding how the transformation of inputs depends upon network connectivity patterns, e.g. serial and parallel pathways. To tractably determine how single synapses or groups of synapses in such pathways shape transformations, we modeled feed-forward networks of 7-22 neurons in which synaptic strength changed according to a spike-timing dependent plasticity rule. We investigated how activity varied when dynamics were perturbed by an activity-dependent electrical stimulation protocol (spike-triggered stimulation; STS in networks of different topologies and background input correlations. STS can successfully reorganize functional brain networks in vivo, but with a variability in effectiveness that may derive partially from the underlying network topology. In a simulated network with a single disynaptic pathway driven by uncorrelated background activity, structured spike-timing relationships between polysynaptically connected neurons were not observed. When background activity was correlated or parallel disynaptic pathways were added, however, robust polysynaptic spike timing relationships were observed, and application of STS yielded predictable changes in synaptic strengths and spike-timing relationships. These observations suggest that precise input-related or topologically induced temporal relationships in network activity are necessary for polysynaptic signal propagation. Such constraints for polysynaptic computation suggest potential roles for higher-order topological structure in network organization, such as maintaining polysynaptic correlation in the face of relatively weak synapses.

  2. 3-D components of a biological neural network visualized in computer generated imagery. I - Macular receptive field organization

    Science.gov (United States)

    Ross, Muriel D.; Cutler, Lynn; Meyer, Glenn; Lam, Tony; Vaziri, Parshaw

    1990-01-01

    Computer-assisted, 3-dimensional reconstructions of macular receptive fields and of their linkages into a neural network have revealed new information about macular functional organization. Both type I and type II hair cells are included in the receptive fields. The fields are rounded, oblong, or elongated, but gradations between categories are common. Cell polarizations are divergent. Morphologically, each calyx of oblong and elongated fields appears to be an information processing site. Intrinsic modulation of information processing is extensive and varies with the kind of field. Each reconstructed field differs in detail from every other, suggesting that an element of randomness is introduced developmentally and contributes to endorgan adaptability.

  3. Hyperbolic Hopfield neural networks.

    Science.gov (United States)

    Kobayashi, M

    2013-02-01

    In recent years, several neural networks using Clifford algebra have been studied. Clifford algebra is also called geometric algebra. Complex-valued Hopfield neural networks (CHNNs) are the most popular neural networks using Clifford algebra. The aim of this brief is to construct hyperbolic HNNs (HHNNs) as an analog of CHNNs. Hyperbolic algebra is a Clifford algebra based on Lorentzian geometry. In this brief, a hyperbolic neuron is defined in a manner analogous to a phasor neuron, which is a typical complex-valued neuron model. HHNNs share common concepts with CHNNs, such as the angle and energy. However, HHNNs and CHNNs are different in several aspects. The states of hyperbolic neurons do not form a circle, and, therefore, the start and end states are not identical. In the quantized version, unlike complex-valued neurons, hyperbolic neurons have an infinite number of states.

  4. Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks.

    Science.gov (United States)

    Liu, Jiamin; Wang, David; Lu, Le; Wei, Zhuoshi; Kim, Lauren; Turkbey, Evrim B; Sahiner, Berkman; Petrick, Nicholas A; Summers, Ronald M

    2017-09-01

    Colitis refers to inflammation of the inner lining of the colon that is frequently associated with infection and allergic reactions. In this paper, we propose deep convolutional neural networks methods for lesion-level colitis detection and a support vector machine (SVM) classifier for patient-level colitis diagnosis on routine abdominal CT scans. The recently developed Faster Region-based Convolutional Neural Network (Faster RCNN) is utilized for lesion-level colitis detection. For each 2D slice, rectangular region proposals are generated by region proposal networks (RPN). Then, each region proposal is jointly classified and refined by a softmax classifier and bounding-box regressor. Two convolutional neural networks, eight layers of ZF net and 16 layers of VGG net are compared for colitis detection. Finally, for each patient, the detections on all 2D slices are collected and a SVM classifier is applied to develop a patient-level diagnosis. We trained and evaluated our method with 80 colitis patients and 80 normal cases using 4 × 4-fold cross validation. For lesion-level colitis detection, with ZF net, the mean of average precisions (mAP) were 48.7% and 50.9% for RCNN and Faster RCNN, respectively. The detection system achieved sensitivities of 51.4% and 54.0% at two false positives per patient for RCNN and Faster RCNN, respectively. With VGG net, Faster RCNN increased the mAP to 56.9% and increased the sensitivity to 58.4% at two false positive per patient. For patient-level colitis diagnosis, with ZF net, the average areas under the ROC curve (AUC) were 0.978 ± 0.009 and 0.984 ± 0.008 for RCNN and Faster RCNN method, respectively. The difference was not statistically significant with P = 0.18. At the optimal operating point, the RCNN method correctly identified 90.4% (72.3/80) of the colitis patients and 94.0% (75.2/80) of normal cases. The sensitivity improved to 91.6% (73.3/80) and the specificity improved to 95.0% (76.0/80) for the Faster RCNN

  5. Implementation of a Computational Model for Information Processing and Signaling from a Biological Neural Network of Neostriatum Nucleus

    Directory of Open Access Journals (Sweden)

    C. Sanchez-Vazquez

    2014-06-01

    Full Text Available Recently, several mathematical models have been developed to study and explain the way information is processed in the brain. The models published account for a myriad of perspectives from single neuron segments to neural networks, and lately, with the use of supercomputing facilities, to the study of whole environments of nuclei interacting for massive stimuli and processing. Some of the most complex neural structures -and also most studied- are basal ganglia nuclei in the brain; amongst which we can find the Neostriatum. Currently, just a few papers about high scale biological-based computational modeling of this region have been published. It has been demonstrated that the Basal Ganglia region contains functions related to learning and decision making based on rules of the action-selection type, which are of particular interest for the machine autonomous-learning field. This knowledge could be clearly transferred between areas of research. The present work proposes a model of information processing, by integrating knowledge generated from widely accepted experiments in both morphology and biophysics, through integrating theories such as the compartmental electrical model, the Rall’s cable equation, and the Hodking-Huxley particle potential regulations, among others. Additionally, the leaky integrator framework is incorporated in an adapted function. This was accomplished through a computational environment prepared for high scale neural simulation which delivers data output equivalent to that from the original model, and that can not only be analyzed as a Bayesian problem, but also successfully compared to the biological specimen.

  6. International Conference on Artificial Neural Networks (ICANN)

    CERN Document Server

    Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics

    2015-01-01

    The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...

  7. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  8. Deconvolution using a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S.K.

    1990-11-15

    Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.

  9. Experimental and Computational Studies of Cortical Neural Network Properties Through Signal Processing

    Science.gov (United States)

    Clawson, Wesley Patrick

    Previous studies, both theoretical and experimental, of network level dynamics in the cerebral cortex show evidence for a statistical phenomenon called criticality; a phenomenon originally studied in the context of phase transitions in physical systems and that is associated with favorable information processing in the context of the brain. The focus of this thesis is to expand upon past results with new experimentation and modeling to show a relationship between criticality and the ability to detect and discriminate sensory input. A line of theoretical work predicts maximal sensory discrimination as a functional benefit of criticality, which can then be characterized using mutual information between sensory input, visual stimulus, and neural response,. The primary finding of our experiments in the visual cortex in turtles and neuronal network modeling confirms this theoretical prediction. We show that sensory discrimination is maximized when visual cortex operates near criticality. In addition to presenting this primary finding in detail, this thesis will also address our preliminary results on change-point-detection in experimentally measured cortical dynamics.

  10. Medical image analysis with artificial neural networks.

    Science.gov (United States)

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Neural networks as models of psychopathology.

    Science.gov (United States)

    Aakerlund, L; Hemmingsen, R

    1998-04-01

    Neural network modeling is situated between neurobiology, cognitive science, and neuropsychology. The structural and functional resemblance with biological computation has made artificial neural networks (ANN) useful for exploring the relationship between neurobiology and computational performance, i.e., cognition and behavior. This review provides an introduction to the theory of ANN and how they have linked theories from neurobiology and psychopathology in schizophrenia, affective disorders, and dementia.

  12. computer networks

    Directory of Open Access Journals (Sweden)

    N. U. Ahmed

    2002-01-01

    Full Text Available In this paper, we construct a new dynamic model for the Token Bucket (TB algorithm used in computer networks and use systems approach for its analysis. This model is then augmented by adding a dynamic model for a multiplexor at an access node where the TB exercises a policing function. In the model, traffic policing, multiplexing and network utilization are formally defined. Based on the model, we study such issues as (quality of service QoS, traffic sizing and network dimensioning. Also we propose an algorithm using feedback control to improve QoS and network utilization. Applying MPEG video traces as the input traffic to the model, we verify the usefulness and effectiveness of our model.

  13. Program Aids Simulation Of Neural Networks

    Science.gov (United States)

    Baffes, Paul T.

    1990-01-01

    Computer program NETS - Tool for Development and Evaluation of Neural Networks - provides simulation of neural-network algorithms plus software environment for development of such algorithms. Enables user to customize patterns of connections between layers of network, and provides features for saving weight values of network, providing for more precise control over learning process. Consists of translating problem into format using input/output pairs, designing network configuration for problem, and finally training network with input/output pairs until acceptable error reached. Written in C.

  14. Neural networks for triggering

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  15. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    Directory of Open Access Journals (Sweden)

    WenBo Xiao

    Full Text Available In this article, we introduced an artificial neural network (ANN based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-, multi-crystalline (multi-, and amorphous (amor- crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  16. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    Science.gov (United States)

    Xiao, WenBo; Nazario, Gina; Wu, HuaMing; Zhang, HuaMing; Cheng, Feng

    2017-01-01

    In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  17. New Neural Network Methods for Forecasting Regional Employment

    NARCIS (Netherlands)

    Patuelli, R.; Reggiani, A; Nijkamp, P.; Blien, U.

    2006-01-01

    In this paper, a set of neural network (NN) models is developed to compute short-term forecasts of regional employment patterns in Germany. Neural networks are modern statistical tools based on learning algorithms that are able to process large amounts of data. Neural networks are enjoying

  18. Characterizing cartilage microarchitecture on phase-contrast x-ray computed tomography using deep learning with convolutional neural networks

    Science.gov (United States)

    Deng, Botao; Abidin, Anas Z.; D'Souza, Adora M.; Nagarajan, Mahesh B.; Coan, Paola; Wismüller, Axel

    2017-03-01

    The effectiveness of phase contrast X-ray computed tomography (PCI-CT) in visualizing human patellar cartilage matrix has been demonstrated due to its ability to capture soft tissue contrast on a micrometer resolution scale. Recent studies have shown that off-the-shelf Convolutional Neural Network (CNN) features learned from a nonmedical data set can be used for medical image classification. In this paper, we investigate the ability of features extracted from two different CNNs for characterizing chondrocyte patterns in the cartilage matrix. We obtained features from 842 regions of interest annotated on PCI-CT images of human patellar cartilage using CaffeNet and Inception-v3 Network, which were then used in a machine learning task involving support vector machines with radial basis function kernel to classify the ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area (AUC) under the Receiver Operating Characteristic (ROC) curve. The best classification performance was observed with features from Inception-v3 network (AUC = 0.95), which outperforms features extracted from CaffeNet (AUC = 0.91). These results suggest that such characterization of chondrocyte patterns using features from internal layers of CNNs can be used to distinguish between healthy and osteoarthritic tissue with high accuracy.

  19. Vectorized algorithms for spiking neural network simulation.

    Science.gov (United States)

    Brette, Romain; Goodman, Dan F M

    2011-06-01

    High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.

  20. Optimal neural computations require analog processors

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    This paper discusses some of the limitations of hardware implementations of neural networks. The authors start by presenting neural structures and their biological inspirations, while mentioning the simplifications leading to artificial neural networks. Further, the focus will be on hardware imposed constraints. They will present recent results for three different alternatives of parallel implementations of neural networks: digital circuits, threshold gate circuits, and analog circuits. The area and the delay will be related to the neurons` fan-in and to the precision of their synaptic weights. The main conclusion is that hardware-efficient solutions require analog computations, and suggests the following two alternatives: (i) cope with the limitations imposed by silicon, by speeding up the computation of the elementary silicon neurons; (2) investigate solutions which would allow the use of the third dimension (e.g. using optical interconnections).

  1. An Application of Artificial Neural Network to Compute the Resonant Frequency of E-Shaped Compact Microstrip Antennas

    Science.gov (United States)

    Akdagli, Ali; Toktas, Abdurrahim; Kayabasi, Ahmet; Develi, Ibrahim

    2013-09-01

    An application of artificial neural network (ANN) based on multilayer perceptrons (MLP) to compute the resonant frequency of E-shaped compact microstrip antennas (ECMAs) is presented in this paper. The resonant frequencies of 144 ECMAs with different dimensions and electrical parameters were firstly determined by using IE3D(tm) software based on the method of moments (MoM), then the ANN model for computing the resonant frequency was built by considering the simulation data. The parameters and respective resonant frequency values of 130 simulated ECMAs were employed for training and the remaining 14 ECMAs were used for testing the model. The computed resonant frequencies for training and testing by ANN were obtained with the average percentage errors (APE) of 0.257% and 0.523%, respectively. The validity and accuracy of the present approach was verified on the measurement results of an ECMA fabricated in this study. Furthermore, the effects of the slots loading method over the resonant frequency were investigated to explain the relationship between the slots and resonant frequency.

  2. Applications of Pulse-Coupled Neural Networks

    CERN Document Server

    Ma, Yide; Wang, Zhaobin

    2011-01-01

    "Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Sci

  3. Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy

    Science.gov (United States)

    Kurtulus, Bedri; Razack, Moumtaz

    2010-02-01

    SummaryThis paper compares two methods for modeling karst aquifers, which are heterogeneous, highly non-linear, and hierarchical systems. There is a clear need to model these systems given the crucial role they play in water supply in many countries. In recent years, the main components of soft computing (fuzzy logic (FL), and Artificial Neural Networks, (ANNs)) have come to prevail in the modeling of complex non-linear systems in different scientific and technologic disciplines. In this study, Artificial Neural Networks and Adaptive Neuro-Fuzzy Interface System (ANFIS) methods were used for the prediction of daily discharge of karstic aquifers and their capability was compared. The approach was applied to 7 years of daily data of La Rochefoucauld karst system in south-western France. In order to predict the karst daily discharges, single-input (rainfall, piezometric level) vs. multiple-input (rainfall and piezometric level) series were used. In addition to these inputs, all models used measured or simulated discharges from the previous days with a specified delay. The models were designed in a Matlab™ environment. An automatic procedure was used to select the best calibrated models. Daily discharge predictions were then performed using the calibrated models. Comparing predicted and observed hydrographs indicates that both models (ANN and ANFIS) provide close predictions of the karst daily discharges. The summary statistics of both series (observed and predicted daily discharges) are comparable. The performance of both models is improved when the number of inputs is increased from one to two. The root mean square error between the observed and predicted series reaches a minimum for two-input models. However, the ANFIS model demonstrates a better performance than the ANN model to predict peak flow. The ANFIS approach demonstrates a better generalization capability and slightly higher performance than the ANN, especially for peak discharges.

  4. Xenopus laevis: an ideal experimental model for studying the developmental dynamics of neural network assembly and sensory-motor computations.

    Science.gov (United States)

    Straka, Hans; Simmers, John

    2012-04-01

    The amphibian Xenopus laevis represents a highly amenable model system for exploring the ontogeny of central neural networks, the functional establishment of sensory-motor transformations, and the generation of effective motor commands for complex behaviors. Specifically, the ability to employ a range of semi-intact and isolated preparations for in vitro morphophysiological experimentation has provided new insights into the developmental and integrative processes associated with the generation of locomotory behavior during changing life styles. In vitro electrophysiological studies have begun to explore the functional assembly, disassembly and dynamic plasticity of spinal pattern generating circuits as Xenopus undergoes the developmental switch from larval tail-based swimming to adult limb-based locomotion. Major advances have also been made in understanding the developmental onset of multisensory signal processing for reactive gaze and posture stabilizing reflexes during self-motion. Additionally, recent evidence from semi-intact animal and isolated CNS experiments has provided compelling evidence that in Xenopus tadpoles, predictive feed-forward signaling from the spinal locomotor pattern generator are engaged in minimizing visual disturbances during tail-based swimming. This new concept questions the traditional view of retinal image stabilization that in vertebrates has been exclusively attributed to sensory-motor transformations of body/head motion-detecting signals. Moreover, changes in visuomotor demands associated with the developmental transition in propulsive strategy from tail- to limb-based locomotion during metamorphosis presumably necessitates corresponding adaptive alterations in the intrinsic spinoextraocular coupling mechanism. Consequently, Xenopus provides a unique opportunity to address basic questions on the developmental dynamics of neural network assembly and sensory-motor computations for vertebrate motor behavior in general. Copyright

  5. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.

    Science.gov (United States)

    Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi

    2011-11-01

    Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. [Artificial neural networks in Neurosciences].

    Science.gov (United States)

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  7. Hindcasting cyclonic waves using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Rao, S.; Chakravarty, N.V.

    the backpropagation networks with updated algorithms are used in this paper. A brief description about the working of a back propagation neural network and three updated algorithms is given below. Backpropagation learning: Backpropagation is the most widely used... algorithm for supervised learning with multi layer feed forward networks. The idea of the backpropagation learning algorithm is the repeated application of the chain rule to compute the influence of each weight in the network with respect to an arbitrary...

  8. Modular representation of layered neural networks.

    Science.gov (United States)

    Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio

    2018-01-01

    Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Research of The Deeper Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao You Rong

    2016-01-01

    Full Text Available Neural networks (NNs have powerful computational abilities and could be used in a variety of applications; however, training these networks is still a difficult problem. With different network structures, many neural models have been constructed. In this report, a deeper neural networks (DNNs architecture is proposed. The training algorithm of deeper neural network insides searching the global optimal point in the actual error surface. Before the training algorithm is designed, the error surface of the deeper neural network is analyzed from simple to complicated, and the features of the error surface is obtained. Based on these characters, the initialization method and training algorithm of DNNs is designed. For the initialization, a block-uniform design method is proposed which separates the error surface into some blocks and finds the optimal block using the uniform design method. For the training algorithm, the improved gradient-descent method is proposed which adds a penalty term into the cost function of the old gradient descent method. This algorithm makes the network have a great approximating ability and keeps the network state stable. All of these improve the practicality of the neural network.

  10. Application of Reinforcement Learning Algorithms for the Adaptive Computation of the Smoothing Parameter for Probabilistic Neural Network.

    Science.gov (United States)

    Kusy, Maciej; Zajdel, Roman

    2015-09-01

    In this paper, we propose new methods for the choice and adaptation of the smoothing parameter of the probabilistic neural network (PNN). These methods are based on three reinforcement learning algorithms: Q(0)-learning, Q(λ)-learning, and stateless Q-learning. We regard three types of PNN classifiers: the model that uses single smoothing parameter for the whole network, the model that utilizes single smoothing parameter for each data attribute, and the model that possesses the matrix of smoothing parameters different for each data variable and data class. Reinforcement learning is applied as the method of finding such a value of the smoothing parameter, which ensures the maximization of the prediction ability. PNN models with smoothing parameters computed according to the proposed algorithms are tested on eight databases by calculating the test error with the use of the cross validation procedure. The results are compared with state-of-the-art methods for PNN training published in the literature up to date and, additionally, with PNN whose sigma is determined by means of the conjugate gradient approach. The results demonstrate that the proposed approaches can be used as alternative PNN training procedures.

  11. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  12. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  13. Better Computer Go Player with Neural Network and Long-term Prediction

    OpenAIRE

    Tian, Yuandong; Zhu, Yan

    2015-01-01

    Competing with top human players in the ancient game of Go has been a long-term goal of artificial intelligence. Go's high branching factor makes traditional search techniques ineffective, even on leading-edge hardware, and Go's evaluation function could change drastically with one stone change. Recent works [Maddison et al. (2015); Clark & Storkey (2015)] show that search is not strictly necessary for machine Go players. A pure pattern-matching approach, based on a Deep Convolutional Neural ...

  14. Constructive autoassociative neural network for facial recognition.

    Directory of Open Access Journals (Sweden)

    Bruno J T Fernandes

    Full Text Available Autoassociative artificial neural networks have been used in many different computer vision applications. However, it is difficult to define the most suitable neural network architecture because this definition is based on previous knowledge and depends on the problem domain. To address this problem, we propose a constructive autoassociative neural network called CANet (Constructive Autoassociative Neural Network. CANet integrates the concepts of receptive fields and autoassociative memory in a dynamic architecture that changes the configuration of the receptive fields by adding new neurons in the hidden layer, while a pruning algorithm removes neurons from the output layer. Neurons in the CANet output layer present lateral inhibitory connections that improve the recognition rate. Experiments in face recognition and facial expression recognition show that the CANet outperforms other methods presented in the literature.

  15. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  16. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... examined, and it appears that considering 'normal' neural network models with, say, 500 samples, the problem of over-fitting is neglible, and therefore it is not taken into consideration afterwards. Numerous model types, often met in control applications, are implemented as neural network models...... Kalmann filter) representing state space description. The potentials of neural networks for control of non-linear processes are also examined, focusing on three different groups of control concepts, all considered as generalizations of known linear control concepts to handle also non-linear processes...

  17. An Expedient Study on Back-Propagation (BPN) Neural Networks for Modeling Automated Evaluation of the Answers and Progress of Deaf Students' That Possess Basic Knowledge of the English Language and Computer Skills

    Science.gov (United States)

    Vrettaros, John; Vouros, George; Drigas, Athanasios S.

    This article studies the expediency of using neural networks technology and the development of back-propagation networks (BPN) models for modeling automated evaluation of the answers and progress of deaf students' that possess basic knowledge of the English language and computer skills, within a virtual e-learning environment. The performance of the developed neural models is evaluated with the correlation factor between the neural networks' response values and the real value data as well as the percentage measurement of the error between the neural networks' estimate values and the real value data during its training process and afterwards with unknown data that weren't used in the training process.

  18. An Optoelectronic Neural Network

    Science.gov (United States)

    Neil, Mark A. A.; White, Ian H.; Carroll, John E.

    1990-02-01

    We describe and present results of an optoelectronic neural network processing system. The system uses an algorithm based on the Hebbian learning rule to memorise a set of associated vector pairs. Recall occurs by the processing of the input vector with these stored associations in an incoherent optical vector multiplier using optical polarisation rotating liquid crystal spatial light modulators to store the vectors and an optical polarisation shadow casting technique to perform multiplications. Results are detected on a photodiode array and thresholded electronically by a controlling microcomputer. The processor is shown to work in autoassociative and heteroassociative modes with up to 10 stored memory vectors of length 64 (equivalent to 64 neurons) and a cycle time of 50ms. We discuss the limiting factors at work in this system, how they affect its scalability and the general applicability of its principles to other systems.

  19. Computing with Spiking Neuron Networks

    NARCIS (Netherlands)

    H. Paugam-Moisy; S.M. Bohte (Sander); G. Rozenberg; T.H.W. Baeck (Thomas); J.N. Kok (Joost)

    2012-01-01

    htmlabstractAbstract Spiking Neuron Networks (SNNs) are often referred to as the 3rd gener- ation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an ac- curate modeling of synaptic interactions

  20. Computer-aided diagnosis of mammography using an artificial neural network: predicting the invasiveness of breast cancers from image features

    Science.gov (United States)

    Lo, Joseph Y.; Kim, Jeffrey; Baker, Jay A.; Floyd, Carey E., Jr.

    1996-04-01

    The study aim is to develop an artificial neural network (ANN) for computer-aided diagnosis of mammography. Using 9 mammographic image features and patient age, the ANN predicted whether breast lesions were benign, invasive malignant, or noninvasive malignant. Given only 97 malignant patients, the 3-layer backpropagation ANN successfully predicted the invasiveness of those breast cancers, performing with Az of 0.88 plus or minus 0.03. To determine more generalized clinical performance, a different ANN was developed using 266 consecutive patients (97 malignant, 169 benign). This ANN predicted whether those patients were benign or noninvasive malignant vs. invasive malignant with Az of 0.86 plus or minus 0.03. This study is unique because it is the first to predict the invasiveness of breast cancers using mammographic features and age. This knowledge, which was previously available only through surgical biopsy, may assist in the planning of surgical procedures for patients with breast lesions, and may help reduce the cost and morbidity associated with unnecessary surgical biopsies.

  1. Evaluation of a Novel Computer Color Matching System Based on the Improved Back-Propagation Neural Network Model.

    Science.gov (United States)

    Wei, Jiaqiang; Peng, Mengdong; Li, Qing; Wang, Yining

    2016-11-09

    To explore the feasibility of a novel computer color-matching (CCM) system based on the improved back-propagation neural network (BPNN) model by comparing it with the traditional visual method. Forty-three metal-ceramic specimens were fabricated by proportionally mixing porcelain powders. Thirty-nine specimens were randomly selected to train the BPNN model, while the remaining four specimens were used to test and calibrate the model. A CCM system based on the improved BPNN model was constructed using MATLAB software. A comparison of the novel CCM system and the traditional visual method was conducted by evaluating the color reproduction results of 10 maxillary central incisors. Metal-ceramic specimens were fabricated using two color reproduction approaches. Color distributions (L*, a*, and b*) of the target teeth and of the corresponding metal-ceramic specimens were measured using a spectroradiometer. Color differences (ΔE) and color distributions (ΔL*, Δa*, and Δb*) between the teeth and their corresponding specimens were calculated. The average ΔE value of the CCM system was 1.89 ± 0.75, which was lower than that of the visual approach (3.54 ± 1.11, p systems, except for ΔL* (p > 0.05). The novel CCM system produced greater accuracy in color reproduction within the given color space than the traditional visual approach. © 2016 by the American College of Prosthodontists.

  2. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...

  3. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    simulated process and compared. The closing chapter describes some practical experiments, where the different control concepts and training methods are tested on the same practical process operating in very noisy environments. All tests confirm that neural networks also have the potential to be trained......The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...

  4. Neural networks for nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1995-12-31

    In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.

  5. Application of Artificial Neural Network to Computer-Aided Diagnosis of Coronary Artery Disease in Myocardial SPECT Bull's-eye Images

    National Research Council Canada - National Science Library

    Fujita, Hiroshi; Katafuchi, Tetsuro; Uehara, Toshiisa; Nishimura, Tsunehiko

    1992-01-01

    .... The technique employs a neural network to analyze 201 Tl myocardial SPECT bull's-eye images. This multi-layer feed-forward neural network with a backpropagation algorithm has 256 input units (pattern...

  6. Symbolic processing in neural networks

    OpenAIRE

    Neto, João Pedro; Hava T Siegelmann; Costa,J.Félix

    2003-01-01

    In this paper we show that programming languages can be translated into recurrent (analog, rational weighted) neural nets. Implementation of programming languages in neural nets turns to be not only theoretical exciting, but has also some practical implications in the recent efforts to merge symbolic and sub symbolic computation. To be of some use, it should be carried in a context of bounded resources. Herein, we show how to use resource bounds to speed up computations over neural nets, thro...

  7. Neural Computations in Binaural Hearing

    Science.gov (United States)

    Wagner, Hermann

    Binaural hearing helps humans and animals to localize and unmask sounds. Here, binaural computations in the barn owl's auditory system are discussed. Barn owls use the interaural time difference (ITD) for azimuthal sound localization, and they use the interaural level difference (ELD) for elevational sound localization. ITD and ILD and their precursors are processed in separate neural pathways, the time pathway and the intensity pathway, respectively. Representation of ITD involves four main computational steps, while the representation of ILD is accomplished in three steps. In the discussion neural processing in the owl's auditory system is compared with neural computations present in mammals.

  8. Analyzing the Effects of Gap Junction Blockade on Neural Synchrony via a Motoneuron Network Computational Model

    Directory of Open Access Journals (Sweden)

    Heraldo Memelli

    2012-01-01

    Full Text Available In specific regions of the central nervous system (CNS, gap junctions have been shown to participate in neuronal synchrony. Amongst the CNS regions identified, some populations of brainstem motoneurons are known to be coupled by gap junctions. The application of various gap junction blockers to these motoneuron populations, however, has led to mixed results regarding their synchronous firing behavior, with some studies reporting a decrease in synchrony while others surprisingly find an increase in synchrony. To address this discrepancy, we employ a neuronal network model of Hodgkin-Huxley-style motoneurons connected by gap junctions. Using this model, we implement a series of simulations and rigorously analyze their outcome, including the calculation of a measure of neuronal synchrony. Our simulations demonstrate that under specific conditions, uncoupling of gap junctions is capable of producing either a decrease or an increase in neuronal synchrony. Subsequently, these simulations provide mechanistic insight into these different outcomes.

  9. Advances in Artificial Neural Networks - Methodological Development and Application

    Science.gov (United States)

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  10. Artificial astrocytes improve neural network performance.

    Science.gov (United States)

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  11. A quantum-implementable neural network model

    Science.gov (United States)

    Chen, Jialin; Wang, Lingli; Charbon, Edoardo

    2017-10-01

    A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.

  12. Emerging trends in neuro engineering and neural computation

    CERN Document Server

    Lee, Kendall; Garmestani, Hamid; Lim, Chee

    2017-01-01

    This book focuses on neuro-engineering and neural computing, a multi-disciplinary field of research attracting considerable attention from engineers, neuroscientists, microbiologists and material scientists. It explores a range of topics concerning the design and development of innovative neural and brain interfacing technologies, as well as novel information acquisition and processing algorithms to make sense of the acquired data. The book also highlights emerging trends and advances regarding the applications of neuro-engineering in real-world scenarios, such as neural prostheses, diagnosis of neural degenerative diseases, deep brain stimulation, biosensors, real neural network-inspired artificial neural networks (ANNs) and the predictive modeling of information flows in neuronal networks. The book is broadly divided into three main sections including: current trends in technological developments, neural computation techniques to make sense of the neural behavioral data, and application of these technologie...

  13. Artificial Neural Networks·

    Indian Academy of Sciences (India)

    differences between biological neural networks (BNNs) of the brain and ANN s. A thorough understanding of ... neurons. Artificial neural models are loosely based on biology since a complete understanding of the .... A learning scheme for updating a neuron's connections (weights) was proposed by Donald Hebb in 1949.

  14. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  15. Artificial Neural Network for Displacement Vectors Determination

    Directory of Open Access Journals (Sweden)

    P. Bohmann

    1997-09-01

    Full Text Available An artificial neural network (NN for displacement vectors (DV determination is presented in this paper. DV are computed in areas which are essential for image analysis and computer vision, in areas where are edges, lines, corners etc. These special features are found by edges operators with the following filtration. The filtration is performed by a threshold function. The next step is DV computation by 2D Hamming artificial neural network. A method of DV computation is based on the full search block matching algorithms. The pre-processing (edges finding is the reason why the correlation function is very simple, the process of DV determination needs less computation and the structure of the NN is simpler.

  16. Memristor-based neural networks

    Science.gov (United States)

    Thomas, Andy

    2013-03-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them.

  17. Pansharpening by Convolutional Neural Networks

    National Research Council Canada - National Science Library

    Masi, Giuseppe; Cozzolino, Davide; Verdoliva, Luisa; Scarpa, Giuseppe

    2016-01-01

    A new pansharpening method is proposed, based on convolutional neural networks. We adapt a simple and effective three-layer architecture recently proposed for super-resolution to the pansharpening problem...

  18. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

    Science.gov (United States)

    Alvarenga de Moura Meneses, Anderson; Giusti, Alessandro; de Almeida, André Pereira; Parreira Nogueira, Liebert; Braz, Delson; Cely Barroso, Regina; deAlmeida, Carlos Eduardo

    2011-12-01

    Synchrotron Radiation (SR) X-ray micro-Computed Tomography (μCT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-μCT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-μCT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-μCT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.

  19. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga de Moura Meneses, Anderson, E-mail: ameneses@ieee.org [Radiological Sciences Laboratory, Rio de Janeiro State University, Rua Sao Francisco Xavier 524, CEP 20550-900, RJ (Brazil); Giusti, Alessandro [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Pereira de Almeida, Andre; Parreira Nogueira, Liebert; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro, RJ (Brazil); Cely Barroso, Regina [Laboratory of Applied Physics on Biomedical Sciences, Physics Department, Rio de Janeiro State University, RJ (Brazil); Almeida, Carlos Eduardo de [Radiological Sciences Laboratory, Rio de Janeiro State University, Rua Sao Francisco Xavier 524, CEP 20550-900, RJ (Brazil)

    2011-12-21

    Synchrotron Radiation (SR) X-ray micro-Computed Tomography ({mu}CT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-{mu}CT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-{mu}CT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-{mu}CT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.

  20. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.

    Science.gov (United States)

    Blake, R W; Ng, H; Chan, K H S; Li, J

    2008-09-01

    Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications).

  1. Real-time ocular artifact suppression using recurrent neural network for electro-encephalogram based brain-computer interface.

    Science.gov (United States)

    Erfanian, A; Mahmoudi, B

    2005-03-01

    The paper presents an adaptive noise canceller (ANC) filter using an artificial neural network for real-time removal of electro-oculogram (EOG) interference from electro-encephalogram (EEG) signals. Conventional ANC filters are based on linear models of interference. Such linear models provide poorer prediction for biomedical signals. In this work, a recurrent neural network was employed for modelling the interference signals. The eye movement and eye blink artifacts were recorded by the placing of an electrode on the forehead above the left eye and an electrode on the left temple. The reference signal was then generated by the data collected from the forehead electrode being added to data recorded from the temple electrode. The reference signal was also contaminated by the EEG. To reduce the EEG interference, the reference signal was first low-pass filtered by a moving averaged filter and then applied to the ANC. Matlab Simulink was used for real-time data acquisition, filtering and ocular artifact suppression. Simulation results show the validity and effectiveness of the technique with different signal-to-noise ratios (SNRs) of the primary signal. On average, a significant improvement in SNR up to 27 dB was achieved with the recurrent neural network. The results from real data demonstrate that the proposed scheme removes ocular artifacts from contaminated EEG signals and is suitable for real-time and short-time EEG recordings.

  2. Application of a computational neural network to optimize the fluorescence signal from a receptor-ligand interaction on a microfluidic chip.

    Science.gov (United States)

    Ortega, Maria; Hanrahan, Grady; Arceo, Marilyn; Gomez, Frank A

    2015-02-01

    We describe the use of a computational neural network platform to optimize the fluorescence upon binding 5-carboxyfluorescein-d-Ala-d-Ala-d-Ala (5-FAM(DA)3 ) (1) to the antibiotic teicoplanin covalently attached to a glass slide. A three-level response surface experimental design was used as the first stage of investigation. Subsequently, three defined experimental parameters were examined by the neural network approach: (i) the concentration of teicoplanin used to derivatize a glass platform on the microfluidic device, (ii) the time required for the immobilization of teicoplanin on the platform, and (iii) the length of time 1 is allowed to equilibrate with teicoplanin in the microfluidic channel. Optimal neural structure provided a best fit model, both for the training set (r(2) = 0.961) and test set (r(2) = 0.934) data. Model simulated results were experimentally validated with excellent agreement (% difference) between experimental and predicted fluorescence shown, thus demonstrating efficiency of the neural network approach. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  4. Biologically Inspired Modular Neural Networks

    OpenAIRE

    Azam, Farooq

    2000-01-01

    This dissertation explores the modular learning in artificial neural networks that mainly driven by the inspiration from the neurobiological basis of the human learning. The presented modularization approaches to the neural network design and learning are inspired by the engineering, complexity, psychological and neurobiological aspects. The main theme of this dissertation is to explore the organization and functioning of the brain to discover new structural and learning ...

  5. Parameter estimation using compensatory neural networks

    Indian Academy of Sciences (India)

    Proposed here is a new neuron model, a basis for Compensatory Neural Network Architecture (CNNA), which not only reduces the total number of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron model as well as the higher ...

  6. Convolutional Neural Networks - Generalizability and Interpretations

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David

    from data despite it being limited in amount or context representation. Within Machine Learning this thesis focuses on Convolutional Neural Networks for Computer Vision. The research aims to answer how to explore a model's generalizability to the whole population of data samples and how to interpret...

  7. drinking water treatment using artificial neural network

    African Journals Online (AJOL)

    ogwueleka

    synaptic weights are used to store the knowledge.” The neural network approach is a branch of artificial intelligence. The ANN is based on a model of the human neurological system that consists of basic computing elements (called neurons) interconnected together (Figure 1). The model used for all classification attempts.

  8. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks.

    Directory of Open Access Journals (Sweden)

    Nafise Erfanian Saeedi

    2016-04-01

    Full Text Available Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.

  9. Training Deep Spiking Neural Networks Using Backpropagation.

    Science.gov (United States)

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael

    2016-01-01

    Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.

  10. Neural networks advances and applications 2

    CERN Document Server

    Gelenbe, E

    1992-01-01

    The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoret

  11. Implementing Signature Neural Networks with Spiking Neurons.

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence

  12. Implementing Signature Neural Networks with Spiking Neurons

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the

  13. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  14. Runoff Modelling in Urban Storm Drainage by Neural Networks

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld

    1995-01-01

    A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....

  15. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2017-10-01

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  16. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  17. Spiking modular neural networks: A neural network modeling approach for hydrological processes

    National Research Council Canada - National Science Library

    Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey

    2006-01-01

    .... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...

  18. An efficient neural network approach to dynamic robot motion planning.

    Science.gov (United States)

    Yang, S X; Meng, M

    2000-03-01

    In this paper, a biologically inspired neural network approach to real-time collision-free motion planning of mobile robots or robot manipulators in a nonstationary environment is proposed. Each neuron in the topologically organized neural network has only local connections, whose neural dynamics is characterized by a shunting equation. Thus the computational complexity linearly depends on the neural network size. The real-time robot motion is planned through the dynamic activity landscape of the neural network without any prior knowledge of the dynamic environment, without explicitly searching over the free workspace or the collision paths, and without any learning procedures. Therefore it is computationally efficient. The global stability of the neural network is guaranteed by qualitative analysis and the Lyapunov stability theory. The effectiveness and efficiency of the proposed approach are demonstrated through simulation studies.

  19. Computational simulation: astrocyte-induced depolarization of neighboring neurons mediates synchronous UP states in a neural network.

    Science.gov (United States)

    Kuriu, Takayuki; Kakimoto, Yuta; Araki, Osamu

    2015-09-01

    Although recent reports have suggested that synchronous neuronal UP states are mediated by astrocytic activity, the mechanism responsible for this remains unknown. Astrocytic glutamate release synchronously depolarizes adjacent neurons, while synaptic transmissions are blocked. The purpose of this study was to confirm that astrocytic depolarization, propagated through synaptic connections, can lead to synchronous neuronal UP states. We applied astrocytic currents to local neurons in a neural network consisting of model cortical neurons. Our results show that astrocytic depolarization may generate synchronous UP states for hundreds of milliseconds in neurons even if they do not directly receive glutamate release from the activated astrocyte.

  20. Neural networks: Application to medical imaging

    Science.gov (United States)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  1. Multiple image sensor data fusion through artificial neural networks

    Science.gov (United States)

    With multisensor data fusion technology, the data from multiple sensors are fused in order to make a more accurate estimation of the environment through measurement, processing and analysis. Artificial neural networks are the computational models that mimic biological neural networks. With high per...

  2. Optimal Brain Surgeon on Artificial Neural Networks in

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Job, Jonas Hultmann; Klyver, Katrine

    2012-01-01

    It is shown how the procedure know as optimal brain surgeon can be used to trim and optimize artificial neural networks in nonlinear structural dynamics. Beside optimizing the neural network, and thereby minimizing computational cost in simulation, the surgery procedure can also serve as a quick...

  3. Classes of feedforward neural networks and their circuit complexity

    NARCIS (Netherlands)

    Shawe-Taylor, John S.; Anthony, Martin H.G.; Kern, Walter

    1992-01-01

    This paper aims to place neural networks in the context of boolean circuit complexity. We define appropriate classes of feedforward neural networks with specified fan-in, accuracy of computation and depth and using techniques of communication complexity proceed to show that the classes fit into a

  4. Multigradient for Neural Networks for Equalizers

    Directory of Open Access Journals (Sweden)

    Chulhee Lee

    2003-06-01

    Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.

  5. Multiprocessor Neural Network in Healthcare.

    Science.gov (United States)

    Godó, Zoltán Attila; Kiss, Gábor; Kocsis, Dénes

    2015-01-01

    A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc.

  6. Computer networks monitoring

    OpenAIRE

    Antončič , Polona

    2012-01-01

    The present thesis entitled Computer Networks Monitoring introduces the basics of computer networks, the aim and the computer data reclamation from networking devices, software for the system follow-up together with the case of monitoring a real network with tens of network devices. The networks represent an important part in the modern information technology and serve for the exchange of data and sources which makes their impeccability of crucial importance. Correct and efficient sys...

  7. Cotton genotypes selection through artificial neural networks.

    Science.gov (United States)

    Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B

    2017-09-27

    Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.

  8. Neural network approaches for noisy language modeling.

    Science.gov (United States)

    Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid

    2013-11-01

    Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.

  9. Digital Neural Networks for New Media

    Science.gov (United States)

    Spaanenburg, Lambert; Malki, Suleyman

    Neural Networks perform computationally intensive tasks offering smart solutions for many new media applications. A number of analog and mixed digital/analog implementations have been proposed to smooth the algorithmic gap. But gradually, the digital implementation has become feasible, and the dedicated neural processor is on the horizon. A notable example is the Cellular Neural Network (CNN). The analog direction has matured for low-power, smart vision sensors; the digital direction is gradually being shaped into an IP-core for algorithm acceleration, especially for use in FPGA-based high-performance systems. The chapter discusses the next step towards a flexible and scalable multi-core engine using Application-Specific Integrated Processors (ASIP). This topographic engine can serve many new media tasks, as illustrated by novel applications in Homeland Security. We conclude with a view on the CNN kaleidoscope for the year 2020.

  10. Spacecraft Neural Network Control System Design using FPGA

    OpenAIRE

    Hanaa T. El-Madany; Faten H. Fahmy; Ninet M. A. El-Rahman; Hassen T. Dorrah

    2011-01-01

    Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffer...

  11. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  12. voltage compensation using artificial neural network

    African Journals Online (AJOL)

    Offor Theophilos

    VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK: A CASE STUDY OF. RUMUOLA ... using artificial neural network (ANN) controller based dynamic voltage restorer (DVR). ... substation by simulating with sample of average voltage for Omerelu, Waterlines, Rumuola, Shell Industrial and Barracks.

  13. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  14. Identifying Jets Using Artifical Neural Networks

    Science.gov (United States)

    Rosand, Benjamin; Caines, Helen; Checa, Sofia

    2017-09-01

    We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.

  15. Hierarchical Neural Network Structures for Phoneme Recognition

    CERN Document Server

    Vasquez, Daniel; Minker, Wolfgang

    2013-01-01

    In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a  Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.

  16. Introduction to computer networking

    CERN Document Server

    Robertazzi, Thomas G

    2017-01-01

    This book gives a broad look at both fundamental networking technology and new areas that support it and use it. It is a concise introduction to the most prominent, recent technological topics in computer networking. Topics include network technology such as wired and wireless networks, enabling technologies such as data centers, software defined networking, cloud and grid computing and applications such as networks on chips, space networking and network security. The accessible writing style and non-mathematical treatment makes this a useful book for the student, network and communications engineer, computer scientist and IT professional. • Features a concise, accessible treatment of computer networking, focusing on new technological topics; • Provides non-mathematical introduction to networks in their most common forms today;< • Includes new developments in switching, optical networks, WiFi, Bluetooth, LTE, 5G, and quantum cryptography.

  17. Aphasia Classification Using Neural Networks

    DEFF Research Database (Denmark)

    Axer, H.; Jantzen, Jan; Berks, G.

    2000-01-01

    A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...

  18. Computer-Aided Diagnosis of Parkinson's Disease Using Complex-Valued Neural Networks and mRMR Feature Selection Algorithm.

    Science.gov (United States)

    Peker, Musa; Sen, Baha; Delen, Dursun

    2015-01-01

    Parkinson's disease (PD) is a neurological disorder which has a significant social and economic impact. PD is diagnosed by clinical observation and evaluations, coupled with a PD rating scale. However, these methods may be insufficient, especially in the initial phase of the disease. The processes are tedious and time-consuming, and hence systems that can automatically offer a diagnosis are needed. In this study, a novel method for the diagnosis of PD is proposed. Biomedical sound measurements obtained from continuous phonation samples were used as attributes. First, a minimum redundancy maximum relevance (mRMR) attribute selection algorithm was applied for the identification of the effective attributes. After conversion to a complex number, the resulting attributes are presented as input data to the complex-valued artificial neural network (CVANN). The proposed novel system might be a powerful tool for effective diagnosis of PD.

  19. Localizing Tortoise Nests by Neural Networks.

    Directory of Open Access Journals (Sweden)

    Roberto Barbuti

    Full Text Available The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating. Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN. We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours, the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.

  20. One pass learning for generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2016-01-01

    Generalized classifier neural network introduced as a kind of radial basis function neural network, uses gradient descent based optimized smoothing parameter value to provide efficient classification. However, optimization consumes quite a long time and may cause a drawback. In this work, one pass learning for generalized classifier neural network is proposed to overcome this disadvantage. Proposed method utilizes standard deviation of each class to calculate corresponding smoothing parameter. Since different datasets may have different standard deviations and data distributions, proposed method tries to handle these differences by defining two functions for smoothing parameter calculation. Thresholding is applied to determine which function will be used. One of these functions is defined for datasets having different range of values. It provides balanced smoothing parameters for these datasets through logarithmic function and changing the operation range to lower boundary. On the other hand, the other function calculates smoothing parameter value for classes having standard deviation smaller than the threshold value. Proposed method is tested on 14 datasets and performance of one pass learning generalized classifier neural network is compared with that of probabilistic neural network, radial basis function neural network, extreme learning machines, and standard and logarithmic learning generalized classifier neural network in MATLAB environment. One pass learning generalized classifier neural network provides more than a thousand times faster classification than standard and logarithmic generalized classifier neural network. Due to its classification accuracy and speed, one pass generalized classifier neural network can be considered as an efficient alternative to probabilistic neural network. Test results show that proposed method overcomes computational drawback of generalized classifier neural network and may increase the classification performance. Copyright

  1. Analysis of neural networks through base functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  2. Simplified LQG Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...

  3. Advances in Artificial Neural Networks – Methodological Development and Application

    Directory of Open Access Journals (Sweden)

    Yanbo Huang

    2009-08-01

    Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological

  4. Computation of the Speed of Four In-Wheel Motors of an Electric Vehicle Using a Radial Basis Neural Network

    Directory of Open Access Journals (Sweden)

    M. Yildirim

    2016-12-01

    Full Text Available This paper presents design and speed estimation for an Electric Vehicle (EV with four in-wheel motors using Radial Basis Neural Network (RBNN. According to the steering angle and the speed of EV, the speeds of all wheels are calculated by equations derived from the Ackermann-Jeantand model using CoDeSys Software Package. The Electronic Differential System (EDS is also simulated by Matlab/Simulink using the mathematical equations. RBNN is used for the estimation of the wheel speeds based on the steering angle and EV speed. Further, different levels of noise are added to the steering angle and the EV speed. The speeds of front wheels calculated by CoDeSys are sent to two Induction Motor (IM drives via a Controller Area Network-Bus (CAN-Bus. These speed values are measured experimentally by a tachometer changing the steering angle and EV speed. RBNN results are verified by CoDeSys, Simulink, and experimental results. As a result, it is observed that RBNN is a good estimator for EDS of an EV with in-wheel motor due to its robustness to different levels of sensor noise.

  5. Artificial neural networks as quantum associative memory

    Science.gov (United States)

    Hamilton, Kathleen; Schrock, Jonathan; Imam, Neena; Humble, Travis

    We present results related to the recall accuracy and capacity of Hopfield networks implemented on commercially available quantum annealers. The use of Hopfield networks and artificial neural networks as content-addressable memories offer robust storage and retrieval of classical information, however, implementation of these models using currently available quantum annealers faces several challenges: the limits of precision when setting synaptic weights, the effects of spurious spin-glass states and minor embedding of densely connected graphs into fixed-connectivity hardware. We consider neural networks which are less than fully-connected, and also consider neural networks which contain multiple sparsely connected clusters. We discuss the effect of weak edge dilution on the accuracy of memory recall, and discuss how the multiple clique structure affects the storage capacity. Our work focuses on storage of patterns which can be embedded into physical hardware containing n States Department of Defense and used resources of the Computational Research and Development Programs as Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with the U. S. Department of Energy.

  6. Dynamic properties of cellular neural networks

    Directory of Open Access Journals (Sweden)

    Angela Slavova

    1993-01-01

    Full Text Available Dynamic behavior of a new class of information-processing systems called Cellular Neural Networks is investigated. In this paper we introduce a small parameter in the state equation of a cellular neural network and we seek for periodic phenomena. New approach is used for proving stability of a cellular neural network by constructing Lyapunov's majorizing equations. This algorithm is helpful for finding a map from initial continuous state space of a cellular neural network into discrete output. A comparison between cellular neural networks and cellular automata is made.

  7. Multilingual Text Detection with Nonlinear Neural Network

    Directory of Open Access Journals (Sweden)

    Lin Li

    2015-01-01

    Full Text Available Multilingual text detection in natural scenes is still a challenging task in computer vision. In this paper, we apply an unsupervised learning algorithm to learn language-independent stroke feature and combine unsupervised stroke feature learning and automatically multilayer feature extraction to improve the representational power of text feature. We also develop a novel nonlinear network based on traditional Convolutional Neural Network that is able to detect multilingual text regions in the images. The proposed method is evaluated on standard benchmarks and multilingual dataset and demonstrates improvement over the previous work.

  8. Phase Diagram of Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamed eSeyed-Allaei

    2015-03-01

    Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.

  9. Neural Networks: A Primer

    Science.gov (United States)

    1991-05-01

    second neuron (N1) adjusts its weights likewise (using W, to compute its error). This whole process utilizes the chain rule of derivatives to perform...or determinants. / / 3. Devop a specific funcional model. / 4. Egslmne or trIn the model to known 5. Evaktat toe statistical significance of the

  10. 23rd Workshop of the Italian Neural Networks Society (SIREN)

    CERN Document Server

    Esposito, Anna; Morabito, Francesco

    2014-01-01

    This volume collects a selection of contributions which has been presented at the 23rd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Vietri sul Mare, Salerno, Italy during May 23-24, 2013. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book – as well as the workshop-  is organized in two main components, a special session and a group of regular sessions featuring different aspects and point of views of artificial neural networks, artificial and natural intelligence, as well as psychological and cognitive theories for modeling human behaviors and human machine interactions, including Information Communication applications of compelling interest.  .

  11. Investigation of efficient features for image recognition by neural networks.

    Science.gov (United States)

    Goltsev, Alexander; Gritsenko, Vladimir

    2012-04-01

    In the paper, effective and simple features for image recognition (named LiRA-features) are investigated in the task of handwritten digit recognition. Two neural network classifiers are considered-a modified 3-layer perceptron LiRA and a modular assembly neural network. A method of feature selection is proposed that analyses connection weights formed in the preliminary learning process of a neural network classifier. In the experiments using the MNIST database of handwritten digits, the feature selection procedure allows reduction of feature number (from 60 000 to 7000) preserving comparable recognition capability while accelerating computations. Experimental comparison between the LiRA perceptron and the modular assembly neural network is accomplished, which shows that recognition capability of the modular assembly neural network is somewhat better. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Marginalization in Random Nonlinear Neural Networks

    Science.gov (United States)

    Vasudeva Raju, Rajkumar; Pitkow, Xaq

    2015-03-01

    Computations involved in tasks like causal reasoning in the brain require a type of probabilistic inference known as marginalization. Marginalization corresponds to averaging over irrelevant variables to obtain the probability of the variables of interest. This is a fundamental operation that arises whenever input stimuli depend on several variables, but only some are task-relevant. Animals often exhibit behavior consistent with marginalizing over some variables, but the neural substrate of this computation is unknown. It has been previously shown (Beck et al. 2011) that marginalization can be performed optimally by a deterministic nonlinear network that implements a quadratic interaction of neural activity with divisive normalization. We show that a simpler network can perform essentially the same computation. These Random Nonlinear Networks (RNN) are feedforward networks with one hidden layer, sigmoidal activation functions, and normally-distributed weights connecting the input and hidden layers. We train the output weights connecting the hidden units to an output population, such that the output model accurately represents a desired marginal probability distribution without significant information loss compared to optimal marginalization. Simulations for the case of linear coordinate transformations show that the RNN model has good marginalization performance, except for highly uncertain inputs that have low amplitude population responses. Behavioral experiments, based on these results, could then be used to identify if this model does indeed explain how the brain performs marginalization.

  13. Forecasting Energy Commodity Prices Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Massimo Panella

    2012-01-01

    Full Text Available A new machine learning approach for price modeling is proposed. The use of neural networks as an advanced signal processing tool may be successfully used to model and forecast energy commodity prices, such as crude oil, coal, natural gas, and electricity prices. Energy commodities have shown explosive growth in the last decade. They have become a new asset class used also for investment purposes. This creates a huge demand for better modeling as what occurred in the stock markets in the 1970s. Their price behavior presents unique features causing complex dynamics whose prediction is regarded as a challenging task. The use of a Mixture of Gaussian neural network may provide significant improvements with respect to other well-known models. We propose a computationally efficient learning of this neural network using the maximum likelihood estimation approach to calibrate the parameters. The optimal model is identified using a hierarchical constructive procedure that progressively increases the model complexity. Extensive computer simulations validate the proposed approach and provide an accurate description of commodities prices dynamics.

  14. Identifying Broadband Rotational Spectra with Neural Networks

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  15. Network traffic anomaly prediction using Artificial Neural Network

    Science.gov (United States)

    Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea

    2017-03-01

    As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.

  16. Convolutional neural networks and face recognition task

    Science.gov (United States)

    Sochenkova, A.; Sochenkov, I.; Makovetskii, A.; Vokhmintsev, A.; Melnikov, A.

    2017-09-01

    Computer vision tasks are remaining very important for the last couple of years. One of the most complicated problems in computer vision is face recognition that could be used in security systems to provide safety and to identify person among the others. There is a variety of different approaches to solve this task, but there is still no universal solution that would give adequate results in some cases. Current paper presents following approach. Firstly, we extract an area containing face, then we use Canny edge detector. On the next stage we use convolutional neural networks (CNN) to finally solve face recognition and person identification task.

  17. Neural Networks Methodology and Applications

    CERN Document Server

    Dreyfus, Gérard

    2005-01-01

    Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...

  18. Multiple neural network approaches to clinical expert systems

    Science.gov (United States)

    Stubbs, Derek F.

    1990-08-01

    We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results

  19. Basics of Computer Networking

    CERN Document Server

    Robertazzi, Thomas

    2012-01-01

    Springer Brief Basics of Computer Networking provides a non-mathematical introduction to the world of networks. This book covers both technology for wired and wireless networks. Coverage includes transmission media, local area networks, wide area networks, and network security. Written in a very accessible style for the interested layman by the author of a widely used textbook with many years of experience explaining concepts to the beginner.

  20. Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Cha, Kenny H.; Richter, Caleb D.

    2017-12-01

    Transfer learning in deep convolutional neural networks (DCNNs) is an important step in its application to medical imaging tasks. We propose a multi-task transfer learning DCNN with the aim of translating the ‘knowledge’ learned from non-medical images to medical diagnostic tasks through supervised training and increasing the generalization capabilities of DCNNs by simultaneously learning auxiliary tasks. We studied this approach in an important application: classification of malignant and benign breast masses. With Institutional Review Board (IRB) approval, digitized screen-film mammograms (SFMs) and digital mammograms (DMs) were collected from our patient files and additional SFMs were obtained from the Digital Database for Screening Mammography. The data set consisted of 2242 views with 2454 masses (1057 malignant, 1397 benign). In single-task transfer learning, the DCNN was trained and tested on SFMs. In multi-task transfer learning, SFMs and DMs were used to train the DCNN, which was then tested on SFMs. N-fold cross-validation with the training set was used for training and parameter optimization. On the independent test set, the multi-task transfer learning DCNN was found to have significantly (p  =  0.007) higher performance compared to the single-task transfer learning DCNN. This study demonstrates that multi-task transfer learning may be an effective approach for training DCNN in medical imaging applications when training samples from a single modality are limited.

  1. Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms.

    Science.gov (United States)

    Samala, Ravi K; Chan, Heang-Ping; Hadjiiski, Lubomir M; Helvie, Mark A; Cha, Kenny; Richter, Caleb

    2017-10-16

    Transfer learning in deep convolutional neural networks (DCNNs) is an important step in its application to medical imaging tasks. We propose a multi-task transfer learning DCNN with the aims of translating the 'knowledge' learned from non-medical images to medical diagnostic tasks through supervised training and increasing the generalization capabilities of DCNNs by simultaneously learning auxiliary tasks. We studied this approach in an important application: classification of malignant and benign breast masses. With IRB approval, digitized screen-film mammograms (SFMs) and digital mammograms (DMs) were collected from our patient files and additional SFMs were obtained from the Digital Database for Screening Mammography. The data set consisted of 2,242 views with 2,454 masses (1,057 malignant, 1,397 benign). In single-task transfer learning, the DCNN was trained and tested on SFMs. In multi-task transfer learning, SFMs and DMs were used to train the DCNN, which was then tested on SFMs. N-fold cross-validation with the training set was used for training and parameter optimization. On the independent test set, the multi-task transfer learning DCNN was found to have significantly (p=0.007) higher performance compared to the single-task transfer learning DCNN. This study demonstrates that multi-task transfer learning may be an effective approach for training DCNN in medical imaging applications when training samples from a single modality are limited. © 2017 Institute of Physics and Engineering in Medicine.

  2. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  3. Application of a neural network for reflectance spectrum classification

    Science.gov (United States)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  4. Training and Validating a Deep Convolutional Neural Network for Computer-Aided Detection and Classification of Abnormalities on Frontal Chest Radiographs.

    Science.gov (United States)

    Cicero, Mark; Bilbily, Alexander; Colak, Errol; Dowdell, Tim; Gray, Bruce; Perampaladas, Kuhan; Barfett, Joseph

    2017-05-01

    Convolutional neural networks (CNNs) are a subtype of artificial neural network that have shown strong performance in computer vision tasks including image classification. To date, there has been limited application of CNNs to chest radiographs, the most frequently performed medical imaging study. We hypothesize CNNs can learn to classify frontal chest radiographs according to common findings from a sufficiently large data set. Our institution's research ethics board approved a single-center retrospective review of 35,038 adult posterior-anterior chest radiographs and final reports performed between 2005 and 2015 (56% men, average age of 56, patient type: 24% inpatient, 39% outpatient, 37% emergency department) with a waiver for informed consent. The GoogLeNet CNN was trained using 3 graphics processing units to automatically classify radiographs as normal (n = 11,702) or into 1 or more of cardiomegaly (n = 9240), consolidation (n = 6788), pleural effusion (n = 7786), pulmonary edema (n = 1286), or pneumothorax (n = 1299). The network's performance was evaluated using receiver operating curve analysis on a test set of 2443 radiographs with the criterion standard being board-certified radiologist interpretation. Using 256 × 256-pixel images as input, the network achieved an overall sensitivity and specificity of 91% with an area under the curve of 0.964 for classifying a study as normal (n = 1203). For the abnormal categories, the sensitivity, specificity, and area under the curve, respectively, were 91%, 91%, and 0.962 for pleural effusion (n = 782), 82%, 82%, and 0.868 for pulmonary edema (n = 356), 74%, 75%, and 0.850 for consolidation (n = 214), 81%, 80%, and 0.875 for cardiomegaly (n = 482), and 78%, 78%, and 0.861 for pneumothorax (n = 167). Current deep CNN architectures can be trained with modest-sized medical data sets to achieve clinically useful performance at detecting and excluding common pathology on chest radiographs.

  5. Analog neural network-based helicopter gearbox health monitoring system.

    Science.gov (United States)

    Monsen, P T; Dzwonczyk, M; Manolakos, E S

    1995-12-01

    The development of a reliable helicopter gearbox health monitoring system (HMS) has been the subject of considerable research over the past 15 years. The deployment of such a system could lead to a significant saving in lives and vehicles as well as dramatically reduce the cost of helicopter maintenance. Recent research results indicate that a neural network-based system could provide a viable solution to the problem. This paper presents two neural network-based realizations of an HMS system. A hybrid (digital/analog) neural system is proposed as an extremely accurate off-line monitoring tool used to reduce helicopter gearbox maintenance costs. In addition, an all analog neural network is proposed as a real-time helicopter gearbox fault monitor that can exploit the ability of an analog neural network to directly compute the discrete Fourier transform (DFT) as a sum of weighted samples. Hardware performance results are obtained using the Integrated Neural Computing Architecture (INCA/1) analog neural network platform that was designed and developed at The Charles Stark Draper Laboratory. The results indicate that it is possible to achieve a 100% fault detection rate with 0% false alarm rate by performing a DFT directly on the first layer of INCA/1 followed by a small-size two-layer feed-forward neural network and a simple post-processing majority voting stage.

  6. Computer network defense system

    Science.gov (United States)

    Urias, Vincent; Stout, William M. S.; Loverro, Caleb

    2017-08-22

    A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves network connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.

  7. Sensitivity analysis of linear programming problem through a recurrent neural network

    Science.gov (United States)

    Das, Raja

    2017-11-01

    In this paper we study the recurrent neural network for solving linear programming problems. To achieve optimality in accuracy and also in computational effort, an algorithm is presented. We investigate the sensitivity analysis of linear programming problem through the neural network. A detailed example is also presented to demonstrate the performance of the recurrent neural network.

  8. Character Recognition Using Genetically Trained Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the

  9. Practical neural network recipies in C++

    CERN Document Server

    Masters

    2014-01-01

    This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum

  10. Architecture Analysis of an FPGA-Based Hopfield Neural Network

    Directory of Open Access Journals (Sweden)

    Miguel Angelo de Abreu de Sousa

    2014-01-01

    Full Text Available Interconnections between electronic circuits and neural computation have been a strongly researched topic in the machine learning field in order to approach several practical requirements, including decreasing training and operation times in high performance applications and reducing cost, size, and energy consumption for autonomous or embedded developments. Field programmable gate array (FPGA hardware shows some inherent features typically associated with neural networks, such as, parallel processing, modular executions, and dynamic adaptation, and works on different types of FPGA-based neural networks were presented in recent years. This paper aims to address different aspects of architectural characteristics analysis on a Hopfield Neural Network implemented in FPGA, such as maximum operating frequency and chip-area occupancy according to the network capacity. Also, the FPGA implementation methodology, which does not employ multipliers in the architecture developed for the Hopfield neural model, is presented, in detail.

  11. Fast training of neural networks for load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Agosta, J.M.; Nielsen, N.R.; Andeen, G. [SRI International, Menlo Park, CA (United States)

    1996-10-01

    Predicting load demand (e.g., demand for electric power) in a data-rich environment is basically a regression problem. To be successful, however, any regression technique must take into account the nonlinear nature of the problem. Numerous nonlinear regression methods have become practical, with the availability of more powerful computers. Perhaps the best known of these methods are techniques that have been popularized under the name of neural networks, and the most common of these is the back-propagation neural network (BPNN). This paper explains the advantage of a different nonlinear regression method known as the probabilistic neural network (PNN).

  12. Convolutional neural network architecture and input volume matrix design for ERP classifications in a tactile P300-based Brain-Computer Interface.

    Science.gov (United States)

    Kodama, Takumi; Makino, Shoji

    2017-07-01

    In the presented study we conduct the off-line ERP classification using the convolutional neural network (CNN) classifier for somatosensory ERP intervals acquired in the full- body tactile P300-based Brain-Computer Interface paradigm (fbBCI). The main objective of the study is to enhance fbBCI stimulus pattern classification accuracies by applying the CNN classifier. A 60 × 60 squared input volume transformed by one-dimensional somatosensory ERP intervals in each electrode channel is input to the convolutional architecture for a filter training. The flattened activation maps are evaluated by a multilayer perceptron with one-hidden-layer in order to calculate classification accuracy results. The proposed method reveals that the CNN classifier model can achieve a non-personal- training ERP classification with the fbBCI paradigm, scoring 100 % classification accuracy results for all the participated ten users.

  13. MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION

    Directory of Open Access Journals (Sweden)

    Artur Popko

    2013-06-01

    Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.

  14. Optical implementation of neural networks

    Science.gov (United States)

    Yu, Francis T. S.; Guo, Ruyan

    2002-12-01

    An adaptive optical neuro-computing (ONC) using inexpensive pocket size liquid crystal televisions (LCTVs) had been developed by the graduate students in the Electro-Optics Laboratory at The Pennsylvania State University. Although this neuro-computing has only 8×8=64 neurons, it can be easily extended to 16×20=320 neurons. The major advantages of this LCTV architecture as compared with other reported ONCs, are low cost and the flexibility to operate. To test the performance, several neural net models are used. These models are Interpattern Association, Hetero-association and unsupervised learning algorithms. The system design considerations and experimental demonstrations are also included.

  15. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying.

    Science.gov (United States)

    Onwude, Daniel I; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan

    2018-03-01

    Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Flood estimation: a neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Swain, P.C.; Seshachalam, C.; Umamahesh, N.V. [Regional Engineering Coll., Warangal (India). Water and Environment Div.

    2000-07-01

    The artificial neural network (ANN) approach described in this study aims at predicting the flood flow into a reservoir. This differs from the traditional methods of flow prediction in the sense that it belongs to a class of data driven approaches, where as the traditional methods are model driven. Physical processes influencing the occurrences of streamflow in a river are highly complex, and are very difficult to be modelled by available statistical or deterministic models. ANNs provide model free solutions and hence can be expected to be appropriate in these conditions. Non-linearity, adaptivity, evidential response and fault tolerance are additional properties and capabilities of the neural networks. This paper highlights the applicability of neural networks for predicting daily flood flow taking the Hirakud reservoir on river Mahanadi in Orissa, India as the case study. The correlation between the observed and predicted flows and the relative error are considered to measure the performance of the model. The correlation between the observed and the modelled flows are computed to be 0.9467 in testing phase of the model. (orig.)

  17. Satellite image analysis using neural networks

    Science.gov (United States)

    Sheldon, Roger A.

    1990-01-01

    The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.

  18. Recurrent neural networks training with stable bounding ellipsoid algorithm.

    Science.gov (United States)

    Yu, Wen; de Jesús Rubio, José

    2009-06-01

    Bounding ellipsoid (BE) algorithms offer an attractive alternative to traditional training algorithms for neural networks, for example, backpropagation and least squares methods. The benefits include high computational efficiency and fast convergence speed. In this paper, we propose an ellipsoid propagation algorithm to train the weights of recurrent neural networks for nonlinear systems identification. Both hidden layers and output layers can be updated. The stability of the BE algorithm is proven.

  19. Classification-based Financial Markets Prediction using Deep Neural Networks

    OpenAIRE

    Dixon, Matthew; Klabjan, Diego; Bang, Jin Hoon

    2016-01-01

    Deep neural networks (DNNs) are powerful types of artificial neural networks (ANNs) that use several hidden layers. They have recently gained considerable attention in the speech transcription and image recognition community (Krizhevsky et al., 2012) for their superior predictive properties including robustness to overfitting. However their application to algorithmic trading has not been previously researched, partly because of their computational complexity. This paper describes the applicat...

  20. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  1. Computer-communication networks

    CERN Document Server

    Meditch, James S

    1983-01-01

    Computer- Communication Networks presents a collection of articles the focus of which is on the field of modeling, analysis, design, and performance optimization. It discusses the problem of modeling the performance of local area networks under file transfer. It addresses the design of multi-hop, mobile-user radio networks. Some of the topics covered in the book are the distributed packet switching queuing network design, some investigations on communication switching techniques in computer networks and the minimum hop flow assignment and routing subject to an average message delay constraint

  2. Bayesian regularization of neural networks.

    Science.gov (United States)

    Burden, Frank; Winkler, Dave

    2008-01-01

    Bayesian regularized artificial neural networks (BRANNs) are more robust than standard back-propagation nets and can reduce or eliminate the need for lengthy cross-validation. Bayesian regularization is a mathematical process that converts a nonlinear regression into a "well-posed" statistical problem in the manner of a ridge regression. The advantage of BRANNs is that the models are robust and the validation process, which scales as O(N2) in normal regression methods, such as back propagation, is unnecessary. These networks provide solutions to a number of problems that arise in QSAR modeling, such as choice of model, robustness of model, choice of validation set, size of validation effort, and optimization of network architecture. They are difficult to overtrain, since evidence procedures provide an objective Bayesian criterion for stopping training. They are also difficult to overfit, because the BRANN calculates and trains on a number of effective network parameters or weights, effectively turning off those that are not relevant. This effective number is usually considerably smaller than the number of weights in a standard fully connected back-propagation neural net. Automatic relevance determination (ARD) of the input variables can be used with BRANNs, and this allows the network to "estimate" the importance of each input. The ARD method ensures that irrelevant or highly correlated indices used in the modeling are neglected as well as showing which are the most important variables for modeling the activity data. This chapter outlines the equations that define the BRANN method plus a flowchart for producing a BRANN-QSAR model. Some results of the use of BRANNs on a number of data sets are illustrated and compared with other linear and nonlinear models.

  3. Flood routing modelling with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    R. Peters

    2006-01-01

    Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.

  4. Neural network based system for equipment surveillance

    Science.gov (United States)

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  5. Fuzzy neural network theory and application

    CERN Document Server

    Liu, Puyin

    2004-01-01

    This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he

  6. Pansharpening by Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Giuseppe Masi

    2016-07-01

    Full Text Available A new pansharpening method is proposed, based on convolutional neural networks. We adapt a simple and effective three-layer architecture recently proposed for super-resolution to the pansharpening problem. Moreover, to improve performance without increasing complexity, we augment the input by including several maps of nonlinear radiometric indices typical of remote sensing. Experiments on three representative datasets show the proposed method to provide very promising results, largely competitive with the current state of the art in terms of both full-reference and no-reference metrics, and also at a visual inspection.

  7. Neural networks and perceptual learning

    Science.gov (United States)

    Tsodyks, Misha; Gilbert, Charles

    2005-01-01

    Sensory perception is a learned trait. The brain strategies we use to perceive the world are constantly modified by experience. With practice, we subconsciously become better at identifying familiar objects or distinguishing fine details in our environment. Current theoretical models simulate some properties of perceptual learning, but neglect the underlying cortical circuits. Future neural network models must incorporate the top-down alteration of cortical function by expectation or perceptual tasks. These newly found dynamic processes are challenging earlier views of static and feedforward processing of sensory information. PMID:15483598

  8. Optimization with Potts Neural Networks

    Science.gov (United States)

    Söderberg, Bo

    The Potts Neural Network approach to non-binary discrete optimization problems is described. It applies to problems that can be described as a set of elementary `multiple choice' options. Instead of the conventional binary (Ising) neurons, mean field Potts neurons, having several available states, are used to describe the elementary degrees of freedom of such problems. The dynamics consists of iterating the mean field equations with annealing until convergence. Due to its deterministic character, the method is quite fast. When applied to problems of Graph Partition and scheduling types, it produces very good solutions also for problems of considerable size.

  9. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Science.gov (United States)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  10. Soft computing model for optimized siRNA design by identifying off target possibilities using artificial neural network model.

    Science.gov (United States)

    Murali, Reena; John, Philips George; Peter S, David

    2015-05-15

    The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model

  11. Three dimensional living neural networks

    Science.gov (United States)

    Linnenberger, Anna; McLeod, Robert R.; Basta, Tamara; Stowell, Michael H. B.

    2015-08-01

    We investigate holographic optical tweezing combined with step-and-repeat maskless projection micro-stereolithography for fine control of 3D positioning of living cells within a 3D microstructured hydrogel grid. Samples were fabricated using three different cell lines; PC12, NT2/D1 and iPSC. PC12 cells are a rat cell line capable of differentiation into neuron-like cells NT2/D1 cells are a human cell line that exhibit biochemical and developmental properties similar to that of an early embryo and when exposed to retinoic acid the cells differentiate into human neurons useful for studies of human neurological disease. Finally induced pluripotent stem cells (iPSC) were utilized with the goal of future studies of neural networks fabricated from human iPSC derived neurons. Cells are positioned in the monomer solution with holographic optical tweezers at 1064 nm and then are encapsulated by photopolymerization of polyethylene glycol (PEG) hydrogels formed by thiol-ene photo-click chemistry via projection of a 512x512 spatial light modulator (SLM) illuminated at 405 nm. Fabricated samples are incubated in differentiation media such that cells cease to divide and begin to form axons or axon-like structures. By controlling the position of the cells within the encapsulating hydrogel structure the formation of the neural circuits is controlled. The samples fabricated with this system are a useful model for future studies of neural circuit formation, neurological disease, cellular communication, plasticity, and repair mechanisms.

  12. Bach in 2014: Music Composition with Recurrent Neural Network

    OpenAIRE

    Liu, I-Ting; Ramakrishnan, Bhiksha

    2014-01-01

    We propose a framework for computer music composition that uses resilient propagation (RProp) and long short term memory (LSTM) recurrent neural network. In this paper, we show that LSTM network learns the structure and characteristics of music pieces properly by demonstrating its ability to recreate music. We also show that predicting existing music using RProp outperforms Back propagation through time (BPTT).

  13. The Laplacian spectrum of neural networks

    Science.gov (United States)

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  14. Type-2 fuzzy neural networks and their applications

    CERN Document Server

    Aliev, Rafik Aziz

    2014-01-01

    This book deals with the theory, design principles, and application of hybrid intelligent systems using type-2 fuzzy sets in combination with other paradigms of Soft Computing technology such as Neuro-Computing and Evolutionary Computing. It provides a self-contained exposition of the foundation of type-2 fuzzy neural networks and presents a vast compendium of its applications to control, forecasting, decision making, system identification and other real problems. Type-2 Fuzzy Neural Networks and Their Applications is helpful for teachers and students of universities and colleges, for scientis

  15. Non-linear feedback neural networks VLSI implementations and applications

    CERN Document Server

    Ansari, Mohd Samar

    2014-01-01

    This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.

  16. Hyperswitch Communication Network Computer

    Science.gov (United States)

    Peterson, John C.; Chow, Edward T.; Priel, Moshe; Upchurch, Edwin T.

    1993-01-01

    Hyperswitch Communications Network (HCN) computer is prototype multiple-processor computer being developed. Incorporates improved version of hyperswitch communication network described in "Hyperswitch Network For Hypercube Computer" (NPO-16905). Designed to support high-level software and expansion of itself. HCN computer is message-passing, multiple-instruction/multiple-data computer offering significant advantages over older single-processor and bus-based multiple-processor computers, with respect to price/performance ratio, reliability, availability, and manufacturing. Design of HCN operating-system software provides flexible computing environment accommodating both parallel and distributed processing. Also achieves balance among following competing factors; performance in processing and communications, ease of use, and tolerance of (and recovery from) faults.

  17. Neural Computation and the Computational Theory of Cognition

    Science.gov (United States)

    Piccinini, Gualtiero; Bahar, Sonya

    2013-01-01

    We begin by distinguishing computationalism from a number of other theses that are sometimes conflated with it. We also distinguish between several important kinds of computation: computation in a generic sense, digital computation, and analog computation. Then, we defend a weak version of computationalism--neural processes are computations in the…

  18. Neural Network Control of Asymmetrical Multilevel Converters

    Directory of Open Access Journals (Sweden)

    Patrice WIRA

    2009-12-01

    Full Text Available This paper proposes a neural implementation of a harmonic eliminationstrategy (HES to control a Uniform Step Asymmetrical Multilevel Inverter(USAMI. The mapping between the modulation rate and the requiredswitching angles is learned and approximated with a Multi-Layer Perceptron(MLP neural network. After learning, appropriate switching angles can bedetermined with the neural network leading to a low-computational-costneural controller which is well suited for real-time applications. Thistechnique can be applied to multilevel inverters with any number of levels. Asan example, a nine-level inverter and an eleven-level inverter are consideredand the optimum switching angles are calculated on-line. Comparisons to thewell-known sinusoidal pulse-width modulation (SPWM have been carriedout in order to evaluate the performance of the proposed approach. Simulationresults demonstrate the technical advantages of the proposed neuralimplementation over the conventional method (SPWM in eliminatingharmonics while controlling a nine-level and eleven-level USAMI. Thisneural approach is applied for the supply of an asynchronous machine andresults show that it ensures a highest quality torque by efficiently cancelingthe harmonics generated by the inverters.

  19. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  20. Hindcasting of storm waves using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, S.; Mandal, S.

    of any exogenous input requirement makes the network attractive. A neural network is an information processing system modeled on the structure of the human brain. Its merit is the ability to deal with fuzzy information whose interrelation is ambiguous...

  1. Drift chamber tracking with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  2. Neural network optimization, components, and design selection

    Science.gov (United States)

    Weller, Scott W.

    1991-01-01

    Neural Networks are part of a revived technology which has received a lot of hype in recent years. As is apt to happen in any hyped technology, jargon and predictions make its assimilation and application difficult. Nevertheless, Neural Networks have found use in a number of areas, working on non-trivial and non-contrived problems. For example, one net has been trained to "read", translating English text into phoneme sequences. Other applications of Neural Networks include data base manipulation and the solving of routing and classification types of optimization problems. It was their use in optimization that got me involved with Neural Networks. As it turned out, "optimization" used in this context was somewhat misleading, because while some network configurations could indeed solve certain kinds of optimization problems, the configuring or "training" of a Neural Network itself is an optimization problem, and most of the literature which talked about Neural Nets and optimization in the same breath did not speak to my goal of using Neural Nets to help solve lens optimization problems. I did eventually apply Neural Network to lens optimization, and I will touch on those results. The application of Neural Nets to the problem of lens selection was much more successful, and those results will dominate this paper.

  3. Neural Network Machine Learning and Dimension Reduction for Data Visualization

    Science.gov (United States)

    Liles, Charles A.

    2014-01-01

    Neural network machine learning in computer science is a continuously developing field of study. Although neural network models have been developed which can accurately predict a numeric value or nominal classification, a general purpose method for constructing neural network architecture has yet to be developed. Computer scientists are often forced to rely on a trial-and-error process of developing and improving accurate neural network models. In many cases, models are constructed from a large number of input parameters. Understanding which input parameters have the greatest impact on the prediction of the model is often difficult to surmise, especially when the number of input variables is very high. This challenge is often labeled the "curse of dimensionality" in scientific fields. However, techniques exist for reducing the dimensionality of problems to just two dimensions. Once a problem's dimensions have been mapped to two dimensions, it can be easily plotted and understood by humans. The ability to visualize a multi-dimensional dataset can provide a means of identifying which input variables have the highest effect on determining a nominal or numeric output. Identifying these variables can provide a better means of training neural network models; models can be more easily and quickly trained using only input variables which appear to affect the outcome variable. The purpose of this project is to explore varying means of training neural networks and to utilize dimensional reduction for visualizing and understanding complex datasets.

  4. Radiation Behavior of Analog Neural Network Chip

    Science.gov (United States)

    Langenbacher, H.; Zee, F.; Daud, T.; Thakoor, A.

    1996-01-01

    A neural network experiment conducted for the Space Technology Research Vehicle (STRV-1) 1-b launched in June 1994. Identical sets of analog feed-forward neural network chips was used to study and compare the effects of space and ground radiation on the chips. Three failure mechanisms are noted.

  5. Neural network approach to parton distributions fitting

    CERN Document Server

    Piccione, Andrea; Forte, Stefano; Latorre, Jose I.; Rojo, Joan; Piccione, Andrea; Rojo, Joan

    2006-01-01

    We will show an application of neural networks to extract information on the structure of hadrons. A Monte Carlo over experimental data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica via a genetic algorithm. Results on the proton and deuteron structure functions, and on the nonsinglet parton distribution will be shown.

  6. Self-organization of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.W.; Winston, J.V.; Rafelski, J.

    1984-05-14

    The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (brainwashing) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conducive to the simulation of memory and learning phenomena. 18 references, 2 figures.

  7. Hidden neural networks: application to speech recognition

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1998-01-01

    We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...

  8. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    African Journals Online (AJOL)

    Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous spectrophotometric multicomponent analysis are suggested, with a study on the estimation of the components of an antihypertensive combination, namely, atenolol and losartan potassium.

  9. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  10. Application of Neural Networks for Energy Reconstruction

    CERN Document Server

    Damgov, Jordan

    2002-01-01

    The possibility to use Neural Networks for reconstruction ofthe energy deposited in the calorimetry system of the CMS detector is investigated. It is shown that using feed-forward neural network, good linearity, Gaussian energy distribution and good energy resolution can be achieved. Significant improvement of the energy resolution and linearity is reached in comparison with other weighting methods for energy reconstruction.

  11. Neural Network to Solve Concave Games

    OpenAIRE

    Zixin Liu; Nengfa Wang

    2014-01-01

    The issue on neural network method to solve concave games is concerned. Combined with variational inequality, Ky Fan inequality, and projection equation, concave games are transformed into a neural network model. On the basis of the Lyapunov stable theory, some stability results are also given. Finally, two classic games’ simulation results are given to illustrate the theoretical results.

  12. Recognizing changing seasonal patterns using neural networks

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); G. Draisma (Gerrit)

    1997-01-01

    textabstractIn this paper we propose a graphical method based on an artificial neural network model to investigate how and when seasonal patterns in macroeconomic time series change over time. Neural networks are useful since the hidden layer units may become activated only in certain seasons or

  13. Adaptive Neurons For Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  14. Initialization of multilayer forecasting artifical neural networks

    OpenAIRE

    Bochkarev, Vladimir V.; Maslennikova, Yulia S.

    2014-01-01

    In this paper, a new method was developed for initialising artificial neural networks predicting dynamics of time series. Initial weighting coefficients were determined for neurons analogously to the case of a linear prediction filter. Moreover, to improve the accuracy of the initialization method for a multilayer neural network, some variants of decomposition of the transformation matrix corresponding to the linear prediction filter were suggested. The efficiency of the proposed neural netwo...

  15. A Convolutional Neural Network Neutrino Event Classifier

    CERN Document Server

    Aurisano, A; Rocco, D; Himmel, A; Messier, M D; Niner, E; Pawloski, G; Psihas, F; Sousa, A; Vahle, P

    2016-01-01

    Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.

  16. The use of artificial neural networks in experimental data acquisition and aerodynamic design

    Science.gov (United States)

    Meade, Andrew J., Jr.

    1991-01-01

    It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.

  17. Neural Based Orthogonal Data Fitting The EXIN Neural Networks

    CERN Document Server

    Cirrincione, Giansalvo

    2008-01-01

    Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Wh

  18. Artificial Neural Network applied to lightning flashes

    Science.gov (United States)

    Gin, R. B.; Guedes, D.; Bianchi, R.

    2013-05-01

    The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a

  19. Clustering: a neural network approach.

    Science.gov (United States)

    Du, K-L

    2010-01-01

    Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature extraction, vector quantization (VQ), image segmentation, function approximation, and data mining. As an unsupervised classification technique, clustering identifies some inherent structures present in a set of objects based on a similarity measure. Clustering methods can be based on statistical model identification (McLachlan & Basford, 1988) or competitive learning. In this paper, we give a comprehensive overview of competitive learning based clustering methods. Importance is attached to a number of competitive learning based clustering neural networks such as the self-organizing map (SOM), the learning vector quantization (LVQ), the neural gas, and the ART model, and clustering algorithms such as the C-means, mountain/subtractive clustering, and fuzzy C-means (FCM) algorithms. Associated topics such as the under-utilization problem, fuzzy clustering, robust clustering, clustering based on non-Euclidean distance measures, supervised clustering, hierarchical clustering as well as cluster validity are also described. Two examples are given to demonstrate the use of the clustering methods.

  20. Complex-valued Neural Networks

    Science.gov (United States)

    Hirose, Akira

    This paper reviews the features and applications of complex-valued neural networks (CVNNs). First we list the present application fields, and describe the advantages of the CVNNs in two application examples, namely, an adaptive plastic-landmine visualization system and an optical frequency-domain-multiplexed learning logic circuit. Then we briefly discuss the features of complex number itself to find that the phase rotation is the most significant concept, which is very useful in processing the information related to wave phenomena such as lightwave and electromagnetic wave. The CVNNs will also be an indispensable framework of the future microelectronic information-processing hardware where the quantum electron wave plays the principal role.

  1. Collision avoidance using neural networks

    Science.gov (United States)

    Sugathan, Shilpa; Sowmya Shree, B. V.; Warrier, Mithila R.; Vidhyapathi, C. M.

    2017-11-01

    Now a days, accidents on roads are caused due to the negligence of drivers and pedestrians or due to unexpected obstacles that come into the vehicle’s path. In this paper, a model (robot) is developed to assist drivers for a smooth travel without accidents. It reacts to the real time obstacles on the four critical sides of the vehicle and takes necessary action. The sensor used for detecting the obstacle was an IR proximity sensor. A single layer perceptron neural network is used to train and test all possible combinations of sensors result by using Matlab (offline). A microcontroller (ARM Cortex-M3 LPC1768) is used to control the vehicle through the output data which is received from Matlab via serial communication. Hence, the vehicle becomes capable of reacting to any combination of real time obstacles.

  2. Tampa Electric Neural Network Sootblowing

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Rhode

    2003-12-31

    Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NO{sub x} formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent soot-blowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat

  3. Tampa Electric Neural Network Sootblowing

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Rhode

    2004-09-30

    Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate

  4. Tampa Electric Neural Network Sootblowing

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Rhode

    2004-03-31

    Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing co-funding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate

  5. Deep Gate Recurrent Neural Network

    Science.gov (United States)

    2016-11-22

    distribution, e.g. a particular book. In this experiment, we use a collection of writings by Nietzsche to train our network. In total, this corpus contains...sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics : Human Language Technologies, pages 142–150...Portland, Oregon, USA, June 2011. Association for Com- putational Linguistics . URL http://www.aclweb.org/anthology/P11-1015. Maja J Matari, Complex

  6. Image Restoration Technology Based on Discrete Neural network

    Directory of Open Access Journals (Sweden)

    Zhou Duoying

    2015-01-01

    Full Text Available With the development of computer science and technology, the development of artificial intelligence advances rapidly in the field of image restoration. Based on the MATLAB platform, this paper constructs a kind of image restoration technology of artificial intelligence based on the discrete neural network and feedforward network, and carries out simulation and contrast of the restoration process by the use of the bionic algorithm. Through the application of simulation restoration technology, this paper verifies that the discrete neural network has a good convergence and identification capability in the image restoration technology with a better effect than that of the feedforward network. The restoration technology based on the discrete neural network can provide a reliable mathematical model for this field.

  7. Structured learning via convolutional neural networks for vehicle detection

    Science.gov (United States)

    Maqueda, Ana I.; del Blanco, Carlos R.; Jaureguizar, Fernando; García, Narciso

    2017-05-01

    One of the main tasks in a vision-based traffic monitoring system is the detection of vehicles. Recently, deep neural networks have been successfully applied to this end, outperforming previous approaches. However, most of these works generally rely on complex and high-computational region proposal networks. Others employ deep neural networks as a segmentation strategy to achieve a semantic representation of the object of interest, which has to be up-sampled later. In this paper, a new design for a convolutional neural network is applied to vehicle detection in highways for traffic monitoring. This network generates a spatially structured output that encodes the vehicle locations. Promising results have been obtained in the GRAM-RTM dataset.

  8. Toward Petascale Biologically Plausible Neural Networks

    Science.gov (United States)

    Long, Lyle

    This talk will describe an approach to achieving petascale neural networks. Artificial intelligence has been oversold for many decades. Computers in the beginning could only do about 16,000 operations per second. Computer processing power, however, has been doubling every two years thanks to Moore's law, and growing even faster due to massively parallel architectures. Finally, 60 years after the first AI conference we have computers on the order of the performance of the human brain (1016 operations per second). The main issues now are algorithms, software, and learning. We have excellent models of neurons, such as the Hodgkin-Huxley model, but we do not know how the human neurons are wired together. With careful attention to efficient parallel computing, event-driven programming, table lookups, and memory minimization massive scale simulations can be performed. The code that will be described was written in C + + and uses the Message Passing Interface (MPI). It uses the full Hodgkin-Huxley neuron model, not a simplified model. It also allows arbitrary network structures (deep, recurrent, convolutional, all-to-all, etc.). The code is scalable, and has, so far, been tested on up to 2,048 processor cores using 107 neurons and 109 synapses.

  9. Parameterizing Stellar Spectra Using Deep Neural Networks

    Science.gov (United States)

    Li, Xiang-Ru; Pan, Ru-Yang; Duan, Fu-Qing

    2017-03-01

    Large-scale sky surveys are observing massive amounts of stellar spectra. The large number of stellar spectra makes it necessary to automatically parameterize spectral data, which in turn helps in statistically exploring properties related to the atmospheric parameters. This work focuses on designing an automatic scheme to estimate effective temperature ({T}{eff}), surface gravity ({log}g) and metallicity [Fe/H] from stellar spectra. A scheme based on three deep neural networks (DNNs) is proposed. This scheme consists of the following three procedures: first, the configuration of a DNN is initialized using a series of autoencoder neural networks; second, the DNN is fine-tuned using a gradient descent scheme; third, three atmospheric parameters {T}{eff}, {log}g and [Fe/H] are estimated using the computed DNNs. The constructed DNN is a neural network with six layers (one input layer, one output layer and four hidden layers), for which the number of nodes in the six layers are 3821, 1000, 500, 100, 30 and 1, respectively. This proposed scheme was tested on both real spectra and theoretical spectra from Kurucz’s new opacity distribution function models. Test errors are measured with mean absolute errors (MAEs). The errors on real spectra from the Sloan Digital Sky Survey (SDSS) are 0.1477, 0.0048 and 0.1129 dex for {log}g, {log}{T}{eff} and [Fe/H] (64.85 K for {T}{eff}), respectively. Regarding theoretical spectra from Kurucz’s new opacity distribution function models, the MAE of the test errors are 0.0182, 0.0011 and 0.0112 dex for {log}g, {log}{T}{eff} and [Fe/H] (14.90 K for {T}{eff}), respectively.

  10. Phase diagram of spiking neural networks.

    Science.gov (United States)

    Seyed-Allaei, Hamed

    2015-01-01

    In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters - excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli.

  11. Learning Processes of Layered Neural Networks

    OpenAIRE

    Fujiki, Sumiyoshi; FUJIKI, Nahomi, M.

    1995-01-01

    A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward neural network, and a learning equation similar to that of the Boltzmann machine algorithm is obtained. By applying a mean field approximation to the same stochastic feed-forward neural network, a deterministic analog feed-forward network is obtained and the back-propagation learning rule is re-derived.

  12. Neural networks for perception human and machine perception

    CERN Document Server

    Wechsler, Harry

    1991-01-01

    Neural Networks for Perception, Volume 1: Human and Machine Perception focuses on models for understanding human perception in terms of distributed computation and examples of PDP models for machine perception. This book addresses both theoretical and practical issues related to the feasibility of both explaining human perception and implementing machine perception in terms of neural network models. The book is organized into two parts. The first part focuses on human perception. Topics on network model ofobject recognition in human vision, the self-organization of functional architecture in t

  13. Neural network topology design for nonlinear control

    Science.gov (United States)

    Haecker, Jens; Rudolph, Stephan

    2001-03-01

    Neural networks, especially in nonlinear system identification and control applications, are typically considered to be black-boxes which are difficult to analyze and understand mathematically. Due to this reason, an in- depth mathematical analysis offering insight into the different neural network transformation layers based on a theoretical transformation scheme is desired, but up to now neither available nor known. In previous works it has been shown how proven engineering methods such as dimensional analysis and the Laplace transform may be used to construct a neural controller topology for time-invariant systems. Using the knowledge of neural correspondences of these two classical methods, the internal nodes of the network could also be successfully interpreted after training. As further extension to these works, the paper describes the latest of a theoretical interpretation framework describing the neural network transformation sequences in nonlinear system identification and control. This can be achieved By incorporation of the method of exact input-output linearization in the above mentioned two transform sequences of dimensional analysis and the Laplace transformation. Based on these three theoretical considerations neural network topologies may be designed in special situations by pure translation in the sense of a structural compilation of the known classical solutions into their correspondent neural topology. Based on known exemplary results, the paper synthesizes the proposed approach into the visionary goals of a structural compiler for neural networks. This structural compiler for neural networks is intended to automatically convert classical control formulations into their equivalent neural network structure based on the principles of equivalence between formula and operator, and operator and structure which are discussed in detail in this work.

  14. Soft computing integrating evolutionary, neural, and fuzzy systems

    CERN Document Server

    Tettamanzi, Andrea

    2001-01-01

    Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as

  15. Application of computational neural networks in predicting atmospheric pollutant concentrations due to fossil-fired electric power generation

    Energy Technology Data Exchange (ETDEWEB)

    El-Hawary, F. [BH Engineering Systems & Technical Univ. of Nova Scotia (Canada)

    1995-12-31

    The ability to accurately predict the behavior of a dynamic system is of essential importance in monitoring and control of complex processes. In this regard recent advances in neural-net based system identification represent a significant step toward development and design of a new generation of control tools for increased system performance and reliability. The enabling functionality is the one of accurate representation of a model of a nonlinear and nonstationary dynamic system. This functionality provides valuable new opportunities including: (1) The ability to predict future system behavior on the basis of actual system observations, (2) On-line evaluation and display of system performance and design of early warning systems, and (3) Controller optimization for improved system performance. In this presentation, we discuss the issues involved in definition and design of learning control systems and their impact on power system control. Several numerical examples are provided for illustrative purpose.

  16. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  17. Hierarchical modular granular neural networks with fuzzy aggregation

    CERN Document Server

    Sanchez, Daniela

    2016-01-01

    In this book, a new method for hybrid intelligent systems is proposed. The proposed method is based on a granular computing approach applied in two levels. The techniques used and combined in the proposed method are modular neural networks (MNNs) with a Granular Computing (GrC) approach, thus resulting in a new concept of MNNs; modular granular neural networks (MGNNs). In addition fuzzy logic (FL) and hierarchical genetic algorithms (HGAs) are techniques used in this research work to improve results. These techniques are chosen because in other works have demonstrated to be a good option, and in the case of MNNs and HGAs, these techniques allow to improve the results obtained than with their conventional versions; respectively artificial neural networks and genetic algorithms.

  18. Artificial neural networks in pancreatic disease.

    Science.gov (United States)

    Bartosch-Härlid, A; Andersson, B; Aho, U; Nilsson, J; Andersson, R

    2008-07-01

    An artificial neural network (ANNs) is a non-linear pattern recognition technique that is rapidly gaining in popularity in medical decision-making. This study investigated the use of ANNs for diagnostic and prognostic purposes in pancreatic disease, especially acute pancreatitis and pancreatic cancer. PubMed was searched for articles on the use of ANNs in pancreatic diseases using the MeSH terms 'neural networks (computer)', 'pancreatic neoplasms', 'pancreatitis' and 'pancreatic diseases'. A systematic review of the articles was performed. Eleven articles were identified, published between 1993 and 2007. The situations that lend themselves best to analysis by ANNs are complex multifactorial relationships, medical decisions when a second opinion is needed and when automated interpretation is required, for example in a situation of an inadequate number of experts. Conventional linear models have limitations in terms of diagnosis and prediction of outcome in acute pancreatitis and pancreatic cancer. Management of these disorders can be improved by applying ANNs to existing clinical parameters and newly established gene expression profiles. (c) 2008 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  19. Genetic algorithm for neural networks optimization

    Science.gov (United States)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  20. Estimation of Conditional Quantile using Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1999-01-01

    The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....

  1. Convolutional Neural Network for Image Recognition

    CERN Document Server

    Seifnashri, Sahand

    2015-01-01

    The aim of this project is to use machine learning techniques especially Convolutional Neural Networks for image processing. These techniques can be used for Quark-Gluon discrimination using calorimeters data, but unfortunately I didn’t manage to get the calorimeters data and I just used the Jet data fromminiaodsim(ak4 chs). The Jet data was not good enough for Convolutional Neural Network which is designed for ’image’ recognition. This report is made of twomain part, part one is mainly about implementing Convolutional Neural Network on unphysical data such as MNIST digits and CIFAR-10 dataset and part 2 is about the Jet data.

  2. Analysis of breast CT lesions using computer-aided diagnosis: an application of neural networks on extracted morphologic and texture features

    Science.gov (United States)

    Ray, Shonket; Prionas, Nicolas D.; Lindfors, Karen K.; Boone, John M.

    2012-03-01

    Dedicated cone-beam breast CT (bCT) scanners have been developed as a potential alternative imaging modality to conventional X-ray mammography in breast cancer diagnosis. As with other modalities, quantitative imaging (QI) analysis can potentially be utilized as a tool to extract useful numeric information concerning diagnosed lesions from high quality 3D tomographic data sets. In this work, preliminary QI analysis was done by designing and implementing a computer-aided diagnosis (CADx) system consisting of image preprocessing, object(s) of interest (i.e. masses, microcalcifications) segmentation, structural analysis of the segmented object(s), and finally classification into benign or malignant disease. Image sets were acquired from bCT patient scans with diagnosed lesions. Iterative watershed segmentation (IWS), a hybridization of the watershed method using observer-set markers and a gradient vector flow (GVF) approach, was used as the lesion segmentation method in 3D. Eight morphologic parameters and six texture features based on gray level co-occurrence matrix (GLCM) calculations were obtained per segmented lesion and combined into multi-dimensional feature input data vectors. Artificial neural network (ANN) classifiers were used by performing cross validation and network parameter optimization to maximize area under the curve (AUC) values of the resulting receiver-operating characteristic (ROC) curves. Within these ANNs, biopsy-proven diagnoses of malignant and benign lesions were recorded as target data while the feature vectors were saved as raw input data. With the image data separated into post-contrast (n = 55) and pre-contrast sets (n = 39), a maximum AUC of 0.70 +/- 0.02 and 0.80 +/- 0.02 were achieved, respectively, for each data set after ANN application.

  3. Neural Network and Letter Recognition.

    Science.gov (United States)

    Lee, Hue Yeon

    Neural net architectures and learning algorithms that recognize hand written 36 alphanumeric characters are studied. The thin line input patterns written in 32 x 32 binary array are used. The system is comprised of two major components, viz. a preprocessing unit and a Recognition unit. The preprocessing unit in turn consists of three layers of neurons; the U-layer, the V-layer, and the C -layer. The functions of the U-layer is to extract local features by template matching. The correlation between the detected local features are considered. Through correlating neurons in a plane with their neighboring neurons, the V-layer would thicken the on-cells or lines that are groups of on-cells of the previous layer. These two correlations would yield some deformation tolerance and some of the rotational tolerance of the system. The C-layer then compresses data through the 'Gabor' transform. Pattern dependent choice of center and wavelengths of 'Gabor' filters is the cause of shift and scale tolerance of the system. Three different learning schemes had been investigated in the recognition unit, namely; the error back propagation learning with hidden units, a simple perceptron learning, and a competitive learning. Their performances were analyzed and compared. Since sometimes the network fails to distinguish between two letters that are inherently similar, additional ambiguity resolving neural nets are introduced on top of the above main neural net. The two dimensional Fourier transform is used as the preprocessing and the perceptron is used as the recognition unit of the ambiguity resolver. One hundred different person's handwriting sets are collected. Some of these are used as the training sets and the remainders are used as the test sets. The correct recognition rate of the system increases with the number of training sets and eventually saturates at a certain value. Similar recognition rates are obtained for the above three different learning algorithms. The minimum error

  4. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2

    Science.gov (United States)

    Lea, Robert N. (Editor); Villarreal, James A. (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  5. Quantum Entanglement in Neural Network States

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-04-01

    Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the

  6. Neural networks to formulate special fats

    Directory of Open Access Journals (Sweden)

    Garcia, R. K.

    2012-09-01

    Full Text Available Neural networks are a branch of artificial intelligence based on the structure and development of biological systems, having as its main characteristic the ability to learn and generalize knowledge. They are used for solving complex problems for which traditional computing systems have a low efficiency. To date, applications have been proposed for different sectors and activities. In the area of fats and oils, the use of neural networks has focused mainly on two issues: the detection of adulteration and the development of fatty products. The formulation of fats for specific uses is the classic case of a complex problem where an expert or group of experts defines the proportions of each base, which, when mixed, provide the specifications for the desired product. Some conventional computer systems are currently available to assist the experts; however, these systems have some shortcomings. This article describes in detail a system for formulating fatty products, shortenings or special fats, from three or more components by using neural networks (MIX. All stages of development, including design, construction, training, evaluation, and operation of the network will be outlined.

    Las redes neuronales son una rama de la inteligencia artificial basadas en la estructura y funcionamiento de sistemas biológicos, teniendo como principal característica la capacidad de aprender y generalizar conocimiento. Estas son utilizadas en la resolución de problemas complejos, en los cuales los sistemas computacionales tradicionales presentan una eficiencia baja. Hasta la fecha, han sido propuestas aplicaciones para los más diversos sectores y actividades. En el área de grasas y aceites, la utilización de redes neuronales se ha concentrado principalmente en dos asuntos: la detección de adulteraciones y la formulación de productos grasos. La formulación de grasas para uso específico es el caso clásico de problema complejo donde un experto o grupo de

  7. Quantum Entanglement in Neural Network States

    Directory of Open Access Journals (Sweden)

    Dong-Ling Deng

    2017-05-01

    Full Text Available Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our

  8. Brain tumor segmentation with Deep Neural Networks.

    Science.gov (United States)

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nonequilibrium landscape theory of neural networks

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-01-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451

  10. Neural Network for Estimating Conditional Distribution

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Kulczycki, P.

    Neural networks for estimating conditional distributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency is proved from a mild set of assumptions. A number of applications within...... statistcs, decision theory and signal processing are suggested, and a numerical example illustrating the capabilities of the elaborated network is given...

  11. A neural feedforward network with a polynomial nonlinearity

    DEFF Research Database (Denmark)

    Hoffmann, Nils

    1992-01-01

    A novel neural network based on the Wiener model is proposed. The network is composed of a hidden layer of preprocessing neurons followed by a polynomial nonlinearity and a linear output neuron. The author tries to solve the problem of finding an appropriate preprocessing method by using a modified...... backpropagation algorithm. It is shown by the use of calculation trees that the proposed approach is simple to implement, and that the computational complexity is not much larger than for the alternative method of using PCA to determine the weights in the preprocessing network. A simulation is given which...... indicates superior performance of the proposed network compared to the PCA network...

  12. Person Movement Prediction Using Neural Networks

    OpenAIRE

    Vintan, Lucian; Gellert, Arpad; Petzold, Jan; Ungerer, Theo

    2006-01-01

    Ubiquitous systems use context information to adapt appliance behavior to human needs. Even more convenience is reached if the appliance foresees the user's desires and acts proactively. This paper proposes neural prediction techniques to anticipate a person's next movement. We focus on neural predictors (multi-layer perceptron with back-propagation learning) with and without pre-training. The optimal configuration of the neural network is determined by evaluating movement sequences of real p...

  13. Artificial neural network modeling of dissolved oxygen in reservoir.

    Science.gov (United States)

    Chen, Wei-Bo; Liu, Wen-Cheng

    2014-02-01

    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.

  14. Improvement of reliability of molecular DNA computing: solution of inverse problem of Raman spectroscopy using artificial neural networks

    Science.gov (United States)

    Dolenko, T. A.; Burikov, S. A.; Vervald, E. N.; Efitorov, A. O.; Laptinskiy, K. A.; Sarmanova, O. E.; Dolenko, S. A.

    2017-02-01

    Elaboration of methods for the control of biochemical reactions with deoxyribonucleic acid (DNA) strands is necessary for the solution of one of the basic problems in the creation of biocomputers—improvement in the reliability of molecular DNA computing. In this paper, the results of the solution of the four-parameter inverse problem of laser Raman spectroscopy—the determination of the type and concentration of each of the DNA nitrogenous bases in multi-component solutions—are presented.

  15. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    Science.gov (United States)

    Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr

    2017-10-01

    Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  16. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    Directory of Open Access Journals (Sweden)

    Chernoded Andrey

    2017-01-01

    Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  17. Neural network structure for navigation using potential fields

    Science.gov (United States)

    Plumer, Edward S.

    1992-01-01

    A hybrid-network method for obstacle avoidance in the truck-backing system of D. Nguyen and B. Widrow (1989) is presented. A neural network technique for vehicle navigation and control in the presence of obstacles has been developed. A potential function which peaks at the surface of obstacles and has its minimum at the proper vehicle destination is computed using a network structure. The field is guaranteed not to have spurious local minima and does not have the property of flattening-out far from the goal. A feedforward neural network is used to control the steering of the vehicle using local field information. The network is trained in an obstacle-free space to follow the negative gradient of the field, after which the network is able to control and navigate the truck to its target destination in a space of obstacles which may be stationary or movable.

  18. [Medical use of artificial neural networks].

    Science.gov (United States)

    Molnár, B; Papik, K; Schaefer, R; Dombóvári, Z; Fehér, J; Tulassay, Z

    1998-01-04

    The main aim of the research in medical diagnostics is to develop more exact, cost-effective and handsome systems, procedures and methods for supporting the clinicians. In their paper the authors introduce a new method that recently came into the focus referred to as artificial neural networks. Based on the literature of the past 5-6 years they give a brief review--highlighting the most important ones--showing the idea behind neural networks, what they are used for in the medical field. The definition, structure and operation of neural networks are discussed. In the application part they collect examples in order to give an insight in the neural network application research. It is emphasised that in the near future basically new diagnostic equipment can be developed based on this new technology in the field of ECG, EEG and macroscopic and microscopic image analysis systems.

  19. Application of neural networks in coastal engineering

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    methods. That is why it is becoming popular in various fields including coastal engineering. Waves and tides will play important roles in coastal erosion or accretion. This paper briefly describes the back-propagation neural networks and its application...

  20. Additive Feed Forward Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1999-01-01

    This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...

  1. Blood glucose prediction using neural network

    Science.gov (United States)

    Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock

    2008-02-01

    We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.

  2. PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. Hadapiningradja Kusumodestoni

    2015-11-01

    Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.

  3. Using Neural Networks in Diagnosing Breast Cancer

    National Research Council Canada - National Science Library

    Fogel, David

    1997-01-01

    .... In the current study, evolutionary programming is used to train neural networks and linear discriminant models to detect breast cancer in suspicious and microcalcifications using radiographic features and patient age...

  4. Neural Networks in Mobile Robot Motion

    Directory of Open Access Journals (Sweden)

    Danica Janglová

    2004-03-01

    Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.

  5. Isolated Speech Recognition Using Artificial Neural Networks

    National Research Council Canada - National Science Library

    Polur, Prasad

    2001-01-01

    .... A small size vocabulary containing the words YES and NO is chosen. Spectral features using cepstral analysis are extracted per frame and imported to a feedforward neural network which uses a backpropagation with momentum training algorithm...

  6. Control of autonomous robot using neural networks

    Science.gov (United States)

    Barton, Adam; Volna, Eva

    2017-07-01

    The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.

  7. Neural Networks in Mobile Robot Motion

    Directory of Open Access Journals (Sweden)

    Danica Janglova

    2008-11-01

    Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the "free" space using ultrasound range finder data. The second neural network "finds" a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.

  8. Artificial neural networks a practical course

    CERN Document Server

    da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco

    2017-01-01

    This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.

  9. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    African Journals Online (AJOL)

    NJD

    Genetic Algorithm Optimized Neural Networks Ensemble as. Calibration Model for Simultaneous Spectrophotometric. Estimation of Atenolol and Losartan Potassium in Tablets. Dondeti Satyanarayana*, Kamarajan Kannan and Rajappan Manavalan. Department of Pharmacy, Annamalai University, Annamalainagar, Tamil ...

  10. Neural Network Analysis and Evaluation of the Fetal Heart Rate

    Directory of Open Access Journals (Sweden)

    Yasuaki Noguchi

    2009-01-01

    Full Text Available The aim of the present study is to obtain a highly objective automatic fetal heart rate (FHR diagnosis. The neural network software was composed of three layers with the back propagation, to which 8 FHR data, including sinusoidal FHR, were input and the system was educated by the data of 20 cases with a known outcome. The output was the probability of a normal, intermediate, or pathologic outcome. The neural index studied prolonged monitoring. The neonatal states and the FHR score strongly correlated with the outcome probability. The neural index diagnosis was correct. The completed software was transferred to other computers, where the system function was correct.

  11. Qualitative analysis and control of complex neural networks with delays

    CERN Document Server

    Wang, Zhanshan; Zheng, Chengde

    2016-01-01

    This book focuses on the stability of the dynamical neural system, synchronization of the coupling neural system and their applications in automation control and electrical engineering. The redefined concept of stability, synchronization and consensus are adopted to provide a better explanation of the complex neural network. Researchers in the fields of dynamical systems, computer science, electrical engineering and mathematics will benefit from the discussions on complex systems. The book will also help readers to better understand the theory behind the control technique and its design.

  12. Enhancing Hohlraum Design with Artificial Neural Networks

    Science.gov (United States)

    Peterson, J. L.; Berzak Hopkins, L. F.; Humbird, K. D.; Brandon, S. T.; Field, J. E.; Langer, S. H.; Nora, R. C.; Spears, B. K.

    2017-10-01

    A primary goal of hohlraum design is to efficiently convert available laser power and energy to capsule drive, compression and ultimately fusion neutron yield. However, a major challenge of this multi-dimensional optimization problem is the relative computational expense of hohlraum simulations. In this work, we explore overcoming this obstacle with the use of artificial neural networks built off ensembles of hohlraum simulations. These machine learning systems emulate the behavior of full simulations in a fraction of the time, thereby enabling the rapid exploration of design parameters. We will demonstrate this technology with a search for modifications to existing high-yield designs that can maximize neutron production within NIF's current laser power and energy constraints. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734401.

  13. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.

    Science.gov (United States)

    Miconi, Thomas

    2017-02-23

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.

  14. Quantum Measurements: From Bayes Rule to Neural Networks

    DEFF Research Database (Denmark)

    Greplova, Eliska

    2017-01-01

    Quantum technologies are becoming more and more introduced into the devices that we use in the daily life, such as quantum dot based television screens or quantum cryptographic channels for encoding financial transactions. Given the limits of the silicon computer chips, it will in the near future...... learning techniques such as artificial neural networks....

  15. A Constructive Neural-Network Approach to Modeling Psychological Development

    Science.gov (United States)

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  16. Preparing for knowledge extraction in modular neural networks

    NARCIS (Netherlands)

    Spaanenburg, Lambert; Slump, Cornelis H.; Venema, Rienk; van der Zwaag, B.J.

    Neural networks learn knowledge from data. For a monolithic structure, this knowledge can be easily used but not isolated. The many degrees of freedom while learning make knowledge extraction a computationally intensive process as the representation is not unique. Where existing knowledge is

  17. Nondestructive pavement evaluation using ILLI-PAVE based artificial neural network models.

    Science.gov (United States)

    2008-09-01

    The overall objective in this research project is to develop advanced pavement structural analysis models for more accurate solutions with fast computation schemes. Soft computing and modeling approaches, specifically the Artificial Neural Network (A...

  18. Network bursts in cortical neuronal cultures: 'noise - versus pacemaker'- driven neural network simulations

    NARCIS (Netherlands)

    Gritsun, T.; Stegenga, J.; le Feber, Jakob; Rutten, Wim

    2009-01-01

    In this paper we address the issue of spontaneous bursting activity in cortical neuronal cultures and explain what might cause this collective behavior using computer simulations of two different neural network models. While the common approach to acivate a passive network is done by introducing

  19. A neural network simulation package in CLIPS

    Science.gov (United States)

    Bhatnagar, Himanshu; Krolak, Patrick D.; Mcgee, Brenda J.; Coleman, John

    1990-01-01

    The intrinsic similarity between the firing of a rule and the firing of a neuron has been captured in this research to provide a neural network development system within an existing production system (CLIPS). A very important by-product of this research has been the emergence of an integrated technique of using rule based systems in conjunction with the neural networks to solve complex problems. The systems provides a tool kit for an integrated use of the two techniques and is also extendible to accommodate other AI techniques like the semantic networks, connectionist networks, and even the petri nets. This integrated technique can be very useful in solving complex AI problems.

  20. Logarithmic learning for generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2014-12-01

    Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Diabetic retinopathy screening using deep neural network.

    Science.gov (United States)

    Ramachandran, Nishanthan; Hong, Sheng Chiong; Sime, Mary J; Wilson, Graham A

    2017-09-07

    There is a burgeoning interest in the use of deep neural network in diabetic retinal screening. To determine whether a deep neural network could satisfactorily detect diabetic retinopathy that requires referral to an ophthalmologist from a local diabetic retinal screening programme and an international database. Retrospective audit. Diabetic retinal photos from Otago database photographed during October 2016 (485 photos), and 1200 photos from Messidor international database. Receiver operating characteristic curve to illustrate the ability of a deep neural network to identify referable diabetic retinopathy (moderate or worse diabetic retinopathy or exudates within one disc diameter of the fovea). Area under the receiver operating characteristic curve, sensitivity and specificity. For detecting referable diabetic retinopathy, the deep neural network had an area under receiver operating characteristic curve of 0.901 (95% confidence interval 0.807-0.995), with 84.6% sensitivity and 79.7% specificity for Otago and 0.980 (95% confidence interval 0.973-0.986), with 96.0% sensitivity and 90.0% specificity for Messidor. This study has shown that a deep neural network can detect referable diabetic retinopathy with sensitivities and specificities close to or better than 80% from both an international and a domestic (New Zealand) database. We believe that deep neural networks can be integrated into community screening once they can successfully detect both diabetic retinopathy and diabetic macular oedema. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  2. Inline hyperspectral thickness determination of thin films using neural networks

    Science.gov (United States)

    Tremmel, Anton J.; Weiss, Roman; Schardt, Michael; Koch, Alexander W.

    2017-04-01

    Combining reflectometry and hyperspectral imaging allows mapping of thin film thickness. Therefore, layer thickness is calculated by comparing a dataset of simulated spectra with the measured data. Utilizing the maximum frame rate of the hyperspectral imager, the pixel wise spectra comparing procedure cannot be performed using a standard computer due to the processing load. In this work, a method using neural networks for calculating layer thickness is presented. By the use of the nonlinear equation as result of a trained neural network, thickness data can be determined with a measurement rate matching the maximum frame rate of the hyperspectral imager.

  3. Hand gesture recognition based on convolutional neural networks

    Science.gov (United States)

    Hu, Yu-lu; Wang, Lian-ming

    2017-11-01

    Hand gesture has been considered a natural, intuitive and less intrusive way for Human-Computer Interaction (HCI). Although many algorithms for hand gesture recognition have been proposed in literature, robust algorithms have been pursued. A recognize algorithm based on the convolutional neural networks is proposed to recognize ten kinds of hand gestures, which include rotation and turnover samples acquired from different persons. When 6000 hand gesture images were used as training samples, and 1100 as testing samples, a 98% recognition rate was achieved with the convolutional neural networks, which is higher than that with some other frequently-used recognition algorithms.

  4. Inferring low-dimensional microstructure representations using convolutional neural networks

    Science.gov (United States)

    Lubbers, Nicholas; Lookman, Turab; Barros, Kipton

    2017-11-01

    We apply recent advances in machine learning and computer vision to a central problem in materials informatics: the statistical representation of microstructural images. We use activations in a pretrained convolutional neural network to provide a high-dimensional characterization of a set of synthetic microstructural images. Next, we use manifold learning to obtain a low-dimensional embedding of this statistical characterization. We show that the low-dimensional embedding extracts the parameters used to generate the images. According to a variety of metrics, the convolutional neural network method yields dramatically better embeddings than the analogous method derived from two-point correlations alone.

  5. Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks.

    Science.gov (United States)

    Bitzer, Sebastian; Kiebel, Stefan J

    2012-07-01

    Recurrent neural networks (RNNs) are widely used in computational neuroscience and machine learning applications. In an RNN, each neuron computes its output as a nonlinear function of its integrated input. While the importance of RNNs, especially as models of brain processing, is undisputed, it is also widely acknowledged that the computations in standard RNN models may be an over-simplification of what real neuronal networks compute. Here, we suggest that the RNN approach may be made computationally more powerful by its fusion with Bayesian inference techniques for nonlinear dynamical systems. In this scheme, we use an RNN as a generative model of dynamic input caused by the environment, e.g. of speech or kinematics. Given this generative RNN model, we derive Bayesian update equations that can decode its output. Critically, these updates define a 'recognizing RNN' (rRNN), in which neurons compute and exchange prediction and prediction error messages. The rRNN has several desirable features that a conventional RNN does not have, e.g. fast decoding of dynamic stimuli and robustness to initial conditions and noise. Furthermore, it implements a predictive coding scheme for dynamic inputs. We suggest that the Bayesian inversion of RNNs may be useful both as a model of brain function and as a machine learning tool. We illustrate the use of the rRNN by an application to the online decoding (i.e. recognition) of human kinematics.

  6. Neural Networks for Medical Image Processing: A Study of Feature Identification

    OpenAIRE

    Dayhoff, Ruth E.; Dayhoff, Judith E.

    1988-01-01

    Neural networks, a parallel computing architecture modelled on living nervous systems, are able to “learn” by example. The ability of a simulated neural network to distinguish among simulated microscopic amoebae nuclei images was studied. The neural network was successfully shown to organize feature detectors without the intermediate step of manual identification of salient features. The feature detectors were mapped onto the image format and the issue of redundancy was examined.

  7. A transiently chaotic neural-network implementation of the CDMA multiuser detector.

    Science.gov (United States)

    Wang, B; Nie, J; He, Z

    1999-01-01

    The complex dynamics of the chaotic neural networks makes it possible for them to escape from local minimum of the simple gradient descent neurodynamics. In this letter we use a transiently chaotic neural network to detect the CDMA multiuser signals and hence obtain an implementation scheme of the CDMA multiuser detector (TCNN-MD). Computer simulation results show that the proposed detector is clearly superior to Hopfield neural-network-based detector.

  8. Purely sequence trained neural networks for ASR based on lattice free MMI (Author’s Manuscript)

    Science.gov (United States)

    2016-09-08

    Purely sequence-trained neural networks for ASR based on lattice-free MMI Daniel Povey1,2, Vijayaditya Peddinti1, Daniel Galvez3, Pegah Ghahrmani1...we describe a method to perform sequence- discriminative training of neural network acoustic models with- out the need for frame-level cross-entropy... neural network outputs at one third the standard frame rate. These changes en- able us to perform the computation for the forward-backward algorithm

  9. Multiagent Intrusion Detection Based on Neural Network Detectors and Artificial Immune System

    OpenAIRE

    Vaitsekhovich, L.; Golovko, V; Rubanau, V.

    2009-01-01

    In this article the artificial immune system and neural network techniques for intrusion detection have been addressed. The AIS allows detecting unknown samples of computer attacks. The integration of AIS and neural networks as detectors permits to increase performance of the system security. The detector structure is based on the integration of the different neural networks namely RNN and MLP. The KDD-99 dataset was used for experiments performing. The experimental results show that such int...

  10. Application of a Shallow Neural Network to Short-Term Stock Trading

    OpenAIRE

    Madahar, Abhinav; Ma, Yuze; Patel, Kunal

    2017-01-01

    Machine learning is increasingly prevalent in stock market trading. Though neural networks have seen success in computer vision and natural language processing, they have not been as useful in stock market trading. To demonstrate the applicability of a neural network in stock trading, we made a single-layer neural network that recommends buying or selling shares of a stock by comparing the highest high of 10 consecutive days with that of the next 10 days, a process repeated for the stock's ye...

  11. Neuronmaster: an integrated tool for applications in neural networks

    Science.gov (United States)

    Rivas-Echeverria, Francklin; Colina-Morles, Eliezer; Sole, Solazver; Perez-Mendez, Anna; Bravo-Bravo, Cesar; Bravo-Bravo, Victor

    2001-03-01

    This work presents the design of an integral environment for the suitable development of neural networks applications. The integrated environment contemplates the following features: A data processing module which encompasses statistical data analysis techniques for variables selection reduction, a variety of learning algorithms, code generator for different computer languages to enable network implementation, a learning sessions planning module and database connectivity facilities via ODBC, RPC, and API.

  12. A supervised 'lesion-enhancement' filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD)

    Science.gov (United States)

    Suzuki, Kenji

    2009-09-01

    Computer-aided diagnosis (CAD) has been an active area of study in medical image analysis. A filter for the enhancement of lesions plays an important role for improving the sensitivity and specificity in CAD schemes. The filter enhances objects similar to a model employed in the filter; e.g. a blob-enhancement filter based on the Hessian matrix enhances sphere-like objects. Actual lesions, however, often differ from a simple model; e.g. a lung nodule is generally modeled as a solid sphere, but there are nodules of various shapes and with internal inhomogeneities such as a nodule with spiculations and ground-glass opacity. Thus, conventional filters often fail to enhance actual lesions. Our purpose in this study was to develop a supervised filter for the enhancement of actual lesions (as opposed to a lesion model) by use of a massive-training artificial neural network (MTANN) in a CAD scheme for detection of lung nodules in CT. The MTANN filter was trained with actual nodules in CT images to enhance actual patterns of nodules. By use of the MTANN filter, the sensitivity and specificity of our CAD scheme were improved substantially. With a database of 69 lung cancers, nodule candidate detection by the MTANN filter achieved a 97% sensitivity with 6.7 false positives (FPs) per section, whereas nodule candidate detection by a difference-image technique achieved a 96% sensitivity with 19.3 FPs per section. Classification-MTANNs were applied for further reduction of the FPs. The classification-MTANNs removed 60% of the FPs with a loss of one true positive; thus, it achieved a 96% sensitivity with 2.7 FPs per section. Overall, with our CAD scheme based on the MTANN filter and classification-MTANNs, an 84% sensitivity with 0.5 FPs per section was achieved. First presented at the Seventh International Conference on Machine Learning and Applications, San Diego, CA, USA, 11-13 December 2008.

  13. A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images.

    Science.gov (United States)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; Moore, Kathleen; Liu, Hong; Zheng, Bin

    2017-06-01

    Accurately assessment of adipose tissue volume inside a human body plays an important role in predicting disease or cancer risk, diagnosis and prognosis. In order to overcome limitation of using only one subjectively selected CT image slice to estimate size of fat areas, this study aims to develop and test a computer-aided detection (CAD) scheme based on deep learning technique to automatically segment subcutaneous fat areas (SFA) and visceral fat areas (VFA) depicting on volumetric CT images. A retrospectively collected CT image dataset was divided into two independent training and testing groups. The proposed CAD framework consisted of two steps with two convolution neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. The first CNN was trained using 2,240 CT slices to select abdominal CT slices depicting SFA and VFA. The second CNN was trained with 84,000pixel patches and applied to the selected CT slices to identify fat-related pixels and assign them into SFA and VFA classes. Comparing to the manual CT slice selection and fat pixel segmentation results, the accuracy of CT slice selection using the Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using the Segmentation-CNN was 96.8%. This study demonstrated the feasibility of applying a new deep learning based CAD scheme to automatically recognize abdominal section of human body from CT scans and segment SFA and VFA from volumetric CT data with high accuracy or agreement with the manual segmentation results. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Neural network definitions of highly predictable protein secondary structure classes

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A. [Los Alamos National Lab., NM (United States)]|[Santa Fe Inst., NM (United States); Steeg, E. [Toronto Univ., ON (Canada). Dept. of Computer Science; Farber, R. [Los Alamos National Lab., NM (United States)

    1994-02-01

    We use two co-evolving neural networks to determine new classes of protein secondary structure which are significantly more predictable from local amino sequence than the conventional secondary structure classification. Accurate prediction of the conventional secondary structure classes: alpha helix, beta strand, and coil, from primary sequence has long been an important problem in computational molecular biology. Neural networks have been a popular method to attempt to predict these conventional secondary structure classes. Accuracy has been disappointingly low. The algorithm presented here uses neural networks to similtaneously examine both sequence and structure data, and to evolve new classes of secondary structure that can be predicted from sequence with significantly higher accuracy than the conventional classes. These new classes have both similarities to, and differences with the conventional alpha helix, beta strand and coil.

  15. Product Cost Management Structures: a review and neural network modelling

    Directory of Open Access Journals (Sweden)

    P. Jha

    2003-11-01

    Full Text Available This paper reviews the growth of approaches in product costing and draws synergies with information management and resource planning systems, to investigate potential application of state of the art modelling techniques of neural networks. Increasing demands on costing systems to serve multiple decision-making objectives, have made it essential to use better techniques for analysis of available data. This need is highlighted in the paper. The approach of neural networks, which have several analogous facets to complement and aid the information demands of modern product costing, Enterprise Resource Planning (ERP structures and the dominant-computing environment (for information management in the object oriented paradigm form the domain for investigation. Simulated data is used in neural network applications across activities that consume resources and deliver products, to generate information for monitoring and control decisions. The results in application for feature extraction and variation detection and their implications are presented in the paper.

  16. Neural networks for data compression and invariant image recognition

    Science.gov (United States)

    Gardner, Sheldon

    1989-01-01

    An approach to invariant image recognition (I2R), based upon a model of biological vision in the mammalian visual system (MVS), is described. The complete I2R model incorporates several biologically inspired features: exponential mapping of retinal images, Gabor spatial filtering, and a neural network associative memory. In the I2R model, exponentially mapped retinal images are filtered by a hierarchical set of Gabor spatial filters (GSF) which provide compression of the information contained within a pixel-based image. A neural network associative memory (AM) is used to process the GSF coded images. We describe a 1-D shape function method for coding of scale and rotationally invariant shape information. This method reduces image shape information to a periodic waveform suitable for coding as an input vector to a neural network AM. The shape function method is suitable for near term applications on conventional computing architectures equipped with VLSI FFT chips to provide a rapid image search capability.

  17. Feature extraction for deep neural networks based on decision boundaries

    Science.gov (United States)

    Woo, Seongyoun; Lee, Chulhee

    2017-05-01

    Feature extraction is a process used to reduce data dimensions using various transforms while preserving the discriminant characteristics of the original data. Feature extraction has been an important issue in pattern recognition since it can reduce the computational complexity and provide a simplified classifier. In particular, linear feature extraction has been widely used. This method applies a linear transform to the original data to reduce the data dimensions. The decision boundary feature extraction method (DBFE) retains only informative directions for discriminating among the classes. DBFE has been applied to various parametric and non-parametric classifiers, which include the Gaussian maximum likelihood classifier (GML), the k-nearest neighbor classifier, support vector machines (SVM) and neural networks. In this paper, we apply DBFE to deep neural networks. This algorithm is based on the nonparametric version of DBFE, which was developed for neural networks. Experimental results with the UCI database show improved classification accuracy with reduced dimensionality.

  18. Classifying epilepsy diseases using artificial neural networks and genetic algorithm.

    Science.gov (United States)

    Koçer, Sabri; Canal, M Rahmi

    2011-08-01

    In this study, FFT analysis is applied to the EEG signals of the normal and patient subjects and the obtained FFT coefficients are used as inputs in Artificial Neural Network (ANN). The differences shown by the non-stationary random signals such as EEG signals in cases of health and sickness (epilepsy) were evaluated and tried to be analyzed under computer-supported conditions by using artificial neural networks. Multi-Layer Perceptron (MLP) architecture is used Levenberg-Marquardt (LM), Quickprop (QP), Delta-bar delta (DBD), Momentum and Conjugate gradient (CG) learning algorithms, and the best performance was tried to be attained by ensuring the optimization with the use of genetic algorithms of the weights, learning rates, neuron numbers of hidden layer in the training process. This study shows that the artificial neural network increases the classification performance using genetic algorithm.

  19. Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach

    Science.gov (United States)

    2016-03-30

    Undergraduate Student Paper Postgraduate Student Paper Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach...monitoring, flight parameter, nonlinear modeling, Artificial Neural Network , typical loadcase. Introduction Aircraft load monitoring is an... Neural Networks (ANN), i.e. the BP network and Kohonen Clustering Network , are applied and revised by Kalman Filter and Genetic Algorithm to build

  20. An overview on development of neural network technology

    Science.gov (United States)

    Lin, Chun-Shin

    1993-01-01

    The study has been to obtain a bird's-eye view of the current neural network technology and the neural network research activities in NASA. The purpose was two fold. One was to provide a reference document for NASA researchers who want to apply neural network techniques to solve their problems. Another one was to report out survey results regarding NASA research activities and provide a view on what NASA is doing, what potential difficulty exists and what NASA can/should do. In a ten week study period, we interviewed ten neural network researchers in the Langley Research Center and sent out 36 survey forms to researchers at the Johnson Space Center, Lewis Research Center, Ames Research Center and Jet Propulsion Laboratory. We also sent out 60 similar forms to educators and corporation researchers to collect general opinions regarding this field. Twenty-eight survey forms, 11 from NASA researchers and 17 from outside, were returned. Survey results were reported in our final report. In the final report, we first provided an overview on the neural network technology. We reviewed ten neural network structures, discussed the applications in five major areas, and compared the analog, digital and hybrid electronic implementation of neural networks. In the second part, we summarized known NASA neural network research studies and reported the results of the questionnaire survey. Survey results show that most studies are still in the development and feasibility study stage. We compared the techniques, application areas, researchers' opinions on this technology, and many aspects between NASA and non-NASA groups. We also summarized their opinions on difficulties encountered. Applications are considered the top research priority by most researchers. Hardware development and learning algorithm improvement are the next. The lack of financial and management support is among the difficulties in research study. All researchers agree that the use of neural networks could result in

  1. Piecewise convexity of artificial neural networks.

    Science.gov (United States)

    Rister, Blaine; Rubin, Daniel L

    2017-10-01

    Although artificial neural networks have shown great promise in applications including computer vision and speech recognition, there remains considerable practical and theoretical difficulty in optimizing their parameters. The seemingly unreasonable success of gradient descent methods in minimizing these non-convex functions remains poorly understood. In this work we offer some theoretical guarantees for networks with piecewise affine activation functions, which have in recent years become the norm. We prove three main results. First, that the network is piecewise convex as a function of the input data. Second, that the network, considered as a function of the parameters in a single layer, all others held constant, is again piecewise convex. Third, that the network as a function of all its parameters is piecewise multi-convex, a generalization of biconvexity. From here we characterize the local minima and stationary points of the training objective, showing that they minimize the objective on certain subsets of the parameter space. We then analyze the performance of two optimization algorithms on multi-convex problems: gradient descent, and a method which repeatedly solves a number of convex sub-problems. We prove necessary convergence conditions for the first algorithm and both necessary and sufficient conditions for the second, after introducing regularization to the objective. Finally, we remark on the remaining difficulty of the global optimization problem. Under the squared error objective, we show that by varying the training data, a single rectifier neuron admits local minima arbitrarily far apart, both in objective value and parameter space. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Neural network approaches to dynamic collision-free trajectory generation.

    Science.gov (United States)

    Yang, S X; Meng, M

    2001-01-01

    In this paper, dynamic collision-free trajectory generation in a nonstationary environment is studied using biologically inspired neural network approaches. The proposed neural network is topologically organized, where the dynamics of each neuron is characterized by a shunting equation or an additive equation. The state space of the neural network can be either the Cartesian workspace or the joint space of multi-joint robot manipulators. There are only local lateral connections among neurons. The real-time optimal trajectory is generated through the dynamic activity landscape of the neural network without explicitly searching over the free space nor the collision paths, without explicitly optimizing any global cost functions, without any prior knowledge of the dynamic environment, and without any learning procedures. Therefore the model algorithm is computationally efficient. The stability of the neural network system is guaranteed by the existence of a Lyapunov function candidate. In addition, this model is not very sensitive to the model parameters. Several model variations are presented and the differences are discussed. As examples, the proposed models are applied to generate collision-free trajectories for a mobile robot to solve a maze-type of problem, to avoid concave U-shaped obstacles, to track a moving target and at the same to avoid varying obstacles, and to generate a trajectory for a two-link planar robot with two targets. The effectiveness and efficiency of the proposed approaches are demonstrated through simulation and comparison studies.

  3. Proceedings of the Neural Network Workshop for the Hanford Community

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.

    1994-01-01

    These proceedings were generated from a series of presentations made at the Neural Network Workshop for the Hanford Community. The abstracts and viewgraphs of each presentation are reproduced in these proceedings. This workshop was sponsored by the Computing and Information Sciences Department in the Molecular Science Research Center (MSRC) at the Pacific Northwest Laboratory (PNL). Artificial neural networks constitute a new information processing technology that is destined within the next few years, to provide the world with a vast array of new products. A major reason for this is that artificial neural networks are able to provide solutions to a wide variety of complex problems in a much simpler fashion than is possible using existing techniques. In recognition of these capabilities, many scientists and engineers are exploring the potential application of this new technology to their fields of study. An artificial neural network (ANN) can be a software simulation, an electronic circuit, optical system, or even an electro-chemical system designed to emulate some of the brain`s rudimentary structure as well as some of the learning processes that are believed to take place in the brain. For a very wide range of applications in science, engineering, and information technology, ANNs offer a complementary and potentially superior approach to that provided by conventional computing and conventional artificial intelligence. This is because, unlike conventional computers, which have to be programmed, ANNs essentially learn from experience and can be trained in a straightforward fashion to carry out tasks ranging from the simple to the highly complex.

  4. Fin-and-tube condenser performance evaluation using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ling-Xiao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China)

    2010-05-15

    The paper presents neural network approach to performance evaluation of the fin-and-tube air-cooled condensers which are widely used in air-conditioning and refrigeration systems. Inputs of the neural network include refrigerant and air-flow rates, refrigerant inlet temperature and saturated temperature, and entering air dry-bulb temperature. Outputs of the neural network consist of the heating capacity and the pressure drops on both refrigerant and air sides. The multi-input multi-output (MIMO) neural network is separated into multi-input single-output (MISO) neural networks for training. Afterwards, the trained MISO neural networks are combined into a MIMO neural network, which indicates that the number of training data sets is determined by the biggest MISO neural network not the whole MIMO network. Compared with a validated first-principle model, the standard deviations of neural network models are less than 1.9%, and all errors fall into {+-}5%. (author)

  5. Prototype-Incorporated Emotional Neural Network.

    Science.gov (United States)

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-08-15

    Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.

  6. On sparsely connected optimal neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V. [Los Alamos National Lab., NM (United States); Draghici, S. [Wayne State Univ., Detroit, MI (United States)

    1997-10-01

    This paper uses two different approaches to show that VLSI- and size-optimal discrete neural networks are obtained for small fan-in values. These have applications to hardware implementations of neural networks, but also reveal an intrinsic limitation of digital VLSI technology: its inability to cope with highly connected structures. The first approach is based on implementing F{sub n,m} functions. The authors show that this class of functions can be implemented in VLSI-optimal (i.e., minimizing AT{sup 2}) neural networks of small constant fan-ins. In order to estimate the area (A) and the delay (T) of such networks, the following cost functions will be used: (i) the connectivity and the number-of-bits for representing the weights and thresholds--for good estimates of the area; and (ii) the fan-ins and the length of the wires--for good approximates of the delay. The second approach is based on implementing Boolean functions for which the classical Shannon`s decomposition can be used. Such a solution has already been used to prove bounds on the size of fan-in 2 neural networks. They will generalize the result presented there to arbitrary fan-in, and prove that the size is minimized by small fan-in values. Finally, a size-optimal neural network of small constant fan-ins will be suggested for F{sub n,m} functions.

  7. Artificial neural network intelligent method for prediction

    Science.gov (United States)

    Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi

    2017-09-01

    Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.

  8. Estimating Conditional Distributions by Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1998-01-01

    Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...

  9. Medical Text Classification using Convolutional Neural Networks

    OpenAIRE

    Hughes, Mark; Li, Irene; Kotoulas, Spyros; Suzumura, Toyotaro

    2017-01-01

    We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.

  10. Medical Text Classification Using Convolutional Neural Networks.

    Science.gov (United States)

    Hughes, Mark; Li, Irene; Kotoulas, Spyros; Suzumura, Toyotaro

    2017-01-01

    We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.

  11. Artificial Neural Networks and Instructional Technology.

    Science.gov (United States)

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  12. Visual Servoing from Deep Neural Networks

    OpenAIRE

    Bateux, Quentin; Marchand, Eric; Leitner, Jürgen; Chaumette, Francois; Corke, Peter

    2017-01-01

    International audience; We present a deep neural network-based method to perform high-precision, robust and real-time 6 DOF visual servoing. The paper describes how to create a dataset simulating various perturbations (occlusions and lighting conditions) from a single real-world image of the scene. A convolutional neural network is fine-tuned using this dataset to estimate the relative pose between two images of the same scene. The output of the network is then employed in a visual servoing c...

  13. Design of Robust Neural Network Classifiers

    DEFF Research Database (Denmark)

    Larsen, Jan; Andersen, Lars Nonboe; Hintz-Madsen, Mads

    1998-01-01

    This paper addresses a new framework for designing robust neural network classifiers. The network is optimized using the maximum a posteriori technique, i.e., the cost function is the sum of the log-likelihood and a regularization term (prior). In order to perform robust classification, we present...... a modified likelihood function which incorporates the potential risk of outliers in the data. This leads to the introduction of a new parameter, the outlier probability. Designing the neural classifier involves optimization of network weights as well as outlier probability and regularization parameters. We...

  14. Electronic device aspects of neural network memories

    Science.gov (United States)

    Lambe, J.; Moopenn, A.; Thakoor, A. P.

    1985-01-01

    The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.

  15. Neural Computations in a Dynamical System with Multiple Time Scales

    Science.gov (United States)

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions. PMID:27679569

  16. Computer Networks and Globalization

    Directory of Open Access Journals (Sweden)

    J. Magliaro

    2007-07-01

    Full Text Available Communication and information computer networks connect the world in ways that make globalization more natural and inequity more subtle. As educators, we look at these phenomena holistically analyzing them from the realist’s view, thus exploring tensions, (in equity and (injustice, and from the idealist’s view, thus embracing connectivity, convergence and development of a collective consciousness. In an increasingly market- driven world we find examples of openness and human generosity that are based on networks, specifically the Internet. After addressing open movements in publishing, software industry and education, we describe the possibility of a dialectic equilibrium between globalization and indigenousness in view of ecologically designed future smart networks

  17. Neural network optimization, components, and design selection

    Science.gov (United States)

    Weller, Scott W.

    1990-07-01

    Neural Networks are part of a revived technology which has received a lot of hype in recent years. As is apt to happen in any hyped technology, jargon and predictions make its assimilation and application difficult. Nevertheless, Neural Networks have found use in a number of areas, working on non-trivial and noncontrived problems. For example, one net has been trained to "read", translating English text into phoneme sequences. Other applications of Neural Networks include data base manipulation and the solving of muting and classification types of optimization problems. Neural Networks are constructed from neurons, which in electronics or software attempt to model but are not constrained by the real thing, i.e., neurons in our gray matter. Neurons are simple processing units connected to many other neurons over pathways which modify the incoming signals. A single synthetic neuron typically sums its weighted inputs, runs this sum through a non-linear function, and produces an output. In the brain, neurons are connected in a complex topology: in hardware/software the topology is typically much simpler, with neurons lying side by side, forming layers of neurons which connect to the layer of neurons which receive their outputs. This simplistic model is much easier to construct than the real thing, and yet can solve real problems. The information in a network, or its "memory", is completely contained in the weights on the connections from one neuron to another. Establishing these weights is called "training" the network. Some networks are trained by design -- once constructed no further learning takes place. Other types of networks require iterative training once wired up, but are not trainable once taught Still other types of networks can continue to learn after initial construction. The main benefit to using Neural Networks is their ability to work with conflicting or incomplete ("fuzzy") data sets. This ability and its usefulness will become evident in the following

  18. Neutron spectrometry with artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Iniguez de la Torre Bayo, M.P. [Universidad de Valladolid, Valladolid (Spain); Barquero, R. [Hospital Universitario Rio Hortega, Valladolid (Spain); Arteaga A, T. [Envases de Zacatecas, S.A. de C.V., Zacatecas (Mexico)]. e-mail: rvega@cantera.reduaz.mx

    2005-07-01

    An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the {chi}{sup 2}-test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  19. Neutron spectrometry using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Carrillo, Hector Rene [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Ing. Electrica, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Matematicas, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]. E-mail: fermineutron@yahoo.com; Martin Hernandez-Davila, Victor [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Ing. Electrica, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Manzanares-Acuna, Eduardo [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Mercado Sanchez, Gema A. [Unidad Academica de Matematicas, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Pilar Iniguez de la Torre, Maria [Depto. Fisica Teorica, Molecular y Nuclear, Universidad de Valladolid, Valladolid (Spain); Barquero, Raquel [Hospital Universitario Rio Hortega, Valladolid (Spain); Palacios, Francisco; Mendez Villafane, Roberto [Depto. Fisica Teorica, Molecular y Nuclear, Universidad de Valladolid, Valladolid (Spain)]|[Universidad Europea Miguel de Cervantes, C. Padre Julio Chevalier No. 2, 47012 Valladolid (Spain); Arteaga Arteaga, Tarcicio [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Envases de Zacatecas, SA de CV, Parque Industrial de Calera de Victor Rosales, Zac. (Mexico); Manuel Ortiz Rodriguez, Jose [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Ing. Electrica, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)

    2006-04-15

    An artificial neural network has been designed to obtain neutron spectra from Bonner spheres spectrometer count rates. The neural network was trained using 129 neutron spectra. These include spectra from isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra based on mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. The re-binned spectra and the UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and their respective spectra were used as output during the neural network training. After training, the network was tested with the Bonner spheres count rates produced by folding a set of neutron spectra with the response matrix. This set contains data used during network training as well as data not used. Training and testing was carried out using the Matlab{sup (R)} program. To verify the network unfolding performance, the original and unfolded spectra were compared using the root mean square error. The use of artificial neural networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem.

  20. Nano-topography Enhances Communication in Neural Cells Networks

    KAUST Repository

    Onesto, V.

    2017-08-23

    Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness Sa affects networks topology. In the low nano-meter range, S-a = 0-30 nm, information increases with Sa. Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration.

  1. Extraction of texture features with a multiresolution neural network

    Science.gov (United States)

    Lepage, Richard; Laurendeau, Denis; Gagnon, Roger A.

    1992-09-01

    Texture is an important surface characteristic. Many industrial materials such as wood, textile, or paper are best characterized by their texture. Detection of defaults occurring on such materials or classification for quality control anD matching can be carried out through careful texture analysis. A system for the classification of pieces of wood used in the furniture industry is proposed. This paper is concerned with a neural network implementation of the features extraction and classification components of the proposed system. Texture appears differently depending at which spatial scale it is observed. A complete description of a texture thus implies an analysis at several spatial scales. We propose a compact pyramidal representation of the input image for multiresolution analysis. The feature extraction system is implemented on a multilayer artificial neural network. Each level of the pyramid, which is a representation of the input image at a given spatial resolution scale, is mapped into a layer of the neural network. A full resolution texture image is input at the base of the pyramid and a representation of the texture image at multiple resolutions is generated by the feedforward pyramid structure of the neural network. The receptive field of each neuron at a given pyramid level is preprogrammed as a discrete Gaussian low-pass filter. Meaningful characteristics of the textured image must be extracted if a good resolving power of the classifier must be achieved. Local dominant orientation is the principal feature which is extracted from the textured image. Local edge orientation is computed with a Sobel mask at four orientation angles (multiple of (pi) /4). The resulting intrinsic image, that is, the local dominant orientation image, is fed to the texture classification neural network. The classification network is a three-layer feedforward back-propagation neural network.

  2. Antagonistic neural networks underlying differentiated leadership roles

    OpenAIRE

    Richard Eleftherios Boyatzis; Kylie eRochford; Anthony Ian Jack

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN) and the Default Mode Network (DMN). Neural activity in ...

  3. Representations in neural network based empirical potentials

    Science.gov (United States)

    Cubuk, Ekin D.; Malone, Brad D.; Onat, Berk; Waterland, Amos; Kaxiras, Efthimios

    2017-07-01

    Many structural and mechanical properties of crystals, glasses, and biological macromolecules can be modeled from the local interactions between atoms. These interactions ultimately derive from the quantum nature of electrons, which can be prohibitively expensive to simulate. Machine learning has the potential to revolutionize materials modeling due to its ability to efficiently approximate complex functions. For example, neural networks can be trained to reproduce results of density functional theory calculations at a much lower cost. However, how neural networks reach their predictions is not well understood, which has led to them being used as a "black box" tool. This lack of understanding is not desirable especially for applications of neural networks in scientific inquiry. We argue that machine learning models trained on physical systems can be used as more than just approximations since they had to "learn" physical concepts in order to reproduce the labels they were trained on. We use dimensionality reduction techniques to study in detail the representation of silicon atoms at different stages in a neural network, which provides insight into how a neural network learns to model atomic interactions.

  4. Neural Network Approach To Sensory Fusion

    Science.gov (United States)

    Pearson, John C.; Gelfand, Jack J.; Sullivan, W. E.; Peterson, Richard M.; Spence, Clay D.

    1988-08-01

    We present a neural network model for sensory fusion based on the design of the visual/acoustic target localiza-tion system of the barn owl. This system adaptively fuses its separate visual and acoustic representations of object position into a single joint representation used for head orientation. The building block in this system, as in much of the brain, is the neuronal map. Neuronal maps are large arrays of locally interconnected neurons that represent information in a map-like form, that is, parameter values are systematically encoded by the position of neural activation in the array. The computational load is distributed to a hierarchy of maps, and the computation is performed in stages by transforming the representation from map to map via the geometry of the projections between the maps and the local interactions within the maps. For example, azimuthal position is computed from the frequency and binaural phase information encoded in the signals of the acoustic sensors, while elevation is computed in a separate stream using binaural intensity information. These separate streams are merged in their joint projection onto the external nucleus of the inferior colliculus, a two dimensional array of cells which contains a map of acoustic space. This acoustic map, and the visual map of the retina, jointly project onto the optic tectum, creating a fused visual/acoustic representation of position in space that is used for object localization. In this paper we describe our mathematical model of the stage of visual/acoustic fusion in the optic tectum. The model assumes that the acoustic projection from the external nucleus onto the tectum is roughly topographic and one-to-many, while the visual projection from the retina onto the tectum is topographic and one-to-one. A simple process of self-organization alters the strengths of the acoustic connections, effectively forming a focused beam of strong acoustic connections whose inputs are coincident with the visual inputs

  5. A Survey of Neural Network Techniques for Feature Extraction from Text

    OpenAIRE

    John, Vineet

    2017-01-01

    This paper aims to catalyze the discussions about text feature extraction techniques using neural network architectures. The research questions discussed in the paper focus on the state-of-the-art neural network techniques that have proven to be useful tools for language processing, language generation, text classification and other computational linguistics tasks.

  6. Methods and procedures for the verification and validation of artificial neural networks

    CERN Document Server

    Taylor, Brian J

    2006-01-01

    Neural networks are members of a class of software that have the potential to enable intelligent computational systems capable of simulating characteristics of biological thinking and learning. This volume introduces some of the methods and techniques used for the verification and validation of neural networks and adaptive systems.

  7. Community structure of complex networks based on continuous neural network

    Science.gov (United States)

    Dai, Ting-ting; Shan, Chang-ji; Dong, Yan-shou

    2017-09-01

    As a new subject, the research of complex networks has attracted the attention of researchers from different disciplines. Community structure is one of the key structures of complex networks, so it is a very important task to analyze the community structure of complex networks accurately. In this paper, we study the problem of extracting the community structure of complex networks, and propose a continuous neural network (CNN) algorithm. It is proved that for any given initial value, the continuous neural network algorithm converges to the eigenvector of the maximum eigenvalue of the network modularity matrix. Therefore, according to the stability of the evolution of the network symbol will be able to get two community structure.

  8. Neuromorphic computing applications for network intrusion detection systems

    Science.gov (United States)

    Garcia, Raymond C.; Pino, Robinson E.

    2014-05-01

    What is presented here is a sequence of evolving concepts for network intrusion detection. These concepts start with neuromorphic structures for XOR-based signature matching and conclude with computationally based network intrusion detection system with an autonomous structuring algorithm. There is evidence that neuromorphic computation for network intrusion detection is fractal in nature under certain conditions. Specifically, the neural structure can take fractal form when simple neural structuring is autonomous. A neural structure is fractal by definition when its fractal dimension exceeds the synaptic matrix dimension. The authors introduce the use of fractal dimension of the neuromorphic structure as a factor in the autonomous restructuring feedback loop.

  9. Computational neural learning formalisms for manipulator inverse kinematics

    Science.gov (United States)

    Gulati, Sandeep; Barhen, Jacob; Iyengar, S. Sitharama

    1989-01-01

    An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints.

  10. Flexible body control using neural networks

    Science.gov (United States)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  11. Identification and Position Control of Marine Helm using Artificial Neural Network Neural Network

    Directory of Open Access Journals (Sweden)

    Hui ZHU

    2008-02-01

    Full Text Available If nonlinearities such as saturation of the amplifier gain and motor torque, gear backlash, and shaft compliances- just to name a few - are considered in the position control system of marine helm, traditional control methods are no longer sufficient to be used to improve the performance of the system. In this paper an alternative approach to traditional control methods - a neural network reference controller - is proposed to establish an adaptive control of the position of the marine helm to achieve the controlled variable at the command position. This neural network controller comprises of two neural networks. One is the plant model network used to identify the nonlinear system and the other the controller network used to control the output to follow the reference model. The experimental results demonstrate that this adaptive neural network reference controller has much better control performance than is obtained with traditional controllers.

  12. Four Degree Freedom Robot Arm with Fuzzy Neural Network Control

    Directory of Open Access Journals (Sweden)

    Şinasi Arslan

    2013-01-01

    Full Text Available In this study, the control of four degree freedom robot arm has been realized with the computed torque control method.. It is usually required that the four jointed robot arm has high precision capability and good maneuverability for using in industrial applications. Besides, high speed working and external applied loads have been acting as important roles. For those purposes, the computed torque control method has been developed in a good manner that the robot arm can track the given trajectory, which has been able to enhance the feedback control together with fuzzy neural network control. The simulation results have proved that the computed torque control with the neural network has been so successful in robot control.

  13. Short-Term Load Forecasting Model Based on Quantum Elman Neural Networks

    Directory of Open Access Journals (Sweden)

    Zhisheng Zhang

    2016-01-01

    Full Text Available Short-term load forecasting model based on quantum Elman neural networks was constructed in this paper. The quantum computation and Elman feedback mechanism were integrated into quantum Elman neural networks. Quantum computation can effectively improve the approximation capability and the information processing ability of the neural networks. Quantum Elman neural networks have not only the feedforward connection but also the feedback connection. The feedback connection between the hidden nodes and the context nodes belongs to the state feedback in the internal system, which has formed specific dynamic memory performance. Phase space reconstruction theory is the theoretical basis of constructing the forecasting model. The training samples are formed by means of K-nearest neighbor approach. Through the example simulation, the testing results show that the model based on quantum Elman neural networks is better than the model based on the quantum feedforward neural network, the model based on the conventional Elman neural network, and the model based on the conventional feedforward neural network. So the proposed model can effectively improve the prediction accuracy. The research in the paper makes a theoretical foundation for the practical engineering application of the short-term load forecasting model based on quantum Elman neural networks.

  14. Memory-optimal neural network approximation

    Science.gov (United States)

    Bölcskei, Helmut; Grohs, Philipp; Kutyniok, Gitta; Petersen, Philipp

    2017-08-01

    We summarize the main results of a recent theory-developed by the authors-establishing fundamental lower bounds on the connectivity and memory requirements of deep neural networks as a function of the complexity of the function class to be approximated by the network. These bounds are shown to be achievable. Specifically, all function classes that are optimally approximated by a general class of representation systems-so-called affine systems-can be approximated by deep neural networks with minimal connectivity and memory requirements. Affine systems encompass a wealth of representation systems from applied harmonic analysis such as wavelets, shearlets, ridgelets, α-shearlets, and more generally α-molecules. This result elucidates a remarkable universality property of deep neural networks and shows that they achieve the optimum approximation properties of all affine systems combined. Finally, we present numerical experiments demonstrating that the standard stochastic gradient descent algorithm generates deep neural networks which provide close-to-optimal approximation rates at minimal connectivity. Moreover, stochastic gradient descent is found to actually learn approximations that are sparse in the representation system optimally sparsifying the function class the network is trained on.

  15. Neural networks for sign language translation

    Science.gov (United States)

    Wilson, Beth J.; Anspach, Gretel

    1993-09-01

    A neural network is used to extract relevant features of sign language from video images of a person communicating in American Sign Language or Signed English. The key features are hand motion, hand location with respect to the body, and handshape. A modular hybrid design is under way to apply various techniques, including neural networks, in the development of a translation system that will facilitate communication between deaf and hearing people. One of the neural networks described here is used to classify video images of handshapes into their linguistic counterpart in American Sign Language. The video image is preprocessed to yield Fourier descriptors that encode the shape of the hand silhouette. These descriptors are then used as inputs to a neural network that classifies their shapes. The network is trained with various examples from different signers and is tested with new images from new signers. The results have shown that for coarse handshape classes, the network is invariant to the type of camera used to film the various signers and to the segmentation technique.

  16. Equivalence of Conventional and Modified Network of Generalized Neural Elements

    Directory of Open Access Journals (Sweden)

    E. V. Konovalov

    2016-01-01

    Full Text Available The article is devoted to the analysis of neural networks consisting of generalized neural elements. The first part of the article proposes a new neural network model — a modified network of generalized neural elements (MGNE-network. This network developes the model of generalized neural element, whose formal description contains some flaws. In the model of the MGNE-network these drawbacks are overcome. A neural network is introduced all at once, without preliminary description of the model of a single neural element and method of such elements interaction. The description of neural network mathematical model is simplified and makes it relatively easy to construct on its basis a simulation model to conduct numerical experiments. The model of the MGNE-network is universal, uniting properties of networks consisting of neurons-oscillators and neurons-detectors. In the second part of the article we prove the equivalence of the dynamics of the two considered neural networks: the network, consisting of classical generalized neural elements, and MGNE-network. We introduce the definition of equivalence in the functioning of the generalized neural element and the MGNE-network consisting of a single element. Then we introduce the definition of the equivalence of the dynamics of the two neural networks in general. It is determined the correlation of different parameters of the two considered neural network models. We discuss the issue of matching the initial conditions of the two considered neural network models. We prove the theorem about the equivalence of the dynamics of the two considered neural networks. This theorem allows us to apply all previously obtained results for the networks, consisting of classical generalized neural elements, to the MGNE-network.

  17. Distributed algorithm to train neural networks using the Map Reduce paradigm

    Directory of Open Access Journals (Sweden)

    Cristian Mihai BARCA

    2017-07-01

    Full Text Available With rapid development of powerful computer systems during past decade, parallel and distributed processing becomes a significant resource for fast neural network training, even for real-time processing. Different parallel computing based methods have been proposed in recent years for the development of system performance. The two main methods are to distribute the patterns that are used for training - training set level parallelism, or to distribute the computation performed by the neural network - neural network level parallelism. In the present research work we have focused on the first method.

  18. Neural networks and particle physics

    CERN Document Server

    Peterson, Carsten

    1993-01-01

    1. Introduction : Structure of the Central Nervous System Generics2. Feed-forward networks, Perceptions, Function approximators3. Self-organisation, Feature Maps4. Feed-back Networks, The Hopfield model, Optimization problems, Feed-back, Networks, Deformable templates, Graph bisection

  19. Comparing between predicted output temperature of flat-plate solar collector and experimental results: computational fluid dynamics and artificial neural network

    Directory of Open Access Journals (Sweden)

    F Nadi

    2017-05-01

    Full Text Available Introduction The significant of solar energy as a renewable energy source, clean and without damage to the environment, for the production of electricity and heat is of great importance. Furthermore, due to the oil crisis as well as reducing the cost of home heating by 70%, solar energy in the past two decades has been a favorite of many researchers. Solar collectors are devices for collecting solar radiant energy through which this energy is converted into heat and then heat is transferred to a fluid (usually air or water. Therefore, a key component in performance improvement of solar heating system is a solar collector optimization under different testing conditions. However, estimation of output parameters under different testing conditions is costly, time consuming and mostly impossible. As a result, smart use of neural networks as well as CFD (computational fluid dynamics to predict the properties with which desired output would have been acquired is valuable. To the best of our knowledge, there are no any studies that compare experimental results with CFD and ANN. Materials and Methods A corrugated galvanized iron sheet of 2 m length, 1 m wide and 0.5 mm in thickness was used as an absorber plate for absorbing the incident solar radiation (Fig. 1 and 2. Corrugations in absorber were caused turbulent air and improved heat transfer coefficient. Computational fluid dynamics K-ε turbulence model was used for simulation. The following assumptions are made in the analysis. (1 Air is a continuous medium and incompressible. (2 The flow is steady and possesses have turbulent flow characteristics, due to the high velocity of flow. (3 The thermal-physical properties of the absorber sheet and the absorber tube are constant with respect to the operating temperature. (4 The bottom side of the absorber tube and the absorber plate are assumed to be adiabatic. Artificial neural network In this research a one-hidden-layer feed-forward network based on the

  20. A linear model for characterization of synchronization frequencies of neural networks.

    Science.gov (United States)

    Lv, Peili; Hu, Xintao; Lv, Jinglei; Han, Junwei; Guo, Lei; Liu, Tianming

    2014-02-01

    The synchronization frequency of neural networks and its dynamics have important roles in deciphering the working mechanisms of the brain. It has been widely recognized that the properties of functional network synchronization and its dynamics are jointly determined by network topology, network connection strength, i.e., the connection strength of different edges in the network, and external input signals, among other factors. However, mathematical and computational characterization of the relationships between network synchronization frequency and these three important factors are still lacking. This paper presents a novel computational simulation framework to quantitatively characterize the relationships between neural network synchronization frequency and network attributes and input signals. Specifically, we constructed a series of neural networks including simulated small-world networks, real functional working memory network derived from functional magnetic resonance imaging, and real large-scale structural brain networks derived from diffusion tensor imaging, and performed synchronization simulations on these networks via the Izhikevich neuron spiking model. Our experiments demonstrate that both of the network synchronization strength and synchronization frequency change according to the combination of input signal frequency and network self-synchronization frequency. In particular, our extensive experiments show that the network synchronization frequency can be represented via a linear combination of the network self-synchronization frequency and the input signal frequency. This finding could be attributed to an intrinsically-preserved principle in different types of neural systems, offering novel insights into the working mechanism of neural systems.

  1. Statistical modelling of neural networks in {gamma}-spectrometry applications

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, V.; Martinez, J.M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Morel, J.; Lepy, M.C. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Applications et de la Metrologie des Rayonnements Ionisants

    1995-12-31

    Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ratio {sup 235} U/({sup 235} U + {sup 236} U + {sup 238} U). The usual method consider a limited number of {Gamma}-ray and X-ray peaks, and require previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above convention methods is to reduce the region of interest: this is possible by focusing on the K{sub {alpha}} X region where the three elementary components are present. Real data are used to study the performance of neural networks. Training is done with a Maximum Likelihood method to measure uranium {sup 235} U and {sup 238} U quantities in infinitely thick samples. (authors). 18 refs., 6 figs., 3 tabs.

  2. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Ziaul Huque

    2007-08-31

    This is the final technical report for the project titled 'Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks'. The aim of the project was to develop an efficient chemistry model for combustion simulations. The reduced chemistry model was developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) was used via a new network topology known as Non-linear Principal Components Analysis (NPCA). A commonly used Multilayer Perceptron Neural Network (MLP-NN) was modified to implement NPCA-NN. The training rate of NPCA-NN was improved with the GEneralized Regression Neural Network (GRNN) based on kernel smoothing techniques. Kernel smoothing provides a simple way of finding structure in data set without the imposition of a parametric model. The trajectory data of the reaction mechanism was generated based on the optimization techniques of genetic algorithm (GA). The NPCA-NN algorithm was then used for the reduction of Dimethyl Ether (DME) mechanism. DME is a recently discovered fuel made from natural gas, (and other feedstock such as coal, biomass, and urban wastes) which can be used in compression ignition engines as a substitute for diesel. An in-house two-dimensional Computational Fluid Dynamics (CFD) code was developed based on Meshfree technique and time marching solution algorithm. The project also provided valuable research experience to two graduate students.

  3. Artificial neural network in cosmic landscape

    Science.gov (United States)

    Liu, Junyu

    2017-12-01

    In this paper we propose that artificial neural network, the basis of machine learning, is useful to generate the inflationary landscape from a cosmological point of view. Traditional numerical simulations of a global cosmic landscape typically need an exponential complexity when the number of fields is large. However, a basic application of artificial neural network could solve the problem based on the universal approximation theorem of the multilayer perceptron. A toy model in inflation with multiple light fields is investigated numerically as an example of such an application.

  4. Top tagging with deep neural networks [Vidyo

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Recent literature on deep neural networks for top tagging has focussed on image based techniques or multivariate approaches using high level jet substructure variables. Here, we take a sequential approach to this task by using anordered sequence of energy deposits as training inputs. Unlike previous approaches, this strategy does not result in a loss of information during pixelization or the calculation of high level features. We also propose new preprocessing methods that do not alter key physical quantities such as jet mass. We compare the performance of this approach to standard tagging techniques and present results evaluating the robustness of the neural network to pileup.

  5. Automatic identification of species with neural networks.

    Science.gov (United States)

    Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda

    2014-01-01

    A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.

  6. Automatic identification of species with neural networks

    Directory of Open Access Journals (Sweden)

    Andrés Hernández-Serna

    2014-11-01

    Full Text Available A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.

  7. Pulse image recognition using fuzzy neural network.

    Science.gov (United States)

    Xu, L S; Meng, Max Q -H; Wang, K Q

    2007-01-01

    The automatic recognition of pulse images is the key in the research of computerized pulse diagnosis. In order to automatically differentiate the pulse patterns by using small samples, a fuzzy neural network to classify pulse images based on the knowledge of experts in traditional Chinese pulse diagnosis was designed. The designed classifier can make hard decision and soft decision for identifying 18 patterns of pulse images at the accuracy of 91%, which is better than the results that achieved by back-propagation neural network.

  8. Assessing Landslide Hazard Using Artificial Neural Network

    DEFF Research Database (Denmark)

    Farrokhzad, Farzad; Choobbasti, Asskar Janalizadeh; Barari, Amin

    2011-01-01

    failure" which is main concentration of the current research and "liquefaction failure". Shear failures along shear planes occur when the shear stress along the sliding surfaces exceed the effective shear strength. These slides have been referred to as landslide. An expert system based on artificial...... neural network has been developed for use in the stability evaluation of slopes under various geological conditions and engineering requirements. The Artificial neural network model of this research uses slope characteristics as input and leads to the output in form of the probability of failure...

  9. Human Face Recognition Using Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Răzvan-Daniel Albu

    2009-10-01

    Full Text Available In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. The convolutional network extracts successively larger features in a hierarchical set of layers. With the weights of the trained neural networks there are created kernel windows used for feature extraction in a 3-stage algorithm. I present experimental results illustrating the efficiency of the proposed approach. I use a database of 796 images of 159 individuals from Reims University which contains quite a high degree of variability in expression, pose, and facial details.

  10. SAR ATR Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Tian Zhuangzhuang

    2016-06-01

    Full Text Available This study presents a new method of Synthetic Aperture Radar (SAR image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recognition SAR datasets prove the validity of this method.

  11. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2015-01-01

    Full Text Available Artificial neural networks (ANNs have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  12. Exploiting network redundancy for low-cost neural network realizations.

    NARCIS (Netherlands)

    Keegstra, H; Jansen, WJ; Nijhuis, JAG; Spaanenburg, L; Stevens, H; Udding, JT

    1996-01-01

    A method is presented to optimize a trained neural network for physical realization styles. Target architectures are embedded microcontrollers or standard cell based ASIC designs. The approach exploits the redundancy in the network, required for successful training, to replace the synaptic weighting

  13. Removing Epistemological Bias From Empirical Observation of Neural Networks

    OpenAIRE

    Waldron, Ronan

    1994-01-01

    Also in Proceedings of the International Joint Conference on Neural Networks, Nagoya, Japan. This paper addresses the application of neural network research to a theory of autonomous systems. Neural networks, while enjoying considerable success in autonomous systems applications, have failed to provide a firm theoretical underpinning to neural systems embedded in their natural ecological context. This paper proposes a stochastic formulation of such an embedding. A neural sys...

  14. Lung cancer classification using neural networks for CT images.

    Science.gov (United States)

    Kuruvilla, Jinsa; Gunavathi, K

    2014-01-01

    Early detection of cancer is the most promising way to enhance a patient's chance for survival. This paper presents a computer aided classification method in computed tomography (CT) images of lungs developed using artificial neural network. The entire lung is segmented from the CT images and the parameters are calculated from the segmented image. The statistical parameters like mean, standard deviation, skewness, kurtosis, fifth central moment and sixth central moment are used for classification. The classification process is done by feed forward and feed forward back propagation neural networks. Compared to feed forward networks the feed forward back propagation network gives better classification. The parameter skewness gives the maximum classification accuracy. Among the already available thirteen training functions of back propagation neural network, the Traingdx function gives the maximum classification accuracy of 91.1%. Two new training functions are proposed in this paper. The results show that the proposed training function 1 gives an accuracy of 93.3%, specificity of 100% and sensitivity of 91.4% and a mean square error of 0.998. The proposed training function 2 gives a classification accuracy of 93.3% and minimum mean square error of 0.0942. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Neural Networks for Beat Perception in Musical Rhythm.

    Science.gov (United States)

    Large, Edward W; Herrera, Jorge A; Velasco, Marc J

    2015-01-01

    Entrainment of cortical rhythms to acoustic rhythms has been hypothesized to be the neural correlate of pulse and meter perception in music. Dynamic attending theory first proposed synchronization of endogenous perceptual rhythms nearly 40 years ago, but only recently has the pivotal role of neural synchrony been demonstrated. Significant progress has since been made in understanding the role of neural oscillations and the neural structures that support synchronized responses to musical rhythm. Synchronized neural activity has been observed in auditory and motor networks, and has been linked with attentional allocation and movement coordination. Here we describe a neurodynamic model that shows how self-organization of oscillations in interacting sensory and motor networks could be responsible for the formation of the pulse percept in complex rhythms. In a pulse synchronization study, we test the model's key prediction that pulse can be perceived at a frequency for which no spectral energy is present in the amplitude envelope of the acoustic rhythm. The result shows that participants perceive the pulse at the theoretically predicted frequency. This model is one of the few consistent with neurophysiological evidence on the role of neural oscillation, and it explains a phenomenon that other computational models fail to explain. Because it is based on a canonical model, the predictions hold for an entire family of dynamical systems, not only a specific one. Thus, this model provides a theoretical link between oscillatory neurodynamics and the induction of pulse and meter in musical rhythm.

  16. On the Computational Power of Spiking Neural P Systems with Self-Organization

    Science.gov (United States)

    Wang, Xun; Song, Tao; Gong, Faming; Zheng, Pan

    2016-06-01

    Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun.

  17. Parameter Identification by Bayes Decision and Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1994-01-01

    The problem of parameter identification by Bayes point estimation using neural networks is investigated.......The problem of parameter identification by Bayes point estimation using neural networks is investigated....

  18. On The Comparison of Artificial Neural Network (ANN) and ...

    African Journals Online (AJOL)

    West African Journal of Industrial and Academic Research ... This work presented the results of an experimental comparison of two models: Multinomial Logistic Regression (MLR) and Artificial Neural Network (ANN) for ... Keywords: Multinomial Logistic Regression, Artificial Neural Network, Correct classification rate.

  19. A NEURAL OSCILLATOR-NETWORK MODEL OF TEMPORAL PATTERN GENERATION

    NARCIS (Netherlands)

    Schomaker, Lambert

    Most contemporary neural network models deal with essentially static, perceptual problems of classification and transformation. Models such as multi-layer feedforward perceptrons generally do not incorporate time as an essential dimension, whereas biological neural networks are inherently temporal

  20. Neural networks of human nature and nurture

    Directory of Open Access Journals (Sweden)

    Daniel S. Levine

    2009-11-01

    Full Text Available Neural network methods have facilitated the unification of several unfortunate splits in psychology, including nature versus nurture. We review the contributions of this methodology and then discuss tentative network theories of caring behavior, of uncaring behavior, and of how the frontal lobes are involved in the choices between them. The implications of our theory are optimistic about the prospects of society to encourage the human potential for caring.

  1. An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

    Science.gov (United States)

    Cabessa, Jérémie; Villa, Alessandro E. P.

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866

  2. An attractor-based complexity measurement for Boolean recurrent neural networks.

    Science.gov (United States)

    Cabessa, Jérémie; Villa, Alessandro E P

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of ω-automata, and then translating the most refined classification of ω-automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits.

  3. Neural network for sonogram gap filling

    DEFF Research Database (Denmark)

    Klebæk, Henrik; Jensen, Jørgen Arendt; Hansen, Lars Kai

    1995-01-01

    a neural network for predicting mean frequency of the velocity signal and its variance. The neural network then predicts the evolution of the mean and variance in the gaps, and the sonogram and audio signal are reconstructed from these. The technique is applied on in-vivo data from the carotid artery...... in the sonogram and in the audio signal, rendering the audio signal useless, thus making diagnosis difficult. The current goal for ultrasound scanners is to maintain a high refresh rate for the B-mode image and at the same time attain a high maximum velocity in the sonogram display. This precludes the intermixing...... series, and is shown to yield better results, i.e., the variances of the predictions are lower. The ability of the neural predictor to reconstruct both the sonogram and the audio signal, when only 50% of the time is used for velocity data acquisition, is demonstrated for the in-vivo data...

  4. Bayesian neural networks for detecting epistasis in genetic association studies.

    Science.gov (United States)

    Beam, Andrew L; Motsinger-Reif, Alison; Doyle, Jon

    2014-11-21

    Discovering causal genetic variants from large genetic association studies poses many difficult challenges. Assessing which genetic markers are involved in determining trait status is a computationally demanding task, especially in the presence of gene-gene interactions. A non-parametric Bayesian approach in the form of a Bayesian neural network is proposed for use in analyzing genetic association studies. Demonstrations on synthetic and real data reveal they are able to efficiently and accurately determine which variants are involved in determining case-control status. By using graphics processing units (GPUs) the time needed to build these models is decreased by several orders of magnitude. In comparison with commonly used approaches for detecting interactions, Bayesian neural networks perform very well across a broad spectrum of possible genetic relationships. The proposed framework is shown to be a powerful method for detecting causal SNPs while being computationally efficient enough to handle large datasets.

  5. Optimizing neural network models: motivation and case studies

    OpenAIRE

    Harp, S A; T. Samad

    2012-01-01

    Practical successes have been achieved  with neural network models in a variety of domains, including energy-related industry. The large, complex design space presented by neural networks is only minimally explored in current practice. The satisfactory results that nevertheless have been obtained testify that neural networks are a robust modeling technology; at the same time, however, the lack of a systematic design approach implies that the best neural network models generally  rem...

  6. Dynamic Object Identification with SOM-based neural networks

    Directory of Open Access Journals (Sweden)

    Aleksey Averkin

    2014-03-01

    Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.

  7. Stock Price Prediction Based on Procedural Neural Networks

    OpenAIRE

    Jiuzhen Liang; Wei Song; Mei Wang

    2011-01-01

    We present a spatiotemporal model, namely, procedural neural networks for stock price prediction. Compared with some successful traditional models on simulating stock market, such as BNN (backpropagation neural networks, HMM (hidden Markov model) and SVM (support vector machine)), the procedural neural network model processes both spacial and temporal information synchronously without slide time window, which is typically used in the well-known recurrent neural networks. Two differen...

  8. Cortical Neural Computation by Discrete Results Hypothesis.

    Science.gov (United States)

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called "Discrete Results" (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of "Discrete Results" is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel "Discrete Results" concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS

  9. Based on BP Neural Network Stock Prediction

    Science.gov (United States)

    Liu, Xiangwei; Ma, Xin

    2012-01-01

    The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…

  10. Epileptiform spike detection via convolutional neural networks

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz

    2016-01-01

    The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated...

  11. Artificial neural networks and support vector mac

    Indian Academy of Sciences (India)

    Quantitative structure-property relationships of electroluminescent materials: Artificial neural networks and support vector machines to predict electroluminescence of organic molecules. ALANA FERNANDES GOLIN and RICARDO STEFANI. ∗. Laboratório de Estudos de Materiais (LEMAT), Instituto de Ciências Exatas e da ...

  12. Neural Networks for protein Structure Prediction

    DEFF Research Database (Denmark)

    Bohr, Henrik

    1998-01-01

    This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...

  13. Towards semen quality assessment using neural networks

    DEFF Research Database (Denmark)

    Linneberg, Christian; Salamon, P.; Svarer, C.

    1994-01-01

    The paper presents the methodology and results from a neural net based classification of human sperm head morphology. The methodology uses a preprocessing scheme in which invariant Fourier descriptors are lumped into “energy” bands. The resulting networks are pruned using optimal brain damage...

  14. Convolutional Neural Networks for SAR Image Segmentation

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  15. Visualization of neural networks using saliency maps

    DEFF Research Database (Denmark)

    Mørch, Niels J.S.; Kjems, Ulrik; Hansen, Lars Kai

    1995-01-01

    The saliency map is proposed as a new method for understanding and visualizing the nonlinearities embedded in feedforward neural networks, with emphasis on the ill-posed case, where the dimensionality of the input-field by far exceeds the number of examples. Several levels of approximations...

  16. Separable explanations of neural network decisions

    DEFF Research Database (Denmark)

    Rieger, Laura

    2017-01-01

    Deep Taylor Decomposition is a method used to explain neural network decisions. When applying this method to non-dominant classifications, the resulting explanation does not reflect important features for the chosen classification. We propose that this is caused by the dense layers and propose...

  17. Fast Fingerprint Classification with Deep Neural Network

    DEFF Research Database (Denmark)

    Michelsanti, Daniel; Guichi, Yanis; Ene, Andreea-Daniela

    2017-01-01

    . In this work we evaluate the performance of two pre-trained convolutional neural networks fine-tuned on the NIST SD4 benchmark database. The obtained results show that this approach is comparable with other results in the literature, with the advantage of a fast feature extraction stage....

  18. Empirical generalization assessment of neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1995-01-01

    This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model...

  19. Feature to prototype transition in neural networks

    Science.gov (United States)

    Krotov, Dmitry; Hopfield, John

    Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.

  20. Applying Artificial Neural Networks for Face Recognition

    Directory of Open Access Journals (Sweden)

    Thai Hoang Le

    2011-01-01

    Full Text Available This paper introduces some novel models for all steps of a face recognition system. In the step of face detection, we propose a hybrid model combining AdaBoost and Artificial Neural Network (ABANN to solve the process efficiently. In the next step, labeled faces detected by ABANN will be aligned by Active Shape Model and Multi Layer Perceptron. In this alignment step, we propose a new 2D local texture model based on Multi Layer Perceptron. The classifier of the model significantly improves the accuracy and the robustness of local searching on faces with expression variation and ambiguous contours. In the feature extraction step, we describe a methodology for improving the efficiency by the association of two methods: geometric feature based method and Independent Component Analysis method. In the face matching step, we apply a model combining many Neural Networks for matching geometric features of human face. The model links many Neural Networks together, so we call it Multi Artificial Neural Network. MIT + CMU database is used for evaluating our proposed methods for face detection and alignment. Finally, the experimental results of all steps on CallTech database show the feasibility of our proposed model.

  1. Artificial neural networks in neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. de Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)

    2005-07-01

    An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the {chi}{sup 2}- test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  2. Learning chaotic attractors by neural networks

    NARCIS (Netherlands)

    Bakker, R; Schouten, JC; Giles, CL; Takens, F; van den Bleek, CM

    2000-01-01

    An algorithm is introduced that trains a neural network to identify chaotic dynamics from a single measured time series. During training, the algorithm learns to short-term predict the time series. At the same time a criterion, developed by Diks, van Zwet, Takens, and de Goede (1996) is monitored

  3. Nonlinear Time Series Analysis via Neural Networks

    Science.gov (United States)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  4. Neural networks, penalty logic and optimality theory

    NARCIS (Netherlands)

    Blutner, R.; Benz, A.; Blutner, R.

    2009-01-01

    Ever since the discovery of neural networks, there has been a controversy between two modes of information processing. On the one hand, symbolic systems have proven indispensable for our understanding of higher intelligence, especially when cognitive domains like language and reasoning are examined.

  5. Image inpainting using a neural network

    Directory of Open Access Journals (Sweden)

    Gapon Nikolay

    2017-01-01

    Full Text Available The paper describes a new method of two-dimensional signals reconstruction by restoring static images. A new method of spatial reconstruction of static images based on a geometric model using a neural network is proposed, it is based on the search for similar blocks and copying them into the region of distorted or missing pixel values.

  6. Evaluating Functional Autocorrelation within Spatially Distributed Neural Processing Networks*

    Science.gov (United States)

    Derado, Gordana; Bowman, F. Dubois; Ely, Timothy D.; Kilts, Clinton D.

    2010-01-01

    Data-driven statistical approaches, such as cluster analysis or independent component analysis, applied to in vivo functional neuroimaging data help to identify neural processing networks that exhibit similar task-related or restingstate patterns of activity. Ideally, the measured brain activity for voxels within such networks should exhibit high autocorrelation. An important limitation is that the algorithms do not typically quantify or statistically test the strength or nature of the within-network relatedness between voxels. To extend the results given by such data-driven analyses, we propose the use of Moran’s I statistic to measure the degree of functional autocorrelation within identified neural processing networks and to evaluate the statistical significance of the observed associations. We adapt the conventional definition of Moran’s I, for applicability to neuroimaging analyses, by defining the global autocorrelation index using network-based neighborhoods. Also, we compute network-specific contributions to the overall autocorrelation. We present results from a bootstrap analysis that provide empirical support for the use of our hypothesis testing framework. We illustrate our methodology using positron emission tomography (PET) data from a study that examines the neural representation of working memory among individuals with schizophrenia and functional magnetic resonance imaging (fMRI) data from a study of depression. PMID:21643436

  7. Foetal ECG recovery using dynamic neural networks.

    Science.gov (United States)

    Camps-Valls, Gustavo; Martínez-Sober, Marcelino; Soria-Olivas, Emilio; Magdalena-Benedito, Rafael; Calpe-Maravilla, Javier; Guerrero-Martínez, Juan

    2004-07-01

    Non-invasive electrocardiography has proven to be a very interesting method for obtaining information about the foetus state and thus to assure its well-being during pregnancy. One of the main applications in this field is foetal electrocardiogram (ECG) recovery by means of automatic methods. Evident problems found in the literature are the limited number of available registers, the lack of performance indicators, and the limited use of non-linear adaptive methods. In order to circumvent these problems, we first introduce the generation of synthetic registers and discuss the influence of different kinds of noise to the modelling. Second, a method which is based on numerical (correlation coefficient) and statistical (analysis of variance, ANOVA) measures allows us to select the best recovery model. Finally, finite impulse response (FIR) and gamma neural networks are included in the adaptive noise cancellation (ANC) scheme in order to provide highly non-linear, dynamic capabilities to the recovery model. Neural networks are benchmarked with classical adaptive methods such as the least mean squares (LMS) and the normalized LMS (NLMS) algorithms in simulated and real registers and some conclusions are drawn. For synthetic registers, the most determinant factor in the identification of the models is the foetal-maternal signal-to-noise ratio (SNR). In addition, as the electromyogram contribution becomes more relevant, neural networks clearly outperform the LMS-based algorithm. From the ANOVA test, we found statistical differences between LMS-based models and neural models when complex situations (high foetal-maternal and foetal-noise SNRs) were present. These conclusions were confirmed after doing robustness tests on synthetic registers, visual inspection of the recovered signals and calculation of the recognition rates of foetal R-peaks for real situations. Finally, the best compromise between model complexity and outcomes was provided by the FIR neural network. Both

  8. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    Science.gov (United States)

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  9. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    Science.gov (United States)

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  10. Wind Speed Forecasting by Wavelet Neural Networks: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Chuanan Yao

    2013-01-01

    Full Text Available Due to the environmental degradation and depletion of conventional energy, much attention has been devoted to wind energy in many countries. The intermittent nature of wind power has had a great impact on power grid security. Accurate forecasting of wind speed plays a vital role in power system stability. This paper presents a comparison of three wavelet neural networks for short-term forecasting of wind speed. The first two combined models are two types of basic combinations of wavelet transform and neural network, namely, compact wavelet neural network (CWNN and loose wavelet neural network (LWNN in this study, and the third model is a new hybrid method based on the CWNN and LWNN models. The efficiency of the combined models has been evaluated by using actual wind speed from two test stations in North China. The results show that the forecasting performances of the CWNN and LWNN models are unstable and are affected by the test stations selected; the third model is far more accurate than the other forecasting models in spite of the drawback of lower computational efficiency.

  11. Word Vectorization Using Relations among Words for Neural Network

    Science.gov (United States)

    Hotta, Hajime; Kittaka, Masanobu; Hagiwara, Masafumi

    In this paper, we propose a new vectorization method for a new generation of computational intelligence including neural networks and natural language processing. In recent years, various techniques of word vectorization have been proposed, many of which rely on the preparation of dictionaries. However, these techniques don't consider the symbol grounding problem for unknown types of data, which is one of the most fundamental issues on artificial intelligence. In order to avoid the symbol-grounding problem, pattern processing based methods, such as neural networks, are often used in various studies on self-directive systems and algorithms, and the merit of neural network is not exception in the natural language processing. The proposed method is a converter from one word input to one real-valued vector, whose algorithm is inspired by neural network architecture. The merits of the method are as follows: (1) the method requires no specific knowledge of linguistics e.g. word classes or grammatical one; (2) the method is a sequence learning technique and it can learn additional knowledge. The experiment showed the efficiency of word vectorization in terms of similarity measurement.

  12. Predicting the survival of diabetes using neural network

    Science.gov (United States)

    Mamuda, Mamman; Sathasivam, Saratha

    2017-08-01

    Data mining techniques at the present time are used in predicting diseases of health care industries. Neural Network is one among the prevailing method in data mining techniques of an intelligent field for predicting diseases in health care industries. This paper presents a study on the prediction of the survival of diabetes diseases using different learning algorithms from the supervised learning algorithms of neural network. Three learning algorithms are considered in this study: (i) The levenberg-marquardt learning algorithm (ii) The Bayesian regulation learning algorithm and (iii) The scaled conjugate gradient learning algorithm. The network is trained using the Pima Indian Diabetes Dataset with the help of MATLAB R2014(a) software. The performance of each algorithm is further discussed through regression analysis. The prediction accuracy of the best algorithm is further computed to validate the accurate prediction

  13. Human Face Identification using KL Transform and Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Joo [LG Electronics Inc. Multimedia Research Lab. (Korea, Republic of); Ji, Seung Hwan [Mi Re Industry Inc. (Korea, Republic of); Yoo, Jae Hyung; Kim, Jung Hwan; Park, Min Yong [Yonsei University (Korea, Republic of)

    1999-01-01

    Machine recognition of faces from still and video images is emerging as an active research area spanning several disciplines such as image processing, pattern recognition, computer vision and neural networks. In addition, human face identification has numerous applications such as human interface based systems and real-time video systems of surveillance and security. In this paper, we propose an algorithm that can identify a particular individual face. We consider human face identification system in color space, which hasn`t often considered in conventional methods. In order to make the algorithm insensitive to luminance, we convert the conventional RGB coordinates into normalized CIE coordinates. The normalized-CIE-based facial images are KL-transformed. The transformed data are used as used as the input of multi-layered neural network and the network are trained using error-backpropagation methods. Finally, we verify the system performance of the proposed algorithm by experiments. (author). 12 refs., 7 figs., 3 tabs.

  14. MBVCNN: Joint convolutional neural networks method for image recognition

    Science.gov (United States)

    Tong, Tong; Mu, Xiaodong; Zhang, Li; Yi, Zhaoxiang; Hu, Pei

    2017-05-01

    Aiming at the problem of objects in image recognition rectangle, but objects which are input into convolutional neural networks square, the object recognition model was put forward which was based on BING method to realize object estimate, used vectorization of convolutional neural networks to realize input square image in convolutional networks, therefore, built joint convolution neural networks, which achieve multiple size image input. Verified by experiments, the accuracy of multi-object image recognition was improved by 6.70% compared with single vectorization of convolutional neural networks. Therefore, image recognition method of joint convolutional neural networks can enhance the accuracy in image recognition, especially for target in rectangular shape.

  15. Event Discrimination using Convolutional Neural Networks

    Science.gov (United States)

    Menon, Hareesh; Hughes, Richard; Daling, Alec; Winer, Brian

    2017-01-01

    Convolutional Neural Networks (CNNs) are computational models that have been shown to be effective at classifying different types of images. We present a method to use CNNs to distinguish events involving the production of a top quark pair and a Higgs boson from events involving the production of a top quark pair and several quark and gluon jets. To do this, we generate and simulate data using MADGRAPH and DELPHES for a general purpose LHC detector at 13 TeV. We produce images using a particle flow algorithm by binning the particles geometrically based on their position in the detector and weighting the bins by the energy of each particle within each bin, and by defining channels based on particle types (charged track, neutral hadronic, neutral EM, lepton, heavy flavor). Our classification results are competitive with standard machine learning techniques. We have also looked into the classification of the substructure of the events, in a process known as scene labeling. In this context, we look for the presence of boosted objects (such as top quarks) with substructure encompassed within single jets. Preliminary results on substructure classification will be presented.

  16. Unsupervised neural networks for solving Troesch's problem

    Science.gov (United States)

    Muhammad, Asif Zahoor Raja

    2014-01-01

    In this study, stochastic computational intelligence techniques are presented for the solution of Troesch's boundary value problem. The proposed stochastic solvers use the competency of a feed-forward artificial neural network for mathematical modeling of the problem in an unsupervised manner, whereas the learning of unknown parameters is made with local and global optimization methods as well as their combinations. Genetic algorithm (GA) and pattern search (PS) techniques are used as the global search methods and the interior point method (IPM) is used for an efficient local search. The combination of techniques like GA hybridized with IPM (GA-IPM) and PS hybridized with IPM (PS-IPM) are also applied to solve different forms of the equation. A comparison of the proposed results obtained from GA, PS, IPM, PS-IPM and GA-IPM has been made with the standard solutions including well known analytic techniques of the Adomian decomposition method, the variational iterational method and the homotopy perturbation method. The reliability and effectiveness of the proposed schemes, in term of accuracy and convergence, are evaluated from the results of statistical analysis based on sufficiently large independent runs.

  17. Metaheuristic Algorithms for Convolution Neural Network.

    Science.gov (United States)

    Rere, L M Rasdi; Fanany, Mohamad Ivan; Arymurthy, Aniati Murni

    2016-01-01

    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).

  18. Neural network system for traffic flow management

    Science.gov (United States)

    Gilmore, John F.; Elibiary, Khalid J.; Petersson, L. E. Rickard

    1992-09-01

    Atlanta will be the home of several special events during the next five years ranging from the 1996 Olympics to the 1994 Super Bowl. When combined with the existing special events (Braves, Falcons, and Hawks games, concerts, festivals, etc.), the need to effectively manage traffic flow from surface streets to interstate highways is apparent. This paper describes a system for traffic event response and management for intelligent navigation utilizing signals (TERMINUS) developed at Georgia Tech for adaptively managing special event traffic flows in the Atlanta, Georgia area. TERMINUS (the original name given Atlanta, Georgia based upon its role as a rail line terminating center) is an intelligent surface street signal control system designed to manage traffic flow in Metro Atlanta. The system consists of three components. The first is a traffic simulation of the downtown Atlanta area around Fulton County Stadium that models the flow of traffic when a stadium event lets out. Parameters for the surrounding area include modeling for events during various times of day (such as rush hour). The second component is a computer graphics interface with the simulation that shows the traffic flows achieved based upon intelligent control system execution. The final component is the intelligent control system that manages surface street light signals based upon feedback from control sensors that dynamically adapt the intelligent controller's decision making process. The intelligent controller is a neural network model that allows TERMINUS to control the configuration of surface street signals to optimize the flow of traffic away from special events.

  19. Metaheuristic Algorithms for Convolution Neural Network

    Directory of Open Access Journals (Sweden)

    L. M. Rasdi Rere

    2016-01-01

    Full Text Available A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN, a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent.

  20. Neural computing architectures: The design of brain-like machines

    Energy Technology Data Exchange (ETDEWEB)

    Aleksander, I.

    1989-01-01

    Theoretical and applications aspects of neural-network (NN) computers are discussed in chapters contributed by European experts. Topics addressed include speech recognition based on topology-preserving neural maps, neural-map applications, backpropagation in nonfeedforward NNs, a parallel-distributed-processing learning approach to natural language, the learning capabilities of Boolean NNs, the logic of connectionist systems, and a probabilistic-logic NN for associative learning. Consideration is given to N-tuple sampling and genetic algorithms for speech recognition; the dynamic behavior of Boolean NNs; statistical mechanics and NNs; digital NNs, matched filters, and optical implementations; heteroassociative NNs using cabling vs link-disabling local modification rules; and the generation of movement trajectories in primates and robots. Also provided is an overview of parallel distributed processing.

  1. Feed Forward Neural Network Algorithm for Frequent Patterns Mining

    OpenAIRE

    Dr. K.R.Pardasani; Sanjay Sharma; Amit Bhagat

    2010-01-01

    Association rule mining is used to find relationships among items in large data sets. Frequent patterns mining is an important aspect in association rule mining. In this paper, an efficient algorithm named Apriori-Feed Forward(AFF) based on Apriori algorithm and the Feed Forward Neural Network is presented to mine frequent patterns. Apriori algorithm scans database many times to generate frequent itemsets whereas Apriori-Feed Forward(AFF) algorithm scans database Only Once. Computational resu...

  2. Image compression for medical diagnosis using neural networks

    OpenAIRE

    Lanzarini, Laura Cristina; Vargas Camacho, María Teresa; Flores Badrán, Amado; De Giusti, Armando Eduardo

    2000-01-01

    Images compression is a widely studied topic. Conventional situations offer variable compression ratios depending on the image in question and, in general, do not yield good results for images that are rich in tones. This work is an application of images compression of patient s computed tomographies using neural networks, which allows to carry out both compression and decompression of the images with a fixed ratio of 8:1 and a loss of 2%. Facultad de Informática

  3. Using Artificial Neural Networks to Predict Stock Prices

    OpenAIRE

    Kozdraj, Tomasz

    2009-01-01

    Artificial neural networks constitute one of the most developed conception of artificial intelligence. They are based on pragmatic mathematical theories adopted to tasks resolution. A wide range of their applications also includes financial investments issues. The reason for NN's popularity is mainly connected with their ability to solve complex or not well recognized computational tasks, efficiency in finding solutions as well as the possibility of learning based on patterns or without them....

  4. Performance evaluation of coherent Ising machines against classical neural networks

    Science.gov (United States)

    Haribara, Yoshitaka; Ishikawa, Hitoshi; Utsunomiya, Shoko; Aihara, Kazuyuki; Yamamoto, Yoshihisa

    2017-12-01

    The coherent Ising machine is expected to find a near-optimal solution in various combinatorial optimization problems, which has been experimentally confirmed with optical parametric oscillators and a field programmable gate array circuit. The similar mathematical models were proposed three decades ago by Hopfield et al in the context of classical neural networks. In this article, we compare the computational performance of both models.

  5. Analysis of neural networks in terms of domain functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, Lambert

    Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more as a

  6. Extracting knowledge from supervised neural networks in image processing

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, Lambert; Jain, R.; Abraham, A.; Faucher, C.; van der Zwaag, B.J.

    Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a “magic tool��? but possibly even more as a

  7. neural network based load frequency control for restructuring power

    African Journals Online (AJOL)

    2012-03-01

    Mar 1, 2012 ... Abstract. In this study, an artificial neural network (ANN) application of load frequency control. (LFC) of a Multi-Area power system by using a neural network controller is presented. The comparison between a conventional Proportional Integral (PI) controller and the proposed artificial neural networks ...

  8. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...

  9. Time series prediction with simple recurrent neural networks ...

    African Journals Online (AJOL)

    Simple recurrent neural networks are widely used in time series prediction. Most researchers and application developers often choose arbitrarily between Elman or Jordan simple recurrent neural networks for their applications. A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural network is also being used.

  10. Application of radial basis neural network for state estimation of ...

    African Journals Online (AJOL)

    user

    An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for state estimation is investigated by testing its applicability on a IEEE 14 bus ...

  11. The Artifical Neural Network as means for modeling Nonlinear Systems

    OpenAIRE

    Drábek Oldøich; Taufer Ivan

    1998-01-01

    The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.

  12. The Artifical Neural Network as means for modeling Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Drábek Oldøich

    1998-12-01

    Full Text Available The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.

  13. Algorithm For A Self-Growing Neural Network

    Science.gov (United States)

    Cios, Krzysztof J.

    1996-01-01

    CID3 algorithm simulates self-growing neural network. Constructs decision trees equivalent to hidden layers of neural network. Based on ID3 algorithm, which dynamically generates decision tree while minimizing entropy of information. CID3 algorithm generates feedforward neural network by use of either crisp or fuzzy measure of entropy.

  14. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    National Research Council Canada - National Science Library

    Cheung, Kit; Schultz, Simon R; Luk, Wayne

    2015-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs...

  15. FPGA platform for prototyping and evaluation of neural network automotive applications

    Science.gov (United States)

    Aranki, N.; Tawel, R.

    2002-01-01

    In this paper we present an FPGA based reconfigurable computing platform for prototyping and evaluation of advanced neural network based applications for control and diagnostics in an automotive sub-systems.

  16. Uncertainty encountered when modelling self-excited thermoacoustic oscillations with artificial neural networks

    National Research Council Canada - National Science Library

    Jaensch, Stefan; Polifke, Wolfgang

    2017-01-01

    .... This article investigates the capability of artificial neural networks to serve as a basis for deducing nonlinear low-order models of the dynamics of a laminar flame from a Computational Fluid Dynamics (CFD) simulation...

  17. Computing networks from cluster to cloud computing

    CERN Document Server

    Vicat-Blanc, Pascale; Guillier, Romaric; Soudan, Sebastien

    2013-01-01

    "Computing Networks" explores the core of the new distributed computing infrastructures we are using today:  the networking systems of clusters, grids and clouds. It helps network designers and distributed-application developers and users to better understand the technologies, specificities, constraints and benefits of these different infrastructures' communication systems. Cloud Computing will give the possibility for millions of users to process data anytime, anywhere, while being eco-friendly. In order to deliver this emerging traffic in a timely, cost-efficient, energy-efficient, and

  18. Hybrid discrete-time neural networks.

    Science.gov (United States)

    Cao, Hongjun; Ibarz, Borja

    2010-11-13

    Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.

  19. Some structural determinants of Pavlovian conditioning in artificial neural networks.

    Science.gov (United States)

    Sánchez, José M; Galeazzi, Juan M; Burgos, José E

    2010-05-01

    This paper investigates the possible role of neuroanatomical features in Pavlovian conditioning, via computer simulations with layered, feedforward artificial neural networks. The networks' structure and functioning are described by a strongly bottom-up model that takes into account the roles of hippocampal and dopaminergic systems in conditioning. Neuroanatomical features were simulated as generic structural or architectural features of neural networks. We focused on the number of units per hidden layer and connectivity. The effect of the number of units per hidden layer was investigated through simulations of resistance to extinction in fully connected networks. Large networks were more resistant to extinction than small networks, a stochastic effect of the asynchronous random procedure used in the simulator to update activations and weights. These networks did not simulate second-order conditioning because weight competition prevented conditioning to a stimulus after conditioning to another. Partially connected networks simulated second-order conditioning and devaluation of the second-order stimulus after extinction of a similar first-order stimulus. Similar stimuli were simulated as nonorthogonal input-vectors. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  20. Matrix representation of a Neural Network

    DEFF Research Database (Denmark)

    Christensen, Bjørn Klint

    Processing, by David Rummelhart (Rummelhart 1986) for an easy-to-read introduction. What the paper does explain is how a matrix representation of a neural net allows for a very simple implementation. The matrix representation is introduced in (Rummelhart 1986, chapter 9), but only for a two-layer linear...... network and the feedforward algorithm. This paper develops the idea further to three-layer non-linear networks and the backpropagation algorithm. Figure 1 shows the layout of a three-layer network. There are I input nodes, J hidden nodes and K output nodes all indexed from 0. Bias-node for the hidden...